

DEWATERING MANAGEMENT PLAN

4 DELMAR PARADE & 812 PITTWATER ROAD, DEE WHY NSW

Prepared for:

LANDMARK GROUP AUSTRALIA PTY LTD

Reference: P3018_08 rev1

2 May 2024

Morrow Geotechnics Pty Ltd | ABN 42 605 892 126 79/6 Bellambi Lane, Bellambi NSW 2518 P: 02 8599 7579 | E: info@morrowgeo.com.au

Contents

1	IN	TRODUCTION
	1.1	OVERVIEW
	1.2	PROPOSED DEVELOPMENT
	1.3	PROPOSED DEWATERING SCHEDULE
	1.4	OBJECTIVES 4
2	GE	EOLOGICAL MODEL
3	H١	/DROGEOLOGICAL SUMMARY
	3.1	Hydrogeological Summary
	3.2	SUMMARY OF GROUNDWATER OBSERVATIONS
4	GF	ROUNDWATER FLOW MODELLING
	4.1	PROPOSED SHORING AND GROUNDWATER MANAGEMENT
	4.2	ANALYTICAL SEEPAGE MODELLING
	4.2.1	MODELLING INPUTS
	4.2.2	Modelled Seepage
	4.2.3	
5	NS	SW AQUIFER INTERFERENCE POLICY IMPACT ASSESSMENT
6	W	ATER DISCHARGE METHODOLOGY
7	GF	ROUNDWATER MONITORING
	7.1	WATER LEVEL MONITORING 12
	7.2	WATER QUALITY MONITORING
	7.3	CONTINGENCY MEASURES
	7.4	Project Stakeholders
8	CC	DNCLUSION 14
9	ST	ATEMENT OF LIMITATIONS
10) CL	OSURE

1 INTRODUCTION

1.1 Overview

Morrow Geotechnics Pty Ltd has prepared a Groundwater Management Plan for the proposed development at 4 Delmar Parade & 812 Pittwater Road, Dee Why NSW (the site) also known as SP 32071 & SP 32072. At the time of producing this report DA2022/0145 was active with a modification 2024/0083 being assessed.

The following geotechnical reports have been prepared for the site:

- AssettGeoEnviro, *Proposed Mixed-use Development, 4 Delmar Parade & 812 Pittwater Road, Dee Why, NSW;* ref 6561-G1 and dated 25 November 2021 (AGE 2021);
- Reditus Consulting Pty Ltd, *Preliminary Site Investigation, 4 Delmar Parade & 812 Pittwater Road, Dee Why;* project number 21181, version 2 and dated 1 December 2021 (RC 2021);
- Geosyntec Consultants Pty Ltd, *Detailed Site Investigation, 4 Delmar Parade & 812 Pittwater Road, Dee Why;* project number 21325 and dated 4 May 2022 (GC 2022); and
- Reditus Consulting Pty Ltd, *Dewatering Management Plan, 4 Delmar Parade & 812 Pittwater Road, Dee Why;* report number 21181RP01, version 1 and dated 7 June 2022 (RC 2022).
- Morrow Geotechnics Pty Ltd, Geotechnical Investigation Report, 4 Delmar Parade & 812 Pittwater Road, Dee Why NSW, referenced P3018_01 rev3, and dated 2 May 2024 (MG 2024-1).
- Morrow Geotechnics Pty Ltd, Site Hydrogeology Report, *4 Delmar Parade & 812 Pittwater Road, Dee Why NSW,* referenced P3018_07, and dated 2 May 2024 (MG 2024-2).

The previous geotechnical reports present the results of a site investigation for the proposed development and geotechnical and hydrogeological recommendations for design and construction.

1.2 Proposed Development

Architectural drawings for the proposed development have been prepared by Rothe Lowman Property Pty Ltd, Project Number 221054 and dated 16 January 2024. From the drawings provided, Morrow Geotechnics understands that the proposed development involves construction of multi-storey apartment building over a two to three level basement carpark. Morrow understands the development involves excavation to a maximum depth of extends to RL 13.7 to 18.095 mAHD across the eastern half of the site and to RL 21.25 mAHD at the south-western corner of the site.

Basement geometry taken from the Rothe Lowman Architectural drawing TP01.01, project number 221054 is shown in **Figure 1** below.

Figure 1: Proposed Basement Dimensions

1.3 Proposed Dewatering Schedule

Given the relatively low permeability of the sandstone profile encountered at depth within the geotechnical investigation it is proposed to construct a secant pile cut-off wall socketed a minimum of 1000 mm into Class III Sandstone to minimise groundwater seepage. Dewatering through spear points and pumping is not proposed for the construction period, rather the minor groundwater seepage around the cut-off wall will be collected by sump pits within the basement.

The excavation program for the proposed basement is expected to take up to 6 months. Temporary construction dewatering is expected to occur for construction seepage inflows during this 6 month period.

