

BIODIVERSITY CERTIFICATION ASSESSMENT REPORT

Proposed Development Lots 3 and 4 DP26902 10 and 12 Boondah Road Warriewood

> 5 May 2022 (REF: 18HEN03.2)

www.traversecology.com.au

BIODIVERSITY CERTIFICATION ASSESSMENT REPORT

Proposed Development

Lots 3 and 4 DP26902, 10 and 12 Boondah Road, Warriewood

Report authors:	George Plunkett B. Sc. (Hons.), PhD – Botanist – Accredited Assessor no. BAAS19010 Nathan Stewart B. Env. Sc. Mgmt. – Fauna Ecologist Corrine Edwards B. Env. Sc. Mgmt. (Hons.) – Fauna Ecologist Michael Sheather-Reid B. Nat. Res. (Hons.) – Managing Director – Accredited Assessor no. BAAS17085
Flora survey:	Lindsay Holmes B. Sc. – Senior Botanist – Accredited Assessor no. BAAS17032 George Plunkett B. Sc. (Hons.), PhD – Botanist – Accredited Assessor no. BAAS19010
Fauna survey:	Nathan Stewart B. Env. Sc. Mgmt. – Fauna Ecologist
Plans prepared:	Sandy Cardow B. Sc.
Approved by:	Michael Sheather-Reid (Accredited Assessor no. BAAS17085)
Date:	5/05/22
File:	18HEN03.2

This document is copyright © Travers bushfire & ecology 2022

Disclaimer:

This report has been prepared to provide advice to the client on matters pertaining to the particular and specific development proposal as advised by the client and/or their authorised representatives. This report can be used by the client only for its intended purpose and for that purpose only. Should any other use of the advice be made by any person, including the client, then this firm advises that the advice should not be relied upon. The report and its attachments should be read as a whole and no individual part of the report or its attachments should be interpreted without reference to the entire report.

The mapping is indicative of available space and location of features which may prove critical in assessing the viability of the proposed works. Mapping has been produced on a map base with an inherent level of inaccuracy, the location of all mapped features is to be confirmed by a registered surveyor.

Request an online quote 24/7

EXECUTIVE SUMMARY

Travers bushfire & ecology has been engaged to prepare a biodiversity certification assessment report (BCAR) for the proposed re-zoning and townhouse development at 10 and 12 Boondah Road, Warriewood. The entire area bounded by Lots 3 and 4, DP26902 has been subject to detailed survey effort and will hereafter be referred to as the 'study area'.

The area of direct impact from the development will hereafter be referred to as the 'development footprint'.

Development/Planning proposal

The proposal is to re-zone the existing lots from RU2 to a combination of R2 – low density residential and C2 – environmental conservation. The proposed R2 land will permit development of approximately 42 terrace-style dwellings arranged in six rows along linked internal roads accessed at three (3) locations along the site's frontage to Boondah Rd. Open space areas are in the southern and western parts of the site, associated with bushfire asset protection zones, a children's playground, and vegetation and riparian corridors. The C2-zoned land will allow for protection and conservation of retained Swamp Oak Forest vegetation.

Recorded biodiversity

Ecological survey and assessment has been undertaken in accordance with the *Biodiversity* Assessment Methodology 2020 (BAM) as well as relevant legislation including the Environmental Planning and Assessment Act 1979 (EP&A Act), the Biodiversity Conservation Act 2016 (BC Act), the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) and the Fisheries Management Act 1994 (FM Act). Compliant survey and limitations for candidate species are explained in Section 2.5, Section 4.2.2 (flora) and Section 4.3.4 (fauna).

In respect of matters required to be considered under the *EP&A Act* and relating to the species / provisions of the *BC Act*, six (6) threatened fauna species Grey-headed Flying-fox (*Pteropus poliocephalus*), Southern Myotis (*Myotis macropus*), Little Bent-winged Bat (*Miniopterus australis*), Large Bent-winged Bat (*Miniopterus orianae oceanensis*), Eastern Cave Bat (*Vespadelus troughtoni*) and Powerful Owl (*Ninox strenua*), no migratory bird species, no threatened flora species and two (2) Threatened Ecological Communities (TECs), Swamp Oak Floodplain Forest (SOFF) and Bangalay Sand Forest of the Sydney Basin (BSF) were recorded within the development footprint.

In respect of matters required to be considered under the *EPBC Act*, one (1) threatened fauna species Grey-headed Flying-fox (*Pteropus poliocephalus*), no threatened flora species, and one (1) TEC, *Coastal Swamp Oak Forest*, was recorded within the development footprint.

In respect of matters relative to the *FM Act*, no suitable habitat for threatened marine or aquatic species was observed within the development footprint.

Impact assessment

Avoidance actions are outlined in Section 5.3. The resultant direct, indirect and cumulative ecological impacts of the proposal have been carefully considered in Section 5.5. Further

recommended mitigation measures to minimise/offset these impacts, to address threatening processes and to create a more positive ecological outcome for threatened biodiversity have been outlined within Section 5.4.

The Development Proposal will see the impact of 1.26 ha of vegetation, which includes impacts to five different vegetation units including the following (PCT below refers to Plant Community Type):

- Zone1: PCT 1232 Swamp Oak floodplain swamp forest (PCT SOFF) 0.18 ha impacted
- Zone 2: PCT 1793 Smooth-barked Apple Bangalay / Tuckeroo Cheese Tree open forest (TEC BSF) – 0.23 ha impacted
- Zone 3: Planted and derived exotic vegetation 0.27 ha impacted
- Zone 4: Pasture and weeds 0.48 ha impacted
- Planted native vegetation 0.10 ha impacted

There will be no significant impact on matters listed under the FM Act.

Biodiversity Offsets Scheme (BOS) – Threshold Assessment

The BOS appies to all biodiversity certification assessments. Subsequently the three (3) elements to the BOS threshold test – an area trigger, a Biodiversity Values Land Map trigger and the Test of Significance – do not apply.

BAM Calculator results

The BAM Calculator provides a means of objectively determining the loss of biodiversity as a result of a proposed development. The credits required (Table A & B) are the number of credits needed to be 'retired' to offset residual impacts.

A – Requirement for ecosystem credits

Zone	Veg. zone name	Veg. integrity loss	Area (ha)	Sensitivity to gain	Biodiversity risk weighting	Potential SAII	Ecosystem credits
1	1232_poor	38.6	0.18	High	2	no	3
2	1793_poor	25.9	0.23	High	2	no	3
3	1232_derived_exotic	1.3	0.27	High	2.5	no	0
4	1232_pasture_weeds	3.1	0.48	High	2.5	no	0
							Total: 6

Table B – Requirement for species credits

Veg. zone name	Veg. integrity loss	Area (ha) / count	Biodiversity risk weighting	Potential SAII	Species credits		
Cercartetus nanus / Eastern Pygmy-possum (Fauna)							
1793_poor	25.9	0.23	2	False	3		
					Subtotal: 3		
Myotis macropus / Southern	n Myotis (Fa	iuna)					
1232_derived_exotic	1.3	0.27	2	False	1		
1232_pasture_weeds	3.1	0.48	2	False	1		
1232_poor	38.6	0.18	2	False	3		
1793_poor	25.9	0.23	2	False	3		
					Subtotal: 8		
Vespadelus troughtoni / Eas	stern Cave E	Bat (Fauna)					
1232_derived_exotic	1.3	0.27	3	True	1		
1232_pasture_weeds	3.1	0.48	3	True	1		
1232_poor	38.6	0.18	3	True	5		
1793_poor	25.9	0.23	3	True	4		
					Subtotal: 11		

The pricing of credits can vary greatly over time and it is advised that the proponent use the online Biodiversity Offset Payment Calculator tool to determine the current pricing of credits (<u>https://www.lmbc.nsw.gov.au/offsetpaycalc</u>).

LIST OF ABBREVIATIONS

APZ	asset protection zone
BAM	Biodiversity Assessment Method (2020)
BAR	Biodiversity Assessment Report
BC Act	Biodiversity Conservation Act (2016)
BC Reg	Biodiversity Conservation Regulation (2017)
BCAR	Biodiversity Certification Assessment Report
BDAR	Biodiversity Development Assessment Report
BOS	Biodiversity Offset Scheme
BPA	bushfire protection assessment
BSSAR	Biodiversity Stewardship Site Assessment Report
CEEC	Critically endangered ecological community
CM Act	Coastal Management Act 2016
DAWE	Department of Agriculture, Water and the Environment.
DCP	development control plan
DEC	NSW Department of Environment and Conservation (superseded by DECC from April 2007)
DECC	NSW Department of Environment and Climate Change (superseded by DECCW from October 2009)
DECCW	NSW Department of Environment, Climate Change and Water (superseded by OEH from April 2011)
DEWHA	Commonwealth Department of Environment, Water, Heritage & the Arts (superseded by SEWPAC)
DOEE	Commonwealth Department of Environment & Energy (superseded by DAWE)
DPIE	NSW Department of Planning, Industry and Environment
EEC	endangered ecological community
EPA	Environment Protection Authority
EP&A Act	Environmental Planning and Assessment Act (1979)
EPBC Act	Environment Protection and Biodiversity Conservation Act (1999)
FM Act	Fisheries Management Act
IBRA	Interim Biogeographic Regionalisation for Australia
LEP	local environmental plan
LGA	local government area
LLS Act	Local Land Services Act (2013)
NES	national environmental significance
NPW Act	National Parks and Wildlife Act (1974)
NRAR	Natural Resources Access Regulator (NSW)
NSW DPI	NSW Department of Industry and Investment
OEH	Office of Environment and Heritage (superseded by DPIE from August 2019)
PCT	plant community type
PFC	projected foliage cover
RFS	NSW Rural Fire Service
ROTAP SAII	rare or threatened Australian plants
SAII	Serious And Irreversible Impacts State Environmental Planning Policy
SEPP	Commonwealth Dept. of Sustainability, Environment, Water, Population & Communities (superseded by DOEE)
SIS	species impact statement
SULE	safe useful life expectancy
TEC	threatened ecological community
TPZ	tree preservation zone
TSC Act	Threatened Species Conservation Act (1995) – superseded by the Biodiversity Conservation Act (2016)
VMP	vegetation management plan
<u> </u>	rogotation managomont plan

TABLE OF CONTENTS

1.	INTRODUCT	ΓΙΟΝ	. 1
1	1.1	Purpose	2
	1.1.1	Certification of BAM compliance	
	1.1.2	Terminology	
1	.2	Site description	
	1.2.1	Site overview	
	1.2.2	Landscape features	
1	.3	Proposed development	
	1.3.1	Identification of development site footprint	
1	.4	Statutory assessment requirements	
	1.4.1 1.4.2	Environmental Planning and Assessment Act 1979 (EP&A Act) Biodiversity Conservation Act 2016 (BC Act)	
	1.4.3	Fisheries Management Act 1994 (FM Act)	
	1.4.4	Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act)	
	1.4.5	Coastal Management Act 2016 (CM Act)	
	1.4.6	Licences	9
2.	SURVEY ME	ETHODOLOGY	12
2	2.1	Presurvey information collation & resources	12
2	2.2	Flora survey methodology	15
2	2.3	Fauna survey methodology	15
2	2.4	Field survey effort	18
2	2.5	Survey limitations	23
2	2.6	Accuracy of identification	24
3.	SURVEY RE	SULTS	25
3	3.1	Flora results	25
	3.1.1	Native vegetation extent	.25
	3.1.2	Flora species	.25
	3.1.3	Plant community types (PCTs)	
	3.1.4 3.1.5	Vegetation descriptions of observed communities Vegetation integrity assessment	
2	3. <i>1.</i> 5 3.2	Fauna results	
		Habitat results	
C	3.3	Fauna habitat observations	
	3.3.1 3.3.2	Habitat tree data	
4.		ITY ASSESSMENT	
	LIODIVERS	Flora	
-	4.1.1	State legislative flora matters	
4	4.1.7	Fauna	
	4.2.1	Key fauna habitat	
	4.2.2	State legislative fauna matters	
4	.3	Watercourses, GDEs & Wetlands	51

	4.3.1	Endangered wetland communities	
	4.3.2	Groundwater dependent ecosystems (GDEs)	
	4.3.3	Watercourses	
	4.3.4	State Environmental Planning Policy (Coastal Management) 2018	55
5.	IMPACT AS	SESSMENT	. 58
5	.1	BOS thresholds	. 58
5	.2	Streamlined assessment modules	. 58
	5.2.1	Streamlined assessment module - planted native vegetation	60
5	.3	Avoidance and minimisation actions	. 60
5	.4	Mitigation measures	. 62
5	.5	Potential ecological impacts	. 65
	5.5.1	Prescribed impacts	65
	5.5.2	Direct impacts	69
	5.5.3	Indirect impacts	69
	5.5.4	Cumulative impacts	69
	5.5.5	Serious & Irreversible Impacts (SAIIs)	69
5	.6	Vegetation connectivity and habitat corridors	. 70
6.	CONCLUSIO	DN	. 73
6	.1	Legislative compliance	. 73
6	.2	Biodiversity credit requirements	. 73
	6.2.1	Impacts requiring offset	73
	6.2.2	Impacts not requiring offset	73
	6.2.3	Areas not requiring assessment	74
7.	BAM CREDI	T RESULTS	. 75
7	.1	Ecosystem credits and species credits	. 75
7	.2	Ecosystem credit classes	. 76
7	.3	Species credit classes	. 76
8.	BIBLIOGRA	РНҮ	. 78

Figures

Figure 1.1 – Subject lots (red) and subject land / biodiversity certification area (yellow)	1
Figure 1.2 – Zoning	5
Figure 1.3 – Concept masterplan	6
Figure 1.4 – Site map	10
Figure 1.5 – Location map	
Figure 2.1 – The Native Vegetation of the Sydney Metropolitan Area (OEH 2016)	13
Figure 3.1 – Flora and fauna survey results	41
Figure 4.1 – Acid sulfate soils	53
Figure 4.2 – Alluvial groundwater system discharging into a river	54
Figure 4.3 – Mapped hydrolines	55
Figure 4.4 – Coastal wetlands area map	57
Figure 5.1 – Preliminary masterplan	61
Figure 5.2 - Proposed site plan (outer extent of preliminary impact area shown as blue	line)
	61
Figure 5.3 – Local connectivity	71
Figure 5.4 – Species credit species polygons	72

Tables

Table 1.1 – Site features	3
Table 1.2 – Landscape features	4
Table 2.1 – Fauna survey effort	18
Table 2.2 – Flora survey effort	22
Table 2.3 – Plot and transect survey effort – development footprint	
Table 2.4 – Survey adequacy for confirmed candidate species (flora)	23
Table 2.5 – Survey adequacy for confirmed candidate species (fauna)	23
Table 3.1 – Flora observations within the study area and surrounds	25
Table 3.2 – PCT shortlist and justification	30
Table 3.3 – PCTs	
Table 3.4 – Current vegetation integrity score	36
Table 3.5 – Future vegetation integrity score	37
Table 3.6 – Fauna recorded within the study area	37
Table 3.7 – Observed fauna habitat	39
Table 3.8 – Habitat tree data	40
Table 4.1 – Species credit species (flora)	
Table 4.2 – Ecosystem credit species (fauna)	46
Table 4.3 – Species credit species (fauna)	48
Table 5.1 – Streamlined assessment modules	58
Table 5.2 – Area clearing limits for application of the small area development module	59
Table 5.3 – Measures to mitigate & manage impacts	62
Table 5.4 – Potential prescribed impacts	65
Table 5.5 – SAII species recorded or with potential to occur	
Table 7.1 – Requirement for ecosystem credits	75
Table 7.2 – Requirement for species credits	
Table 7.3 – Ecosystem credit summary	76
Table 7.4 – Credit classes for PCT 877 and 1395 - Like for like options	76
Table 7.5 – Species credit summary	76

Appendices

Appendix 1.	Plot datasheets	81
Appendix 2.	Microbat Call Analysis	90
	Staff qualifications and experience	
Appendix 4.	BAM-C outputs	97

1. INTRODUCTION

Travers bushfire & *ecology* has been engaged to undertake a biodiversity certification assessment within Lots 3 and 4 DP26902, at 10 and 12 Boondah Road, Warriewood within the Northern Beaches local government area (LGA). The extent of these lots is shown in Figure 1.1 below. These lots are subject to a planning proposal application and will hereafter be referred to as the 'study area'.

The area containing the proposed development, APZs and all associated impact on habitat features is hereafter referred to as the 'subject land' (refer to Figure 1.3).

The proposal shall be assessed under the *Biodiversity Conservation Act (BC Act*), 2016.

Figure 1.1 – Subject lots (red) and subject land / biodiversity certification area (yellow)

1.1 Purpose

The purpose of this Biodiversity Certification Assessment Report (BCAR) is to undertake assessment of impact on biodiversity, including threatened species, populations and ecological communities. Consequently, the following tasks have been completed:

- Undertake botanical survey to describe the vegetation communities and their conditions
- Undertake fauna habitat survey for the detection and assessment of fauna and their potential habitats
- Complete targeted surveys for threatened species, populations and ecological communities
- Prepare a BCAR in accordance with the requirements of the:
 - a) Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act),
 - b) Biodiversity Conservation Act 2016 (BC Act),
 - c) Biodiversity Conservation Regulation 2017 (BC Reg.),
 - d) Fisheries Management Act 1994 (FM Act), and
- Prepare a BCAR in accordance with the Biodiversity Assessment Methodology (BAM) 2020

1.1.1 Certification of BAM compliance

Section 6.15 of the *BC Act* regarding the currency of a BCAR requires:

- (1) A biodiversity assessment report cannot be submitted in connection with a relevant application unless the accredited person certifies in the report that the report has been prepared on the basis of the requirements of (and information provided under) the biodiversity assessment method as at a specified date and that date is within 14 days of the date the report is so submitted.
- (2) A relevant application is an application for planning approval, for vegetation clearing approval, for biodiversity certification or in respect of a biodiversity stewardship agreement.

George Plunkett (BAAS 19010) is an accredited person under the *BC Act.* I, George Plunkett, certify here that the report has been prepared on the basis of the requirements of (and information provided under) the BAM as 5 March 2022, and that date is within 14 days of the date the report is so submitted.

1.1.2 Terminology

Throughout this report the terms development footprint and study area are used. It is important to have a thorough understanding of these terms as they apply to the assessment.

Development footprint means the area directly affected by the proposal. It has the same meaning as "subject land" defined below.

Study area is the portion of land that encompasses all surveys undertaken and is usually all land contained within the designated property boundary. The study area extends as far as is necessary to assess all important biodiversity values known and likely to occur within the subject land and includes the development footprint and any additional areas which are likely to be affected by the proposal, either directly or indirectly.

Subject land is land to which the BAM is applied in Stage 1 to assess the biodiversity values. It includes land that may be a development site, clearing site, proposed for biodiversity certification or land that is proposed for a biodiversity stewardship agreement. In this case, it

refers to the area designated as the development footprint, and has the same meaning for the purposes of this report. The terms "subject land" and "development" are interchangeable in this regard.

Direct impacts are those that directly affect the habitat and individuals. They include, but are not limited to, death through clearing, predation, trampling, poisoning of the animal/plant itself and the removal of suitable habitat. When applying each factor, consideration must be given to all of the likely direct impacts of the proposed activity or development.

Indirect impacts occur when project-related activities affect species, populations or ecological communities in a manner other than direct loss. Indirect impacts can include loss of individuals through starvation, exposure, predation by domestic and/or feral animals, loss of breeding opportunities, loss of shade/shelter, deleterious hydrological changes, increased soil salinity, erosion, inhibition of nitrogen fixation, weed invasion, fertiliser drift, or increased human activity within or directly adjacent to sensitive habitat areas. As with direct impacts, consideration must be given, when applying each factor, to all of the likely indirect impacts of the proposed activity or development.

1.2 Site description

1.2.1 Site overview

Table 1.1 provides an overview the planning, cadastral and topographical details of the study area and an overview of the site and surrounds is shown on Figure 1.4 and Figure 1.5 (site and location maps).

Table 1.1 – Site features

Location	Lots 3 and 4 DP26902 at 10 and 12 Boondah Road, Warriewood
Location description	The site is located approximately on the eastern edge of Warriewood Wetlands and approximately 210 m north of the Warriewood Square shopping centre. The site is surrounded on the western and southern edge by riparian vegetation and urban and rural lands to the north and east.
Area	Approximately 2 ha
Local government area	Northern Beaches (formerly Pittwater)
Zoning	RU2 – Rural Landscape
Grid reference MGA-56	342213E 6270482S
Elevation	Approximately 6-3m ASL
Topography	The site is relatively flat across both lots. There is a slight incline across the site which faces a south westerly direction.
Catchment and drainage	The site contains no drainage lines but is on a slight incline to the south west. Water entering the site would flow directly into the Warriewood Wetlands.
Existing land use	Residential and vacant land.

1.2.2 Landscape features

Table 1.2 examines the landscape features of the proposed development site in accordance with the BAM.

Table 1.2 – Landscape features

Patch size	>100 ha
IBRA bioregions and subregions	Sydney Basin bioregion – Pittwater subregion (Figure 1.4 and Figure 1.5)
NSW landscape region and area (ha)	Sydney - Newcastle Barriers and Beaches
Native vegetation extent in the buffer area (1500 m)	187.47 ha approx. and 23.53% Cover class: 10–30%
Cleared areas	Approximately 55% / 1.03 ha of land within the study area is cleared
Evidence to support differences between mapped vegetation extent and aerial imagery	Mapped vegetation closely matches aerial imagery.
Rivers and streams classified according to stream order	The site map (Figure 1.4) shows the study area with first, second and third order streams
Wetlands within, adjacent to and downstream of the site, including important wetlands	The southern portion of the study area forms part of Warriewood Wetlands, which also extends off site to the west.
Connectivity features	The subject lots contributes to local connectivity in two ways but neither of these are of local significance or sufficient to contribute to local or regional 'corridors'. This is particularly given that the creekline connectivity that does extend to the east does not link up with any other major area of natural habitat, but rather loops around to return to the same connective forest areas surrounding Warriewood Wetlands and the Warriewood Escarpment.
	One connectivity link through the subject lots occurs along the western boundary and crossing Boondah Road to the south. The second and more direct passage across the northern portions of the site is currently limited to fragmented canopy trees for birds and common arboreal mammals. The location map (Figure 1.5) shows an overview of the extent of native vegetation in the locality.
Geology and soils	Quaternary silty to peaty quartz sand, silt, and clay. Ferruginous and humic cementation in places. Common shell layers. The soil landscape within the site is mapped as "Disturbed Terrain".
Identification of method applied (i.e. linear or site-based)	Site based assessment

Figure 1.2 – Zoning (Source: Planning Portal, 2022)

1.3 Proposed development

The proposal is to re-zone the existing lots from RU2 to a combination of R2 – low density residential and C2 – environmental conservation. The proposed R2 land will permit development of approximately 42 terrace-style dwellings arranged in six rows along linked internal roads accessed at three (3) locations along the site's frontage to Boondah Rd. Open space areas are in the southern and western parts of the site, associated with bushfire asset protection zones, a children's playground, and vegetation and riparian corridors (Figure 1.3). The C2-zoned land will allow for protection and conservation of retained Swamp Oak Forest vegetation.

1.3.1 Identification of development site footprint

1.26 ha of vegetation will be directly impacted through the construction dwellings, internal roads / driveways, asset protection zones (APZs), landscaping, services and other infrastructure. For the purposes of this assessment, it is assumed that all vegetation within the biodiversity certification area will be removed.

Figure 1.3 – Concept masterplan (Source: Buchan, June 2021)

1.4 Statutory assessment requirements

1.4.1 Environmental Planning and Assessment Act 1979 (EP&A Act)

Prior to any development taking place in New South Wales a formal assessment needs to be made of the proposed work to ensure it complies with relevant planning controls and, according to its nature and scale, confirm that it is environmentally and socially sustainable. State, regional and local planning legislation indicates the level of assessment required, and outlines who is responsible for assessing the development. The development assessment and consent system is outlined in Part 4 and the infrastructure and environmental impact assessment system is outlined in Part 5 of the *EP&A Act*.

1.4.2 Biodiversity Conservation Act 2016 (BC Act)

The BC Act repeals the Threatened Species Conservation Act 1995, the Nature Conservation Trust Act 2001 and the animal and plant provisions of the National Parks and Wildlife Act 1974.

The *BC Act* and the *BC Reg* establishes a regulatory framework for assessing and offsetting impacts on biodiversity values due to proposed developments and clearing. It establishes a framework to avoid, minimise and offset impacts on biodiversity from development through the Biodiversity Offsets Scheme. Where development consent is granted, the authority may impose as a condition of consent an obligation to retire a number and type of biodiversity credits determined under the new Biodiversity Assessment Method (BAM).

The BOS applies to:

- local development (assessed under Part 4 of the Environmental Planning and Assessment Act 1979) that triggers a BOS threshold or is likely to significantly affect threatened species based on the test of significance in section 7.3 of the Biodiversity Conservation Act 2016
- state significant development and state significant infrastructure projects, unless the Secretary of the Department of Planning, Industry and Environment and the environment agency head determine that the project is not likely to have a significant impact
- <u>biodiversity certification</u> proposals
- clearing of native vegetation in urban areas and areas zoned for environmental conservation that exceeds a BOS threshold and does not require development consent
- clearing of native vegetation that requires approval by the Native Vegetation Panel under the <u>Local Land Services Act 2013</u>
- activities assessed and determined under Part 5 of the *Environmental Planning and Assessment Act 1979* (generally, proposals by government entities) if proponents choose to 'opt in' to the Scheme.

Proponents will need to supply evidence relating to the triggers for the BOS thresholds and the test of significance (where relevant) when submitting their application to the consent authority.

Development consent cannot be granted for non-State significant development under Part 4 of the *EP&A Act* if the consent authority is of the opinion it is likely to have serious and irreversible impacts (SAII) on biodiversity values. The determination of SAII is to be made in accordance with principles prescribed section 6.7 of the *BC Regulation 2017*. The principles have been designed to capture those impacts which are likely to contribute significantly to the risk of extinction of a threatened species or ecological community in New South Wales.

The threatened species test of significance is used to determine if a development or activity is likely to significantly affect threatened species or ecological communities, or their habitats. It is applied as part of the Biodiversity Offsets Scheme entry requirements and for Part 5 activities under the *Environmental Planning and Assessment Act (EP&A Act)*, 1979.

