

HANNAS CONTRACTING SERVICES PTY LTD

Detailed Site Investigation

101-105 Old Pittwater Road, Brookvale NSW

E25568.E02_Rev0 1 July 2022

Document Control

Report Title: Detailed Site Investigation; 101-105 Old Pittwater Road, Brookvale NSW

Report No: E25568.E02_Rev0

Copies		Recipient	
1	Soft Copy	Hannas Contracting Services Pty Ltd	
	(PDF – Secured, issued by email)	Suite 26.02 Governor Phillip Tower, 1 Farrer Place Sydney NSW 2000	
1	Original	El Australia Pty Ltd	
	(Saved to Digital Archives)	Suite 6.01, 55 Miller Street,	
	(Saved to Digital Archives)	Pyrmont NSW 2009	

Author

Technical Reviewer

(Swe)

Li Wei Environmental Engineer		Pedro Balbachevsky CEnvP Cert.No: 1445 Principal Environmental Engineer	
Revision	Details	Date	Amended By
0	Original	1 July 2022	-

© 2022 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

TABLE OF CONTENTS

Page Number

EX	ECU	TIVE SUMMARY	I
1.	INT	RODUCTION	1
	1.1	Background and Purpose	1
	1.2	Proposed Development	1
	1.3	Regulatory Framework	1
	1.4	Project Objectives	2
	1.5	Scope of Works	2
2.	SIT	E DESCRIPTION	3
	2.1	Property Identification, Location and Physical Setting	3
	2.2	Local Land Use	3
	2.3	Regional Setting	4
	2.4	Site Walkover Inspection	4
3.	PRE	EVIOUS INVESTIGATION	6
4.	COI	NCEPTUAL SITE MODEL	8
	4.1	Summary of Site History	8
	4.2	Potential Contamination Sources	8
	4.3	Emerging Contaminants	8
	4.4	Potential Contaminants	10
	4.5	Risk Assessment	10
	4.6	Exposure Pathways and Receptors	11
	4.7	Data Gaps	11
5.	ME	THODOLOGY	13
	5.1	Sampling and Analysis Quality Plan (SAQP)	13
	5.2	Data Quality Objectives	13
	5.3	Data Quality Indicators	16
	5.4	Sampling Rationale	17
	5.5	Assessment Criteria	17
	5.6	Soil Sampling	18
	5.7	Groundwater Sampling	19
6.	DA	TA QUALITY ASSESSMENT	21
7.	RES	SULTS	23
	7.1	Soil Field Results	23
		7.1.1 Sub-Surface Conditions	23
		7.1.2 Field Observations and PID Results	23
	7.2	Groundwater Field Results	24

				36
RE	FERE	NCES		34
11.	STA	TEMEN	IT OF LIMITATIONS	33
10.	REC	OMME	NDATIONS	32
9.	CON		ON	30
	8.4	Review	v of Conceptual Site Model	28
	8.3	Ground	dwater Impacts	28
	8.2	Soil Im	pacts	28
	8.1	Subsur	rface Conditions	28
8.	SITE	E CHAR	ACTERISATION	28
		7.3.2	Groundwater Analytical Results	26
		7.3.1	Soil Analytical Results	25
	7.3	Labora	atory Analytical Results	25
		7.2.2	Field Observations	24
		7.2.1	Monitoring Well Construction	24

Schedule of Tables

Site Identification	3
Local Land Use	3
Regional Setting	4
Summary of the Previous Investigation	6
PFAS Decision Tree	8
Emerging or Controlled Chemicals	9
Assessment of Potential Contamination Risk	10
Conceptual Site Model	12
Summary of Project Data Quality Objectives	14
Data Quality Indicators	16
Adopted Investigation Levels for Soil and Groundwater	17
Summary of Soil Sampling Methodology	18
Summary of Groundwater Sampling Methodology	19
Quality Control Process	21
Generalised Sub-Surface Profile	23
Monitoring Well Construction Details	24
Groundwater Field Data	24
Summary of Soil Analytical Results	25
Summary of Groundwater Analytical Results	26
	Local Land Use Regional Setting Summary of the Previous Investigation PFAS Decision Tree Emerging or Controlled Chemicals Assessment of Potential Contamination Risk Conceptual Site Model Summary of Project Data Quality Objectives Data Quality Indicators Adopted Investigation Levels for Soil and Groundwater Summary of Soil Sampling Methodology Summary of Groundwater Sampling Methodology Quality Control Process Generalised Sub-Surface Profile Monitoring Well Construction Details Groundwater Field Data Summary of Soil Analytical Results

Appendices

APPENDIX A – FIGURES

- 1. Site Locality Plan
- 2. Sampling Location Plan
- 3. Groundwater Contour Plan

APPENDIX B – TABLES

- 1. Summary of Soil Analytical Results
- 2. Summary of Groundwater Analytical Results

APPENDIX C – PROPOSED DEVELOPMENT

- **APPENDIX D SITE PHOTOGRAPHS**
- **APPENDIX E BOREHOLE LOGS**

APPENDIX F – CALIBRATION FORM AND FIELD DATA SHEETS

APPENDIX G – CHAIN OF CUSTODY AND SAMPLE RECEIPT DOCUMENTATION

APPENDIX H – LABORATORY ANALYTICAL REPORTS

APPENDIX I – QA/QC ASSESSMENT

APPENDIX J – LABORATORY QA/QC AND DQOS

EXECUTIVE SUMMARY

El Australia (El) was engaged by Hannas Contracting Services Pty Ltd ('the client') to conduct a Detailed Site Investigation (DSI) for the property located at 101-105 Old Pittwater Road, Brookvale NSW ('the site').

The site is located within the local government area of Northern Beaches Council. It comprises four cadastral allotments, identified as Lots 1 to 4 in Deposited Plan (DP) 402645, and covers an area of approximately 4,211 m². At the time of the investigation, the site was occupied by commercial properties.

The purpose of this investigation was to determine the environmental conditions (contamination status) of the site, in support of a development application to Northern Beaches Council. This DSI enables the developer to meet obligations under the *State Environmental Planning Policy* (Resilience and Hazards) (2021) (formerly SEPP 55 – Remediation of Land), for the assessment and management of contaminated soil and/or groundwater, should these be identified.

The site redevelopment will involve the demolition of existing structures, followed by the construction of a multi-storey industrial warehouse with strata storage units, overlying a single level basement.

This DSI follows on from a previous (preliminary) investigation completed for the site by JK Environments (JKE), entitled:

 JKE (2022) Report to Hannas Contracting Services Pty Ltd on Preliminary (Stage 1) Site Investigation for Proposed Industrial Development at 101-105 Old Pittwater Road, Brookvale NSW (Ref. E34695PRrpt, dated 9 March 2022).

The scope of works for this DSI included intrusive soil and groundwater sampling, in accordance with the following rationale:

- Sampling of fill and natural soils from seven borehole locations across accessible parts of the site, to characterise *in situ* soils;
- Completion of a single groundwater monitoring event (GME) comprising three newly installed monitoring wells, to characterise local groundwater conditions; and
- Laboratory analysis of representative soil and groundwater samples for the chemicals of potential concern.

Findings

The key findings of this DSI were as follows:

- The site consists of a number of warehouse buildings and small commercial / industrial units. Current commercial activities identified on the site include a marble and stone worker warehouse and associated showrooms, a kayak retailer, a retail display manufacturer, a landscaping business, a pipe repairer, a retail research and a virtual design company.
- There were no evidences of underground petroleum storage systems (UPSS), underground storage tanks (UST), or above-ground storage tank (AST) present on the site.
- The subsurface conditions were generalised as a layer of filling (to the depths of up to 3.0 mBGL), overlying natural sand / clay soils.
- Contaminant concentrations in representative soil samples were found to be generally below the adopted human health and ecological criteria applicable to commercial / industrial land use settings, with the following exceptions:

- Friable and bonded asbestos were detected in shallow fill at BH7 (depths 0.1-0.2 mBGL); and
- Asbestos was also identified in fill soils at two previous locations investigated by JKE (2022), being JKE_BH6 (depths 0.13-0.35 mBGL) and JKE_BH7 (depths 0.2-0.6 mBGL).
- Screening for volatile organic compounds (VOC) in soil headspace samples was conducted using a pre-calibrated PID. VOC concentrations from collected soil samples were low (<1 ppm).
- Depth to water in the groundwater monitoring wells (GW-BH1 to GW-BH3) was recorded between 2.43 and 4.20 mBGL. Groundwater flow direction was inferred to be northeasterly, towards Brookvale Creek (170m east from the site).
- Contaminant concentrations in groundwater were generally compliant with the adopted criteria, with the following exceptions:
 - Priority metals (copper and zinc) were detected in groundwater at levels marginally above the adopted criteria. However, these detected concentrations are consistent with the local disturbed urban background conditions and unlikely to be associated with sitespecific impacts.
 - TRH-F1 concentrations above the laboratory practical quantitation limit (PQL) were detected at GW-BH1 (170 µg/L), while TRH-F2 concentrations above the PQL were detected at GW-BH3 (72 µg/L).
 - Chlorinated volatile organic compounds (CVOCs) were only detected in groundwater at GW-BH1. The detected contaminants included perchloroethylene (PCE) and its breakdown products cis-1,2-dichloroethene (cis-DCE) and Trichloroethylene (TCE).
 - PCE is an industrial solvent used for dry cleaning and textile processing. The source of these elevated concentrations is likely associated with potential migration of contaminations from the neighbouring property, which was noted to be a potential active laundry located up-gradient of well GW-BH1.

Based on the findings obtained from this DSI, and with consideration of El's *Statement of Limitations* (Section 11), El concludes that:

- There are localised areas of impacted soils (asbestos) above the adopted human health criteria that potentially pose human health risks;
- TRHs and chlorinated VOCs are present in groundwater at GW-BH1. As the proposed basement is expected to intercept groundwater, a risk assessment must be conducted to inform the design of protection measures to be implemented during and after the building construction. These protection measures will protect future receptors from any potential risks posed by these contaminants via direct contact (construction and future intrusive workers) or vapour intrusion (future users of the basement); and
- The site can be made suitable for the potential future site development, provided the recommendations detailed in **Section 10** are implemented.

1. INTRODUCTION

1.1 Background and Purpose

El Australia (El) was engaged by Hannas Contracting Services Pty Ltd ('the client') to conduct a Detailed Site Investigation (DSI) of the land parcel located at 101-105 Old Pittwater Road, Brookvale NSW (herein referred to as the 'the site').

The site is located 13 km north-east of the Sydney central business district (CBD), within the local government area (LGA) of Northern Beaches Council, as shown in **Figure 1**, **Appendix A**. The site comprises four cadastral allotments, identified as Lots 1 to 4 in Deposited Plan (DP) 402645, and covers an area of approximately 4,211 m², as depicted in **Figure 2**, **Appendix A**. At the time of the investigation, the site was occupied by commercial properties.

The purpose of this investigation was to determine the environmental conditions (contamination status) of the site, in support of a development application to Northern Beaches Council. This DSI enables the developer to meet obligations under the *State Environmental Planning Policy* (Resilience and Hazards) (2021) (formerly SEPP 55 – Remediation of Land), for the assessment and management of contaminated soil and/or groundwater, should these be identified. It follows on from a previous (preliminary) investigation completed for the site by JK Environments (JKE), entitled:

 JKE (2022) Report to Hannas Contracting Services Pty Ltd on Preliminary (Stage 1) Site Investigation for Proposed Industrial Development at 101-105 Old Pittwater Road, Brookvale NSW (Ref. E34695PRrpt, dated 9 March 2022).

1.2 Proposed Development

Based on the supplied plans (**Appendix C**), the site redevelopment will involve the demolition of existing structures, followed by the construction of a multi-storey industrial warehouse with strata storage units, overlying a single level basement.

The basement will be constructed covering most of the site area, with a finished floor level (FFL) of 9.6 metres Australian Height Datum (mAHD). Locally deeper excavations might be required for footings, lift overrun pits, crane pads and service trenches. Limited set-back areas are proposed along the western site boundary.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during this DSI:

- Contaminated Land Management Act 1997 (the CLM Act 1997);
- Protection of the Environment Operations Act 1997 (the POEO Act 1997);
- Environmental Planning and Assessment Act 1979 (the EP&A Act 1979);
- State Environmental Planning Policy (Resilience and Hazards) (2021) (formerly SEPP 55 Remediation of Land);
- Warringah Local Environmental Plan 2011;
- NSW EPA (1995) Sampling Design Guidelines;
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme;
- NSW EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines; and

• NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater and Schedule B(2) Guideline on Site Characterisation, in the National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999.

1.4 Project Objectives

The objectives of this investigation were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence;
- Assess the degree of soil and groundwater contamination (if present), by means of intrusive sampling and laboratory analysis for the relevant contaminants of potential concern (COPCs);
- Provide a conclusion regarding suitability of the site for the proposed use; and
- Make recommendations for the appropriate management of any impacted soils and/or groundwater, should site contamination be confirmed.

1.5 Scope of Works

To achieve the above objectives, the following scope of works was completed:

Desktop Study

- A review of relevant (hydro)geological and soil landscape maps for the project area; and
- A review of the previous environmental report (JKE, 2022).

Fieldwork and Laboratory Analysis

- A review of existing underground services on-site, utilising *Dial-Before-You-Dig* plans and electro-magnetic equipment operated by a licensed services locator;
- A site walkover inspection;
- Construction of test boreholes at seven locations (BH1 to BH7), distributed in a generally triangular grid pattern across accessible parts of the site;
- Conversion of three of the test boreholes into groundwater monitoring bores (BH1 to BH3);
- Multiple level soil sampling within fill and natural soils at each of the test bores;
- Completion of one groundwater monitoring event (GME), including measurement of standing water levels (SWLs) and representative sampling at the newly installed wells; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters, as determined by the desktop study and field observations.

Data Analysis and Reporting

This DSI report documents all desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. It also provides a record of observations made during the site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic condition of the land.

2. SITE DESCRIPTION

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in **Table 2-1**. The site locality and assessment area are illustrated in **Figures 1** and **2**, **Appendix A**.

Table 2-1 Site Identification

Attribute	Description	
Street Address	101-105 Old Pittwater Road, Brookvale NSW	
Location Description	13 km north-east of Sydney CBD, bound by Old Pittwater Road to the west and commercial / industrial properties in all other directions.	
Site Coordinates	Northern-eastern corner of site (GDA2020-MGA56): Easting: 339153.405; Northing: 6262493.237. (Source: <u>http://maps.six.nsw.gov.au</u>) 	
Site Area	4,211 m ² (Appendix C)	
Lots and DP	Lots 1 to 4 in DP 402645	
State Survey Marks	 Three state survey marks and one permanent mark are situated within close proximity (<100m) to the site: SS19744: on Old Pittwater Road (approx. 25m south); and SS19748D, SS36915 and PM1502D: on Old Pittwater Road (approx. 80m northwest). (Source: <u>http://maps.six.nsw.gov.au</u>) 	
LGA	Northern Beaches Council	
Parish	Manly Cove	
County	Cumberland	
Current Zoning	IN1: General Industrial (Warringah Local Environmental Plan 2011)	

2.2 Local Land Use

The site is situated within a predominantly commercial / industrial area, as described in **Table 2-2**. The local sensitive receptors within close proximity to the site are also identified in this table.

Local Land Use	
Land Use Description	Sensitive Receptor (and distance from site)
Commercial / industrial properties Only About Children Brookvale	Childcare (immediately adjacent)
Commercial / industrial properties Explore & Develop Brookvale / Warringah Mall Child Care Centre	Childcare (approximately 100m southwest & 185m southeast)
Commercial / industrial properties	-
Commercial / industrial properties	-
	Land Use Description Commercial / industrial properties Only About Children Brookvale Commercial / industrial properties Explore & Develop Brookvale / Warringah Mall Child Care Centre Commercial / industrial properties

2.3 Regional Setting

The topography, (hydro)geology and soil landscape information are summarised in **Table 2-3**.

Tuble 2 0 Regit	Shar Ootting
Attribute	Description
Topography	The site slopes down to the east, with elevations ranging from approximately 15.7-16.0 mAHD along the western site boundary to approximately 12.7-13.0 mAHD along the eastern site boundary (refer to survey plan attached in Appendix C).
Site Drainage	Likely to be consistent with the general slope of the site. Stormwater is expected to be collected in stormwater pits to the east and piped to the municipal collection system.
Regional Geology	The Department of Mineral Resources Sydney 1:100,000 Geological Series Sheet 9130 (DMR, 1983) indicates the site is underlain by Hawkesbury Sandstone (<i>Rh</i>), consisting of medium to coarse-grained quartz sandstone, very minor shale and laminite lenses.
Soil Landscape	The Soil Conservation Service of NSW <i>Soil Landscapes of the Sydney 1:100,000</i> <i>Sheet</i> (Chapman and Murphy, 1989) indicates that the site overlies a Disturbed Terrain (<i>xx</i>) landscape. This landscape is characterised by level plain to hummocky terrain, extensively disturbed by human activity, including complete disturbance, removal or burial of soil. Landfill includes soil, rock, building and waste materials. Original vegetation is completely cleared, replaced with turf or grassland. Turfed areas are commonly capped with up to 40-60cm of sandy loam or compacted clay, over fill or waste materials.
Acid Sulfate Soil (ASS) Risk	 With reference to the Sydney Heads Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the site lies within the class description of 'No Known Occurrence'. In such cases, ASSs are not known or expected to occur and "land management activities are not likely to be affected by ASS materials." The site is not mapped as containing ASS on the Warringah Local Environmental Plan 2011 Acid Sulfate Soil Maps. Based on this information, the potential for ASS to be present on-site was considered to be low and further assessments were deemed unwarranted.
Nearest Surface Water Feature	Brookvale Creek, approximately 170m east of the site, which flows in a southeast direction into Manly Creek, then ultimately Manly Beach.
Groundwater Bore Records and Groundwater Flow Direction	A search of WaterNSW was conducted during the previous investigation (JKE, 2022), revealing five registered bores within a 500m radius of the site. The nearest four registered bores were all authorized for monitoring use only. Groundwater flow direction in the area was inferred to be in an easterly direction, towards Brookvale Creek.

Table 2-3 Regional Setting

2.4 Site Walkover Inspection

Observations were recorded during a walkover inspection of the site conducted on 21 May 2022. These observations are summarised below and photographs taken during the inspection are presented in **Appendix D**. A detailed description of the site and earlier use was provided by JKE (2022) and summarised in **Section 3**.

- The site is a rectangular shaped block of land, consisting of a number of warehouse buildings and small commercial / industrial units. Unbuilt parts of the site were sealed with brick / concrete pavements.
 - Current commercial activities identified on the site include a marble and stone worker warehouse and associated showrooms, a kayak retailer, a retail display manufacturer, a landscaping business, a pipe repairer, a retail research and a virtual design company.
 - Building structures were observed to be generally in fair to good condition. Fibre cement sheeting (FCS) containing potential asbestos-containing materials (ACM) was observed in the building structures.

Page | 5

- Brick pavers were located in the west of the site, used for car parking. The remainder of the site was sealed with concrete pavement for driveways and outdoor storage. The pavements were generally in poor condition, with major cracks.
- Skip bins were found to be adjacent to the stone masonry within the central portion of the site on the hardstand area. Waste materials, including timber, plastic and stone, were observed. No staining was noted.
- Limited accessible soils are only present within the garden beds at the western and eastern boundaries of the site. The vegetation did not appear to be distressed. Some waste materials, including PCV pipes, tiles, plastic and potential fibre cement sheeting were present on the soil surface along the western site boundary.
- A chain meshed fence was found to be delineating the eastern site boundary and a stormwater drain was noted.
- No obvious (i.e. visible or olfactory) signs of contamination were observed during the inspection of the site.
- There were no evidences of underground petroleum storage systems (UPSS), underground storage tanks (UST), or above-ground storage tank (AST) present on the site.
- According to anecdotal information gathered during the site visit, a fire has historically occurred at the rear of the warehouse building, in the southern portion of the site.
- The neighbouring properties south of the site (up gradient of groundwater well GW-BH1), comprised multiple commercial-industrial tenancies, including a potential active laundry (unable to confirm status as it was closed during the walkover) and a unit involved with metalworking / paint activities.

3. PREVIOUS INVESTIGATION

A previous (preliminary) investigation had been completed for the site by JKE, which was documented under the following report:

 JKE (2022) Report to Hannas Contracting Services Pty Ltd on Preliminary (Stage 1) Site Investigation for Proposed Industrial Development at 101-105 Old Pittwater Road, Brookvale NSW (Ref. E34695PRrpt, dated 9 March 2022).

A summary of the key findings of this report is provided in **Table 3-1**.

Project Task	Findings
Aims	The primary aims of the investigation were to identify any past or present potentiall contaminating activities at the site, identify the potential for site contamination, and make a preliminary assessment of soil and groundwater contamination conditions.
Scope of Works	The scope of the investigation included a review of site information, a site walkove inspection and soil sampling from four boreholes (BH4 to BH7).
Findings	At the time of site inspection on 22 January 2022, the site was occupied b warehouses/offices buildings and smaller commercial/industrial units. The current and recent tenancies included a marble and stone worker warehouse and associate showrooms; a kayak retailer (Epic Kayaks); a retail display manufacturer (The Efficience Group); a landscaping business (Formed Gardens); a pipe repairer (RSM lining Supplies); and a retail research and virtual design company (Store Lab). The site was historically used for agricultural purposes, and then developed for commercial/industrial uses since the 1950s, which were likely associated with pair production, rubber and plastic production, metal and iron work, protective coatings, and furniture repairs.
	Surrounding properties were industrial/commercial properties since the 1950s, including the manufacture of bituminous tar products, paints, oils/lubricants and insecticide products, commercial printing, panel beating and boat building/repairs, and ferrous and non-ferrous foundries. Council records identified that development consents were granted for the installation of a petrol pump and USTs at a property adjacent to the north of the site and a building fire was recorded in 1992 for this property.
	Intrusive investigations identified that the sub-surface conditions of the site could be generalised as a layer of filling (to depths of 0.5-1.0 mBGL), overlying natural sand. The fill typically comprised silty and gravelly sand, with inclusions of igneous and sandstone gravels, ash, slag and building rubble (brick and glass fragments). A fragment of FCS was identified in shallow fill soils in BH7.
	No visible or olfactory signs of contamination were noted during the inspectior Groundwater seepage was not encountered during drilling to a maximum borehole dept of 3 mBGL.
	A search of SafeWork NSW database recorded the presence of 2 Depots. Depot (Flammable) contained 500L liquefied petroleum gas (LPG) tank and 1,000L acetylend tank. Depot 2 (Compressed Non-Flammable) contained a 53.4L Argoshield cylinder and a 18.6L oxygen cylinder. JKE noted that the dangerous goods stored on-site were considered to not represent potential sources of site contamination.
	The site was not listed on any NSW EPA records. Four neighbouring properties wer listed in the Records under the Duty to Report Contamination under Section 60 of th CLM Act 1997, including Warringah Mall and a petroleum product manufacturer adjacer to the east of the site, a dry cleaner business approx. 180m to the south of the sit (cross-gradient), and a bus depot approx. 570m to the east of the site (down-gradient JKE concluded that due to the distances and cross/down-gradient locations, thes

Table 3-1 Summary of the Previous Investigation

Project Task	Findings
	properties were not considered to represent potential sources of site contamination.
	Two current licences under the POEO Act 1997 were also identified at the neighbouring properties, one related to the production of petroleum products and fuel production at a property adjacent to the east of the site, and the other related to the storage and recovery of paper wastes at a property 180m to the north (cross-gradient) of the site. JKE noted that the petroleum products and fuel production at the property adjacent to the east of the site was considered to represent a potential source of contamination due to the proximity to the site. JKE also noted that the paper waste storage/recovery facility was not considered to represent a potential source of site contamination.
	The conceptual site model established that there was a potential contamination risk for the site, associated with imported fill materials, historical agricultural use, application of pesticides, hazardous building materials, industrial use of the site, and off-site migration from neighbouring properties.
	Contamination concentrations at the selected fill and natural soils were assessed agains NEPM (2013) thresholds for commercial/industrial land use settings. The results were generally below the adopted criteria, with the exception of zinc concentration in fill a BH7 exceeded the ecological criteria, and asbestos was identified in fill at BH6 and BH7
Conclusion and Recommendations	Based on the above findings, JKE concluded that the site could be made suitable for the proposed development, subject to the recommendations as follows:
	 Undertake a DSI to fully characterise the soils and groundwater at the site; Prepare a Remediation Action Plan (RAP) to address the contamination issues identified at the site.
	Due to the presence of asbestos, an appropriate asbestos management plan (AMP must be prepared and implemented for the current site operations and for the demolition/construction phase of the proposed development to meet the requirements under Clause 429 of the Work Health and Safety Regulation 2017 (NSW).

4. CONCEPTUAL SITE MODEL

In accordance with NEPC (2013) Schedule B2 – Guideline on Site Characterisation, El developed a conceptual site model (CSM) that assessed plausible linkages between potential contamination sources, migration pathways and receptors. The CSM also provides a framework for identifying data gaps in the existing site characterisation.

4.1 Summary of Site History

A review of the previous PSI (JKE, 2022) indicated that the site was historically used for agricultural purposes, and then developed for commercial / industrial uses since the 1950s, which were likely associated with paint, rubber and plastic production, metal and iron work, protective coatings, and furniture repairs. Building structures on the site were constructed in the late 1950s, with a couple of renovations observed since that time. According to anecdotal information gathered during the site visit, a fire has historically occurred at the rear of the warehouse building in the southern portion of the site.

Surrounding properties were also used for agricultural purposes until the 1950s and then developed for commercial/industrial uses.

4.2 Potential Contamination Sources

The potential contamination sources were as follows:

- Imported fill materials of unknown origin and quality, used to grade and level the site;
- Hazardous building materials (including potential ACM, lead-based paint) present within the site structures;
- Application of pesticides around building (footing) perimeters;
- Historical agricultural use of the site;
- Industrial use of the site (including paint production, rubber and plastic production, metal and iron work, protective coatings, and furniture repairs);
- Contamination associated with historical fire damage onsite;
- Leaks from vehicles in the car parking and driveway areas; and
- Off-site migration from neighbouring commercial properties.

4.3 Emerging Contaminants

Per- and Poly- Fluoroalkyl Substances (PFAS)

NSW EPA (2017) requires that PFAS are considered when investigating land contamination. The probability of PFAS occurrence, which was based on considerations outlined in the *PFAS National Environmental Management Plan* (HEPA, 2020), is reviewed in **Table 4-1**. In this instance, the potential for PFAS to be present on-site was deemed moderate to high.

Table 4-1PFAS Decision Tree

Preliminary Screening	Probability of Occurrence ¹	
Has an activity listed in HEPA (2020) ² as being associated with PFAS contamination occurred on-site? If so, list activity:	М	
Paint production; rubber and plastic production; metal and iron work; protective coatings; and furniture repairs.		

Preliminary Screening	Probability of Occurrence
Has an activity listed in HEPA (2020) ² as being associated with PFAS contamination occurred up-gradient or adjacent to the site? If so, list activity: <i>A range of industrial activities was historically present up-gradient/adjacent from the site.</i>	Μ
Did fire training involving the use of suppressants occur on-site between 1970 and 2010? According to anecdotal information gathered during the site visit, a fire has historically occurred at the rear of the warehouse building on the southern portion of the site. Although not a 'training event', fire suppressants were likely used.	Н
Did fire training occur up-gradient or adjacent to the site between 1970 and 2010? 3	L
Have "fuel" fires ever occurred on-site between 1970 and 2010? (e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks?) One property adjacent to the north was historically damaged by fire during the 1990s.	М
Have PFAS been used in manufacturing or stored on-site? ⁴	L
Could PFAS have been imported to the site in fill materials from a site with an activity listed in HEPA (2020)?	L
Could PFAS-contaminated groundwater or run-off have migrated on to the site?	Μ
Is the site or adjacent sites listed in the NSW EPA PFAS Investigation Program? 5	L
If the probability is medium or high in any of the rows, does the site analytical suite need to be optimised to include preliminary sampling and testing for PFAS in soil (including ASLP testing) and waters?	Yes

Note 1 Probability: L – low (all necessary documentation has been reviewed and there is no recorded instance or compelling rationale); M – moderate (all necessary documentation has been reviewed and there is potential evidence of a recorded instance with compelling rationale); H – high (all necessary documentation has been reviewed and there is evidence of a recorded instance with compelling rationale).

Note 2 Activities listed in Appendix B of HEPA (2020).

Note 3 Runoff from up-gradient PFAS use may impact surface water, soil, sediment and groundwater.

 Note 4 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of nonstick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam. (https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas)
 Note 5 Refer to https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program.

Emerging Chemicals

The NSW EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the *Environmentally Hazardous Chemicals Act 1985*, to control chemicals of concern and limit their potential impact on the environment. Considerations for chemicals controlled by CCOs, and other potential emerging chemicals, are outlined in **Table 4-2**. In this instance, the potential for an emerging chemical of concern to be present on-site was deemed low, with the possible use of pesticides before the 1950s and later, in imported fill and near surface soil.

 Table 4-2
 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Decision
Were aluminium smelter wastes used or stored on site (CCO, 1986)?	No
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the site? ¹	No
Were organotin products (CCO, 1989) used or stored on site? ²	No
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? ³	No
Were scheduled chemical or wastes (CCO, 2004) used or stored? ⁴	Possibility for pesticides used before the 1950s, later applied to footings

Chemicals of Concern (CCO or emerging)	Decision
	for termite control and/or present in imported fill
Are other emerging chemicals suspected? 5	No
If Yes to any questions, has site sampling suite been optimised to include sampling for these chemicals of concern?	Yes

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the site.

Note 2 From anti-fouling paints used or removed at boat and ship yards and marinas.

Note 3 From older transformer oils and electrical capacitors

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging (e.g. 1,4 dioxane; associated with some CVOC).

4.4 Potential Contaminants

The primary contaminants of potential concern (COPCs) at the site were considered to be:

- Priority Metals (PM) arsenic, cadmium, chromium, copper, lead, mercury, nickel & zinc;
- Volatile Organic Compounds (VOC), including:
 - Total Recoverable Hydrocarbons (TRH);
 - Benzene, Toluene, Ethylbenzene and Xylenes (BTEX); and
 - Chlorinated Volatile Organic Compounds (CVOC);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Organochlorine and Organophosphorus Pesticides (OCP / OPP);
- Polychlorinated Biphenyls (PCB);
- Asbestos;
- Per-and Poly- Fluoroalkyl Substances (PFAS); and
- Phenols.

4.5 Risk Assessment

An assessment of the potential contamination risks for the site is outlined in Table 4-3.

Potential Source	Impacted Medium	COPC	Risk of Contamination
Importation of fill of unknown origin and quality	Shallow soil	PM, TRH, BTEX, PAH, OCP, OPP, PCB and asbestos	Moderate Asbestos was identified at two previous locations during the PSI by JKE (2022).
Hazardous building materials	Building fabrics Near surface soil	PM (lead in particular), PCB and asbestos	Moderate FCS was observed in the building structures during the site visit. Note that a hazardous materials survey has been completed by JKE following the PSI.
Application of pesticides	Near surface soil (building footing areas)	PM (arsenic and copper), OCP, OPP	Low If present, pesticides are expected to be limited to shallow, building footprint soils.
Historical agriculture use of the site before 1950	Shallow soil	PM, TRH, PAH, OCP, OPP	Low If present, pesticides are expected to be limited to shallow soils
Industrial use of the site / historical fire	Soil and	PM, TRH, VOC (including BTEX	Moderate to High

 Table 4-3
 Assessment of Potential Contamination Risk

Potential Source	Impacted Medium	COPC	Risk of Contamination
damage	groundwater	and CVOC), PAH, PFAS and phenols	A range of industrial / commercial activities was identified on the site (Section 4.1). A fire has historically occurred at the rear of the warehouse building in the southern portion of the site
Leakage from vehicles	Shallow soil	TRH and BTEX	Low Contamination (if present) is likely to be localised and restricted to shallow soils.
Migration from off- site sources	Soil Groundwater	PM, TRH, VOC (including BTEX and CVOC), PAH, PFAS and phenols	Moderate A range of industrial / commercial activities was identified around the site. One property adjacent to the north was historically damaged by fire during the 1990s.

4.6 Exposure Pathways and Receptors

The following potential receptors of site contamination were identified:

- Current and future site users;
- Demolition and construction workers;
- Occupants / Users of the adjacent land during construction;
- Future intrusive workers; and
- Brookvale Creek.

Given the qualitative risk assessment summarised in **Section 4.5**, the risks to these receptors were considered to be moderate to high. Refer to **Table 4-4** for an overview of the CSM.

4.7 Data Gaps

Based on the CSM derived for the site and the qualitative assessment of risks, the degree (presence / extent) of impacts associated with the identified contamination sources constituted an investigation data gap, which was largely closed by this DSI. The following data gaps, however, still remain:

- Delineation of the vertical and lateral extent of detected soil impacts (asbestos) at various locations as detailed in Section 8.2; and
- Soil vapour characterisation assessment at depths comprising the vadose zone immediately below the future basement slab.

Table 4-4 Conceptual Site Model

Potential Source	Impacted Media	Contaminants of Potential Concern	Transport mechanism	Exposure pathway	Potential receptor
Imported fill of unknown	Soil	PM, TRH, VOC	Disturbance of surface and subsurface	Ingestion	Current and future site users
origin and quality		(including BTEX and	soils during site redevelopment, future	Dermal contact	Demolition / construction workers
Hazardous building		CVOC), PAH, OCP,	site maintenance and future use of the	Inhalation of particulates	Adjacent site users
materials		OPP, PCB, asbestos, phenols and PFAS	site post redevelopment.	Inhalation of vapours	Future intrusive workers
A 11 /1 / / /1 /1		,	Volatilisation of contamination from soil	Inhalation of vapours	Current and future site users
Application of pesticides			and diffusion to indoor air spaces.		Adjacent site users
Historical agriculture use	Groundwater	Dissolved PM, TRH,	Volatilisation of contamination from	Inhalation of vapours	Current and future site users
		VOC (including BTEX	groundwater to indoor air spaces		Adjacent site users
ndustrial use of the site		and CVOC), PAH,	(onsite and offsite)		
-ire damage		phenols and PFAS	Disturbance of surface and subsurface	Ingestion	Demolition / construction workers
ne damage	soils during site		soils during site redevelopment, future	Dermal contact	Future intrusive workers
_eakage from vehicles			site maintenance and future use of the site post redevelopment.	Inhalation of vapours	
Off-site migration from			Migration of dissolved phase impacts in	Biota uptake	Brookvale Creek
upgradient sources	-		groundwater via diffusion and natural advection		(approx. 170m east of the site)

5. METHODOLOGY

5.1 Sampling and Analysis Quality Plan (SAQP)

The SAQP ensures that the data collected during environmental works are representative and provide a robust basis for assessment decisions. The SAQP for this DSI included the following:

- Data quality objectives (DQO), including a summary of the objectives of the DSI;
- Investigation methodology, including the media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling procedures (including sample handling, preservation and storage);
- Field screening methods;
- Laboratory analysis methods; and
- Analytical quality assurance / quality control (QA/QC).

5.2 Data Quality Objectives

In accordance with the NEPC (2013) Schedule B2 Guideline on Site Characterisation, the USEPA (2006) Data Quality Assessment and NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme, data quality objectives (DQO) were developed by the EI investigation team, following the NEPM- / NSW EPA- endorsed, seven step process (**Table 5-1**). In doing so, the appropriate levels of data quantity and quality needed for the specific requirements of the project were established.

Table 5-1 Summary of Project Data Quality Objectives

DQO Step	Details
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model.	Site redevelopment involves the demolition of existing structures, followed by the construction of a multi-storey industrial warehouse with strata storage units, overlying a single level basement (Section 1.2). The basement will be constructed covering the most extent of the site boundaries. Limited set-back areas are proposed along the western site boundary. Based on the proposed land use, the site will be assessed against the NEPC (2013) setting of commercial / industrial sites. The previous PSI (JKE, 2022) identified the potential for soil and/or groundwater contamination due to various possible sources, as listed in Section 4.2 . A CSM has been developed (Table 4-4). The findings of the DSI must provide supportive information on the environmental condition of the site, to determine suitability for the proposed redevelopment.
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them.	 Based on the objectives outlined in Section 1.4, the decisions that need to be made were: Has the nature, extent and source of any soil and/or groundwater impacts onsite been defined? What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the suitability of the site to be determined, or selection and design of an appropriate remedial strategy, if necessary? If the data does not provide sufficient information, what data gaps require closure to enable the suitability of the site to be determined, or selection and design of an appropriate remedial strategy?
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements.	 Inputs to the decision making process included: The proposed development and land use; Review of previous PSI (JKE, 2022); National and NSW EPA guidelines made or approved under the <i>NSW Contaminated Land Management Act 1997</i>; Observations during / from soil and groundwater sampling; and Laboratory analytical results for the selected soil and groundwater samples. At completion of the DSI, a decision is required regarding the suitability of the site for the proposed redevelopment, or if additional investigation is required to confirm that the site is suitable for that development or if remediation is required to make the site suitable.
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision.	Lateral – The proposed development area, as shown on Figure 2 , Appendix A ; Vertical – Investigations were advanced to the depth of natural soils or rock; Temporal – The results were valid for the day samples were collected and remain so as long as no changes occur in regards to site use, and contamination (if present) does not migrate onto the site from off-site sources.

DQO Step	Details
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions.	 The decision rules for the investigation were: If the concentrations of contaminants in the soil and/or groundwater data exceed the adopted criteria, then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2.
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data.	 Specific limits for this project were in accordance with National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This included the following points to quantify tolerable limits: The null hypothesis for the investigation was that the 95% Upper Confidence Limits (UCL) of the average concentration of contaminants of concern exceed relevant commercial/industrial soil land use criteria across the site. Acceptance of site suitability was based on the probability that: The 95% UCL of the average concentration of the data set satisfied the given site criteria (thus, a limit on the decision error was 5% that a conclusive statement may be incorrect); The standard deviation of the data set was less than 50% of the relevant criteria; and No single result exceeded the criteria by 250% or more. Soil and groundwater concentrations for the potential chemicals that were below investigation criteria made or approved by the NSW EPA were treated as acceptable and indicative of suitability for the proposed land use(s). If contaminant concentrations exceeded the adopted criteria, further investigation was considered prudent. If no contamination was detected, no further action was required.
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs.	 In order to identify the most resource-effective sampling and analysis design and satisfy the DQOs: Soil sampling was conducted at 7 locations using a generally systematic grid pattern across accessible parts of the site, in accordance with the minimum number points recommended under the NSW EPA (1995) Sampling Design Guidelines. Field screening of soil for potential VOCs was carried out with a portable Photo-Ionisation Detector (PID). An upper soil profile sample was collected at each borehole location and tested for the COPC, to assess the conditions of the fill layer, and impacts from activities at ground level. Further discrete, natural samples were analysed for primary metals, TRH, BTEX and PAH. Samples were selected on field observations (including visual and olfactory evidence), giving consideration to the subsurface stratigraphy. Three groundwater monitoring wells were installed and gauged to assess groundwater quality at the site. A GME was completed, with laboratory analysis of representative samples for COPCs. Review of the results was undertaken to determine if further sampling was warranted.

5.3 Data Quality Indicators

To ensure that the investigation data were of an acceptable quality, they were assessed against the quality indicators outlined in **Table 5-2**. Assessment of data quality is presented in **Section 6** and **Appendix I**.

Table 5-2Data Quality Indicators

QA/QC Component	Data Quality Indicator(s)
Precision A quantitative measure of the variability (or reproducibility) of data	 Data precision was assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision was deemed acceptable if RPDs were found to be less than 30%. RPDs that exceeded this range were considered acceptable where: Results were less than 10 times the limits of reporting (LOR); Results were less than 20 times the LOR and the RPD was less than 50%; or Heterogeneous materials or volatile compounds were encountered.
Accuracy A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy was assessed through the analysis of: Split field duplicate sample sets; Field and method blanks, analysed for the analytes targeted in the primary samples; Matrix spike sample sets; and Laboratory control samples.
Representativeness The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory were representative of conditions encountered in the field, the following measures were taken: Blank samples run in parallel with field samples, to confirm there were no unacceptable instances of laboratory artefacts; Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples were generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage, and preservation techniques was assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the DSI were evaluated as complete upon confirmation that: Standard operating procedures (SOPs) for sampling protocols were adhered to; and Copies of all chain of custody (COC) documentation were included and found to be properly completed. It could therefore be considered whether the proportion of "useable data" generated in the data collection activities was sufficient for the purposes of the land use assessment.
Comparability The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Data sets from separate sampling episodes were required and issues of comparability were reduced through adherence to SOPs and regulator- endorsed or published guidelines and standards on each data gathering activity. In addition, the data were collected by experienced samplers and NATA- accredited laboratory methodologies will be employed.

5.4 Sampling Rationale

With reference to the CSM described in **Section 4**, soil and groundwater sampling works were planned in accordance with the following rationale:

- Sampling of fill and natural soils from seven borehole locations across accessible parts of the site, to characterise *in situ* soils;
- Completion of a single groundwater monitoring event (GME) at three newly installed monitoring wells, to characterise local groundwater conditions; and
- Laboratory analysis of representative soil and groundwater samples for the COPCs.

5.5 Assessment Criteria

The assessment criteria adopted for this DSI are outlined in **Table 5-3**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenarios that are expected for various parts of the site, the likely exposure pathways, and the identified potential receptors.

For the purposes of this DSI, the adopted soil assessment criteria are referred to as the *Soil Investigation Levels* (SILs) and the adopted groundwater assessment criteria are referred to as *Groundwater Investigation Levels* (GILs).

Medium	Guidelines	Rationale
Soil	NEPC (2013) HILs, HSLs and Management Limits for TRH	Soil Health-based Investigation Levels (HILs) NEPC (2013) <i>HIL-D</i> thresholds for commercial / industrial settings. Soil Health-based Screening Levels (HSLs) NEPC (2013) <i>HSL-D</i> thresholds for vapour intrusion at commercial and industrial sites were applied to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene, despite the future proposed residential use of the site, due to the proposed basement to be installed between the potential subsurface impacts and the receptors at ground level, as per Section 2.4.8, Schedule B1, NEPC (2013).
		 For asbestos: No visible asbestos on soil surface in all areas of the site; HSL-D bonded ACM for all areas of the site; Friable Asbestos: 0.001% w/w in all areas of the site.
		Ecological Investigation Levels (EILs) / Ecological Screening Levels (ESLs) EILs / ESLs were considered relevant for any retained deep soils on the site. EILs / ESLs only apply to the top 2 m (root zone). The derived EIL criteria presented by EI are based on the addition of site specific Added Contaminant Limit (ACL) criteria and the Ambient Background Concentration (ABC) for a high traffic NSW suburb. The adopted ESL criteria presented by EI are based on coarse grained criteria.
		Management Limits for Petroleum Hydrocarbons Where the HSLs and ESLs for petroleum hydrocarbons were exceeded, sample results were also assessed against the NEPC (2013) <i>Management Limits</i> for the F1-F4 TRH fractions, to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards and adverse effects on buried infrastructure.
	CRC CARE (2017) High reliability	High reliability ecological criteria for Benzo(a)pyrene CRC Care's high reliability derived ecological guideline for

Table 5-3 Adopted Investigation Levels for Soil and Groundwater

Medium	Guidelines	Rationale
	ecological criteria for Benzo(a)pyrene	benzo(a)pyrene in commercial and industrial sites was used to assess benzo(a)pyrene for protection of terrestrial ecosystems.
	HEPA (2020) PFAS	Soil Investigation Levels for PFAS The PFAS National Environmental Management Plan (NEMP) provides guideline values for PFAS compounds in soils. The values for industrial / commercial sites have been selected.
Groundwater	ANZG (2018) GILs for Fresh Waters and NEPC (2013) Groundwater HSLs	 Groundwater Investigation Levels (GILs) for Fresh Waters ANZG (2018) provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative analyte. Health-based Screening Levels (HSLs) The NEPC (2013) groundwater HSLs for vapour intrusion were used to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The HSL-D thresholds for commercial and industrial settings were applied.
	HEPA (2020) PFAS Fresh Water	Groundwater Investigation Levels for PFAS The PFAS National Environmental Management Plan (NEMP) provides guideline values for PFAS compounds in aquatic ecosystems. The values for slightly-moderately disturbed aquatic ecosystems have been selected.
	NJDEP (2021)	New Jersey Department of Environmental Protection. These guidelines are recommended by the USEPA and by site auditors in NSW as screening criteria to cVOCs. 'Groundwater Screening Levels' were used.