1.4 Objectives

The objective of this Dewatering Management Plan is to identify a methodology for construction dewatering of the site such that:

- Construction dewatering volumes are quantified to be within acceptable thresholds;
- The location of any groundwater extraction works, if required, is clearly delineated;
- The process for disposal of extracted groundwater, if required, is clearly defined;
- The quality of any groundwater is assessed in accordance with ANZEC freshwater guidelines for disposal off site, if required;
- The impact of groundwater drawdown on neighbouring properties is assessed;

P3018_08 rev1 2/05/2024 Page 4

- Provide a NSW Aquifer Interference Policy assessment of the proposed activity;
- Monitoring and contingency plans are outlined for safe management of construction dewatering.

2 GEOLOGICAL MODEL

The Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sydney (DMR 1983) indicates the site to be underlain by Hawkesbury Sandstone, which comprises medium to coarse grained quartz sandstone, very minor shale and laminite lenses.

Further discussion of the geological and geotechnical conditions at the site is provided in the Geotechnical Investigation Report MG 2024-1 and in the Site Hydrogeology Report MG 2024-2.

3 HYDROGEOLOGICAL SUMMARY

3.1 Hydrogeological Summary

A full hydrogeological assessment of the site has been carried out by Morrow Geotechnics as referenced in Section 1.1 above and hereafter referred to as MG 2024-2.

3.2 Summary of Groundwater Observations

Full details of groundwater monitoring are provided in the MG 2024-2 report for the site. A summary of the MG 2024-2 testing is reproduced below as reference.

Groundwater depths observed within BH102 and BH103 were comparable, with average water level RLs of 28.50 and 28.03 mAHD respectively at an average depth of 3.9 mBGL for BH102 and BH103. The average water level within BH101 was measured lower at RL 23.51 mAHD. Groundwater observations within the three wells indicate a phreatic water table which is dipping generally in line with surface topography.

The monitoring within the boreholes indicated low responsiveness to rainfall events during the threemonth monitoring period. This is inferred to be a result of the paved areas in the vicinity of the wells limiting surface water infiltration following rainfall.

On the basis of ongoing groundwater monitoring at the site it is recommended that a design groundwater level for the stable water table within the bedrock is taken at 1.0 m above the consistent water level observed within the boreholes, i.e (2.9 mBGL dipping with topography to the north-west of the site).

4 GROUNDWATER FLOW MODELLING

4.1 Proposed Shoring and Groundwater Management

Structural drawings indicate that the structural design will comprise 600 diameter secant piles. Piles are socketed a minimum of 1 m into into Class III Sandstone to form a cutoff wall.

No spear points or wells are proposed for extraction of groundwater at the site. Any minor groundwater seepage around the cut-off wall will be collected by sump pits within the basement.

4.2 Analytical Seepage Modelling

Groundwater seepage analysis for flow into the drained basement has been calculated using a Plaxis 2D Flow Module. Plaxis is a 2D finite element and limit equilibrium software package used for design of geotechnical and hydrogeological design of structures such as excavations, dams, embankments and tunnels. PLAXIS 2D calculates deformations, soil stresses, water flow and groundwater pressures.

4.2.1 Modelling Inputs

Geological profiles, groundwater levels and hydraulic permeabilities have been entered into the analytical model as per the hydrogeological model presented in the MG 2024 SHR for the site.

For the formation of the model a mean annual deep drainage groundwater recharge flux of 20 mm per year (Australian National Water Commission, 2005) has been assumed.

Two cross sections have been modelled as shown on Figure 2 below.

Figure 2: Modelling Sections 1 and 2

The Plaxis model has been set up as a "Flow Only" calculation using the "Transient Groundwater Flow" stage types. Given the relatively low permeability of soil and rock units obtained from the hydraulic conductivity testing, a model width of 200 m and model depth of 60 m was adequate for modelling the full extent of groundwater impacts from the proposed development.

Vertical model boundaries were set as open to allow infinite recharge of flow at model boundaries at the initial ground levels.

P3018_08 rev1 2/05/2024 Page 6 Short term flow modelling was based on the initial 24 hour period following excavation. The flow rates from short term modelling have been applied to the entire construction period as a worst case scenario given that flow rates reduce quickly after the initial 24 hour flow period. This has been taken as a conservative approach.

Long term flow modelling was based off stabilized flow after allowing the model to run for a 100 day period. Steady flow rates for all models had been achieved at 100 days.

4.2.2 Modelled Seepage

Typical Plaxis outputs for each groundwater flow modelling and groundwater head drawdown curves are shown in **Figures 3** and **4 below**.

Figure 3: Typical aquifer flow conditions (Section 2 short term flow shown).

Figure 4: Typical groundwater head drawdown (Section 2 short term flow shown).

Full outputs of Plaxis results are included in the Plaxis output reports attached as Appendix A.

Tabulated results of seepage calculations for each of the above cases are presented in **Table 1**. Seepage through the excavation face is zero due to secant pile cutoff walls.

TABLE 1 MODELLED SEEPAGE INFLOW RATES

Analysis Case	Up Gradient Seepage to Excavation Face (L/day/m)	Down Gradient Seepage to Excavation Face (L/day/m)	Excavation Base Seepage (L/m²/day)
Section 1 Short Term	0.00	0.00	0.93
Section 1 Long Term	0.00	0.00	0.83
Section 2 Short Term	0.00	0.00	1.33
Section 2 Long Term	0.00	0.00	1.21

Peak upgradient and downgradient seepage rates have been generalized across the 50% of the basement area each as a worst-case projection of groundwater flows. Calculations of total volume of seepage inflow have been based on an excavation perimeter of approximately 300 m and an excavation base area of approximately 6200 m².