The test of significance is set out in s.7.3 of the *BC Act.* If the activity is likely to have a significant impact, or will be carried out in a declared area of outstanding biodiversity value, the proponent must either apply the Biodiversity Offsets Scheme or prepare a species impact statement (SIS).

The environmental impact of activities that will not have a significant impact on threatened species will continue to be assessed under s.111 of the *EP&A Act*

1.4.3 Fisheries Management Act 1994 (FM Act)

The *FM Act* provides a list of threatened aquatic species that require consideration when addressing the potential impacts of a proposed development. Where a proposed activity is located in an area identified as critical habitat, or such that it is likely to significantly affect threatened species, populations, ecological communities, or their habitats, an SIS is required to be prepared.

1.4.4 Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act)

The *EPBC Act* requires that Commonwealth approval be obtained for certain actions. It provides an assessment and approvals system for actions that have a significant impact on matters of *national environmental significance* (NES). These may include:

- World Heritage Properties and National Heritage Places
- Wetlands of International Importance protected by international treaty
- Nationally listed threatened species and ecological communities
- Nationally listed migratory species
- Commonwealth marine environment

Actions are projects, developments, undertakings, activities, and series of activities or alteration of any of these. An action that needs Commonwealth approval is known as a controlled action. A controlled action needs approval where the Commonwealth decides the action would have a significant effect on an NES matter.

Where a proposed activity is located in an area identified to be of NES, or such that it is likely to significantly affect threatened species, ecological communities, migratory species or their habitats, then the matter needs to be referred to the Commonwealth Department of Agriculture, Water and the Environment (DAWE) for assessment. In the case where no listed federal species are located on site then no referral is required. The onus is on the proponent to make the application and not the Council to make any referral.

A threshold criterion applies to specific NES matters which may determine whether a referral is or is not required, such as for the *EPBC*-listed ecological communities Cumberland Plain Woodland and Shale-Gravel transition Forest. Consultation with DOEE may be required to determine whether a referral is or is not required. If there is any doubt as to the significance of impact or whether a referral is required, a referral is generally recommended to provide a definite decision under the *EPBC Act* thereby removing any further obligations in the case of 'not controlled' actions.

A significant impact is regarded as being:

important, notable, or of consequence, having regard to its context or intensity and depends upon the sensitivity, value, and quality of the environment which is impacted and upon the duration, magnitude, and geographical extent of the impacts. A significant impact is likely when it is a real or not a remote chance or possibility.

Source: EPBC Policy Statement

Guidelines on the correct interpretation of the actions and assessment of significance are located on the department's web site <u>http://www.environment.gov.au/epbc/publications</u>.

1.4.5 Coastal Management Act 2016 (CM Act)

The Coastal Management Act (CM Act, 2016) establishes the framework and overarching objects for coastal management in New South Wales. The Act commenced on 29 June 2018 and replaces the previous Coastal Protection Act (1979).

The purpose of the *CM Act* is to manage the use and development of the coastal environment in an ecologically sustainable way, for the social, cultural and economic well-being of the people of New South Wales.

The CM Act also supports the aims of the Marine Estate Management Act 2014, as the coastal zone forms part of the marine estate.

The CM Act defines the coastal zone, comprising four (4) coastal management areas:

- coastal wetlands and littoral rainforests area; areas which display the characteristics of coastal wetlands or littoral rainforests that were previously protected by SEPP 14 and SEPP 26
- 2. coastal vulnerability area; areas subject to coastal hazards such as coastal erosion and tidal inundation
- 3. coastal environment area; areas that are characterised by natural coastal features such as beaches, rock platforms, coastal lakes and lagoons and undeveloped headlands. Marine and estuarine waters are also included
- 4. coastal use area; land adjacent to coastal waters, estuaries and coastal lakes and lagoons.

The *CM Act* establishes management objectives specific to each of these management areas, reflecting their different values to coastal communities.

1.4.6 Licences

Individual staff members of *Travers bushfire & ecology* are licensed under Clause 20 of the *National Parks and Wildlife (Land Management) Regulation 1995* and Sections 120 & 131 of the *National Parks and Wildlife Act 1974* to conduct flora and fauna surveys within service and non-service areas. NPWS Scientific Licence Numbers: SL100848.

Travers bushfire & ecology staff are licensed under an Animal Research Authority issued by the NSW Department of Primary Industries. This authority allows *Travers bushfire & ecology* staff to conduct various fauna surveys of native and introduced fauna for the purposes of environmental consulting throughout New South Wales.

Figure 1.4 – Site map

Figure 1.5 – Location map

2. SURVEY METHODOLOGY

2.1 Presurvey information collation & resources

Documents reviewed:

The following documents, reports and information sources were utilised in the preparation of this report:

- Correspondence from Henroth outlining the proposal
- Conceptual Masterplan prepared by *Buchan* (2022)
- Bushfire Review prepared by Travers bushfire and ecology (2021).
- Water Management Report prepared by *Calibre* (2022)
- Flora & Fauna Assessment, Planning Proposal, Lots 3 & 4 DP 26902 & Lot 9 DP 806132, 10 & 12 Boondah Road & 6 Jacksons Road prepared by *Travers bushfire and ecology* (2016)
- Biological Constraints Assessment prepared by *Travers bushfire & ecology* (2019)

Technical resources utilised:

Legislation

- Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act)
- Biodiversity Conservation Act 2016 (BC Act)
- Biodiversity Conservation Regulation 2017 (BC Reg.)
- Fisheries Management Act 1994 (FM Act)

Survey Guidelines

- NSW Survey Guide for Threatened Frogs (DPIE 2020)
- 'Species credit' threatened bats and their habitats (DPIE 2018)
- Survey guidelines for Australia's threatened birds (DEWHA 2010)
- Survey guidelines for Australia's threatened mammals (DEWHA 2011)
- Matters of National Environmental Significance (Commonwealth of Australia 2013)
- Threatened Biodiversity Survey and Assessment: Guidelines for Developments and Activities 2004 (working draft), Department of Environment and Conservation (DEC)
- Hygiene Protocol for the Control of Diseases in Frogs (DECC 2008)
- Region based guide to the echolocation calls of Microchiropteran bats (DEC 2004)
- Field survey methods: Best practice field survey methods for environmental consultants and surveyors when assessing proposed development sites or other activities on sites containing threatened species, populations or ecological communities (OEH 2004)
- NSW Guide to Surveying Threatened Plants (DPIE 2016)
- Surveying threatened plants and their habitats: NSW survey guide for the Biodiversity Assessment Method (DPIE 2020)

Mapping resources

- Aerial photographs (Google Earth Pro / Spatial Information Exchange / NearMap)
- Topographical maps (scale 1:25,000)

Threatened species records

- BioNet database which holds data from a number of custodians (2022)
- Birdata (Birdlife Australia 2017)
- EPBC Protected Matters Search Tool DAWE (2022)

Vegetation mapping/resources:

- BioNet Vegetation Classification System
- Native Vegetation of the Sydney Metropolitan Area (OEH 2016).

Figure 2.1 – The Native Vegetation of the Sydney Metropolitan Area (OEH 2016)

The Native Vegetation of the Sydney Metropolitan Area (OEH 2016) is shown in Figure 2.1. This mapping identifies the following communities within the study area:

- PCT 1232: Swamp Oak floodplain swamp forest
- PCT 1236: Swamp Paperbark Swamp Oak tall shrubland on estuarine flats

 PCT 1793: Smooth-barked Apple - Bangalay / Tuckeroo - Cheese Tree open forest on coastal sands

Previous ecological reports:

Flora & Fauna Assessment, Planning Proposal, Lots 3 & 4 DP 26902 & Lot 9 DP 806132, 10 & 12 Boondah Road & 6 Jacksons Road prepared by Travers bushfire and ecology (2016)

Flora survey involving 14 20 m x 20 m floristic quadrats was undertaken on 15 May 2012 and 13 April 2013.

Fauna survey involving diurnal bird sensus, nocturnal call-playback, spotlighting, detailed habitat tree survey, passive overnight ultrasonic microbat monitoring, pportunistic bird survey was undertaken on 8 & 9 April 2013 and 5 Dec 2016.

Two (2) state listed threatened fauna species including Large Bentwing-bat (*Miniopterus orianae oceanensis*) and Grey-headed Flying-fox (*Pteropus poliocephalus*) were recorded present during 2013 surveys. One (1) additional threatened fauna species the Southern Myotis (*Myotis macropus*) was recorded only to a 'possible' level of certainty during updated 2016 survey. No threatened flora species were recorded.

The TECs Swamp Oak Floodplain Forest and Freshwater Wetlands on Coastal Floodplains have been recorded within the development site boundary or immediately adjacent. Bangalay / Apple Open Forest was recorde but was not considered commensurate with the TEC Bangalay Sand Forest.

Although not used for species credit assessment as part of this BCAR, the threatened fauna recorded as part of this assessment are displayed on Figure 3.1.

Biological Constraints Assessment prepared by Travers bushfire & ecology (2019)

Botanical survey was undertaken on 19 June and 8 August 2019 involving a random meander in accordance with *Cropper* (1993) to gain a full species list of the plants within the site, and then four (4) 20 m x 20 m flora quadrats were undertaken within remnant native vegetation.

Fauna survey was undertaken on the 25/7/19 and included:

- Opportunistic bird call and activity survey,
- Mammal activity searches (scats, scratches, diggings, burrows, etc)
- Habitat tree survey.
- *Culvert bat roosting habitat searches.* This involved wading through the first 20m of the two large box culverts that commence on the edge of the subject lots and run under the adjacent shopping centre, looking in the ceiling crevices for microbats at roost.
- Spotlighting,
- Ultrasonic microbat recording (x2 passive recording stations),
- Frog call identification,
- Owl call-playback (Powerful Owl, Masked Owl, Sooty Owl & Barking Owl),
- Bush Stone-curlew, Black Bittern & Australasian Bittern call-playback,
- Nocturnal mammal call-playback (Koala & Squirrel Glider)

The following vegetation communities were recorded within the study area:

- PCT 1232 Swamp Oak floodplain swamp forest
- PCT 1793 Smooth-barked Apple Bangalay / Tuckeroo Cheese Tree open forest
- Planted native vegetation
- Cleared or exotic vegetation with occasional remnant trees

No threatened flora species were observed or considered likely to occur in a natural state.

Two TECs were recorded within the study area: Swamp Oak Forest and Bangalay Sand Forest.

Three threatened fauna species were recorded within the subject lots: Little Bentwing-bat, Large Bentwing-bat and Southern Myotis. The Sothern Myotis was recorded roosting in the culvert under the nearby neighbouring shopping complex outside of the subject land.

As the 2019 survey was conducted within 5 years of the current proposal, it has been untilised for the purposes of threatened species credit assessment in this BCAR in accordance with the BAM. Threatened fauna recorded as part of this assessment are displayed on Figure 3.1.

2.2 Flora survey methodology

2019

Initial survey was undertaken on 19 June and 8 August 2019 over a total time frame of approximately 5 hrs, for the purposes of constraints assessment.

Botanical survey included a random meander in accordance with *Cropper* (1993) to gain a full species list of the plants within the site, and then four (4) 20 m x 20 m flora quadrats were undertaken within remnant native vegetation. A review of the *Atlas of NSW Wildlife* (OEH 2019) was undertaken prior to the site visit to determine threatened species previously recorded within 10 km of the subject lots, and opportunistic searches were undertaken during the random meander and stratified survey.

2021/22

Flora survey was undertaken on 13 December 2021.

Stratified survey using the BAM was undertaken. The following information was collected at each of four (4) BAM plots:

- Native overstorey, mid-storey and ground cover recorded for all observed species and an estimate of stems (20 m x 20 m, 10 m x 40 m).
- Stratum (and layer): stratum and layer in which each species occurs (20 m x 20 m)
- Growth form: growth form for each recorded species (20 m x 20 m
- Species name: scientific name and common name (20 m x 20 m)
- Percent projected foliage cover of the understorey strata and exotic vegetation (20 m x 20 m
- Number of trees with hollows visible from the ground (20 m x 50 m)
- The total length of fallen logs >10 cm in diameter (20 m x 50 m)
- The proportion of regenerating overstorey species (20 m x 50 m)
- Number of large trees (20 m x 50 m)
- Estimates of leaf litter cover, bare ground, cryptograms and rocks in 1 m x 1 m subplots at five (5) locations along the central transect (20 m x 50 m)

All plot sheets utilised for the BAM calculator are provided in Appendix 1.

2.3 Fauna survey methodology

Site survey effort accounting for techniques deployed, duration, and weather conditions are outlined in Table 2.1 and are depicted on Figure 3.1.

Diurnal birds

Three (3) diurnal bird census points were undertaken within the subject site in 2021 survey. A minimum of 15 minutes of survey was undertaken at each census point in an area radiating out to between 30–50 m. Bird census points were selected to give an even spread and

representation across the site and its communities (see Figure 3.1). Census points were also commenced in locations where bird activity was apparent, as often different small bird species are found foraging together. Opportunistic diurnal bird survey was conducted between census points and whilst undertaking other diurnal surveys. Raptor nest searches were undertaken during all diurnal survey in 2021.

Targeted surveys were undertaken at selected bird census points for Eastern Bristlebird (*Dasyornis brachypterus*) across three separate days in 2021 survey. This involved listening for unsolicited calls for the species within and surrounding the subject site at dawn and dusk. Call-playback was used sparingly at the end of each survey to solicit calls from any potential birds in the locality.

Given the suitability of habitat present, Glossy Black Cockatoo Cockatoo foraging evidence was surveyed around the base of casuarina trees existing within the development footprint. Nuts were inspected under *Casuarina* trees to find evidence of chew marks synonymous with these species of cockatoo.

Nocturnal birds

Given the suitability of habitat present Masked Owl (*Tyto novaehollandiae*), Powerful Owl (*Ninox strenua*), Barking Owl (*Ninox connivens*), Black Bittern (*Ixobrychus flavicollis*), Australian Bittern (*Botaurus poiciloptilus*) and Bush Stone-curlew (*Burhinus grallarius*) were targeted by call-playback techniques across nine (9) nights during 2021 survey. Call-playback survey was undertaken during spotlighting activities.

Diurnal survey included searches for any signs of threatened Owl roosting activity. This was undertaken where dense mid-storey foliage was present, typically in the south western portions of the site.

Arboreal and terrestrial mammals

Given the suitability of habitat present, Koala (*Phascolarctos cinereus*) and Squirrel Glider (*Petaurus norfolcensis*) were targeted by call-playback techniques across nine (9) nights during 2021 survey whilst spotlight survey was undertaken.

Given suitable habitat for Koala present within the locality a single Spot Assessment Technique described by *Phillips & Callaghan* (2008) was undertaken within the subject lot.

Targeted survey was undertaken for Southern Brown Bandicoot (*Isoodon obesulus*). Camera trapping was undertaken across the site and was accompanied with a hair tube trapping effort amounted to a total of sixty-four (64) camera nights and sixty-four (64) hair tube trapping nights. See Figure 3.1 for camera and hair tube transect locations.

Bats

Mega-chiropteran bat species, such as Grey-headed Flying-fox, are surveyed by targeting flowering/fruiting trees during spotlighting activities and by listening to distinctive vocalisations. Suitable roosting habitat is searched for presence of small or large established camps during diurnal survey periods.

Micro-chiropteran bats are surveyed by echolocation using ultrasonic recording detectors. Passive recording was undertaken through the deployment of ultrasonic recorders that were positioned to target species preferred roosting and foraging habitat. Passive recorders were then repositioned during additional survey periods at the waterfront and in areas considered to be potential flightpaths to gain comprehensive data of microbat species diversity over the entire site.

Diurnal searches investigating potential micro-chiropteran bat roosting sites were undertaken in 2019 survey and followed up in 2021. Searches included the inspection of openings within

man-made structures and trees exhibiting large basal trunk hollows for evidence of guano. A Southern Myotis was recorded during 2019 survey roosting in the culvert to the south of the subject site running under the adjacent shopping centre. The culvert was reinspected on the 16th November 2021 with no microbats recorded roosting at the time.

The existing Grey-headed Flying-fox (*Pteropus poliocephalus*) camp south west of the subject site was inspected across three (3) separate days to observe potential shifting or swelling of the population.

Amphibians

Target surveys were undertaken for Giant Burrowing Frog (*Heleioporus australiacus*), Green and Golden Bell Frog (*Litoria aurea*) and Green-thighed Frog (*Litoria brevipalmata*). Target surveys were undertaken in line with the NSW Survey Guide for Threatened Frogs (DPIE 2020). The closest reference sites available were utilised for each species and survey was only undertaken when species activity was recorded. These sites include Sydney Olympic Park (Green and Golden Bell Frog), Lane Cove National Park (Giant Burrowing Frog) and Ourimbah State Forest (Green-thighed Frog).

Survey was undertaken during suitable weather events required for each species and involved diurnal habitat searches, spotlighting transects, call-playback transects and tadpole sweep netting and metamorph searches. Dates and weather data is provided in Table 2.1 below.

Amphibian survey was undertaken in accordance with the *Hygiene Protocol for the Control of Diseases in Frogs* (DECC 2008).

Reptiles

There is habitat considered suitable for threatened reptiles within or surrounding the subject lot. However, opportunistic habitat searches were undertaken during other diurnal surveys.

Invertebrates

Habitat onsite is considered too degraded for any threatened invertebrate species. However, opportunistic snail searches were undertaken where native understory vegetation persisted.

Habitat trees

Hollow-bearing trees were identified and recorded within the development footprint on a *Trimble* handheld GPS unit during surveys. All data such as hollow types, hollow size, tree species, diameter at breast height, canopy spread and overall height were collected and a metal tag with the tree number placed on the trunk for field relocation purposes. Other habitat features such as nests and significant sized mistletoe for foraging were also noted.

Significant habitat trees

Significant habitat trees are defined as trees containing large hollows suitable for use by owls and/or containing a number of good quality hollows typically consisting of more than one medium (10–30 cm) sized hollow. A tree may also be considered significant where evidence of use by select fauna is found such as glider sap feed tree, raptor nest, or owl roost.

Data such as the number of hollows present in each size category (or other reason for selection), tree species, diameter at breast height, canopy spread and overall height were collected. A summary of significant habitat tree results is provided in Table 3.8.

2.4 Field survey effort

Table 2.1 and Table 2.2 below detail the flora and fauna survey effort undertaken for the development footprint.

Table 2.1 – Fauna survey effort

Fauna group	Date	Weather conditions	Survey technique(s)	Time effort (24hr)
	13/8/19	0/8 cloud, light W wind, no rain, 15ºC - 12ºC	Diurnal opportunistic	4hr 45min 1245 - 1730
	16/11/21	1/8 cloud, 15km/h SE winds, no rain, 19 ⁰C	Census points x2 / Diurnal opportunistic	5hr 15min 1445-1930
Diurnal			Target survey Eastern Bristlebird/ Raptor nest search	3hrs 1400-1700
birds	24/11/21	6/8 cloud, no wind, 1.2mm rain. 23-23°C	Diurnal opportunistic, target survey, Raptor nest search	1hr 30min 1900-2030
	2/12/21	1/8 cloud, no winds, no rain, 19-22 °C	Diurnal opportunistic, target survey, Raptor nest search	3hrs 0830-1100
	9/12/21		Diurnal opportunistic / target survey	1hr 30min 1900-2030
	13/8/19	0/8 cloud, no wind, no rain, 11-8°C	Spotlighting	2hr 15min 1730 - 1945
			Call playback (MO/PO/BO/BB/AB/BSC)	Commenced @1850
	16/11/21	1/8 cloud, 15km/h SE winds, no rain, 19 °C	Roost search	5hr 15min 1445-1930
		2/8 cloud, wind 19 km/h, 50mm rain within 7 days (11/11/21), 15°C	Spotlighting	2hrs 1930 - 2030
			Call-playback (section 2.5 species)	Commenced @ 1945
1	21/11/21	8/8 cloud, no wind, 14mm rain (areas of suitable habitat inundated), 19°C	Spotlighting	2hrs 2145–1145
Nocturnal birds			Call-playback (section 2.5 species)	Commenced @ 2145
Jirus	7/12/21	8/8 cloud, 26.3°C, light W, thunder storms with no rain, $\frac{1}{4}$ moon	Spotlighting	1hr 1930-2030
			Call-playback (section 2.5 species)	Commenced @ 1800
	8/12/21	8/8 cloud, 20°C, no wind, thunder storm 2.4mm rain, 1/4 moon	Spotlighting	1hr 1930-2030
			Call-playback (section 2.5 species)	Commenced @ 1945
	9/12/21	8/8 cloud, 26°C , no wind, thunder storm 10.8mm rain, $^{1}\!\!\!/_4$ moon	Spotlighting	1hr 1930-2030
			Call-playback (section 2.5 species)	Commenced @ 1930
	13/8/19	0/8 cloud, no wind, no rain, 11-8°C	Spotlighting	2hr 15min 1730 - 1945
Arboreal			Call playback (Koala / Squirrel Glider)	Commenced @1915
nammals	16/11/21	1/8 cloud, 15km/h SE winds, no rain, 19 °C	Koala SAT x1	2hr 1445-1930
nammais		2/8 cloud, wind 19 km/h, 50mm rain within 7 days (11/11/21), 15°C	Spotlighting	2hrs 1930 - 2030

Fauna group	Date	Weather conditions	Survey technique(s)	Time effort (24hr)
			Call-playback (section 2.5 species)	Commenced @ 1945
	21/11/21	8/8 cloud, no wind, 14mm rain (areas of suitable habitat inundated), 19°C	Spotlighting	2hrs 2145–1145
			Call-playback (section 2.5 species)	Commenced @ 2145
	7/12/21	8/8 cloud, 26.3°C, light W, thunder storms with no rain, $\frac{1}{4}$ moon	Spotlighting	1hr 1930-2030
			Call-playback (section 2.5 species)	Commenced @ 1800
	8/12/21	8/8 cloud, 20°C, no wind, thunder storm 2.4mm rain, 1/4 moon	Spotlighting	1hr 1930-2030
			Call-playback (section 2.5 species)	Commenced @ 1945
	9/12/21	8/8 cloud, 26°C, no wind, thunder storm 10.8mm rain, ¼ moon	Spotlighting	1hr 1930-2030
			Call-playback (section 2.5 species)	Commenced @ 1930
	13/8/19	0/8 cloud, no wind, no rain, 11-8°C	Spotlighting	2hr 15min 1730 - 1945
	16/11/21	2/8 cloud, wind 19 km/h, 50mm rain within 7 days (11/11/21), 15°C	Spotlighting	2hrs 1930 - 2030
	16/11-2/12/21	Mostly fine	Surveillance cameras (targeting Southern Brown Bandicoot) x4	64 camera nights
Torrectrial			Hair tubes (targeting Southern Brown Bandicoot) x4	64 trapping nights
Terrestrial mammals	21/11/21	8/8 cloud, no wind, 14mm rain (areas of suitable habitat inundated), 19°C	Spotlighting	2hrs 2145–1145
	7/12/21	8/8 cloud, 26.3°C, light W, thunder storms with no rain, $\frac{1}{4}$ moon	Spotlighting	1hr 1930-2030
	8/12/21	8/8 cloud, 20°C, no wind, thunder storm 2.4mm rain, ¼ moon	Spotlighting	1hr 1930-2030
	9/12/21	8/8 cloud, 26°C, no wind, thunder storm 10.8mm rain, ¹ / ₄ moon	Spotlighting	1hr 1930-2030
	13/8/19	0/8 cloud, no wind, no rain, 11-8ºC	Spotlighting	2hr 15min 1730 - 1945
			Anabat x2 (passive monitoring)	2hr 10min 1735 - 1945
	16/11/21	1/8 cloud, 15km/h SE winds, no rain, 19 °C	Microbat roost habitat search	2hr 1445-1930
			Grey-headed Flying-fox camp survey	2hr 1445-1930
Bats	16/11/21	2/8 cloud, wind 19 km/h, 50mm rain within 7 days (11/11/21), 15°C	Spotlighting	2hrs 1930 - 2030
	16/11-2/12/21	Mostly fine	Ultrasonic frequency recorders x 2 (passive monitoring)	32 recording nights
	21/11/21	8/8 cloud, no wind, 14mm rain (areas of suitable habitat inundated), 19°C	Spotlighting	2hrs 2145-1145
	2/12/21	1/8 cloud, no winds, no rain, 19-22 °C	Grey-headed Flying-fox camp survey	3hrs 0830-1100

Fauna group	Date	Weather conditions	Survey technique(s)	Time effort (24hr)
<u> </u>	7/12/21	8/8 cloud, 26.3°C, light W, thunder storms with no rain, ${}^{1}\!\!{}^{4}_{4}$ moon	Spotlighting	1hr 1930-2030
	9/12/21	8/8 cloud, 26°C, no wind, thunder storm 10.8mm rain, $\frac{1}{4}$ moon	Spotlighting	1hr 1930-2030
Reptiles	16/11/21	1/8 cloud, 15km/h SE winds, no rain, 19 °C	Opportunistic habitat search	2hr 1445-1930
Reptiles	2/12/21	1/8 cloud, no winds, no rain, 19-22 °C	Opportunistic habitat search	3hrs 0830-1100
	13/8/19	0/8 cloud, no wind, no rain, 11-8°C	Spotlighting / call identification	2hr 15min 1730 - 1945
	16/11/21	1/8 cloud, 15km/h SE winds, no rain, 19 °C	Opportunistic habitat search	2hr 1445-1930
		2/8 cloud, wind 19 km/h, 50mm rain within 7 days (11/11/21), 15°C	Target searches and spotlighting (Giant Burrowing Frog)	2hrs 1930 - 2030
			Tadpole searches (Giant Burrowing Frog)	15mins 2030 - 2045
		2/8 cloud, wind 10 km/h, 50mm rain within 7 days (11/11/21), 15°C	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	30mins 2115-2145
	21/11/21	8/8 cloud, no wind, 14mm rain (areas of suitable habitat inundated), 19°C	Target searches, spotlighting and call-playback (Giant Burrowing Frog, Green and Golden Bell Frog and Green-thighed Frog)	2hrs 2145–1145
			Tadpole searches (Giant Burrowing Frog & Green and Golden Bell Frog)	15mins 2315 - 2315
		8/8 cloud, no wind, 15.8mm rain, 20-19°C	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	15mins 2100-2115
Amphibians		8/8 cloud, no wind, 10.8mm rain, 18.6°C	Sydney Olympic Park reference site for Green and Golden Bell Frog (active foraging recorded)	15mins 2000-2015
		8/8 cloud, no wind, 14mm rain (areas of suitable habitat inundated), 19°C	Mardi reference site for Green-thighed Frog (calling males recorded)	15mins 2000-2015
	22/11/21	8/8 cloud, no wind, previous day 14mm, 24mm rain (areas of suitable habitat inundated), 19°C	Target searches, spotlighting and call-playback (Giant Burrowing Frog, Green and Golden Bell Frog and Green-thighed Frog)	2hrs 2135–2330
			Tadpole searches (Giant Burrowing Frog & Green and Golden Bell Frog)	15mins 2330 - 2345
		8/8 cloud, no wind, previous day 26.4mm (areas of suitable habitat inundated), 20-19°C	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	15mins 2050-2105
		8/8 cloud, no wind, previous day 10.8mm plus 18.4mm rain (areas of suitable habitat inundated), 21.5°C	Sydney Olympic Park reference site for Green and Golden Bell Frog (active foraging recorded)	15mins 2000-2015
		7/8 cloud, no wind, 5mm rain (areas of suitable habitat inundated), 21°C	Mardi reference site for Green-thighed Frog (calling males recorded)	30mins 2100-2130
	24/11/21	6/8 cloud, 23°C, no wind, 1.2mm rain, ½ moon	Target searches, spotlighting and call-playback (Giant Burrowing Frog and Green and Golden Bell Frog)	2hrs 2120-2330