Soil Sampling 5.6

The soil sampling works conducted at the site are described in Table 5-4. Sampling locations are illustrated in Figure 2, Appendix A.

Table 5-4	Summary	of	Soil	Sampling	Methodology

Activity/Item	Details
Fieldwork	Intrusive soil investigations were conducted on 21 and 28 May 2022, and comprised 7 borehole locations.
Investigation Method	Test bores BH4 to BH7 were advanced by a hand auger, while BH1 to BH3 were drilled using a drill rig, fitted with solid flight augers. Borehole details are presented in the detailed logs attached in Appendix E .
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Australian Standard (AS) 1726-2017. Borehole logs are presented in Appendix E .
Soil Sampling	Soil samples were collected using a dry grab method (the sampler wearing unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent- rinsed glass jars, snap-lock, plastic bags or jars with a Teflon free lid. Blind and split field duplicates were separated from the primary samples and placed into dedicated glass jars. At each location, aliquots of soil were placed into separate zip-lock bags for laboratory asbestos analysis and in-field VOC screening by a PID.
Soil Vapour Screening	Screening for VOC in soil headspace samples was conducted using a pre-calibrated PID with a 10.6mV ionisation lamp.

Activity/Item	Details				
Decontamination	Nitrile sampling gloves were replaced between each sampling location. Sampling equipment (i.e. auger) was scrubbed and washed with a mixture of Alconox and potable water (1/20) until free of all residual materials, then rinsed with laboratory-supplied, purified water.				
Management of Soil Cuttings	Soil cuttings were used to backfill the completed boreholes.				
Sample Preservation and Transport	Samples were stored in a chilled chest (with frozen ice packs), whilst on-site and in transit to the contracted laboratories. Soil samples were transported to SGS Australia Pty Ltd (SGS; the primary laboratory) and split (inter-laboratory) soil field duplicates were submitted to Envirolab Services Pty Ltd (Envirolab; the secondary laboratory) under strict chain-of-custody (COC) conditions. Signed COC certificates and sample receipt advice (SRA) were provided by SGS and Envirolab for confirmation purposes (Appendix G).				
Laboratory Analysis and Quality Control	Soil samples were analysed by SGS and Envirolab for the COPC. In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised one blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared trip spike soil sample and a laboratory-prepared trip blank soil sample, all analysed by SGS.				

5.7 **Groundwater Sampling**

The groundwater sampling works are described in Table 5-5. The monitoring well location is illustrated in Figure 2, Appendix A.

Table 5-5 Sum	mary of Groundwater Sampling Methodology			
Activity/Item	Details			
Fieldwork	Three groundwater monitoring wells were installed on 21 and 28 May 2022.			
Well Construction	Well construction was in general accordance with the standards described in NUDLC (2020) and involved the following:			
	 Ø50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing; 			
	 Base and top of each well was sealed with a uPVC cap; 			
	 Annular, graded sand filter was used to approximately 300 mm above top of screen interval; 			
	 Granular bentonite was applied above annular filter to seal the screened interval; Cuttings backfilled to just below ground level; and 			
	 Surface completion comprised of a stick-up section of pipe (-0.1 mBGL), a plastic J- cap closing the well and a gatic cover at ground level. 			
Well Development	Well development was conducted after installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment.			
Well Gauging	Monitoring wells were gauged to determine standing water levels (SWLs) prior to groundwater sampling. Gauging was conducted with a water/oil interface probe.			
Well Purging and Field Testing	The measurement of water quality parameters was conducted repeatedly during purging and the details were recorded onto field data sheets, until water quality parameters stabilised. Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC), temperature, oxidation-reduction potential (ORP) and pH of the purged water were also recorded during well purging. Field test results are summarised in Table 7-3 .			
Groundwater Sampling	Groundwater samples were collected using a peristaltic low flow pump. Water was continuously measured for five parameters (Temperature, EC, ORP, DO, pH). Once three consecutive field measurements were recorded for purged water to within \pm 10% for DO, \pm 3% for EC, \pm 0.2 units for pH, \pm 0.2° for temperature and \pm 20 mV for ORP, this was considered to indicate that representative groundwater quality had been achieved and final physio-chemical measurements were recorded. Groundwater			

Table 5.5 St undwator Sa mpling Mothodol

Activity/Item	Details				
	samples were then collected from the low flow sampling pump discharge point.				
Decontamination Procedure	The water level probe was washed in a solution of potable water and <i>Decon 90</i> (or PFAS decon for PFAS sampling) and then rinsed with potable water.				
Sample Preservation	 Sample containers were supplied by the laboratory with the following preservatives: one, 1 litre amber glass, acid-washed and solvent-rinsed bottle; two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1mL); and one, PFAS bottle container. Samples for metals analysis were field-filtered using 0.45 µm pore-size membranes. All containers were filled with sample to the brim then capped and stored in insulated chests (containing ice bricks), until completion of the fieldwork and during sample transit to the laboratory. 				
Sample Transport	After sampling, the ice brick filled chests were transported to the laboratories using strict COC procedures. SRA was provided by the laboratory to document sample condition upon receipt. Copies of the SRA and COC certificates are presented in Appendix G .				
Laboratory Analysis and Quality Control	Groundwater samples were analysed by SGS and Envirolab for the COPC. In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised a blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared, trip spike water sample and a laboratory-prepared, trip blank water sample, all tested by SGS.				

6. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental results to determine if they meet the objectives of the project (USEPA, 2006). For this DSI, data quality assessment involved an evaluation of the compliance of the field (sampling) and laboratory procedures with established protocols, as well as the accuracy and precision of the associated results from the quality control measures. The findings are summarised in **Table 6-1** and discussed in detail in **Appendix I**.

In summary, the overall quality of the analytical data from this DSI was considered to be of an acceptable standard for interpretive use and preparation of an updated CSM.

Stage	Stage Control		Report Section(s)
Preliminaries	DQO established	Yes	See Sections 5.2 and 5.3
Field Work	Suitable documentation of fieldwork observations including borehole logs, field notes.	Yes	See Appendices E and F
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See Section 5.4
	All media sampled and duplicates collected	Yes	See Appendix G
	Use of approved and appropriate sampling methods (soil, groundwater, soil vapour)	Yes	See Sections 5.6 and 5.7
	Selection of soil samples according to field PID readings (where VOC are present)	Yes	See Section 7
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See Sections 5.6 and 5.7
	Appropriate field rinsate and trip blanks taken	Yes	See Appendix G
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See Appendix G
Laboratory	Sample holding times within acceptable limits	Yes	See Appendices H, I, J
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See Appendices H, I, J
	LOR/PQL low enough to meet adopted criteria	Yes	See Appendices H, I, J
	Laboratory blanks	Yes	See Appendices H, I, J
	Laboratory duplicates	Yes	See Appendices H, I, J
	Matrix spikes	Yes	See Appendices H, I, J
	Surrogates (or System Monitoring Compounds)	Yes	See Appendices H, I, J
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as RPD	Yes	See Appendices H, I, J

Table 6-1 Quality Control Process

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)	
	Checking for the occurrence of apparently unusual or anomalous results (e.g. laboratory results that appear to be inconsistent with field observations or measurements)	Yes	See Appendices B, E, F	
Reporting	Report reviewed by senior staff to confirm project meets NSW EPA guidelines and objectives	Yes	See Document Control	

7. RESULTS

7.1 Soil Field Results

7.1.1 Sub-Surface Conditions

The general site lithology encountered during the soil investigation was a layer of filling (to the depths of up to 3.0 mBGL), overlying natural sand / clay soils. More details are provided in **Table 7-1** and borehole logs are presented in **Appendix E**.

Layer	Description	Minimum and Maximum Depth (mBGL)
Hardstand	Concrete/brick	0.0 - 0.43
Fill	Gravelly SAND; fine to medium grained, dark brown, with gravels, with plastic.	0.04 – 0.4+
	Silty SAND; fine to medium grained, brown/grey.	0.0 – 3.0
Natural	Silty SAND: Fine to medium grained, brown to light grey.	2.5 – 5.5+
	Silty CLAY; low plasticity, dark brown.	0.9 – 2.5
	Sandy CLAY; low to medium plasticity, brown/orange red.	2.9 – 7.2+

Table 7-1 Generalised Sub-Surface Profile

Note 1 + Termination depth of deepest borehole.

7.1.2 Field Observations and PID Results

Soil samples were collected from the test bores at various depths ranging between 0.1-4.1 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- No suspicious odours were detected in any of the examined soils;
- No soil staining was observed in any of the examined soils;
- No fragments of potential ACM were observed in any of the drilled/examined soils;
- No ash or slag was observed in any of the examined soils; and
- VOC concentrations from collected soil samples were low (<1 parts per million (ppm)). VOC concentrations were field-screened using a portable Photo-ionisation Detector (PID).

7.2 Groundwater Field Results

7.2.1 Monitoring Well Construction

Three groundwater monitoring wells were installed on 21 and 28 May 2022. Construction details for the installed groundwater monitoring well are summarised in **Table 7-2**.

Well ID	Well Depth (mBGL)	Well Stick-up (mBGL)	Screen Interval (mBGL)	Groundwater Seepage	Lithology Screened
GW-BH1	4.6	-0.1	2.0 - 4.6	(mBGL) 2.5	Silty CLAY / SAND
GW-BH2	7.0	-0.1	4.0 - 7.0	5.1	Sandy Clay
GW-BH3	6.9	-0.1	3.9 - 6.9	5.2	Sandy Clay

Table 7-2 Monitoring Well Construction Details

7.2.2 Field Observations

A GME was conducted on 4 June 2022. Field data were recorded before sampling, as presented in **Table 7-3**. Field data sheets are attached in **Appendix F**. Samples were then evaluated on the basis of odour and visual signs of contamination, with the following observations noted:

- Groundwater was found to be light orange in colour, with low turbidity;
- No suspicious odours were detected in any of the groundwater wells;
- No sheen was observed on the sampled groundwater;
- The SWL ranged between 2.43 and 4.20 mBGL; and
- Well headspace PID readings ranged between 0.3ppm and 2.7ppm.

Well	SWL (mBGL)	SWL* (mAHD)	DO (mg/L)	рН	EC (μS/cm)	Temperature (°C)	ORP (mV)
GW-BH1	2.43	10.87	1.35	5.40	411	19.09	315.7
GW-BH2	4.17	11.92	0.35	4.06	331	19.98	370.0
GW-BH3	4.20	11.89	0.71	4.18	1,221	19.81	366.9

Table 7-3 Groundwater Field Data

Notes:

SWL - Standing Water Level

mBGL – metres below ground level (all wells were completed as standpipes with stick-up heights measured as shown in field notes under **Appendix H**)

ORP readings were adjusted to Standard Hydrogen Électrode (SHE) by adding field electrode potential (205mV). *Groundwater wells were not surveyed. Groundwater well elevations were extrapolated using survey plan (**Appendix C**)

7.3 Laboratory Analytical Results

7.3.1 Soil Analytical Results

Summary of the soil analytical results is presented in **Table 7-4**. Detailed tabulation is presented in **Table T-1**, **Appendix B**.

Table 7-4 Sum	mary of Soil	Analytical	Results
---------------	--------------	------------	---------

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SILs
Priority Metals				
12	Arsenic	<1	5	None
12	Cadmium	<0.3	4.8	None
12	Chromium (Total)	<0.5	29	None
12	Copper	<0.5	320	None
12	Lead	<1	310	None
12	Mercury	<0.05	0.08	None
12	Nickel	<0.5	88	None
12	Zinc	<2	560	None
12	Tin	<3	74	None
РАН				
12	Naphthalene	<0.1	<0.1	None
12	Benzo(a)pyrene	<0.1	0.1	None
12	Carcinogenic PAH (as B(a)P TEQ)	<0.3	<0.3	None
12	Total PAH	<0.8	<0.8	None
BTEX and TRH				
12	Benzene	<0.1	<0.1	None
12	Toluene	<0.1	<0.1	None
12	Ethyl benzene	<0.1	<0.1	None
12	Xylenes (Total)	<0.3	<0.3	None
12	TRH - F1	<25	<25	None
12	TRH - F2	<25	<25	None
12	TRH - F3	<90	<90	None
12	TRH - F4	<120	<120	None
Pesticides and P	СВ			
7	OCP	<1	<1	None
7	OPP	<1.7	<1.7	None
7	Total PCB	<1	<1	None
Asbestos				
7	Asbestos	Not detected	Detected	BH7_0.1-0.2 (friable and bonded)

7.3.2 Groundwater Analytical Results

Summary of the groundwater analytical results is presented in **Table 7-5**. Detailed tabulation is presented in **Table T-2**, **Appendix B**.

Table 7-5	Summary of Groundwater Analytical Results						
Number of Primary Samples	Analyte	Minimum Concentration (µg/L)	Maximum Concentration (µg/L)	Sample(s) Exceeding GILs			
Priority Me	tals						
3	Arsenic	<1	<1	None			
3	Cadmium	<0.1	<0.1	None			
3	Chromium (Total)	<1	<1	None			
3	Copper	1	3	<u>ANZG (2018) 1.4 µg/L</u> GW_BH2 and GW_BH3 (2 and 3 µg/L)			
3	Lead	<1	1	None			
3	Mercury	<0.1	<0.1	None			
3	Nickel	2	7	None			
3	Zinc	<5	19	<u>ANZG (2018) 8 µg/L</u> GW_BH1 and GW_BH3 (13 and 19 µg/L)			
PAH							
3	Naphthalene	<0.1	<0.1	None			
3	Benzo(α)pyrene	<0.1	<0.1	None			
3	Total PAH	<1	<1	None			
BTEX and 1	ſRH						
3	Benzene	<0.5	<0.5	None			
3	Toluene	<0.5	<0.5	None			
3	Ethyl benzene	<0.5	<0.5	None			
3	o-xylene	<0.5	<0.5	None			
3	m + p-xylene	<1	<1	None			
3	TRH - F1	<50	170	<u>PQL (50 µg/L)</u> GW_BH1 (170 µg/L)			
3	TRH - F2	<60	72	<u>PQL (60 μg/L)</u> GW_BH3 (72 μg/L)			
3	TRH - F3	<500	<500	None			
3	TRH - F4	<500	<500	None			
VOC							
3	Total VOC	<10	130	None			
3	cis-1,2-dichloroethene	<0.5	3.4	None			
3	Trichloroethene (TCE)	<0.5	120	<u>NJDEP (2021) Зµg/L</u> GW_BH1 (120 µg/L)			
3	Perchloroethylene (PCE)	<0.5	1	None			

Table 7-5 Summary of Groundwater Analytical Results

Page | 27

Number of Primary Samples	Analyte	Minimum Concentration (µg/L)	Maximum Concentration (µg/L)	Sample(s) Exceeding GILs
Phenols				
3	Total Phenols	<50	<50	None
PFAS				
3	PFOS	<0.002	0.010	None
3	PFOS + PFHxS	<0.002	0.043	None
3	PFOA	<0.002	0.002	None

8. SITE CHARACTERISATION

8.1 Subsurface Conditions

The general site lithology encountered during the soil investigation was a layer of filling (to the depths of up to 3.0 mBGL), overlying natural sand / clay soils.

8.2 Soil Impacts

Contaminant concentrations in representative soil samples were found to be below the adopted criteria applicable for the proposed land use setting, with the following exception:

Friable and bonded asbestos was detected in shallow fill at BH7 (depths 0.1-0.2 mBGL).

Previous investigation by JKE (2022) also reported asbestos in fill soils at two locations, being JKE_BH6 (depths 0.13-0.35 mBGL) and JKE_BH7 (depths 0.2-0.6 mBGL).

8.3 Groundwater Impacts

During the GME on 4 June 2022, depth to water readings ranged from 2.43 to 4.20 mBGL. Groundwater flow direction was inferred to be north-east, towards Brookvale Creek.

With reference to **Table T-2** (**Appendix B**), concentrations of BTEX, PAHs, phenols, pesticides and PFAS were all reported below the adopted GIL, with the exception of priority metals, TRHs and CVOCs as noted below:

Priority Metals

For priority metals, copper and zinc were detected in groundwater at levels slightly above the adopted GIL. However, as the elevations of metal concentrations are common in disturbed urban groundwater environments, the detected concentrations are considered to be indicative of natural (background) conditions, rather than site-specific impacts.

TRHs

TRH-F1 concentrations above the laboratory practical quantitation limit (PQL) were detected at GW-BH1 (170 μ g/L), while TRH-F2 concentrations above the PQL were detected at GW-BH3 (72 μ g/L).

CVOCs

CVOCs were only detected in groundwater at well GW-BH1. The detected contaminants included perchloroethylene (PCE – also known as tetrachloroethene) and its breakdown products cis-1,2-dichloroethene (cis-DCE) and Trichloroethylene (TCE).

PCE and TCE are industrial solvents used for degreasing, dry cleaning and textile processing. The source of these elevated concentrations was likely associated with potential migration of contaminations from the neighbouring property, which was noted to be a potential active laundry located up-gradient of well GW-BH1.

8.4 Review of Conceptual Site Model

On the basis of the DSI findings, the CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways,

as well as potential on-site and off-site receptors. A complete revision of the CSM should be presented by the remediation action plan (RAP) (see recommendations in **Section 10**).

9. CONCLUSION

The property located at 101-105 Old Pittwater Road, Brookvale NSW was the subject of a DSI, conducted in order to assess the nature and degree of on-site contamination. The key findings of this DSI were as follows:

- The site consists of a number of warehouse buildings and small commercial / industrial units. Current commercial activities identified on the site include a marble and stone worker warehouse and associated showrooms, a kayak retailer, a retail display manufacturer, a landscaping business, a pipe repairer, a retail research and a virtual design company.
- There were no evidences of underground petroleum storage systems (UPSS), underground storage tanks (UST), or above-ground storage tank (AST) present on the site.
- The subsurface conditions were generalised as a layer of filling (to the depths of up to 3.0 mBGL), overlying natural sand / clay soils.
- Contaminant concentrations in representative soil samples were found to be generally below the adopted human health and ecological criteria applicable to commercial / industrial land use settings, with the following exceptions:
 - Friable and bonded asbestos were detected in shallow fill at BH7 (depths 0.1-0.2 mBGL); and
 - Asbestos was also identified in fill soils at two previous locations investigated by JKE (2022), being JKE_BH6 (depths 0.13-0.35 mBGL) and JKE_BH7 (depths 0.2-0.6 mBGL).
- Screening for volatile organic compounds (VOC) in soil headspace samples was conducted using a pre-calibrated PID. VOC concentrations from collected soil samples were low (<1 ppm).
- Depth to water in the groundwater monitoring wells (GW-BH1 to GW-BH3) was recorded between 2.43 and 4.20 mBGL. Groundwater flow direction was inferred to be northeasterly, towards Brookvale Creek (170m east from the site).
- Contaminant concentrations in groundwater were generally compliant with the adopted criteria, with the following exceptions:
 - Priority metals (copper and zinc) were detected in groundwater at levels marginally above the adopted criteria. However, these detected concentrations are consistent with the local disturbed urban background conditions and unlikely to be associated with sitespecific impacts.
 - TRH-F1 concentrations above the laboratory practical quantitation limit (PQL) were detected at GW-BH1 (170 µg/L), while TRH-F2 concentrations above the PQL were detected at GW-BH3 (72 µg/L).
 - Chlorinated volatile organic compounds (CVOCs) were only detected in groundwater at GW-BH1. The detected contaminants included perchloroethylene (PCE) and its breakdown products cis-1,2-dichloroethene (cis-DCE) and Trichloroethylene (TCE).

PCE is an industrial solvent used for dry cleaning and textile processing. The source of these elevated concentrations is likely associated with potential migration of contaminations from the neighbouring property, which was noted to be a potential active laundry located up-gradient of well GW-BH1.

Based on the findings obtained from this DSI, and with consideration of El's *Statement of Limitations* (Section 11), El concludes that:

- There are localised areas of impacted soils (asbestos) above the adopted human health criteria that potentially pose human health risks;
- TRHs and chlorinated VOCs are present in groundwater at GW-BH1. As the proposed basement is expected to intercept groundwater, a risk assessment must be conducted to inform the design of protection measures to be implemented during and after the building construction. These protection measures will protect future receptors from any potential risks posed by these contaminants via direct contact (construction and future intrusive workers) or vapour intrusion (future users of the basement); and
- The site can be made suitable for the potential future site development, provided the recommendations detailed in **Section 10** are implemented.

10. RECOMMENDATIONS

El provides the following recommendations in relation to the proposed development:

- Before commencement of demolition works, a Hazardous Materials Survey (HMS) shall be completed by a suitably qualified consultant, to identify any hazardous materials present within the existing building fabrics.
- Preparation and implementation of a Remediation Action Plan (RAP), which will include the design and/or outcomes of supplementary investigations to close data gaps remaining at the site, including:
 - Delineation of the vertical and lateral extent of detected soil impacts (asbestos) at various locations as detailed in Section 8.2;
 - Chase-out, excavation and removal of all impacted soils identified during the delineation works;
 - Soil vapour assessment at depths comprising the vadose zone immediately below the future basement slab; and
 - Preparation of a sampling and analysis quality plan (SAQP) for a post-remedial validation assessment aimed at confirming that site remediation was effective.
- Implementation of the remediation and validation works for the site, as outlined in the RAP.
- Preparation of a validation report by a suitably qualified environmental consultant, confirming site suitability for the proposed land use.
- Any material being removed from site (including potential virgin excavated natural materials (VENM) be classified for off-site disposal in accordance the NSW EPA (2014) Waste Classification Guidelines.
- Any material being imported to the site should be validated as suitable for the intended use in accordance with NSW EPA (2014) guidelines.

11. STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of Hannas Contracting Services Pty Ltd, whom is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report was limited to that agreed with Hannas Contracting Services Pty Ltd.

No other party should rely on this document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, NSW EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events (e.g. groundwater movement and or spillages of contaminating substances). These changes may occur subsequent to El's investigation.

EI's assessment is necessarily based upon the results of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the project proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for Hannas Contracting Services Pty Ltd and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018.

Chapman GA and Murphy CL (1989) *Soil Landscapes of the Sydney 1:100 000 Sheet*, Soil Conservation Service of NSW, Sydney, September 1989.

DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, New South Wales Department of Environment and Conservation, DEC 2007/144, June 2007.

DMR (1983) *Sydney 1:100,000 Geological Series Sheet 9130*, Geological Survey of New South Wales, Department of Mineral Resources.

EnRisk (2016) *Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs,* Environmental Risk Services Pty Ltd, Environment Protection Authority of New South Wales, 25 February 2016.

HEPA (2020) *PFAS National Environmental Management Plan*, National Chemicals Working Group of the Heads of the EPAs Australia and New Zealand (HEPA), January 2020.

JKE (2022) Report to Hannas Contracting Services Pty Ltd on Preliminary (Stage 1) Site Investigation for Proposed Industrial Development at 101-105 Old Pittwater Road, Brookvale NSW, Ref. E34695PRrpt, 9 March 2022.

Murphy CL (1997) *Acid Sulfate Soil Risk of the Sydney Heads Sheet (2nd Edition)*, Department of Land and Water Conservation, Sydney (supplied by the Sydney South Coast, Geographical Information Systems Unit).

NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environment Protection (Assessment of Site Contamination) Amendment Measure, National Environment Protection Council, April 2013.

NHMRC (2022) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.7, January 2022.

NJDEP (2021) Vapor Intrusion Technical Guidance - Site Remediation and Waste Management *Program*, New Jersey Department of Environmental Protection. May 2021.

NSW (2021) State Environmental Planning Policy (Resilience and Hazards) (2021) (formerly SEPP 55 – Remediation of Land), last modified 2 March 2022.

NSW EPA (1995) *Sampling Design Guidelines*, Contaminated Sites Unit, Environment Protection Authority of New South Wales, EPA 95/59, September 1995.

NSW EPA (2014) *Waste Classification Guidelines – Part 1: Classifying Waste*, Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.

NSW EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW EPA, October 2017.

NSW EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2020P2233, April 2020.

NUDLC (2012) *Minimum Construction Requirements for Water Bores in Australia* (3rd Edition). National Uniform Drillers Licensing Committee 2011, February 2012.

Standards Australia (2005) Table E1 - Minimum Sampling Points Required for Site Characterisation, in Australian Standard AS4482.1-2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-volatile and Semi-volatile Compounds, Standards Australia 2005.

USEPA (2000a) *Guidance for the Data Quality Objectives Process - EPA QA/G-4*, United States Environmental Protection Agency, EPA/600/R-96/055, August 2000.

USEPA (2000b) Data Quality Objectives Process for Hazardous Waste Site Investigations - *EPA QA/G-4HW*, United States Environmental Protection Agency, EPA/600/R-00/007, January 2000.

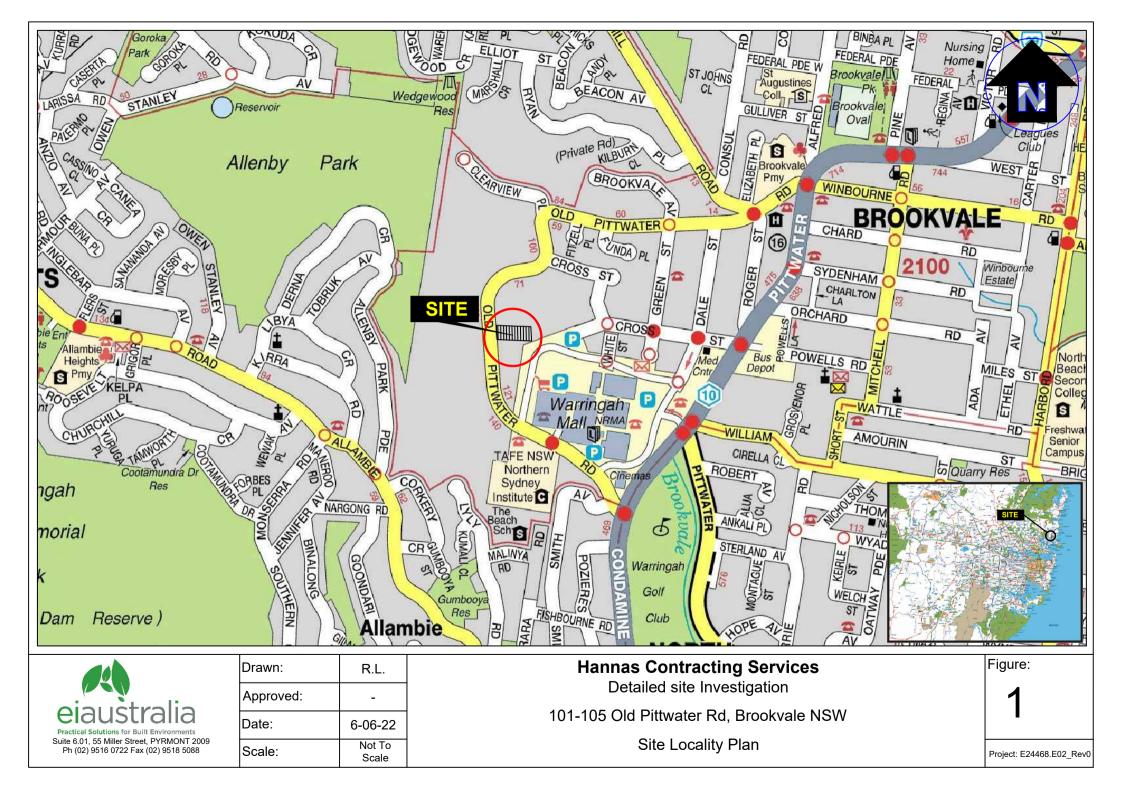
USEPA (2006) *Data Quality Assessment: A Reviewers Guide - EPA QA/G-9R*, United States Environmental Protection Agency, Office of Environmental Information, EPA/240/B-06/002, February 2006.

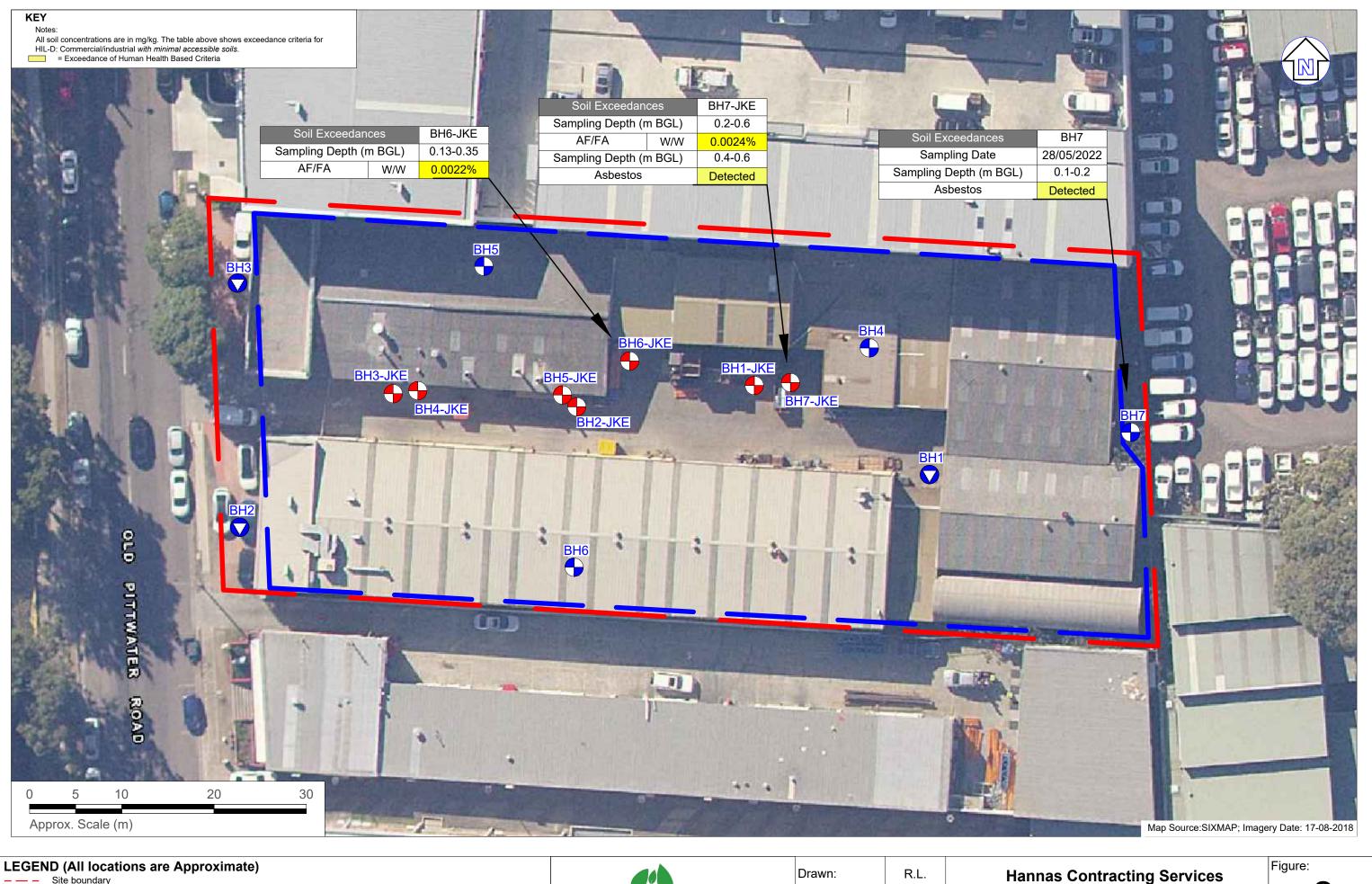
Vic EPA (2000) *Groundwater Sampling Guidelines*, Environment Protection Authority for the State Government of Victoria, April 2000.

WADOH (2021) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, Published by the Western Australian Department of Health.

Warringah Local Environmental Plan 2011.

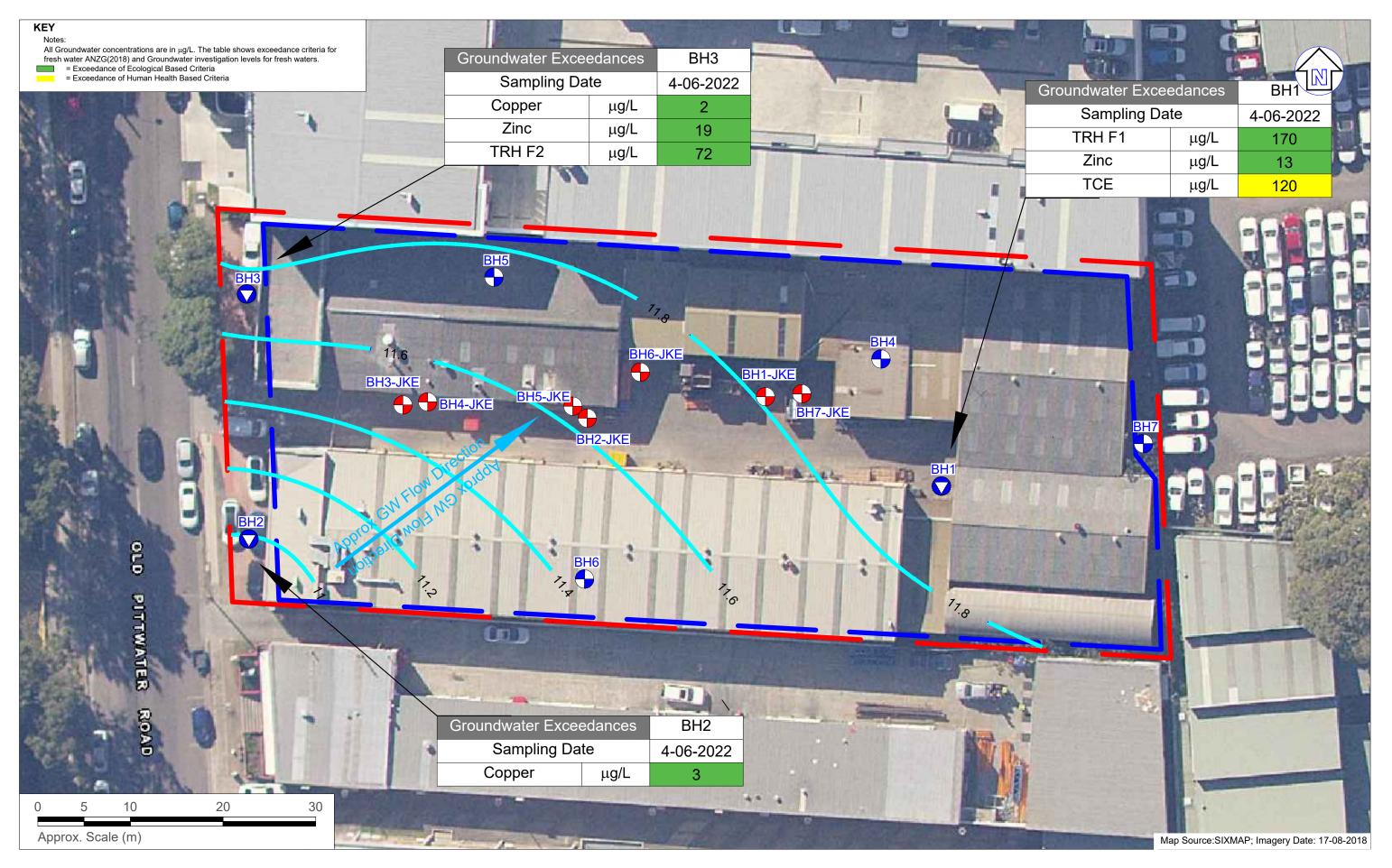
ABBREVIATIONS


ACM	Asbestos-Containing Materials
AMP	Asbestos Management Plan
ASS	Acid Sulfate Soils
AST	Above-ground Storage Tank
B(a)P	Benzo(a)Pyrene (a PAH compound)
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes
CCO	Chemical Control Order
COC	Chain of Custody
	•
CSM	Conceptual Site Model
CVOC	Chlorinated Volatile Organic Compounds (a sub-set of the VOC suite)
DO	Dissolved Oxygen
DP	Deposited Plan
DSI	Detailed Site Investigation
EC	Electrical Conductivity
EI	El Australia
NSW EPA	
F1	C_6 - C_{10} TRH (less the sum of BTEX concentrations)
F2	$>C_{10}-C_{16}$ TRH (less the concentration of naphthalene)
F3	TRH >C16-C34
F4	TRH >C34-C40
FFL	Finished Floor Level
GIL	Groundwater Investigation Level
GIPA	Government Information Public Access
GME	Groundwater Monitoring Event
HDPE	High Density Polyethylene
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
JKE	JK Environments
km	Kilometres
L	Litres
LEP	Local Environmental Plan
LGA	Local Government Area
LOR	Limit of Reporting (limit of reporting for respective laboratory method)
m	Metres
mAHD	Metres Australian Height Datum
mBGL	Metres Below Ground Level
µg/L	Micrograms per Litre
mg/L	Milligrams per Litre
mV	Millivolts
N/A	Not Applicable
NATA	National Association of Testing Authorities, Australia
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticides
OPP	Organophosphate Pesticides
ORP	Oxidation-Reduction Potential
PAH	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated Biphenyls



PFAS Per- and Poly-Fluoroalkyl Substances POEO Protection of the Environment Operations pН Potential Hydrogen (a measure of the acidity or basicity of an aqueous solution) PID Photo-Ionisation Detector PQL Practical Quantitation Limit (limit of detection for respective laboratory method) PSH **Phase-Separated Hydrocarbons** QA/QC **Quality Assurance / Quality Control** RAP **Remediation Action Plan** SAQP Sampling and Analysis Quality Plan Soil Investigation Level SIL SOP Standard Operating Procedure SRA Sample Receipt Advice (document confirming laboratory receipt of samples) SWL Standing Water Level TEQ **Toxicity Equivalent Quotient** TRH Total Recoverable Hydrocarbons (non-specific analysis of organic compounds) Upper Confidence Limit (of the mean) UCL UPSS Underground Petroleum Storage System United States Environmental Protection Agency USEPA UST **Underground Storage Tank** VENM Virgin Excavated Natural Material VOC Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A – Figures



- Site boundary _ _ _
- Proposed basement boundary _ _
- \bigcirc Previous borehole location (JKE,2022)
- Borehole location
- Borehole / monitoring well location

Drawn:	R.L.
Approved:	-
Date:	28-06-22

Remedial Action Plan 101-105 Old Pittwater Rd, Brookvale NSW Sampling Location Plan and Exceedances Plan Project: E25568.E02

LEGEND (All locations are Approximate)

Site boundary _ _ _ _

Proposed basement boundary _ _

 \bigcirc Previous borehole location (JKE,2022)

Borehole location

Monitoring well location

Appen Gill Flow Director Inferred groundwater flow direction Note: Groundwater RL in mAHD, based on SWLs measured on 4-6-22

Drawr	ו:	R.L.	Hannas
Appro	oved:	S.R.	Deta 101-105 Old
Date:		28-06-22	Groundwater Co

as Contracting Services tailed Site Investigation

d Pittwater Rd, Brookvale NSW

ontour Plan and Exceedances Plan Project: E25568.E02_Revo

Figure:

3

Appendix B – Tables

Table T1 – Summary of Soil Test Results

					F	Priority Metal	s							PAHs					BT	EX			TRH	ls		VOC	Cs		Pestic	ides		Asbestos		PFAS	
Sample ID	Sampling Date	As	Cd	Cr [#]	Cu	Pb	Hg	NI	Zn	Sn	Carcinogenic PAHs (as Β(α)P TEQ)	Benzo(a)pyrene	Benzo(b&))fluoranthene	Pyrene *	Fluoranthene*	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	Ξ	F2	F3	F4	Trichloroethene (Trichloroethylene -TCE) [*]	Total VOCs	Total Phenols	OCPs	OPPs	PCBs	Presence / absence (FA and AF)	PFOS	PFOS+PFHxS	PFOA
Fill BH4_0.24-0.45 BH6_0.2-0.5 BH6_0.13-0.35 BH7_0.2-0.6 BH7_0.2-0.6 BH7_0.4-0.6 Maximum co Natural BH4_0.5-0.9		6 <4 7 <4 N.A. 7	0.6 <0.4 0.4 23 N.A. 23 <0.4	13 2 18 17 N.A. 18	2 1 12 40 N.A. 40	9 12 12 420 N.A. 420	<0.1 <0.1 <0.1 <0.1 N.A. <0.1	1 <1 4 5 N.A. 5	6 10 13 11000 N.A. 11000	N.A. N.A. N.A. N.A. N.A. NC	<0.5 <0.5 <0.5 <0.5 N.A. <0.5	<0.05 <0.05 <0.05 0.3 N.A 0.3 <0.05	<0.2 <0.2 <0.2 0.5 N.A. 0.5 <0.2	<0.1 <0.1 <0.1 0.5 N.A.	 <0.1 <0.1 <0.1 <0.1 0.5 N.A. 	<0.5 <0.5 <0.5 3 N.A. Statis 3	 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 	<0.2 <0.2 <0.2 <0.2 N.A. <0.2	<0.5 <0.5 <0.5 <0.5 N.A. <0.5	<1 <1 <1 <1 N.A.	<3 <3 <3 <3 N.A.	<25 <25 <25 <25 N.A. <25	<50 <50 54 <50 N.A. 54 <50	<100 <100 330 <100 N.A. 330 <100	<100 <100 <100 <100 N.A. <100		N.A. N.A. N.A. N.A. N.A. N.C.	N.A. N.A. N.A. N.A. N.A. N.C.	<0.1 <0.1 <0.1 <0.1 N.A. <0.1 N.A.	<pol <pol <pol <pol N.A. <pol< td=""><td><0.1 <0.1 <0.1 <0.1 N.A. <0.1 N.A.</td><td>N.A. No 0.0022%w/w 0.0024%w/w Yes Yes</td><td>N.A. N.A. N.A. N.A. N.A. N.C.</td><td>N.A. N.A. N.A. N.A. N.C.</td><td>N.A. N.A. N.A. N.A. N.A.</td></pol<></pol </pol </pol </pol 	<0.1 <0.1 <0.1 <0.1 N.A. <0.1 N.A.	N.A. No 0.0022%w/w 0.0024%w/w Yes Yes	N.A. N.A. N.A. N.A. N.A. N.C.	N.A. N.A. N.A. N.A. N.C.	N.A. N.A. N.A. N.A. N.A.
BH4_0.5-0.9 BH5_0.6-0.8 BH6_0.6-0.8 BH7_0.9-1.2 Maximum co	22/01/2022 22/01/2022 22/01/2022 22/01/2022 ancentration	<4 <4 <4 <4 <4 <4	<0.4 <0.4 <0.4	8 5 <1	<1 <1 4 3 4	12 10 17 18 18	<0.1 <0.1 <0.1	2 <1 <1	27 79 35	N.A. N.A. N.A. NC	<0.5 <0.5 <0.5 <0.5 <0.5	<0.05 <0.05 <0.05	<0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1		<0.1 <0.1 <0.1 <0.1 stical Analysis <0.1	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1 <1	<3 <3 <3 <3 <3	<25 <25 <25	<50 <50 <50	<100 <100 <100	<100 <100 <100	N.A. N.A. N.A. N.A.	N.A. N.A. N.A.	N.A. N.A. N.A. N.A.	N.A. N.A. N.A.	N.A. N.A. N.A. NC	N.A. N.A. N.A. N.A.	N0 N.A. N.A. N.A. NO	N.A. N.A. N.A.	N.A. N.A.	N.A. N.A. N.A. N.A.
Fill BH1_0.3.0.4 BH2_1.5.1.6 BH3_0.2.0.3 BH4_0.4.0.5 BH5_0.2.0.3 BH5_0.2.0.3 BH7_0.1.0.2	21/05/2022 21/05/2022 28/05/2022 28/05/2022 28/05/2022 28/05/2022 28/05/2022	1 <1 <1 <1 <1 <1 <1 <1 5	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 4.8	1.7 5.5 18 <0.5 2.9 4 29	<0.5 1.1 <0.5 <0.5 14 9.5 320	5 6 <1 160 13 310	<0.05 0.05 <0.05 <0.05 0.08 <0.05 0.08	<0.5 1.5 0.7 <0.5 0.7 1.9 88	<2 3.8 3.7 <2 63 23 560	<3 <3 <3 <3 <3 <3 <3 <3 74	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	<0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 0.2 <0.1	<0.1 <0.1 <0.1 <0.1 0.1 0.2 <0.1	<0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	<25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25	<90 <90 <90 <90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 0.6 0.2 <0.1	<24 <24 <24 <24 <24 <24 <24 <24 <24	<0.5 <0.5 <0.5 0.8 <0.5 <0.5 <0.5 <0.5	বা বা বা বা বা বা বা	<1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7 <1.7	d1 d1	No No No No No Yes (>0.01%w/w)	<0.0016 <0.0016 <0.0016 <0.0016 <0.0016 <0.0016 <0.0016	<0.0016 <0.0016 <0.0016 <0.0016 <0.0016	<0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 <0.0008
Maximum co Natural BH1_1.0-1.1 BH2_35-3.6 BH3_3.0-3.1 BH4_1.2-1.3 BH5_2.2-3.2.4 Maximum co	21/05/2022 21/05/2022 28/05/2022 28/05/2022 28/05/2022	5 <1 1 <1 <1 <1 <1 <1 <1 <1 <1	4.8 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	5.3 10 14 1.7 3.4	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	7 7 7 3 4	0.08 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	88 0.6 0.9 1.5 <0.5 0.5 0.5	560 5.1 2.7 4.2 <2 <2 5.1	N.A. N.A. N.A. N.A.	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 Statis <0.8	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	<25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25	<90 <90 <90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120 <120	0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<24 <24 <24 <24 <24 <24 <24 <24	0.8 N.A. N.A. N.A. N.A. N.A.	<1 N.A. N.A. N.A. N.A. N.A.	<1.7 N.A. N.A. N.A. N.A. N.A.	<1 N.A. N.A. N.A. N.A. N.A.	Yes N.A. N.A. N.A. N.A. N.A.	N.A. N.A. N.A. N.A. N.A.	N.A.	<0.0008 N.A. N.A. N.A. N.A. N.A.
HIL D - Commerc HSL D - Commer Soil texture class	rcial / Industrial rcial / Industrial	3,000	900	3,600 Cr(VI)	240,000	1,500	730	6,000 Source o Source o	400,000 lepths (0 m to lepths (1 m to lepths (2 m to ce depths (4 m	<1 m. BGL) <2 m. BGL) <4 m. BGL)	40					NEPM 4,000		a 3 3 3 3	NL NL NL NL	NL NL NL NL	230 NL NL NL	260 370 630 NL	NL NL NL NL						3,600		7	0.05 / 0.001			
EILs / ESLs - Commo Management Limits - Co (HEPA (2020 Notes: Results are recorded in mg/kg HIL D	ommercial / Industrial ¹ 20)) PFAS ⁴ Highlighted values excer Concentration exceeds I	nighlighted criter		680	210	1,800		110	570			172 ³					370	75	135	165	180	215 700	170	1,700	3,300				640					20	50
HSL D EL 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NEPC 1994 Amendment Ecological Investigation Ecological Investigation Ecology Screening Leve Thresholds are for Chev Only defected concentra Not Analysed Not Catchaded Coarse grained Sol asso- tion and the second second Nature of the second second Value denviet from the To obtain F1 subtract th To obtain F1 subtract th To obtain F1 subtract th To obtain F1 subtract th To obtain F1 subtract th	I 2013 'HSL D' H Level for urban resid mium VI. tions were tabul ed soil vapour lin essment criteria i m a site specific r benzo(a)pyren Jational Environi e sum of BTEX d	lealth Based Sci esidential and p intial and public ated it exceeds the s ratues were app Added Contami e was sourced f ential Manager oncentrations fr	eening Levels a ublic open space lan oil concentration ied, as a conset nant Limit (ACL) om CRC Care (went Plan for PF om the C6-C10	e land use. d use. n at which the po rvative approach with the Ambien (2017) Technical AS - Soil Criteria	re water phase It Background (Report No. 39	cannol dissolve Concentration (A Risk-based mar	any more of th BC) for a high t	e individual cher raffic NSW subu amediation guida	nical rb. ance for benzo(a																									

Table T2 - Summary of Groundwater Analytical Results

						Me	tals						Мајо	r lons				PAHs				BTEX				TR	lHs			vo	Cs			Pesti	cides		PFAS	
Sample		ampling Date	As	Cd	Cr	Cu	РЬ	Hg	Ni	Zn	Ca	Mg	Na	к	СІ	SO4	Total PAHs	Benzo(a) py rene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	cis-1,2-dichloroethene #	Trichloroethylene (TCE) [#]	Tetrachloroethene (Perchloroethylene,PCE)	Total VOC	Total Phenois	Total OCP	Total OPP	PFOS	PFOS + PFHxs	PFOA
GW_BH	11		<1	<0.1	<1	1	<1	<0.1	4	13	6,700	10,000	23,000	5,200	30,000	17,000	<1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	170	<60	<500	<500	3.4	120	1	130	<50	<pql< td=""><td><pql< td=""><td>0.008</td><td>0.025</td><td>0.002</td></pql<></td></pql<>	<pql< td=""><td>0.008</td><td>0.025</td><td>0.002</td></pql<>	0.008	0.025	0.002
GW_BH	12 4/6	/6/2022	<1	<0.1	<1	3	<1	<0.1	2	<5	6,100	10,000	34,000	9,100	31,000	48,000	<1	<0.1	<0.1	< 0.5	< 0.5	<0.5	< 0.5	<1	<50	<60	<500	<500	< 0.5	<0.5	< 0.5	<10	<50	<pql< td=""><td><pql< td=""><td>0.010</td><td>0.043</td><td>0.002</td></pql<></td></pql<>	<pql< td=""><td>0.010</td><td>0.043</td><td>0.002</td></pql<>	0.010	0.043	0.002
GW_BH	13		<1	<0.1	<1	2	1	<0.1	7	19	24,000	20,000	110,000	6,600	240,000	45,000	<1	<0.1	<0.1	< 0.5	<0.5	<0.5	<0.5	<1	<50	72	<500	<500	<0.5	<0.5	<0.5	<10	<50	<pql< td=""><td><pql< td=""><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td></pql<></td></pql<>	<pql< td=""><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td></pql<>	< 0.002	< 0.002	< 0.002
																	Statisti	al Analysis																				
Maximu	im Concentratio	ion	<1	<0.1	<1	3	1	<0.1	7	19	24,000	20,000	110,000	9,100	240,000	48,000	<1	<0.1	<0.1	< 0.5	< 0.5	<0.5	<0.5	<1	170	72	<500	<500	3.4	120	1	130	<50	NC	NC	0.010	0.043	0.002
																		GILs																				
HSLD. Ca	mmercial / indu	luntrial								2m to									NL	5,000	NL	NL	NL	NL	6,000	NL												
	classification -									4m to									NL	5,000	NL	NL	NL	NL	6,000	NL												
										8m	+								NL	5,000	NL	NL	NL	NL	7,000	NL		T							r	r	,	
	Fresh Wat	aters 1	24 (AsIII) 13 (AsV)	0.2	1 3 (Cr VI)	1.4	3.4	0.06 2	11	8 ³									16	950	180 4	80 4	350	275 4	50 ⁵	60 ⁵	500 ⁵	500 ⁵					320		320			320
GILs	Marine Wa	'aters ¹		0.7 2	27 (Cr III) 4.4 (Cr VI)	1.3	4.4	0.1 2	7	15 ³									50 ³	500 ³	180 4	54	350 ⁴	275 ⁴	50 ⁵	60 ⁵	500 ⁵	500 ⁵					400		400			400
	Recreational	l Water 6	100	20		1,000 *	100	10	200	3,000*			180,000*		250,000*	250,000*				10	25*	3*	20 *	20 *					600									
NJDEP -	Screening Leve	rels ⁷			•	·		<u>.</u>											300				,		·					3								
PFAS	- Freshwater ⁸	8																												,						0.13		220

Notes:

Highlighted indicates criteria exceeded

Highlighted indicates criteria not met

All values are µg/L unless stated otherwise

HSL D NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels for vapour intrusion applicable for commercial / industrial settings.

NL Not Limiting

Only detected concentrations were tabulated.

F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

F2 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

F3 (>C16-C34)

F4 (>C34-C40)

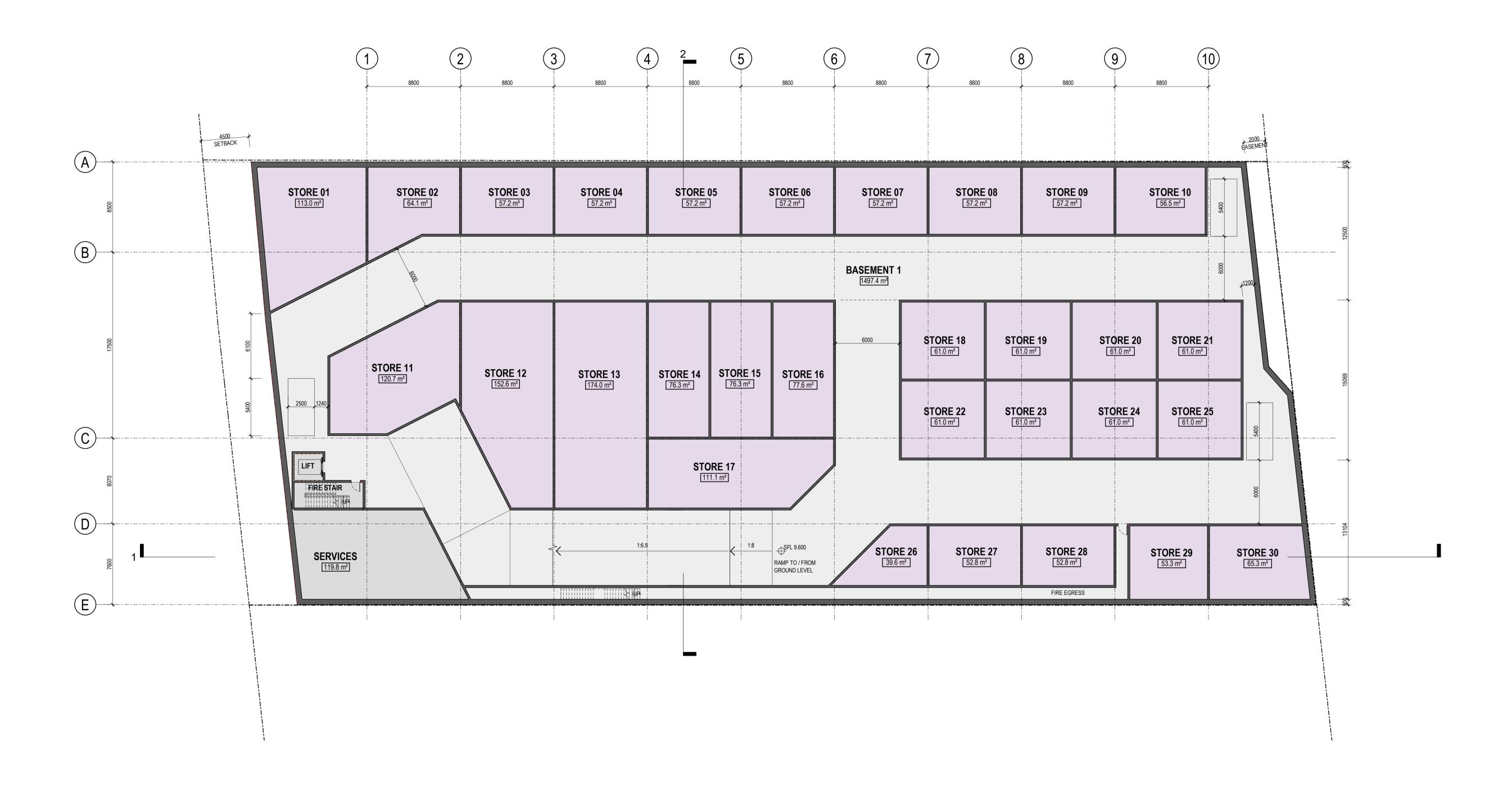
1 NEPM (2013) Groundwater Investigation Levels for fresh and marine water quality, based on ANZECC & ARMCANZ (2000).

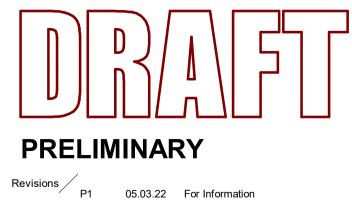
2 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZG (2018) for further guidance.

3 Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

4 Low reliability toxicity data, refer to ANZECC & ARMCANZ (2000)

5 In lack of a criteria the laboratory PQL has been used (DEC, 2007).


6 Based on NHMRC (2011 - update August 2018 v.3.5) Drinking Water Guidelines. The lowest of the Health Guideline x10 or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by*


7 Value dervied from the NJDEP vapour intrusion groundwater screening levels (GWSL)

8 Value dervied from the National Environmental Management Plan for PFAS - 95% species protection for slightly to moderately disturbed systems.

Appendix C – Proposed Development

	CARPARKS			
Level	Total			
BASEMENT	3	3		
GROUND	29)		
LEVEL 1	30)		
	62			
		_		No. OF INDUSTRIAL
LEVEL				NO. OF INDUSTRIAL
LEVEL	STORAGE UNITS	INDUSTRIAL UNITS	PARKING	UNITS
	2174.2 m ²	INDUSTRIAL UNITS 0.0 m ²	PARKING 1497.4 m ²	UNITS
BASEMENT GROUND			-	(
BASEMENT	2174.2 m ²	0.0 m ²	1497.4 m²	(
BASEMENT GROUND	2174.2 m ² 0.0 m ²	0.0 m² 1744.6 m²	1497.4 m² 2061.8 m²	(17 (
BASEMENT GROUND GROUND MEZZANINE	2174.2 m ² 0.0 m ² 0.0 m ²	0.0 m² 1744.6 m² 535.0 m²	1497.4 m² 2061.8 m² 0.0 m²	UNITS (17 (18 ((

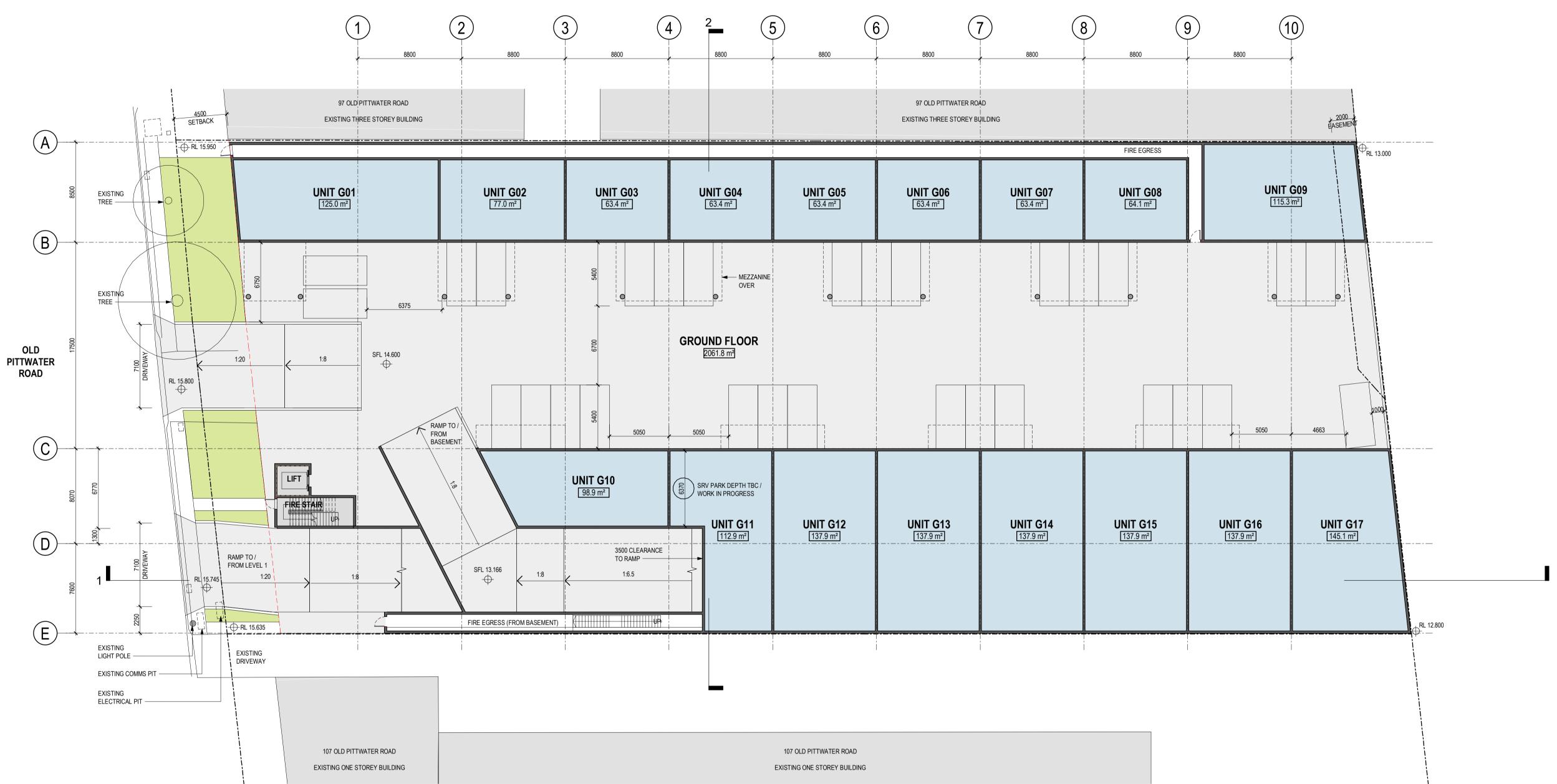
NOTE: AREAS ARE MEASURED TO THE EXTERNAL FACE OF EXTERNAL WALLS AND CENTRE LINE OF PARTI WALLS

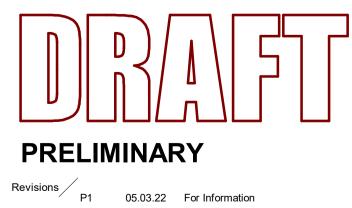
101 - 105 Old Pittwater Road 101 - 105 Old Pittwater Road

Project

Brookvale

Drawing Basement


Project No 222008 Author AT Scale: @ A1 1:200 Drawing No.


Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

SK01.01

Revision P1

	CARPARKS	1		
Level	Total			
BASEMENT	3	3		
GROUND	29	9		
LEVEL 1	30)		
	62	2		
		_		No. OF INDUSTRIAL
LEVEL	STORAGE UNITS	INDUSTRIAL UNITS	PARKING	UNITS
BASEMENT	2174.2 m ²	0.0 m ²	1497.4 m²	
GROUND	0.0 m ²	1744.6 m ²	2061.8 m ²	1
GROUND MEZZANINE	0.0 m ²	535.0 m²	0.0 m ²	
LEVEL 1	0.0 m ²	1881.6 m ²	1687.5 m²	1
LEVEL 1 MEZZANINE	0.0 m ²	568.4 m²	0.0 m ²	

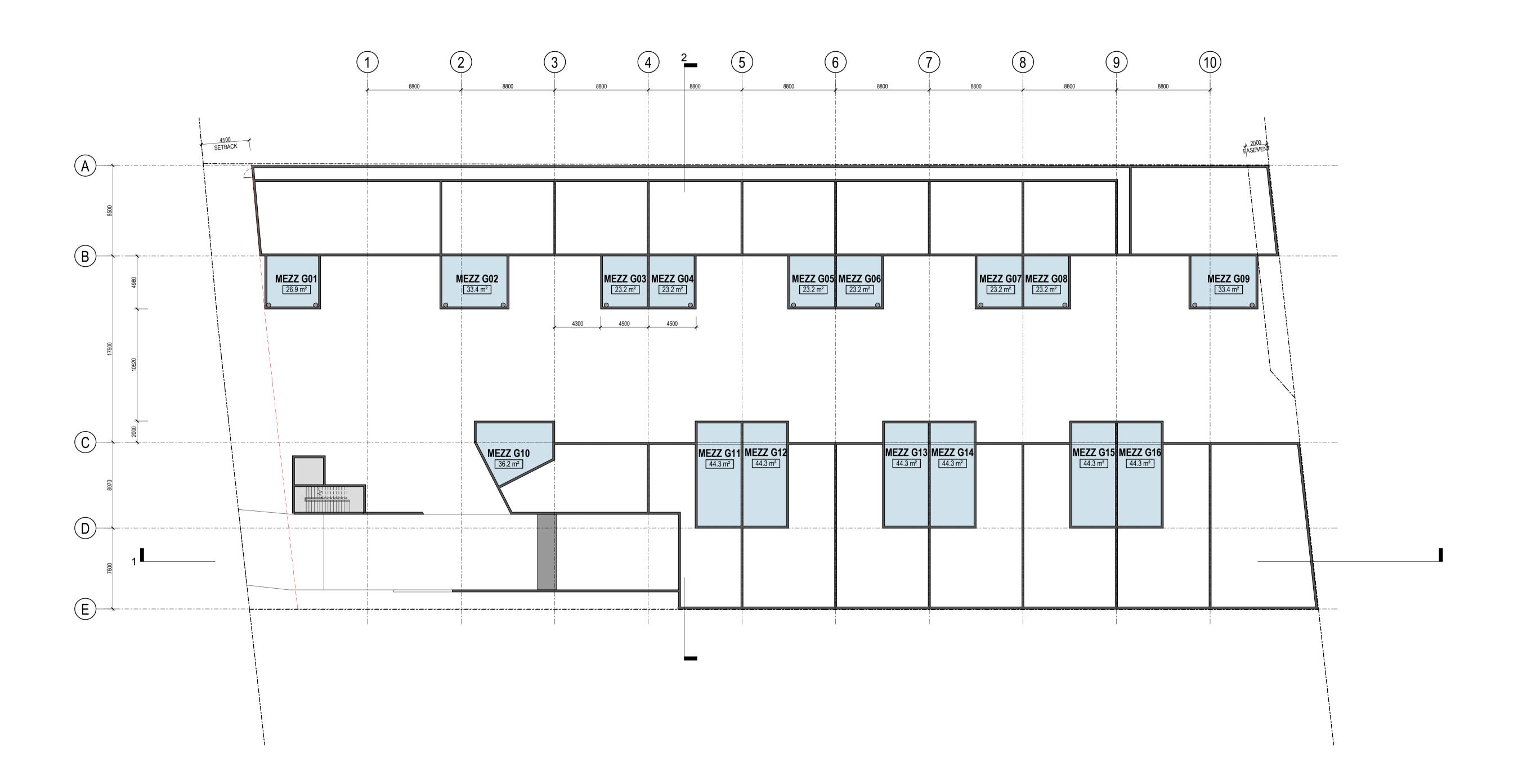
5/03/2022 4:41:18 PM

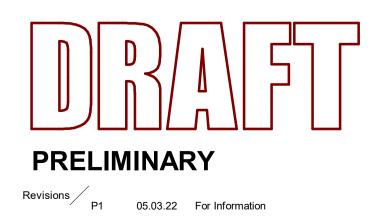
NOTE: AREAS ARE MEASURED TO THE EXTERNAL FACE OF EXTERNAL WALLS AND CENTRE LINE OF PARTI WALLS

101 - 105 Old Pittwater Road 101 - 105 Old Pittwater Road Brookvale

Project

Ground Floor


Project No 222008 Author AT Scale: @ A1 1:200 Drawing No.


Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

SK01.02

Revision P1

LEVEL	STORAGE UNITS	INDUSTRIAL UNITS	PARKING	No. OF INDUSTRIAL UNITS
BASEMENT	2174.2 m ²	0.0 m ²	1497.4 m²	0
GROUND	0.0 m ²	1744.6 m ²	2061.8 m ²	17
GROUND MEZZANINE	0.0 m ²	535.0 m²	0.0 m²	0
LEVEL 1	0.0 m ²	1881.6 m²	1687.5 m ²	18
LEVEL 1 MEZZANINE	0.0 m ²	568.4 m²	0.0 m ²	0
	2174.2 m ²	4729.7 m ²	5246.7 m ²	35

5/03/2022 3:58:43 PM

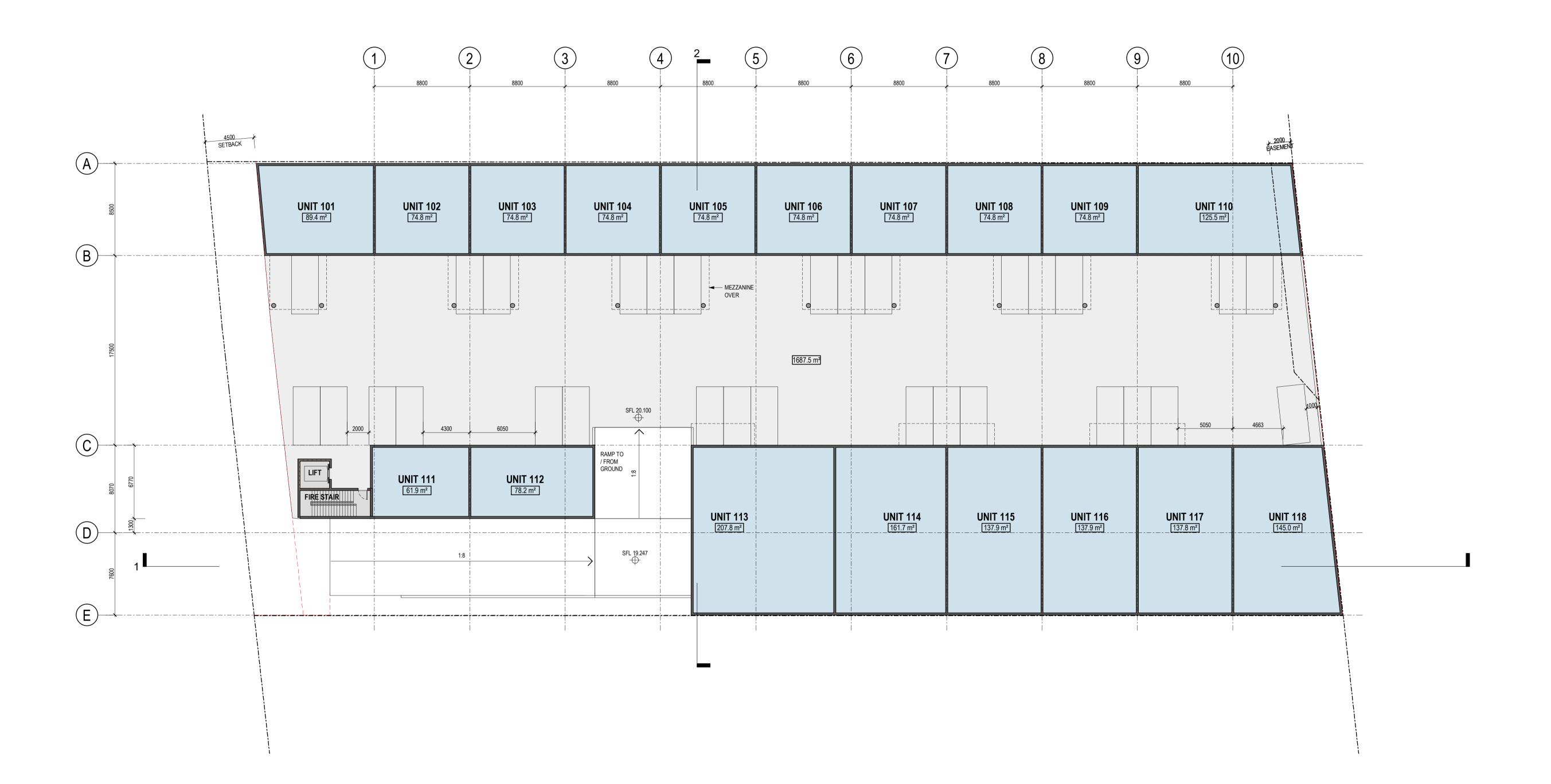
NOTE: AREAS ARE MEASURED TO THE EXTERNAL FACE OF EXTERNAL WALLS AND CENTRE LINE OF PARTI WALLS

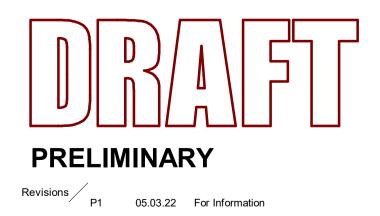
Project 101 - 105 Old Pittwater Road

101 - 105 Old Pittwater Road

Brookvale

Ground Mezzanine


Project No 222008 Author AT Scale: @ A1 1:200 Drawing No.


Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

SK01.03

Revision P1

	CARPARKS			
Level	Total			
BASEMENT	3	3		
GROUND	29	9		
LEVEL 1	30)		
	62	2		
		_		
LEVEL	STORAGE UNITS	INDUSTRIAL UNITS	PARKING	No. OF INDUS UNITS
LEVEL BASEMENT	STORAGE UNITS 2174.2 m ²	INDUSTRIAL UNITS 0.0 m ²	PARKING 1497.4 m ²	
BASEMENT			-	
BASEMENT GROUND	2174.2 m ²	0.0 m ²	1497.4 m²	
	2174.2 m ²	0.0 m² 1744.6 m²	1497.4 m² 2061.8 m²	
BASEMENT GROUND GROUND MEZZANINE	2174.2 m ² 0.0 m ² 0.0 m ²	0.0 m² 1744.6 m² 535.0 m²	1497.4 m² 2061.8 m² 0.0 m²	

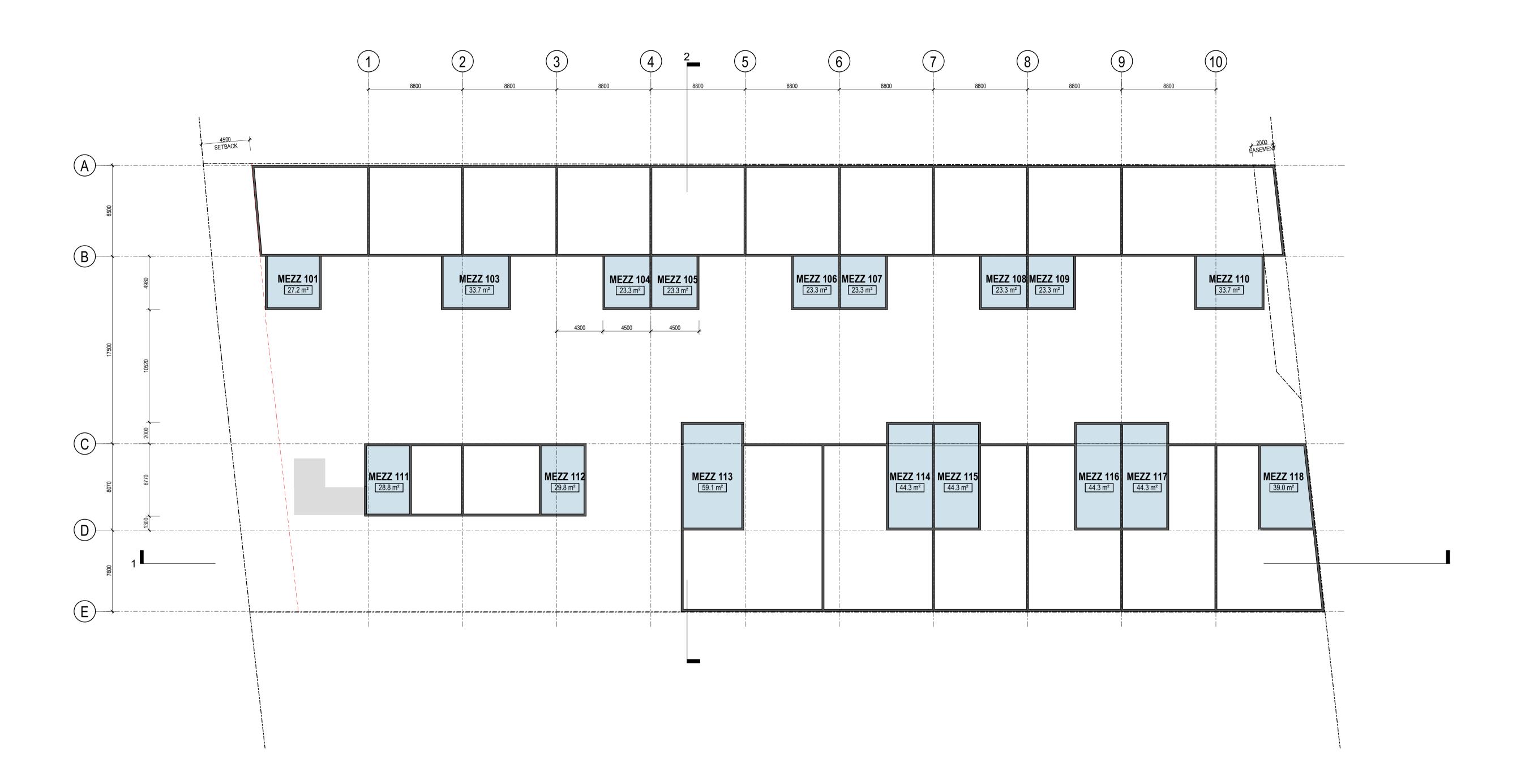
5/03/2022 4:01:34 PM

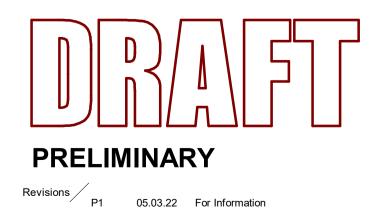
NOTE: AREAS ARE MEASURED TO THE EXTERNAL FACE OF EXTERNAL WALLS AND CENTRE LINE OF PARTI WALLS

Project 101 - 105 Old Pittwater Road 101 - 105 Old Pittwater Road

Brookvale

Drawing Level 1


Project No 222008 Author AT Scale: @ A1 1:200 Drawing No.


Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

SK01.04

Revision P1

LEVEL	STORAGE UNITS	INDUSTRIAL UNITS	PARKING	NO. OF INDUSTRIAL UNITS
BASEMENT	2174.2 m ²	0.0 m ²	1497.4 m²	0
GROUND	0.0 m ²	1744.6 m ²	2061.8 m ²	17
GROUND MEZZANINE	0.0 m ²	535.0 m²	0.0 m²	0
LEVEL 1	0.0 m ²	1881.6 m ²	1687.5 m ²	18
LEVEL 1 MEZZANINE	0.0 m ²	568.4 m²	0.0 m²	0
	2174.2 m ²	4729.7 m ²	5246.7 m ²	35

5/03/2022 3:58:46 PM

NOTE: AREAS ARE MEASURED TO THE EXTERNAL FACE OF EXTERNAL WALLS AND CENTRE LINE OF PARTI WALLS

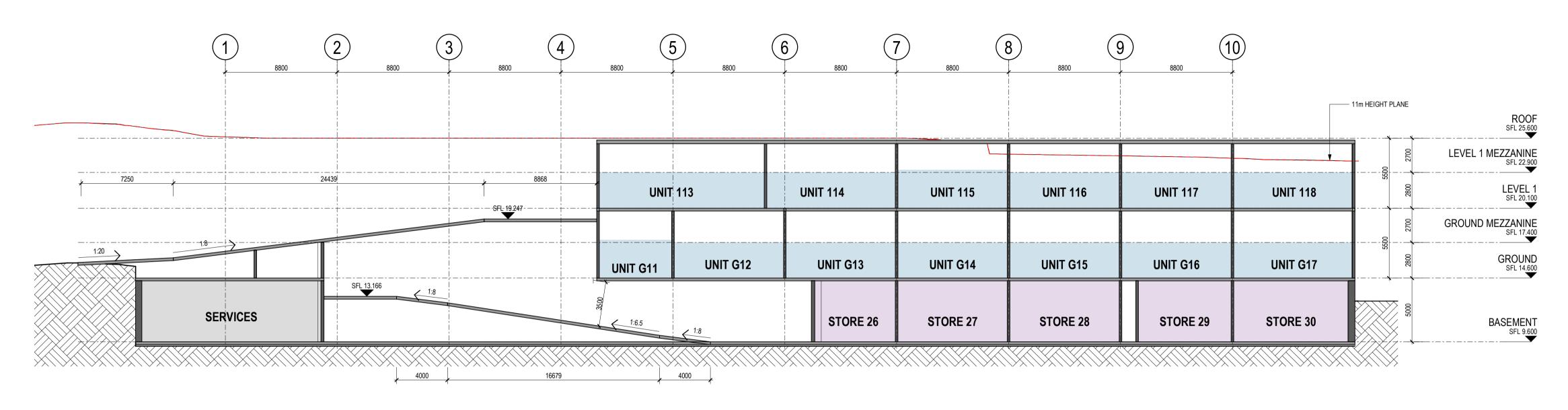
Project 101 - 105 Old Pittwater Road

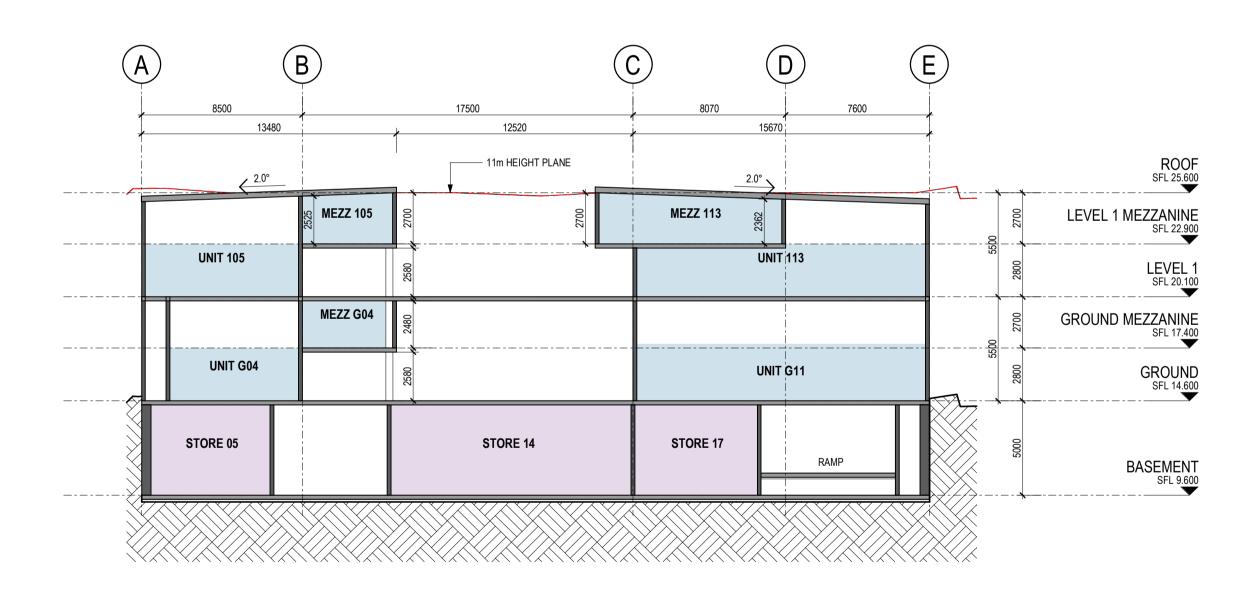
101 - 105 Old Pittwater Road

Brookvale

Level 1 Mezzanine

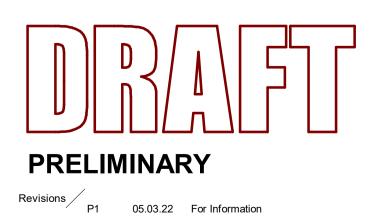
Project No 222008 Author AT Scale: @ A1 1:200 Drawing No.


Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997


Brisbane, Melbourne, Sydney www.rothelowman.com.au

SK01.05

Revision P1

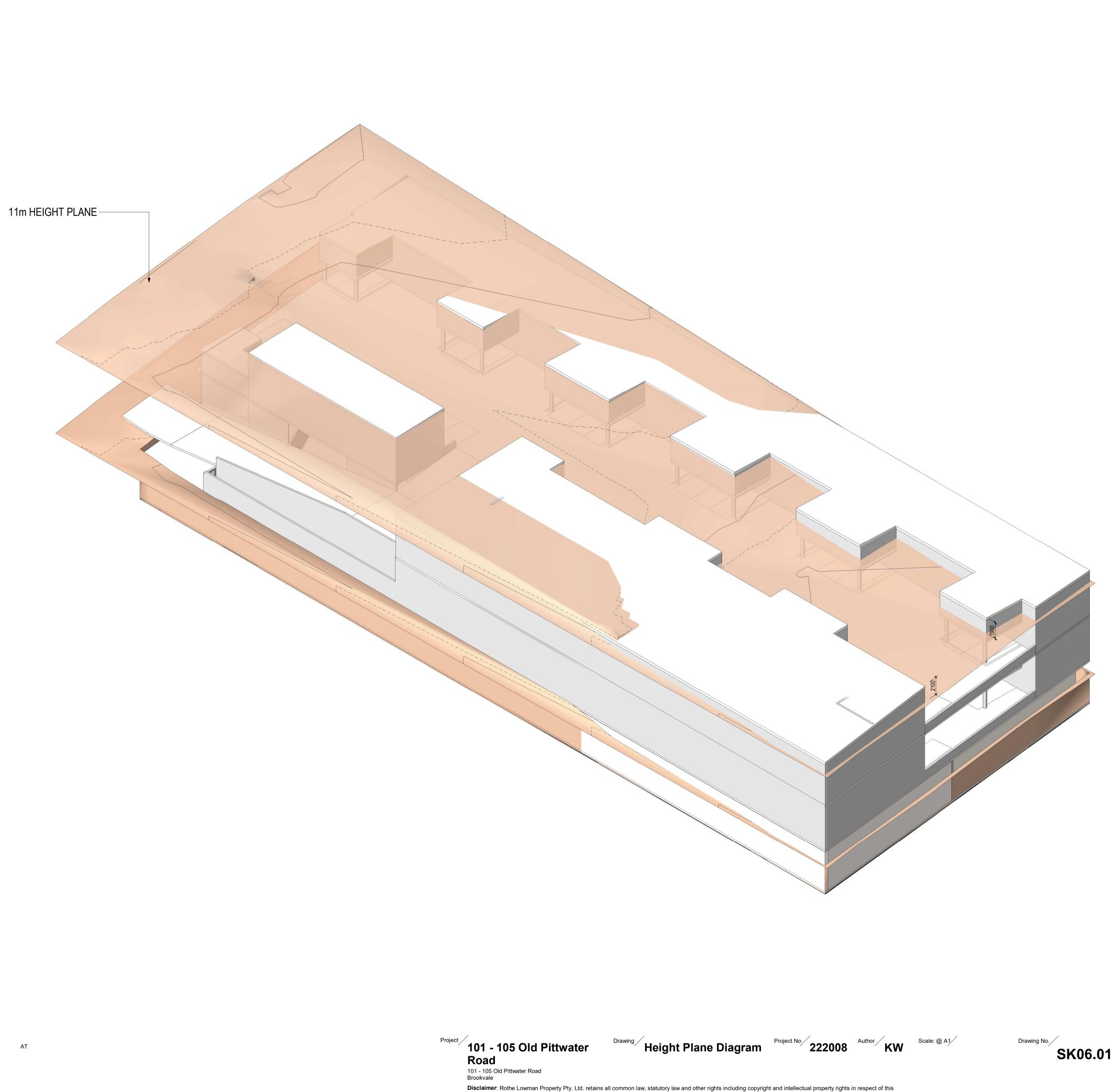


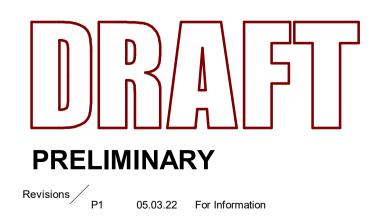
SECTION 1

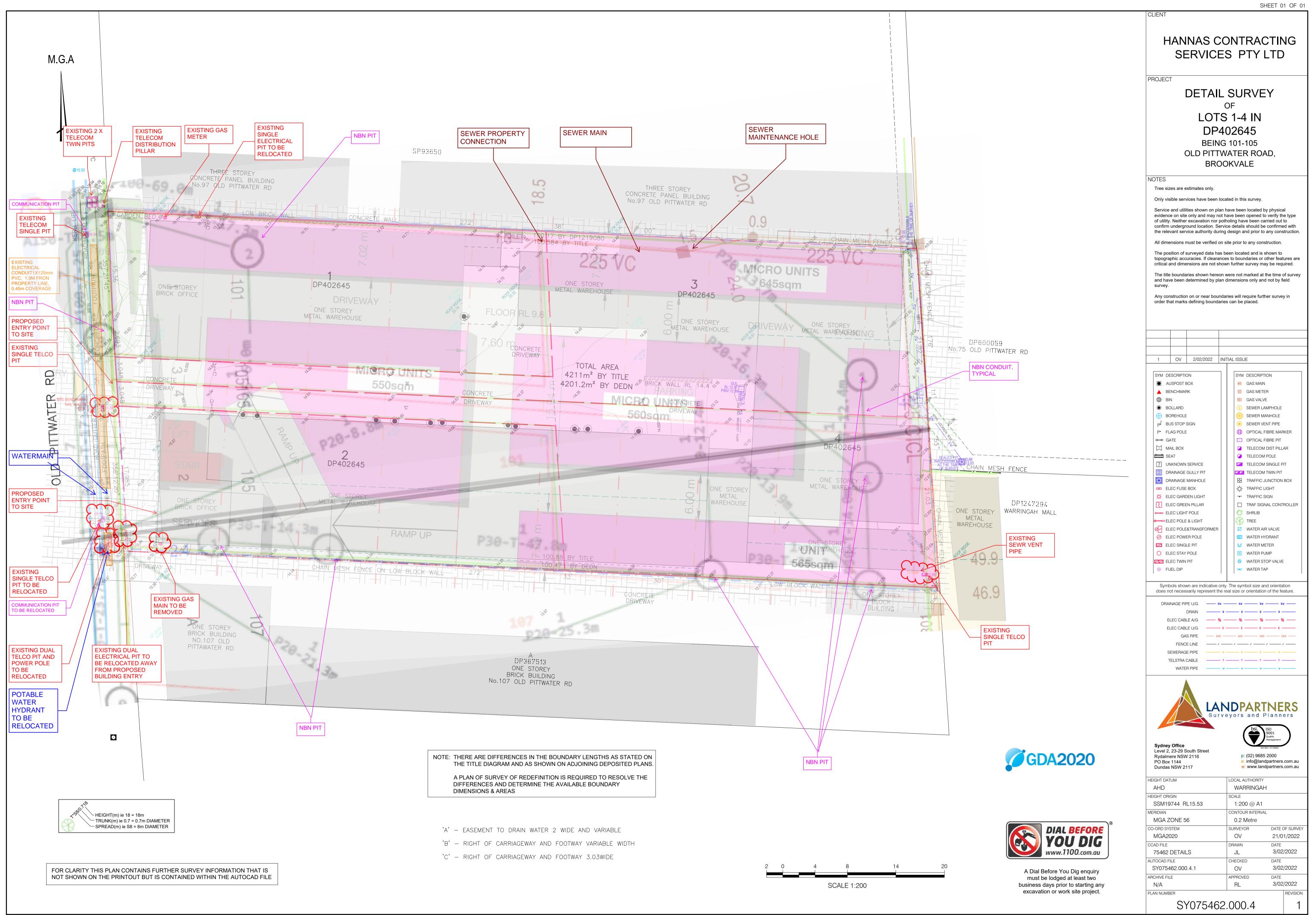
SECTION 2

AT

5/03/2022 3:58:50 PM


Project No 222008 Author AT Scale: @ A1 1:200 Drawing No.


Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997



5/03/2022 3:58:54 PM

Disclaimer: Rothe Lowman Property Pty. Ltd. retains all common law, statutory law and other rights including copyright and intellectual property rights in respect of this document. The recipient indemnifies Rothe Lowman Property Pty. Ltd. against all claims resulting from use of this document for any purpose other than its intended use, unauthorized changes or reuse of the document on other projects without the permission of Rothe Lowman Property Pty. Ltd. Under no circumstance shall transfer of this document be deemed a sale or constitute a transfer of the license to use this document. ABN 76 005 783 997

©LANDPARTNERS 2022

Appendix D – Site Photographs

Photograph 1: Central portion of the site, fronting east.

Photograph 2: Garage from the roller door (proximity to BH4).

Photograph 3: Storage area within stone worker warehouse and associated showrooms.

Photograph 4: Southern portion of the site, proximity to BH6.

Photograph 5: Equipment storage within garage (proximity to BH4).

Photograph 6: The eastern portion of the site (set back area, in proximity to BH7).

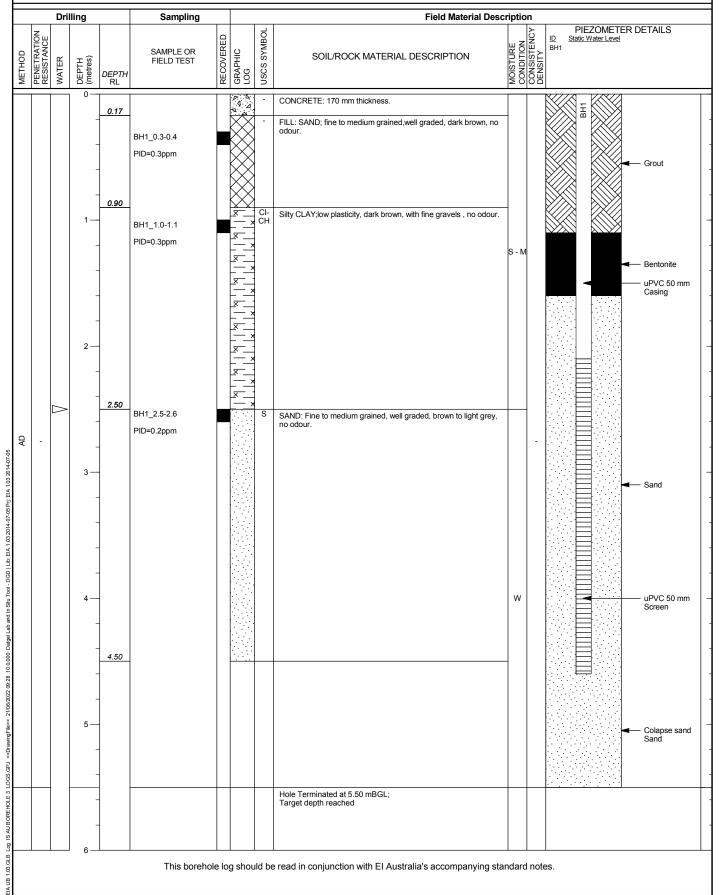
Photograph 7: The western portion of the site (set back area, in proximity to BH2).

Appendix E – Borehole Logs

Project Detailed Site Investigation

Location 101-105 Old Pittwater Road, Brookvale, NSW

Position Refer to Figure 2


E25568.E02

Job No. Client

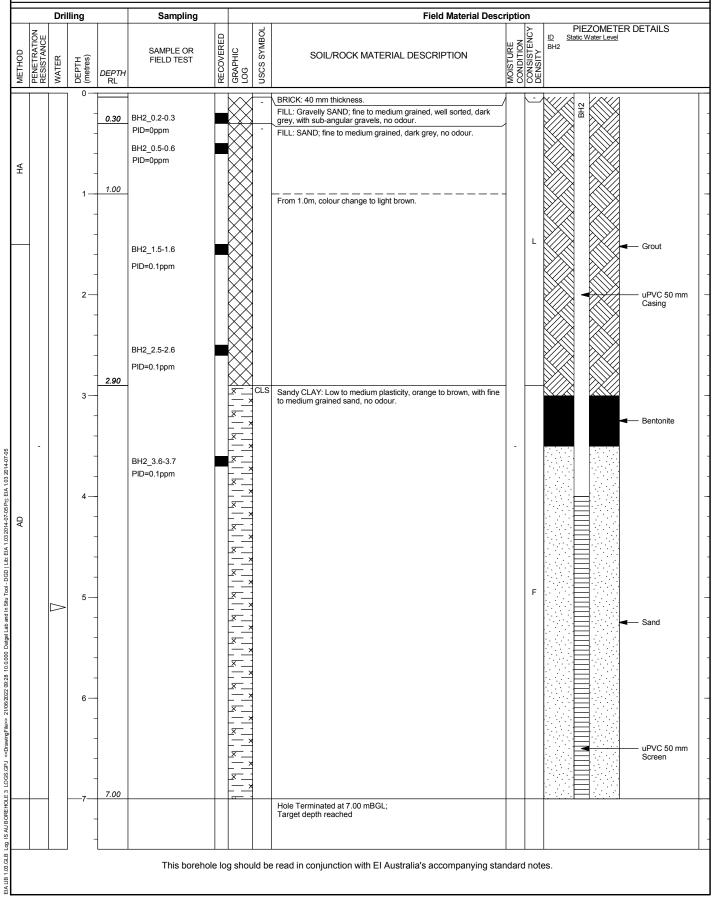
E25568.E02 Hannas Contracting Services Contractor Geosense Drilling & Engineering Pty Ltd Drill Rig Comacchio Geo 205 Inclination -90° Sheet1 OF 1Date Started21/5/22Date completed21/5/22LoggedSR

Checked

BOREHOLE: BH1

Project Detailed Site Investigation

Location 101-105 Old Pittwater Road, Brookvale, NSW


Position Refer to Figure 2

E25568.E02

Job No. Client

Hannas Contracting Services

Contractor Geosense Drilling & Engineering ^{Pty Ltd} Drill Rig Comacchio Geo 205 Inclination -90° Sheet1 OF 1Date Started21/5/22Date completed21/5/22LoggedSRChecked

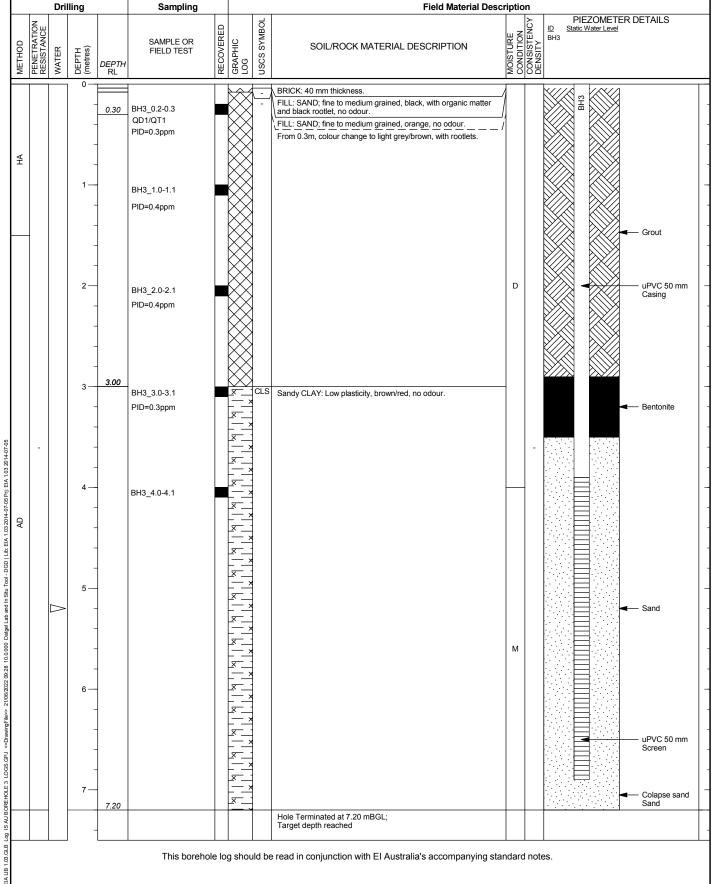
BOREHOLE: BH2

Project Detailed Site Investigation

Location 101-105 Old Pittwater Road, Brookvale, NSW

Position Refer to Figure 2

Job No. Client


E25568.E02 Hannas Contracting Services

Contractor Geosense Drilling & Engineering Pty Ltd Drill Rig Comacchio Geo 206

Sheet 1 OF 1 Date Started Date completed 28/5/22 Logged SR Checked

BOREHOLE: BH3

Inclination -90° 28/5/22

 Project
 Detailed Site Investigation

 Location
 101-105 Old Pittwater Road, Brookvale, NSW

Position R Job No. E

Client

Refer to Figure 2 E25568.E02

Hannas Contracting Services

Contractor -Drill Rig Hand Auger Inclination -90°

BOREHOLE: BH4

Sheet1OF1Date Started28/5/22Date Completed28/5/22LoggedSRChecked

		Dril	ling		Sampling				Field Material Desc	rintia	n	
	z	_	ling		Sampling			Ы				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED		USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
cc			0.0	0.43	BH4_0.43-0.58			-	CONCRETE: 430 mm thickness.		-	CONCRETE HARDSTAND
	-	GWNE	0.5	0.78	PID=0.3ppm BH4_0.63-0.78 PID=0.4ppm			-	FILL: SAND; fine to medium grained, light grey, no odour.	D	L	
НА			- 1.0 —	1.10				S	SAND: Fine to medium grained, brown, no odour.	-		NATURAL
			- - 	1.50	BH4_1.2-1.3 PID=0.3ppm						MD	
			-						Hole Terminated at 1.50 mBGL; Target depth reached			
			2.0—		This boreho	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying star	ndaro	l note	25.

Project Detailed Site Investigation Location 101-105 Old Pittwater Road, Brookvale, NSW

Position Refer to Figure 2

Job No. E25568.E02

Client Hannas Contracting Services Contractor -Drill Rig Hand Auger Inclination -90°

BOREHOLE: BH5

Sheet 1 OF 1 Date Started 28/5/22 Date Completed 28/5/22 Logged SR

Checked

		Dri	ling		Sampling	-			Field Material Desc	-		
MEIHOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
у С			0.0 —	0.10				-	CONCRETE: 100 mm thickness.		-	CONCRETE HARDSTAND
			-					-	FILL: SAND; fine to medium grained, dark grey, no odour.	1		FILL
			-		BH5_0.2-0.3		\bigotimes					
			-	0.30	PID=0.2ppm		\otimes		From 0.3m, colour change to light grey.		L	
			-									
			0.5 —	0.50			\bigotimes	-	FILL: Silty SAND; fine to medium grained, brown/red/ yellow, no	-		
			-	-					odour.			
			-									
			-									
			-				\bigotimes					
			1.0 —		BH5_1.0-1.1							
			-		PID=0.1ppm		\bigotimes					
			_									
		GWNE								_		
5	-	GM										
			-									
			1.5 —								MD	
			-									
			-									
			-									
			-									
			2.0 —		BH5_2.0-2.1		\bigotimes					
			-		PID=0ppm		\bigotimes					
			-	2.20					From 2.2m, colour change yellow.	-		
			-	2.30	BH5_2.3-2.4			SM	Silty SAND; Fine to medium grained, light grey/ white, no odour.	-		RESIDUAL SOIL
			-		PID=0ppm		×					
			2.5 —				×					
				2.60		+	×		Hole Terminated at 2.60 mBGL;			
			-						Target depth reached			
			-									
			-									
			3.0 —									
			2.0		This boroby				e read in conjunction with El Australia's accompanying star			

21/06/2022 09:28 10:0:000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05

<<DrawingFile>>

IS AU BOREHOLE 3 LOGS.GPJ

8

EIA LIB 1.03.GLB

 Project
 Detailed Site Investigation

 Location
 101-105 Old Pittwater Road, Brookvale, NSW

Position Job No.

Client

Refer to Figure 2 E25568.E02

Hannas Contracting Services

Contractor -Drill Rig Hand Auger Inclination -90°

BOREHOLE: BH6

Sheet1 OF 1Date Started28/5/22Date Completed28/5/22LoggedSRChecked

Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE USCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS SAMPLE OR GRAPHIC LOG METHOD SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) FIELD TEST DEPTH RL 0.0 CONCRETE HARDSTAND CONCRETE: 90mm thickness. S 0.09 FILL: Gravelly SAND; fine to medium grained, dark brown, with sub-angular to angular siltstone gravels, no odour. FILL GWNE --BH6_0.2-0.3 PID=0.4ppm ٩ 0.40 Hole Terminated at 0.40 mBGL; Refusal on Sandstone Gravels 0.5 -1.0 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

Project Detailed Site Investigation Location 101-105 Old Pittwater Road, Brookvale, NSW Position Refer to Figure 2

Job No. Hannas Contracting Services

Client

E25568.E02

Contractor Drill Rig Hand Auger

Inclination -90°

-

Sheet 1 OF 1 Date Started 28/5/22 Date Completed 28/5/22 Logged SR Checked

						_		_					_
	1	_	ling		Sampling				Field Material Des	criptic	n		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0.0 —	0.05			\bigotimes	-	FILL: Silty SAND; fine grained, black, with sub-angular gravels, with rootlets and plastic, no odour.			FILL / TOPSOIL	
HA	-	GWNE	-	-	BH7_0.1-0.2 PID=0.2ppm				FILL: Gravelly SAND; fine to medium grianed, dark grey, with sub-angular gravels, with rootlets and plastic, no odour.	-	L	FILL	
				0.25		+	\bigotimes		Hole Terminated at 0.25 mBGL;				Ļ
				_					Refusal on Gravels				
			-	-									
· Prj: EIA 1.03 2014-07-05			0.5 —	-									
Tool - DGD Ltb: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05			-	-									
0.000 Datgel Lab and In Situ Tool -				-									
ingFile>> 21/06/2022 09:28 10.0			-	-									
EA LIB 103 GLB Log IS AUBOREHOLE 3 LOGS GPJ <<0r>			-	-									
3.GLB Log IS AU BO			1.0 —		This borebo		a shou	JId be	e read in conjunction with EI Australia's accompanying sta			25.	
EIA LIB 1.0							5 5.100						

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

ontamination Remediation Geotechnical						
DRILLING/EXCAVATIO	N METHOD					
HA Hand Auger	r	RD	Rotary blade of	r drag bit	NQ	Diamond Core - 47 mm
DTC Diatube Cor	0	RT	Rotary Tricone			Diamond Core - 52 mm
	ctive digging	RAB	Rotary Air Blas		HQ HMLC	Diamond Core - 63 mm Diamond Core - 63mm
AS* Auger Screv		RC	Reverse Circul	ation	-	
AD* Auger Drillir	ng	PT	Push Tube		BH	Tractor Mounted Backhoe
*V V-Bit		CT	Cable Tool Rig		EX EE	Tracked Hydraulic Excavator
*T TC-Bit, e.g.		JET	Jetting			Existing Excavation
ADH Hollow Aug		WB	Washbore or B	aller	TAND	Excavated by Hand Methods
PENETRATION/EXCAV	ATION RESISTA	NCE				
L Low resistance	. Rapid penetration/	excavatio	on possible with li	ittle effort from	n equipment	used.
						rate effort from equipment used.
-						hificant effort from equipment used.
					-	acceptable wear to equipment used.
These assessments are sub excavation or drilling tools a				cluding equip	ment power a	and weight, condition of
WATER				4		
¥	Water level at date	e shown		\triangleleft	Partial wat	ter loss
\triangleright	Water inflow				Complete	water loss
GROUNDWATER NOT OBSERVED	Observation of gro or cave-in of the b			nt or not, was	s not possibl	e due to drilling water, surface seepage
GROUNDWATER NOT ENCOUNTERED	•	,				er could be present in less permeable n left open for a longer period.
SAMPLING AND TESTI					•	
4,7,11 N=18 seating 30/80mm RW HW HB	4,7,11 = Blows per Where practical r Penetration occur Penetration occur Hammer double b	efusal oco rred unde rred unde	curs, the blows an er the rod weight o r the hammer and	nd penetratior	n for that inte	following 150mm erval are reported
Sampling		-				
DS	Disturbed Sample	Э				
BDS	Bulk disturbed Sa	ample				
GS	Gas Sample					
NS	Water Sample					
J63	Thin walled tube	sample -	number indicates	nominal sam	iple diameter	r in millimetres
Testing						
=P =VS	Field Permeability	•		otod oboor of	ronath (ov -	noak volue, er = regidual value)
PID	Photoionisation D	•		cied shear si	rength (sv =	peak value, sr = residual value)
PM	Pressuremeter te		0 11			
p	Pocket Penetrom			trument readir	ng in kPa	
WPT	Water Pressure to		,		J L	
CCP	Dynamic Cone P		ter test			
CPT	Static Cone Pene					
CPTu	Static Cone Pene	etration tes	st with pore press	sure (u) measi	urement	
						soil contamination assessment
	ole evidence of conta			R = A		ural odours identified
- 5	evidence of visible co	maminati		R = B R = C	0	natural odours identified
	contamination	ation		-		non-natural odours identified
	ant visible contamina	allOII		R = D	Suong non-	-natural odours identified
		000		0/0m ((0/)		
TCR = Total Core Recov	• • •		= Solid Core Rec	,		RQD = Rock Quality Designation (%)
		Σí ongth	ofcylindrical core	recovered	100	ΣAxial Lenghts of core>100mm
$= \frac{\text{Length of core recevered}}{\text{Lengh of core run}}$	x 100 =	$=\frac{2 \text{ Length}}{2}$	Lengh of core ru		100 =	$\frac{\Sigma Axial \ Lenghts \ of \ core > 100 mm}{Lengh \ of \ core \ run} \ x \ 100$
						Lengh of core run x 100

METHOD OF SOIL DES															
eiaust	tralia	A			AND TEST PI										
Contamination Remedia	FILL	al	.000.	GANIC SO			CLAY (CL, C	CI or CH)							
		BLES or	* * *	T (ML or M			SAND (SP c	or SW)							
802 202		LDERS VEL (GP or	" × × ×	·			·	·							
20°20	GW)		Combinations o sandy clay	of these basic s	ymbols may l	be used to	indicate mixed mater	als such as							
Soil is broadl	y classifie	d and described in	STRATIGRAPHY Borehole and Test Pir aterial properties are a	it Logs using th assessed in the	e preferred m	ethod give	n in AS1726 – 1993, ethods.	(Amdt1 –							
		HARACTERISTI		USCS SY	MBOLS										
Major Divi		Sub Division	Particle Size		Divisions	Symbol	Descrip	tion							
	BOULD		>200 mm				Well graded grave								
	COBBL		63 to 200 mm	Sss	% o s are	GW	sand mixtures, litt	le or no fines.							
		Coarse	20 to 63 mm	SS le	n 50 ains îmm	GP	Poorly graded gravel and grave sand mixtures, little or no fines								
	. –			an 0 SC	thai te gr 2.36	GM	Silty gravel, grav	ty gravel, gravel-sand-silt							
GRAVE	:L	Medium Fine	6 to 20 mm 2 to 6 mm	er thick in the second se	More than 50% of coarse grains are >2.36mm	GC	mixture Clayey gravel, gra								
		Coarse	0.6 to 2 mm	COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm		SW	Well graded sand	and gravelly							
SAND		Medium	0.2 to 0.6 mm	ARSE han 5 han 5	More than 50% of coarse grains are <2.36mm	SP	sand, little or Poorly graded san	d and gravelly							
		Fine	0.075 to 0.2mm	63n te the	tha arse	SM	sand, little or Silty sand, sand-								
	SILT	Γ	0.002 to 0.075 mm	Mo	Aore f co; are	SC	Clayey sand, sand, s								
	CLA	Y	<0.002 mm	±	20	30	mixture								
	PLAS	STICITY PROPE	RTIES	LS mass than	less	ML	Inorganic silts of very fine sands, r or clayey fine	ock flour, silty							
40 30	CL Lowplast	Ci H Medium plastici ty	igh plasticity day	FINE GRAINED SOILS More than 50% by dry mass less than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	Inorganic clays of plasticity, gravelly	low to medium / clays, sandy							
dex (%	clay	plasticity day		3 AINI 50% 33mm	Liqu	OL	clays, silty Organic silts and	l organic silty							
4 20 - 21			OH orMH High liquid limit silt	Han (,	MH	clays of low p Inorganic silts of h	f high plasticity.							
– 10 –		CL or ML	U.K.	ore t ss th	Liquid Limit > than 50%	CH	Inorganic clays of								
	CL/ML Clay/Silt L or ML - Low liquid lin	Low liquid limits lit		<u>s</u> ä		OH	Organic clays of m	ity.							
0	10 20) 30 40 50 Liquid Limit (%)	60 70 80			PT	Peat muck and organic s								
MOISTUR	E COND	TION													
Symbol	Term	Description													
D M	Dry		Is are free flowing. Cl												
W	Moist Wet		han in the dry condition water. Sands and grave	,		nu graveis	tend to cohere.								
Moisture co	ontent of c		also be described in re			r liquid limi	t (WL) [» much great	er than,							
CONSISTEN			-	DENSITY											
Symbol	Term	Undrained S	Shear Strength	Symbol	Term		Density Index %	SPT "N" #							
VS	Very Sc	oft 0. to	12 kPa	VL	Very Loo		< 15	0 to 4							
S F	Soft Firm		25 kPa 50 kPa	L MD	Loose Medium De		15 to 35 35 to 65	4 to 10 10 to 30							
St	Stiff	50 to	100 kPa	D	Dense		65 to 85 30 to 50								
VSt H	Very Sti Hard		200 kPa 200 kPa	VD	Very Der	ise	Above 85	Above 50							
In the absend	ce of test i	results, consistenc	y and density may be a 26 – 1993, and may b												
MINOR CO			<u></u> ioco, and may b												
Term		nent Guide			Pro	oportion by Mass									
Trace	Presence	e just detectable b	y feel or eye but soil pr operties of primary co		1	Coars	se grained soils: $\leq 5\%$ se grained soil: $\leq 15\%$	5							
Some	Presenc	e easily detectable	by feel or eye but soil operties of primary co	I properties little	e	Coarse	grained soils: 5 - 12 grained soil: 15 - 30%								

Appendix F – Calibration Form and Field Data Sheets

WATER SAMPLING FIELD SHEET

Initial Well Depth (mBTOC): Screen Interval (mBTOC): Previous Sampling Date: N/A Previous SWL (mBTOC): PID READINGS PiD Background (ppm): PID Breathing Space (ppm): 0.0 PID Breathing Space (ppm): 0.0 PRE PURGE Well Head Condition: Total Well Depth (mBTOC): 0.0 PHASE SEPARATED HYDROCARBONS (PSH) Water Column (m): PHASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer): Depth to PSH (mBTOC): MO Pield Filtered Yes (0.45 µm) Yes (0.45 µm) MO Purge AND SAMPLE Submersible Sampling Method Bladder X Peristaltic Depth of Pump Inlet (mBTOC): + 0.5 µm base Fill Timer: N/A Pump Pressure Regulator (psi): N/A Discharge Timer: Weather Conditions: + 0.2 µm base Cycle: N/A Pump on time: Pump off time: Pump off time: WATER QUALITY PARAMETERS Bump Test Date and Time: Probe Make and Model: Bump Test Date and Time:															
Field Staff: Sergio Raposeira Sampling Location ID GW MUC Well Location: Well located onsite refer to site plans Round No: 1 MEDUIM XGroundwater DSturface Water DStormwater DOther: SAMPLING POINT INFO Stick up / down (m):	Site Address: 01-105	Old Pittw	vater Rd, E	Brookvale			Job Numb	ber: E2556							
Test Total Construction Test Total Construction Test Total Construction Test Total Construction MEDUM XGroundwater ESurface Water EStortmwater EStortmwater EStortmwater MEDUM XGroundwater ESurface Water EStortmwater EStortmwater EStortmwater MEDUM XGroundwater EStortmwater EStortmwater EStortmwater EStortmwater MEDUM XGroundwater EStortmwater EStortmwater EStortmwater EStortmwater Mell Location Construction Construction Construction Construction Mell Mell Depth (mBTOC): Construction Construction Construction Construction PH Bestings Space (ppm): Construction Construction Construction Construction PH Bestings Space (ppm): Construction Construction Construction Construction PH Bestings Space (ppm): Construction Construction Construction Construction PH Start (mBTOC): Construction Construction Construction Construction Construction PHORe Estings Start (mBTOC): Construction Monthing	Client: Hannas	and the second				and the second	Date: 4/6/								
MEDIUM XGroundwater Dsurface Water DStormwater DOther: SAMPLING POINT INFO ************************************	Field Staff: Sergio R	aposeira					Sampling	Location ID GW DHOZ							
SAMPLING POINT INFO Starter interval (mBTOC): Click (mBTOC):	Well Location: Well	located o	nsite refer	to site pla	ans		Round No	p: 1							
Weil Installation Date: 28/May/2022 Stick up / down (m): 0.1 (* above ground - below initial Weil Depth (mBTOC): 4 - 7 Previous Sampling Date: N/A Previous SWL (mBTOC): 4 - 7 Previous Sampling Date: N/A Previous SWL (mBTOC): - PID Readspace (ppm): 0.3 PID Background (ppm): 0.0 PID Breathing Space (ppm): 0.4 Weil Head Condition: 0.0 PRE PURGE Weil Head Condition: 0.0 Total Weil Depth (mBTOC): 0.10 (* 0.0) PSH Thickness (mm): 0.0 PHASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer): 0.0 PSH Thickness (mm): 0.0 PSH Visually Confirmed (Bailer): 0.0 PSH Thickness (mm): 0.0 PSH Visually Confirmed (Bailer): 0.0 PSH Thickness (mm): 0.0 Previsual Submersible Other: Period Filtered Fill Timer: NA Purge And Sampling Method Bladder X Peristatic Submersible Other: Pump on time: Pump on time: Pump of time: Pump of time: Pump of time: Pump of time: Volume (tup book) Temp (tup book) Cole: N/A Discharge Timer: Pump of time: Volume (tup book) Temp (tup book) Cole: N/A Discharge Timer: Pump of time: Volume (tup book) Temp (tup bo	MEDIUM	XC	Groundwat	er □S	Surface Wa	ater	□Stormw	ater DOther:							
Initial Well Depth (mBTOC): 4 - 7 Previous Sampling Date: N/A Previous SWL (mBTOC): - PID READINGS Previous SWL (mBTOC): - PID READINGS PID Background (ppm): 0.0 PID Breathing Space (ppm): 0.0 PID Breathing Space (ppm): 0.0 PRE PURGE Well Head Condition: 0.0 0.0 SWL (mBTOC): 0.0 PSH Thickness (mm): MO PSH Thickness (mm): PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): MO PSH Thickness (mm): MO PHASE SEPARATED HYDROCARBONS (PSH) Depth of DSH (mBTOC): MO PSH Thickness (mm): MO PSH Thickness (mm): MO No (Request lab 0.45 µm filter the sa PURGE AND SAMPLE Sampling Method EBladder X Peristaltic Dsubmersible Other: Depth of Dump Intel (mBTOC): MO Cycle: NIA Discharge Timer: MO Pump on time: Volume of (byle: Volume SWL Temp (Cycle: NIA	SAMPLING POINT I	NFO		r											
Previous Sampling Date: N/A Previous SWL (mBTOC):	Well Installation Date	e: 28/May	y/2022	,			Stick up /	down (m): 🕒 🖞 (+ above ground - below ground							
PID READINGS PID Background (ppm): 0 PID Breathing Space (ppm): 0 0 PRE PURGE Well Head Condition: 0 Total Well Depth (mBTOC): 0 0 PMASE SEPARTED HYDROCARBONS (PSH) Water Column (m): 0 Depth to PSH (mBTOC): MD PSH Visually Confirmed (Bailer): MD Field Filtered Yes (0.45 µm) MD PSH Thickness (mm): MD Pressare Regulator (psi): MD No (Request lab 0.45 µm filter the sailer): Pump Pressure Regulator (psi): NA Discharge Timer: NA Pump on time: Pump off imfe: Pump off imfe: WATER QUALITY PARAMETERS Pump off imfe: Cycle: NA Probe Make and Model: Bump Test Date and Time: Image: Mark (Mark (Mar	Initial Well Depth (ml	STOC):					Screen In	terval (mBTOC): 4 – 7							
PID Headspace (ppm): ().3 PID Beakground (ppm): ().0 PID Breathing Space (ppm): ().0 ().0 ().0 PRE PURGE Well Head Condition: ().0 ().0 SWL (mBTOC): ().0 ().0 ().0 ().0 PHASE SEPARATED HYDROCARBONS (PSH) Depth o PSH (mBTOC): ().0 ().0 ().0 Depth o PSH (mBTOC): ().0 ().0 PSH Thickness (mm): ().0 ().0 PSH Thickness (mm): ().0 ().0 ().0 ().0 ().0 ().0 PSH Thickness (mm): ().0	Previous Sampling D	ate: N/A		56 C			Previous	SWL (mBTOC): 🛁							
PID Breathing Space (ppm): 0 PRE PURGE	PID READINGS														
PID Breathing Space (ppm): 0 PRE PURGE PRE PURGE Total Well Depth (mBTOC): (, 34 Water Column (m): PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): MO PSH Thickness (mm): MO Field Filtered PSH Thickness (mm): Yes (0.45 µm) MO PURGE AND SAMPLE Sampling Method Bampling Method Bladder X Peristatic CSubmersible Other: Depth of Pump Inlet (mBTOC): + 0.5 from back Fill Timer: N/A Pump pressure Regulator (psi): N/A Discharge Timer: Weather Conditions: W/A Discharge Timer: Water Column (mit: Pump off #me: Pump off #me: WATER QUALITY PARAMETERS Bump Test Date and Time: Work function func	PID Headspace (ppn	n):	(2.3				PID Back	ground (ppm): 0,0							
PRE PURGE Vell Head Condition: (-0 c) Total Well Depth (mBTOC): (-0 c) Wull (mBTOC): (-0 c) Water Column (m): PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PHASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer): Period Filtered Yes (0.45 µm) Yes (0.45 µm) M PURGE AND SAMPLE No Sampling Method Bladder Namp Pressure Regulator (psi): NA Pump pressure Regulator (psi): NA Pump pressure Regulator (psi): NA Pobe Make and Model: Bump Test Date and Time: Watter QuALITY PARAMETERS Probe Make and Model: Time Volume SVL (mstoc) Yold SVL (mstoc) Yold Yold SVL (mstoc)			01)											
SWL (mBTOC): UL01 Water Column (m): PHASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer): MO Depth to PSH (mBTOC): MO PSH Visually Confirmed (Bailer): MO Field Filtered Yes (0.45 µm) MO (Request lab 0.45 µm filter the sa PURGE AND SAMPLE Sampling Method DBladder X Peristaltic Dsubmersible Other: Depth of Pump Inlet (mBTOC): + 0.5 µmm back Fill Timer: N/A Discharge Timer: Weather Conditions: Grue / Clean Cycle: N/A Pump on time: Pump of Hmfe: Pump of Hmfe: Pump of Hmfe: Water Quality PARAMETERS Freing EC Redox DO Might hubd: Jule on y fill (units) Sig 0:5 41.01 20.51 336 140.5 0.44 40.84 Jule on y fill (units) Gio	NAME AND ADDRESS OF TAXABLE PARTY OF TAXABLE PARTY.														
SWL (mBTOC): UL01 Water Column (m): PHASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer): MO Depth to PSH (mBTOC): MO PSH Visually Confirmed (Bailer): MO Field Filtered Yes (0.45 µm) MO (Request lab 0.45 µm filter the sa PURGE AND SAMPLE Sampling Method DBladder X Peristaltic Dsubmersible Other: Depth of Pump Inlet (mBTOC): + 0.5 µmm back Fill Timer: N/A Discharge Timer: Weather Conditions: Grue / Clean Cycle: N/A Pump on time: Pump of Hmfe: Pump of Hmfe: Pump of Hmfe: Water Quality PARAMETERS Freing EC Redox DO Might hubd: Jule on y fill (units) Sig 0:5 41.01 20.51 336 140.5 0.44 40.84 Jule on y fill (units) Gio	Total Well Depth (m	STOC):	6.89		100		Well Hea	d Condition: Good							
PHASE SEPARATED HYDROCARBONS (PSH) PSH Visually Confirmed (Bailer): M Depth to PSH (mBTOC): M PSH Visually Confirmed (Bailer): M PSH Thickness (mm): M PSH Visually Confirmed (Bailer): M PSH Thickness (mm): M PSH Visually Confirmed (Bailer): M PSH Thickness (mm): M No (Request lab 0.45 µm filter the sailer): Sampling Method EBladder X Peristaltic ESubmersible Other: Depth of Pump Intel (mBTOC): + 0.5 from back Fill Timer: NA Pump Pressure Regulator (psi): N/A Discharge Timer: Pump on time: Weather Conditions: If W Clean Cycle: N/A Pump on time: Pump of time: Pump of time: Pump of time: Yolume SWL Temp EC Redox DO PH Comments (colour, turbidity, odour, sheen of time: Yolume SWL Yolume SWL Yolume SWL Yolume Yolume Yolume SWL Yolume Yo				-			Water Co								
Depth to PSH (mBTOC): MD PSH Visually Confirmed (Bailer): MD Field Filtered Yes (0.45 µm) MD No Request lab 0.45 µm filter the sa PURGE AND SAMPLE Sampling Method DBladder X Peristaltic DSubmersible DOther: Depth of Pump Inlet (mBTOC): <i>H</i> 0.55 µm base Fill Timer: N/A Pump Pressure Regulator (psi): N/A Discharge Timer: Weather Conditions: Clean Cycle: N/A Pump on time: Watter Qualtry PARAMETERS Bump Test Date and Time: Pump off imfe: WATER QUALITY PARAMETERS Bump Test Date and Time: N/A N/A 7:00 Grift Temp EC Redox DO pH 7:10 Guide 356 H/A: 1 Guide		V		IS (PSH)											
PSH Thickness (mm): M Field Filtered		-	ND				PSH Visu	ally Confirmed (Bailer):							
Field Filtered Yes (0.45 µm) No Request lab 0.45 µm filter the sampling Method PURGE AND SAMPLÊ Sampling Method Bladder X Peristaltic Submersible Other: Sampling Method Bladder X Peristaltic Submersible Other: Depth of Pump Inlet (mBTOC): + 0.5 from book Fill Timer: N/A Pump Pressure Regulator (psi): N/A Discharge Timer: V/A Weather Conditions: fill Clean Cycle: N/A Pump on time: Pump of time: Pump of time: Pump of time: WATER QUALITY PARAMETERS Probe Make and Model: Bump Test Date and Time: Time Volume SWL (n) Temp (mg/L) Redox (mg/L) pH (units) Comments (colour, turbidity, odour, sheen of the sample of t			ND												
Yes (0.45 µm) No Request lab 0.45 µm filter the same same same same same same same sam								and many particular and the second							
PURGE AND SAMPLE Sampling Method Bladder X Peristaltic Submersible Other: Depth of Pump Inlet (mBTOC): # 0.5 from bage Fill Timer: NA Pump Pressure Regulator (psi): N/A Discharge Timer: NA Weather Conditions: Grad Clean Cycle: N/A Pump on time: Pump on time: Pump off time: WATER QUALITY PARAMETERS Bump Test Date and Time: Comments (colour, turbidity, odour, sheen of (my) 8'39 0'3 4/11 20/11 336 16/15 0.34 4/34 0/11 8'39 0'3 4/11 20/11 336 16/15 0.34 4/34 0/11		A					No	(Request lab 0.45 um filter the sample							
Sampling Method Bladder X Peristattic Submersible Other: Depth of Pump Inlet (mBTOC): + 0.5 from base Fill Timer: N/A Pump Pressure Regulator (psi): N/A Discharge Timer: Weather Conditions: Grad Cycle: N/A Pump on time: Pump of time: Pump of time: Pump of time: WATER QUALITY PARAMETERS Probe Make and Model: Burng Test Date and Time: Time Volume (L) (mbtoc) (°C) (µSicm) 0.4 4.0 8:59 0*3 4.01 20.51 336 140.5 0.34 4.04 9:03 20.41 320 140.5 0.44 4.08 1 9:03 20.65 336 16.7 0.49 4.08 1 1 9:03 20.61 337 16.7 0.42 4.08 1 1 9:03 20.65 33.6 16.7 0.42 4.08 1 1 9:03 20.65 33.4 16.7 </td <td>· · · /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · · /														
Depth of Pump Inlet (mBTOC): $+$ 0.5 how base Fill Timer: N/A Pump Pressure Regulator (psi): N/A Discharge Timer: Weather Conditions: $-$ 10 2 0 0 0 Cycle: N/A Pump on time: Pump of time: Pump off time: WATER QUALITY PARAMETERS Pump off time: Pump off time: Wolume SWL (c) (wScm) (wScm			DBladde	r X	Peristal	tic 🗆 🗆	Submersit	ale DOther:							
Pump Pressure Regulator (psi): N/A Discharge Timer: Weather Conditions: Five / Clean Cycle: N/A Pump on time: Pump off #me: WATER QUALITY PARAMETERS Pump off #me: Probe Make and Model: Bump Test Date and Time: Time Volume (L) (mbtoc) Temp (CC) (µS/cm) Redox (mV) (mg/L) pH (units) Comments (colour, turbidity, odour, sheen (not show for the for		(mBTOC)			1										
Weather Conditions: Give / Clean Cycle: N/A Pump on time: Pump off time: WATER QUALITY PARAMETERS Probe Make and Model: Bump Test Date and Time: Time Volume (L) (mbtoc) Temp (°C) (µSicm) (mV) DO (mg/L) (mg/L) (units) Comments (colour, turbidity, odour, sheen of (mg/L) (units) 8:59 0:5 4.413 20:41 336 146:5 0:47 4.614 0:444 0:447 0:445 0:444 0:447 0:445 0:444 0:447 0:445 0:445 0:447 0:445 0:445 0:447 0:445 0:447 0:445 0:447 0:445 0:445 0:447 0:445 0:447 0:445 0:447 0:445 0:447 0:445 0:447 0:445 0:447 0:445 0:447 0:445 0:447 0:446 0:447 0:445 0:447 0:445 0:447 0:445 0:447 0:445 0:445 0:447 0:446 0:447 0:446 0:446 0:446 0:446 0:446 0:446 0:446 0:446 0:446 0:446 0:446 0:446 0:446			and the second se	- proce	on										
Pump on time: Pump of time: WATER QUALITY PARAMETERS Probe Make and Model: Bump Test Date and Time: Time Volume (L) SWL (mbtoc) Temp (°C) EC (wS/cm) Redox (mV) DO (mg/L) pH (units) Comments (colour, turbidity, odour, sheen (ms/L) 3'50 0.5(3'56 1/0.5 0.34 4/.05 6/.01 7.00 pH (units) Comments (colour, turbidity, odour, sheen (ms/L) 0.01 3'56 1/0.5 0.34 4/.05 6/.01 7.00 6/.01 7.00 6/.01 7.00 6/.01 7.00				20000											
WATER QUALITY PARAMETERS Bump Test Date and Time: Time Volume (L) (mbtoc) Temp (°C) (µS(cm)) Bump Test Date and Time: Time Volume (L) (mbtoc) Temp (°C) (µS(cm)) Bump Test Date and Time: 8:59 0.5 4(1) 20.54 336 140.5 0.34 4.55 Still function, function, function, sheen (units) 8:59 0.5 4(13) 20.01 336 140.5 0.34 4.55 Still function, function, function, sheen (units) 9:02 4:13 20.01 336 140.5 0.34 4.55 Still function, function, sheen (units) 9:03 5 20.01 336 140.0 0.45 4.04 150.4 160.4 9:08 5 20.01 337 161.1 0.412 4.08 17 100.4 9:08 5 20.01 337 161.1 0.412 4.08 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.		41 1	4/6	rean	~		-								
Probe Make and Model: Bump Test Date and Time: Time Volume (L) SWL (mbtoc) Temp (°C) EC (µS/cm) Redox (mV) DO (mg/L) pH (units) Comments (colour, turbidity, odour, sheen (ms/L) 8:59 0.5 4(A) 20(A) 336 140.5 0.34 4(A) Skipt function	the second s		TEDE				r unp on	enne.							
Time Volume (L) SWL (mbtoc) Temp (°C) EC (ω S/cm) Redox (mV) DO (mg/L) pH (units) Comments (colour, turbidity, odour, sheen (ω 102 8:59 0.5 0.54 336 140.5 0.34 4.54 \$kipt $kukd$			IEKS				Bump To	st Date and Time:							
Time (L) (mbtoc) (°C) $(\mu S/cm)$ (mV) (mg/L) (units) Comments (colour, turbidity, dout, sheen 8:59 0.5 4.11 20.54 356 14.05 0.34 4.54 Skilpt turbidity, dout, sheen 9:02	robe Make and Model: Bump Test Date and Time:														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time			and the second				Comments (colour, turbidity, odour, sheen etc.)							
a:o2 $a:d3$ 201 320 1655 047 6.04 $16w$ $full$ $16w$ <td></td> <td></td> <td>10 50</td> <td></td> <td></td> <td></td> <td></td> <td>dight fundid. I il manon " NOC</td>			10 50					dight fundid. I il manon " NOC							
9:05 $9:13$ 20.01 334 16.0 0.45 4.08 11 11 $9:08$ $=$ 20.05 336 163.1 20.49 4.00 11 $9:08$ $=$ 20.01 336 163.1 20.49 4.00 11 $9:14$ 41.15 19.44 333 16.1 0.412 4.08 11 $4:16$ 20.01 331 114.1 0.39 4.09 110.9 114 41.15 140.98 331 116.1 0.412 4.08 110.9 114 140.98 331 116.1 0.39 4.06 110.9 110.9 114 110.98 331 116.1 0.39 10.99 <td></td> <td>int a</td> <td></td> <td>720</td> <td></td> <td></td> <td></td> <td></td>		int a		720											
9:08 $ 20.15$ 336 163.1 10.49 4.10 $9:11$ 4.15 19.44 333 161.7 0.412 4.68 1.68 $q:16$ 20.01 331 165.0 0.55 4.06 2.06 10.44 10.50 0.55 4.06 2.06 <th< td=""><td>-</td><td>4:13</td><td>2012</td><td>236</td><td></td><td></td><td></td><td></td></th<>	-	4:13	2012	236											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			226											
9:16 20.01 331 144.1 0.39 4.09 4 9:19 14.98 331 165.0 0.15 4.06 4 9 500000 50000 50000 50000 4 50000 9 50000 50000 50000 50000 50000 50000 9 50000 50000 50000 50000 50000 50000 9 50000 50000 50000 50000 50000 50000 9 50000 50000 50000 50000 50000 50000 50000 9 500000 50000 50000		1		333											
10 10.05 10.08 331 165.0 6.15 4.06 9 9 9 9 9 9 9 9 9 <t< td=""><td>1.A6</td><td><u>un</u></td><td></td><td></td><td>1 1 1</td><td></td><td>1.</td><td></td></t<>	1.A6	<u>un</u>			1 1 1		1.								
Stabilisation range: +0.2°C +3% +20mV +10% +0.2	9.10	415	1		115.0			and the second							
$1 + 0.2^{\circ}$ $1 + 3\%$ $1 + 20$ $1 + 10\%$ $1 + 0.2$		1.19	191.98	.5 1-1	(0)	0,10	-(
$1 + 0.2^{\circ}$ $1 + 3\%$ $1 + 20$ $1 + 10\%$ $1 + 0.2$			- 9		sa	P. Le									
$+0.2^{\circ}C + 3^{\circ}W + 20^{\circ}W + 10^{\circ}W + 0.2^{\circ}W$															
$+0.2^{\circ}C + 3^{\circ}W + 20^{\circ}W + 10^{\circ}W + 0.2^{\circ}W$															
$+0.2^{\circ}C + 3^{\circ}W + 20^{\circ}W + 10^{\circ}W + 0.2^{\circ}W$															
$+0.2^{\circ}C + 3^{\circ}W + 20^{\circ}W + 10^{\circ}W + 0.2^{\circ}W$					-										
$+0.2^{\circ}C + 3^{\circ}W + 20^{\circ}W + 10^{\circ}W + 0.2^{\circ}W$															
$+0.2^{\circ}C + 3^{\circ}W + 20^{\circ}W + 10^{\circ}W + 0.2^{\circ}W$															
$+0.2^{\circ}C + 3^{\circ}W + 20^{\circ}W + 10^{\circ}W + 0.2^{\circ}W$															
$+0.2^{\circ}C + 3^{\circ}W + 20^{\circ}W + 10^{\circ}W + 0.2^{\circ}W$															
3 consecutive readings	the start from the second start and the		±0.2°C	±3%	±20mV	±10%	±0.2								
		A CONTRACTOR OF													
OTHER COMMENTS/OBSERVATIONS:	OTHER COMMENT	S/OBSER	RVATIONS	S:			753								
sit at sose flow when a 2 L/min	sit ats	cse				17	1 101	e- 00//100							
from osin - 0.2 L/ Min					1	fron		- U.L.L/Min							
	/)	7			1									
SIGNATURE:	SIGNATURE:	~													
		1													