Based on the above seepage rates and the size of the proposed excavation, the expected seepage to a drained basement is modelled to be:

- Short Term Flows for Temporary Dewatering During Construction
 2.56 ML/year
- Long Term Flows during Service Life of Structure Following Completion of Construction **2.35 ML/year**

Projected seepage inflows for a drained basement are below the WaterNSW threshold for exemption from the requirement of a Water Access License.

4.2.3 Modelled Groundwater Drawdown

Tabulated results of drawdown calculations for each of the above cases are presented in Table 2.

 TABLE 2
 MODELLED GROUNDWATER DRAWDOWN

Analysis Case	Up Gradient Drawdown (m) Distance Behind Excavation Face				radient Dra Behind Ex Face		Distance to Minimal Drawdown < (100 mm)
	0.5 m	5 m	10 m	0.5 m	5 m	10 m	
Section 1 Short Term	0.00	0.00	0.00	0.00	0.00	0.00	0.0 m
Section 1 Long Term	0.00	0.00	0.00	0.00	0.00	0.00	0.0 m
Section 2 Short Term	0.00	0.00	0.00	0.00	0.00	0.00	0.0 m
Section 2 Long Term	0.00	0.00	0.00	0.00	0.00	0.00	0.0 m

The Plaxis modelling of groundwater drawdown as a result of the works shows that groundwater is not drawn down noticeably outside of the excavation perimeter. This is due to the fact that the cutoff wall effectively minimises seepage rate to less than the recharge capacity of the overlying alluvial soils.

5 NSW AQUIFER INTERFERENCE POLICY IMPACT ASSESSMENT

The Water Management Act 2000 includes the concept of ensuring "no more than minimal harm" for the granting of approvals.

For the purposes of this assessment and based on the regional hydrogeological profile, the groundwater source at the site is a "less productive" source as it does not contain water supply works that can yield water at a rate greater than 5 L/sec. The Groundwater Source is assessed as a "Porous or Fractured Rock Water Source".

The impact assessment has been based on the following three assessment criteria:

• Water Table -

Less than or equal to 10% cumulative variation in the water table, allowing for typical climatic "post-water sharing plan" variations, 40m from any:

- (a) high priority groundwater dependent ecosystem; or
- (b) high priority culturally significant site;

listed in the schedule of the relevant water sharing plan.

A maximum of a 2m decline cumulatively at any water supply work.

Measured variations in the water table were shown at up to 860 mm over the monitoring period. Morrow Geotechnics has carried out a search of registered water supply works and none are present within 50 m of the proposed excavation.

Analysis presented within this DMP shows that all drawdown effects of the proposed works are less than negligible outside of the cut-off wall, therefore Morrow Geotechnics can confirm that the proposed works will have "minimal impact" on the Water Table.

Water Pressure -

A cumulative pressure head decline of not more than a 2m decline, at any water supply work.

As discussed, no registered water supply works are present within 50 m of the proposed excavation. Analysis presented within this DMP shows that all drawdown effects of the proposed works are less than negligible outside of the cut-off wall, therefore Morrow Geotechnics can confirm that the proposed works will have "minimal impact" on the Water Pressure.

• Water Quality -

Any change in the groundwater quality should not lower the beneficial use category of the groundwater source beyond 40m from the activity.

Water quality monitoring will be carried out throughout the works as indicated in Section 6 of this report. The works are not projected to cause any detrimental effect to the water quality beyond 40 m from the activity.

Based on the assessment of the proposed works achieving the requirements of Level 1 minimal impact considerations, Morrow Geotechnics can confirm that the proposed works will do no more than minimal harm.

6 WATER DISCHARGE METHODOLOGY

During the works it will be necessary to discharge water from site when seepage accumulates within the sump or following heavy rainfall.

The process for assessing that water is safe for discharge to Council stormwater systems is as follows:

- All seepage water within the proposed excavation must be detained on site for testing prior to discharge to stormwater. The site detention should comprise a sump pit which is a minimum 2 m x 2 m x 1 m deep, maintained at the lowest point of the site as shown on Figure 7 below. The sump is only required where existing stormwater systems are removed. For existing roof catchment the stormwater discharge to council stormwater system will be maintained.
- Prior to the discharge of water from the site, sampling of the detained water must be undertaken by an environmental specialist. Water quality testing must take place prior to the discharge of any stormwater/groundwater from the site.
 Water quality testing is to the published threshold values of the ANZECC (2000) and NEPM (2013) guidelines for fresh water systems.
- 3. If water quality testing returns analyte values within ANZECC and NEPM a threshold values then the detained water can be discharged to Council stormwater system in accordance with the following requirements:
 - a. The discharge rate will be limited to 10 L/sec per pump to ensure no damage is caused to Council infrastructure. The proposed pumping rate is low in comparison to the capacity of all but the smallest stormwater drains and is highly unlikely to cause overload at any point in the drainage system.
 - b. Water quality testing must be undertaken weekly during discharge. The discharge of water into Council's stormwater system is to halt immediately where water quality does not meet discharge criteria as outlined above.
- If water quality testing exceeds ANZECC and NEPM threshold values then water treatment facilities must be set up on site prior to any discharge from site. This can be achieved by either mixing the discharge water with fresh water to dilute the metal concentration. This may require water storage on site in tanks depending on the progression of the excavation works. Alternatively, water treatment facilities such as those shown below must be established on site to treat stormwater/groundwater prior to any discharge from site. The system must be verified to have reduced analyte levels to below relevant thresholds prior to discharge to stormwater. An indicative water treatment option prior to discharge to stormwater is shown in **Figure 8** below.