Fauna group	Date	Weather conditions	Survey technique(s)	Time effort (24hr)
			Tadpole searches (Giant Burrowing Frog & Green and Golden Bell Frog)	15mins 2330 - 2345
		6/8 cloud, 23°C, no wind, 0.8mm rain, ½ moon	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	30mins 2015-2045
		7/8 cloud, no wind, 0.8mm rain and thunders storms, 27.1°C, $\frac{1}{2}$ moon	Sydney Olympic Park reference site for Green and Golden Bell Frog (calling males recorded)	15mins 1930-1945
	25/11/21	6/8 cloud, no wind, thunder storm 15.8mm (areas of suitable habitat inundated), 24.1°C, 1/3 moon	Target searches, spotlighting and call-playback (Giant Burrowing Frog and Green and Golden Bell Frog)	2hrs 2120–2330
			Tadpole searches (Giant Burrowing Frog & Green and Golden Bell Frog)	15mins 2330 - 2345
		6/8 cloud, no wind, thunder storm 9mm (areas of suitable habitat inundated), 24-22°C, 1/3 moon	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	30mins 2015-2045
		5/8 cloud, light wind, 5.8mm rain, 26.2°, 1/3 moon	Sydney Olympic Park reference site for Green and Golden Bell Frog (calling males recorded)	15mins 1930-1945
	26/11/21	8/8 cloud, 17°C, no wind, thunder storms with 25.4mm rain, 1/3 moon	Target searches, spotlighting and call-playback (Giant Burrowing Frog and Green and Golden Bell Frog)	2hrs 2120-2330
			Tadpole searches (Giant Burrowing Frog & Green and Golden Bell Frog)	15mins 2330 - 2345
		8/8 cloud, 17°C, no wind, thunder storms with 37.8mm rain, 1/3 moon	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	30mins 2015-2045
		8/8 cloud, no wind, 30.2mm rain (areas of suitable habitat inundated), 26.2°C	Sydney Olympic Park reference site for Green and Golden Bell Frog (calling males recorded)	15mins 1930-1945
	2/12/21	1/8 cloud, no winds, no rain, 19-22 ∘C	Opportunistic habitat search	3hrs 0830-1100
	7/12/21	8/8 cloud, 26.3°C, light W, thunder storms with no rain, $\frac{1}{4}$ moon	Target searches, spotlighting and call-playback (Giant Burrowing Frog and Green and Golden Bell Frog)	1hr 1930-2030
			Tadpole searches (Giant Burrowing Frog & Green and Golden Bell Frog)	30mins 2030-2100
		7/8 cloud, light W, thunder storms with no rain, 28.6°C, $\frac{1}{4}$ moon	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	15mins 2130-2145
	8/12/21	8/8 cloud, 20°C, no wind, thunder storm 2.4mm rain, ¼ moon	Target searches, spotlighting and call-playback (Giant Burrowing Frog and Green and Golden Bell Frog)	1hr 1930-2030
			Tadpole searches (Giant Burrowing Frog & Green and Golden Bell Frog)	15mins 2045-2100
		8/8 cloud, light wind, thunderstorms with no rain, 20.5°C, $^{1}\!\!\!/_4$ moon	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	15mins 2130-2145
	9/12/21	8/8 cloud, 26°C , no wind, thunder storm 10.8mm rain, $^{1}\!\!\!/_4$ moon	Tadpole searches (Giant Burrowing Frog & Green and Golden Bell Frog)	1hr 1930-2030

Fauna group	Date	Weather conditions	Survey technique(s)	Time effort (24hr)
		8/8 cloud, light wind, thunderstorms with 5.8mm rain, 24.2°C	Lane Cove NP reference site for Giant Burrowing Frog (foraging activity recorded)	15mins 2100-2115
	5/01/22	8/8 cloud, light wind, thunderstorms with 5.8mm rain, 24.2°C	Tadpole/ metamorph searches (Green-thighed Frog)	30mins 1730-1800
	6/01/22	8/8 cloud, light wind, thunderstorms with 5.8mm rain, 24.2°C	Tadpole/ metamorph searches (Green-thighed Frog)	30mins 1730-1800
Melluses	16/11/21	1/8 cloud, 15km/h SE winds, no rain, 19 °C	Opportunistic habitat search	2hr 1445-1930
Molluscs	2/12/21	1/8 cloud, no winds, no rain, 19-22 °C	Opportunistic habitat search	3hrs 0830-1100

Table 2.2 – Flora survey effort

Flora survey	Survey technique(s)	Dates
Vegetation communities	Survey of the boundaries of all communities – field verification, determining vegetation boundaries Opportunistic observations of flora species during all on-foot traverses of the development footprint	19 June, 8 Aug 2019 13 Dec 2021
Stratified sampling	Four (4) 20 m x 20 m flora quadrats Four (4) 20 m x 50 m BAM plots within the subject land	19 June, 8 Aug 2019 13 Dec 2021
Targeted searches	Targeted searches across the whole subject land	13 Dec 2021

Table 2.3 – Plot and transect survey effort – development footprint

Veg zone no.	РСТ	Condition	Area (Ha)	Minimum plots required	Plot sampled	Plot identifier	Plot size	Easting at 0 m	Northing at 0 m	Bearing
1	1232	Poor	0.18	1	1	Plot 2	20 m x 50 m	342177	6270452	165
2	1793	Poor	0.23	1	1	Plot 1	20 m x 50 m	342180	6270599	99
3	1232	derived exotic	0.27	1	1	Plot 4	20 m x 50 m	342220	6270495	36
4	1232	pasture weeds	0.48	1	1	Plot 3	20 m x 50 m	342232	6270490	56

2.5 Survey limitations

It is important to note that field survey data collected during the survey period is representative of species occurring within the development footprint for that occasion. Due to effects of fire, breeding cycles, migratory patterns, camouflage, weather conditions, time of day, visibility, predatory and / or feeding patterns, increased species frequency or richness may be observed within the development footprint outside the nominated survey period. Habitat assessments based on the identification of micro-habitat features for various species of interest, including regionally significant and threatened species, have been used to minimise the implications of this survey limitation.

Given the limited potential for threatened species to occur on site because of the heavily disturbed (and removed understorey), together with long-term and ongoing management of the surrounding managed lands, it is unlikely that there are any significant limitations of this study.

Flora survey limitations

It is not expected that there are any limitations to threatened flora species survey which could change the outcomes of credit assessment as survey has been undertaken at a time when all candidated flora species are able to be detected.

Table 2.4 – Survey adequacy for confirmed candidate species (flora)

Common name	BC Act	Potential SAII species	Defined survey period (DPIE)	Actual survey period	Survey sufficient to rule out presence
Meleleuca biconvexa	V	no	All months	Oct	yes

Fauna survey limitations

Table 2.5 – Survey adequacy for confirmed candidate species (fauna)

Common name	BC Act	Potential SAII species	Defined survey period (DPIE)	Actual survey period	Survey sufficient to rule out presence
Bush Stone-curlew	Е	no	All	Aug, Nov, Dec	yes
Eastern Pygmy Possum	V	no	Oct-March	n/a	no
Glossy Black-Cockatoo (breeding)	V	no	Mar-Aug	Aug	yes
Green and Golden Bell Frog	Е	no	Nov-Mar	Nov, Dec	yes
Green-thighed Frog	V	no	Sep-Apr	Nov, Dec, Jan	yes
Large-eared Pied Bat	V	yes	Nov-Jan	Nov-Dec	yes
Maroubra Woodland Snail	Е	no	Jan-Dec	Nov-Dec	yes

Common name	BC Act	Potential SAII species	Defined survey period (DPIE)	Actual survey period	Survey sufficient to rule out presence
Southern Brown Bandicoot	Е	no	Jan-Dec	Nov-Dec	yes
Little Eagle (breeding)	V	no	Aug-Oct	Aug, Nov, Dec	yes
Square-tailed Kite (breeding)	V	no	Sept–Jan	Aug, Nov, Dec	yes
White-bellied Sea Eagle (breeding)	V	no	July-Dec	Aug, Nov, Dec	yes

Whilst considered with lower potential to occur the Eastern Pygmy Possum was included because there has not been sufficient survey for the species. Denning tubes are required for this species to assess presence / absence.

2.6 Accuracy of identification

Hair samples collected from hair tubes were sent to Robyn Carter for identification.

3. SURVEY RESULTS

3.1 Flora results

3.1.1 Native vegetation extent

The vegetation extent within the study area has been ground-truthed and is mapped on Figure 3.1. The subject lot contains 1.52 ha of vegetation, which includes remnant native vegetation and derived vegetation with a mix of native and exotic species.

The total vegetation to be impacted measures 1.28 ha. This is through a combination of impacts from roads, construction and APZ.

3.1.2 Flora species

The plants observed within the vegetation communities of the study area are listed in the Table 3.1 below.

Family	Scientific name	Common name
TREES		
Fabaceae	Acacia parramattensis	Sydney Green Wattle
Myrtaceae	Angophora costata	Smooth-barked Apple
Arecaceae	Archontophoenix alexandrae*	Alexandra Palm
Sterculiaceae	Brachychiton populneus	Kurrajong
Casuarinaceae	Casuarina glauca	Swamp Oak
Lauraceae	Cinnamomum camphora*	Camphor Laurel
Fabaceae	Erythrina sykesii*	Coral Tree
Myrtaceae	Eucalyptus botryoides	Bangalay / Southern Mahogany
Myrtaceae	Eucalyptus microcorys	Tallowwood
Euphorbiaceae	Glochidion ferdinandi	Cheese Tree
Moraceae	Morus alba*	Mulberry
Oleaceae	Olea europaea subsp. cuspidata*	African Olive
Arecaceae	Phoenix canariensis*	Canary Island Date Palm
Pittosporaceae	Pittosporum undulatum	Sweet Pittosporum
Salicaceae	Populus nigra*	Black Poplar
Salicaceae	Salix babylonica*	Weeping Willow
Arecaceae	Syagrus romanzoffiana*	Cocos Palm
Myrtaceae	Syncarpia glomulifera	Turpentine
SHRUBS		
Fabaceae	Acacia elongate	Swamp Wattle
Fabaceae	Acacia longifolia var. longifolia	Sydney Golden Wattle
Fabaceae	Acacia saligna	Orange Wattle
Euphorbiaceae	Breynia oblongifolia	Coffee Bush

 Table 3.1 – Flora observations within the study area and surrounds

Family	Scientific name	Common name	
Solanaceae	Cestrum parqui*	Chilean Cestrum	
Apocnynaceae	Gomphocarpus fruiticosus*	Narrow Leaf Cotton Bush	
Proteaceae	Hakea salicifolia	Willow Hakea	
Euphorbiaceae	Homalanthus populifolius	Bleeding Heart	
Myrtaceae	Kunzea ambigua	Tick Bush	
Verbenaceae	Lantana camara*	Lantana	
Oleaceae	Ligustrum lucidum*	Large-leaved Privet	
Oleaceae	Ligustrum sinense*	Small-leaved Privet	
Celastraceae	Maytenus silvestris	-	
Myrtaceae	Melaleuca armillaris	Bracelet Honey Myrtle	
Myrtaceae	Melaleuca ericifolia	Swamp Paperbark	
Ochnaceae	Ochna serrulata*	Mickey Mouse Plant	
Asteraceae	Osteospermum fruticosum*	Shrubby Daisy-bush	
Pittosporaceae	Pittosporum revolutum	Yellow Pittosporum	
Araliaceae	Polyscias sambucifolia	Elderberry Panax	
Euphorbiaceae	Ricinus communis*	Castor Oil Plant	
Rosaceae	Rubus fruticosus sp. agg.*	Blackberry Complex	
Fabaceae	Senna pendula var. glabrata*	-	
Solanaceae	Solanum mauritianum*	Wild Tobacco	
GROUNDCOVERS			
Polygonaceae	Acetosa sagittata*	Turkey Rhubarb	
Adiantaceae	Adiantum aethiopicum	Common Maidenhair	
Asteraceae	Ageratina adenophorum*	Crofton Weed	
Alismataceae	Alisma plantago-aquatica	Water Plantain	
Amaranthaceae	Alternanthera denticulate	Lesser Joyweed	
Myrsinaceae	Anagallis arvensis*	Scarlet Pimpernel	
Poaceae	Andropogon virginicus*	Whisky Grass	
Poaceae	Arundo donax*	Giant Reed	
Asparagaceae	Asparagus aethiopicus*	Asparagus Fern	
Aspleniaceae	Asplenium australasicum	Birds Nest Fern	
Poaceae	Axonopus fissifolius*	Narrow-leaf Carpet Grass	
Azollaceae	Azolla pinnata	Ferny Azolla	
Restionaceae	Baloskion tetraphyllum	-	
Asteraceae	Bidens pilosa*	Cobbler's Pegs	
Blechnaceae	Blechnum cartilagineum	Gristle Fern	
Cyperaceae	Bolboschoenus fluviatilis	Marsh Club-rush	
Dicksoniaceae	Calochlaena dubia	False Bracken	
Brassicaceae	Capsella bursa-pastoris*	Shepherds purse	
Cyperaceae	Carex appressa	Tall Sedge	
Poaceae	Cenchrus clandestinum*	Kikuyu	
Apiaceae	Centella asiatica	Swamp Pennywort	
Carophyllaceae	Cerastium glomeratum*	Mouse-ear Chickweed	
Solanaceae	Cestrum parqui*	Green Cestrum	
Chenopodiaceae	Chenopodium album*f	Fat Hen	
Family	Scientific name Common name		
------------------	-------------------------------------	----------------------------	
Liliaceae	Chlorophytum comosum*	Spider Plant	
Asteraceae	Cirsium vulgare*	Spear Thistle	
Commelinaceae	Commelina cyanea	Scurvy Weed	
Asteraceae	Conyza sumatrensis*	Fleabane	
Poaceae	Cortaderia selloana*	Pampas Grass	
Asteraceae	Cotula australis	Common Cotula, Carrot Weed	
Apiaceae	Cyclospermum leptophyllum*	Slender Celery	
Poaceae	Cynodon dactylon	Common Couch	
Cyperaceae	Cyperus brevifolius*	Mullumbimby Couch	
Cyperaceae	Cyperus eragrostis*	-	
Cyperaceae	Cyperus gracilis	-	
Cyperaceae	Cyperus polystachyos	-	
Cyperaceae	Cyperus rotundatus*	-	
Phormiaceae	Dianella caerulea	Flax Lily	
Convolvulaceae	Dichondra repens	Kidney Weed	
Iridaceae	Dietes grandiflora	Wild Iris	
Poaceae	Ehrharta erecta*	Panic Veldtgrass	
Pontederiaceae	Eichhornia crassipes*	Water Hyacinth	
Cyperaceae	Eleocharis sphacelata	Tall Spike-rush	
Poaceae	Entolasia stricta	Wiry Panic	
Asteraceae	Erechtites valerianifolia*	Brazilian Fireweed	
Euphorbiaceae	Euphorbia peplus*	Spurge	
Cyperaceae	Ficinia nodosa	-	
Apiaceae	Foeniculum vulgare*	Fennel	
Cyperaceae	Gahnia clarkei	Tall Saw-sedge	
Cyperaceae	Gahnia sieberiana	Red-fruited Saw-sedge	
Geraniaceae	Geranium homeanum	Northern Cranesbill	
Iridaceae	Gladiolus sp.*	-	
Zingiberaceae	Hedychium gardnerianum*	Ginger Lily	
Apiaceae	Hydrocotyle bonariensis*	Kurnell Curse / Pennywort	
Apiaceae	Hydrocotyle sibthorpioides	Pennywort	
Clusiaceae	Hypericum perforatum*	St John's Wort	
Asteraceae	Hypochaeris glabra*	Smooth Catsear	
Asteraceae	Hypochaeris radicata*	Flatweed	
Dennstaedtiaceae	Hypolepis muelleri	Harsh Ground Fern	
Poaceae	Imperata cylindrica var. major	Blady Grass	
Juncaceae	Juncus usitatus	Common Rush	
Liliaceae	Lilium formosanum*	Formosan Lily	
Lomandraceae	Lomandra longifolia	Spiky-headed Mat-rush	
Onagraceae	Ludwigia peruviana*	Water Primrose	
Cyperaceae	Machaerina articulata	Jointed twig-rush	
Cyperaceae	Machaerina juncea	Bare Twig-rush	
Lamiaceae	<i>Mentha</i> sp.*	Mint	
Poaceae	Microlaena stipoides var. stipoides	Weeping Rice Grass	

Family	Scientific name	Common name
Malvaceae	Modiola caroliniana*	Red-flowered Mallow
Poaceae	Oplismenus aemulus	Basket Grass
Poaceae	Oplismenus imbecillis	Basket Grass
Oxalidaceae	Oxalis corniculata*	Yellow Wood Sorrel
Urticaceae	Parietaria judaica*	Wall pellitory
Poaceae	Paspalum dilatatum*	Paspalum
Poaceae	Paspalum urvillei*	Vasey Grass
Polygonaceae	Persicaria decipiens	Slender Knotweed
Polygonaceae	Persicaria strigosa	-
Poaceae	Phragmites australis	Common Reed
Phytolaccaceae	Phytolacca octandra*	Inkweed
Plantaginaceae	Plantago lanceolata*	Ribwort
Poaceae	Poa annua*	Winter Grass
Caryophyllaceae	Polycarpon tetraphyllum	Allseed
Portulacaceae	Portulaca oleracea	Purslane
Lobeliaceae	Pratia purpurascens	Whiteroot
Dennstaedtiaceae	Pteridium esculentum	Bracken
Ranunculaceae	Ranunculus plebeius	Forest Buttercup
Ranunculaceae	Ranunculus repens*	Creeping Buttercup
Polygonaceae	Rumex brownii	Swamp Dock
Polygonaceae	Rumex crispus*	Curled Dock
Cyperaceae	Schoenoplectus validus	River Club-rush
Cyperaceae	Schoenus brevifolius	Bog-rush
Asteraceae	Senecio madagascariensis*	Fireweed
Poaceae	Setaria parviflora*	-
Malvaceae	Sida rhombifolia*	Paddy's Lucerne
Solanaceae	Solanum americanum	Glossy Nightshade
Solanaceae	Solanum chenopodioides*	Whitetip Nightshade
Solanaceae	Solanum nigrum*	Black Nightshade
Asteraceae	Soliva sessilis*	Jojo
Asteraceae	Sonchus asper subsp. asper*	Prickly Sowthistle
Asteraceae	Sonchus oleraceus*	Common Sow-thistle
Poaceae	Sporobolus africanus*	Parramatta Grass
Poaceae	Sporobolus creber	Slender Rat's Tail Grass
Poaceae	Stenotaphrum secundatum*	Buffalo Grass
Strelitzeaceae	Strelitzea juncea*	Bird of Paradise
Asteraceae	Tagetes minuta*	Stinking Roger
Asteraceae	Taraxacum officinale*	Dandelion
Blechnaceae	Telmatoblechnum indicum	Swamp Water Fern
Aizoaceae	Tetragonia tetragonioides	New Zealand Spinach
Commelinaceae	Tradescantia albiflora*	Wandering Jew
Fabaceae	Trifolium repens*	White Clover
Juncaginaceae	Triglochin microtuberosum	Water Ribbons
Typhaceae	Typha orientalis	Cumbungi

Family	Scientific name	Common name
Urticaceae	Urtica incisa	Stinging Nettle
Scrophulariaceae	Verbascum virgatum*	Twiggy Mullein
Verbenaceae	Verbena bonariensis*	Purpletop
Verbenaceae	Verbena litoralis*	Coastal Verbena
Violaceae	Viola hederacea	Ivy-leaved Violet
Violaceae	Viola odorata*	Sweet Violet
Iridaceae	Watsonia meriana*	Wild Watsonia
Araeceae	Zantedeschia aethiopica*	White Arum Lily
EPYHPITES		
Polypodiaceae	Pyrrosia rupestris	Rock Felt Fern
Araceae	Monstera deliciosa*	Fruit-salad Plant
VINES		
Basellaceae	Anredera cordifolia*	Madiera Vine
Apocnyaceae	Araujia sericifolia*	Mothvine
Sapindaceae	Cardiospermum grandiflorum*	Balloon Vine, Love in a Puff
Lauraceae	Cassytha glabella	
Vitaceae	Cayratia clematidea	Slender Grape
Dioscoreaceae	Dioscorea transversa	Native Yam
Convolvulaceae	Ipomoea indica*	Coastal Morning Glory
Caprifoliaceae	Lonicera japonica*	Japanese Honeysuckle
Apocynaceae	Parsonsia straminea	Common Silkpod
Passifloraceae	Passiflora edulis*	Common Passionfruit
Menispermiaceae	Stephania japonica var. discolor*	Snake Vine
Fabaceae	Vicia sativa subsp. sativa*	Common Vetch
* denotes exotic specie		

TS denotes threatened species

3.1.3 Plant community types (PCTs)

Evidence used to identify a PCT

Evidence used to identify the PCTs within the site: the entire list of PTCs was exported from the online BioNet Vegetation Classification Tool. Dominant canopy species, mid-stratum species, ground cover species, and Interim Biogeographic Regionalisation for Australia (IBRA) region and sub-region (Pittwater) information were utilised to produce a short list of potential PCTs (Table 3.2). Final PCTs were then chosen based on species composition and presence, and similarity to descriptive attributes and distributional information provided in the BioNet Vegetation Classification Tool. Justification for inclusion or exclusion of each shortlisted PCT is provided in Table 3.2.

Table 3.3 provides a summary of the PCT occurring within the development site, including vegetation formation, percent cleared within and extent within the development site.

All plot sheets utilised for the BAM calculator are in Appendix 1.

Table 3.2 – PCT shortlist and justification

Zone	Shortlisted PCTs	PCT name	Match	Justification
1	1232	Swamp Oak floodplain swamp forest, Sydney Basin Bioregion and South East Corner Bioregion	x	Correct landscape position and freshwater influence. Dominated by <i>C. glauca.</i>
	1234	Swamp Oak swamp forest fringing estuaries, Sydney Basin Bioregion and South East Corner Bioregion	х	Wrong landscape position: vegetation does not fringe the margins of saline waterbodies
	1236	Swamp Paperbark - Swamp Oak tall shrubland on estuarine flats, Sydney Basin Bioregion and South East Corner Bioregion	х	Wrong landscape position: dissected sandstone hills. Absence of B. spinulosa in mid strata diagnostics
	1717	Broad-leaved Paperbark - Swamp Mahogany - Swamp Oak - Saw Sedge swamp forest of the Central Coast and Lower North Coast	x	Zone not dominated by <i>Melaleuca</i>
	1722	Swamp Mahogany - Paperbarks - Harsh Ground Fern swamp forest of the Central Coast	x	Zone not dominated by Eucalypts
	1727	Swamp Oak - Sea Rush - Baumea juncea swamp forest on coastal lowlands of the Central Coast and Lower North Coast	х	Distribution (Hunter) does not extend to the study area. Wrong landscape position: vegetation does not occur on margins of brackish water bodies
	1728	Swamp Oak - Prickly Paperbark - Tall Sedge swamp forest on coastal lowlands of the Central Coast and Lower North Coast	х	Distribution (East Gosford north to Tuncurry) does not extend to the study area
	1729	Swamp Oak swamp forest on coastal lowlands of the Central Coast and Lower North Coast	x	Distribution (Tuggerah to Nabiac) does not extend to the study area. Wrong landscape position: vegetation does not occur on margins of brackish water bodies
	1730	Swamp paperbark - Baumea juncea swamp shrubland on coastal lowlands of the Central Coast and Lower North Coast	х	Distribution (Empire Bay to Black Head) does not extend to the study area.
2	661	Bangalay - Smooth-barked Apple - Swamp Mahogany low open forest of southern Sydney, Sydney Basin Bioregion	x	Site is not within southern Sydney
	1778	Smooth-barked Apple - Coast Banksia / Cheese Tree open forest on sandstone slopes on the foreshores of the drowned river valleys of Sydney	x	Wrong landscape position: sheltered sandstone slopes along the foreshores of Sydney's major waterways and coastal escarpments
	1793	Smooth-barked Apple - Bangalay / Tuckeroo - Cheese Tree open forest on coastal sands of the Sydney basin	~	Correct landscape position and substrate: flat, low-lying coastal marine sand deposits

Zone	Shortlisted PCTs	PCT name	Match	Justification
	1794	Bangalay - Smooth-barked Apple / She-oak open forest on sandy alluvium in coastal parts of the Sydney region	x	Wrong landscape position and substrate: low-lying alluvial deposits associated with stream banks and inlets
	1841	Smooth-barked Apple - Turpentine - Blackbutt tall open forest on enriched sandstone slopes and gullies of the Sydney region	x	Wrong landscape position and substrate: sandstone gullies and sheltered slopes enriched by clay material
	1915	Blue Gum-Bangalay - Turpentine / Cheese Tree - Lilly Pilly tall moist forest on coastal flats of the northern Sydney basin	х	Potential match but lack of <i>E. saligna</i> and forest is not tall

Zone 1:

The identification of the most suitable PCT was based upon filtering for Freshwater Wetland PCTs with *Casuarina glauca* as an upper strata species within the Pittwater IBRA sub-region. This produced a shortlist of nine PCTs: 1232, 1234, 1236, 1717, 1722, 1727, 1728, 1729 and 1730. PCTs 1236, 1717 and 1722 can be excluded as the descriptions for each state that the canopy is dominated by *Melaleuca* or Eucalypt species. PCT 1234 fringes the margins of saline waterbodies just above tidal influence – Zone 1 occurs outside of saline influence and thus this PCT can also be excluded. PCTs 1727, 1728, 1729 and 1730 can also be excluded as the distribution of these PCTs does not extend to the study area. Further, PCTs 1727 and 1729 occur on margins of brackish water bodies – Zone 1 occurs outside of saline or brackish influence. The remaining PCT 1232 is correctly dominated by *C. glauca*, occurs under freshwater inundation, and is known to occur within the Sydney metropolitan area. This designation is consistent with the Native Vegetation of the Sydney Metropolitan Area (OEH 2016) mapping (Figure 2.1).