			SAMDLI					
		WATER	SAMPLI	NG FIEL	DSHEET			eiaustralia
Site Add	ress: 01-1	05 Old Pitt	twater Rd,	Brookvale	9		Job Num	ber: E2556
Client: H	lannas				ourself lier en unerseau		Date: 4/6	6/2022
Field Sta	ff: Sergio	Raposeira	а				Sampling	Location ID
Well Loc	ation: We	Il located	onsite refe	r to site pl	ans		Round N	o: 1
MEDIUM		Х	Groundwa	ter 🗆	Surface W	ater	□Stormv	vater DOther:
SAMPLI	NG POINT	INFO	15	1000				
Well Inst	allation Da	ate: 28/Ma	ay/2022	2			Stick up	/ down (m): ~ 🖞 / (+ above ground - below ground)
	ell Depth (14				nterval (mBTOC): 1-5 - 4-5
		Date: N//	A	194 194				SWL (mBTOC):
PID REA	And a state of the							
	dspace (p	om):	7				PID Back	(ground (ppm): 🧑 👩
	thing Spa		1	.0				(ground (ppm):
PRE PUP	and the second se	00 (ppiii).						
	I Depth (r	mBTOC)	4.				Woll Hos	ad Condition: 6009
SWL (mE		<u>nb100).</u>	2 33	to	(blumn (m):
and the local division of the local division			OCARBO				water Ct	
	PSH (mB		UCANDO	N3 (F3H)				coller Constitute of (Doillow)
	kness (m	'	-/	•			PSH VISI	ually Confirmed (Bailer):
Field Filt		m).						V
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							
Yes (0.45	AND SAM						No	(Request lab 0.45 μm filter the sample)
	g Method		Bladde	er X	Perista		Submersi	ble DOthers
		t (mBTOC			Pensia		Fill Timer	
		gulator (ps						
	Condition		51): IN/A				Discharg	
	1.27	5.					Cycle: N	
Pump on		DADAME	TEDO				Pump off	time:
	ke and M	PARAME	TERS					
	Volume	SWL	Temp	EC	Redox	DO	Bump Te	st Date and Time:
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)
735	0.5	2.41	19.22	856	-1.1	3.20	7.51	light chomage ; minus tons; NOC
7:37	- 12		19.09	627	52.8	7.27	6.04	
7:39		V	19.02	551	62.4.5	1.31	5.72	clean; as above
7:41		2.40	19.04	48	91.9	1.55	5.39	. 1
7:43		2.41	19.07	409	105.9	1.34	5.41	
7:45	-	2.41	19.09	471	110.7	1.35	5.40	
				\rightarrow	Sa	nple	6	
				~				
Stabi	ilisation ra	nge:			Colorest and			
	ecutive rea	And the second second	±0.2°C	±3%	±20mV	±10%	±0.2	
the standard from		A CALLER AND	RVATIONS	;				
				100 100	Qc'	1		
					40		0	1 1 1
		0					low	Nate = 0.2 L/min
SIGNATU	RE:		2				1	
		at	\geq	1				

C (14)

WATER SAMPLING FIELD SHEET

								orddoerdina
Site Addr	ess: 01-10	5 Old Pitt	water Rd,	Brookvale			Job Numb	per: E2556
Client: H	annas						Date: 4/6/	/2022
Field Staf	f: Sergio	Raposeira	1				Sampling	Location ID (-WDH3
			onsite refer	r to site pla	ans		Round No	p: 1
MEDIUM		Х	Groundwa	ter 🗆 S	Surface Wa	ater	□Stormw	ater 🛛 Other:
SAMPLIN	IG POINT	INFO						
Well Insta	allation Da	te: 28/Ma	y/2022				Stick up /	down (m): - 0 / (+ above ground - below ground)
Initial We	ll Depth (r	nBTOC):					Screen In	terval (mBTOC): 3, 9 - 6.9
Previous	Sampling	Date: N/A	4				Previous	SWL (mBTOC):
PID REA	DINGS							
PID Head	space (pp	om):	0.7				PID Back	ground (ppm): 💋 🧭
PID Breat	thing Space	ce (ppm):	0.	0				
PRE PUR	RGE							
Total Wel	ll Depth (n	nBTOC):	6.79				Well Hea	d Condition: Gross
SWL (mB	TOC):	2	.10				Water Co	lumn (m):
PHASE S	EPARATI	ED HYDR	OCARBO	NS (PSH)				
Depth to			NI	>			PSH Visu	ally Confirmed (Bailer):
PSH Thic			M)	9			
Field Filt								والمرابعة المحاد المحادية والمحاولة والمحاد المحاد المحاد المحاد والمحاد والمحاد المحاد والمحاد المحاد المحاد والمحاد
Yes (0.45	μm)						No	(Request lab 0.45 µm filter the sample)
PURGE A								(
Sampling	Method		Bladde	er X	Peristal	tic 🗆	Submersit	ole □Other:
Depth of I		t (mBTOC					Fill Timer	
Pump Pre							Discharge	
Weather			ne				Cycle: N	
Pump on							Pump off	
WATER O		PARAME	TERS				l. ente ett	
Probe Ma							Bump Tes	st Date and Time:
Time	Volume	SWL	Temp	EC	Redox	DO	рН	Comments (colour, turbidity, odour, sheen etc.)
	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	
8:21	05	6.10	1984	1075	184.9	2.07	4.09	shift tink. styli orang Noc
8:23			19.83	1108	150.4	7.54	4.10	
8:25			19.82	1772	160.8	1.65	4.13	
8:27			19.85	1230	158.9	0.74	4.17	
8:29		-V-	19:81	12.29	160.0	0.73	4.20	
8:31		4.10	19.81	1221	161.9	0.71	4.18	
		No. of Concession, Name	and a second		2 5	ang	it	×
	ilisation ra		±0.2°C	±3%	±20mV	±10%	±0.2	
	ecutive rea							
	af bas		RVATIONS	s: f	?6W	late	2 = 0	2.2 L/ uniu
SIGNATU	RE:		R	~				
			1					5. ₂ -

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - El PID02 🖄 OR 592-901345 - El PID03 🗌

Instrument Conditions: _____6-0 0 D

Calibration gas species: Isobutylene.

Calibration gas concentration: <u>loo</u>ppm

Gas bottle number: 676450

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

0.3 ppm at $\frac{100}{100}$ ppm span setting (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: ____psi (if reading is <250 psi, notify Equipment Manager to arrange new gas

bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed:	-s-
Date:	20/05/2022
Time:	5:40 pm

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - El PID02 🗹 OR 592-901345 - El PID03 🗆

Instrument Conditions: ______

Calibration gas species: Isobutylene.

Calibration gas concentration: <u>*loo*</u>ppm

Gas bottle number: 67 6450

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

101 ppm at 100 ppm span setting (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: psi (if reading is <250 psi, notify Equipment Manager to arrange new gas

bottle order)

NOTE: FILTER (MOISTURE) CHANGED

The above detector was calibrated in accordance with manufacturer's specifications.

Signed:	S
Date:	28/5/2022
Time:	6:30 am

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - El PID02 🗰 OR 592-901345 - El PID03 🗆

37001

Instrument Conditions:

Calibration gas species: Isobutylene.

Calibration gas concentration: _____ppm

Gas bottle number: 676450

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

102 ppm at 10^{9} ppm span setting (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: 470 psi (if reading is <250 psi, notify Equipment Manager to arrange new gas

bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed:	P.
Date:	4/6/22
Time:	7:08 am

Appendix G – Chain of Custody and Sample Receipt Documentation

														北方																
1		t																	-					a Tarr						
Sheet 4 of 3							Samp	le Mat	rix	Analysis											Comments									
Site: Brook	vale			1	ject No:												ENM) Suite	e	site terials)	SUON			(CrS)			ity)	- 450 I			HM A Arsenic Cadmium Chromium Copper
Laboratory:	ALEXAND	alia Maddox Str RIA NSW 20 ⁷ 0400 F: 02 8	15	99	1			0.45 µm field filtered		/TRH/BTEX/PAHs DP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX				Quantification	Natural Material (ENM)	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	ENM Suite - Stockpile composite (HM ^A /pH / EC / Foreign Materials)	suite PAER	VIT - DIN	TOC	Chromium Reducible Sulfur (CrS)		pH / CEC (cation exchange)	(electrical conductivity)	Chloride		^B / PAH	Lead Mercury Nickel Zinc HM [®] Arsenic
Sample	Laboratory	ng	1	œ	m field	œ.					4	tos		ated N	suite - BTEX/	uite - /pH /	ering.	pero	12	nium F		EC (c	EC (ele	te / CI		HM ^B	Cadmium Chromium			
ID	ID	Container Type	Da	ate	Time	Soll	WATER).45 μI	OTHER	HM ^A OCP/(HM A	HM ^A	BTEX	vocs	Asbestos	Asbestos	Excavated	TRH/E	ENM S (HM ^A	Dewat		Sports	Chrom	PFAS.	DH/C	pH / E	Sulphate /	Lead	TCLP	Lead Mercury
BH1_0.3-0.4	(JILB	21/5	122	AM	X				X				$\mathbf{\hat{X}}$					ш <u>,</u>	\mathbf{X}	X	$\mathbf{\tilde{\mathbf{X}}}$		X	-	-	0			Nickel Dewatering Suite
BH1_10-1-1	2	(1	AM	1					X			X									\$	1						pH & EC TDS / TDU Hardness
BH1_2.5-2.6					AM						-																			Total Cyanide Metals (Al, As, Cd, C
BH2 - 0.1-0-2					PM																				1					Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
BH2-0.5-06																						1.		1						PAH Total Phenol
BHZ-1.0-1-1						ľ								-																LABORATO
BH2-1.5-1.6	3									X				X						Х	X	\mathbf{X}		X						
BH2-2.5-2.6																														Standard
BH2_3-5-3.6	4	V			\checkmark			1			X			X																24 Hours
BI	5	VIAL			PM						-		X																	48 Hours
T31	6	VAL			PM	V							X																	72 Hours
QR1	7	JIV; M		1			X					X	-																	Other
Container Type: J = solvent washed, acid rins S = solvent washed, acid rins			Inves	stigator:	I attes	t that th	nese sa	mples		ollected		ordand	ce with	standa	rd El fi	eld san	npling			Repo	ort with	El Was	te Clas	sificatio	on Table	e . 🗞				
P = natural HDPE plastic bot VC = glass vial, Tefton Septu	natural HDPE plastic bottle = glass vial, Tefton Septum										0			Receiv Print	ed by (S	SGS):						Sampler's Comments:								
LB = Zip-Lock Bag	llor Chro	4	Print	Se	2	0	hap	Dofe	ire	M	Bo	150	w	7					sgs	EHS	Syc	Iney		с						
	Suite 6.01, 55 Miller Str PYRMONT NSW 200																SE232596													
Contamination Remediation	Ph: 9516 0722 lab@eiaustralia.com cortamination Remediation Geotechnical COC June 2021 FORM v.5 - SGS									Date 27(5/22 Date 5.5-22 1.5C) IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au																				

des

Sheet 2 of 3						Samp	le Mat	trix										A = a	l										
Site:			F	Project No	_	T		T							1			Ana	alysis	1		1							Comments
Site: Brook	ivale		e	255	8											NM) Suite		ite erials)	ENOLS			(rS)			0				HM A Arsenic Cadmium Chromium
Laboratory:	ALEXAND	alia Maddox Str RIA NSW 202 0400 F: 02 8	15				0.45 µm field filtered		HM ^A /TRH/BTEX/PAHS OCP/OP/PCB/Ashestos	/TRH/BTEX/PAHs	/TRH/BTEX				Asbestos Quantification	Excavated Natural Material (ENM) Suite	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	- Stockpile composite / EC / Foreign Materials)	AFC OHEN	Vit -	p	Reducible Sulfur (CrS)		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	oride		PAH	Copper Lead Mercury Nickel Zinc HM ^B
Sample	Laboratory	Container	San	npling		m	n field	C C	TRH,	TRH	TRH/			SC	os Qu	ed Na	EX/P	ite - S	ering Suite	Derex	1	m Re		C (cat	(elect	/ Chlo		8	Arsenic Cadmium
ID	ID	Туре	Date	Time	SOIL	WATER	0.45 µr	OTHER	HM A OCP/C	HM ^A	HM A	BTEX	VOCs	Asbestos	Asbesto	xcavat	NM Su FRH/B1	ENM Suite	lewate	Ha Ha	SPOCAS	Chromium F	PFAS	H / CE(H/EC	Sulphate / Chloride	ad	TCLP HM	Chromium Lead Mercury
BH3_0.2-0.3 BH3_1.0-1.1	8	,	18/5/2	2					X				X		4	ш	шE	ш÷	X	7	X	0		þ	đ	Su	Lead	¥	Nickel
BH3_1.0-1.1			1																~	~	~		~				<u> </u>		Dewatering Suite pH & EC TDS / TDU
BH3-2.0-2.1																													Hardness Total Cyanide
BA3-3-0-31	9									X			X																Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
BH3-40-4.1																													BTEX PAH Total Phenol
BH4_0.4.0.5	(0)								X				V						X	¥	×		×						LABORATORY
BH4_0.6-0.7																				T	/-		~						TURNAROUND
BH4 - 1.2-1.3	(1									×			X																Kandard Standard
BH5_0.2-0.3	12								X				X						×	×	×		×						24 Hours
3 #5_ 1.0-1.1													~							\sim	~								48 Hours
0 #5_1.0-1.1 0 #5_2.0-2.1			(_						72 Hours
545-2-3-2.4	13		1							×			×																Other
Container Type: J = solvent washed, acid rin S = solvent washed, acid rin P = natural HDPE plastic bo	ised glass botlle	ed glass jar							t that th	ese sa	mples v	vere co pro	ollected	in acco	ordance	e with s	standar	d El fie	ld sam	pling			Repor	t with E	I Wast	e Class	sificatio	on Table	
VC = glass vial, Tefton Sept ZLB = Zip-Lock Bag		Sample Print	er's Nan	. ,	1				Receive Print								Sampler's Comments:												
02	BB = Bul	Sui	ite 6.01, 55 PYRMONT N Ph: 9510 D@eiaustra	NSW 2009 6 0722		Signa Date		gr	5 10	apo,	22		Signal	_	-	-		1											
		Date Date Date Date JMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au																											

Whent D of ?					S	ample	Matri	ix										Anal	ysis										Comments
sheet <u>3</u> of <u>3</u> site:				ect No:		ampie	, waa									(ENM) Suite	ete		HENDLS	2	J	ur (CrS)		e)	tivity)				HM A Arsenic Cadmium Chromium Copper Lead
.aboratory:	ALEXANDR	lia Maddox Stre IA NSW 201 0400 F: 02 8	5				0.45 µm field filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	/ТКН/ВТЕХ				Quantification	Excavated Natural Material (ENM) Suite	ENM Suite - Stockpile discrete (TRH/BTEX/PAHs)	ENM Suite - Stockpile composite (HM ^A /pH / EC / Foreign Materials)	all a	Provide 71	101	Chromium Reducible Sulfur (CrS)		pH / CEC (cation exchange)	EC (electrical conductivity)	Sulphate / Chloride		и ^в / РАН	Mercury Nickel Zinc HM ^B Arsenic Cadmium
Sample	Laboratory	Container	Sampli	ng		ER.	μm fie	OTHER	A /TR	A /TR	A /TR	×	S	Asbestos	Asbestos	avated	A Suite H/BTE	A Suite	vatering S	dia	SPOCAS	romiur	PFAS	/ CEC	/EC	phate	p	TCLP HM	Chromium Lead Mercury
ID	ID	Туре	Date	Time	SOIL	WATER	0.45	OTH		MH	AM A	BTEX	VOCS	Asb	Asb	Exc	ENN (TRI	ENN (HM	₫.	THE		Ġ		A	/ Hd	Sul	Lead	10	Nickel
BA6_0.2-0.3	14		28/15/22						X				X						X	X	×		×						Dewatering Suite pH & EC TDS / TDU
BA7_0.1-02	15		28/5/22						\times				×						×	×	×		X						Hardness Total Cyanide
901	16		28/5/22							λ																			Metals (Al, As, Cd, Cr, _ Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
QT1 3			28/5/22							X																	-		BTEX PAH Total Phenol
BH7_0.1-02 QD1 QT1 (8) TB1 57																													LABORATORY
57																													TURNAROUND
QR2			28/5/2	-																									Standard
																									-				24 Hours
												-													-				48 Hours
				-	-	-		-	-			-	-	-		-	-	-				-	-			-			72 Hours
																	-									-			Other
									st that t					d in ac	cordan		n stand	ard El f	ield sar	nolina									
Container Type: J = solvent washed, acid r S = solvent washed, acid	insed, Tefton se	ealed glass jar				Inve	stigato	: I atte	st that t	nese s	ampies	p	rocedu	res.			1 Stario			nping					ElWa	ste Cla	issificat	ion Tab	
P = natural HDPE plastic VC = glass vial, Tefton Se	bottle					Sam	pler's Na							ived by							Sam	pler's (Comme	ents:					
ZLB = Zip-Lock Bag	BB = E	Bulk Bag	Guite 6.01, 55 M	Aillor Stre	ot	Sia	hature	ergi	Ra	pofe	ina		Sigi	nature	isa	105	7				6	F	OT	1 -	0	10	200		
		5	PYRMONT N Ph: 9516	ISW 2009		Dat		C	76	P-1	r	/	Dat	° 21	5-0	7.7	1	50				fo	A	0140	14	to	Er	nnia	rolas
eiaus	tralia		ab@eiaustra		au	IMF	POR	TAN.	<u>28</u> T:	(3)	~ ~			20	- 0	16	11	10			1	1							
Contamination 1 Remedi	ation Geotechnic	21	COC June 2021 FO	RM v.5 - SGS					atory re	sults to	: lab(Deiau	ustral	ia.cor	n.au														

CLIENT DETAIL	3	LABORATORY DETA	NILS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E25568 Brookvale E25568 16	Samples Received Report Due SGS Reference	Tue 31/5/2022 Tue 7/6/2022 SE232596

SUBMISSION DETAILS

This is to confirm that 16 samples were received on Tuesday 31/5/2022. Results are expected to be ready by COB Tuesday 7/6/2022. Please quote SGS reference SE232596 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 31/5/2022 Yes 8.8C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 15 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

11 Soil and 1 Water have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed. 2 Extra Trip Spikes received.

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Numbe. 2562/14420.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

SUMMARY OF ANALYSIS

Project E25568 Brookvale

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Phenolics in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1_0.3-0.4	30	14	26	11	1	10	81	7
002	BH1_1.0-1.1	-	-	26	-	-	10	81	7
003	BH2_1.5-1.6	30	14	26	11	1	10	81	7
004	BH2_3.5-3.6	-	-	26	-	-	10	81	7
005	TB1	-	-	-	-	-	-	11	-
006	TS1	-	-	-	-	-	-	11	-
008	BH3_0.2-0.3	30	14	26	11	1	10	81	7
009	BH3_3.0-3.1	-	-	26	-	-	10	81	7
010	BH4_0.4-0.5	30	14	26	11	1	10	81	7
011	BH4_1.2-1.3	-	-	26	-	-	10	81	7
012	BH5_0.2-0.3	30	14	26	11	1	10	81	7
013	BH5_2.3-2.4	-	-	26	-	-	10	81	7
014	BH6_0.2-0.3	30	14	26	11	1	10	81	7
015	BH7_0.1-0.2	30	14	26	11	1	10	81	7
016	QD1	-	-	26	-	-	10	11	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS

Client EI AUSTRALIA

Project E25568 Brookvale

SUMMAR	RY OF ANALYSIS						
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	Per- and Polyfluoroalkyl Substances (PFAS) in	TOC in Soil	Total Recoverable Elements in Soil/Waste
001	BH1_0.3-0.4	2	1	1	56	2	8
002	BH1_1.0-1.1	-	1	1	-	-	7
003	BH2_1.5-1.6	2	1	1	56	2	8
004	BH2_3.5-3.6	-	1	1	-	-	7
005	TB1	-	-	1	-	-	-
008	BH3_0.2-0.3	2	1	1	56	2	8
009	BH3_3.0-3.1	-	1	1	-	-	7
010	BH4_0.4-0.5	2	1	1	56	2	8
011	BH4_1.2-1.3	-	1	1	-	-	7
012	BH5_0.2-0.3	2	1	1	56	2	8
013	BH5_2.3-2.4	-	1	1	-	-	7
014	BH6_0.2-0.3	2	1	1	56	2	8
015	BH7_0.1-0.2	2	1	1	56	2	8
016	QD1	-	1	1	-	-	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

31/05/2022

___ CLIENT DETAILS ____

Client EI AUSTRALIA

Project E25568 Brookvale

SUMMARY	OF ANALYSIS					
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
007	QR1	1	7	9	11	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet of		_			Sam	nple N	/latrix								Ana	lysis								Comments
Site: BNOUV	ale		F	Project No:			etc.)	AHs tos	Hs		990			и	exchange)	conductivity)		•						HM A Arsenic Cadmium Chromium Copper
Laboratory:	6 / 16 M	s Environme ars Road, e NSW 2066 00 8400	nt Testing	Aust. P/L			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX	acpound		S BITX	s Quantification	(cation	EC (electrical cor	Dewatering Suite	0		SUCI 20	Nuls		HM ^B / PAH	Lead Mercury Nickel Zinc HM <u>B</u> Arsenic
Sample ID	Laboratory	Container Type	Sam	pling	WATER		HERS	AA/	ΛÂΛ	A	BHE	VOCs	Aspestos	Asbestos	/ CEC	/ EC	wate	sPOCAS	PFAS	AN	3		CLP H	Cadmium Chromium
<u> </u>	ID		Date	Time	WA	SOIL	DTO	ΞŎ	HM	HM		<	¥	As	/ Hd	/ Hd	De	SР		2	0		10	Lead Mercury Nickel
GW_BH1	(Jisip	4/6/12	AM	X				X	X	X	×							\times	×	\times			Dewatering Suite pH & EC
GW_BH2	2		4/6/22	AM	X				X		X	X							\times	X	×			TDS / Turbidity NTU Hardness
GW_BH3	3		4/6/22	AM	\prec				\times		+	+				-			×	X	×			Total Cyanide Metals (Al, As, Cd, Cr
GWQ01	4	\downarrow	4/6/22	AM	X					X.														Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
GUTB1	5	3	4/6/22	AM	×								\times											PAH Total Phenol
GWTS1	6	3	4/6/22	AM	×								Х											
GWQT18		3;5,P	4/6/2	ZAM	X				2	X	X													Standard
QR1	7	JSO	4/6/2	ZAM	X					X									1					24 Hours
																SGS	EHS	Sydr	ney C	OC				48 Hours
																			24					72 Hours
et es			×																				-	Other
																_							_	
Container Type: J= solvent washed, aci S= solvent washed, aci	d rinsed glas		s jar			Inves	stigato	r: I atte with					vere co ng pro			-		R	Report	with EI	Waste	e Class	sification	on Table
P= natural HDPE plasti VC= glass vial, Teflon S ZLB = Zip-Lock Bag						Samp Prir	nt	ame (El) RG				Recei Prin	ived by	(Eurofi	ins):	~	, (Sam	pler's	Comm	lon	aR	Л	GWQTI
			uite 6.01, 5 PYRMONT	NSW 200		Sign Date	ature	12	8	2		Sign Date		6	2	- 3	~		te		EN	via	oll	GWP+1 BB
	tralic ation Geotechr	a	Ph: 95 ab@eiaust		au		OR se e-n	GIG FANT				lah (* (-							

CLIENT DETAILS	3	LABORATORY DETA	AILS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25568 Brookvale	Samples Received	Wed 8/6/2022
Order Number	E25568	Report Due	Thu 16/6/2022
Samples	7	SGS Reference	SE232924

SUBMISSION DETAILS

This is to confirm that 7 samples were received on Wednesday 8/6/2022. Results are expected to be ready by COB Thursday 16/6/2022. Please quote SGS reference SE232924 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 8/6/2022 Yes 6°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 7 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Numbe. 2562/14420.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

15 Australia 15 Australia

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E25568 Brookvale

SUMMAF	RY OF ANALYSIS		1	1		1	1]
No.	Sample ID	Anions by Ion Chromatography in Water	OC Pesticides in Water	OP Pesticides in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	GW_BH1	2	30	13	22	1	9	78	7
002	GW_BH2	2	30	13	22	1	9	78	7
003	GW_BH3	2	30	13	22	1	9	78	7
004	GWQD1	-	-	-	-	-	9	11	7
005	GWTB1	-	-	-	-	-	-	11	-
006	GWTS1	-	-	-	-	-	-	11	-
007	QR1	-	-	-	-	-	9	11	7

CONTINUED OVERLEAF

CLIENT DETAILS

Client EI AUSTRALIA

Project E25568 Brookvale

- SUMMARY	OF ANALYSIS					
No.	Sample ID	Alkalinity	Mercury (dissolved) in Water	Metals in Water (Dissolved) by ICPOES	Per- and Polyfluoroalkyl Substances (PFAS) in	Trace Metals (Dissolved) in Water by ICPMS
001	GW_BH1	1	1	4	56	7
002	GW_BH2	1	1	4	56	7
003	GW_BH3	1	1	4	56	7
004	GWQD1	-	1	-	-	7
007	QR1	-	1	-	-	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

					 _						- ـ ا													
Sheet of			1		Sarr	npie N	Aatrix	٢							Ana	alysis								Comments
Site: BNOOKV	nale			Project No:	-		, etc.)	AHs	2 SH		990			Б	nange)	nductivity)		•			÷			HMA Arsenic Cadmium Chromium Copper Lead
Laboratory:	6 / 16 Ma	s Environme lars Road, ve NSW 2066 900 8400		g Aust. P/L	-		OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	НМ ≜ /ТКН/ВТЕХ	acpaul		s BITX	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ring Suite			an lous	5		IM ^B / PAH	Mercury Nickel Zinc H M ^B Arsenic
Sample ID	Laboratory ID	/ Container Type	Sar Date	mpling Time	WATER	SOIL	OTHERS	ĤM A /1 OCP/OF	HM A /T	HM A /T		vocs	Aspestos	Asbestc	pH / CE	pH / EC	Dewatering	sPOĈAS	PFAS	MAJOR	Phennels		TCLP HM ^B /	Cadmium Chromium Lead Mercury
GW_BH1		3,5,0	4/6/2	2 AM	X				X	X	\mathbf{X}	×							×	\times	\times			Nickel Dewatering Suite pH & EC
GW_BHZ			4/c/2	LL AM	X				X	·		[×		['					ĮΧ	X	×			TDS / Turbidity NTU Hardness
GULBH3	'	<u> . </u>	4/6/27		X	ļ	<u> </u>	1				1+	 	ļ'	'	<u> </u>				<i>i</i> ×	\succ			Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
GWQ01	'		4/6/27		X	<u>.</u>	. 	_		<u> X</u>		 		<u> </u>	 '	 		•	 					TRH (F1, F2, F3, F4) BTEX PAH
GWTS1 GWTS1		3	9/6/22						+	 	'	<u> </u>	Ķ	 '	<u> '</u>		<u></u>	Envi	rolab 5	BINICS				Total Phenol
GWTS1		1	4/6/2	1 1 1	_		_	┨	 					'	 '	ENVIRO		Ghatsv	irolab 5 12 As rood NS (02) 99	hley S 14/ 2067 10 5200				TURNAROUND
GR1	<u>}</u> '	3,5,P	4/6/2		<u> </u>		 	–		X			<u> </u> !	'	'	Job	10: 2:	1165				 	⊢	Standard
SAK1	'	JSA	4/6/7	ZAM	<u> ×</u>		–	–		X	 '	──	₋_י	├──'	 '	Date !	Receive Receive	d: 9/	<u>6/2</u> 15	e I	$\left - \right $			24 Hours
		<u> </u>			+	 	–	–	<u> </u>	<u> </u> '	 - '			⊢′	──'	Recei	ived by	1 Kini	ji `					48 Hours .
		 			+	┼──	–	╂──			<u> </u> '	├──	—┦	┝──┘	├	Cooli Secu	Cool ing: Ice	icepac actiBro	k 6°0 ken/No	, ne	┝╼╼┥			72 Hours
·* .	+'		-			–	┼	╂──		 '	<u> </u> '	<u> </u> '	$\left - \right $		┟───┛			\square			┟╼╌╼┩		<u> </u>	Other
Container Type: J= solvent washed, ac S= solvent washed, ac	icid rinsed gla		uss jar		<u> </u>	Inve	stigate					· .	were co ling pro			Iccord	ance	F	Report	with El	Waste	e Clas:	sificatio	on Table
P= natural HDPE plas VC= glass vial, Teflon ZLB = Zip-Lock Bag						Samp Prii	int	lame (El	•			Rece Prir	eived by					Sam	pler's	Comn	ients:	n Ø	1	GNOH
)	e S	PYRMON	55 Miller St NT NSW 20 9516 0722		Date	inature te	416	6/2	12		Date	nature	3	ayne - 171				XVY K	4 1	EN.	via	or or f	GWPT1 HB
Containination Perro	ination (Genter)	A Innical	•	Istralia.com 18 FORM v.4 - SGS	i.au			TAN mail la		ory res	ults to	: lab(@eia	ustra	ilia.co	om.a	u							

٠

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

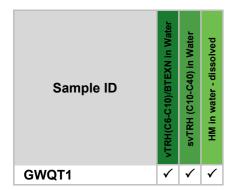
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lab Email

Sample Login Details	
Your reference	E25568, Brookvale
Envirolab Reference	297658
Date Sample Received	09/06/2022
Date Instructions Received	09/06/2022
Date Results Expected to be Reported	17/06/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil


Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix H – Laboratory Analytical Reports

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25568 Brookvale	SGS Reference	SE232596 R0
Order Number	E25568	Date Received	31/5/2022
Samples	16	Date Reported	7/6/2022

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 8 : A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures due to large volume. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Industries and Environment recommends supplying approximately 50-100g of sample in a separate container.

Sample # 15 : Chrysotile, Amosite asbestos found as approx 7-8 x 2mm loose fibre bundles x>10 and found in approx 50x20x4mm cement sheet fragments x2.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Kamrul AHSAN Senior Chemist

Bennet LO Senior Chemist

kmln

Ly Kim HA Organic Section Head

Dong LIANG Metals/Inorganics Team Leader

S. Ravendr.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au Member of the SGS Group

Page 1 of 30

SE232596 R0

VOC's in Soil [AN433] Tested: 3/6/2022

			BH1_0.3-0.4	BH1_1.0-1.1	BH2_1.5-1.6	BH2_3.5-3.6	TB1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 21/5/2022	- 21/5/2022	- 21/5/2022	- 21/5/2022	- 21/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.002	SE232596.003	SE232596.004	SE232596.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1		<0.1
Total Xylenes Total BTEX	mg/kg mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene (VOC)	mg/kg	0.0	<0.0	<0.0	<0.0	<0.0	<0.0
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1	-
Chloromethane	mg/kg	1	<1	<1	<1	<1	
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Bromomethane	mg/kg	1	<1	<1	<1	<1	
Chloroethane	mg/kg	1	<1	<1	<1	<1	-
Trichlorofluoromethane	mg/kg	1	<1	<1	<1	<1	-
Acetone (2-propanone)	mg/kg	10	<10	<10	<10	<10	-
lodomethane	mg/kg	5	<5	<5	<5	<5	-
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Acrylonitrile	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	-
Allyl chloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Carbon disulfide	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Vinyl acetate	mg/kg	10	<10	<10	<10	<10	-
MEK (2-butanone)	mg/kg	10	<10	<10	<10	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Bromochloromethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Chloroform	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
2-nitropropane	mg/kg	10	<10	<10	<10	<10	-
Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	<1	<1	-
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,3-dichloropropane Chlorodibromomethane	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
2-hexanone (MBK)	mg/kg	5	<5	<5	<5	<5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Chlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Bromoform	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1	-
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1	-
L				1	1	1	

SE232596 R0

			BH1_0.3-0.4	BH1_1.0-1.1	BH2_1.5-1.6	BH2_3.5-3.6	TB1
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/5/2022	21/5/2022	21/5/2022	21/5/2022	21/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.002	SE232596.003	SE232596.004	SE232596.005
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Bromobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
n-propylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
n-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Total VOC*	mg/kg	24	<24	<24	<24	<24	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	<3.0	<3.0	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	-

SE232596 R0

			TS1	BH3_0.2-0.3	BH3_3.0-3.1	BH4_0.4-0.5	BH4_1.2-1.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 21/5/2022	- 28/5/2022	- 28/5/2022	- 28/5/2022	- 28/5/2022
PARAMETER	UOM	LOR	SE232596.006	SE232596.008	SE232596.009	SE232596.010	SE232596.011
Benzene	mg/kg	0.1	[88%]	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	[91%]	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	[92%]	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	[92%]	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	[93%]	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	-	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	-	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12) Chloromethane	mg/kg	11	-	<1	<1	<1	<1 <1
Vinyl chloride (Chloroethene)	mg/kg mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Bromomethane	mg/kg	1		<1	<1	<1	<1
Chloroethane	mg/kg	1		<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	1	_	<1	<1	<1	<1
Acetone (2-propanone)	mg/kg	10	-	<10	<10	<10	<10
Iodomethane	mg/kg	5	-	<5	<5	<5	<5
1,1-dichloroethene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Acrylonitrile	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	<0.5	<0.5	<0.5	<0.5
Allyl chloride	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Carbon disulfide	mg/kg	0.5	-	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,1-dichloroethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Vinyl acetate	mg/kg	10	-	<10	<10	<10	<10
MEK (2-butanone)	mg/kg	10	-	<10	<10	<10	<10
cis-1,2-dichloroethene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Bromochloromethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Chloroform	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
2,2-dichloropropane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,2-dichloroethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,1,1-trichloroethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,1-dichloropropene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Carbon tetrachloride	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Dibromomethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,2-dichloropropane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Trichloroethene (Trichloroethylene -TCE) 2-nitropropane	mg/kg mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Bromodichloromethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	0.1	_	<0.1	<0.1	<0.1	<0.1
trans-1,3-dichloropropene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,1,2-trichloroethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,3-dichloropropane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Chlorodibromomethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
2-hexanone (MBK)	mg/kg	5	-	<5	<5	<5	<5
1,2-dibromoethane (EDB)	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Chlorobenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Bromoform	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
cis-1,4-dichloro-2-butene	mg/kg	1	-	<1	<1	<1	<1
Styrene (Vinyl benzene)	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,2,3-trichloropropane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
trans-1,4-dichloro-2-butene	mg/kg	1	-	<1	<1	<1	<1

SE232596 R0

			TS1	BH3_0.2-0.3	BH3_3.0-3.1	BH4_0.4-0.5	BH4_1.2-1.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			21/5/2022	28/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.006	SE232596.008	SE232596.009	SE232596.010	SE232596.011
Isopropylbenzene (Cumene)	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Bromobenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
n-propylbenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
2-chlorotoluene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
4-chlorotoluene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,3,5-trimethylbenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
tert-butylbenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,2,4-trimethylbenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
sec-butylbenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,3-dichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,4-dichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
p-isopropyltoluene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,2-dichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
n-butylbenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,2,4-trichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
1,2,3-trichlorobenzene	mg/kg	0.1	-	<0.1	<0.1	<0.1	<0.1
Total VOC*	mg/kg	24	-	<24	<24	<24	<24
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	<3.0	<3.0	<3.0	<3.0
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	<1.8	<1.8	<1.8	<1.8
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	<1.8	<1.8	<1.8	<1.8

SE232596 R0

			BH5_0.2-0.3	BH5_2.3-2.4	BH6_0.2-0.3	BH7_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 28/5/2022	- 28/5/2022	- 28/5/2022	- 28/5/2022	- 28/5/2022
Benzene	mg/kg	0.1	SE232596.012 <0.1	SE232596.013 <0.1	SE232596.014 <0.1	SE232596.015 <0.1	SE232596.016 <0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	<1	<1	-
Chloromethane	mg/kg	1	<1	<1	<1	<1	
Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	
Bromomethane	mg/kg	1	<1	<1	<1	<1	
Chloroethane	mg/kg	1	<1	<1	<1	<1	
Trichlorofluoromethane		1	<1	<1	<1	<1	
Acetone (2-propanone)	mg/kg mg/kg	10	<10	<10	<10	<10	-
		5					
lodomethane	mg/kg	0.1	<5	<5	<5	<5	-
1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Acrylonitrile	mg/kg						
Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	-
Allyl chloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Carbon disulfide	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Vinyl acetate	mg/kg	10	<10	<10	<10	<10	-
MEK (2-butanone)	mg/kg	10	<10	<10	<10	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Bromochloromethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Chloroform	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Dibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	0.6	<0.1	0.2	<0.1	-
2-nitropropane	mg/kg	10	<10	<10	<10	<10	-
Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	<1	<1	-
cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
2-hexanone (MBK)	mg/kg	5	<5	<5	<5	<5	-
1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Chlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Bromoform	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1	-
Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	<1	<1	-

SE232596 R0

			BH5_0.2-0.3	BH5_2.3-2.4	BH6_0.2-0.3	BH7_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
				28/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.012	SE232596.013	SE232596.014	SE232596.015	SE232596.016
Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Bromobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
n-propylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
n-butylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-
Total VOC*	mg/kg	24	<24	<24	<24	<24	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	<3.0	<3.0	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	<1.8	<1.8	-

SE232596 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 3/6/2022

			BH1_0.3-0.4	BH1_1.0-1.1	BH2_1.5-1.6	BH2_3.5-3.6	BH3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/5/2022	21/5/2022	21/5/2022	21/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.002	SE232596.003	SE232596.004	SE232596.008
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH3_3.0-3.1	BH4_0.4-0.5	BH4_1.2-1.3	BH5_0.2-0.3	BH5_2.3-2.4
			SOIL	SOIL	SOIL	SOIL	SOIL
				28/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.009	SE232596.010	SE232596.011	SE232596.012	SE232596.013
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH6_0.2-0.3	BH7_0.1-0.2	QD1
			SOIL	SOIL	SOIL
			- 28/5/2022	- 28/5/2022	- 28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015	SE232596.016
TRH C6-C9	mg/kg	20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 3/6/2022

			BH1_0.3-0.4	BH1_1.0-1.1	BH2_1.5-1.6	BH2_3.5-3.6	BH3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
		1.05	21/5/2022	21/5/2022	21/5/2022	21/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.002	SE232596.003	SE232596.004	SE232596.008
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH3_3.0-3.1	BH4_0.4-0.5	BH4_1.2-1.3	BH5_0.2-0.3	BH5_2.3-2.4
PARAMETER	UOM	LOR	SOIL - 28/5/2022 SE232596.009	SOIL - 28/5/2022 SE232596.010	SOIL - 28/5/2022 SE232596.011	SOIL - 28/5/2022 SE232596.012	SOIL - 28/5/2022 SE232596.013
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH6_0.2-0.3	BH7_0.1-0.2	QD1
			SOIL - 28/5/2022	SOIL - 28/5/2022	SOIL - 28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015	SE232596.016
TRH C10-C14	mg/kg	20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 3/6/2022