Figure 4: Proposed settlement tank location shown in red

Internal Dosing Unit

Figure 5: Indicative possible treatment system where analyte values exceed Council, ANZECC or NEPM threshold values.

7 GROUNDWATER MONITORING

7.1 Water Level Monitoring

During the excavation period the water level must be monitored **daily** within the installed groundwater monitoring wells to ensure that excessive groundwater drawdown does not occur.

Figure 6: Groundwater level monitoring locations

Existing Monitoring Well Location

Groundwater readings are to be taken at a minimum of three monitoring wells during construction. If any of the existing monitoring wells are damaged during construction they must be replaced with a "like for like" well. "Like for like" protocols include all aspects of well construction such as well materials, screened zone, plug depth, etc. Installation details of the existing wells can be found in Section 3.1 of the MG 2023-2 Site Hydrogeology Report.

Prior to the commencement of bulk earthworks at least one round of monitoring should be undertaken to establish baseline readings. Pre works measurements should be forwarded to the project stakeholders outlined in **Table 5**. During the works phase readings should be taken **daily** until works have been completed and no further drawdown is detected.

All groundwater data is to be presented to the project geotechnical and structural engineers along with details of the monitoring visit including:

- date of monitoring;
- time of monitoring;
- progress of works at time of monitoring;
- weather conditions during and preceding the monitoring; and
- any further comments relative to the monitoring.

Morrow Geotechnics recommends that drawdown limits are set at 1400 mm below baseline readings. Groundwater monitoring showed natural variations in groundwater level of up to approximately 860 mm over the monitoring period. The groundwater modelling also showed that the impacts of groundwater drawdown are negligible on neighbouring structures within the geological profile encountered at the site.

The following threshold criteria should be adopted during construction:

- Alert: If drawdown levels are less than 70% of the agreed value, works should continue. Monitoring should continue to be carried out at the nominated intervals and monitoring reports forwarded to the relevant stakeholders as outlined in **Table 6**.
- Alarm: If drawdown levels are greater than 70% but less than 100% of the agreed value, the geotechnical engineer, structural engineer and client representatives should be notified and the monitoring data reviewed. Ongoing monitoring events should continue undertaken at 24 hour intervals until notified otherwise by nominated engineers in consultation with client and WaterNSW.
- Action: If drawdown levels are greater than 100% of the agreed value excavation should cease immediately. The geotechnical engineer, structural engineer, WaterNSW and client representatives should be notified and work should cease until a risk management/contingency plan is implemented to safeguard neighbouring structures. Monitoring should continue daily during this period.

	Criteria
Monitoring Points	Survey marks as shown in Figure 3 above
Agreed Drawdown Limit	1000 mm
Alert Level	< 980 mm
Alarm Level	980 - 1400 mm
Action Level	> 1400 mm

TABLE 6 SUMMARY OF MONITORING CONDITIONS

7.2 Water Quality Monitoring

During excavation works water quality samples from the three monitoring wells and the discharge sump pit must be tested **weekly**. Water samples are to be sent to a NATA accredited laboratory for testing against the Australia and New Zealand Environment Conservation Council ANZECC (2000) guidelines for 95% protection of marine ecosystems (in the absence of guidelines the criteria for fresh waters was used) and National Environment Protection (Assessment of Site Contamination) Measure (NEPM, 2013). Relevant water quality results are presented in **Table 7**, lab results are attached in **Appendix B**.

If analyte values exceed the published threshold values of the ANZECC (2000) and NEPM (2013) guidelines for fresh water systems then the geotechnical engineer, structural engineer, WaterNSW and client representatives should be notified.

Initial water quality testing indicated that the natural groundwater concentrations of Copper, Nickel and Zinc are above the ANZECC (2000) and NEPM (2013) freshwater guidelines. Baseline conditions at the site must be considered in preparation of a response to exceedances of ANZECC and NEPM thresholds.

7.3 Contingency Measures

Contingency measures are to be determined by the project geotechnical and structural engineers in response to groundwater drawdown behaviour observed during the excavation. Possible contingency measures may include:

- Inspection of ground conditions on neighbouring sites;
- Ceasing excavation during updates to excavation support design;
- Groundwater reinjection;
- Permeation grouting to reduce the permeability of native material.