Zone 2:

The identification of the most suitable PCT was based upon filtering for PCTs within the Pittwater IBRA sub-region with *Eucalyptus botryoides* and *Angophora costata* in the upper strata, and *Glochidion ferdinandi* in the mid strata. This produced shortlist of six PCTs: 661, 1778, 1793, 1794, 1841 and 1915. PCT 661 can be excluded as it is restricted to southern Sydney, while Zone 2 is in the wrong landscape position and substrate for PCTs 1778, 1794 and 1841 (Table 3.2). Both PCTs 1793 and 1915 are a potential match, and the depauperate nature of the vegetation present prevents accurate delineation based on floristic data. Ultimately, the landscape position and substrate are correct for PCT 1793, while the lack of *E. saligna* and the shorter height of the vegetation suggests that PCT 1915 is not the best match. PCT 1793 is consistent with the Native Vegetation of the Sydney Metropolitan Area (OEH 2016) mapping (Figure 2.1).

Zones 3 & 4:

Zones 3 and 4 contain a mix of derived, planted and naturalised species largely dominated by exotics. Native species richness is very low and, being comprised of widespread and common forbs and grasses, is not sufficient to assign a PCT based on floristics. As such, we must determine an acceptable PCT based on what would have originally occurred in that position. As the majority of Zones 3 and 4 occur toward the southern end of the subject land, it is appropriate to assign PCT 1232 to these Zones.

Table 3.3 – PCTs

PCT code	PCT name	Species relied upon	Vegetation formation	Vegetation class	% Cleared	Area within development site (ha)	TEC status
1232	Coastal freshwater swamp forest	Casuarina glauca	Forested Wetlands	Coastal Swamp Forests	95	0.44 on site, 0.18 to be impacted	Swamp Oak Floodplai n Forest
1793	Coastal Sand Bangalay Forest	A. costata E. botryoides Glochidion ferdinandi	Dry Sclerophyll Forests (Shrubby sub- formation);	South Coast Sands Dry Sclerophyll Forests;	40	0.23 on site, all to be impacted	Bangalay Sand Forest

3.1.4 Vegetation descriptions of observed communities

The following vegetation communities were recorded within the study area:

- Zone1: PCT 1793 Smooth-barked Apple Bangalay / Tuckeroo Cheese Tree open forest
- Zone 2: PCT 1232 Swamp Oak floodplain swamp forest
- Zone 3: Planted and derived exotic vegetation
- Zone 4: Pasture and weeds
- Planted native vegetation

Zone 1: PCT 1793 – Smooth-barked Apple - Bangalay / Tuckeroo - Cheese Tree open forest

Canopy:

Eucalyptus botryoides, Angophora costata, Glochidion ferdinandi and *Syncarpia glomulifera* to a height of 15–20 m provide a PFC of 25–35%.

Mid-storey:

The majority of the native mid-storey is absent. Naturalised exotic species such as *Cestrum parqui*, *Lantana camara* and *Senna pendula* are abundant.

Ground layer:

The ground layer contains limited native species but includes *Dichondra repens*, *Commelina cyanea*, *Hydrocotyle sibthorpioides*, *Oplismenus aemulus*, *Solanum americanum*, *Calochlaena dubia* and *Geranium homeanum*.

Classification:

This vegetation community is commensurate with *Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions*, which is listed as an endangered ecological community (EEC) under the NSW *BC Act 2016*. This community is not listed under the *EPBC Act.*

Photo 3.1 – Disturbed PCT 1793 Smooth-barked Apple - Bangalay / Tuckeroo - Cheese Tree open forest in the northern portion of the subject land

Photo 3.2 – Disturbed PCT 1793 Smooth-barked Apple - Bangalay / Tuckeroo - Cheese Tree open forest in the northern portion of the subject land

Zone 2: PCT 1232 - Swamp Oak floodplain swamp forest

Canopy:

Canopy consists of *Casuarina glauca* to a height of 15–22 m and a projected foliage cover (PFC) of 20–75%. Occasional *E. botryoides* are present at the edges of this vegetation. Naturalised exotic species such as *Erythrina sykesii* and *Cinnamomum camphora* are abundant in some areas and provide up to 25% PFC.

Mid-storey:

The mid-storey is largely devoid of native vegetation; however, occasional small trees, palms and shrubs are present such as *Melaleuca lineariifolia, Melaleuca ericifolia, Glochidion ferdinandi, Parsonsia straminea* and *Livistona australis* providing up to 10% PFC. The mid-storey contains a high abundance of naturalised exotics such as *Lantana camara* (up to 80% PFC), *Senna pendula, Ipomoea indica, Arundo donax, Anredera cordifolia* and *Lonicera japonica*.

Ground layer:

The ground layer contains a number of sedges, herbs and ferns including *Gahnia clarkei*, *Hypolepis muelleri*, *Centella asiatica*, *Carex appressa*, *Calochlaena dubia*, *Persicaria hydropiper*, *Ranunculus plebeius*, *Oplismenus* spp., *Commelina cyanea*, *Centella asiatica*, *Blechnum cartilagineum* and *Viola hederacea* providing up to 30% PFC. Exotic species are sparse and include *Tradescantia fluminensis* and *Cenchrus clandestinus*.

Photo 3.3 – PCT 1232 – Swamp Oak floodplain swamp forest in the southern portion of the subject land

Classification:

This vegetation community is commensurate with *Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions* which is listed as an endangered ecological community (EEC) under the NSW *BC Act 2016.* This community is also commensurate with *Coastal Swamp Oak Forest* which is listed under the *EPBC Act* as an EEC.

Photo 3.4 – PCT 1232 – Swamp Oak floodplain swamp forest within Plot 2

Zone 3: Planted and derived exotic vegetation

This vegetation occurs in patches within the centre of the subject land. It is comprised of planted trees and garden plants including *Populus nigra, Syagrus romanzoffiana, Phoenix canariensis* and *Schefflera actinophylla* along with naturalised species such as *Erythrina x. sykesii, Solanum mauritianum, Conyza bonariensis, Acetosa sagittata, Lantana camara, Sonchus oleraceus, Lolium perenne, Solanum nigrum, Cenchrus clandestinus, and Ricinus communis.* Although dominated by exotic species, this vegetation contains some native groundcover species, including *Commelina cyanea, Cotula australis, Oplismenus aemulus, Juncus usitatus* and *Rumex brownii,* and as such has been allocated a separate vegetation zone for assessment according to the BAM.

Planted native vegetation

Planted *E. microcorys* are scattered throughout the northern portions of the subject land. This species has a natural southern limit at Cooranbong (PlantNet) and would not naturally occur on the Northern Beaches. Where individuals of *E. microcorys* are intermingled with remnant, locally-indigenous species, they have been included within either Zone 1 or Zone 2. Where they are distinct and not part of a mosaic they have been mapped as a separate vegetation community (Figure 3.1). Appendix D of the BAM can be applied to this vegetation and, as such, Chapters 4 and 5 of the BAM (i.e. plot-based survey and assessment for ecosystem and

species credits) are not required to be applied to the planted native vegetation, and it will only need to be assessed for use by threatened fauna. No offsets will be required for impacts on this planted native vegetation. See Section 5.2.1 for additional detail.

3.1.5 Vegetation integrity assessment

A vegetation integrity assessment is an assessment on the site's condition. Vegetation patches are broken into zones of roughly equal quality and then surveyed by transect plots. The number of required transect plots is dependent upon the size of the zone.

Vegetation zone area (ha)	Minimum number of plots/transects
<2	1 plot/transect
>2–5	2 plots/transects
>5–20	3 plots /transects
>20-50	4 plots/transects
>50-100	5 plots/transects
>100-250	6 plots/transects
>250–1000	7 plots/transects; more plots may be needed if the condition of the vegetation is variable across the zone
>1000	8 plots/transects; more plots may be needed if the condition of the vegetation is variable across the zone

Once data from the transect plot has been collected, the composition of native plant species per growth form is assessed, along with numbers of stems, percentages of exotic or high threat exotic species present, number and sizes of native tree stems, litter cover, rock cover, cryptogram cover, hollows and fallen logs. Therefore, the vegetation integrity assessment is a measure of composition, structure and function.

The breakdown of PCTs and zones is shown on Figure 3.1. Impacted areas (the development footprint) are shown cross-hatched. Figure 3.1 shows the location of the plots in relation to the impacted areas.

The vegetation integrity score is obtained using equations and weightings based upon a number of entities to calculate scores for composition, structure and function, for an overall current vegetation integrity score.

Zone no.	Vegetation zone name	Area (ha)	Composition condition score	Structure condition score	Function condition score	Current vegetation integrity score
1	1232_poor	0.18	38.3	24	62.5	38.6
2	1793_poor	0.23	15.2	25.9	44.2	25.9
3	1232_derived_exotic	0.27	14.1	1.2	0.1	1.3
4	1232_pasture_weeds	0.48	14.1	24	0.1	3.1

Table 3.4 – Current vegetation integrity score

The future vegetation integrity score is measured assuming there will be no vegetation retained within the subject land. As such, the future vegetation integrity score for all Zones will be 0 as indicated in Table 3.5.

Table 3.5 – Future vegetation integrity score

Zone no.	Vegetation zone name	Area (ha)	Composition condition score	Structure condition score	Function condition score	Current vegetation integrity score
1	1232_poor	0.18	0	0	0	0
2	1793_poor	0.23	0	0	0	0
3	1232_derived_exotic	0.27	0	0	0	0
4	1232_pasture_weeds	0.48	0	0	0	0

3.2 Fauna results

Fauna species observed throughout the duration of fauna surveys are listed below.

Common name	Scientific name	Met	hod observ	ed
Birds		Apr 2013 / Dec 2016	Aug 2019	Nov/ Dec 2021
Australian Brush-turkey	Alectura lathami	0		
Australian Magpie	Gymnorhina tibicen	ΟW	ΟW	OW
Australian Raven	Corvus coronoides	ΟW	0	OW
Australian White Ibis	Threskiornis moluccus		0	
Brown Thornbill	Acanthiza pulsilla	W	W	OW
Channel-billed Cuckoo	Scythrops novaehollandiae			W
Chestnut Teal	Anas castanea	ΟW		
Common Bronzewing	Phaps chalcoptera	0		
Common Koel	Eudynamys scolopacea	ΟW		W
Common Myna *	Acridotheres tristis	W	W	OW
Long-billed Corella	Cacatua tenuirostris		ΟW	OW
Eastern Spinebill	Acanthorhynchus tenuirostris	ΟW	W	OW
Eastern Whipbird	Psophodes olivaceus	W	ΟW	W
Eastern Yellow Robin	Eopsaltria australis		W	
Figbird	Sphecotheres vieilloti		W	W
Galah	Cacatua roseicapilla	ΟW	W	OW
Golden Whistler	Pachycephala pectoralis	ΟW	W	OW
Grey Butcherbird	Cracticus torquatus	W	W	OW
Grey Fantail	Rhipidura fuliginosa	ΟW	W	OW
Laughing Kookaburra	Dacelo novaeguineae	ΟW	ΟW	W
Magpie-lark	Grallina cyanoleuca	0	0	OW
Masked Lapwing	Vanellus miles	ΟW	ΟW	OW
Musk Lorikeet	Glossopsitta concinna	ΟW	W	W
Nankeen Kestrel	Falco cenchroides			
Noisy Miner	Manorina melanocephala	W	ΟW	OW
Olive-backed Oriole	Oriolus sagittatus	ΟW		OW
Pacific Black Duck	Anas superciliosa	0		OW
Pied Currawong	Strepera graculina	ΟW	ΟW	OW
Powerful Owl TS	Ninox strenua			OW
Purple Swamphen	Porphyrio porphyrio	ΟW	ΟW	OWQ
Rainbow Lorikeet	Trichoglossus haematodus	ΟW	ΟW	OW
Red-browed Finch	Neochmia temporalis		ΟW	
Red Junglefowl *	Gallus gallus	ΟW		OW

Table 3.6 – Fauna recorded within the study area

Common name	Scientific name	Met	hod observe	ed
Red Wattlebird	Anthochaera carunculata	W	ΟW	OW
Red-whiskered Bulbul *	Pycnonotus jocosus	ΟW	W	
Rufous Whistler	Pachycephala rufiventris		W	
Silvereye	Zosterops lateralis	ΟW		OW
Spotted Pardalote	Pardalotus punctatus	W		
Spotted Turtle-Dove *	Streptopelia chinensis	0	ΟW	OW
Sulphur Crested Cockatoo	Cacatua galerita	ΟW	W	OW
Superb Fairy-wren	Malurus cyaneus	ΟW	ΟW	OW
Tawny Frogmouth	Podargus strigoides	0		
Variegated Fairy-wren	Malurus lamberti	ΟW	ΟW	OW
White-browed Scrubwren	Sericornis frontalis	ΟW		OW
White-cheeked Honeyeater	Phylidonyris nigra	W	W	OW
Willie Wagtail	Rhipidura leucophrys	0 W	0 W	
Yellow Thornbill	Acanthiza nana	0 W	•	
Mammals				
Black Rat *	Rattus rattus	Т	0	0
Chocolate Wattled Bat	Chalinolobus morio		J	U PO
Common Brushtail Possum	Trichosurus vulpecula	Р	0	0
Common Ringtail Possum	Pseudocheirus peregrinus	P	0	0
Domesticated Dog *	Canis familiaris	0	0	Ŵ
Large Bent-winged Bat TS	Miniopterus orianae oceansis	U	U	U
Eastern Freetail-bat	Mormopterus ridei	U PO	0	<u>U</u>
Eastern Cave Bat		0.0		U PO
Gould's Wattled Bat	Vespadelus troughtoni	U		0.0
	Chalinolobus gouldii	S		OW
Grey-headed Flying-fox ^{TS} Horse *	Pteropus poliocephalus	0	0	0
	Equus caballus	U PO		0
Southern Myotis ^{TS}	Myotis macropus	-	011010	
Little Forest Bat	Vespadelus vulturnus	U		
Little Bent-winged Bat TS	Miniopterus australis		U	U
Long-nosed Bandicoot	Perameles nasuta		ΟW	OW
Rabbit *	Oryctolagus cuniculus	Р	0	0
Swamp Wallaby	Wallabia bicolor		0	OQ
Reptiles				-
Delicate Skink	Lampropholis delicata	0		0
Eastern Water Dragon	Intellagama lesueurii	0		0
Eastern Water Skink	Eulamprus quoyii	0		0
Red-Bellied Black Snake	Pseudechis porphyriacus	0		
Amphibians				0
Common Eastern Froglet	Crinia signifera	W	W	OW
Dwarf Tree Frog	Litoria fallax	W		OW
Graceful Tree Frog	Litoria gracilenta			OW
Peron's Tree Frog	Litoria peronii		W	OW
Striped Marsh Frog	Limnodynastes peronii	W		OW
Mollusc				
Brown Garden Snail *	Cornu aspersum			0
Asian Tramp Snail *	Bradybaena similaris			0
Note: * indicates introduced specie TS indicates threatened species MS indicates Migratory species	cies			

All species listed are identified to a high level of certainty unless otherwise noted as:

PR indicates species identified to a 'probable' level of certainty – more likely than not PO indicates species identified to a 'possible' level of certainty – low-moderate level of confidence

Scientific name		Method observed
H - Hair/feathers/skin	P - Scat	W - Heard call
K- Dead	Q- Camera	X- In scat
O - Observed	T - Trapped/netted	Y - Bone/teeth/shell
OW- Obs & heard call	U- Anabat/ultrasound	Z- In raptor/owl pellet
	H - Hair/feathers/skin K- Dead O - Observed	H - Hair/feathers/skinP - ScatK- DeadQ- CameraO - ObservedT - Trapped/netted

3.3 Habitat results

3.3.1 Fauna habitat observations

The fauna habitats present within the site are identified within the following table.

Table 3.7 – Observed fauna habitat

		Торо	graphy			
Flat √ G	entle 🗸	Moderate		Steep		Drop-offs
	Ve	egetatio	on structure			
Closed Forest O	pen Forest 🗸	Woodland	√ k	Heath		Grassland 🗸
	D	isturba	nce history			
Fire √	Under-s	scrubbing	\checkmark	Cut and	fill works	s √
Tree clearing ✓	Grazing		\checkmark			
		Soil la	ndscape			
DEPTH:	Deep	Moderate	e √	Shallow 🗸		Skeletal
TYPE:	Clay ✓	Loam	\checkmark	Sand 🗸		Organic 🗸
VALUE:	Surface foraging	\checkmark	Sub-surface for	raging 🗸	Denni	ng/burrowing 🗸
WATER RETENTION:	Well Drained 🗸	Damp / N	∕loist ✓	Water logged	\checkmark	Swamp / Soak 🗸
		Rock	habitat			
CAVES:						
CREVICES:	No caves, crevices,	escarnme	nts or outerons r	ecorded within t	ne subie	ect site
ESCARPMENTS:		Cocarpine			ie subje	
OUTCROPS:						
SCATTERED /	High Surface Area H	lides	Med. Surface A	Area Hides	Low Si	urface Area Hides 🗸
ISOLATED:						
		Feed re	esources			
FLOWERING TREES:	Eucalypts 🗸		Corymbias	\checkmark	Melale	ucas
	Banksias		Acacias			
SEEDING TREES:	Allocasuarinas		Conifers			
WINTER FLOWERING	C. maculata ✓	E. crebra		E. globoidea		E. sideroxylon
EUCALYPTS:	E. squamosa	E. grandi		E. multicaulis		E. scias
	E. robusta ✓	E. teretic		E. agglomerata		E. siderophloia
FLOWERING PERIODS:	Autumn ✓	Winter	√ .'t	Spring ✓		Summer ✓
OTHER:	Mistletoe	Figs / Fru		Sap / Manna	\checkmark	Termites 🗸
		ollage	protection		0	
UPPER STRATA:	Dense		Moderate	\checkmark	Sparse	
MID STRATA:	Dense ✓		Moderate	√ /	Sparse	
PLANT / SHRUB LAYER:	Dense ✓		Moderate	\checkmark	Sparse	
GROUNDCOVERS:	Dense		Moderate	\checkmark	Sparse	• ✓
		Hollov	vs / logs		0	
TREE HOLLOWS:		T	Medium	√ 0	Small	√ 01
TREE HOLLOW TYPES	Spouts / branch ✓	Trunk √		K Basal C		Stags
GROUND HOLLOWS:	Large	1	Medium		Small	
		vegetat	ion debris		o	
FALLEN TREES:	Large		Medium	1	Small	\checkmark
FALLEN BRANCHES:	Large		Medium	\checkmark	Small	\checkmark

Topography									
LITTER:	Deep 🗸		Moderate	\checkmark	Shallov	N v	1		
HUMUS:	Deep 🗸		Moderate	\checkmark	Shallov	N	\checkmark		
		Drainage	catchmen	t					
WATER BODIES	Wetland(s) 🗸	Soak(s) ✓	Dam(s)	Drainage line(s)	✓ Cre	eek(s)	River(s)		
RATE OF FLOW:	Still 🗸		Slow		Rapid				
CONSISTENCY:	Permanent	\checkmark	Perennial	\checkmark	Ephem	eral	\checkmark		
RUNOFF SOURCE:	Urban / Industrial	Parkland		Grazing	1	Natural	\checkmark		
RIPARIAN HABITAT:	High quality	Moderate	e quality 🗸	Low quality v	/	Poor qua	ality		
		Artificia	al habitat		-				
STRUCTURES:	Sheds	\checkmark	Infrastructure	\checkmark	Equipm	nent	\checkmark		
SUB-SURFACE	Pipe / culvert(s)	\checkmark	Tunnel(s)		Shaft(s	;)			
FOREIGN MATERIALS:	Sheet	\checkmark	Pile / refuse	\checkmark					

3.3.2 Habitat tree data

Hollow-bearing trees were surveyed within the subject lots during the recent 2019 and 2021 fauna survey. Hollow-bearing tree data for the subject lots is provided in Table 3. None of these hollows are considered suitable for threatened large forest owls or cockatoos. No such suitable hollows for nesting will also be indirectly impacted nearby. The majority of hollows recorded present were located within exotic Poplar trees, one of these HT3 observed to be used by Common Brushtail Possum during survey.

The recorded hollows may be suitable for hollow-dependent threatened species with considered potential to occur including; Little Lorikeet, East-coast Freetail Bat, Southern Myotis, Eastern False Pipistrelle, Greater Broad-nosed Bat and Squirrel Glider. Of these species, the Southern Myotis has been recorded during surveys to date, however this species has been recorded utilising the adjacent culverts which are likely preferred over the recorded hollows. The presence of hollows within the proposed development area is considered unlikely to constrain development. The assessment for hollow-dependent species will recommend retention of hollows where possible and otherwise relocation / replacement to adjacent habitat.

Tree No	Scientific Name	Common Name	DBH (cm)	Height (m)	Spread (m)	Vigour (%)	Hollows & Other Habitat Features Recorded
HT1	Casuarina glauca	Swamp Oak	45	13	6	60	1x 5-10cm trunk split
HT2	Populus nigra	Black Poplar	34	28	11	75	1x 0-5cm trunk, 1x 5-10cm trunk
HT3	Populus nigra	Black Poplar	56	20	11	75	1x 10-15cm broken trunk (Common Brushtail Possum)
HT4	Populus nigra	Black Poplar	90	29	17	75	1x 5-10cm trunk, 1x 5-10cm broken trunk
HT5	Populus nigra	Black Poplar	40	21	8	75	1x 0-5cm trunk split
HT6	Populus nigra	Black Poplar	30	20	8	75	1x 5-10cm trunk
HT7	Populus nigra	Black Poplar	41	35	10	75	1x 0-5cm trunk, 1x 0-5cm trunk split
HT8	Populus nigra	Black Poplar	40	26	11	75	1x 5-10cm broken trunk
HT9	Populus nigra	Black Poplar	37	38	10	75	1x 5-10cm trunk split
HT10	Populus nigra	Black Poplar	54	45	20	75	1x 0-5cm trunk

Table 3.8 – Habitat tree data

Site boundary (2.04ha) Biodiversity certification area (1.78ha)

- Open water Top of Bank *"Top of Bank"*
- Fauna Survey Effort 2013
 Anabat Station
 Call Playback
 Green-Golden

Fauna Survey Effort 2016 Ultrasonic bat recorder Fauna Survey Results 2016 SM Southern Myotis (possible)

 Fauna Survey Effort (2021)

 Image: Stream of the s

 Fauna Survey Results (2021)
 Vegetation

 CS()
 Description
 Threatened

 Little Bent-winged bat
 PCT

Vegetation Communities Threatened Ecological Community (TEC)

PCT 781 - Coastal Freshwater Lagoons PCT 1232 - Swamp Oak Floodplain Swamp Forest

Figure 3.1 – Flora and fauna survey results

BIODIVERSITY CERTIFICATION ASSESSMENT REPORT

4. **BIODIVERSITY ASSESSMENT**

4.1 Flora

4.1.1 State legislative flora matters

(a) Threatened flora species and populations (NSW)

BC Act – No state listed threatened flora species were observed during the survey undertaken.

There are no endangered flora populations within the former Pittwater LGA nor the current Northern Beaches LGA.

(b) Threatened ecological communities (NSW)

Two (2) threatened ecological communities (TECs) occur within the study area:

Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions (SOFF):

This TEC occurs in the western and southern portions of the subject land in association with PCT 1232 – Swamp Oak floodplain swamp forest and is listed as an endangered ecological community (EEC) under the NSW *BC Act 2016*. This community is equivalent to *Coastal Swamp Oak Forest* which is listed under the *EPBC Act* as an EEC.

Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions (BSF):

This TEC occurs in the north of the subject land in association with PCT 1793 Smooth-barked Apple - Bangalay / Tuckeroo - Cheese Tree open forest and is listed as an endangered ecological community (EEC) under the NSW *BC Act 2016*. This community is not listed under the *EPBC Act*.

(c) Ecosystem credit species

The BAM calculator does not predict any threatened flora species as ecosystem credit species.

(d) Species credit species

Based upon the BAM calculator and field surveys to date, the following predicted threatened species were considered as candidate species for species credit calculation:

Table 4.1 – Species credit species (flora)

		Potential to Confirmed		Su				
Scientific name	BC Act	Associated PCTs	occur (presence status)	candidate species	Preferred Survey period (TBDC)	Actual Survey period	Survey Compliant (Yes/ No)	Presence
Chamaesyce psammogeton	E1		no - microhabitats absent	no	n/a	n/a	n/a	Absent (absence of microhabitats absent)
Melaleuca biconvexa	V	1232	unlikely	yes	All months	Oct	yes	Absent (survey)
Senecio spathulatus	V		no - habitat constraint absent	no	n/a	n/a	n/a	Absent (habitat constraints)
Syzygium paniculatum	E1		no - microhabitats absent	no	n/a	n/a	n/a	Absent (absence of microhabitats absent)

Exclusions based on habitat features / survey

Exclusion of species from consideration as candidate species follows Section 5.1 of the BAM. Candidate species can be excluded from further consideration if:

- The distribution of the species does not include the IBRA subregion within which the subject land is located
- the subject land is outside any geographic limitations of the species distribution based on information from the threatened biodiversity profile search webpage. If no geographic limitations are listed for the species, then this step is not applicable
- none of the habitat constraints for the species as provided in the TBDC are present in a vegetation zone or subject land.
- the species is a vagrant in the IBRA subregion.