			BH1_0.3-0.4	BH1_1.0-1.1	BH2_1.5-1.6	BH2_3.5-3.6	BH3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 3012	- 3012	- 3012	-
			21/5/2022	21/5/2022	21/5/2022	21/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.002	SE232596.003	SE232596.004	SE232596.008
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH3_3.0-3.1	BH4_0.4-0.5	BH4_1.2-1.3	BH5_0.2-0.3	BH5_2.3-2.4
			SOIL			001	001
			SOIL	SOIL	SOIL	SOIL	SOIL
				28/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.009	SE232596.010	SE232596.011	SE232596.012	SE232596.013
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 3/6/2022 (continued)

			BH6_0.2-0.3	BH7_0.1-0.2	QD1
			SOIL	SOIL	SOIL
PADAUETED		1.05	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015	SE232596.016
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 3/6/2022

			BH1_0.3-0.4	BH2_1.5-1.6	BH3_0.2-0.3	BH4_0.4-0.5	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/5/2022	21/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.003	SE232596.008	SE232596.010	SE232596.012
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 3/6/2022 (continued)

			BH6_0.2-0.3	BH7_0.1-0.2
			SOIL	SOIL
			- 28/5/2022	- 28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1

OP Pesticides in Soil [AN420] Tested: 3/6/2022

			BH1_0.3-0.4	BH2_1.5-1.6	BH3_0.2-0.3	BH4_0.4-0.5	BH5_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 21/5/2022 SE232596.001	SOIL - 21/5/2022 SE232596.003	SOIL - 28/5/2022 SE232596.008	SOIL - 28/5/2022 SE232596.010	SOIL - 28/5/2022 SE232596.012
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH6_0.2-0.3	BH7_0.1-0.2
PARAMETER	UOM	LOR	SOIL - 28/5/2022 SE232596.014	SOIL - 28/5/2022 SE232596.015
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 3/6/2022

			BH1_0.3-0.4	BH2_1.5-1.6	BH3_0.2-0.3	BH4_0.4-0.5	BH5_0.2-0.3
			SOIL - 21/5/2022	SOIL - 21/5/2022	SOIL - 28/5/2022	SOIL - 28/5/2022	SOIL - 28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.003	SE232596.008	SE232596.010	SE232596.012
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH6_0.2-0.3	BH7_0.1-0.2
PARAMETER	UOM	LOR	SOIL - 28/5/2022 SE232596.014	SOIL - 28/5/2022 SE232596.015
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

Total Phenolics in Soil [AN295] Tested: 7/6/2022

			BH1_0.3-0.4	BH2_1.5-1.6	BH3_0.2-0.3	BH4_0.4-0.5	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/5/2022	21/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.003	SE232596.008	SE232596.010	SE232596.012
Total Phenols	mg/kg	0.5	<0.5	<0.5	<0.5	0.8	<0.5

			BH6_0.2-0.3	BH7_0.1-0.2
			SOIL	SOIL
			-	-
			28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015
Total Phenols	mg/kg	0.5	<0.5	<0.5

TOC in Soil [AN188] Tested: 6/6/2022

			BH1_0.3-0.4	BH2_1.5-1.6	BH3_0.2-0.3	BH4_0.4-0.5	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/5/2022	21/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.003	SE232596.008	SE232596.010	SE232596.012
Total Organic Carbon	%w/w	0.05	0.17	0.18	0.15	0.27	0.93
Organic Matter (calc)*	%w/w	0.1	0.3	0.3	0.3	0.5	1.6

			BH6_0.2-0.3	BH7_0.1-0.2
			SOIL	SOIL
				28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015
Total Organic Carbon	%w/w	0.05	0.49	2.6
Organic Matter (calc)*	%w/w	0.1	0.8	4.5

SE232596 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 6/6/2022

			BH1_0.3-0.4	BH1_1.0-1.1	BH2_1.5-1.6	BH2_3.5-3.6	BH3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/5/2022	21/5/2022	21/5/2022	21/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.002	SE232596.003	SE232596.004	SE232596.008
Arsenic, As	mg/kg	1	1	<1	<1	1	1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	1.7	5.3	5.5	10	18
Copper, Cu	mg/kg	0.5	<0.5	<0.5	1.1	<0.5	<0.5
Lead, Pb	mg/kg	1	5	7	6	7	6
Nickel, Ni	mg/kg	0.5	<0.5	0.6	1.5	0.9	0.7
Zinc, Zn	mg/kg	2	<2.0	5.1	3.8	2.7	3.7
Tin, Sn	mg/kg	3	<3	-	<3	-	<3

			BH3_3.0-3.1	BH4_0.4-0.5	BH4_1.2-1.3	BH5_0.2-0.3	BH5_2.3-2.4
PARAMETER	UOM	LOR	SOIL - 28/5/2022 SE232596.009	SOIL - 28/5/2022 SE232596.010	SOIL - 28/5/2022 SE232596.011	SOIL - 28/5/2022 SE232596.012	SOIL - 28/5/2022 SE232596.013
Arsenic, As	mg/kg	1	1	<1	<1	<1	<1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	14	<0.5	1.7	2.9	3.4
Copper, Cu	mg/kg	0.5	<0.5	<0.5	<0.5	14	<0.5
Lead, Pb	mg/kg	1	7	<1	3	160	4
Nickel, Ni	mg/kg	0.5	1.5	<0.5	<0.5	0.7	0.5
Zinc, Zn	mg/kg	2	4.2	<2.0	<2.0	63	<2.0
Tin, Sn	mg/kg	3	-	<3	-	<3	-

			BH6_0.2-0.3	BH7_0.1-0.2	QD1
			SOIL	SOIL	SOIL
			28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015	SE232596.016
Arsenic, As	mg/kg	1	<1	5	<1
Cadmium, Cd	mg/kg	0.3	<0.3	4.8	<0.3
Chromium, Cr	mg/kg	0.5	4.0	29	16
Copper, Cu	mg/kg	0.5	9.5	320	1.2
Lead, Pb	mg/kg	1	13	310	10
Nickel, Ni	mg/kg	0.5	1.9	88	1.3
Zinc, Zn	mg/kg	2	23	560	5.7
Tin, Sn	mg/kg	3	<3	74	-

Mercury in Soil [AN312] Tested: 6/6/2022

			BH1_0.3-0.4	BH1_1.0-1.1	BH2_1.5-1.6	BH2_3.5-3.6	BH3_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/5/2022	21/5/2022	21/5/2022	21/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.002	SE232596.003	SE232596.004	SE232596.008
Mercury	mg/kg	0.05	<0.05	<0.05	0.05	<0.05	<0.05

			BH3_3.0-3.1	BH4_0.4-0.5	BH4_1.2-1.3	BH5_0.2-0.3	BH5_2.3-2.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				28/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.009	SE232596.010	SE232596.011	SE232596.012	SE232596.013
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.08	<0.05

			BH6_0.2-0.3	BH7_0.1-0.2	QD1
			SOIL	SOIL	SOIL
				28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015	SE232596.016
Mercury	mg/kg	0.05	<0.05	0.08	<0.05

Moisture Content [AN002] Tested: 3/6/2022

			BH1_0.3-0.4	BH1_1.0-1.1	BH2_1.5-1.6	BH2_3.5-3.6	TB1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/5/2022	21/5/2022	21/5/2022	21/5/2022	21/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.002	SE232596.003	SE232596.004	SE232596.005
% Moisture	%w/w	1	7.9	13.9	10.3	13.8	<1.0

			BH3_0.2-0.3	BH3_3.0-3.1	BH4_0.4-0.5	BH4_1.2-1.3	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				28/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.008	SE232596.009	SE232596.010	SE232596.011	SE232596.012
% Moisture	%w/w	1	11.4	12.7	14.1	4.9	8.7

			BH5_2.3-2.4	BH6_0.2-0.3	BH7_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL
						-
				28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.013	SE232596.014	SE232596.015	SE232596.016
% Moisture	%w/w	1	7.5	9.4	12.7	10.5

Fibre Identification in soil [AN602] Tested: 7/6/2022

			BH1_0.3-0.4	BH2_1.5-1.6	BH3_0.2-0.3	BH4_0.4-0.5	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/5/2022	21/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.003	SE232596.008	SE232596.010	SE232596.012
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH6_0.2-0.3	BH7_0.1-0.2
			SOIL	SOIL
			28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.014	SE232596.015
Asbestos Detected	No unit	-	No	Yes
Estimated Fibres*	%w/w	0.01	<0.01	>0.01

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples [MA-1523] Tested: 6/6/2022

			BH1_0.3-0.4	BH2_1.5-1.6	BH3_0.2-0.3	BH4_0.4-0.5	BH5_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 3012	-		-
			21/5/2022	21/5/2022	28/5/2022	28/5/2022	28/5/2022
PARAMETER	UOM	LOR	SE232596.001	SE232596.003	SE232596.008	SE232596.010	SE232596.012
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	<0.0008	<0.0008	<0.0008	<0.0008	<0.0008
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	<0.0032	<0.0032	<0.0032	<0.0032	<0.0032
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Sum PFOS and PFHXS	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016	<0.0016
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008	<0.008
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008	<0.008
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016	<0.016	<0.016	<0.016
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016	<0.016	<0.016	<0.016
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008	<0.008
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008	<0.008
Total of PFAS (n=30)	mg/kg	0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples [MA-1523] Tested: 6/6/2022 (continued)

			BH6_0.2-0.3	BH7_0.1-0.2
			SOIL	SOIL
		1.05	28/5/2022	28/5/2022
PARAMETER	UOM	LOR 0.0016	SE232596.014 <0.0016	SE232596.015
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoropentanoic acid (PFPeA)	mg/kg			
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	<0.0016	< 0.0016
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	<0.0016	< 0.0016
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	<0.0008	<0.0008
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	<0.0032	<0.0032
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	<0.0016	<0.0016
Sum PFOS and PFHXS	mg/kg	0.0016	<0.0016	<0.0016
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	<0.0016	<0.0016
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	<0.008	<0.008
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	<0.008	<0.008
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	<0.008	<0.008
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	<0.008	<0.008
Total of PFAS (n=30)	mg/kg	0.08	<0.08	<0.08

VOCs in Water [AN433] Tested: 1/6/2022

			QR1
PARAMETER	UOM	LOR	WATER - 21/5/2022 SE232596.007
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene (VOC)	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 1/6/2022

			QR1
			WATER
			21/5/2022
PARAMETER	UOM	LOR	SE232596.007
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

SE232596 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 2/6/2022

			QR1
			WATER
			-
PARAMETER	UOM	LOR	21/5/2022 SE232596.007
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	μg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60
TRH >C16-C34 (F3)	μg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	µg/L	320	<320

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 31/5/2022

			QR1
			WATER
PARAMETER	UOM	LOR	21/5/2022 SE232596.007
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	μg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 1/6/2022

			QR1
			WATER
			-
			21/5/2022
PARAMETER	UOM	LOR	SE232596.007
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN188	The organic material in the soil sample is oxidised with chromic acid in the presence of excess sulfuric acid, without external heat being applied. The excess dichromate ion is determined by titration with standard ammonium iron (II) sulfate solution and the amount of oxidised material is calculated from the quantity of dichromate reduced. Referenced to NEPM 105 and AS1289.1.1.1.
AN295	For Soil, a 1:10 NaOH extraction is made and analysed after 16 hours. The soil extract or water sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate(III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
division mineral index (unit) The index detected may of may not be asbestos index.
AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.
This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labelled quantification surrogates and clean-up via SPE cartridges sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	Sergio Raposeira	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25568 Brookvale	SGS Reference	SE232596 R0	
Order Number	E25568	Date Received	31 May 2022	
Samples	7	Date Reported	07 Jun 2022	

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample # 8 : A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures due to large volume. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Industries and Environment recommends supplying approximately 50-100g of sample in a separate container.

Sample # 15 : Chrysotile, Amosite asbestos found as approx 7-8 x 2mm loose fibre bundles x>10 and found in approx 50x20x4mm cement sheet fragments x2.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

0499

www.sgs.com.au

Member of the SGS Group

ANALYTICAL REPORT

Fibre Identificat	tion in soil				Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE232596.001	BH1_0.3-0.4	Soil	308g Clay,Sand,Soil	21 May 2022	No Asbestos Found at RL of 0.1g/kg	<0.01
SE232596.003	BH2_1.5-1.6	Soil	364g Clay,Sand,Soil	21 May 2022	No Asbestos Found at RL of 0.1g/kg	<0.01
SE232596.008	BH3_0.2-0.3	Soil	203g Clay,Sand,Rock s	28 May 2022	No Asbestos Found at RL of 0.1g/kg	<0.01
SE232596.010	BH4_0.4-0.5	Soil	340g Sand,Soil,Rocks	28 May 2022	No Asbestos Found at RL of 0.1g/kg	<0.01
SE232596.012	BH5_0.2-0.3	Soil	388g Sand,Soil,Rocks	28 May 2022	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE232596.014	BH6_0.2-0.3	Soil	375g Clay,Sand,Soil, Rocks	28 May 2022	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE232596.015	BH7_0.1-0.2	Soil	314g Sand,Soil,Rocks	28 May 2022	Amosite & Chrysotile Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	>0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	 The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles -*** Indicates that both * and ** apply. -

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS	3	LABORATORY DE	TAILS
Contact	Sergio Raposeira	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25568 Brookvale	SGS Reference	SE232924 R0
Order Number	E25568	Date Received	8/6/2022
Samples	7	Date Reported	16/6/2022

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Number. 2562/14420.Re port Number ME327309

MA-1523: Majority of surrogate recoveries within acceptance criteria.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

kinty

Ly Kim HA Organic Section Head

Bennet LO Senior Chemist

Teresa NGUYEN Organic Chemist

Dong LIANG Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SE232924 R0

VOCs in Water [AN433] Tested: 15/6/2022

			GW_BH1	GW_BH2	GW_BH3	GWQD1	GWTB1
			WATER	WATER	WATER	WATER	WATER
			-	-	- VATER		-
		1.05	4/6/2022	4/6/2022	4/6/2022	4/6/2022	4/6/2022
PARAMETER Benzene	UOM	LOR 0.5	SE232924.001 <0.5	SE232924.002 <0.5	SE232924.003 <0.5	SE232924.004 <0.5	SE232924.005 <0.5
Toluene	μg/L μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene		0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	μg/L μg/L	1	<1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3	<3	<3
Naphthalene (VOC)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	<5	-	-
Chloromethane	μg/L	5	<5	<5	<5	-	-
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	-	-
Bromomethane	μg/L	10	<10	<10	<10	-	-
Chloroethane	μg/L	5	<5	<5	<5	-	-
Trichlorofluoromethane	μg/L	1	<1	<1	7	-	-
Acetone (2-propanone)	µg/L	10	<10	<10	<10	-	-
lodomethane	μg/L	5	<5	<5	<5	-	-
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	-	-
Allyl chloride	µg/L	2	<2	<2	<2	-	-
Carbon disulfide	µg/L	2	<2	<2	<2	-	-
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	-	-
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Vinyl acetate	µg/L	10	<10	<10	<10	-	-
MEK (2-butanone)	µg/L	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	µg/L	0.5	3.4	<0.5	<0.5	-	-
Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chloroform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	120	<0.5	<0.5	-	-
2-nitropropane	µg/L	100	<100	<100	<100	-	-
Bromodichloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	<5	-	-
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-hexanone (MBK)	µg/L	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	1.0	<0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene	µg/L	I	~1	~1		-	-

SE232924 R0

VOCs in Water [AN433] Tested: 15/6/2022 (continued)

			GW_BH1	GW_BH2	GW_BH3	GWQD1	GWTB1
			WATER	WATER	WATER	WATER	WATER
			-	-			-
			4/6/2022	4/6/2022	4/6/2022	4/6/2022	4/6/2022
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003	SE232924.004	SE232924.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	µg/L	10	130	<10	<10	-	-

SE232924 R0

VOCs in Water [AN433] Tested: 15/6/2022 (continued)

			GWTS1	QR1
			===	
			WATER -	WATER
			4/6/2022	
PARAMETER	UOM	LOR	SE232924.006	SE232924.007
Benzene	µg/L	0.5	[102%]	<0.5
Toluene	µg/L	0.5	[102%]	<0.5
Ethylbenzene	µg/L	0.5	[100%]	<0.5
m/p-xylene	µg/L	1	[100%]	<1
o-xylene	µg/L	0.5	[100%]	<0.5
Total Xylenes	µg/L	1.5	-	<1.5
Total BTEX	µg/L	3	-	<3
Naphthalene (VOC)	µg/L	0.5	[101%]	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	-	-
Chloromethane	µg/L	5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-	-
Bromomethane	µg/L	10	-	-
Chloroethane	µg/L	5	-	-
Trichlorofluoromethane	µg/L	1	-	-
Acetone (2-propanone)	µg/L	10	-	-
lodomethane	µg/L	5	-	-
1,1-dichloroethene	µg/L	0.5	-	-
Acrylonitrile	µg/L	0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	-	-
Allyl chloride	µg/L	2	-	-
Carbon disulfide	µg/L	2	-	-
trans-1,2-dichloroethene	µg/L	0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-	-
1,1-dichloroethane	µg/L	0.5	-	-
Vinyl acetate	µg/L	10	-	-
MEK (2-butanone)	µg/L	10	-	-
cis-1,2-dichloroethene	µg/L	0.5	-	-
Bromochloromethane	µg/L	0.5	-	-
Chloroform (THM)	µg/L	0.5	-	-
2,2-dichloropropane	µg/L	0.5	-	-
1,2-dichloroethane	µg/L	0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	-	-
1,1-dichloropropene	µg/L	0.5	-	-
Carbon tetrachloride	µg/L	0.5	-	-
Dibromomethane	µg/L	0.5	-	-
1,2-dichloropropane	µg/L	0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	-	-
2-nitropropane	µg/L	100	-	-
Bromodichloromethane (THM)	µg/L	0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	-	-
cis-1,3-dichloropropene	µg/L	0.5	-	-
trans-1,3-dichloropropene	µg/L	0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	-	-
1,3-dichloropropane	µg/L	0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	-	-
2-hexanone (MBK)	µg/L	5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-	-
1,1,1,2-tetrachloroethane	µg/L			
Chlorobenzene Rromoform (THM)	µg/L	0.5	-	-
Bromoform (THM)	µg/L			
cis-1,4-dichloro-2-butene	µg/L	1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	-	
trans-1,4-dichloro-2-butene	µg/L	1	-	-

VOCs in Water [AN433] Tested: 15/6/2022 (continued)

			GWTS1	QR1
			WATER	WATER
			- 4/6/2022	- 4/6/2022
PARAMETER	UOM	LOR	4/0/2022 SE232924.006	4/6/2022 SE232924.007
Isopropylbenzene (Cumene)	μg/L	0.5	-	-
Bromobenzene	μg/L	0.5	-	-
n-propylbenzene	µg/L	0.5	-	-
2-chlorotoluene	µg/L	0.5	-	-
4-chlorotoluene	μg/L	0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	-	-
tert-butylbenzene	µg/L	0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	-	-
sec-butylbenzene	µg/L	0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	-	-
p-isopropyltoluene	µg/L	0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	-	-
n-butylbenzene	µg/L	0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-	-
1,2,4-trichlorobenzene	μg/L	0.5	-	-
Hexachlorobutadiene	µg/L	0.5	-	-
1,2,3-trichlorobenzene	μg/L	0.5	-	-
Total VOC	µg/L	10	-	-

SE232924 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 15/6/2022

			GW_BH1	GW_BH2	GW_BH3	GWQD1	QR1
			WATER	WATER	WATER	WATER	WATER
			4/6/2022			4/6/2022	4/6/2022
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003	SE232924.004	SE232924.007
TRH C6-C9	µg/L	40	170	<40	<40	170	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	170	<50	<50	170	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	170	<50	<50	170	<50

SE232924 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 9/6/2022

			GW_BH1	GW_BH2	GW_BH3	GWQD1	QR1
			WATER	WATER	WATER	WATER	WATER
							-
			4/6/2022	4/6/2022	4/6/2022	4/6/2022	4/6/2022
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003	SE232924.004	SE232924.007
TRH C10-C14	µg/L	50	<50	<50	70	150	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	<60	<60	72	130	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	72	130	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C40	µg/L	320	<320	<320	<320	<320	<320

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 9/6/2022

			GW_BH1	GW_BH2	GW_BH3
			WATER	WATER	WATER
		1.05	4/6/2022		
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1

OC Pesticides in Water [AN420] Tested: 9/6/2022

			GW_BH1	GW_BH2	GW_BH3
			WATER	WATER	WATER
					-
PARAMETER	UOM	LOR	4/6/2022 SE232924.001	4/6/2022 SE232924.002	4/6/2022 SE232924.003
Hexachlorobenzene (HCB)	μg/L	0.1	<0.1	<0.1	<0.1
Alpha BHC	μg/L	0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	μg/L	0.1	<0.1	<0.1	<0.1
Heptachlor	μg/L	0.1	<0.1	<0.1	<0.1
Aldrin	μg/L	0.1	<0.1	<0.1	<0.1
Beta BHC	μg/L	0.1	<0.1	<0.1	<0.1
Delta BHC	μg/L	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	μg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDE	μg/L	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	μg/L	0.1	<0.1	<0.1	<0.1
Gamma Chlordane	μg/L	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	μg/L	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	μg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDE	μg/L	0.1	<0.1	<0.1	<0.1
Dieldrin	μg/L	0.1	<0.1	<0.1	<0.1
Endrin	μg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDT	μg/L	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	µg/L	0.1	<0.1	<0.1	<0.1
Endrin aldehyde	µg/L	0.1	<0.1	<0.1	<0.1
Methoxychlor	µg/L	0.1	<0.1	<0.1	<0.1
Endrin ketone	µg/L	0.1	<0.1	<0.1	<0.1
Isodrin	µg/L	0.1	<0.1	<0.1	<0.1
Mirex	µg/L	0.1	<0.1	<0.1	<0.1
Total OC	µg/L	1	<1	<1	<1
Total OC	µg/L	1	<1	<1	<1

OP Pesticides in Water [AN420] Tested: 9/6/2022

			GW_BH1	GW_BH2	GW_BH3
			WATER	WATER	WATER
			4/6/2022	4/6/2022	4/6/2022
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003
Dichlorvos	µg/L	0.5	<0.5	<0.5	<0.5
Dimethoate	µg/L	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	µg/L	0.5	<0.5	<0.5	<0.5
Fenitrothion	µg/L	0.2	<0.2	<0.2	<0.2
Malathion	µg/L	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	µg/L	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	µg/L	0.2	<0.2	<0.2	<0.2
Methidathion	µg/L	0.5	<0.5	<0.5	<0.5
Ethion	µg/L	0.2	<0.2	<0.2	<0.2
Azinphos-methyl	µg/L	0.2	<0.2	<0.2	<0.2

Total Phenolics in Water [AN295] Tested: 9/6/2022

			GW_BH1	GW_BH2	GW_BH3
			WATER	WATER	WATER
			4/6/2022		
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003
Total Phenols	mg/L	0.05	<0.05	<0.05	<0.05

Anions by Ion Chromatography in Water [AN245] Tested: 9/6/2022

			GW_BH1	GW_BH2	GW_BH3
			WATER	WATER	WATER
			4/6/2022		
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003
Chloride	mg/L	1	30	31	240
Sulfate, SO4	mg/L	1	17	48	45

Alkalinity [AN135] Tested: 14/6/2022

			GW_BH1	GW_BH2	GW_BH3
			WATER	WATER	WATER
			4/6/2022		
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003
Total Alkalinity as CaCO3	mg/L	5	<5	<5	<5

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 10/6/2022

			GW_BH1	GW_BH2	GW_BH3
					11/1750
			WATER	WATER	WATER
			4/6/2022	4/6/2022	4/6/2022
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003
Calcium, Ca	mg/L	0.1	6.7	6.1	24
Magnesium, Mg	mg/L	0.1	10	10	20
Sodium, Na	mg/L	0.1	23	34	110
Potassium, K	mg/L	0.2	5.2	9.1	6.6

SE232924 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 14/6/2022

			GW_BH1	GW_BH2	GW_BH3	GWQD1	QR1
			WATER	WATER	WATER	WATER	WATER
			4/6/2022	4/6/2022	4/6/2022	4/6/2022	4/6/2022
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003	SE232924.004	SE232924.007
Arsenic, As	μg/L	1	<1	<1	<1	<1	<1
Cadmium, Cd	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	<1	<1	<1	<1	<1
Copper, Cu	μg/L	1	1	3	2	<1	<1
Lead, Pb	µg/L	1	<1	<1	1	<1	<1
Nickel, Ni	μg/L	1	4	2	7	4	<1
Zinc, Zn	μg/L	5	13	<5	19	12	<5

SE232924 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 9/6/2022

			GW_BH1	GW_BH2	GW_BH3	GWQD1	QR1
			WATER	WATER	WATER	WATER	WATER
							-
			4/6/2022			4/6/2022	4/6/2022
PARAMETER	UOM	LOR	SE232924.001	SE232924.002	SE232924.003	SE232924.004	SE232924.007
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

ANALYTICAL RESULTS

Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Samples [MA-1523] Tested: 14/6/2022

			GW_BH1	GW_BH2	GW_BH3
			WATER	WATER	WATER
	UOM	1.05	4/6/2022	4/6/2022	4/6/2022
PARAMETER Perfluorobutanoic acid (PFBA)		LOR 0.002	SE232924.001	SE232924.002	SE232924.003
Perfluoropentanoic acid (PFDA) Perfluoropentanoic acid (PFPA)	μg/L	0.002	0.006	0.002	<0.002
	µg/L		0.007	0.007	
Perfluorohexanoic acid (PFHxA)	μg/L	0.002	0.011	0.008	<0.002
Perfluoroheptanoic acid (PFHpA)	µg/L	0.002	<0.002	<0.002	<0.002
Perfluorooctanoic Acid (PFOA)	µg/L	0.002	0.002	0.002	<0.002
Perfluorononanoic acid (PFNA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorodecanoic acid (PFDA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluoroundecanoic acid (PFUnA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorododecanoic acid (PFDoA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorotridecanoic acid (PFTrDA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorotetradecanoic acid (PFTeDA)	µg/L	0.004	<0.004	<0.004	<0.004
Perfluorohexadecanoic acid (PFHxDA)	µg/L	0.008	<0.008	<0.008	<0.008
Perfluorobutane sulfonate (PFBS)	µg/L	0.004	0.026	0.007	<0.004
Perfluoropentane sulfonate (PFPeS)	μg/L	0.004	<0.004	<0.004	<0.004
Perfluorohexane sulfonate (PFHxS)	μg/L	0.002	0.017	0.033	<0.002
Perfluoroheptane sulfonate (PFHpS)	µg/L	0.002	<0.002	<0.002	<0.002
Perfluorooctane sulfonate (PFOS)	µg/L	0.002	0.008	0.010	<0.002
Sum of PFHxS and PFOS	µg/L	0.002	0.025	0.043	<0.002
Perfluorononane sulfonate (PFNS)	µg/L	0.002	<0.002	<0.002	<0.002
Perfluorodecane sulfonate (PFDS)	μg/L	0.002	<0.002	<0.002	<0.002
Perfluorododecane sulfonate (PFDoS)	μg/L	0.002	<0.002	<0.002	<0.002
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	μg/L	0.002	<0.002	<0.002	<0.002
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	μg/L	0.002	<0.002	<0.002	<0.002
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	µg/L	0.002	<0.002	<0.002	<0.002
Perfluoroctane sulfonamide (PFOSA)	μg/L	0.008	<0.008	<0.008	<0.008
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	µg/L	0.01	<0.01	<0.01	<0.01
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	µg/L	0.01	<0.01	<0.01	<0.01
2-(N-Methylperfluorooctane sulfonamido)-ethanol	µg/L	0.01	<0.01	<0.01	<0.01
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	µg/L	0.01	<0.01	<0.01	<0.01
N-Methylperfluorooctanesulfonamidoacetic acid	μg/L	0.01	<0.01	<0.01	<0.01
N-Ethylperfluorooctanesulfonamidoacetic Acid	μg/L	0.01	<0.01	<0.01	<0.01
Total of PFAS (n=30)	μg/L	0.04	0.08	0.07	<0.04

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN295	The water sample or extract of sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate (III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS /ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC`s are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.
MA-1523	This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labelled quantification surrogates and clean-up via SPE cartridges sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

ontact	Huong Crawford	Manager	Adam Atkinson
Client	SGS I&E SYDNEY	Laboratory	SGS Melbourne EH&S
ddress	Unit 16, 33 Maddox Street	Address	10/585 Blackburn Road
	Alexandria		Notting Hill Victoria 3168
	NSW 2015		
elephone	02 8594 0400	Telephone	+61395743200
acsimile	02 8594 0499	Facsimile	+61395743399
Email	au.environmental.sydney@sgs.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	E25568 Brookvale	SGS Reference	ME327309 R0
Order Number	SE232924	Date Received	09 Jun 2022
Samples	7	Date Reported	14 Jun 2022

COMMENTS .

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

MA-1523: Majority of surrogate recoveries within acceptance criteria.

SIGNATORIES

Andrew WRIGHT Senior Chemist

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

and Bldg 10, 5

Bldg 10, 585 Blackburn Rd Notting Hill VIC

t +61 3 9574 3200 Australia f +61 3 9574 3399

ANALYTICAL REPORT

ME327309 R0

		Sample Number Sample Matrix		ME327309.002 Water	ME327309.003 Water	ME327309.004 Water
		Sample Matrix Sample Date		04 Jun 2022	04 Jun 2022	04 Jun 2022
		Sample Name	SE232924.001	SE232924.002	SE232924.003	SE232924.004
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Aqueou		od: MA-1523	Tested: 9/6/202	22		
Perfluorobutanoic acid (PFBA)	μg/L	0.002	0.006	0.002	<0.002	-
Perfluoropentanoic acid (PFPeA)	μg/L	0.002	0.007	0.007	<0.002	-
Perfluorohexanoic acid (PFHxA)	μg/L	0.002	0.011	0.008	<0.002	-
Perfluoroheptanoic acid (PFHpA)	μg/L	0.002	<0.002	<0.002	<0.002	-
Perfluorooctanoic Acid (PFOA)	μg/L	0.002	0.002	0.002	<0.002	-
Perfluorononanoic acid (PFNA)	µg/L	0.004	<0.004	<0.004	<0.004	-
Perfluorodecanoic acid (PFDA)	µg/L	0.004	<0.004	<0.004	<0.004	-
Perfluoroundecanoic acid (PFUnA)	µg/L	0.004	<0.004	<0.004	<0.004	-
Perfluorododecanoic acid (PFDoA)	µg/L	0.004	<0.004	<0.004	<0.004	-
Perfluorotridecanoic acid (PFTrDA)	µg/L	0.004	<0.004	<0.004	<0.004	-
Perfluorotetradecanoic acid (PFTeDA)	µg/L	0.004	<0.004	<0.004	<0.004	-
Perfluorohexadecanoic acid (PFHxDA)	µg/L	0.008	<0.008	<0.008	<0.008	-
Perfluorobutane sulfonate (PFBS)	µg/L	0.004	0.026	0.007	<0.004	-
Perfluoropentane sulfonate (PFPeS)	µg/L	0.004	<0.004	<0.004	<0.004	-
Perfluorohexane sulfonate (PFHxS)	µg/L	0.002	0.017	0.033	<0.002	-
Perfluoroheptane sulfonate (PFHpS)	µg/L	0.002	<0.002	<0.002	<0.002	-
Perfluorooctane sulfonate (PFOS)	µg/L	0.002	0.008	0.010	<0.002	-
Sum of PFHxS and PFOS	µg/L	0.002	0.025	0.043	<0.002	-
Perfluorononane sulfonate (PFNS)	µg/L	0.002	<0.002	<0.002	<0.002	-
Perfluorodecane sulfonate (PFDS)	µg/L	0.002	<0.002	<0.002	<0.002	-
Perfluorododecane sulfonate (PFDoS)	µg/L	0.002	<0.002	<0.002	<0.002	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	µg/L	0.002	<0.002	<0.002	<0.002	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	μg/L	0.002	<0.002	<0.002	<0.002	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	μg/L	0.002	<0.002	<0.002	<0.002	-
Perfluoroctane sulfonamide (PFOSA)	µg/L	0.008	<0.008	<0.008	<0.008	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	µg/L	0.01	<0.01	<0.01	<0.01	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	µg/L	0.01	<0.01	<0.01	<0.01	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	µg/L	0.01	<0.01	<0.01	<0.01	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	µg/L	0.01	<0.01	<0.01	<0.01	-
N-Methylperfluorooctanesulfonamidoacetic acid	µg/L	0.01	<0.01	<0.01	<0.01	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	µg/L	0.01	<0.01	<0.01	<0.01	-
Total of PFAS (n=30)	µg/L	0.04	0.08	0.07	<0.04	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	101	99	99	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	101	100	102	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	117	112	100	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%	-	104	97	102	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	107	105	102	-
(13C9-PFNA) Isotopically Labelled Internal Recovery	%	-	91	85	93	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	99	91	85	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	90	108	93	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	86	117	87	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	87	141	114	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	147	273	191	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	117	109	88	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	98	96	92	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	77	86	107	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	102	96	70	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	99	90	74	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	57	89	84	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	83	57	58	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	63	65	60	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	77	79	63	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	83	80	64	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	71	78	58	-
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	75	106	93	-
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	-	60	80	68	-

ANALYTICAL REPORT

ME327309 R0

		Sample Number Sample Matrix	Water	ME327309.006 Water	ME327309.007 Water
		Sample Date Sample Name		04 Jun 2022 SE232924.006	04 Jun 2022 SE232924.007
Parameter	Uni	ts LOR			
Per- and Polyfluoroalkyl Substances (PFAS) in Aqueou		Method: MA-1523	Tested: 10/6/20	22	
Perfluorobutanoic acid (PFBA)	µg/L	0.002	-	-	-
Perfluoropentanoic acid (PFPeA)	µg/L	0.002	-	-	-
Perfluorohexanoic acid (PFHxA)	µg/L	0.002	-	-	-
Perfluoroheptanoic acid (PFHpA)	µg/L	0.002	-	-	-
Perfluorooctanoic Acid (PFOA)	µg/L	0.002	-	-	-
Perfluorononanoic acid (PFNA)	µg/L	0.004	-	-	-
Perfluorodecanoic acid (PFDA)	µg/L	0.004	-	-	-
Perfluoroundecanoic acid (PFUnA)	µg/L	0.004	-	-	-
Perfluorododecanoic acid (PFDoA)	µg/L	0.004	-	-	-
Perfluorotridecanoic acid (PFTrDA)	µg/L	0.004	-	-	-
Perfluorotetradecanoic acid (PFTeDA)	µg/L	0.004	-	-	-
Perfluorohexadecanoic acid (PFHxDA)	µg/L	0.008	-	-	-
Perfluorobutane sulfonate (PFBS)	µg/L		-	-	-
Perfluoropentane sulfonate (PFPeS)	µg/L	0.004	-	-	-
Perfluorohexane sulfonate (PFHxS)	µg/L		-	-	-
Perfluoroheptane sulfonate (PFHpS)	µg/L		-	-	-
Perfluorooctane sulfonate (PFOS)	µg/L		-	-	-
Sum of PFHxS and PFOS	µg/L		-	-	-
Perfluorononane sulfonate (PFNS)	µg/L	0.002	-	-	-
Perfluorodecane sulfonate (PFDS)	µg/L		-	-	-
Perfluorododecane sulfonate (PFDoS)	µg/L		-	-	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	µg/L		-	-	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	µg/L		-	-	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	µg/L		-	-	-
Perfluoroctane sulfonamide (PFOSA)	µg/L		-	-	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	µg/L		-	-	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	µg/L		-	-	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	µg/L		-	-	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	µg/L		-	-	-
N-Methylperfluorooctanesulfonamidoacetic acid	µg/L		-	-	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	µg/L		-	-	-
Total of PFAS (n=30) (13C4-PFBA) Isotopically Labelled Internal Recovery	μg/L %				
(13C4-PFDA) Isotopically Labelled Internal Recovery (13C5-PFPeA) Isotopically Labelled Internal Recovery	%		-	-	-
(13C5-PFPeA) isotopically Labelled Internal Recovery (13C5-PFHxA) isotopically Labelled Internal Recovery	%	-	-	-	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%		-	_	-
	%		-	_	-
(13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery	%		-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	-	-	-
(13C0-P-PDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	_	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%			_	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%			_	
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%			_	
(13C3-PFBS) Isotopically Labelled Internal Recovery	%		-	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%		-	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%		-	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%		-	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%		-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	_	-	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%		-	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%		-	-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery			_	-	_
	%				
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%		-	-	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery (D3-N-MeFOSAA) Isotopically Labelled Internal Recovery			-	-	-

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage.* Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Samples Method: MA-1523

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Perfluorobutanoic acid (PFBA)	LB051634	µg/L	0.002	<0.002	15%	NA
Perfluoropentanoic acid (PFPeA)	LB051634	µg/L	0.002	<0.002	8%	NA
Perfluorohexanoic acid (PFHxA)	LB051634	µg/L	0.002	<0.002	6%	NA
Perfluoroheptanoic acid (PFHpA)	LB051634	µg/L	0.002	<0.002	0%	64%
Perfluorooctanoic Acid (PFOA)	LB051634	µg/L	0.002	<0.002	23%	74%
Perfluorononanoic acid (PFNA)	LB051634	µg/L	0.004	<0.004	0%	97%
Perfluorodecanoic acid (PFDA)	LB051634	µg/L	0.004	<0.004	0%	79%
Perfluoroundecanoic acid (PFUnA)	LB051634	µg/L	0.004	<0.004	0%	72%
Perfluorododecanoic acid (PFDoA)	LB051634	µg/L	0.004	<0.004	0%	90%
Perfluorotridecanoic acid (PFTrDA)	LB051634	µg/L	0.004	<0.004	0%	70%
Perfluorotetradecanoic acid (PFTeDA)	LB051634	µg/L	0.004	<0.004	0%	54%
Perfluorohexadecanoic acid (PFHxDA)	LB051634	µg/L	0.008	<0.008	0%	NA
Perfluorobutane sulfonate (PFBS)	LB051634	µg/L	0.004	<0.004	4%	NA
Perfluoropentane sulfonate (PFPeS)	LB051634	µg/L	0.004	<0.004	0%	NA
Perfluorohexane sulfonate (PFHxS)	LB051634	µg/L	0.002	<0.002	1%	NA
Perfluoroheptane sulfonate (PFHpS)	LB051634	µg/L	0.002	<0.002	0%	NA
Perfluorooctane sulfonate (PFOS)	LB051634	μg/L	0.002	<0.002	35%	122%
Sum of PFHxS and PFOS	LB051634	μg/L	0.002	<0.002	10%	NA
Perfluorononane sulfonate (PFNS)	LB051634	μg/L	0.002	<0.002	0%	NA
Perfluorodecane sulfonate (PFDS)	LB051634	μg/L	0.002	<0.002	0%	NA
Perfluorododecane sulfonate (PFDoS)	LB051634	μg/L	0.002	<0.002	0%	NA
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	LB051634	μg/L	0.002	<0.002	0%	NA
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	LB051634	μg/L	0.002	<0.002	0%	NA
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	LB051634	μg/L	0.002	<0.002	0%	NA
Perfluoroctane sulfonamide (PFOSA)	LB051634	µg/L	0.008	<0.008	0%	60%
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	LB051634	μg/L	0.01	<0.01	0%	NA
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	LB051634	μg/L	0.01	<0.01	0%	NA
	LB051634		0.01	<0.01	0%	NA
2-(N-Methylperfluorooctane sulfonamido)-ethanol (N-MeFOSE) 2-(N-Ethylperfluorooctane sulfonamido)-ethanol (N-EtFOSE)	LB051634	µg/L	0.01	<0.01	0%	NA
		µg/L				
N-Methylperfluorooctanesulfonamidoacetic acid (N_MeFOSAA)	LB051634	µg/L	0.01	<0.01	0%	NA
N-Ethylperfluorooctanesulfonamidoacetic Acid (N-EtFOSAA)	LB051634	µg/L	0.01	<0.01		NA
Total of PFAS (n=30)	LB051634	µg/L	0.04	<0.04	4%	NA
(13C4-PFBA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	99%	1%	101%
(13C5-PFPeA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	95%	7%	98%
(13C5-PFHxA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	125%	23%	130%
(13C4-PFHpA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	103%	15%	125%
(13C4_PFOA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	86%	5%	110%
(13C9-PFNA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	89%	6%	95%
(13C6-PFDA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	90%	40%	112%
(13C7-PFUdA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	99%	25%	81%
(13C2-PFDoA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	78%	9%	76%
(13C2_PFTeDA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	69%	20%	59%
(13C2-PFHxDA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	91%	18%	100%
(13C3-PFBS) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	150%	24%	149%
(13C3-PFHxS) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	97%	6%	104%
(13C8-PFOS) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	116%	5%	122%
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	149%	36%	155%
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	113%	22%	110%
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	105%	40%	83%
(13C8-PFOSA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	100%	55%	122%
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	100%	37%	110%
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	100%	47%	131%
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	100%	49%	139%
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	100%	41%	121%
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery Standard	LB051634	%	-	100%	14%	133%

METHOD SUMMARY

— метнор MA-1523

METHODOLOGY SUMMARY

This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labelled quantification surrogates and clean-up via SPE cartridges sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification.

FOOTNOTES .

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting î↓ NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service QFL QC result is below the lower tolerance ++

Indicates that both * and ** apply. NVI Not Validated Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Solid samples expressed on a dry weight basis.

Indicative data, theoretical holding time exceeded.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

The sample was not analysed for this analyte

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- 1 Bq is equivalent to 27 pCi a.
- b 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 297658

Client Details	
Client	El Australia
Attention	Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E25568, Brookvale
Number of Samples	1 Water
Date samples received	09/06/2022
Date completed instructions received	09/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	17/06/2022		
Date of Issue	16/06/2022		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 297658 Revision No: R00

Page | 1 of 10

vTRH(C6-C10)/BTEXN in Water		
Our Reference		297658-1
Your Reference	UNITS	GWQT1
Date Sampled		4/06/2022
Type of sample		Water
Date extracted	-	10/06/2022
Date analysed	-	11/06/2022
TRH C ₆ - C ₉	µg/L	<10
TRH C6 - C10	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	119
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	99

svTRH (C10-C40) in Water		
Our Reference		297658-1
Your Reference	UNITS	GWQT1
Date Sampled		4/06/2022
Type of sample		Water
Date extracted	-	15/06/2022
Date analysed	-	16/06/2022
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	μg/L	<50
TRH >C10 - C16	μg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Total +ve TRH (>C10-C40)	μg/L	<50
Surrogate o-Terphenyl	%	87

HM in water - dissolved		
Our Reference		297658-1
Your Reference	UNITS	GWQT1
Date Sampled		4/06/2022
Type of sample		Water
Date prepared	-	14/06/2022
Date analysed	-	14/06/2022
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	µg/L	1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	μg/L	2
Zinc-Dissolved	μg/L	1

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH(C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			10/06/2022	[NT]		[NT]	[NT]	10/06/2022	
Date analysed	-			11/06/2022	[NT]		[NT]	[NT]	11/06/2022	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	86	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	86	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	80	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	85	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	83	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	90	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	88	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	118	[NT]		[NT]	[NT]	126	
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	102	
Surrogate 4-BFB	%		Org-023	98	[NT]		[NT]	[NT]	99	

QUALITY CONTROL: svTRH (C10-C40) in Water						Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			15/06/2022	[NT]		[NT]	[NT]	15/06/2022	
Date analysed	-			15/06/2022	[NT]		[NT]	[NT]	15/06/2022	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	103	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	98	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	94	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	103	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	98	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	94	
Surrogate o-Terphenyl	%		Org-020	92	[NT]	[NT]	[NT]	[NT]	95	[NT]

QUALITY CONTROL: HM in water - dissolved						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			14/06/2022	[NT]		[NT]	[NT]	14/06/2022	
Date analysed	-			14/06/2022	[NT]		[NT]	[NT]	14/06/2022	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	94	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	106	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Appendix I – QA/QC Assessment

I1.1 Quality Assurance / Quality Control Program

Quality assurance comprises an assessment of the reliability of the field procedures and laboratory results against standard industry practices and the SAQP. A summary of the project QA/QC measures incorporated into this DSI is presented in **Table I-1**.