7.4 Project Stakeholders

TABLE 7 STAKEHOLDER CONTACTS

	Contact Person	Contact Details
	Rafael Trina Landmark Group Constrction Australia Pty Ltd	rafael@landmarkgr.com 0450 100 455
Geotechnical Engineer	Andrew Butel Morrow Geotechnics	andy@morrowgeo.com.au 0427 357 856
WaterNSW		enquiries@waternsw.com.au 1300 662 077

8 CONCLUSION

This report has been prepared in response to WaterNSW General Terms of Approval for the site and the Water Management Act 2000. Licensing for temporary construction dewatering from WaterNSW and DPIE will be required for the excavation works at the site.

9 STATEMENT OF LIMITATIONS

The advice and parameters presented in this Groundwater Management Plan are for assessment of the expected groundwater seepage based upon the proposed development and encountered site conditions at the investigation locations.

We draw your attention to the document "Important Information", which is attached to this letter. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Morrow Geotechnics, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact the undersigned.

10 CLOSURE

Please do not hesitate to contact the undersigned should you have any questions.

For and on behalf of Morrow Geotechnics Pty Ltd,

Andrew Butel Hydrogeologist/Engineering Geologist

BSc (Geology), GradCertEngSc, MAIG

Alan Morrow Principal Geotechnical Engineer

BE (Civil) BSc MIEAust CPEng NER

			\sim			~~~~	\sim		~~~~			
	A A A	Y Y Y	γ γ	γ γ 	¥ ¥	ΥΥΥΥ 	Y	Υ Υ 	γ	SITE BOUNDARY	Y Y LEVEL 8 SFL 53.500 LEVEL 7 SFL 50.400	\sum
								D1 47 300		16m ABOVE NGL	LEVEL 6 SFL 47,300	Z
}					COMMUNACTIVACE		,	3 BED PLUS	J 3 BED		LEVEL 5 SFL 44 200	3
	3 BED	2 BED PLUS 3 BED	2 BED PL	US LHA 2 BED 2	2 BED 3 BED LHA	2 BED PLUS LHA	3 BED	1 BED	2 BED PLUS	1	LEVEL 4 SFL 41.100)
$\langle $	1 BED	2 BED PLUS 3 BED	2 BED PL	US LHA 2 BED 2	BED 3 BED LHA	2 BED PLUS LHA	3 BED	1 BED PLUS DDA	3 BED		LEVEL 3 SRL 38,000	3
2	1 BED	2 BED PLUS 3 BED	2 BED PL	US LHA 2 BED 2	BED 3 BED LHA	2 BED PLUS LHA	3 BED	1 BED PLUS DDA	3 BED		LEVEL 2 SFL 34 900	Z
}	3 BED	DOCK 3 BED	2 BED PL		BED 3 BED LHA	2 BED P BH4	BED	1 BED PLUS DDA	3 BED	BH102	LEVEL 1	\mathcal{L}
(BH101	BH2	3 BE	BH3 1 BED PLUST	J BED	EBRESS 2 BED PLUS LI A	3 BED PL	US 1 BED	1 BED PLUS	28.26	GBICONE	5
				120	BASEMENT				- 1 [28.36 mAHD	CEASEMENT!	Z
	23.43 mAHD		9000	and an and a state of the state	BASEMENT	2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		117 11 12 belle belle)
	MARD	Contraction of the second s	T T							A CLEAN	KU KAMABUTE	5
											RL 16.00	3
Unit 1 - Fill											RL 16.00	3
Unit 1 - Fill Unit 2 - Alluvial											RL 16.00	3
_											RL 16.00	3
Unit 2 - Alluvial											RL 16.00	3
Unit 2 - Alluvial Unit 3 - Residual	dstone										RL 16.00	3
Unit 2 - Alluvial Unit 3 - Residual Unit 4 - Class V/IV Sand	dstone										RL 16.00	3
Unit 2 - Alluvial Unit 3 - Residual Unit 4 - Class V/IV Sand Unit 5 - Class III Sands	dstone										RL 16.00	3
 Unit 2 - Alluvial Unit 3 - Residual Unit 4 - Class V/IV Sand Unit 5 - Class III Sands Unit 6 - Class V Shale Unit 7 - Class III Shale 	dstone										RL 16.00	3
Unit 2 - Alluvial Unit 3 - Residual Unit 4 - Class V/IV Sand Unit 5 - Class III Sands Unit 6 - Class V Shale Unit 7 - Class III Shale Unit 7 - Proposed B	dstone stone Basement Outline	Drawn	AB			Construction A	ustrali	a Pty Ltd	Figu	I	RL 16.00	3
Unit 2 - Alluvial Unit 3 - Residual Unit 4 - Class V/IV Sand Unit 5 - Class III Sands Unit 6 - Class V Shale Unit 7 - Class III Shale Unit 7 - Proposed B	dstone stone Basement Outline	Drawn Approved	AB	Lan	ndmark Group (Construction A Parade, Dee W			Figu			3
 Unit 2 - Alluvial Unit 3 - Residual Unit 4 - Class V/IV Sand Unit 5 - Class III Sands Unit 6 - Class V Shale Unit 7 - Class III Shale 	dstone stone Basement Outline			Lan	ndmark Group (4 Delmar F Geotect		ny NSW		Figu		RL 16.00	3