After carrying out a field assessment, a candidate species can also be excluded if:

- the microhabitats required by a species are absent from the subject land (or specific vegetation zone).
- the habitat constraints or microhabitats are degraded to the point that the species is unlikely to use the subject land (or specific vegetation zones).

If a candidate species cannot be excluded based on the above criteria, targeted survey must be undertaken, the species assumed present or an expert report obtained that states that the species is unlikely to be present on the subject land or specific vegetation zones.

Excluded species are mentioned below:

Chamaesyce psammogeton

The TBDC states that this species "grows on fore-dunes, pebbly strandlines and exposed headlands". These landscape features are absent from the subject land and the species can be excluded as a candidate species due to absence of suitable microhabitat.

Senecio spathulatus

The TBDC lists one habitat constraint for this species: Headlands within 500 m of the coast. The subject land contains no headland, being more or less flat, and is just over 1 km from the coast. Thus, this habitat constraint is absent from the subject land and the species can be excluded as a candidate species.

Syzygium paniculatum

The TBDC states that this species occurs in "riverside gallery rainforests and remnant littoral rainforest communities". As these vegetation communities are absent from the subject land, the species can be excluded as a candidate species due to absence of suitable microhabitat.

4.2 Fauna

All fauna species recorded during 2012, 2014, 2019 and 2021 survey(s), key fauna habitat observations and habitat tree data are provided in Section 3.

4.2.1 Key fauna habitat

Most notable habitat features for threatened fauna species considered with most potential to occur include:

- Small hollows (<10cm)
- Diverse seasonal flowering opportunities for nectivorous species.
- Winter flowering trees
- Open water large adjacent river, smaller dams and wetland habitat
- Fringing wetland vegetation
- Terrestrial infrastructure and pile refuges

A complete assessment of the location of habitat trees and the size of hollows within was undertaken as part of surveys. Hollow-bearing trees were surveyed within the subject lots during the recent 2019 and 2021 fauna survey. Hollow-bearing tree data for the subject lots is provided in Table 3. None of these hollows are considered suitable for threatened large forest owls or cockatoos. No such suitable hollows for nesting will also be indirectly impacted nearby. The majority of hollows recorded present were located within exotic Poplar trees, one of these HT3 observed to be used by Common Brushtail Possum during survey.

The recorded hollows may be suitable for hollow-dependent threatened species with considered potential to occur including; Little Lorikeet, East-coast Freetail Bat, Southern Myotis, Eastern False Pipistrelle, Greater Broad-nosed Bat and Squirrel Glider. Of these species, the Southern Myotis has been recorded during surveys to date, however this species has been recorded utilising the adjacent culverts which are likely preferred over the recorded hollows. The presence of hollows within the proposed development area is considered unlikely to constrain development. The assessment for hollow-dependent species will recommend retention of hollows where possible and otherwise relocation / replacement to adjacent habitat.

Table 3.8 below provides hollow-bearing tree data and other habitat features recorded. Figure 3.1 provides locations of habitat trees.

All hollow-dependent threatened fauna species recorded during previous or recent surveys include the Powerful Owl (*Ninox strenua*) and Southern Myotis (*Myotis macropus*).

Other notable hollow-dependent fauna species recorded during surveys include the Rainbow Lorikeet, Spotted Pardalote, Sulphur Crested Cockatoo, Common Ringtail Possum, Common Brushtail Possum, Gould's Wattled Bat, Chocolate Wattled Bat, Eastern Freetail-bat, Eastern Broad-nosed Bat, Little Forest Bat, Dwarf Tree Frog and Peron's Tree Frog.

Two hollow-dependent threatened fauna species were recorded present during survey including the Southern Myotis and the Powerful Owl. Hollows recorded present may support roosting/breeding habitat for the recorded hollow-dependent threatened Southern Myotis, however, no large hollows suitable for threatened owls were recorded present within the habitat tree survey area or along the adjacent Warriewood wetlands and Narrabeen Creek.

Nine hollow-bearing trees will be removed by the proposal. A strict removal of hollows process is recommended in Section 5.4 to prevent impacts on hollow-dependent fauna. This includes the initial identification of all hollows, supervision of their removal to effectively recover fauna and the relocation of hollows (or replacement with nest boxes) within the conservation areas of the site.

4.2.2 State legislative fauna matters

(a) Threatened fauna species and populations (NSW)

BC Act – Six (6) state listed threatened fauna species – Grey-headed Flying-fox (*Pteropus poliocephalus*), Large Bent-winged Bat (*Miniopterus orianae oceanensis*), Eastern Cave Bat (*Vespadelus troughtoni*), Southern Myotis (*Myotis* macropus), Little Bent-winged Bat (*Miniopterus australis*) and Powerful Owl (*Ninox strenua*) – were recorded within the development footprint during surveys.

FM Act – No habitats suitable for threatened aquatic species were observed within the development footprint and as such the provisions of this act do not require any further consideration.

(b) State Environmental Planning Policy (Koala Habitat Protection) 2021

State Environmental Planning Policy (Koala Habitat Protection) 2021 (Koala SEPP 2021) applies to land within LGAs listed under Schedule 1 of the Policy. As the study area falls under the Pittwater LGA, which is not listed under Schedule 1, it is considered that Koala SEPP 2021 does not apply to this development proposal. However, the population in the Pittwater LGA is listed as an endangered population under the *BC Act.* Therefore, the overarching legislative document relating to Koalas at this locations will be Schedule 1, Part 2, Division 4 of the *BC Act.*

As of February 2022, the nearest Koala records to the study area within the last 18 years were two observations dated in 2020, one of these observations was recorded in Kuring-Gai National Park approximately 10.5 km north west of the study site, while another individual in 2020 was observed in Wakehurst Parkway approximately 10.2 km to the south west. However, within a 10 km radius, Koala populations are highly sporadic and only contain observations dated between 1949 and 1971.

The Department of Planning, Industry and Environment (DPIE) list seven (7) Koala Management Areas (KMAs) which provide regional divisions across New South Wales, partly based on the distribution of preferred koala food trees and partly on local council boundaries to make management of resources easier. As the study area falls under the Pittwater LGA, the Central Coast/Sydney Basin KMA applies with regard to Koala use tree species. Three (3) tree species were recorded in the study area which are considered to be Koala use tree species within this KMA. Of these species, one (1) is considered high preferred use (*Eucalyptus microcorys*) and two (2) are considered significant use (*Angophora costata* and *Eucalyptus botryoides*). No evidence of Koala activity was recorded during the Spot Assessment Technique (SAT) survey.

(c) Ecosystem credit species

Based upon the BAM calculator and field surveys to date, the following threatened fauna species were considered as predicted species for ecosystem credit calculation:

Common name	BC Act	Confirmed predicted species	Associated PCT
Australasian Bittern	Е	\checkmark	1232
Barking Owl (foraging)	V	\checkmark	1232
Black Bittern	V	\checkmark	1232
Dusky Woodswallow	V	\checkmark	1232/1793
Eastern Coastal Free-tailed Bat	V	\checkmark	1232/1793
Glossy Black-Cockatoo (foraging)	V	\checkmark	1232
Grey-headed Flying-fox (foraging)	V	\checkmark	1232/1793
Large Bent-winged Bat (foraging)	V	\checkmark	1232
Little Bent-winged Bat (foraging)	V	\checkmark	1232/1793
Little Eagle (foraging)	V	\checkmark	1232/1793
Little Lorikeet	V	\checkmark	1232/1793
Masked Owl (foraging)	V	\checkmark	1232/1793
New Holland Mouse	V	\checkmark	1232/1793
Osprey (foraging)	V	\checkmark	1232/1793

Table 4.2 – Ecosystem credit species (fauna)

Common name	BC Act	Confirmed predicted species	Associated PCT
Painted Snipe	E	\checkmark	1232
Powerful Owl (foraging)	V	\checkmark	1232/1793
Regent Honeyeater (foraging)	E4A	\checkmark	1232/1793
Rosenberg's Goanna	V	\checkmark	1232/1793
Spotted Harrier	V	\checkmark	1232
Spotted-tailed Quoll	V	\checkmark	1232/1793
Square-tailed Kite (foraging)	V	\checkmark	1232
Swift Parrot (foraging)	E	\checkmark	1232/1793
Varied Sittella	V	\checkmark	1232/1793
White-bellied Sea Eagle (foraging)	V	\checkmark	1232
White-throated Needletail	V	\checkmark	1232/1793
Yellow-bellied Sheathtail-bat	V	\checkmark	1232/1793

(d) Species credit species

Based upon the BAM calculator and field surveys to date, the following predicted threatened fauna species were considered as candidate species for species credit calculation:

 Table 4.3 – Species credit species (fauna)

					Survey adequac	у	
Common name	BC Act	Associated PCTs	Confirmed candidate species	Defined survey months (tbdc)	Actual survey period	Survey compliant (yes/ no)	Presence
Barking Owl (breeding)	V	1232	no	n/a	n/a	n/a	absent (no breeding habitat)
Bush Stone-curlew	Е	1232	yes	All	Aug, Nov, Dec	yes	absent (survey)
Eastern Pygmy Possum	V	1793	yes	Oct-March	n/a	no	present (assumed)
Glossy Black-Cockatoo (breeding)	V	1232	yes	Mar-Aug	Aug	yes	absent (survey)
Green and Golden Bell Frog	Е	1232	yes	Nov-Mar	Nov, Dec	yes	absent (survey)
Green-thighed Frog	V	1232	yes	Sep-Apr	Nov, Dec, Jan	yes	absent (survey)
Grey-headed Flying-fox (breeding)	V	1232/1793	no	n/a	n/a	n/a	absent (no breeding habitat)
Large Bent-winged Bat (breeding)	V	1232	no	n/a	n/a	n/a	absent (no breeding habitat)
Large-eared Pied Bat	V	1232	yes	Nov-Jan	Nov-Dec	yes	absent (survey)
Masked Owl (breeding)	V	1232	no	n/a	n/a	n/a	absent (no breeding habitat)
Maroubra Woodland Snail	Е	1232/1793	yes	Jan-Dec	Nov-Dec	yes	absent (survey)
Southern Brown Bandicoot	Е	1232	yes	Jan-Dec	Nov-Dec	yes	absent (survey)
Southern Myotis	V	1232/1793	yes – recorded	n/a	n/a	n/a	present (recorded)
Little Bent-winged Bat (breeding)	V	1232/1793	no	n/a	n/a	n/a	absent (no breeding habitat)
Little Eagle (breeding)	V	1232/1793	yes	Aug-Oct	Aug, Nov, Dec	yes	absent (survey)
Square-tailed Kite (breeding)	V	1232/1793	yes	Sept–Jan	Aug, Nov, Dec	yes	absent (survey)
Osprey (breeding)	V	1232/1793	no	n/a	n/a	n/a	absent (no breeding habitat)
Petaurus norfolcensis - endangered population	E2	1232/1793	no – geographic constraints	n/a	n/a	n/a	absent (geographic constraints)
Powerful Owl (breeding)	V	1232	no	n/a	n/a	n/a	absent (no breeding habitat)

				S			
Common name	BC Act	Associated PCTs	Confirmed candidate species	Defined survey months (tbdc)	Actual survey period	Survey compliant (yes/ no)	Presence
Regent Honeyeater (breeding)	E4A	1232/1793	no	n/a	n/a	n/a	absent (no mapped imp. areas)
Swift Parrot (breeding)	Е	1232/1793	no	n/a	n/a	n/a	absent (no mapped imp. areas)
White-bellied Sea Eagle (breeding)	V	1232	yes	July-Dec	Aug, Nov, Dec	yes	absent (survey)
Eastern Cave Bat	V	1232/1793	yes - recorded	n/a	n/a	n/a	present (recorded)

Excluded species based on the absence of breeding habitat:

• Grey-headed Flying Fox (breeding)

Breeding habitat is the same as roosting habitat typically located in dense shelter foliage close to water in lower depressions. Such habitat is not present within the development footprint and the nearby drainages have not recorded roosting use.

• Large Bent-winged Bat and Little Bent-winged Bat (breeding)

The TBDC identifies the breeding habitat constraints for these species as *cave, tunnel, mine, culvert or other structure known or suspected to be used for breeding; with numbers of individuals >500; or from the scientific literature.* Whilst both of these species were recorded, there are no such potential breeding habitat present in the study area that may be utilised by either species.

• Powerful Owl, Masked Owl, Barking Owl (breeding)

The TBDC identifies the breeding habitat constraint for this speices as *living or dead trees with hollow greater than 20 cm diameter.* Whilst the Powerful Owl was recorded, there are no large hollows greater than 20 cm within the subject sitet, and this species can be excluded as a candidate species due to absence of habitat constraints.

• Osprey (breeding)

The TBDC identifies the breeding habitat constraint for this speices as *Presence of stick-nests in living and dead trees (>15 m) or artificial structures within 100 m of a floodplain for nesting.* No stick-nests or artificial structures were observed within or nearby the subject land, and this species can be excluded as a candidate species due to absence of habitat constraints.

Excluded species based on the absence of important mapped habitat:

• Swift Parrot

The site is not mapped as containing important habitat for this species on the BAM - Important Areas (DPIE) mapping.

• Regent Honeyeater

The site is not mapped as containing important habitat for this species on the BAM - Important Areas (DPIE) mapping.

Excluded species due to geographis constraints

• Squirrel Glider endangered population on Barrenjoey Peninsula, north of Bushrangers Hill

This endangered population is restricted to Barrenjoey Peninsula, north of Bushranger Hill. As such, the subject land is outside of the geographic range of this population.

Inclusions based on inadequacy of survey

• Eastern Pygmy Possum

Whilst considered with lower potential to occur the Eastern Pygmy Possum was included because there has not been sufficient survey for the species. Denning tubes are required for this species to assess presence / absence.

Inclusions due to recorded presence

• Eastern cave-bat

Although not listed as a potential candidate species associated with PCTs 1232 and 1793, this species was detected during survey in Nov–Dec 2021. In accordance with the BAM, this species has been included as a candidate species and assessed as present for the purposes of species credit calculation.

4.3 Watercourses, GDEs & Wetlands

4.3.1 Endangered wetland communities

A number of wetland communities have been listed as TECs under the *BC Act*. We note that 'wetlands' are included in the definition of 'waterfront lands' in accordance with the *Water Management Act 2000 (WM Act*) due to their inclusion in the definition of a 'lake' under the same Act. TECs that are considered to be an endangered protected wetland are as follows:

- Artesian springs ecological community
- Castlereagh Swamp Woodland Community
- Coastal Saltmarsh in the NSW North Coast, Sydney Basin and South East Corner bioregions
- Coastal Upland Swamp in the Sydney Basin bioregion
- Coolibah–Black Box woodland in the Darling Riverine Plains, Brigalow Belt South, Cobar Peneplain and Mulga Lands bioregions
- Freshwater Wetlands on Coastal Floodplains of the NSW North Coast, Sydney Basin and South East Corner bioregions
- Kurri sand swamp woodland in the Sydney Basin Bioregion
- Lagunaria swamp forest on Lord Howe Island
- Maroota Sands swamp forest
- Newnes Plateau Shrub Swamp in the Sydney Basin Bioregion
- Swamp oak floodplain forest of the NSW North Coast, Sydney Basin and South East Corner bioregions
- Swamp sclerophyll forest on coastal floodplains of the NSW North Coast, Sydney Basin and South East Corner bioregions
- The shorebird community occurring on the relict tidal delta sands at Taren Point
- Upland wetlands of the drainage divide of the New England Tableland Bioregion
- Wingecarribee Swamp

Swamp Oak Floodplain Forest (SOFF) is present within the western and southern portions of the study area, which is a TEC as listed under the *BC Act* and *EPBC Act*. SOFF is an endangered wetland community as listed above.

• Impact on the extent of wetland vegetation

The proposal will impact on 0.18 ha of this endangered wetland community.

• Impact on acid sulfate soils

The majority of the subject land is identified as containing Class 3 acid sulfate soils, with a very small portion near the western boundary mapped as Class 2 acid sulphate soils (Figure 4.1). It is expected that an acid sulfate soils management plan is to be prepared for the proposal.

• Indirect impacts of wetlands

Indirect impacts may include pedestrian usage and trampling of soils, dumping of rubbish and garden waste, accidental spillages post development.

As part of the proposal a Vegetation Management Plan (VMP) is to be prepared to protect, and mitigate impacts on, the SOFF.

• Impacts due to storm water quality or quantity

It is expected that an appropriate storm water management plan will be prepared to avoid these impacts on the TEC.

• Impacts on groundwater

The proposal is not expected to impact on groundwater resources or groundwater dependent ecosystems.

- Proposed mitigation measures
 - 1. Appropriate design of construction of any works e.g. storm water outlets.
 - 2. Manage access to the area.
 - 3. Undertake pest animal and weed control.
 - 4. Preparation of a VMP to improve and maintain sensitive ecological landscapes, sediment and erosion control measures.
- Watercourses and waterfront lands

There are no riparian streams or zones throughout the development footprint. The site drains directly into Warriewood Wetlands to the west. The area of SOFF is classed as an endangered protected wetland and is a 'lake' as defined under the *WM Act* therefore it is deemed as 'waterfront land'.

In accordance with the *WM Act*, endangered wetland communities are through the definition of 'lakes' potentially classed as waterfront land. Referral to NSW Natural Resources Access Regulator (NRAR) may be required for determination under the *WM Act* as a controlled activity.

Figure 4.1 – Acid sulfate soils

4.3.2 Groundwater dependent ecosystems (GDEs)

Groundwater dependent ecosystems (GDEs) are communities of plants, animals and other organisms whose extent and life processes are dependent on groundwater. Some examples of ecosystems which depend on groundwater are:

- wetlands;
- red gum forests, vegetation on coastal sand dunes and other terrestrial vegetation;
- ecosystems in streams fed by groundwater;
- limestone cave systems;
- springs; and
- hanging valleys and swamps.

Figure 4.2 – Alluvial groundwater system discharging into a river

GDEs are therefore ecosystems which have their species composition and their natural ecological processes determined by groundwater (NSW State Groundwater Dependent Ecosystems Policy April 2002).

Swamp Oak Forest is considered to be a wetland community and, in the context of the landscape is classed as a GDE. To assist in protecting this in the future, this community is to be conserved and managed in accordance with the VMP.

4.3.3 Watercourses

No watercourses occur within the subject land, as shown on hydroline mapping by Water Management (General) Regulation 2018 (Figure 1.4). A referral to NRAR is not required in this respect for impacts on waterfront land but see Section 4.3.1 above for assessment of Endangered Wetland Communities.

Figure 4.3 – Mapped hydrolines

(Source: https://trade.maps.arcgis.com/apps/webappviewer/index.html?id=07b967fd0bdc4b0099fc5be45b6d1392)

4.3.4 State Environmental Planning Policy (Coastal Management) 2018

State Environmental Planning Policy (Coastal Management) 2018 updates and consolidates into one integrated policy SEPP 14 (Coastal Wetlands), SEPP 26 (Littoral Rainforests) and SEPP 71 (Coastal Protection), including clause 5.5. of the Standard Instrument – Principal Local Environmental Plan. These policies are now repealed.

The Coastal Management SEPP gives effect to the objectives of the *CM Act* from a land use planning perspective, by specifying how development proposals are to be assessed if they fall within the coastal zone.

An integrated and coordinated approach to land use planning is promoted by the new SEPP. It defines the four coastal management areas in the Act through detailed mapping and specifies assessment criteria that are tailored for each coastal management area. Councils and other consent authorities must apply these criteria when assessing proposals for development that fall within one or more of the mapped areas. The Coastal Management SEPP identifies development controls for consent authorities to apply to each coastal management area to achieve the objectives of the *CM Act*.

The Coastal Management SEPP establishes the approval pathway for coastal protection works.

Wetlands on site or adjacent

Coastal Wetlands are mapped within the southern portion of the study area, and just within the north-western boundary (Figure 4.4), apparently in association with Swamp Oak Floodplain Forest vegetation, which is an Endangered Ecological Community (EEC, see Section 4.1.1(b)of this report). A Proximity Area for Coastal Wetlands is mapped across the remainder of the study area.

To the east of the study area there is more SOFF in addition to vegetation that is part of the EEC Freshwater Wetlands on Coastal Floodplains. No quadrats or other stratified survey have been undertaken within this vegetation community by *Travers bushfire & ecology*. Some species observed by random meander in 2019 include *Melaleuca ericifolia, Persicaria* spp., *Azolla pinnata, Schoenoplectus* sp., *Eleocharis sphacelata, Casuarina glauca, Juncus* spp., and *Phragmites australis*.

As stated in the *State Environmental Planning Policy (Coastal Management) 2018*, development consent is required for any development within these areas and must not be given unless the consent authority is satisfied that sufficient measures have been, or will be, taken to protect, and where possible enhance, the biophysical, hydrological and ecological integrity of the coastal wetland. Additionally, within the "proximity area for coastal wetlands" area, development consent must not be given unless the consent authority is satisfied that the proposed development will not significantly impact on the quantity and quality of surface and ground water flows to and from the adjacent coastal wetland. Potential impacts to the wetland and SOFF vegetation are considered in Section 5.5 of this BCAR. Avoidance and minimisation actions are provided in Section 5.3 while mitigation measures are provided in Section 5.4.

Figure 4.4 – Coastal wetlands area map

5. IMPACT ASSESSMENT

5.1 BOS thresholds

The BOS appies to all biodiversity certification assessments. Subsequently the three (3) elements to the BOS threshold test – an area trigger, a Biodiversity Values Land Map trigger and the Test of Significance – do not apply.

5.2 Streamlined assessment modules

The BAM contains three streamlined assessment modules that are set out in Appendices B, C and D of the BAM. The streamlined assessment modules include specific requirements to assess the impacts on biodiversity values for the purpose of preparing a BCAR. These streamlined assessment modules may be used where the proposal impacts on:

- a) scattered trees (Appendix B)
- b) a small area (Appendix C)
- c) planted native vegetation, where the planted native vegetation was planted for purposes such as street trees and other roadside plantings, windbreaks, landscaping in parks and gardens, and revegetation for environmental rehabilitation (Appendix D)

Appendices B, C and D of the BAM set out the circumstances where each of the streamlined assessment modules can be used to assess a proposal and the specific assessment requirements.

The streamlined assessment modules for scattered trees and planted native vegetation may be used in conjunction with the full BAM to assess particular parts of the subject land under a single BCAR.

	Streamlined assessment module	Criteria for application	Does the impacted vegetation meet this criterion?	Can this module be applied?
		Scattered trees are defined as species listed in the tree growth form group that:		
So	cattered trees	a. have a percent foliage cover that is less than 25% of the benchmark for tree cover for the most likely plant community type and are on category 2-regulated land and surrounded by category 1-exempt land on the Native Vegetation Regulatory Map under the LLS Act, or	no	no

Table 5.1 – Streamlined assessment modules

Streamlined assessment module	Criteria for application	Does the impacted vegetation meet this criterion?	Can this module be applied?
	b. have a DBH of greater than or equal to 5 cm and are located more than 50 m away from any living tree that is greater than or equal to 5 cm DBH, and the land between the scattered trees is comprised of vegetation that are all ground cover species on the widely cultivated native species list, or exotic species or human-made surfaces or bare ground, or	no	
	c. are three or fewer trees that have a DBH of greater than or equal to 5 cm and are within a distance of 50 m of each other, that in turn, are greater than 50 m away from the nearest living tree that is greater than or equal to 5 cm DBH, and the land between the scattered trees is comprised of vegetation that are all ground cover species on the widely cultivated native species list, or exotic species or human-made surfaces or bare ground.		
Small area	Is the area of native vegetation clearing less than or equal to the thresholds as shown in Table 5.2 (BAM Table 12)? This depends on minimum or actual lot size: • For lot size <1 ha, threshold is ≤1 ha • For lot size 1–40 ha, threshold is ha ≤2 ha • For lot size 40–1000 ha, threshold is ≤3 ha • For lots size 1000 ha, threshold is ≤5 ha	no: clearing exceeds 1 ha	no
Planted native vegetation	Is any planted native vegetation impacted?	Yes	Yes

Table 5.2 – Area clearing limits for application of the small area development module

Minimum lot size associated with the property *	Maximum area clearing limit for application of the small area development module
Less than 1 ha	≤1 ha
Less than 40 ha but not less than 1 ha	≤2 ha
Less than 1000 ha but not less than 40 ha	≤3 ha
1000 ha or more	≤5 ha

*shown in the lot size maps made under the relevant local environmental plan (LEP), or actual lot size (where there is no minimum lot size provided for the relevant land under the LEP

5.2.1 Streamlined assessment module - planted native vegetation

Planted native vegetation occurs in the northern and central portions of the study area in the form of *E. microcorys* trees. Appendix D of the BAM can be applied to this vegetation. In this case, assessment of the planted native vegetation answers yes to question 5 of the *D.1 Decision-making key*:

"Is the native vegetation (including individuals of a threatened flora species) planted for functional, aesthetic, horticultural or plantation forestry purposes? This includes examples such as: windbreaks in agricultural landscapes, roadside plantings (including street trees, median strips, roadside batters), landscaping in parks, gardens and sport fields/complexes, macadamia plantations or teatree farms?"

As such, Chapters 4 and 5 of the BAM (i.e. plot-based survey and assessment for ecosystem and species credits) are not required to be applied to the planted native vegetation, and it will only need to be assessed for use by threatened fauna. No offsets will be required for impacts on the planted native vegetation.