Task	Description	Project
Field QA/QC		
General	Work was to be undertaken following standard field procedures which are based on industry accepted standard practice.	Soil samples were collected directly from the augers. Soil samples were placed in 250 gram glass jars, which were filled to minimise headspace, and sealed using Teflon-coated lids. PFAS samples were placed in a dedicated Teflon free soil jar provided by the laboratory. Groundwater samples were obtained using sample bottles/vials provided by the laboratory.
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes
Soil Screening with PID	The PID was serviced and calibrated as per manufacturer requirements. PID calibrated at the beginning of each day of fieldwork.	Yes
Equipment Decontamination	Sampling equipment to be decontaminated after the collection of each soil sample by washing with phosphate-free detergent (such as Decon 90 or Alconox) and potable water, followed by a final distilled water rinse. One rinsate blank would be collected and analysed for the primary contaminants. All results should be non-detect.	Yes Two rinsate samples were collected in total. One was collected during the soil investigation on 28 May 2022 and the other was collected during the groundwater monitoring event on 4 June 2022. All results were reported as below the detection limits.
Transport	Samples were stored in a chilled (with ice) cooler box and transported to the laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation and transport duration.	Yes
Trip Blanks	Trip Blank (TB) samples were to be prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.	Two trip blank samples prepared by the primary laboratory, were analysed for BTEX during soil and groundwater testing. The results were reported below the laboratory LOR, indicating that sample transport acceptable.

Table I-1 Project QC Measures

Task	Description	Project
Trip Spikes	Trip spike (TS) samples were to be submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.	Two trip spike samples were submitted to the primary laboratory for BTEX analysis, the result of which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.
Duplicates	 Field duplicate samples were analysed as follows: intra-laboratory duplicate samples at a rate of 1 in 20 primary samples (as per NEPM); and inter-laboratory duplicate samples at a rate of 1 in 20 primary samples (as per NEPM). Field and laboratory acceptable limits between 30-50% RPD as stated by AS4482.1–2005. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or Heterogeneous materials or volatile compounds are encountered. Non-compliance is to be documented in the report and the sample re-analysed or a higher level conservatively adopted. 	The required sampling density of 1 per 20 duplicated primary samples was achieved and sufficient for the investigation being the exception the soil inter-laboratory duplicate sample since the secondary laboratory was not able to locate the sample (lost). Laboratory duplicates prepared and analysed. Minor non-conformance, with negligible effects on data use for interpretative purposes. Field QC samples and calculated RPD values are presented in Table I-5 . Copies of laboratory reports are included in Appendix H .
Laboratory QA/Q	2	
Laboratory Analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC programs.	Yes SGS - primary laboratory Envirolab - secondary laboratory Laboratory QA/QC analyses are included in Appendix J.
	Appropriate detection limits were used for the analyses to be undertaken.	Practical Quantitation Limits for all tested parameters during the DSI are presented in summary tables Table QC3 in Appendix J.
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be completed within standard guidelines.	Assessment of holding times has been undertaken by the laboratory. Minor non-conformance (two soil samples for Total Phenolics with 2 days outside the holding time), with negligible effects on data use for interpretative purposes.

Task	Description	Project
Method Blanks	The method blank sample is laboratory prepared, containing the reagents used to prepare the sample for final analysis. The purpose of this procedure is to identify contamination in the reagent materials and assess potential bias in the sample analysis due to contaminated reagents. The QC criterion aims to find no detectable contamination in the reagents. Each analysis procedure should be subject to a method blank analysis. The results of each should indicate that contaminants were not detected.	Assessment of method blanks has been undertaken by the laboratory.
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These sub-samples are selected by the laboratory to assess the accuracy and precision of the analytical method. The selected laboratories should undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intra- laboratory duplicates should be performed at a frequency of 1 per 10 samples.	Assessment of laboratory duplicates has been undertaken by the laboratory.
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical run.	Assessment of laboratory control standards has been undertaken by the laboratory.
Matrix Spikes	Matric spikes are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	Assessment of matrix spikes has been undertaken by the laboratory. Duplicate RPD outside of acceptable range for PAH and metals (lead and zinc) in soil samples. Minor non-conformance, with negligible effects on data use for interpretative purposes.

Task	Description	Project
Surrogate Spikes	Surrogate spikes provide a means of checking, for every analysis that no gross errors have occurred at any stage of the procedure leading to significant analyte loss. Recoveries should be within the stated laboratory control limits of 70 to 130%.	Assessment of surrogate spikes has been undertaken by the laboratory. Minor non-conformance, with negligible effects on data use for interpretative purposes.
Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	Assessment of the investigation QA/QC is presented in the following sections.

I1.2 Calculation of Relative Percentage Difference

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_o - C_R|}{[(C_o + C_R)/2]} \times 100$$

Where:

Co = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

I2.1 Field QA/QC

The field (intra- / inter- laboratory) duplicate samples collected during the works are summarised in **Table I-2**. Inter-lab duplicates were analysed by the secondary laboratory, Envirolab.

Table I-2	Field	QC	Sampling	Program
		_		

Matrix	Primary QA Sample	Duplicate (Primary Lab)	Triplicate (Secondary Lab)	Total Duplicates
Soil	BH3_0.2-0.3	QD1	-	1
Groundwater	GW-BH1	GWQD1	-	1
	GW-BH2	-	GWQT1	1

I2.2 Field Data Quality Indicators

A discussion of the field data quality indicators is presented in Table I-3 below.

DQI	Item	Conformance			
Precision Measure of the variability (or reproducibility) of data.	SOPs appropriate and complied with	Yes			
Accuracy	SOPs appropriate and complied with	Yes			
Quantitative measure of the closeness of reported data to the true values.	Calibration of instruments against known standards	Yes			
Representativeness					
Confidence the data are representative of each media present on the site.	Each media identified in SAQP sampled	Yes			
Completeness	Each critical location sampled	Yes			
Percentage of useable data from sampling episode (set).	SAQP appropriate and complied with	Yes			
	Appropriate number of field duplicate samples taken	Yes			
	Experienced sampler	Yes			
	Field documentation correct	Yes			
Comparability Confidence [expressed	Same sampling method used on each occasion/location	Yes			
qualitatively] that data may be considered to be equivalent for	Experienced sampler	Yes			
each sampling and analytical event.	Same type of samples collected (filtered, size, fractions)	Yes			

I2.3 Conclusion for the Field QA/QC

All field work, including equipment decontamination and sample preservation and transport, was conducted in accordance with the SAQP and SOPs, which were devised with reference to industry-approved guidelines. Appropriate QC measures were integrated into each sampling event and the DQI were met, or if not, the minor non-conformances had negligible effects on the data use for interpretative purposes.

All samples, including field QC samples, were transported to the primary and secondary laboratories under chilled conditions, using strict COC procedures. Relevant documents (COC forms) were presented with the samples at the times of delivery. All supporting documents (COCs and SRAs) were completed in full and signed, where appropriate. Copies of these were included in **Appendix G**. El considered the field QA/QC program carried out during the DSI to be appropriate.

I2.4 Laboratory QA/QC

Primary and intra-laboratory duplicate samples were analysed by SGS (located in Alexandria NSW), with inter-laboratory duplicate samples analysed by Envirolab (located in Chatswood NSW). All laboratories are accredited by NATA for the analyses undertaken. A discussion of the laboratory DQIs is presented below.

Table I-4 Laboratory Data Quality Indicator	ſS
---	----

DQI	Item	Conformance
Completeness	All critical samples analysed according to SAQP and proposal	Yes
A measure of the amount of useable data (expressed as %) from a data	All analytes analysed according to SAQP in proposal	Yes
as %) from a data collection activity	Appropriate methods and PQLs	Yes
	Sample documentation complete	Yes
	Sample holding times complied with	Partially*
Comparability	Sample analytical methods used (including clean-up)	Yes
The confidence (expressed qualitatively) that data may	Sample PQLs (justify/ quantify if different)	Yes
be considered to be equivalent for each	Same laboratories (justify/ quantify if different)	Yes
sampling and analytical event	Same units (justify/ quantify if different)	Yes
Representativeness Confidence that data are representative of each media	All key samples analysed according to SAQP in the proposal	Yes
Precision	Analysis of laboratory duplicates	Yes
A quantitative measure of the variability (or	Analysis of field duplicates	Yes
reproducibility) of data	Analysis of laboratory-prepared volatile trip spikes	Yes
Accuracy	Analysis of field blanks	Yes
A quantitative measure of the closeness of reported	Analysis of rinsate blanks	Yes
data to the true value	Analysis of method blanks	Yes
	Analysis of matrix spikes (MS)	Yes
	Analysis of surrogate spikes	Yes
	Analysis of reference materials	Not applicable
	Analysis of laboratory control samples	Yes

*Phenols in two soil samples (12 soil samples in total) were not extracted within the holding time (two day exceedance), but unlikely to have a major implication in the total data set as the remainder of the tests (inclusive of Phenols) were extracted within the expected holding time.

12.5 Conclusions for the Laboratory QA/QC

All contracted laboratories (SGS and Envirolab) were accredited by NATA for the analyses undertaken. All analytical procedures used were industry recognised and endorsed standard methods. Appropriate QC measures were integrated into each testing batch and the DQI were met, or if not, the variability was suitably justified. All final reports were submitted in full and included all requested analyses, as per the signed COC forms. El considered the laboratory QA/QC programs carried out during the DSI to be appropriate.

I2.6 Summary of Project QA/QC

The project DQOs specified in **Section 6**, **Table 6-1** were considered to have been achieved. The adopted QA/QC program ensured that the data collated during the DSI were accurate, precise and representative of the (final) site conditions. It was therefore considered that the data were reliable and that the results could be used for DSI interpretative purposes.

Table I-5 Summary of QA/QC results for Investigation samples

					RH			BT	ΈX					Heavy	Metals			
Sample identification	Sampled Date	Description	Т *-	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory Dupl	icate																	
BH3_0.2-0.3	28/5/2022	Fill	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	1	<0.3	18	<0.5	6	<0.05	0.7	3.7
QD1		Duplicate of BH3_0.2-0.3	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	1	<0.3	16	1.2	10	<0.05	1.3	5.7
	RPD (%)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.8	96.6	50.0	0.0	60.0	42.6
GW-BH1	4/6/2022	Groundwater	170	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	1	<1	<0.1	4	13
GWQD1		Duplicate of GW-BH1	170	130	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	4	12
	RPD ((%)	0.0	87.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0
Inter-laboratory Du	plicate																	
GW-BH2	4/6/2022	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	3	<1	<0.1	2	<5
GWQT1		Duplicate of GW-BH2	<10	<50	<100	<100	<1	<1	<1	<3	<1	<0.1	<1	1	<1	<0.05	2	1
	RPD ((%)	NA	NA	NA	NA	NA	NA	NA	NA	0.0	0.0	0.0	100.0	0.0	NA	0.0	228.6
TB1		Trip blank	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
TS1	21/05/2022	Trip spike	-	-	-	-	[88%]	[91%]	[92%]	[93%]	-	-	-	-	-	-	-	-
QR1		Rinsate	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5
GWTB1		Trip blank	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
GWTS1	4/06/2022	Trip spike	-	-	-	-	[102%]	[102%]	[100%]	[100%]	-	-	-	-	-	-	-	-
QR1		Rinsate	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE:

All soil results are reported in mg/kg . All water results are reported in $\mu\text{g/L}.$

* - to obtain F1 subtract the sum of BTEX concentrations from the C_6 - C_{10} fraction

** - to obtain F2 subtract naphthalene from the > C_{10} - C_{16} fraction

Appendix J – Laboratory QA/QC and DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Sergio Raposeira El AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25568 Brookvale	SGS Reference	SE232596 R0
Order Number	E25568	Date Received	31 May 2022
Samples	16	Date Reported	07 Jun 2022

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	Total Phenolics in Soil	2 items
	TRH (Total Recoverable Hydrocarbons) in Water	1 item
Analysis Date	Total Phenolics in Soil	2 items
	VOC's in Soil	15 items
	Volatile Petroleum Hydrocarbons in Soil	8 items
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items

Samples clearly labelled		Yes	Complete d	ocumentation received		Yes		
Sample container provider		SGS	Sample coo	oling method		Ice Bricks		
Samples received in correct	containers	Yes	Sample cou	ints by matrix		15 Soil, 1 Water		
Date documentation received	b	31/5/2022	Type of doo	umentation received		COC		
Samples received in good or	der	Yes	Samples re	ceived without headspace		Yes		
Sample temperature upon receipt 8.8C		8.8C	Sufficient sample for analysis			Yes		
Turnaround time requested		Standard						
SGS Australia Pty Ltd	Environment, Health and	Uni	t 16 33 Maddox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sgs.com.au	

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

www.sgs.com.au f +61 2 8594 0499

SE232596 R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.3-0.4	SE232596.001	LB250236	21 May 2022	31 May 2022	21 May 2023	07 Jun 2022	21 May 2023	07 Jun 2022
BH2_1.5-1.6	SE232596.003	LB250236	21 May 2022	31 May 2022	21 May 2023	07 Jun 2022	21 May 2023	07 Jun 2022
BH3_0.2-0.3	SE232596.008	LB250236	28 May 2022	31 May 2022	28 May 2023	07 Jun 2022	28 May 2023	07 Jun 2022
BH4_0.4-0.5	SE232596.010	LB250236	28 May 2022	31 May 2022	28 May 2023	07 Jun 2022	28 May 2023	07 Jun 2022
BH5_0.2-0.3	SE232596.012	LB250236	28 May 2022	31 May 2022	28 May 2023	07 Jun 2022	28 May 2023	07 Jun 2022
BH6_0.2-0.3	SE232596.014	LB250236	28 May 2022	31 May 2022	28 May 2023	07 Jun 2022	28 May 2023	07 Jun 2022
BH7_0.1-0.2	SE232596.015	LB250236	28 May 2022	31 May 2022	28 May 2023	07 Jun 2022	28 May 2023	07 Jun 2022
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]AN311(Perth)/AN31
Sample Name	Sample No	OC Pof	Sampled	Pacaivad	Extraction Duo	Extracted	Analysis Duo	Analysod

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE232596.007	LB249895	21 May 2022	31 May 2022	18 Jun 2022	01 Jun 2022	18 Jun 2022	01 Jun 2022

Mercury in Soil							Method:	ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.3-0.4	SE232596.001	LB250282	21 May 2022	31 May 2022	18 Jun 2022	06 Jun 2022	18 Jun 2022	07 Jun 2022
BH1_1.0-1.1	SE232596.002	LB250282	21 May 2022	31 May 2022	18 Jun 2022	06 Jun 2022	18 Jun 2022	07 Jun 2022
BH2_1.5-1.6	SE232596.003	LB250282	21 May 2022	31 May 2022	18 Jun 2022	06 Jun 2022	18 Jun 2022	07 Jun 2022
BH2_3.5-3.6	SE232596.004	LB250282	21 May 2022	31 May 2022	18 Jun 2022	06 Jun 2022	18 Jun 2022	07 Jun 2022
BH3_0.2-0.3	SE232596.008	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
BH3_3.0-3.1	SE232596.009	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
BH4_0.4-0.5	SE232596.010	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
BH4_1.2-1.3	SE232596.011	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
BH5_0.2-0.3	SE232596.012	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
BH5_2.3-2.4	SE232596.013	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
BH6_0.2-0.3	SE232596.014	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
BH7_0.1-0.2	SE232596.015	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
QD1	SE232596.016	LB250282	28 May 2022	31 May 2022	25 Jun 2022	06 Jun 2022	25 Jun 2022	07 Jun 2022
loisture Content							Method:	ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.3-0.4	SE232596.001	LB250182	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH1_1.0-1.1	SE232596.002	LB250182	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH2_1.5-1.6	SE232596.003	LB250182	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH2_3.5-3.6	SE232596.004	LB250182	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
TB1	SE232596.005	LB250182	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH3_0.2-0.3	SE232596.008	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH3_3.0-3.1	SE232596.009	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH4_0.4-0.5	SE232596.010	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH4_1.2-1.3	SE232596.011	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH5_0.2-0.3	SE232596.012	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH5_2.3-2.4	SE232596.013	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH6_0.2-0.3	SE232596.014	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
BH7_0.1-0.2	SE232596.015	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
QD1	SE232596.016	LB250182	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	08 Jun 2022	07 Jun 2022
C Pesticides in Soil	02202000.010	20200102	20 may 2022	of hidy LoLL		00 0011 2022		ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.3-0.4	SE232596.001	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH1_1.0-1.1	SE232596.002	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH1_1.0-1.1 BH2_1.5-1.6	SE232596.002	LB250173	21 May 2022 21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH2_1.5-1.6 BH2_3.5-3.6	SE232596.003	LB250173	21 May 2022 21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH2_3.3-3.8 BH3 0.2-0.3	SE232596.004	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
внз_0.2-0.3 ВН3_3.0-3.1	SE232596.008	LB250173	28 May 2022	31 May 2022 31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
внз_3.0-3.1 ВН4_0.4-0.5	SE232596.009	LB250173		31 May 2022 31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
	SE232596.010 SE232596.011	LB250173 LB250173	28 May 2022					
BH4_1.2-1.3			28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH5_0.2-0.3	SE232596.012	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH5_2.3-2.4	SE232596.013	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH6_0.2-0.3	SE232596.014	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH7_0.1-0.2	SE232596.015	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
QD1	SE232596.016	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

OP Pesticides in Soil

OP Pesticides in Soil							Method: N	/IE-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.3-0.4	SE232596.001	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H1_1.0-1.1	SE232596.002	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H2_1.5-1.6	SE232596.003	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H2_3.5-3.6	SE232596.004	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H3_0.2-0.3	SE232596.008	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H3_3.0-3.1	SE232596.009	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
3H4_0.4-0.5	SE232596.010	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
3H4_1.2-1.3	SE232596.011	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
3H5_0.2-0.3	SE232596.012	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
3H5_2.3-2.4	SE232596.013	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
3H6_0.2-0.3	SE232596.014	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H7_0.1-0.2	SE232596.015	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
QD1	SE232596.016	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
AH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method: M	/IE-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H1_0.3-0.4	SE232596.001	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
3H1_1.0-1.1	SE232596.002	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H2_1.5-1.6	SE232596.003	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H2_3.5-3.6	SE232596.004	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H3_0.2-0.3	SE232596.008	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H3_3.0-3.1	SE232596.009	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H4_0.4-0.5	SE232596.010	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H4_1.2-1.3	SE232596.011	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H5_0.2-0.3	SE232596.012	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
	SE232596.013	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H6_0.2-0.3	SE232596.014	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H7_0.1-0.2	SE232596.015	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
D1	SE232596.016	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
CBs in Soil	02202000.010	LBLOOTTO	20 may 2022	of may 2022	1100112022	00 0011 2022		
	Ocurrele Ne	00.0-6	O a manufacial	Deschued	Future of the Date	Estus stad		/IE-(AU)-[ENV]AN
ample Name H1_0.3-0.4	Sample No. SE232596.001	QC Ref LB250173	Sampled 21 May 2022	Received 31 May 2022	Extraction Due 04 Jun 2022	Extracted 03 Jun 2022	Analysis Due 13 Jul 2022	Analysed 07 Jun 2022
H1_1.0-1.1	SE232596.002	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H1_1.0-1.1 H2_1.5-1.6	3E232390.002		21 May 2022 21 May 2022	31 May 2022		03 Jun 2022	13 Jul 2022	07 Jun 2022
HZ_1.3-1.0	SE332606 003			ST Way 2022				07 Juli 2022
H2 3 5 3 6	SE232596.003	LB250173		31 May 2022	04 Jun 2022			07 Jun 2022
	SE232596.004	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
H3_0.2-0.3	SE232596.004 SE232596.008	LB250173 LB250173	21 May 2022 28 May 2022	31 May 2022	04 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022	07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1	SE232596.004 SE232596.008 SE232596.009	LB250173 LB250173 LB250173	21 May 2022 28 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022 13 Jul 2022	07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5	SE232596.004 SE232596.008 SE232596.009 SE232596.010	LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022 28 May 2022 28 May 2022 28 May 2022	31 May 2022 31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022 03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022	07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022 28 May 2022 28 May 2022 28 May 2022 28 May 2022	31 May 2022 31 May 2022 31 May 2022 31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022 03 Jun 2022 03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022	07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022 28 May 2022 28 May 2022 28 May 2022 28 May 2022 28 May 2022	31 May 2022 31 May 2022 31 May 2022 31 May 2022 31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022 03 Jun 2022 03 Jun 2022 03 Jun 2022 03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022 13 Jul 2022	07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022	31 May 2022	04 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022	07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022	07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022	07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022	13 Jul 2022	07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 AD1 C in Soll	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022	07 Jun 2022 07 Jun 2022 4E-(AU)-[ENV]AI
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 DD1 DC In Soll cample Name	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE32596.016	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173	21 May 2022 28 May 2022	31 May 2022 31 May 2022 Received	04 Jun 2022 11 Jun 2022	03 Jun 2022 03 Jun 2022	13 Jul 2022 13 Jul 2022 Method: N Analysis Due	07 Jun 2022 07 Jun 2022 17 Jun 2022 16-(AU)-[ENV]AI Analysed
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1 D2 Cin Soll ample Name H1_0.3-0.4	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE32596.016 Sample No. SE232596.001	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028	21 May 2022 28 May 2022	31 May 2022 31 May 2022 Received 31 May 2022	04 Jun 2022 11 Jun 2022 Extraction Due 18 Jun 2022	03 Jun 2022	13 Jul 2022 13 Jul 2022 Method: N Analysis Due 18 Jun 2022	07 Jun 2022 07 Jun 2022 XE-(AU)-[ENV]AI Analysed 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 ND1 DC In Soll cample Name H1_0.3-0.4 H2_1.5-1.6	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.003	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 21 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 Extraction Due 18 Jun 2022 18 Jun 2022	03 Jun 2022 06 Jun 2022 06 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 Method: N Analysis Due 18 Jun 2022 18 Jun 2022	07 Jun 2022 07 Jun 2022 XE-(AU)-[ENV]AI Analysed 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1 DC In Soll ample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.003 SE232596.008	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 18 Jun 2022 18 Jun 2022 25 Jun 2022	03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 Method: N Analysis Due 18 Jun 2022 18 Jun 2022 25 Jun 2022	07 Jun 2022 07 Jun 2022 XE-(AU)-[ENV]AI Analysed 07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1 VC in Soil ample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3 H4_0.4-0.5	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.003 SE232596.008 SE232596.010	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028 LB250228 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 21 May 2022 28 May 2022 28 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 18 Jun 2022 18 Jun 2022 25 Jun 2022 25 Jun 2022	03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 14 Jul 2022 15 Jul 2022 25 Jul 2022 25 Jul 2022	07 Jun 2022 07 Jun 2022 XE-(AU)-[ENV]AI Analysed 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1 C in Soil ample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3 H4_0.4-0.5	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.003 SE232596.008	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028 LB250228 LB250228 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 18 Jun 2022 18 Jun 2022 25 Jun 2022	03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 Method: N Analysis Due 18 Jun 2022 18 Jun 2022 25 Jun 2022	07 Jun 2022 07 Jun 2022 XE-(AU)-[ENV]AI Analysed 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1 IC IN SOII ample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3 H4_0.4-0.5 H5_0.2-0.3	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.003 SE232596.008 SE232596.010	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028 LB250228 LB250228 LB250228 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 18 Jun 2022 18 Jun 2022 25 Jun 2022 25 Jun 2022	03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 14 Jul 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022	07 Jun 2022 07 Jun 2022 AE-(AU)-[ENV]AI Analysed 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1 IC In Soll ample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3 H4_0.4-0.5 H5_0.2-0.3	SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.003 SE232596.003 SE232596.008 SE232596.010 SE232596.012	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028 LB250228 LB250228 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 13 Jun 2022 18 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022	03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 14 Jul 2022 15 Jul 2022 25 Jul 2022 25 Jul 2022 25 Jul 2022	07 Jun 2022 07 Jun 2022 XE-(AU)-[ENV]AI Analysed 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1 C in Soil ample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3 H4_0.4-0.5 H5_0.2-0.3 H6_0.2-0.3	SE232596.004 SE232596.009 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.003 SE232596.010 SE232596.012 SE232596.014	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028 LB250228 LB250228 LB250228 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 12 Jun 2022 18 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022	03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 14 Jul 2022 15 Jul 2022 25 Jul 2022 25 Jul 2022 25 Jul 2022 25 Jul 2022 25 Jul 2022	07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_3.0-3.1 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 D1 C in Soll ample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3 H4_0.4-0.5 H5_0.2-0.3 H6_0.2-0.3 H7_0.1-0.2 tal Phenolics in Soil	SE232596.004 SE232596.009 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.003 SE232596.010 SE232596.012 SE232596.014	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB25028 LB250228 LB250228 LB250228 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 12 Jun 2022 18 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022	03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 14 Jul 2022 15 Jul 2022 25 Jul 2022 25 Jul 2022 25 Jul 2022 25 Jul 2022 25 Jul 2022	07 Jun 2022 07 Jun 2022
H3_0.2-0.3 H3_0.3.0 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 DD DC In Soll cample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3 H4_0.4-0.5 H5_0.2-0.3 H6_0.2-0.3 H6_0.2-0.3 H7_0.1-0.2 cample Name	SE232596.004 SE232596.009 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.003 SE232596.008 SE232596.010 SE232596.012 SE232596.014 SE232596.015	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250228 LB250228 LB250228 LB250228 LB250228 LB250228	21 May 2022 28 May 2022 21 May 2022 28 May 2022	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 13 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022 25 Jun 2022	03 Jun 2022 03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 25 Jun 2022	07 Jun 2022 07 Jun 2022 KE-(AU)-[ENV]AI Analysed 07 Jun 2022 07 Jun 2022 17 Jun 2022
H3_0.2-0.3 H3_0.2-0.3 H4_0.4-0.5 H4_1.2-1.3 H5_0.2-0.3 H5_2.3-2.4 H6_0.2-0.3 H7_0.1-0.2 DD DC In Soll cample Name H1_0.3-0.4 H2_1.5-1.6 H3_0.2-0.3 H4_0.4-0.5 H5_0.2-0.3 H6_0.2-0.3 H6_0.2-0.3 H7_0.1-0.2 cample Name H1_0.3-0.4	SE232596.004 SE232596.009 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.003 SE232596.010 SE232596.010 SE232596.012 SE232596.014 SE232596.015 SE232596.015 SE232596.015	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250228 LB25028 LB2507 LB2507 LB2507 LB2507 LB2507 LB2507 LB2507 LB2507 LB2507 LB2507 LB2507 LB2507	21 May 2022 28 Ma	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 13 Jun 2022 25 Jun 2022	03 Jun 2022 06 Jun 2022	13 Jul 2022 13 Jul 2022 25 Jun 2022 25 Ju	07 Jun 2022 07 Jun 2022 KE-(AU)-[ENV]AN 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 07 Jun 2022 KE-(AU)-[ENV]AN Analysed 07 Jun 2022
SH2_3.5-3.6 SH3_0.2-0.3 SH3_0.2-0.3 SH3_0.2-0.3 SH4_0.4-0.5 SH4_1.2-1.3 SH5_0.2-0.3 SH5_0.2-0.3 SH5_2.3-2.4 SH6_0.2-0.3 SH7_0.1-0.2 DOC In Soil Sample Name SH1_0.3-0.4 SH2_1.5-1.6 SH5_0.2-0.3 SH4_0.4-0.5 SH5_0.2-0.3 SH7_0.1-0.2 Stat Phenolics in Soil Sample Name SH1_0.3-0.4 SH2_1.5-1.6 SH1_0.2-0.3 SH1_0.2-0.3 SH2_1.5-1.6 SH1_0.2-0.3 SH2_1.5-1.6 SH1_0.3-0.4 SH2_1.5-1.6 SH1_0.3-0.4 SH2_1.5-1.6 SH3_0.2-0.3	SE232596.004 SE232596.009 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.003 SE232596.010 SE232596.010 SE232596.014 SE232596.014 SE232596.015 Sample No. SE232596.001	LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250173 LB250228 LB25028 LB2503	21 May 2022 28 Ma	31 May 2022 31 May 2022	04 Jun 2022 11 Jun 2022 13 Jun 2022 25 Jun 2022 26 Jun 2022 27 Jun 2022 28 Jun 2022 29 Jun 2022 20 Ju	03 Jun 2022 03 Jun 2022 04 Jun 2022 06 Jun 2022 07 Jun 2022 07 Jun 2022	13 Jul 2022 13 Jul 2022 14 Jul 2022 15 Jul 2022 25 Jun 2022 26 Jun 2022 27 Jun 2022 28 Jun 2022 29 Jun 2022 20 Jun 2022 29 Jun 2022 20 Ju	07 Jun 2022 07 Jun 2022

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Total Phenolics in Soil (continued)

Total Phenolics in Soil (co	ntinued)						Method:	ME-(AU)-[ENV]AN2
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5_0.2-0.3	SE232596.012	LB250311	28 May 2022	31 May 2022	11 Jun 2022	07 Jun 2022	11 Jun 2022	07 Jun 2022
BH6_0.2-0.3	SE232596.014	LB250311	28 May 2022	31 May 2022	11 Jun 2022	07 Jun 2022	11 Jun 2022	07 Jun 2022
BH7_0.1-0.2	SE232596.015	LB250311	28 May 2022	31 May 2022	11 Jun 2022	07 Jun 2022	11 Jun 2022	07 Jun 2022
Total Recoverable Eleme	otal Recoverable Elements in Soil/Waste Solids/Materials by ICPOES							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.3-0.4	SE232596.001	LB250221	21 May 2022	31 May 2022	17 Nov 2022	06 Jun 2022	17 Nov 2022	07 Jun 2022
BH1_1.0-1.1	SE232596.002	LB250221	21 May 2022	31 May 2022	17 Nov 2022	06 Jun 2022	17 Nov 2022	07 Jun 2022
BH2_1.5-1.6	SE232596.003	LB250221	21 May 2022	31 May 2022	17 Nov 2022	06 Jun 2022	17 Nov 2022	07 Jun 2022
BH2_3.5-3.6	SE232596.004	LB250221	21 May 2022	31 May 2022	17 Nov 2022	06 Jun 2022	17 Nov 2022	07 Jun 2022
BH3_0.2-0.3	SE232596.008	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
BH3_3.0-3.1	SE232596.009	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
BH4_0.4-0.5	SE232596.010	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
BH4_1.2-1.3	SE232596.011	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
BH5_0.2-0.3	SE232596.012	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
BH5_2.3-2.4	SE232596.013	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
BH6_0.2-0.3	SE232596.014	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
BH7_0.1-0.2	SE232596.015	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
QD1	SE232596.016	LB250221	28 May 2022	31 May 2022	24 Nov 2022	06 Jun 2022	24 Nov 2022	07 Jun 2022
Trace Metals (Dissolved)	in Water by ICPMS						Method:	ME-(AU)-[ENV]AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE232596.007	LB249830	21 May 2022	31 May 2022	17 Nov 2022	31 May 2022	17 Nov 2022	01 Jun 2022

TRH (Total Recoverable Hydrocarbons) in Soil

	· •							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.3-0.4	SE232596.001	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH1_1.0-1.1	SE232596.002	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH2_1.5-1.6	SE232596.003	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH2_3.5-3.6	SE232596.004	LB250173	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH3_0.2-0.3	SE232596.008	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH3_3.0-3.1	SE232596.009	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH4_0.4-0.5	SE232596.010	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH4_1.2-1.3	SE232596.011	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH5_0.2-0.3	SE232596.012	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH5_2.3-2.4	SE232596.013	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH6_0.2-0.3	SE232596.014	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
BH7_0.1-0.2	SE232596.015	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
QD1	SE232596.016	LB250173	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	13 Jul 2022	07 Jun 2022
TRH (Total Recoverable I	Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

QR1 SE232596.007 LB249984 21 May 2022 31 May 2022 28 May 2022 02 Jun 2022† 12 Jul 2022 07 Jun 2022

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Method: ME-(AU)-[ENV]AN403

Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SE232596.001	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†
SE232596.002	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†
SE232596.003	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†
SE232596.004	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†
SE232596.005	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†
SE232596.006	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†
SE232596.008	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
SE232596.009	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
SE232596.010	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
SE232596.011	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
SE232596.012	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
SE232596.013	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
SE232596.014	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
SE232596.015	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
	SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.006 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014	SE232596.001 LB250177 SE232596.002 LB250177 SE232596.003 LB250177 SE232596.004 LB250177 SE232596.005 LB250177 SE232596.006 LB250177 SE232596.008 LB250177 SE232596.009 LB250177 SE232596.009 LB250177 SE232596.010 LB250177 SE232596.011 LB250177 SE232596.012 LB250177 SE232596.013 LB250177 SE232596.014 LB250177	SE232596.001 LB250177 21 May 2022 SE232596.002 LB250177 21 May 2022 SE232596.003 LB250177 21 May 2022 SE232596.003 LB250177 21 May 2022 SE232596.004 LB250177 21 May 2022 SE232596.005 LB250177 21 May 2022 SE232596.006 LB250177 21 May 2022 SE232596.008 LB250177 28 May 2022 SE232596.009 LB250177 28 May 2022 SE232596.010 LB250177 28 May 2022 SE232596.011 LB250177 28 May 2022 SE232596.012 LB250177 28 May 2022 SE232596.013 LB250177 28 May 2022 SE232596.014 LB250177 28 May 2022	SE232596.001 LB250177 21 May 2022 31 May 2022 SE232596.002 LB250177 21 May 2022 31 May 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 SE232596.004 LB250177 21 May 2022 31 May 2022 SE232596.005 LB250177 21 May 2022 31 May 2022 SE232596.006 LB250177 21 May 2022 31 May 2022 SE232596.008 LB250177 28 May 2022 31 May 2022 SE232596.009 LB250177 28 May 2022 31 May 2022 SE232596.010 LB250177 28 May 2022 31 May 2022 SE232596.011 LB250177 28 May 2022 31 May 2022 SE232596.012 LB250177 28 May 2022 31 May 2022 SE232596.013 LB250177 28 May 2022 31 May 2022 SE232596.013 LB250177 28 May 2022 31 May 2022 SE232596.014 LB250177 28 May 2022 31 May 2022 SE232596.014 <t< td=""><td>SE232596.001 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.002 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.004 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.005 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.006 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.008 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.009 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.010 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.011 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.012 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.013 LB250177 28 May 2022</td><td>SE232596.001 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.002 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.004 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.005 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.006 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.008 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.009 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 SE232596.010 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 SE232596.011 LB250177 28 May 2022 31 May 2022 <td< td=""><td>SE232596.001 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.002 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.004 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.005 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.006 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.008 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 11 Jun 2022 SE232596.010 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 11 Jun 2022 SE232596.011 LB250177</td></td<></td></t<>	SE232596.001 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.002 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.004 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.005 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.006 LB250177 21 May 2022 31 May 2022 04 Jun 2022 SE232596.008 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.009 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.010 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.011 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.012 LB250177 28 May 2022 31 May 2022 11 Jun 2022 SE232596.013 LB250177 28 May 2022	SE232596.001 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.002 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.004 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.005 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.006 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.008 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 SE232596.009 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 SE232596.010 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 SE232596.011 LB250177 28 May 2022 31 May 2022 <td< td=""><td>SE232596.001 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.002 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.004 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.005 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.006 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.008 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 11 Jun 2022 SE232596.010 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 11 Jun 2022 SE232596.011 LB250177</td></td<>	SE232596.001 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.002 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.003 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.004 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.005 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.006 LB250177 21 May 2022 31 May 2022 04 Jun 2022 03 Jun 2022 04 Jun 2022 SE232596.008 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 11 Jun 2022 SE232596.010 LB250177 28 May 2022 31 May 2022 11 Jun 2022 03 Jun 2022 11 Jun 2022 SE232596.011 LB250177

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

VOC's in Soil (continued)							Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QD1	SE232596.016	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022
VOCs in Water							Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE232596.007	LB249903	21 May 2022	31 May 2022	04 Jun 2022	01 Jun 2022	04 Jun 2022	02 Jun 2022

Volatile Petroleum Hydrocarbons in Soil

Volatile Petroleum Hydroc	/olatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH1_0.3-0.4	SE232596.001	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†		
BH1_1.0-1.1	SE232596.002	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†		
BH2_1.5-1.6	SE232596.003	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†		
BH2_3.5-3.6	SE232596.004	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†		
TB1	SE232596.005	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†		
TS1	SE232596.006	LB250177	21 May 2022	31 May 2022	04 Jun 2022	03 Jun 2022	04 Jun 2022	07 Jun 2022†		
BH3_0.2-0.3	SE232596.008	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
BH3_3.0-3.1	SE232596.009	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
BH4_0.4-0.5	SE232596.010	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
BH4_1.2-1.3	SE232596.011	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
BH5_0.2-0.3	SE232596.012	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
BH5_2.3-2.4	SE232596.013	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
BH6_0.2-0.3	SE232596.014	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
BH7_0.1-0.2	SE232596.015	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
QD1	SE232596.016	LB250177	28 May 2022	31 May 2022	11 Jun 2022	03 Jun 2022	11 Jun 2022	07 Jun 2022		
Volatile Petroleum Hydroc			Method:	ME-(AU)-[ENV]AN43						
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QR1	SE232596.007	LB249903	21 May 2022	31 May 2022	04 Jun 2022	01 Jun 2022	04 Jun 2022	02 Jun 2022		

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

C Pesticides in Soil				Method: ME	-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1_0.3-0.4	SE232596.001	%	60 - 130%	99
	BH2_1.5-1.6	SE232596.003	%	60 - 130%	103
	BH3_0.2-0.3	SE232596.008	%	60 - 130%	104
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	105
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	111
	BH6_0.2-0.3	SE232596.014	%	60 - 130%	106
	BH7_0.1-0.2	SE232596.015	%	60 - 130%	113
P Pesticides in Soil				Method: ME	-(AU)-[ENV]A
Parameter	Sample Name	Somple Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	Sample Name BH1_0.3-0.4	Sample Number SE232596.001	%	60 - 130%	Recovery 87
2-indrobiphenyi (Surrogate)	вн2_1.5-1.6	SE232596.001 SE232596.003	%	60 - 130%	86
	BH2_1.3-1.0 BH3_0.2-0.3	SE232596.008	%	60 - 130%	86
	BH3_0.2-0.5	SE232596.008	%	60 - 130%	85
	вн5_0.2-0.3	SE232596.010 SE232596.012	%	60 - 130%	89
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	73
			%		
144 - torrhond (Curronata)	BH7_0.1-0.2 BH1 0.3-0.4	SE232596.015	%	60 - 130%	89
114-p-terphenyl (Surrogate)	вн2 1.5-1.6	SE232596.001		60 - 130%	89
		SE232596.003	%	60 - 130% 60 - 130%	91
	BH3_0.2-0.3	SE232596.008	%		90
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	89
	BH5_0.2-0.3 BH6 0.2-0.3	SE232596.012	%	60 - 130%	88 80
	вно_0.2-0.3	SE232596.014 SE232596.015	%	60 - 130% 60 - 130%	90
	ВП7_0.1-0.2	SE232396.015	70		
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME	-(AU)-[ENV]A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
-fluorobiphenyl (Surrogate)	BH1_0.3-0.4	SE232596.001	%	70 - 130%	87
	BH1_1.0-1.1	SE232596.002	%	70 - 130%	88
	BH2_1.5-1.6	SE232596.003	%	70 - 130%	86
	BH2_3.5-3.6	SE232596.004	%	70 - 130%	87
	BH3_0.2-0.3	SE232596.008	%	70 - 130%	86
	BH3_3.0-3.1	SE232596.009	%	70 - 130%	86
	BH4_0.4-0.5	SE232596.010	%	70 - 130%	85
	BH4_1.2-1.3	SE232596.011	%	70 - 130%	86
	BH5_0.2-0.3	SE232596.012	%	70 - 130%	89
	BH5_2.3-2.4	SE232596.013	%	70 - 130%	89
	BH6_0.2-0.3	SE232596.014	%	70 - 130%	73
	BH7_0.1-0.2	SE232596.015	%	70 - 130%	89
	BH7_0.1-0.2 QD1	SE232596.015 SE232596.016	%	70 - 130% 70 - 130%	89 85
14-p-terphenyl (Surrogate)					
14-p-terphenyl (Surrogate)	QD1	SE232596.016	%	70 - 130%	85
14-p-terphenyl (Surrogate)	QD1 BH1_0.3-0.4	SE232596.016 SE232596.001	%	70 - 130% 70 - 130%	85 89
14-p-terphenyl (Surrogate)	QD1 BH1_0.3-0.4 BH1_1.0-1.1	SE232596.016 SE232596.001 SE232596.002	%	70 - 130% 70 - 130% 70 - 130%	85 89 89
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6	SE232596.016 SE232596.001 SE232596.002 SE232596.003	% % %	70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 89 91
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH2_3.5-3.6	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004	% % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 89 91 90
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH2_3.5-3.6 BH3_0.2-0.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 89 91 90 90
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH2_3.5-3.6 BH3_0.2-0.3 BH3_3.0-3.1	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 91 90 90 90
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH2_3.5-3.6 BH3_0.2-0.3 BH3_3.0-3.1 BH4_0.4-0.5	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.010	% % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 91 90 90 90 89
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH3_0.2-0.3 BH3_3.0-3.1 BH4_0.4-0.5 BH4_1.2-1.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011	% % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 91 90 90 90 89 90
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH3_0.2-0.3 BH3_3.0-3.1 BH4_0.4-0.5 BH4_1.2-1.3 BH5_0.2-0.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012	% % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 91 90 90 90 89 90 88
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH3_0.2-0.3 BH3_3.0-3.1 BH4_0.4-0.5 BH4_1.2-1.3 BH5_0.2-0.3 BH5_0.2-0.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013	% % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 91 90 90 90 89 90 88 90
14-p-terphenyl (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH3_0.2-0.3 BH3_3.0-3.1 BH4_0.4-0.5 BH4_1.2-1.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014	% % % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	85 89 91 90 90 90 89 90 88 88 90 80
	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_3.5-3.6 BH3_0.2-0.3 BH3_0.2-0.3 BH4_0.4-0.5 BH4_1.2-1.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015	% % % % % % % % % %	70 - 130% 70 - 130%	85 89 91 90 90 90 90 89 90 88 88 90 88
	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH3_0.2-0.3 BH3_0.2-0.3 BH3_0.2-0.3 BH4_0.4-0.5 BH4_1.2-1.3 BH5_2.3-2.4 BH6_0.2-0.3 BH7_0.1-0.2 QD1	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016	% %	70 - 130% 70 - 130%	85 89 91 90 90 90 89 90 88 88 90 88 80 90 80
	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH3_0.2-0.3 BH3_0.2-0.3 BH4_0.4-0.5 BH4_1.2-1.3 BH5_0.2-0.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001	% %	70 - 130% 70 - 130%	85 89 91 90 90 90 89 90 88 90 88 90 88 90 88 80 90 87 86
	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH3_0.2-0.3 BH3_0.3.1 BH4_0.4-0.5 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH1_0.1-0.2 QD1 BH1_0.3-0.4 BH1_1_10-1.1	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.001 SE232596.001	% %	70 - 130% 70 - 130%	85 89 91 90 90 90 89 90 88 80 90 80 90 87 86
	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH3_0.2-0.3 BH3_0.2-0.3 BH4_0.4-0.5 BH4_1.2-1.3 BH5_2.3-2.4 BH6_0.2-0.3 BH7_0.1-0.2 QD1 BH1_0.3-0.4 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.009 SE232596.009 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.002 SE232596.003	% %	70 - 130% 70 - 130%	85 89 91 90 90 90 89 90 88 90 88 80 90 80 90 87 86 86
	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH2_3.5-3.6 BH3_0.2-0.3 BH3_0.2-0.3 BH3_0.2-0.3 BH4_0.4-0.5 BH4_1.2-1.3 BH5_0.2-0.3 BH5_2.3-2.4 BH6_0.2-0.3 BH7_0.1-0.2 QD1 BH1_0.3-0.4 BH1_0.5-1.6 BH2_3.5-3.6	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.009 SE232596.010 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.001 SE232596.001 SE232596.001 SE232596.001 SE232596.001 SE232596.002 SE232596.003 SE232596.004	% %	70 - 130% 70 - 130%	85 89 91 90 90 89 90 88 90 80 90 80 90 80 90 87 86 86 86 86
	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH2_3.5-3.6 BH3_0.2-0.3 BH3_0.2-0.3 BH4_0.4-0.5 BH4_0.4-0.5 BH4_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH5_0.2-0.3 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH2_3.5-3.6 BH3_0.2-0.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.009 SE232596.010 SE232596.010 SE232596.011 SE232596.012 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.010 SE232596.011 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008	% %	70 - 130% 70 - 130%	85 89 91 90 90 89 90 88 90 80 90 80 90 80 90 87 86 86 86 86 86
114-p-terphenyl (Surrogate) 15-nitrobenzene (Surrogate)	OD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_1.5-1.6 BH2_3.5-3.6 BH3_0.2-0.3 BH3_3.0-3.1 BH4_0.4-0.5 BH4_1.2-1.3 BH5_0.2-0.3 BH5_2.3-2.4 BH6_0.2-0.3 BH7_0.1-0.2 QD1 BH1_0.3-0.4 BH1_1.0-1.1 BH2_3.5-3.6 BH3_0.2-0.3 BH3_0.2-0.3	SE232596.016 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.009 SE232596.010 SE232596.010 SE232596.011 SE232596.012 SE232596.012 SE232596.013 SE232596.014 SE232596.015 SE232596.016 SE232596.010 SE232596.010 SE232596.010 SE232596.010 SE232596.010 SE232596.010 SE232596.010 SE232596.010 SE232596.010 SE232596.001 SE232596.002 SE232596.003 SE232596.004 SE232596.008 SE232596.009	% %	70 - 130% 70 - 130%	85 89 91 90 90 89 90 88 90 88 90 80 90 80 90 87 86 86 86 86 86 85