PLAXIS FLOW MODELLING REPORTS

PLAXIS Report

1.1.1.1 Calculation results, Short Term [Phase_2] (2/27), Materials plot

1.1.1.2 Calculation results, Long Term [Phase_3] (3/40), Materials plot

1.1.2.1 Materials - Plates

Identification number		1	2
Identification		600 secant 40 MPa 100 percent modulus	Pipe Wall - Thin
Material type		Elastic	Elastic
Colour			
Comments			
W	kN/m/m	0.000	0.000
Input method		SDOF equivalent	SDOF equivalent
Rayleigh		0.000	0.000
Rayleigh		0.000	0.000
_1	%	0.000	0.000
_2	%	0.000	0.000
f_1	Hz	0.1000	0.1000
f_2	Hz	1.000	1.000
Prevent punching		False	False
Isotropic		True	True
EA_1	kN/m	8.225E6	840.0E3
EA_2	kN/m	8.225E6	840.0E3

			P3018_Dee Why_Section 1
Identification number		1	2
E_1	kN/m ²	15.83E6	28.00E6
E_2	kN/m ²	15.83E6	28.00E6
El	kN m²/m	185.1E3	63.00
(nu)		0.2000	0.2000
d	m	0.5196	0.03000
С	kJ/t/K	0.000	0.000
	kW/m/K	0.000	0.000
	t/m ³	0.000	0.000
	1/K	0.000	0.000
A_eff,T	m²	0.000	0.000

1.1.2.2 Materials - Anchors

Identification number		1
Identification		4 Strand Anchor 15.2 mm
Material type		Elastic
Colour		
Comments		
L_spacing	m	3.900
EA	kN	145.2E3
с	kJ/t/K	0.000
	kW/m/K	0.000
	t/m ³	0.000
	1/K	0.000
A_eff,T	m²	0.000

1.1.2.3 Materials - Embedded beams

Identification number		1
Identification		Anchor - Bond Length
Material type		Elastic
Colour		
Comments		
	kN/m ³	0.000
Input method		SDOF equivalent
Rayleigh		0.000
Rayleigh		0.000
_1	%	0.000
_2	%	0.000
f_1	Hz	0.1000
f_2	Hz	1.000
L_spacing	m	3.900
Cross section type		Predefined
Predefined cross section type		Solid circular beam
Diameter	m	0.09000

Identification number		1
A	m²	6.362E-3
1	m	3.221E-6
<u>E</u>	kN/m ²	11.40E6
Axial skin resistance		Linear
T_skin, start, max	kN/m	250.0
T_skin, end, max	kN/m	250.0
Lateral resistance		Unlimited
F_max	kN	0.000
Default values		True
Axial stiffness factor		0.1480
Lateral stiffness factor		0.1480
Base stiffness factor		1.480

1.1.2.4.1 Materials - Soil and interfaces - Mohr-Coulomb

Identification number		1	2	3
Identification		Alluvial Soils	Bedrock	No Flow Boundary
Soil model		Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Drainage type		Drained	Drained	Drained
Colour				
Comments				
_unsat	kN/m ³	20.00	24.00	24.00
_sat	kN/m ³	20.00	24.00	24.00
e_init		0.5000	0.5000	0.5000
n_init		0.3333	0.3333	0.3333
Input method		SDOF equivalent	SDOF equivalent	SDOF equivalent
Rayleigh		0.000	0.000	0.000
Rayleigh		0.000	0.000	0.000
_1	%	0.000	0.000	0.000
_2	%	0.000	0.000	0.000
f_1	Hz	0.1000	0.1000	0.1000
f_2	Hz	1.000	1.000	1.000

Identification number		1	2	3
E'_ref	kN/m ²	20.00E3	500.0E3	50.00E3
(nu)		0.3000	0.2000	0.3000
G_ref	kN/m ²	7692	208.3E3	19.23E3
E_oed	kN/m ²	26.92E3	555.6E3	67.31E3
E'_inc	kN/m²/m	0.000	0.000	0.000
y_ref	m	0.000	0.000	0.000
V_s	m/s	61.43	291.8	88.66
V_p	m/s	114.9	476.5	165.9
c'_ref	kN/m ²	10.00	200.0	2.000
' (phi)	0	25.00	40.00	25.00
(psi)	0	0.000	0.000	0.000
c'_inc	kN/m²/m	0.000	0.000	0.000
y_ref	m	0.000	0.000	0.000
Tension cut-off		True	True	True
Tensile strength	kN/m ²	0.000	0.000	0.000
Determination		-undrained definition	-undrained definition	-undrained definition
_u definition method		Direct	Direct	Direct
_u,equivalent (nu)		0.4950	0.4950	0.4950
Skempton B		0.9783	0.9866	0.9783