5.3 Avoidance and minimisation actions

The proposal has been located and designed to avoid or minimise direct and indirect impacts on native vegetation, threatened species, threatened ecological communities and their habitat by:

- The proposed layout has been modified to minimise impacts on SOF. The preliminary layout is shown on Figure 5.1, the outer extent of which has been overlaid on the current, proposed layout on Figure 5.2. This modification has reduced the proposed impacts on SOF from 0.26 ha (59.1%) to 0.18 ha (40.9%).
- Avoidance of direct impacts on 0.26 ha of SOF within the subject lots, which equates to 59.1% of the total SOF present within those lots. All retained SOF is to be protected and conserved under a VMP
- Implementation of a stormwater management plan, which will avoid impacts caused by changes in hydrology or increases in pollution, nutrient or sediment inputs into the SOF
- Development has been located taking advantage of the existing cleared and disturbed potions of the subject lots and within vegetation in the poorest condition (i.e. areas with the lowest vegetation integrity scores)
- Avoidance of the majority of mapped biodiversity values within the subject lots
- Preparation and implementation of a VMP to assist with rehabilitation, ecological restoration and ongoing maintenance of retained SOF vegetation and threatened species habitat

Figure 5.1 – Preliminary masterplan (Source: Buchan, June 2021)

Figure 5.2 – Proposed site plan (outer extent of preliminary impact area shown as blue line) (Source: Buchan, March 2022)

5.4 Mitigation measures

The following <u>mitigation measures</u> are recommended to avoid, minimise or ameliorate the above potential ecological impacts, address threatening processes and to guide a more positive ecological outcome for threatened species and their associated habitats.

Table 5.3 – Measures to mitigate & manage impacts

	Action / Technique	Outcome	Timing / Frequency	Responsibility				
Prepare a Conservation Measures Implementation Plan (CMIP) to identify mitigation actions and establish a C2 conservation zone within the site:								
(a)	Protection and conservation of SOF to the west and south west of the development footprint.	Prevent indirect impacts on C2 conserved habitats	Prior to any clearing works. Ongoing	Project Ecologist as guided by the CMIP				
•	Limit access to the proposed C2-zoned vegetation by placement of permanent fencing.							
•	Prioritised weed control.							
•	Standard <i>Phytophthora cinnamomi</i> protocol applies to the cleaning of all plant, equipment, hand tools and work boots prior to delivery onsite to ensure that there is no loose soil or vegetation material caught under or on the equipment and within the tread of vehicle tyres. Any equipment onsite found to contain soil or vegetation material is to be cleaned in a quarantined work area or wash station and treated with fungicides.							
(b)	Sediment and erosion control measures in accordance with Managing Urban Stormwater: Soils and Construction (Landcom 2004) to minimise impact of possible sedimentation to local drainage lines.	Maintain integrity of C2 habitat and natural topsoil soil by preventing deposition	Prior to any clearing works. Ongoing during all exposed soil stages until landscaping is completed	Project Ecologist / Contractors				
(c)	Temporary fencing - Where it adjoins the development areas, the boundary of the conservation area shall be clearly marked out on-site to ensure their protection. All areas of natural vegetation retention shall be protected by fencing, prior to construction, to ensure that these areas are not damaged during the construction phase.	Maintain integrity of C2 habitat	Prior to Construction / habitat clearance	Project Ecologist / Contractors				
	Action / Technique	Outcome	Timing / Frequency	Responsibility				
-----	---	--	--	-------------------				
(d)	Construction activities are to be intermittently supervised on-site and monitored. All staff involved with the development shall undergo an induction and training program to reinforce the ecological and environmental objectives of the development.	Ensure that the recommendations of the BCAR are implemented.	Prior to and during habitat clearance and construction of services	Project Ecologist				
(e)	Undertake water quality testing within Warriewood Wetlands to monitor for any increase in nutrient or sediment.	Ensure no indirect impacts on adjacent water quality or quantity	Prior to and during habitat clearance and construction	Project Ecologist				
(f)	Prior to any habitat removal, a comprehensive search for fauna and habitat is to be undertaken to relocate any terrestrial individuals and identify any important nesting to be protected until fledging.	Reduce potential for impact on native species	Immediately prior to land clearance	Project Ecologist				
(g)	Management of hollows and hollow-dependent fauna:							
•	The felling of hollow-bearing trees is to be conducted under the supervision of a fauna ecologist to ensure appropriate animal welfare procedures are taken, particularly for threatened species. Hollows of high quality or with fauna recorded residing within should be dismantled for relocation and all hollows should be inspected for occupation, signs of previous activity and potential for reuse.	Protection of hollow- dependent wildlife	At time of removal	Project Ecologist				
•	Subsequent hollows of retention value are to be relocated to nearby conservation areas. If these are placed as on ground habitat and are not reattached to a new recipient tree then they are to be replaced with appropriately sized nest boxes affixed to a retained tree. All hollow sections considered suitable for Squirrel Glider should where possible be recovered and prepared for placement into an appropriate retained tree.	Maintain quality denning / hollow shelter opportunities	At time of removal	Project Ecologist				

Action / Technique	Outcome	Timing / Frequency	Responsibility
• Constructed nest boxes should as priority target recorded hollow- dependent threatened species (and their prey species). Boxes should be constructed all of weatherproof timber (marine ply), fasteners and external paint and appropriately affixed to a recipient tree under the guidance of a fauna ecologist.	Protection of hollow- dependent wildlife	Prior to hollow removal	Project Ecologist
• If a threatened species is found to be occupying the hollow at the time of removal, then this hollow section is to be reattached to a recipient tree within the nearby conservation areas as selected and directed by the fauna ecologist. The welfare and temporary holding of the residing animal(s) is at the discretion of the fauna ecologist.	Priority protection of hollow- dependent threatened species	At time of removal	Project Ecologist
• The relocated hollow section and nest boxes should be well secured in the recipient tree in a manner that will not compromise the current or future health of that tree.	Ensure hollow integrity is maintained	Time of installation	Project Ecologist
Monitoring of nest boxes and relocated hollows	Ensure hollow integrity is maintained	Each year for 5 years	Project Ecologist
(h) Management of any other displaced fauna	Prevent direct impacts on nesting and terrestrial native fauna species	Prior to and during habitat removal / Adaptive management required	Project Ecologist
 (i) If any fauna species, a nest or roost is located during development works, then works should cease until safe relocation can be advised by a contact fauna ecologist 	Prevent direct impacts on nesting and terrestrial native fauna species	At time of removal / Adaptive management required	Project Ecologist / Contractors

5.5 Potential ecological impacts

The direct, indirect and cumulative ecological impacts have been considered in respect to recorded biodiversity, threatening processes and extent of impact as a result of the proposed works:

5.5.1 Prescribed impacts

In accordance with Section 6 of the BAM, Table 5.4 identifies potential 'prescibed' impacts on biodiversity.

Feature	Present (yes / no)	Description of feature characteristics and location	Potential impact	Threatened species or community using or dependent on feature	Section of the BCAR where prescribed impact is addressed
Karst, caves, crevices, cliffs, rocks or other geological features of significance	no	n/a	n/a	n/a	n/a
Human-made structures	yes	existing dwelling	demolition	existing building provides potential roosting habitat for threatened species such as Southern Myotis, Large Bentwing-bat, & Little Bent-wing Bat	5.5.1
Non-native vegetation	yes	planted and naturalised exotic vegetation providing foraging habitat and hollow-bearing trees (see Section 3.1.3)	removal of vegetation	no threatened species recorded using habitat, but may be used sporadically by, East-coast Freetail Bat, Southern Myotis, Eastern Falsistrelle, Grey- headed Flying Fox may forage on fruiting trees	5.5.1
Habitat connectivity	yes	minor local connectivity	very slight reduction in cross-site connectivity	none	5.6
Waterbodies, water quality and hydrological processes	yes	hydrological processes: wetland vegetation	indirect impacts	Swamp Oak Forest	5.5.1

Table 5.4 – Potential prescribed impacts

Feature	Present (yes / no)	Description of feature characteristics and location	Potential impact	Threatened species or community using or dependent on feature	Section of the BCAR where prescribed impact is addressed
Wind farm development	no	n/a	n/a	n/a	n/a
Vehicle strikes	yes	internal roads	On terrestrial mammals and frogs as well as birds in flight.	n/a	5.5.1

The following potential impacts on biodiversity values as a result of the proposal are prescribed (as per clause 6.1 of the *BC Reg.* and Section 8.3 of the BAM) as biodiversity impacts to be assessed under the biodiversity offsets scheme:

Human-made structures and non-native vegetation

Human-made structures

The existing dwelling may provide potential roosting habitat within wall or ceiling cavities that have small openings to external foraging airspace. This habitat is not likely to support breeding habitat for threatened microbat species and roosting habitat in other structures is expected through the local landscape.

Roosting and breeding habits for each species are stated in species profiles (*OEH*) and the TBDC (*BioNet*). Based on these profiles, the removal of human made structures from the site is not expected to have a significant impact on any entity being assessed under the BAM for roosting.

Non-native vegetation

Non-native vegetation on site includes hollow-bearing *Erythrina x. sykesii* (Corral Trees) and *Populus nigra* (Poplar) trees, and some fruiting *Syagrus romanzoffiana* (Cocos Palms). The hollows may be used as roosting habitat by threatened species, including Little Lorikeet, East-coast Freetail Bat, Southern Myotis, Eastern Falsistrelle, Greater Broad-nosed Bat and Squirrel Glider.

Grey-headed Flying Fox are known to feed on *S. romanzoffiana* fruits, but can also be killed by entanglement in the fronds, or through choking on the fruits. Considering this, the removal of these palms would be a positive outcome for the local population of Grey-headed Flying Fox.

• Water bodies, water quality and hydrological processes.

This has been assessed in detail according to the criteria outlined in Sections 6.1.4 and 8.3.4 of the BAM, and with consideration to avoidance and minimisation of impacts as outlined in Section 7.2 of the BAM:

Potential hydrological and water quality of overland flow south to Swamp Oak Forest vegetation may be impacted by the proposal.

Swamp Oak Floodplain Forest is dependent on soil that is waterlogged or periodically inundated. As such, all hydrological inputs into the EEC, relating to flooding regime and overland flow, are likely to influence its current distribution within the site. The BioNet TBDC lists the key threats to Swamp Oak Floodplain Forest and includes changes to hydrological regimes such as increased and decreased periods of inundation and changes to salinity, which may result from draining associated with ditching, levees and dykes; infill, and altered inundation conditions. Given the largely flat nature of the site and restriction of the majority of the EEC to areas mapped as high-risk flood in the Pittwater DCP, it is reasonable to infer that the extent of the flood plain and the local flooding regime is of most importance for the persistence of the EEC vegetation within the site. The proposal will result in earthworks causing a raising of the ground level, but this is concentrated in the northern half of the subject land, which is in keeping with the natural conditions. No earthworks are proposed in the retained EEC vegetation. Modelling in the Water Management Report prepared by Calibre Group (Feb 2022) shows that the proposal will have no or negligible impacts on flood afflux and velocity within the subject land at Annual Exceedance Probability (AEP) between 1 and 50 %, particularly within the area of the retained EEC. Based on this modelling, it is unlikely that the proposal will impact the flood regime such that it leads to a reduction in the extent of the retained Swamp Oak Floodplain Forest.

Overland flow from rain runoff is of less importance to the EEC than flooding regime, but may be impacted by the proposal through increased volume and velocity of runoff, and higher sediment, pollution and nutrient loads. The proposed approach to avoiding these impacts is through design and implementation of a Stormwater management Plan, with the intent of connecting to the council system to divert stormwater off site. The Water Management Report (Calibre Group 2022) provides a Stormwater Quality Strategy and a Stormwater Quantity Strategy that summarise additional on-site measures to avoid or minimise changes in runoff if connection to the existing council system is not possible. These are:

- Detention measures:
 - On-site detention systems on a lot-by-lot basis for the short duration storms
 - Detention basins (either local groupings of lots or larger-scale basins)
 - Additional storage in Water Quality Control Ponds.
- Retention measures:
 - Seepage techniques
 - Stormwater Reuse
- Controls for water quality treatment may be provided within individual lots, private property, or public land. Such controls include, but are not limited to:
 - Ponds/wetlands
 - Filter strips
 - Devices

More specifically, the Water Management Report suggests the following measures to reduce stormwater changes:

- Temporary pond or wetland which may be located within any required detention basin and above the 20% AEP storm event, and hence would only be impacted by major storms. This would be subject to further investigation in the DA process.
- On Site Detention (OSD) systems via underground tanks and rainwater tanks would seem appropriate for this development. They may be situated

within the extents of the townhouses, which are placed above the 1% AEP at the FPL. These may cater to the higher impervious areas associated with the housing and road paving. The rainwater tanks may also serve as retention structures to recycle stormwater runoff for laundry, toilet, and landscaping uses.

Where the stormwater is diverted into the existing water quality devices placed within the stormwater network. Gross pollutant traps (GPTs) or baskets for the screening of rubbish could be placed within the pits, and treatment devices for other pollutants could be placed within tanks underneath the townhouse driveways. These treatment devices may also fit within the OSD tanks for the detention strategy. Such devices would be well placed to capture pollutant runoff from the urbanised region of the development. For the play area, filter strips may be planted for treatment and decoration.

If unmitigated, the proposal could lead to a long-term increase in volume and velocity of water entering the EEC indefinitely. This would be caused by the construction of hard surfaces including internal roads, driveways and buildings that would create more surface runoff during rainfall events. It is expected that these impacts will be avoided through appropriate stormwater management that will divert stormwater into existing stormwater infrastructure, such that hydrological process in the Swamp Oak Floodplain Forest may persist under natural scenarios.

If unmitigated, the proposal could lead to a short-term increase in sediment and nutrient loads during the construction phase through exposure and disturbance of soil through vegetation clearance and excavation. This could lead to higher weed abundance in the EEC. Appropriate erosion and sediment control measures are to be undertaken to avoid these impacts. The additional water management options will further prevent sediment and nutrient loads entering the EEC. Implementation of the VMP in the conservation areas will allow the control of weed species.

• Vehicle strikes

Figure 1.3 shows the current proposed concept masterplan layout associated with the development of approximately 42 townhouses. The proposed internal road network includes 3 roads each accessed via Boondah Rd and further linked by a main arterial road to the western aspect of the development. Considerations to the presence of potential Masked Owl breeding area nearby within the Swamp Oak Floodplain Forest lands, and the presence of recorded Powerful Owl has prompted a need for roadside fencing along the southern boundary.

As Masked Owls are specialist hunters of terrestrial prey and forage off the ground they have been identified in the Recovery Plan for Large Forest Owls (DEC 2006) as being susceptible to vehicle collisions in some areas. Likewise, for the recorded Powerful Owl, The Powerful Owl Project (2014) has also identified that car strikes are one of the main causes of Powerful Owl injuries and mortalities. A vehicle speed restriction of 10 kph should be imposed on the internal roads and therefore collision is not an expected impact of high concern. The fencing will however reduce this potential for both the Masked and Powerful Owls, and other birds.

In summary, the implementation of fencing not only serves to reduce vehicle collision potential, but also as a conservation mechanism by directing the movements of threatened fauna recorded and with the potential to occur away from the road. However, consequences of any increase in vehicle collision potential along this road is also not considered likely to reduce the viability of any local breeding populations.

5.5.2 Direct impacts

The other direct impacts of the proposal within the development footprint are considered as:

- 0.18 ha of PCT 1232_poor (Swamp Oak Floodplain Swamp Forest)
- 0.23 ha of PCT 1793_poor (Smooth-barked Apple Bangalay / Tuckeroo Chinese Tree Open Forest)
- Subsequent removal of threatened fauna species foraging habitat including:
 - (a) Seasonal flowering resources for Little Lorikeet and Grey-headed Flying-fox.
 - (b) Air space and prey species habitat for recorded Powerful Owl, Large Bent-winged Bat, Little Bent-winged Bat and Eastern Cave Bat
- Removal of nine hollow bearing trees, some containing hollows suitable for threatened species including the recorded Southern Myotis

5.5.3 Indirect impacts

The potential indirect impacts of the proposal are considered as:

- Minor reduction of arboreal connectivity for arboreal mammals
- Minor reduction of cross-site movements by small bird species such as passerines
- Increased presence of visiting dogs and subsequent aural and olfactory attraction of feral dogs and resultant impacts of dogs on native wildlife
- Edge effects such as weed incursions caused from soil disturbance, repeated clearing and landscaping species becoming a nuisance in the adjacent remnant bushland
- Increased spill-over from noise, activity, scent and lighting effects into the adjacent quality natural habitat areas
- Increased soil nutrients from changes to runoff that may provide further opportunities for weed plumes
- Concentrated stormwater runoff from solid surfaces and subsequent increased flows

5.5.4 Cumulative impacts

The potential cumulative impacts (combined results of past, current and future activities) of the proposal are considered as:

- Increased risk of weed invasion and fungal mobilisation or infections
- Cumulative loss of Swamp Oak Floodplain Forest
- Cumulative loss of Bangalay Sand Forest
- Increased varied human presence and activity within the remaining natural habitat areas of the adjacent bushland remnant

5.5.5 Serious & Irreversible Impacts (SAIIs)

An impact is to be regarded as serious and irreversible if it is likely to contribute significantly to the risk of a threatened species or ecological community most at risk of extinction. Threatened species and communities that are potential for serious and irreversible impacts are outlined in Appendix 2 of *Guidance to assist a decision-maker to determine a serious and irreversible impact* (DPIE 2017). The principles for determining serious and irreversible impacts are set out under Section 6.7.2 of the *BC Reg*.

SAII entities recorded or with potential to occur within the study area include:

Species / TEC (Scientific Name)	Species (Common Name)	BC Act	Species potential to occur	SAII threshold potential
Miniopterus orianae oceanensis	Large Bent-winged Bat	V	recorded	no
Miniopterus australis	Little Bent-winged Bat	V	recorded	no
Vespadelus troughtoni	Eastern cave bat	V	recorded (probable)	no

Table 5.5 – SAII species recorded or with potential to occur

Species:

For the Large Bent-winged Bat, Little Bent-winged Bat and Eastern cave bat, consideration of potential SAII only appies where there is a likley impact to breeding habitat. For each of these species, breeding habitat is highly specific and is defined by the TBDC as any "cave, tunnel, mine, culvert or other structure known or suspected to be used for breeding including species records in BioNet with microhabitat code 'IC – in cave'; observation type code 'E nest-roost'; with numbers of individuals >500; or from the scientific literature". As none of these features are present within the subject land or nearby the proposal will not impact on breeding habitat. Therefore further condieration of SAII on these species is not required under the BAM.

For Eastern Cave bat, the SAII threshold is potential breeding habitat, which is defined by the as "the PCTs associated with the species within 100 m of rocky areas, caves, overhangs crevices, cliffs and escarpments, or old mines or tunnels, old buildings and sheds within the potential habitat". As none of these features are present within the subject land or nearby the proposal will not impact on breeding habitat. Therefore further condieration of SAII on these species is not required under the BAM.

5.6 Vegetation connectivity and habitat corridors

The subject lots contribute to local connectivity in two ways but neither of these are of local significance or sufficient to contribute to local or regional 'corridors'. This is particularly given that the creek line connectivity to the south that does extend to the east does not link up with any other major area of natural habitat, but rather loops around to return to the same connective forest areas surrounding Warriewood Wetlands and the Warriewood Escarpment.

One connectivity link through the subject lots occurs along the western boundary and crossing Boondah Road to the south. The second and more direct passage across the northern portions of the site is currently limited to fragmented canopy trees for birds and common arboreal mammals.

The only threatened species records that exist in the immediate area are highly mobile flying species (incl. flying-foxes, diurnal birds, owls and microbats). The removal of the fragmented cross-site connectivity across the northern portions of the subject lots is not likely to affect important habitat or local movements of any of these species. The current proposal maintains the existing southern connectivity along the core riparian zone subsequently reducing further impacts to other locally occurring native biodiversity. Southern Myotis has been recorded roosting immediately adjacent and foraging along this channel. Such habitat use will be maintained and may be improved via riparian habitat restoration efforts.

The subject lots are shown on Figure 5.3 – Local connectivity in orange, with the local habitat connectivity shown in yellow. Connectivity is fragmented in places where roads bisect the free passage for terrestrial species or where the linkages narrow down due to fragmentation.

Figure 5.3 – Local connectivity

Figure 5.4 – Species credit species polygons

6. CONCLUSION

Travers bushfire & *ecology* has been engaged to undertake Biodiversity Development Assessment Report within Lots 3 and 4 DP26902, 10 and 12 Boondah Road, Warriewood.

Ecological survey and assessment has been undertaken in accordance with relevant legislation including the *Environmental Planning and Assessment Act 1979*, the *Biodiversity Conservation Act 2016*, the commonwealth *Environment Protection and Biodiversity Conservation Act 1999* and the *Fisheries Management Act 1994*.

6.1 Legislative compliance

In respect of matters required to be considered under the *Environmental Planning and Assessment Act 1979* and relating to the species / provisions of the *Biodiversity Conservation Act 2016*, Six (6) threatened fauna species Grey-headed Flying-fox (Pteropus poliocephalus), Large Bent-winged Bat (Miniopterus orianae oceanensis), Eastern Cave Bat (Vespadelus troughtoni with "probable" certainty), Southern Myotis (Myotis macropus), Little Bent-winged Bat (Miniopterus australis) and Powerful Owl (*Ninox strenua*), no threatened flora species, and two (2) TECs, The Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions (BSF) which was recorded in association with PCT 1793 Smooth-barked Apple - Bangalay / Tuckeroo - Cheese Tree open forest and Swamp Oak Floodplain Forest (SOFF) were recorded within the study area.

In respect of matters required to be considered under the *Environment Protection and Biodiversity Conservation Act 1999*, one threatened fauna species Grey-headed Flying-fox (*Pteropus poliocephalus*), no protected migratory bird species and no threatened flora species, and two (2) TECs listed under this Act were recorded within the study area.

The proposal was not considered to have a significant impact on or be constrained by matters of national environmental significance. As such a referral to Department of Agriculture, Water and the Environment is not required.

In respect of matters relative to the *Fisheries Management Act 1994*, no suitable habitat for threatened marine or aquatic species was observed within the development footprint and there are no matters requiring further consideration under this Act.

6.2 Biodiversity credit requirements

6.2.1 Impacts requiring offset

The following impacts will require offsetting:

- 0.18 ha of PCT 1232 Swamp Oak Forest
- 0.23 ha of PCT 1793 Bangalay Sand Forest
- loss of habitat for threatened species, including species credits for Southern Myotis, Eastern Cave Bat and Eastern Pygmy Possum.

Locations of the abovementioned communities within the subject land are shown on Figure 3.1.

6.2.2 Impacts not requiring offset

The following impacts do not require offset:

- Impacts on non-native vegetation
- Impacts on planted native vegetation (see Section 5.2.1)
- Indirect impacts on remaining native vegetation areas as outlined in Section 5.5.3.

6.2.3 Areas not requiring assessment

Native vegetation that has not been directly impacted by this proposal, both within the study area and beyond, do not require credit assessment.

7. BAM CREDIT RESULTS

7.1 Ecosystem credits and species credits

Ecosystem credits and species credits that measure the impact of the development on biodiversity values have been calculated, assuming full removal of vegetation within the subject land.

Habitat suitability for threatened species has been considered in Section 4. Some species are considered for species credits, particularly in this case if recorded or assumed present.

Ecosystem credits for PCTs, ecological communities and threatened species habitat is shown below in Table 7.1. Species credits for threatened species are shown in Table 7.2

Zone	Veg. zone name	Veg. integrity loss	Area (ha)	Sensitivity to gain	Biodiversity risk weighting	Potential SAII	Ecosystem credits
1	1232_poor	38.6	0.18	High	2	no	3
2	1793_poor	25.9	0.23	High	2	no	3
3	1232_derived_exotic	1.3	0.27	High	2.5	no	0
4	1232_pasture_weeds	3.1	0.48	High	2.5	no	0

Table 7.1 – Requirement for ecosystem credits

Total: 6

Table 7.2 – Requirement for species credits

Veg. zone name	Veg. integrity loss	Area (ha) / count	Biodiversity risk weighting	Potential SAII	Species credits
Cercartetus nanus / Eastern	n Pygmy-pos	sum (Faun	a)		
1793_poor	25.9	0.23	2	False	3
					Subtotal: 3
Myotis macropus / Southern	n <mark>Myotis (</mark> Fa	iuna)			
1232_derived_exotic	1.3	0.27	2	False	1
1232_pasture_weeds	3.1	0.48	2	False	1
1232_poor	38.6	0.18	2	False	3
1793_poor	25.9	0.23	2	False	3
					Subtotal: 8
Vespadelus troughtoni / Eas	stern Cave E	Bat (Fauna)			
1232_derived_exotic	1.3	0.27	3	True	1
1232_pasture_weeds	3.1	0.48	3	True	1
1232_poor	38.6	0.18	3	True	5
1793_poor	25.9	0.23	3	True	4
					Subtotal: 11

7.2 Ecosystem credit classes

Table 7.3 – Ecosystem credit summary

РСТ	TEC	Area (ha)	HBT credits	non- HBT credits	Credits
1232-Coastal freshwater swamp forest	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	0.18	3	0	3
1232-Coastal freshwater swamp forest	Not a TEC	0.75	0	0	0
1793-Coastal Sand Bangalay Forest	Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions	0.23	3	0	3

Table 7.4 – Credit classes for PCT 877 and 1395 - Like for like options

РСТ	TEC	Containing hollow-bearing trees?	Credits
1232	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCTs: 915, 916, 917, 918, 1125, 1232, 1234, 1726, 1727, 1728, 1731, 1808	Yes	Pittwater , Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
1793	Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions This includes PCTs: 1794	Yes	Pittwater , Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

7.3 Species credit classes

Table 7.5 – Species credit summary

Species	Veg. zones	Area (ha)	Credits
Cercartetus nanus / Eastern Pygmy-possum	1793_poor	0.23	3
<i>Myotis macropus</i> / Southern Myotis	1232_poor, 1793_poor, 1232_derived_exotic, 1232_pasture_weeds	1.2	8
Vespadelus troughtoni / Eastern Cave Bat	1232_poor, 1793_poor, 1232_derived_exotic, 1232_pasture_weeds	1.2	11

All above-listed species need to be offset with the same species but anywhere in NSW.

The pricing of credits can vary greatly over time and it is advised that the proponent use the online Biodiversity Offset Payment Calculator tool to determine the current pricing of credits (<u>https://www.lmbc.nsw.gov.au/offsetpaycalc</u>).

8. **BIBLIOGRAPHY**

Bain, D., Kavanagh, R., Hardy, K. and Parsons, H. (2014). The Powerful Owl Project: Conserving owls in Sydney's urban landscape. BirdLife Australia, Melbourne.

Barker, J., Grigg, G. C. & Tyler, M. J. (1995) *A Field Guide to Australian Frogs.* Surrey Beatty & Sons.

Bennett, A. F. (1990a) *Habitat Corridors: Their Role in Wildlife Management and Conservation*. Department of Conservation and Environment, Victoria).

Bennett, A. F. (1990b) Habitat corridors and the conservation of small mammals in a fragmented forest environment. *Landscape Ecology.* 4: 109-122.

Churchill, S. (2008) Australian Bats, 2nd Ed., Jacana Books, Crows Nest, Sydney.

Cogger, H. G. (1996) Reptiles and Amphibians of Australia. Reed Books, Australia.

Cropper, S. (1993) Management of endangered plants. CSIRO Publications, Melbourne.

DAWE (2022) Environmental Protection and Biodiversity Conservation Act 1999 - Protected Matters Search Tool - <u>http://www.environment.gov.au/webgis-framework/apps/pmst</u> /pmst-coordinate.jsf

DEC (2004) Threatened Species Survey and Assessment: Guidelines for developments and activities (working draft), New South Wales Department of Environment and Conservation, Hurstville, NSW.

DECC (2008) *Hygiene protocol for the control of disease in frogs*. Information Circular Number 6. DECC (NSW), Sydney South.

DECC (2008) Rapid Fauna Habitat Assessment of the Sydney Metropolitan Catchment Management Authority Area Department of Environment and Climate Change, Hurstville.

DECCW & Water NSW (2010). *NSW Wetlands Policy* – NSW Department of Environment, Climate Change.

DEWHA. 2010. *Survey guidelines for Australia's threatened bats*. Department of Environment Water Heritage and Arts.

- DPIE (2019) *Biodiversity Assessment Method Operational Manual: Stage 2.* State of NSW and Department of Planning, Industry and Environment.
- DPIE (2020) *Biodiversity Assessment Method Operational Manual: Stage 1.* State of NSW and Department of Planning, Industry and Environment.
- DPIE (2020) Surveying threatened plants and their habitats NSW survey guide for the Biodiversity Assessment Method. State of NSW and Department of Planning, Industry and Environment.
- DPIE (2013/2016/2019/2021/2022) Atlas of NSW Wildlife (BioNet).
- DPIE (2020) *Biodiversity Assessment Method.* State of NSW and Department of Planning, Industry and Environment.

Ehmann, H. (1997) Threatened Frogs of New South Wales. FATS Group.

EPBC Listing Advice (2009) Advice to the Minister for the Environment, Heritage and the Arts from the Threatened Species Scientific Committee on an amendment to the List of Threatened Ecological Communities and the EPBC Act 1999 – Cumberland Plain Woodlands and Shale-Gravel Transition Forest.

Harden, G. (1993) Flora of New South Wales. University NSW Press.

Hoser, R. (1989) Australian Reptiles and Frogs. Pierson & Co.

Klaphake, V. (2002) Key to the grasses of Sydney. Van Klaphake, Byabarra.

Klaphake, V. (2010) Eucalypts of the Sydney Region. 2nd Ed. Van Klaphake, Byabarra.

Law B, Chidel M and Mong A, (2005) Life under a sandstone overhang: the ecology of the eastern cave bat Vespadelus troughtoni in northern New South Wales. Australian Mammalogy.

Lamp, C. & Collett, F. (1996) A Field Guide to Weeds in Australia. Inkata Press.

Lunney, D., Urquart, C .A. & Reed, P. (1988) Koala Summit, NPWS.

Marchant, S., & P. J. Higgins (Eds) (1990) *Handbook of Australian, New Zealand and Antarctic Birds.* Volumes 1-7 Oxford University Press, Melbourne.

Morrison, R. G. B. (1981) A Field Guide to the Tracks & Traces of Australian Animals. Rigby.

Murphy, C. L. & Tille, P. J. (1993) Soil Landscapes of the Sydney 1:100,000 Sheet. Department of Conservation & Land Management.

NSW National Parks and Wildlife Service (1997) *Urban Bushland Biodiversity Survey* NSW NPWS, Hurstville.

NSW National Parks and Wildlife Service (1997) *Urban Bushland Biodiversity Survey* NSW NPWS, Hurstville.

OEH (2016) NSW Guide to Surveying Threatened Plants.

OEH (2016) The Native Vegetation of the Sydney Metropolitan Area. Version 3.0. NSW Office of Environment and Heritage, Sydney.

OEH (2017) *Biodiversity Assessment Method.* Office of Environment and Heritage for the NSW Government.

OEH (2018) 'Species credit' threatened bats and their habitats, NSW survey guide for the Biodiversity Assessment Method

OEH (2018) Biodiversity Assessment Method Operational Manual – Stage 1.

Parnaby, H. (1992) An interim guide to identification of insectivorous bats of south-eastern Australia. The Australian Museum, Sydney, Technical Report, No. 8.

Pennay, M., Law, B., Reinhold, L. (2004). Bat calls of New South Wales: Region based guide to the echolocation calls of Microchiropteran bats. NSW Department of Environment and Conservation, Hurstville.

Phillips, S. & Callaghan, J. (2008) The *Spot Assessment Technique*: a tool for determining levels of localised habitat use by Koalas *Phascolarctos cinereus*. Aust. Koala Foundation. Manuscript submitted to: Ecological management and Restoration

Phillott, A. D, Skerratt, L. F., McDonald, K. R., Speare, R., Hines, H. B., Meyer, E., Cashins, S. D, Mendez, D. & Berger, L. (2010) Minimising exposure of amphibians to pathogens during

field studies. Inter-research. Diseases of Aquatic Organisms, *Contribution to DAO Special 4: 'Chytridiomycosis: an emerging disease'*

Pizzey, G. & Knight, F. (1997) A Field Guide to the Birds of Australia. Angus & Robertson.

Reader's Digest (1976) Complete Book of Australian Birds.

Richardson, F. J., Richardson, R. G. & Shepherd, R. C. H (2011) *Weeds of the South-East: an Identification Guide for Australia.* Everbest Printing Co. Pty. Ltd. China.

Robinson, L. (2003) Field Guide to the Native Plants of Sydney. 3rd ed. Simon & Shuster.

Robinson, M. (1996) A Field Guide to Frogs of Australia. Reed.

Schodde, R. and Tidemann, S. (Eds) (1986) *Readers Digest complete book of Australian Birds.* Second Edition. Reader's Digest Services Pty Ltd, Sydney.

Simpson & Day (1996) Field Guide to the Birds of Australia. Viking.

Specht, R. L., Specht, A., Whelan, M. B. & Hegarty, E. E. (1995) *Conservation Atlas of Plant Communities in Australia.* Southern Cross University Press, Lismore.

State Forests of NSW (1995) *Morisset Forestry District EIS. Vol C - Fauna Impact Statements.* State Forests of NSW, Pennant Hills.

Strahan, R. (Ed.) (1995) The Mammals of Australia. Reed Books, Chatswood.

Triggs, B. (1996) Tracks, Scats & Other Traces: A Field Guide to Australian Mammals. Oxford University Press, Melbourne.

Trounson, Donald & Molly (1998) *Australian Birds Simply Classified*. Murray David Publishing Pty Ltd, NSW.

Van der Ree, Gulle, Holland, Van der Grift, Mata, Suarez (2007) Overcoming the Barrier Effect of Roads-How Effective are Mitigation Strategies? – An international review of the use and effectiveness of underpasses and overpasses designed to increase the permeability of roads for wildlife.

Van Dyke, S. and Strahan, R. (Eds) (2008) *The Mammals of Australia* (3rd Edn). Reed New Holland. Sydney.

Williams, J. B., Harden, G. J. & McDonald W. J. F. (1984) *Trees & shrubs in rainforests of New South Wales & southern Queensland.* Botany Department, University of New England, Armidale.

Wilson, K. W. and Knowles, D. G. (1988) Australia's Reptiles - A Photographic Reference to the Terrestrial Reptiles of Australia. Cornstalk Publishing.

Appendix 1. Plot datasheets

BAM Site - Field Survey Form

Site Sheet no: 1 of

14		Survey Name	Zone ID	P. C. M. K.	Recorde	rs	1
Date	13/12/21	1811EN03.2		Crp			
Zone	Datum	Plot ID	19	Plot dimensions	20×5m	Photo #	1
Easting	Northing	IBRA region	In m	Midline bearing from 0 m		M	lagnetic °
Vegetation Clas	s					Co H	nfidence: M L
Plant Communi	ty Type				EEC: t	Co	nfidence:

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

	BAM Attribute (400 m ² plot)	
	Trees	
	Shrubs	
Count of Native	Grasses etc.	
Richness	Forbs	
	Ferns	
	Other	
	Trees	in the second
Sum of Cover	Shrubs	
of native	Grasses etc.	
plants by growth	Forbs	
form group	Ferns	
	Other	- rainky

	BAM Attribute (1000)	m ² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	¥ .	毎)
50 – 79 cm	/	1
30 – 49 cm	/	
20 – 29 cm		e tit free sambal
10 – 19 cm		A Contraction
5 – 9 cm		y service de la com
< 5 cm		n/a
Length of log (≥10 cm diamete >50 cm in length	er,	Fally space

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots) Litter cover (%)			Bai	e gro	ound	cover	(%)	Cry	ptog	am c	over (%)	-	Rock cover (%)						
Subplot score (% in each)	95	5	10	30	75	а	b	С	d	е	а	b	с	d	е	a	b	с	d	е
Average of the 5 subplots												11								

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

granted and a second se	and the second	And the second	genterne (optioner)
Morphological	Landform	Landform	Microrelief
Type	Element	Pattern	
Lithology	Soil Surface	Soil	Soil
	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

•	Plot: Sheet 2 of 2 Survey Name Plo	t Identifier			Re	ecorders		
	Top 3 natives in each GF: Full species name mandatory. All others where practicable		N	F		Cover %	Abund	vouch
	1 Euclister ships betaniles		1			15	3	
	Anarohata (Detado	r i parte	1			5	2	
	3 Brainghtor over.	A	1			2	1	
	4 Lourtailla comoso				1	Ś	20	
	5 lognoes indica		1		1	10	20	
	6 Cenna, pendenta				1	1	5	A parts
	7 Ageriting adenophores				1	2	100	
	8 El Harta cruta		+		7	0.5	50	1979
	9 Connuetina yaren		1		·	1	20	
	10 Amagalis andreis		+	1		1 weeks	30	
	11 Cigicom Vulgre		1	1		0.1	10	
	12 Pospalum urvellei		1.	1		5	20	
-	13 Cenchrus dandestinus		+		7	2.1	10	
-	14 Cyperus eperpetio		+		1	0.1	5	
-	15 Salitury deracetto		+	1		0'1	10	
-	and they be the starts		1	1		4	20	
-	sources well an		1	1		2	10	
-			+	1	-	1	5	
	18 solchum dienspodioides 19 Conyza bonaviens 5		+	1		3	20	
-	20 Ceffrun parqui		1	+	1	0.1	5	
_	21 Chenzardin no album		1.	Λ		0.1	5	
-			-	1		0.1	C	1
_	cite: to the second sec		+	1		0.1	10	
-					1	0.1	10	
-	24 Senecio mortiposionerso 25 Inkwood - Phytologia octavidra			1		0.1	3	
_	26 Connarionum complete				1	2	1	
	26 Conanonum camphores 27 Clochidion Fedinardi		1			Š	1	
-	28			1		-		
	29							
_	30							
	31							
	32							
	33							
	34							
	35							
	36							
	37		T					
	38							
	39					-		
	40							
-	41							
	42					<u></u>		
	43							
	44					4.0		
	45							
	46							
	47 code: see growth form definitions in Appendix 1 N: native, E: exotic, HTE r: 0.1, 0.2, 0.3, 1, 2, 3, 10, 15, 20, 25, 100% (foliage cover): Note: 0 <i>cover</i> = 1.4 x 1.4 m, and 1% = 2.0 x 2:0 m, 5% = 4 x 5 m, 25% = 10 x 10m. Abu	E: high thre	ate	exc	otic	GF – ci	rcle code o	1.1.1

BAM Site -	Field Survey F	orm			Site Sheet	no: 1 of	
		Survey Name	Zone ID		Recorde	rs	
Date	131221	Warriewood		QP	-		-
Zone	Datum	Plot ID	P2	Plot dimensions	202500	Photo #	1
Easting	Northing	IBRA region	In m	Midline bearing from 0 m		Ņ	lagnetic ^o
Vegetation Clas	s				- 96	Co H	onfidence: M L
Plant Communi	ty Type				EEC:	Co H	onfidence: M L

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

	Attribute m ² plot)	Sum values
	Trees	
	Shrubs	
Count of	Grasses etc.	- Marine - Marine
Native Richness	Forbs	
	Ferns	
	Other	
	Trees	
Sum of	Shrubs	1
Cover of native	Grasses etc.	
vascular plants by	Forbs	
growth form group	Ferns	- 2 Sec. 1
	Other	

San Pratter	- A State	BAM Attribut	e (1000 m ² plot)	N. C. Star
DBH	4	# Tree Stems Co	unt	# Stems with Hollows
80 + cm				
50 – 79 cm	11	a and the s	n,	L. C. Maria
30 – 49 cm	1	· hand	11	
20 – 29 cm	1	de vita pile	1 - 4 - 3	
10 – 19 cm	/	Co.		
5 – 9 cm			C. S. S. S.	2. gan
< 5 cm		- Parts		n/a
Length of logs (≥10 cm diameter >50 cm in length)	r,	40	Tally sp	ace

Counts apply when the **number of tree stems** within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a **multi-stemmed tree**, only the largest living stem is included in the count/estimate. **Tree stems must be living**.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Ba	re gro	ound	cover	(%)	Cr	yptog	jam c	over	(%)		Rock	(COV	er (%)
Subplot score (% in each)	50 60 75 85 75	a	b	G	d	е.	а	b	C	d	e	а	b	0	d	G
Average of the 5 subplots																17

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological Type		andform		Landform Pattern	Microrelief
Lithology	5	Soil Surface Fexture		Soil Colour	Soil Depth
Slope	1	Aspect		Site Drainage	Distance to nearest water and type
Plot Disturbance	Severity code	Age code	Observational evidence	9:	
Clearing (inc. logging)					
Cultivation (inc. pasture)				and the second	
Soil erosion					
Firewood / CWD removal					
Grazing (identify native/stock)					
Fire damage					
Storm damage					
Weediness					
Other			and the second		

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

to	13/12/21 IBNENOZ Warrenzed P	t Identifier		155	G	2		-
	Top 3 natives in each GF: Full species name mandatory. All others where practicable	10	N/	E	HTE	Cover %	Abund	vouch
	Caracong glay ca		1			10	6	
	2 throulous's neueler.	1	1	-		12-15	100	
	2 Applepis nueleri 3 Lantang camara	1. 1. 1. 1. T. F.		1	1	80	200	
CALORINAL DATE	4 LOOKARD INDILLO				1	10	50	
	5 Igniterra inversion	1		A.C.	1	5	20	
	5 Laviara japanica 6 Stato Senna pendula	1			7	10	10	
	7 Paulon persona			A	1	5	3	
Strangerich-	7 Poplar 8 Creitigin clarkei		1			1	10	
	9 Licent Caro Singuald		1		1	2	10	Seg. Sec.
	9 Liquistrum Sivense 10 Alerdium esculentum		1	/		1	6	1
-	11 Seconda austata		1	/		~	Housens	0,
	11 Spirodola pundata 12 Casifina publicarens 13 Aprosia supertris		1				10	
	13 Capitha publicens	10180	1	7		61	10	-
	13 MAROSIA PAPEOFFIS		X	-	-	0.5	10	
	14 Carex appenson		X	-		3	2	
	14 Covex appenson 15 Curalyphus potnoides 16 Crows weet - Aspenium autolasium		A	-	-	0.5		
-	16 crows west - Aperium autoclasicus	n i	1	-	-		100	
	17 Optimine annulus		4	1	-	2	100	
	18 Anacthe barardenso 19 Posicación hugospiper	- Carlos -	1	-			10	
	19 posicación hydropiper		4	/	-	0.1		1
	20 Solamine piperin		-	1	-	2	3	
	20 Solannin pipean 21 Augun lily 22 Competing wares		1	-	-	L	10	100
	22 Competing uganet		1	-	_		20 50	
	23 Centrela applatica	-	-	_	A			
1.1.1.	24 Tradescentia Aumelijis		-	4	< <p>✓</p>	1	80	
	25 Ranunculus rebeins		4	_	1	0.1	3	in the A
	26 Arching doudestines		-	_	1	011	3	
	27 Cestam parqui	3	-	_	1	0.1	3	1. 1919
	28		1	_				
	29	-						100
	30		_				1	suns-
	31	1.						1.4
	32	1 3 1						
	33	a shall be				and the		
	34	1.					the state	
	35							
	36						Maria Sec.	
	37				-			
-	38							100
	39						1	
-	40			-		and the		2.4
	41		T					
	42							
	43					1		
	44							
	45							
	45		1					
	40		-					
	47 ode: see growth form definitions in Appendix 1 N: native, E: exotic, HTE r: 0.1, 0.2, 0.3, 1, 2, 3 10, 15, 20, 25 100% (foliage cover): Note: 0 cover = 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10m. Abute	-: high thre	pat	DY	atic	GE - C	ircle code	of 'top 3

-This document has not been endorsed or approved by Office of Environment and Heritage or Muddy Boots Environmental Training-

BAM Site -	Field Survey F	orm			Site Sheet	no: 1 of	1			
		Survey Name	Recorde	orders GP						
Date	13 12 21	USHEND3.2			le je					
Zone	Datum	Plot ID	P3	Plot dimensions	20x50m	Photo #	1			
Easting	Easting Northing		In m	Midline bearing from 0 m		ħ	lagnatic °			
Vegetation Clas	s			N. A. D. S. P.	the second of	C	onfidence: ML			
Plant Communi	ty Туре			An a straight	EEC:	C	onfidence:			

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

	BAM Attribute (400 m ² plot)					
	Trees					
Count of Native Richness	Shrubs					
	Grasses etc.	1. A.				
	Forbs					
	Ferns					
	Other					
	Trees					
Sum of Cover	Shrubs	a Succession				
of native vascular	Grasses etc.					
plants by	Forbs	1.				
growth form group	Ferns					
	Other					
High Threat	Weed cover					

	BAM Attribute (1000 m	² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		
30 – 49 cm		
20 – 29 cm		
10 – 19 cm		
5 – 9 cm		
< 5 cm	A STATE	n/a
Length of logs (m) (≥10 cm diameter, >50 cm in length)		ally space

Counts apply when the number of tree stems within a size class is ≤ 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)		Litte	r cov	er (%))	Bare ground cover (%)					Cr	yptog	am c	(%)	Rock cover (%)					
Subplot score (% in each)	5	3	2	2	3	a	b	c	d	e	a	b	с	d	e	a	b	0		
Average of the 5 subplots																-			J	0

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Lithology	Soll Surface	Soll	Soll
Slope	Texture	Colour	Depth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

ate	plot: Sheet 2 of 2 Survey Name Plot 13/12/24 184503 Warneward P3	1. C. S.		0		4. F. 186	and the second second
F.	Top 3 natives in each GF: Full species name mandatory. All others where practicable	N	Е	HTE	Cover %	Abund	vouche
	1 Ciprodon dautophon	/		_	60	2000	
	2 Modisla constitucióna		1		0-1	5	
	3 Contractenia		V		6.1	Š	
	4 Gamodraeta p		/		0.1	10	
	5 Juncus us tabus				5	200	1.1
	6 Buffelo gass			1	1	50	
	7 Centraprium spicodum		1		0.1	10	
	8 Hydricatifie Genordensis				0.1	5	-
	9 Annagalis ordensis		7		01	10	
	10 TEFEINM LEPENS		1	Γ	2	100	
	11 gran 1- Eleusnya har		1		1	50	1
	12 Cenchans condentinus	(a)		1	25	1000	
	13 Notoscurdin		1		0.5	20	
			17		0.1	5	
	15 Oxalio perennang		r		0.1	5	
			7		0.1	2	
	16 Mantago major 17 Saliza Salita		1	1	0.1	10	-
	equiver service		17	1	0.1	7	1
				1	0.1	5	
	Steed house chapty		1	-	0.1	5	-
		V		1	oil		
	1 1		1	+	0.1	10	
			-	-		10	
			1	1	0,1	20	
	24 toto 25 Hudra other situte situte		ľ	-	6.5	10	
	26 Hydrocong & Sonrappisized.		-	-	0.5	100	
	27		-	-			
		<u></u>	-	-			
	28		-	-			
	29		-	-			
	30		-	-			
	31		-	-			
	32		-	+			
	33		-	-			
	34		+	-			
	35		-	+			
	36		-	-			
-	37		-	-			
	38		-	-			
-	39		-	+			+
	40		-	-			
-	41		-	-			
_	42		-	-			
	43		+	-			
	44		+	-			-
	45		1	+			-
	46		1	-			
	47 Code: see growth form definitions in Appendix 1 N: native, E: exotic, HTE			1			

BAM Site -	Field Survey F	orm		Carlos Carlos	Site Sheet	no: 1 of	1
See La Maria and	2	Survey Name	Zone ID	and a state of the	Recorde	rs	
Date	13 12 21	Warriewood		GP			a selection
Zone	Datum	Plot ID	P4	Plot dimensions	20 × 50m	Photo #	1
Easting	Northing	IBRA region	in ni	Midline bearing from 0 m		N	lagnatic *
Vegetation Class	S				A		onfidence: M L
Plant Communit	ту Туре				EEC:	Сс	onfidence: M L

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

	Attribute m² plot)	Sum values
	Trees	
Count of Native Richness	Shrubs	2.141 1.151 - 1
	Grasses etc.	·
	Forbs	
	Ferns	
	Other	
	Trees	
Sum of	Shrubs	
Cover of native	Grasses etc.	
vascular plants by	Forbs	
growth form group	Ferns	
	Other	
High Threat	Weed cover	

	BAM Attribute (1000	m² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		\
30 – 49 cm		III (Poplars)
20 – 29 cm		
10 – 19 cm		
5 – 9 cm	1	a a caracteria de la carac
< 5 cm		n/a
Length of logs (m) (≥10 cm diameter, >50 cm in length)	/	Tally space

Counts apply when the number of tree stems within a size class is ≤ 10. Estimate when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)					Cryptogam cover (%)					Rock cover (%)				
Subplot score (% in each)	1 1 1 1 1	a	b	c	d	e	a	b	С	d	e	a	b	¢	d	е
Average of the 5 subplots																

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief
	Soil Surface	Soll Colour	Soll Depth
ithology Texture		Site Drainage	Distance to nearest
Slope	Aspect	Site Drainage	water and type

Plot Disturbance	Severity	Age	Observational evidence:
THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	code	code	
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			Demonst (22)(rs) NR=pot recent (3-10)(rs) Q=old (>10

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

e	13/12/21 18/EDO3 Warriersond P4	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1		HTECover % Abund voucher				
- 11	Top 3 natives in each GF: Full species name mandatory. All others where practicable	N	N L		1	Abund	vouche	
_	1 Populus	-	1	4	60			
_	2 Solarman web to ico with		V	-	¥	1		
-	3 Compa bonomentio		3	0	4	20		
_	4 Turkey Autorb - Acetasa sagitata		-	-	3	10	38 (1 A F	
2	5 Annagolio ocientis		/		2	20		
	6 Enchardha ereuta		_	-		20		
	7 Consulting agained	1	-		1	20		
	8 Cantana calmara	_		4	0.1	3		
	9 Sonchus derances	•	V		6.1	10	1	
	10 dais - Cotula anotralis			-	0-1	10	/	
	11 Lolixm pereve		1	1	1	80		
	12 Chenopadring album		1	Ľ	0 .1	5		
	13 Gamechasta so.		1		0 A	20		
	14 Eudwabia peplus		1		011	5		
	15 Optismenus cemulus	1	1	1	2	100	1.1.1	
	16 Cyperus erroroctio		R	J	0.1	10		
	17 Sil anum nigotum		1	-	3	20		
1		1	1		0.2	20		
-	19 Cenchrus Uniteditis			1	4	100		
-	20 Entritus Condes IIII	-		1	0-1	10		
-	function compta	-	1	-	0.1	10		
-			1		0.1	10	+	
-		1	-		211			
-		/	5	1	0.1	5		
_	24 Modiola condiniana	-		-		5		
_	25 Setonia porvitiona	_	ľ	-	0.5	10		
_	26 Sporabolus africanus porroumateusi		1	-	011	3		
_	27 Capsella		V	1	0.1	5		
	28 Castoroil plant - Richny communis			V	0.5			
	29 All seen > Blycarpon tetraphylum	_	1		0.1	20		
	30 0 10	1					1	
	31				1.1.1			
	32							
	33							
	34							
1	35							
1	36							
-	37		-		1			
-	38		-	T			1	
-	39		1	-				
-	40		-	-		+	1	
-	41	-	-	+		+	+	
-	42		-	-				
			-	-				
-	43		-	-				
_	44		-	-		-		
	45		-	-			-	
	46		-					
	47 de: see growth form definitions in Appendix 1 N: native, E: exotic, HTE: high							

Appendix 2. MICROBAT CALL ANALYSIS

Client Name: Dan Maurici

Client Contact: dan@henroth.com.au

Client Address: 10-12 Boondah Road, Warriewood, 2102

Project Name: Warriewood Biodiversity Certification Assessment Report

TBE Quote Ref No: 18HEN03.2

Detector Location: -33.693204 S, 151.297509 E -33.693878 S, 151.297174 E

Date of Survey: 16th November – 1st December 2021

SUMMARY OF RESULTS								
ID Method	Result	Threatened	Confidence (Probability low to high)					
Characteristic frequency, alternating pulses	Chalinolobus gouldii	No	High					
Characteristic frequency, down-sweeping tail	Chalinolobus morio	No	High					
Characteristic frequency, down-sweeping tail	Miniopterus australis	Yes	High					
Characteristic frequency, down-sweeping tail	Miniopterus orianae oceanensis	Yes	Medium					
Characteristic frequency, call shape	Vespadelus sp.	Yes (Vespadelus troughtoni only)	Medium					

HABITAT & SURVEY CONDITIONS

Survey was conducted in an open habitat with no rain, no wind, almost no cloud cover and the temperature was 23°C.