Identification number		1	2	3
K_w,ref/n	kN/m ²	750.0E3	20.49E6	1.875E6
Classification type		Standard	Standard	Standard
Soil class (Standard)		Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00
2 µm - 50 µm	%	13.00	13.00	13.00
50 µm - 2 mm	%	77.00	77.00	77.00
Use defaults		False	False	False
k_x	m/day	12.27	6.048E-3	0.000
k_y	m/day	12.27	6.048E-3	0.000
Void ratio dependency		False	False	False
c_k		1000E12	1000E12	1000E12
n_init		0.3333	0.3333	0.3333
n_init unsat	m	0.3333 10.00E3	0.3333 10.00E3	0.3333 10.00E3
	m kJ/t/K			
unsat		10.00E3	10.00E3	10.00E3
unsat c_s	kJ/t/K	10.00E3 0.000	10.00E3 0.000	10.00E3 0.000
unsat c_s _s	kJ/t/K kW/m/K	10.00E3 0.000 0.000	10.00E3 0.000 0.000	10.00E3 0.000 0.000
unsat c_s _s _s	kJ/t/K kW/m/K	10.00E3 0.000 0.000 2.600	10.00E3 0.000 0.000 2.600	10.00E3 0.000 0.000 2.600

Identification number		1	2	3
D_v	m²/day	0.000	0.000	0.000
f_Tv		0.000	0.000	0.000
Stiffness determination		Derived	Derived	Derived
Strength determination		Rigid	Rigid	Rigid
R_inter		1.000	1.000	1.000
Consider gap closure		True	True	True
Cross permeability		Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m ³ /day/m	0.000	0.000	0.000
R_thermal	m² K/kW	0.000	0.000	0.000
K_0 determination		Automatic	Automatic	Automatic
K_0,x		0.5774	0.3572	0.5774
K_0,z		0.5774	0.3572	0.5774

2.1.1.1.1 Calculation results, Short Term [Phase_2] (2/27), Groundwater head

2.1.1.1.2 Calculation results, Long Term [Phase_3] (3/40), Groundwater head

2.1.2.1.1 Calculation results, Short Term [Phase_2] (2/27), Groundwater flow |q|

2.1.2.1.2 Calculation results, Long Term [Phase_3] (3/40), Groundwater flow |q|

PLAXIS Report
1.1.1.1 Calculation results, Short Term [Phase_2] (2/11), Materials plot

1.1.1.2 Calculation results, Long Term [Phase_3] (3/24), Materials plot

1.1.2.1 Materials - Plates

Identification number		1	2
Identification		600 secant 40 MPa 100 percent modulus	Pipe Wall - Thin
Material type		Elastic	Elastic
Colour			
Comments			
W	kN/m/m	0.000	0.000
Input method		SDOF equivalent	SDOF equivalent
Rayleigh		0.000	0.000
Rayleigh		0.000	0.000
_1	%	0.000	0.000
_2	%	0.000	0.000
f_1	Hz	0.1000	0.1000
f_2	Hz	1.000	1.000
Prevent punching		False	False
Isotropic		True	True
EA_1	kN/m	8.225E6	840.0E3
EA_2	kN/m	8.225E6	840.0E3

			P3018_Dee Why_Section 2
Identification number		1	2
E_1	kN/m ²	15.83E6	28.00E6
E_2	kN/m ²	15.83E6	28.00E6
El	kN m²/m	185.1E3	63.00
(nu)		0.2000	0.2000
d	m	0.5196	0.03000
С	kJ/t/K	0.000	0.000
	kW/m/K	0.000	0.000
	t/m ³	0.000	0.000
	1/K	0.000	0.000
A_eff,T	m²	0.000	0.000

1.1.2.2 Materials - Anchors

Identification number		1
Identification		4 Strand Anchor 15.2 mm
Material type		Elastic
Colour		
Comments		
L_spacing	m	3.900
EA	kN	145.2E3
с	kJ/t/K	0.000
	kW/m/K	0.000
	t/m ³	0.000
	1/K	0.000
A_eff,T	m²	0.000

1.1.2.3 Materials - Embedded beams

Identification number		1
Identification		Anchor - Bond Length
Material type		Elastic
Colour		
Comments		
	kN/m ³	0.000
Input method		SDOF equivalent
Rayleigh		0.000
Rayleigh		0.000
_1	%	0.000
_2	%	0.000
f_1	Hz	0.1000
f_2	Hz	1.000
L_spacing	m	3.900
Cross section type		Predefined
Predefined cross section type		Solid circular beam
Diameter	m	0.09000

Identification number		1
A	m²	6.362E-3
1	m	3.221E-6
<u>E</u>	kN/m ²	11.40E6
Axial skin resistance		Linear
T_skin, start, max	kN/m	250.0
T_skin, end, max	kN/m	250.0
Lateral resistance		Unlimited
F_max	kN	0.000
Default values		True
Axial stiffness factor		0.1480
Lateral stiffness factor		0.1480
Base stiffness factor		1.480