METHOD DESCRIPTION

An Anabat Swift (full-spectrum) with an omnidirectional microphone was used to record bat calls. All recorded files were run through a decision tree in Anabat Insight which filtered out non-bat files and labelled bat files with either a species or species complex. Each automatically labelled file was then manually verified. The call from each species/species complex that was most confidently identified was selected to be used as the image in the "Results" section of this report. All images were taken from within Anabat Insight and shown in either compressed or uncompressed mode, depending on which image best highlights diagnostic features. All full-spectrum recordings are shown in full-spectrum with a zero-crossing overlay.

CALL REFERENCE LIBRARY

Calls were identified using the "Bat Calls of NSW" by Pennay *et al.* (2004) regional guide, the "Key to the bat calls of southeast Queensland and north-east New South Wales" by Reinhold *et al.* (2001), and the "Bat Calls of Central Eastern NSW" by Titley Scientific (2009). Additional call metrics were also been collected for specific bat species from discussions with recognised bat experts including Michael Pennay, Brad Law and Greg Ford.

RESULTS

The calls of three species and two species complexes were identified from the Lugarno recordings. One threatened species (*Miniopterus schreibersii oceanensis*), one genus (*Vespadelus*) that contains another threatened species (*Vespadelus troughtoni*), and one species complex (Broad-nosed Bats) that contains another threatened species (*Scoteanax rueppellii*) was identified.

Assessing officer: Nathan Stewart

Date: 09/12/2021

Scientific Licence: SL100848

Appendix 3. Staff qualifications and experience

Team member (role)	Accreditations and qualifications	Experience	Employment history	Skills and expertise
George Plunkett (Botanist)	 Biodiversity Assessment Method (BAM) Assessor (Accredited Assessor no. BAAS19010) PhD – Plant systematics, ecology and evolution Bachelor of Science (Honours) – Ecology / Botany, University of New England (UNE), NSW Four-wheel drive vehicle operation Senior First Aid Certificate 	George has 12 years of experience as a plant taxonomist, flora ecologist and botanist, including a PhD in plant systematics, ecology and evolution, and has a very well-developed understanding of the Australian flora.	 2017-Current: Botanist, Travers bushfire & ecology 2016-2017: Research Botanist, UNE 2010-2011: Research Botanist, UNE 2008-2009: Plant Ecologist, Ecotone Flora Fauna Consultants 	 Application of the BAM and BOS Highly experienced in botanical survey and ecological analysis
Lindsay Holmes (Manager of Ecology)	 Bachelor of Science – Biology, James Cook University, Qld Bush Regeneration II Certificate, Ourimbah TAFE NSW WorkCover OHS Construction Induction Senior First Aid Certificate BioBanking Assessor (No. 199) Biodiversity Assessment Method (BAM) Assessor (BAAS17032) 	Lindsay has 21 years of experience as a flora ecologist and bushland regeneration supervisor and has expertise in botanical survey, ecological analysis, maintain and improve analysis, biometric analysis and geo-plotting of ecological data.	 2007-Current: Senior Botanist, Travers bushfire & ecology 2006-2007: Ecologist, Conacher Travers Pty Ltd 1999-2006: Field Operations Manager, Microclimate 	survey and ecological analysisVegetation management planningFlora and fauna assessment

Team member (role)	Accreditations and qualifications	Experience	Employment history	Skills and expertise
Michael Sheather- Reid (Managing Director)	 Bachelor of Natural Resources (Hons), University of New England BioBanking Assessor Engineering Assistant – CAD Drafting MUSIC Modelling – Stormwater quality and quantity modelling (RMIT) Bush Regeneration II Certificate, Ryde TAFE NSW WorkCover OHS Construction Induction Chemical Handling Certificate, Ryde TAFE 	Michael has a wealth of experience in environmental consulting and on ground management of bushland, wetland and riparian habitats having undertaken environmental assessment, ecological consultancy and restoration in both the private and public sectors for over 22 years.	 bushfire & ecology 2004 -2007: Senior Ecologist, Conacher Travers Pty Ltd 	 Rezoning studies Biodiversity offset planning Restoration management and coordination Biotic and soil translocation Watercourse assessment Project ecologist services <i>EPBC Act</i> referrals Controlled Activity Approvals
Sandy Cardow (GIS officer)	Bachelor of Science (Biological Sciences) (Macquarie University)	Sandy has over twenty years of experience in Spatial Information (Geographic Information Systems (GIS)), which includes preparation of mapping in local government roles and has completed a Bachelor of Science (Biological Sciences).	 2017 - Current: GIS Officer, Travers bushfire & ecology 2014 - 2017: GIS Consultant, Forestry Corp. NSW 2005 - 2011: GIS Analyst, Forests NSW 2002 - 2005: GIS Data Librarian, Forests NSW 2000 - 2002: GIS Operator, Forests NSW 2000 - 2002: GIS Data Import / Export Officer, Forests NSW 1999 2000: GIS Project Officer DECC 1998 - 1999: GIS Support Officer DECC 1998 - 1999: Wildlife Atlas Data Entry Officer DECC 	 Data management and analysis Spatial databases and database administration GPS Cartography Natural resource management
Corrine Edwards (Fauna Ecologist)	Bachelor of Environmental Science and Management. (Hons) (University of New South Wales) (2016-2020)	Corrine has over 10 years' experience in fauna survey techniques, herpofauna handling and specializes in behavioural ecology and call/vsual identification of vertebrate fauna within a magnitude of habitats in NSW. She has experience in leading research projects, project management and excels in experimental design, data collection, data analysis and report writing.	at the Fowlers Gap Research Station	 Survey techniques for all major vertebrate fauna groups (including threatened species target searches) Fauna identification, ecological association and behaviour Fauna field assessment Microhabitat identification Project ecology Experimental design and statistical analysis Scientific report writing

Appendix 4. BAM-C outputs

Proposal Details		
Assessment Id	Proposal Name	BAM data last updated *
00030258/BAAS19010/21/00030259		24/11/2021
Assessor Name	Report Created	BAM Data version *
George Thomas Plunkett	05/05/2022	50
Assessor Number	BAM Case Status	Date Finalised
BAAS19010	Finalised	05/05/2022
Assessment Revision	Assessment Type	
2	Biocertification	

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Ecosystem credits for plant communities types (PCT), ecological communities & threatened species habitat

Zone	Vegetatio	TEC name	Current	Change in	Are	Sensitivity to	Species	BC Act Listing	EPBC Act	Biodiversit	Potenti	Ecosyste
	n		Vegetatio	Vegetatio	а	loss	sensitivity to	status	listing status	y risk	al SAII	m credits
	zone		n	n integrity	(ha)	(Justification)	gain class			weighting		
	name		integrity	(loss /								
			score	gain)								

BAM Credit Summary Report

1	1232_poor	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions	38.6	38.6	0.18	PCT Cleared - 95%	High Sensitivity to Potential Gain	Endangered Ecological Community	Endangered	2.00		
asta	l freshwate	er swamp forest									Subtot al	
	1232_deri ved_exotic	Not a TEC	1.3	1.3	0.27	PCT Cleared - 95%	High Sensitivity to Potential Gain			2.50		
4	1232_past ure_weeds		3.1	3.1	0.48	PCT Cleared - 95%	High Sensitivity to Potential Gain			2.50		
											Subtot al	

BAM Credit Summary Report

stal Sand Ban	galay Forest										
2 1793_poor	Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions	25.9	25.9	0.23	PCT Cleared - 40%	High Sensitivity to Potential Gain	Endangered Ecological Community	Not Listed	2.00		
										Subtot al Total	

Species credits for threatened species

name	Habitat condition (Vegetation Integrity)	Change in habitat condition	Area (ha)/Count (no. individuals)	Sensitivity to loss (Justification)	Sensitivity to gain (Justification)	BC Act Listing status	EPBC Act listing status	Potential SAII	Species credits
Cercartetus nan	us / Eastern Pygm	y-possum (Fau	ına)						
1793_poor	25.9	25.9	0.23			Vulnerable	Not Listed	False	3
								Subtotal	3
Myotis macropu	s / Southern Myot	tis (Fauna)							
1232_poor	38.6	38.6	0.18			Vulnerable	Not Listed	False	3
1793_poor	25.9	25.9	0.23			Vulnerable	Not Listed	False	3
1232_derived_e xotic	1.3	1.3	0.27			Vulnerable	Not Listed	False	1
1232_pasture_w eeds	3.1	3.1	0.48			Vulnerable	Not Listed	False	1

BAM Credit Summary Report

						Subtotal	8
Vespadelus troughte	oni / Eastern Ca	ive Bat (Faund	ı)				
1232_poor	38.6	38.6	0.18	Vulnerable	Not Listed	True	5
1793_poor	25.9	25.9	0.23	Vulnerable	Not Listed	True	4
1232_derived_e xotic	1.3	1.3	0.27	Vulnerable	Not Listed	True	1
1232_pasture_w eeds	3.1	3.1	0.48	Vulnerable	Not Listed	True	-
						Subtotal	11

BAM Vegetation Zones Report

Proposal Details

Assessment Id 00030258/BAAS19010/21/00030259	Assessment name	BAM data last updated * 24/11/2021
Assessor Name	Report Created	BAM Data version *
George Thomas Plunkett	05/05/2022	50
Assessor Number	Assessment Type	BAM Case Status
BAAS19010	Biocertification	Finalised
Assessment Revision	Date Finalised	
2	05/05/2022	
	* Disclaimer: BAM data last updated may indicate eith	per complete or partial update of the

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Vegetation Zones

#	Name	PCT	Condition	Area	Minimum number of plots	Management zones
1	1232_poor	1232-Coastal freshwater swamp forest	poor	0.18	1	
2	1793_poor	1793-Coastal Sand Bangalay Forest	poor	0.23	1	

Assessment Id

Proposal Name

00030258/BAAS19010/21/00030259

BAM Vegetation Zones Report

3	1232_derived_exoti c	1232-Coastal freshwater swamp forest	derived_exotic	0.27	1	
4	1232_pasture_wee ds	1232-Coastal freshwater swamp forest	pasture_weeds	0.48	1	

Assessment Id

00030258/BAAS19010/21/00030259

BAM Predicted Species Report

Proposal Details		
Assessment Id	Proposal Name	BAM data last updated *
00030258/BAAS19010/21/00030259		24/11/2021
Assessor Name	Report Created	BAM Data version *
George Thomas Plunkett	05/05/2022	50
Assessor Number	Assessment Type	BAM Case Status
BAAS19010	Biocertification	Finalised
Assessment Revision		Date Finalised
2		05/05/2022
* Disclaimer: B/	M data last undated may indicate either co	omplete or partial

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Threatened species reliably predicted to utilise the site. No surveys are required for these species. Ecosystem credits apply to these species.

Common Name	Scientific Name	Vegetation Types(s)
Australasian Bittern	Botaurus poiciloptilus	1232-Coastal freshwater swamp forest
Australian Painted Snipe	Rostratula australis	1232-Coastal freshwater swamp forest
Barking Owl	Ninox connivens	1232-Coastal freshwater swamp forest
Black Bittern	Ixobrychus flavicollis	1232-Coastal freshwater swamp forest
Dusky Woodswallow	Artamus	1232-Coastal freshwater swamp forest
	cyanopterus cyanopterus	1793-Coastal Sand Bangalay Forest
Eastern Coastal	Micronomus	1232-Coastal freshwater swamp forest
Free-tailed Bat	norfolkensis	1793-Coastal Sand Bangalay Forest
Eastern Osprey	Pandion cristatus	1232-Coastal freshwater swamp forest
		1793-Coastal Sand Bangalay Forest
Glossy Black- Cockatoo	Calyptorhynchus lathami	1232-Coastal freshwater swamp forest
Grey-headed Flying-	Pteropus	1232-Coastal freshwater swamp forest
fox	poliocephalus	1793-Coastal Sand Bangalay Forest
Large Bent-winged	Miniopterus orianae	1232-Coastal freshwater swamp forest
Bat	oceanensis	1793-Coastal Sand Bangalay Forest

BAM Predicted Species Report

Little Bent-winged Bat	Miniopterus australis	1232-Coastal freshwater swamp forest
Little Eagle	Hieraaetus	1232-Coastal freshwater swamp forest
	morphnoides	1793-Coastal Sand Bangalay Forest
Little Lorikeet	Glossopsitta pusilla	1232-Coastal freshwater swamp forest
		1793-Coastal Sand Bangalay Forest
Masked Owl	Tyto	1232-Coastal freshwater swamp forest
	novaehollandiae	1793-Coastal Sand Bangalay Forest
New Holland Mouse	Pseudomys novaehollandiae	1793-Coastal Sand Bangalay Forest
Powerful Owl	Ninox strenua	1232-Coastal freshwater swamp forest
		1793-Coastal Sand Bangalay Forest
Regent Honeyeater	Anthochaera phrygia	1232-Coastal freshwater swamp forest
		1793-Coastal Sand Bangalay Forest
Rosenberg's Goanna	Varanus rosenbergi	1232-Coastal freshwater swamp forest
		1793-Coastal Sand Bangalay Forest
Spotted Harrier	Circus assimilis	1232-Coastal freshwater swamp forest
Spotted-tailed Quoll	Dasyurus maculatus	1232-Coastal freshwater swamp forest
		1793-Coastal Sand Bangalay Forest
Square-tailed Kite	Lophoictinia isura	1232-Coastal freshwater swamp forest
Swift Parrot	Lathamus discolor	1232-Coastal freshwater swamp forest
		1793-Coastal Sand Bangalay Forest
Varied Sittella	Daphoenositta	1232-Coastal freshwater swamp forest
	chrysoptera	1793-Coastal Sand Bangalay Forest
White-bellied Sea-	Haliaeetus	1232-Coastal freshwater swamp forest
Eagle	leucogaster	1793-Coastal Sand Bangalay Forest
White-throated	Hirundapus	1232-Coastal freshwater swamp forest
Needletail	caudacutus	1793-Coastal Sand Bangalay Forest
Yellow-bellied	Saccolaimus	1232-Coastal freshwater swamp forest
Sheathtail-bat	flaviventris	1793-Coastal Sand Bangalay Forest

Threatened species Manually Added

None added

Threatened species assessed as not within the vegetation zone(s) for the PCT(s) Refer to BAR for detailed justification

BAM Predicted Species Report

Common Name

Scientific Name

Justification in the BAM-C

Proposal Details

Assessment Id	Proposal Name	BAM data last updated *
00030258/BAAS19010/21/00030259		24/11/2021
Assessor Name	Report Created	BAM Data version *
George Thomas Plunkett	05/05/2022	50
Assessor Number	Assessment Type	BAM Case Status
BAAS19010	Biocertification	Finalised
Assessment Revision	Date Finalised	
2	05/05/2022	

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

List of Species Requiring Survey

Name	Presence	Survey Months
Burhinus grallarius Bush Stone-curlew	No (surveyed)	□ Jan □ Feb ☑ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
Cercartetus nanus Eastern Pygmy-possum	Yes (assumed present)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
Chalinolobus dwyeri Large-eared Pied Bat	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct ☑ Nov ☑ Dec □ Survey month outside the specified months?

Haliaeetus leucogaster White-bellied Sea-Eagle	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul ☑ Aug □ Sep □ Oct ☑ Nov ☑ Dec □ Survey month outside the specified months?
<i>Hieraaetus morphnoides</i> Little Eagle	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul ☑ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
<i>Isoodon obesulus obesulus</i> Southern Brown Bandicoot (eastern)	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct ☑ Nov ☑ Dec □ Survey month outside the specified months?
<i>Litoria aurea</i> Green and Golden Bell Frog	No (surveyed)	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Survey month outside the specified months?
<i>Litoria brevipalmata</i> Green-thighed Frog	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul Aug Sep Oct ✓ Nov ✓ Dec Survey month outside the specified months?
<i>Lophoictinia isura</i> Square-tailed Kite	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct ☑ Nov ☑ Dec □ Survey month outside the specified months?

Proposal Name

<i>Melaleuca biconvexa</i> Biconvex Paperbark	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep ☑ Oct □ Nov □ Dec □ Survey month outside the specified months?
Meridolum maryae Maroubra Woodland Snail	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct ☑ Nov ☑ Dec □ Survey month outside the specified months?
<i>Myotis macropus</i> Southern Myotis	Yes (surveyed)	□ Jan □ Feb ☑ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
Vespadelus troughtoni Eastern Cave Bat	Yes (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct ☑ Nov ☑ Dec □ Survey month outside the specified months?

Threatened species Manually Added

Common Name	Scientific Name
Eastern Cave Bat	Vespadelus troughtoni

Threatened species assessed as not on site Refer to BAR for detailed justification

Common name	Scientific name	Justification in the BAM-C
Barking Owl	Ninox connivens	Habitat constraints
Coast Groundsel	Senecio spathulatus	Habitat constraints
Eastern Osprey	Pandion cristatus	Habitat constraints
Glossy Black-Cockatoo	Calyptorhynchus lathami	Habitat constraints

Grey-headed Flying-fox	Pteropus poliocephalus	Habitat constraints
Large Bent-winged Bat	Miniopterus orianae oceanensis	Habitat constraints
Little Bent-winged Bat	Miniopterus australis	Habitat constraints
Magenta Lilly Pilly	Syzygium paniculatum	Refer to BAR
Masked Owl	Tyto novaehollandiae	Habitat constraints
Powerful Owl	Ninox strenua	Habitat constraints
Regent Honeyeater	Anthochaera phrygia	Habitat constraints
Sand Spurge	Chamaesyce psammogeton	Refer to BAR
Squirrel Glider on Barrenjoey Peninsula, north of Bushrangers Hill	Petaurus norfolcensis - endangered population	Refer to BAR
Swift Parrot	Lathamus discolor	Habitat constraints

BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Proposal Details

Assessment Id	Proposal Name	BAM data last updated *
00030258/BAAS19010/21/00030259		24/11/2021
Assessor Name	Assessor Number	BAM Data version *
George Thomas Plunkett	BAAS19010	50
Proponent Names	Report Created	BAM Case Status
	05/05/2022	Finalised
Assessment Revision	Assessment Type	Date Finalised
2	Biocertification	05/05/2022
	* Disclaimer: BAM data last updated may indicate	either complete or partial update of the

Potential Serious and Irreversible Impacts

Name of threatened ecological community	Listing status	Name of Plant Community Type/ID
Nil		
Species		
Vespadelus troughtoni / Eastern Cave Bat		
Additional Information for Approval		
PCT Outside Ibra Added		

Assessment Id

Proposal Name

None added

PCTs With Customized Benchmarks

РСТ

No Changes

Predicted Threatened Species Not On Site

Name

No Changes

Ecosystem Credit Summary (Number and class of biodiversity credits to be retired)

Name of Plant Community Type	e/ID	Name of threatened ecological community		Area of impact	HBT Cr	No HBT Cr	Total credits to be retired	
1232-Coastal freshwater swamp	o forest	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions		0.2	3	0	3	
1793-Coastal Sand Bangalay Fo	rest	Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions		0.2	3	0	3	
1232-Coastal freshwater swamp	oforest	Not a TEC		0.8	0	0	0	
1232-Coastal freshwater	Like-for-like credit retirement options							
swamp forest	Name of offset trading group	Trading group	Zone	HBT	Credits	IBRA reg	ion	

Assessment Id

Proposal Name

00030258/BAAS19010/21/00030259

	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 915, 916, 917, 918, 919, 1125, 1230, 1232, 1234, 1235, 1236, 1726, 1727, 1728, 1729, 1731, 1800, 1808		1232_poor	Yes	3	Pittwater, Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
	Like-for-like credit reti	rement options				
1232-Coastal freshwater swamp forest	Class	Trading group	Zone	НВТ	Credits	IBRA region

Assessment Id

Proposal Name

00030258/BAAS19010/21/00030259

	Coastal Swamp Forests This includes PCT's: 1232, 1723	Coastal Swamp Forests >=90%	1232_pasture_ weeds	No	0	Pittwater, Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
1793-Coastal Sand Bangalay Forest	Like-for-like credit retir Name of offset trading	rement options Trading group	Zone	НВТ	Credits	IBRA region
	group Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions This includes PCT's:	-	1793_poor	Yes	3	Pittwater, Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

Species Credit Summary

Assessment Id

Proposal Name

Species	Vegetation Zone/s	Area / Count	Credits
Cercartetus nanus / Eastern Pygmy-possum	1793_poor	0.2	3.00
Myotis macropus / Southern Myotis	1232_poor, 1793_poor, 1232_derived_exotic, 1232_pasture_weeds	1.2	8.00
Vespadelus troughtoni / Eastern Cave Bat	1232_poor, 1793_poor, 1232_derived_exotic, 1232_pasture_weeds	1.2	11.00

Credit Retirement Options	Like-for-like credit retirement options				
Cercartetus nanus / Eastern Pygmy-possum	Spp	IBRA subregion			
	Cercartetus nanus / Eastern Pygmy-possum	Any in NSW			
Myotis macropus / Southern Myotis	Spp	IBRA subregion			
	Myotis macropus / Southern Myotis	Any in NSW			
Vespadelus troughtoni / Eastern Cave Bat	Spp	IBRA subregion			
	Vespadelus troughtoni / Eastern Cave Bat	Any in NSW			

Assessment Id

Proposal Name

Proposal Details

Assessment Id	Proposal Name	BAM data last updated *
00030258/BAAS19010/21/00030259		24/11/2021
Assessor Name	Assessor Number	BAM Data version *
George Thomas Plunkett	BAAS19010	50
Proponent Name(s)	Report Created	BAM Case Status
	05/05/2022	Finalised
Assessment Revision	Assessment Type	Date Finalised
2	Biocertification	05/05/2022
	* Disclaimer: BAM data last undated may indicate either complete	or partial update of the BAM

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Potential Serious and Irreversible Impacts Name of threatened ecological community Listing status Name of Plant Community Type/ID Nil Species Vespadelus troughtoni / Eastern Cave Bat

Additional Information for Approval

PCT Outside Ibra Added

None added

PCTs With Customized Benchmarks

РСТ		
No Changes		

Predicted Threatened Species Not On Site

Name

No Changes

Ecosystem Credit Summary (Number and class of biodiversity credits to be retired)

Name of Plant Community Type,	/ID	Name of threatened ecological community			Name of threatened ecological community Area of impac			ea of impact	: HBT Cr	No HBT Cr	Total credits to be retired
1232-Coastal freshwater swamp	forest	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions			0.2	3	0	3.00			
1793-Coastal Sand Bangalay For	Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions			0.2	3	0	3.00				
1232-Coastal freshwater swamp	orest Not a TEC				0.8	0	0	0.00			
1232-Coastal freshwater	Like-for-like credit reti	rement options									
swamp forest	Class	Trading group	Zone H	HBT	Credits	IBRA region					

	Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 915, 916, 917, 918, 919, 1125, 1230, 1232, 1234, 1235, 1236, 1726, 1727, 1728, 1729, 1731, 1800, 1808		1232_poor	Yes	3	Pittwater,Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
	Variation options					
	Formation	Trading group	Zone	HBT	Credits	IBRA region
	Forested Wetlands	Tier 1	1232_poor	Yes (includi ng artificia I)		IBRA Region: Sydney Basin, or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
1232-Coastal freshwater	Like-for-like credit retire	ement options				·
swamp forest	Class	Trading group	Zone	HBT	Credits	IBRA region
	Coastal Swamp Forests This includes PCT's: 1232, 1723	Coastal Swamp Forests >=90%	1232_deriv ed_exotic	Yes	0	Pittwater,Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

	Coastal Swamp Forests This includes PCT's: 1232, 1723	Coastal Swamp Forests >=90%	1232_pastu re_weeds	No	0	Pittwater,Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
	Variation options					
	Formation	Trading group	Zone	НВТ	Credits	IBRA region
	Forested Wetlands	Tier 1	1232_deriv ed_exotic	Yes (includi ng artificia l)		IBRA Region: Sydney Basin, or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
	Forested Wetlands	Tier 1	1232_pastu re_weeds	No	0	IBRA Region: Sydney Basin, or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
1793-Coastal Sand Bangalay	Like-for-like credit retire	ement options				·
Forest	Class	Trading group	Zone	HBT	Credits	IBRA region
	Bangalay Sand Forest of the Sydney Basin and South East Corner bioregions This includes PCT's: 659, 1793, 1794	-	1793_poor	Yes	3	Pittwater,Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
	Variation options					
	Formation	Trading group	Zone	HBT	Credits	IBRA region

Dry Sclerophyll Forests	Tier 3 or higher threat	1793_poor	Yes	3	IBRA Region: Sydney Basin,
(Shrubby sub-formation)	status		(includi		or
			ng		Any IBRA subregion that is within 10
			artificia		kilometers of the outer edge of the
			I)		impacted site.

Species Credit Summary

Species	Vegetation Zone/s	Area / Count	Credits
Cercartetus nanus / Eastern Pygmy-possum	1793_poor	0.2	3.00
Myotis macropus / Southern Myotis	1232_poor, 1793_poor, 1232_derived_exotic, 1232_pasture_weeds	1.2	8.00
Vespadelus troughtoni / Eastern Cave Bat	1232_poor, 1793_poor, 1232_derived_exotic, 1232_pasture_weeds	1.2	11.00

Credit Retirement Options Like-for-like options

Cercartetus nanus / Eastern Pygmy-possum	Spp		IBRA region		
	Cercartetus nanus/Easter	Eastern Pygmy-possum Any in NSW			
	Variation options				
	Kingdom	Any species wi higher categor under Part 4 of shown below	y of listing	IBRA region	

	Fauna	Vulnerable		Pittwater, Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.		
Myotis macropus/	Spp	IBRA region				
Southern Myotis	Myotis macropus/Southern Myotis		Any in NSW			
	Variation options					
	Kingdom	Any species with same or higher category of listing under Part 4 of the BC Act shown below		IBRA region		
	Fauna	Vulnerable		Pittwater, Cumberland, Sydney Cataract, Wyong and Yengo. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.		
Vespadelus troughtoni/	Spp		IBRA region			
Eastern Cave Bat	Vespadelus troughtoni/Eastern Cave B	/espadelus troughtoni/Eastern Cave Bat Any in				
	Variation options					
	Kingdom	Any species with same or higher category of listing under Part 4 of the BC Act shown below		IBRA region		

Fauna	Pittwater, Cumberland, Sydney Cataract, Wyong and Yengo.
	or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.