1.1.2.4.1 Materials - Soil and interfaces - Mohr-Coulomb

Identification number		1	2	3
Identification		Alluvial Soils	Bedrock	No Flow Boundary
Soil model		Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Drainage type		Drained	Drained	Drained
Colour				
Comments				
_unsat	kN/m ³	20.00	24.00	24.00
_sat	kN/m ³	20.00	24.00	24.00
e_init		0.5000	0.5000	0.5000
n_init		0.3333	0.3333	0.3333
Input method		SDOF equivalent	SDOF equivalent	SDOF equivalent
Rayleigh		0.000	0.000	0.000
Rayleigh		0.000	0.000	0.000
_1	%	0.000	0.000	0.000
_2	%	0.000	0.000	0.000
f_1	Hz	0.1000	0.1000	0.1000
f_2	Hz	1.000	1.000	1.000

Identification number		1	2	3
E'_ref	kN/m ²	20.00E3	500.0E3	50.00E3
(nu)		0.3000	0.2000	0.3000
G_ref	kN/m ²	7692	208.3E3	19.23E3
E_oed	kN/m ²	26.92E3	555.6E3	67.31E3
E'_inc	kN/m²/m	0.000	0.000	0.000
y_ref	m	0.000	0.000	0.000
V_s	m/s	61.43	291.8	88.66
V_p	m/s	114.9	476.5	165.9
c'_ref	kN/m ²	10.00	200.0	2.000
' (phi)	٥	25.00	40.00	25.00
(psi)	٥	0.000	0.000	0.000
c'_inc	kN/m²/m	0.000	0.000	0.000
y_ref	m	0.000	0.000	0.000
Tension cut-off		True	True	True
Tensile strength	kN/m ²	0.000	0.000	0.000
Determination		-undrained definition	-undrained definition	-undrained definition
_u definition method		Direct	Direct	Direct
_u,equivalent (nu)		0.4950	0.4950	0.4950
Skempton B		0.9783	0.9866	0.9783

Identification number		1	2	3
K_w,ref/n	kN/m ²	750.0E3	20.49E6	1.875E6
Classification type		Standard	Standard	Standard
Soil class (Standard)		Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00
2 µm - 50 µm	%	13.00	13.00	13.00
50 µm - 2 mm	%	77.00	77.00	77.00
Use defaults		False	False	False
k_x	m/day	12.27	6.048E-3	0.000
k_y	m/day	12.27	6.048E-3	0.000
Void ratio dependency		False	False	False
c_k		1000E12	1000E12	1000E12
				1000212
n_init		0.3333	0.3333	0.3333
n_init unsat	m			
	m kJ/t/K	0.3333	0.3333	0.3333
unsat		0.3333 10.00E3	0.3333 10.00E3	0.3333 10.00E3
unsat c_s	kJ/t/K	0.3333 10.00E3 0.000	0.3333 10.00E3 0.000	0.3333 10.00E3 0.000
unsat c_s _s	kJ/t/K kW/m/K	0.3333 10.00E3 0.000 0.000	0.3333 10.00E3 0.000 0.000	0.3333 10.00E3 0.000 0.000
unsat c_s _s _s	kJ/t/K kW/m/K	0.3333 10.00E3 0.000 0.000 2.600	0.3333 10.00E3 0.000 0.000 2.600	0.3333 10.00E3 0.000 0.000 2.600

Identification number		1	2	3
D_v	m²/day	0.000	0.000	0.000
f_Tv		0.000	0.000	0.000
Stiffness determination		Derived	Derived	Derived
Strength determination		Rigid	Rigid	Rigid
R_inter		1.000	1.000	1.000
Consider gap closure		True	True	True
Cross permeability		Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m ³ /day/m	0.000	0.000	0.000
R_thermal	m² K/kW	0.000	0.000	0.000
K_0 determination		Automatic	Automatic	Automatic
K_0,x		0.5774	0.3572	0.5774
K_0,z		0.5774	0.3572	0.5774

2.1.1.1.1 Calculation results, Short Term [Phase_2] (2/11), Groundwater head

2.1.1.1.2 Calculation results, Long Term [Phase_3] (3/24), Groundwater head

2.1.2.1.1 Calculation results, Short Term [Phase_2] (2/11), Groundwater flow |q|

2.1.2.1.2 Calculation results, Long Term [Phase_3] (3/24), Groundwater flow |q|

IMPORTANT INFORMATION

morrow

This Document has been provided by Morrow Geotechnics Pty Ltd subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Morrow Geotechnics' proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Morrow Geotechnics' Services are as described in Morrow Geotechnics' proposal, and are subject to restrictions and limitations. Morrow Geotechnics did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. The scope of services may have been limited by such factors as time, budget, site access or other site conditions. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Morrow Geotechnics in regards to it. Any advice given within this document is limited to geotechnical considerations only. Other constraints particular to the project, including but not limited to architectural, environment, heritage and planning matters may apply and should be assessed independently of this advice.

Conditions may exist which were undetectable given the limited nature of the enquiry Morrow Geotechnics was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required. No geotechnical investigation can provide a full understanding of all possible subsurface details and anomalies at a site.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Morrow Geotechnics' opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Morrow Geotechnics to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Morrow Geotechnics for incomplete or inaccurate data supplied by others.

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that Morrow Geotechnics be notified of any variations and be provided with an opportunity to review the recommendations of this report.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Morrow Geotechnics accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.