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

AH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d5-nitrobenzene (Surrogate)	BH5_2.3-2.4	SE232596.013	%	70 - 130%	87
	BH6_0.2-0.3	SE232596.014	%	70 - 130%	71
	BH7_0.1-0.2	SE232596.015	%	70 - 130%	91
	QD1	SE232596.016	%	70 - 130%	86
PCBs in Soil				Method: ME	-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1_0.3-0.4	SE232596.001	%	60 - 130%	99
	BH2_1.5-1.6	SE232596.003	%	60 - 130%	103
	BH3_0.2-0.3	SE232596.008	%	60 - 130%	104
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	105
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	111
	BH6 0.2-0.3	SE232596.014	%	60 - 130%	106
	BH7_0.1-0.2	SE232596.015	%	60 - 130%	113
er- and Polyfluoroalkyl Substances (PFAS) in Solid Samples					Method: MA-1
Parameter	Somalo Nomo	Sample Number	Units	Criteria	
	Sample Name	Sample Number SE232596.001	%	0 - 130%	Recovery % 62
(13C2_PFTeDA) Isotopically Labelled Internal Recovery Standard	BH1_0.3-0.4				
	BH2_1.5-1.6	SE232596.003	%	0 - 130%	47
	BH3_0.2-0.3 BH4_0.4-0.5	SE232596.008 SE232596.010	%	0 - 130%	43
	BH4_0.4-0.5 BH5_0.2-0.3	SE232596.010	%	0 - 130%	78
	BH5_0.2-0.3 BH6_0.2-0.3	SE232596.012 SE232596.014	%	0 - 130%	64
	BH7_0.1-0.2	SE232596.015	%	0 - 130%	76
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery Standard	BH1 0.3-0.4	SE232596.001	%	0 - 150%	103
	BH2_1.5-1.6	SE232596.003	%	0 - 150%	86
	BH3_0.2-0.3	SE232596.008	%	0 - 150%	91
	BH4 0.4-0.5	SE232596.010	%	0 - 150%	79
	BH5 0.2-0.3	SE232596.012	%	0 - 150%	90
	BH6_0.2-0.3	SE232596.014	%	0 - 150%	105
	BH7_0.1-0.2	SE232596.015	%	0 - 150%	114
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery Standard	BH1_0.3-0.4	SE232596.001	%	0 - 150%	94
	BH2_1.5-1.6	SE232596.003	%	0 - 150%	83
	BH3_0.2-0.3	SE232596.008	%	0 - 150%	102
	BH4_0.4-0.5	SE232596.010	%	0 - 150%	84
	BH5_0.2-0.3	SE232596.012	%	0 - 150%	91
	BH6_0.2-0.3	SE232596.014	%	0 - 150%	126
	BH7_0.1-0.2	SE232596.015	%	0 - 150%	117
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery Standard	BH1_0.3-0.4	SE232596.001	%	0 - 150%	91
	BH2_1.5-1.6	SE232596.003	%	0 - 150%	63
	BH3_0.2-0.3	SE232596.008	%	0 - 150%	61
	BH4_0.4-0.5	SE232596.010	%	0 - 150%	79
	BH5_0.2-0.3	SE232596.012	%	0 - 150%	85
	BH6_0.2-0.3	SE232596.014	%	0 - 150%	117
	BH7_0.1-0.2	SE232596.015	%	0 - 150%	128
(13C2-PFDoA) Isotopically Labelled Internal Recovery Standard	BH1_0.3-0.4	SE232596.001	%	0 - 150%	75
	BH2_1.5-1.6	SE232596.003	%	0 - 150%	70
	BH3_0.2-0.3	SE232596.008	%	0 - 150%	87
	BH4_0.4-0.5	SE232596.010	%	0 - 150%	75
	BH5_0.2-0.3	SE232596.012	%	0 - 150%	113
	BH6_0.2-0.3	SE232596.014	%	0 - 150%	86
	BH7_0.1-0.2	SE232596.015	%	0 - 150%	88
(13C2-PFHxDA) Isotopically Labelled Internal Recovery Standard	BH1_0.3-0.4	SE232596.001	%	0 - 150%	46
	BH2_1.5-1.6	SE232596.003	%	0 - 150%	32
	BH3_0.2-0.3	SE232596.008	%	0 - 150%	28
	BH4_0.4-0.5	SE232596.010	%	0 - 150%	45
	BH5_0.2-0.3	SE232596.012	%	0 - 150%	86
	BH6_0.2-0.3	SE232596.014	%	0 - 150%	70
	BH7_0.1-0.2	SE232596.015	%	0 - 150%	95
(13C3-PFBS) Isotopically Labelled Internal Recovery Standard	BH1_0.3-0.4	SE232596.001	%	0 - 150%	76
	BH2_1.5-1.6	SE232596.003	%	0 - 150%	76
	BH3_0.2-0.3	SE232596.008	%	0 - 150%	86

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples (continued) Method: MA-1523 Recovery % Sample Name Sample Numb Units Criteria Parameter (13C3-PFBS) Isotopically Labelled Internal Recovery Standard BH4 0.4-0.5 SE232596.010 % 0 - 150% 71 BH5_0.2-0.3 SE232596.012 0 - 150% 83 % BH6_0.2-0.3 SE232596.014 0 - 150% 87 % BH7 0.1-0.2 SE232596.015 % 0 - 150% 80 (13C3-PFHxS) Isotopically Labelled Internal Recovery Standard BH1_0.3-0.4 SE232596.001 0 - 150% 91 % BH2 1.5-1.6 SE232596.003 0 - 150% % 98 BH3 0 2-0 3 SE232596.008 % 0 - 150% 95 BH4_0.4-0.5 SE232596.010 0 - 150% 97 % SE232596.012 BH5_0.2-0.3 0 - 150% 103 % BH6 0.2-0.3 SE232596.014 % 0 - 150% 100 SE232596.015 BH7_0.1-0.2 % 0 - 150% 101 (13C4_PFOA) Isotopically Labelled Internal Recovery Standard BH1 0.3-0.4 SE232596.001 0 - 150% % 95 BH2 15-16 SE232596 003 % 0 - 150% 88 BH3 0.2-0.3 SE232596.008 % 0 - 150% 97 SE232596.010 BH4 0.4-0.5 % 0 - 150% 96 BH5 0.2-0.3 SE232596.012 % 0 - 150% 112 BH6_0.2-0.3 SE232596.014 0 - 150% 101 % BH7_0.1-0.2 SE232596.015 0 - 150% 117 % (13C4-PEBA) Isotopically Labelled Internal Recovery Standard BH1 0.3-0.4 SE232596.001 % 0 - 150% 102 BH2_1.5-1.6 SE232596.003 0 - 150% 102 % SE232596.008 102 BH3 0.2-0.3 0 - 150% % BH4 0 4-0 5 SE232596 010 % 0 - 150% 99 BH5_0.2-0.3 SE232596.012 103 % 0 - 150% SE232596.014 BH6_0.2-0.3 0 - 150% 101 % BH7 0.1-0.2 SE232596.015 0 - 150% 101 % (13C4-PFHpA) Isotopically Labelled Internal Recovery Standard BH1_0.3-0.4 SE232596.001 % 0 - 150% 90 BH2 1.5-1.6 SE232596.003 0 - 150% 94 % BH3 0.2-0.3 SE232596.008 % 0 - 150% 93 BH4_0.4-0.5 SE232596.010 % 0 - 150% 96 BH5 0.2-0.3 SE232596.012 0 - 150% % 117 0 - 150% BH6 0.2-0.3 SE232596.014 101 % BH7_0.1-0.2 SE232596.015 % 0 - 150% 103 (13C5-PFHxA) Isotopically Labelled Internal Recovery Standard BH1_0.3-0.4 SE232596.001 0 - 150% 92 % BH2 1.5-1.6 SE232596.003 % 0 - 150% 81 BH3_0.2-0.3 SE232596.008 % 0 - 150% 95 BH4 0.4-0.5 SE232596.010 0 - 150% % 86 BH5 0 2-0 3 SE232596 012 0 - 150% 104 % BH6 0.2-0.3 SE232596.014 % 0 - 150% 96 SE232596.015 BH7_0.1-0.2 0 - 150% 100 % (13C5-PFPeA) Isotopically Labelled Internal Recovery Standard BH1 0.3-0.4 SE232596.001 0 - 150% 109 % BH2_1.5-1.6 SE232596.003 % 0 - 150% 108 SE232596.008 0 - 150% BH3 0.2-0.3 % 111 BH4 0 4-0 5 SE232596 010 0 - 150% 112 % BH5 0.2-0.3 SE232596.012 % 0 - 150% 111 SE232596.014 105 BH6 0.2-0.3 % 0 - 150% BH7 0.1-0.2 SE232596.015 0 - 150% 112 % (13C6-PFDA) Isotopically Labelled Internal Recovery Standard BH1_0.3-0.4 SE232596.001 0 - 150% 119 % BH2_1.5-1.6 SE232596.003 0 - 150% 79 % BH3 0.2-0.3 SE232596.008 0 - 150% 105 % BH4_0.4-0.5 SE232596.010 % 0 - 150% 87 SE232596.012 BH5 0.2-0.3 % 0 - 150% 91 BH6 0 2-0 3 SE232596 014 0 - 150% 92 % SE232596.015 BH7 0.1-0.2 % 0 - 150% 95 (13C7-PFUdA) Isotopically Labelled Internal Recovery Standard BH1_0.3-0.4 SE232596.001 0 - 150% % 89 BH2 1.5-1.6 SE232596.003 0 - 150% 77 % BH3_0.2-0.3 SE232596.008 % 0 - 150% 105 BH4 0.4-0.5 77 SE232596.010 % 0 - 150% BH5 0.2-0.3 SE232596.012 0 - 150% 120 % BH6_0.2-0.3 SE232596.014 % 0 - 150% 87 SE232596.015 BH7 0.1-0.2 % 0 - 150% 103

BH1 0.3-0.4

SE232596.001

(13C8-PFOS) Isotopically Labelled Internal Recovery Standard

101

0 - 150%

%

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples (continued) Method: MA-1523 <u>Crite</u>ria Recovery % Sample Name Sample Numb Units Parameter (13C8-PFOS) Isotopically Labelled Internal Recovery Standard BH2 1.5-1.6 SE232596.003 % 0 - 150% 89 BH3_0.2-0.3 SE232596.008 0 - 150% 104 % BH4_0.4-0.5 SE232596.010 % 0 - 150% 95 BH5 0.2-0.3 SE232596.012 % 0 - 150% 95 BH6_0.2-0.3 SE232596.014 108 % 0 - 150% BH7 0.1-0.2 SE232596.015 0 - 150% 90 % (13C8-PEOSA) Isotopically Labelled Internal Recovery Standard BH1 0 3-0 4 SE232596 001 % 0 - 150% 71 BH2_1.5-1.6 SE232596.003 0 - 150% 60 % BH3_0.2-0.3 SE232596.008 0 - 150% 85 % BH4 0.4-0.5 SE232596.010 % 0 - 150% 67 SE232596.012 BH5_0.2-0.3 % 0 - 150% 77 BH6 0.2-0.3 SE232596.014 0 - 150% 93 % BH7 0.1-0.2 SE232596 015 % 0 - 150% 77 (13C9-PFNA) Isotopically Labelled Internal Recovery Standard BH1 0.3-0.4 SE232596.001 % 0 - 150% 96 SE232596.003 BH2 1.5-1.6 % 0 - 150% 116 BH3 0.2-0.3 SE232596.008 % 0 - 150% 140 BH4_0.4-0.5 SE232596.010 0 - 150% 118 % BH5_0.2-0.3 SE232596.012 0 - 150% % 91 BH6 0.2-0.3 SE232596.014 % 0 - 150% 135 SE232596.015 100 BH7_0.1-0.2 % 0 - 150% (D3-N-MeFOSA) Isotopically Labelled Internal Recovery Standard BH1 0.3-0.4 SE232596.001 0 - 150% 52 % BH2 15-16 SE232596.003 % 0 - 150% 43 BH3_0.2-0.3 SE232596.008 50 % 0 - 150% SE232596.010 BH4_0.4-0.5 0 - 150% 37 % BH5 0.2-0.3 SE232596.012 0 - 150% 59 % BH6_0.2-0.3 SE232596.014 % 0 - 150% 58 BH7 0.1-0.2 SE232596.015 0 - 150% 62 % (D3-N-MeFOSAA) Isotopically Labelled Internal Recovery Standard BH1 0.3-0.4 SE232596 001 0 - 150% 70 % BH2_1.5-1.6 SE232596.003 % 0 - 150% 69 BH3 0.2-0.3 SE232596.008 67 % 0 - 150% 0 - 150% BH4 0.4-0.5 SE232596.010 56 % BH5_0.2-0.3 SE232596.012 % 0 - 150% 55 BH6_0.2-0.3 SE232596.014 0 - 150% 66 % BH7 0.1-0.2 SE232596.015 % 0 - 150% 79 (D5-N-EtFOSA) Isotopically Labelled Internal Recovery Standard SE232596.001 BH1_0.3-0.4 % 0 - 150% 59 SE232596.003 BH2 1.5-1.6 % 0 - 150% 54 BH3 0 2-0 3 SE232596.008 0 - 150% 43 % BH4_0.4-0.5 SE232596.010 % 0 - 150% 53 SE232596.012 BH5_0.2-0.3 0 - 150% 51 % BH6 0.2-0.3 SE232596.014 0 - 150% 61 % BH7_0.1-0.2 SE232596.015 % 0 - 150% 64 (D5-N-EtFOSAA) Isotopically Labelled Internal Recovery Standard SE232596.001 BH1 0.3-0.4 % 0 - 150% 69 BH2 1.5-1.6 SE232596 003 0 - 150% 81 % BH3_0.2-0.3 SE232596.008 % 0 - 150% 58 SE232596.010 BH4 0.4-0.5 % 0 - 150% 67 BH5 0.2-0.3 SE232596.012 0 - 150% 77 % BH6_0.2-0.3 SE232596.014 0 - 150% 62 % BH7_0.1-0.2 SE232596.015 0 - 150% % 89 (D7-N-MeFOSE) Isotopically Labelled Internal Recovery Standard BH1 0.3-0.4 SE232596.001 0 - 150% 51 % BH2_1.5-1.6 SE232596.003 % 0 - 150% 55 SE232596.008 49 BH3 0.2-0.3 % 0 - 150% BH4 0 4-0 5 SE232596 010 0 - 150% 45 % SE232596.012 BH5 0.2-0.3 % 0 - 150% 49 BH6_0.2-0.3 SE232596.014 58 % 0 - 150% BH7 0.1-0.2 SE232596.015 0 - 150% 53 % (D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard BH1_0.3-0.4 SE232596.001 % 0 - 150% 46 BH2 1.5-1.6 SE232596.003 % 0 - 150% 50 BH3_0.2-0.3 SE232596.008 0 - 150% 40 % BH4_0.4-0.5 SE232596.010 % 0 - 150% 43 BH5 0.2-0.3 SE232596.012 % 0 - 150% 49

BH6 0.2-0.3

SE232596.014

54

0 - 150%

%

Method: MA-1523

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples (continued)

	-				
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard	BH7_0.1-0.2	SE232596.015	%	0 - 150%	47
OC's in Soil				Method: M	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1_0.3-0.4	SE232596.001	%	60 - 130%	86
	BH1_1.0-1.1	SE232596.002	%	60 - 130%	93
	BH2_1.5-1.6	SE232596.003	%	60 - 130%	90
	BH2_3.5-3.6	SE232596.004	%	60 - 130%	91
	TB1	SE232596.005	%	60 - 130%	93
	TS1	SE232596.006	%	60 - 130%	86
	BH3_0.2-0.3	SE232596.008	%	60 - 130%	90
	BH3_3.0-3.1	SE232596.009	%	60 - 130%	89
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	90
	BH4_1.2-1.3	SE232596.011	%	60 - 130%	91
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	89
	BH5_2.3-2.4	SE232596.013	%	60 - 130%	92
	BH6_0.2-0.3	SE232596.014	%	60 - 130%	91
	BH7_0.1-0.2	SE232596.015	%	60 - 130%	89
	QD1	SE232596.016	%	60 - 130%	94
14-1,2-dichloroethane (Surrogate)	BH1_0.3-0.4	SE232596.001	%	60 - 130%	81
	BH1_1.0-1.1	SE232596.002	%	60 - 130%	87
	BH2_1.5-1.6	SE232596.003	%	60 - 130%	85
	BH2_3.5-3.6	SE232596.004	%	60 - 130%	85
	TB1	SE232596.005	%	60 - 130%	90
	TS1	SE232596.006	%	60 - 130%	92
	BH3_0.2-0.3	SE232596.008	%	60 - 130%	84
	BH3_3.0-3.1	SE232596.009	%	60 - 130%	83
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	86
	BH4_1.2-1.3	SE232596.011	%	60 - 130%	88
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	84
	BH5_2.3-2.4	SE232596.013	%	60 - 130%	87
	BH6_0.2-0.3	SE232596.014	%	60 - 130%	86
	BH7_0.1-0.2	SE232596.015	%	60 - 130%	84
	QD1	SE232596.016	%	60 - 130%	87
I8-toluene (Surrogate)	BH1_0.3-0.4	SE232596.001	%	60 - 130%	79
	BH1_1.0-1.1	SE232596.002	%	60 - 130%	86
	BH2_1.5-1.6	SE232596.003	%	60 - 130%	83
	BH2_3.5-3.6	SE232596.004	%	60 - 130%	86
	TB1	SE232596.005	%	60 - 130%	87
	TS1	SE232596.006	%	60 - 130%	91
	BH3_0.2-0.3	SE232596.008	%	60 - 130%	81
	BH3_3.0-3.1	SE232596.009	%	60 - 130%	82
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	85
	BH4_1.2-1.3	SE232596.011	%	60 - 130%	85
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	81
	BH5_2.3-2.4	SE232596.013	%	60 - 130%	84
	BH6_0.2-0.3	SE232596.014	%	60 - 130%	85
		SE232596.015	%	60 - 130%	83
	 QD1	SE232596.016	%	60 - 130%	86

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE232596.007	%	40 - 130%	106
d4-1,2-dichloroethane (Surrogate)	QR1	SE232596.007	%	40 - 130%	92
d8-toluene (Surrogate)	QR1	SE232596.007	%	40 - 130%	94

Method: ME-(AU)-[ENV]AN433 Volatile Petroleum Hydrocarbons in Soil Criteria Recovery % Parameter Sample Name Sample Numb Units Bromofluorobenzene (Surrogate) BH1 0.3-0.4 SE232596.001 60 - 130% 86 % BH1_1.0-1.1 SE232596.002 % 60 - 130% 93 BH2_1.5-1.6 SE232596.003 % 60 - 130% 90 BH2_3.5-3.6 SE232596.004 60 - 130% 91 %

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

latile Petroleum Hydrocarbons in Soil (continued)				Method: M	E-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH3_0.2-0.3	SE232596.008	%	60 - 130%	90
	BH3_3.0-3.1	SE232596.009	%	60 - 130%	89
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	90
	BH4_1.2-1.3	SE232596.011	%	60 - 130%	91
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	89
	BH5_2.3-2.4	SE232596.013	%	60 - 130%	92
	BH6_0.2-0.3	SE232596.014	%	60 - 130%	91
	BH7_0.1-0.2	SE232596.015	%	60 - 130%	89
	QD1	SE232596.016	%	60 - 130%	94
14-1,2-dichloroethane (Surrogate)	BH1_0.3-0.4	SE232596.001	%	60 - 130%	81
	BH1_1.0-1.1	SE232596.002	%	60 - 130%	87
	BH2_1.5-1.6	SE232596.003	%	60 - 130%	85
	BH2_3.5-3.6	SE232596.004	%	60 - 130%	85
	BH3_0.2-0.3	SE232596.008	%	60 - 130%	84
	BH3_3.0-3.1	SE232596.009	%	60 - 130%	83
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	86
	BH4_1.2-1.3	SE232596.011	%	60 - 130%	88
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	84
	BH5_2.3-2.4	SE232596.013	%	60 - 130%	87
	BH6_0.2-0.3	SE232596.014	%	60 - 130%	86
	BH7_0.1-0.2	SE232596.015	%	60 - 130%	84
	QD1	SE232596.016	%	60 - 130%	87
l8-toluene (Surrogate)	BH1_0.3-0.4	SE232596.001	%	60 - 130%	79
	BH1_1.0-1.1	SE232596.002	%	60 - 130%	86
	BH2_1.5-1.6	SE232596.003	%	60 - 130%	83
	BH2_3.5-3.6	SE232596.004	%	60 - 130%	86
	BH3_0.2-0.3	SE232596.008	%	60 - 130%	81
	BH3_3.0-3.1	SE232596.009	%	60 - 130%	82
	BH4_0.4-0.5	SE232596.010	%	60 - 130%	85
	BH4_1.2-1.3	SE232596.011	%	60 - 130%	85
	BH5_0.2-0.3	SE232596.012	%	60 - 130%	81
	BH5_2.3-2.4	SE232596.013	%	60 - 130%	84
	BH6_0.2-0.3	SE232596.014	%	60 - 130%	85
	BH7_0.1-0.2	SE232596.015	%	60 - 130%	83
	QD1	SE232596.016	%	60 - 130%	86
latile Petroleum Hydrocarbons in Water				Method: M	E-(AU)-[ENV]AI
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	QR1	SE232596.007	%	40 - 130%	106
14-1,2-dichloroethane (Surrogate)	QR1	SE232596.007	%	60 - 130%	92
I8-toluene (Surrogate)	QR1	SE232596.007	%	40 - 130%	94

SE232596 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)	-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB249895.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			I	Method: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB250282.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB250173.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogate		%	-	97
OP Pesticides in Soli			Meth	od: ME-(AU)-[ENV]AN42

OP Pesticides in Soil

			Meur	00. ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB250173.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94
	d14-p-terphenyl (Surrogate)	%	-	97
PAH (Polynuclear Aromatic Hydrocarbons) in S	oll		Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB250173.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1

1-methylnaphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Fluorene

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.1

0.1

0.1

0.1

0.1

0.1

SE232596 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB250173.001		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	98
		2-fluorobiphenyl (Surrogate)	%	-	94
		d14-p-terphenyl (Surrogate)	%	-	97

PCBs in Soil

PCBs in Soil					Method: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB250173.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	97
TOC in Soil					Method: ME-(AU)-[ENV]AN188
Sample Number		Parameter	Units	LOR	Result
LB250228.001		Total Organic Carbon	%w/w	0.05	<0.05

Total Phenolics in Soil

Total Phenolics in Soil		Meth	od: ME-(AU)-[ENV]AN295	
Sample Number	Parameter	Units	LOR	Result
LB250311.001	Total Phenols	mg/kg	0.5	<0.5

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB250221.001 Arsenic, As mg/kg 1 <1 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr 0.5 <0.5 mg/kg Copper, Cu mg/kg 0.5 < 0.5 Nickel, Ni mg/kg 0.5 <0.5 Lead, Pb <1 mg/kg 1 Tin, Sn mg/kg 3 <3 Zinc, Zn <2.0 2 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Parameter Units LOR Result Arsenic, As LB249830.001 µg/L 1 <1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu µg/L 1 <1 Lead, Pb <1 µg/L 1 Nickel, Ni µg/L 1 <1 Zinc, Zn 5 <5 µg/L TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

	Sample Number	Parameter	Units	LOR
--	---------------	-----------	-------	-----

SE232596 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Second a Nicedan				1.02	D
Sample Number		Parameter	Units	LOR	Result
B250173.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
RH (Total Recoverable	e Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
3249984.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	µg/L	200	<200
		TRH C37-C40	µg/L	200	<200
DC's in Soil			F-0 [,] -		nod: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
250177.001	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1
		1,2-dichloropropane	mg/kg	0.1	<0.1
		cis-1,3-dichloropropene	mg/kg	0.1	<0.1
		trans-1,3-dichloropropene	mg/kg	0.1	<0.1
		1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1
		Chloromethane	mg/kg	1	<1
		Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1
		Bromomethane	mg/kg	1	<1
		Chloroethane	mg/kg	1	<1
		Trichlorofluoromethane	mg/kg	1	<1
		lodomethane	mg/kg	5	<5
		1,1-dichloroethene	mg/kg	0.1	<0.1
		Dichloromethane (Methylene chloride)		0.5	<0.5
			mg/kg	0.1	<0.5
		Allyl chloride	mg/kg		
		trans-1,2-dichloroethene	mg/kg	0.1	<0.1
		1,1-dichloroethane	mg/kg	0.1	<0.1
		cis-1,2-dichloroethene	mg/kg	0.1	<0.1
		Bromochloromethane	mg/kg	0.1	<0.1
		1,2-dichloroethane	mg/kg	0.1	<0.1
		1,1,1-trichloroethane	mg/kg	0.1	<0.1
		1,1-dichloropropene	mg/kg	0.1	<0.1
		Carbon tetrachloride	mg/kg	0.1	<0.1
		Dibromomethane	mg/kg	0.1	<0.1
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1
		1,1,2-trichloroethane	mg/kg	0.1	<0.1
		1,3-dichloropropane	mg/kg	0.1	<0.1
		Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1
		1,1,2-tetrachloroethane	mg/kg	0.1	<0.1
		cis-1.4-dichloro-2-butene	mg/kg	1	<1
		1,1,2,2-tetrachloroethane		0.1	<0.1
			mg/kg		
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
		Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1

SE232596 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample Number Result Parameter Units LOR LB250177.001 Monocyclic Aromatic 0.2 <0.2 m/p-xylene mg/kg Hvdrocarbons o-xylene mg/kg 0.1 < 0.1 0.1 <0.1 Styrene (Vinyl benzene) mg/kg Isopropylbenzene (Cumene) 0.1 <0.1 mg/kg n-propylbenzene mg/kg 0 1 <0.1 1,3,5-trimethylbenzene mg/kg 0.1 <0.1 tert-butvlbenzene <0.1 0.1 ma/ka 1,2,4-trimethylbenzene mg/kg 0.1 <0.1 0.1 <0.1 sec-butylbenzene mg/kg p-isopropyltoluene 0.1 <0.1 mg/kg n-butylbenzene mg/kg 0.1 < 0.1 Nitrogenous Compounds Acrylonitrile 0.1 <0.1 mg/kg <10 2-nitropropane ma/ka 10 Oxygenated Compounds Acetone (2-propanone) mg/kg 10 <10 <0.1 MtBE (Methyl-tert-butyl ether) 0.1 mg/kg Vinyl acetate 10 <10 mg/kg MEK (2-butanone) mg/kg 10 <10 MIBK (4-methyl-2-pentanone) mg/kg 1 <1 2-hexanone (MBK) 5 <5 mg/kg Polycyclic VOCs Naphthalene (VOC) mg/kg 0.1 <0.1 Sulphonated Carbon disulfide 0.5 <0.5 mg/kg Surrogates d4-1.2-dichloroethane (Surrogate) 88 % d8-toluene (Surrogate) % 87 Bromofluorobenzene (Surrogate) 93 % Totals Total BTEX 0.6 <0.6 mg/kg Total Chlorinated Hydrocarbons VIC EPA* mg/kg 1.8 <1.8 Total Other Chlorinated Hydrocarbons VIC EPA* 1.8 <1.8 mg/kg Trihalomethanes Chloroform 0.1 < 0.1 mg/kg Bromodichloromethane mg/kg 0.1 <0.1 Chlorodibromomethane 0.1 <0.1 mg/kg <0.1 Bromoform mg/kg 0.1 VOCs in Water Method: ME-(AU)-[ENV]AN433 Sample Number Result Parameter Units LOR LB249903.001 Monocyclic Aromatic Benzene 0.5 <0.5 µg/L Hydrocarbons Toluene µg/L 0.5 < 0.5 Ethylbenzene 0.5 <0.5 µg/L m/p-xylene <1 µg/L 1 0.5 <0.5 o-xylene µg/L Polycyclic VOCs Naphthalene (VOC) µg/L 0.5 < 0.5

Volatile Petroleum Hydrocarbons in Soil
Sample Number
Parameter

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

d8-toluene (Surrogate)

Surrogates

Sample Number		Parameter	Units	LOR	Result
LB250177.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	88

Volatile Petroleum Hydrocarbons in Water

Sample Number		Parameter	Units	LOR	Result
LB249903.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	92
		d8-toluene (Surrogate)	%	-	92
		Bromofluorobenzene (Surrogate)	%	-	103

Method: ME-(AU)-[ENV]AN433

92

92

103

Method: ME-(AU)-[ENV]AN433

%

%

%

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-[ENV]AN002

Method: ME-(AU)-IENVIAN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN					ENVJAN311(P	erth)/AN312		
Original	Duplicate	Parameter	Units L	OR	Original	Duplicate	Criteria %	RPD %
SE232596.007	LB249895.012	Mercury	μg/L 0.	.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.004	LB250282.014	Mercury	mg/kg	0.05	<0.05	< 0.05	200	0
SE232596.016	LB250282.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.012	LB250182.011	% Moisture	%w/w	1	8.7	8.4	42	3
SE232719.002	LB250182.022	% Moisture	%w/w	1	13.4	11.9	38	11

OC Pesticides in Soil

OC Pesticides in S	OII						Met	nod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.014	LB250173.028		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
			Total OC VIC EPA	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.16	30	0
SE232719.002	LB250173.024		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	172	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	172	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

OC Pesticides in Soil (continued)

OC Pesticides in S	Soil (continued)					Meth	od: ME-(AU)-	ENVJAN4
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232719.002	LB250173.024	p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
		Endrin	mg/kg	0.2	<0.2	<0.2	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
		Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
		Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
		Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Total OC VIC EPA	mg/kg	1	<1	<1	200	0
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.17	30	0
OP Pesticides in S	soil					Meth	od: ME-(AU)-	

OP Pesticides in S	ioil						Meth	od: ME-(AU)-	[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.014	LB250173.026		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	17	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	11
SE232719.002	LB250173.024		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.014	LB250173.026	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
	Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0	
	Fluorene	mg/kg	0.1	<0.1	<0.1	200	0	
		Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
		Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluoranthene	mg/kg	0.1	0.2	0.1	99	52
		Pyrene	mg/kg	0.1	0.2	0.1	105	50
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	162	0

Method: ME-(AU)-[ENV]AN420

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
232596.014	LB250173.026		Chrysene	mg/kg	0.1	<0.1	<0.1	156	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	<0.1	116	35
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	0.1	<0.1	147	3
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	180	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	175	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>133</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	133	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>141</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	141	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	20
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	17
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	11
232719.002	LB250173.024		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&i)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	_	0.4	0.4	30	2

Original Duplicate Parameter Units LOR Original Duplicate Criteria % RPD % SE232596.014 LB250173.029 Arochlor 1016 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1221 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1232 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1242 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1245 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1246 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1262 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1263 mg/kg 0.2 <0.2 <0.2 200 0 Starogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg 0.2 <0.2 200 0 Star2719.02 LB250173.024 Machol 1016								[Liss has no		
Arochlor 1221 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1232 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1242 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1242 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1248 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1264 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1260 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1262 mg/kg 0.2 <0.2 <0.2 200 0 Arochlor 1262 mg/kg 0.2 <0.2 <0.2 200 0 Surrogates Tetrachloro-m-xylene (TCMX) (surrogate) mg/kg 0.2 0 <0 30 0 Sez32719.002 LB250173.024 Arochlor 1216 mg/kg 0.2 0 <0 0 0<	Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
Arochior 1232 mg/kg 0.2 <0.2	SE232596.014	LB250173.029		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
Arochlor 1242 mg/kg 0.2 <0.2				Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
Arochior 1248 mg/kg 0.2 <0.2				Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
Arochior 1254 mg/kg 0.2 <0.2				Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
Arochlor 1260 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.0 <0.2 <0.2 <0.0 <0.2 <0.2 <0.0 <0.2 <0.2 <0.0 <0.2 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0 <0.2 <0.0				Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
Arochlor 1262 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2				Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
Arochlor 1268 mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2				Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
Image: Total PCBs (Arochlors) mg/kg 1 <1 <1 200 0 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg - 0 0 30 0 SE232719.002 LB250173.024 Arochlor 1016 mg/kg 0.2 0 <0.2				Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg - 0 0 30 0 SE232719.002 LB250173.024 Arochlor 1016 mg/kg 0.2 0 <0.2				Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
SE232719.002 LB250173.024 Arochlor 1016 mg/kg 0.2 0 <0.2 200 0 Arochlor 121 mg/kg 0.2 0 <0.2				Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
Arochlor 1221mg/kg0.20<0.22000Arochlor 1232mg/kg0.20<0.2			Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	0
Arochlor 1232mg/kg0.20<0.22000Arochlor 1242mg/kg0.20<0.2	SE232719.002	LB250173.024		Arochlor 1016	mg/kg	0.2	0	<0.2	200	0
Arochlor 1242mg/kg0.20<0.22000Arochlor 1248mg/kg0.20<0.2				Arochlor 1221	mg/kg	0.2	0	<0.2	200	0
Arochlor 1248 mg/kg 0.2 0 <0.2 200 0 Arochlor 1254 mg/kg 0.2 0 <0.2				Arochlor 1232	mg/kg	0.2	0	<0.2	200	0
Arochlor 1254 mg/kg 0.2 0 <0.2 200 0 Arochlor 1260 mg/kg 0.2 0 <0.2				Arochlor 1242	mg/kg	0.2	0	<0.2	200	0
Arochior 1260 mg/kg 0.2 0 <0.2 200 0				Arochlor 1248	mg/kg	0.2	0	<0.2	200	0
				Arochlor 1254	mg/kg	0.2	0	<0.2	200	0
Arochlor 1262 mg/kg 0.2 0 <0.2 200 0				Arochlor 1260	mg/kg	0.2	0	<0.2	200	0
				Arochlor 1262	mg/kg	0.2	0	<0.2	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PCBs in Soil (cont	Bs in Soil (continued) Method: ME-(AU)-[ENV]AN420								
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232719.002	LB250173.024		Arochlor 1268	mg/kg	0.2	0	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	0	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.1669145744	0	30	0
TOC in Soil							Meth	od: ME-(AU)-	ENVJAN188
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232529.027	LB250228.004		Total Organic Carbon	%w/w	0.05	0.45	0.54	40	17

Total Phenolics in Soil

Total Phenolics in Soil Method: ME-(AU)-[ENV							
Original	Duplicate	Parameter	Units LC	R Origir	al Duplicate	Criteria %	RPD %
SE232596.015	LB250311.011	Total Phenols	mg/kg 0	5 <0.5	<0.5	127	0

	Recoverable Elements in Soll/Waste Solids/Materials by ICPOES					Method: ME	-(AU)-[ENV]AI	N040/AN320
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.004	LB250221.014	Arsenic, As	mg/kg	1	1	1	121	14
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	10	8.7	35	13
		Copper, Cu	mg/kg	0.5	<0.5	<0.5	200	0
		Nickel, Ni	mg/kg	0.5	0.9	0.9	85	3
		Lead, Pb	mg/kg	1	7	6	46	11
		Zinc, Zn	mg/kg	2	2.7	2.3	109	16
SE232596.016	LB250221.024	Arsenic, As	mg/kg	1	<1	1	127	11
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	16	16	33	1
		Copper, Cu	mg/kg	0.5	1.2	1.0	74	16
		Nickel, Ni	mg/kg	0.5	1.3	1.3	68	5
		Lead, Pb	mg/kg	1	10	10	40	1
		Zinc, Zn	mg/kg	2	5.7	5.6	65	3
Trace Metals (Diss	olved) in Water by ICPMS					Meth	od: ME-(AU)-	ENVJAN318
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232589.001	LB249830.014	Arsenic, As						
		Alsenic, As	μg/L	1	2	2	68	2
		Cadmium, Cd	μg/L	0.1	2 <0.1	2 <0.1	68 200	2 0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Cadmium, Cd Chromium, Cr	μg/L μg/L	0.1 1	<0.1 <1	<0.1 <1	200 178	0
		Cadmium, Cd Chromium, Cr Copper, Cu	μg/L μg/L μg/L	0.1 1 1	<0.1 <1 5	<0.1 <1 5	200 178 37	0 0 3
		Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	µg/L µg/L µg/L µg/L	0.1 1 1 1	<0.1 <1 5 <1	<0.1 <1 5 <1	200 178 37 200	0 0 3 0
SE232596.007	LB249830.019	Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	µg/L µg/L µg/L µg/L µg/L	0.1 1 1 1 1	<0.1 <1 5 <1 7	<0.1 <1 5 <1 7	200 178 37 200 30	0 0 3 0 1
SE232596.007	LB249830.019	Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	μg/L μg/L μg/L μg/L μg/L μg/L	0.1 1 1 1 1 5	<0.1 <1 5 <1 7 39	<0.1 <1 5 <1 7 39	200 178 37 200 30 28	0 0 3 0 1 0
SE232596.007	LB249830.019	Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 1 1 1 1 5 1	<0.1 <1 5 <1 7 39 <1	<0.1 <1 5 <1 7 39 <1	200 178 37 200 30 28 200	0 0 3 0 1 0 0
SE232596.007	LB249830.019	Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 1 1 1 5 1 0.1	<0.1 <1 5 <1 7 39 <1 <0.1	<0.1 <1 5 <1 7 39 <1 <0.1	200 178 37 200 30 28 200 200	0 0 3 0 1 0 0 0 0
SE232596.007	LB249830.019	Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 1 1 1 5 1 0.1 1	<0.1 <1 5 <1 7 39 <1 <0.1 <1	<0.1 <1 5 <1 7 39 <1 <0.1 <1	200 178 37 200 30 28 200 200 200	0 0 3 0 1 0 0 0 0 0
SE232596.007	LB249830.019	Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 1 1 1 5 1 0.1 1 1 1	<0.1 <1 5 <1 7 39 <1 <0.1 <1 <1 <1	<0.1 <1 5 <1 7 39 <1 <0.1 <1 <1 <1	200 178 37 200 30 28 200 200 200 200	0 0 3 0 1 0 0 0 0 0 0 0

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recov	RH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403								
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.014	LB250173.026		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

	erable Hydrocarbons	in Soil (continued)					Meth	od: ME-(AU)-	(ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232719.002	LB250173.024		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	210	<25	<25	200	0
		TRH F Danus			25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg					
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
/OC's in Soil							Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.011	LB250177.015	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	200	0
		Aliphatics			1	<1	<1	200	0
		, apriatos	Chloromethane	mg/kg					0
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	200	
			Bromomethane	mg/kg	1	<1	<1	200	0
			Chloroethane	mg/kg	1	<1	<1	200	0
			Trichlorofluoromethane	mg/kg	1	<1	<1	200	0
			Iodomethane	mg/kg	5	<5	<5	200	0
			1,1-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	200	0
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Tetrachloroethene (Perchloroethylene, PCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobutadiene		0.1		<0.1	200	0
				mg/kg		<0.1			
		Halogenated	Chlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene		0.1	<0.1	<0.1	200	0
		nioindllu		mg/kg					
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0

Method: ME-(AU)-[ENV]AN433

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

	tinued)							od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.011	LB250177.015	Monocyclic	o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	200	0
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	200	0
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	200	0
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	200	0
		Compounds	2-nitropropane	mg/kg	10	<10	<10	200	0
		Oxygenated					<10	200	0
			Acetone (2-propanone)	mg/kg	10	<10			
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	200	0
			Vinyl acetate	mg/kg	10	<10	<10	200	0
			MEK (2-butanone)	mg/kg	10	<10	<10	200	0
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	200	0
			2-hexanone (MBK)	mg/kg	5	<5	<5	200	0
		Polycyclic	Naphthalene (VOC)	mg/kg	0.1	<0.1	<0.1	200	0
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.8	8.5	50	3
			d8-toluene (Surrogate)	mg/kg	-	8.5	8.3	50	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	9.0	50	1
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
			Total VOC*	mg/kg	24	<24	<24	200	0
			Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3	<3	200	0
			Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<1.8	<1.8	200	0
			Total Other Chlorinated Hydrocarbons VIC EPA*		1.8	<1.8	<1.8	200	0
		Trihalomethan	Chloroform	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg					0
		es	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	200	
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Bromoform	mg/kg	0.1	<0.1	<0.1	200	0
SE232719.002	LB250177.030	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	7.8	50	6
			d8-toluene (Surrogate)	mg/kg	-	8.1	7.7	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.9	8.4	50	7
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
OCs in Water								od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	3		Criteria %	
SE232506.004	LB249903.024	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)	μg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.4	9.6	30	2
		5	d8-toluene (Surrogate)	μg/L	-	9.3	9.7	30	4
			Bromofluorobenzene (Surrogate)	μg/L	_	10.5	10.8	30	2
				P3/-					
olatile Petroleum	Hydrocarbons in So						Meth	od: ME-(AU)-	[ENV]AN/

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Volatile Petroleum Hydrocarbons in Soil (continued)

/olatile Petroleum	n Hydrocarbons in So	il (continued)					Meth	od: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232596.011	LB250177.015		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.8	8.5	30	3
			d8-toluene (Surrogate)	mg/kg	-	8.5	8.3	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.1	9.0	30	1
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE232719.002	LB250177.030		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	7.8	30	6
			d8-toluene (Surrogate)	mg/kg	-	8.1	7.7	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.9	8.4	30	7
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
/olatile Petroleum	Hydrocarbons in Wa	ater					Meth	od: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232506.004	LB249903.024		TRH C6-C10	μg/L	50	<50	<50	200	0
			TRH C6-C9	µg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.4	9.6	30	2
			d8-toluene (Surrogate)	μg/L	-	9.3	9.7	30	4
			Bromofluorobenzene (Surrogate)	μg/L	-	10.5	10.8	30	2
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil						Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250282.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	99

OC Pesticides in Soil						N	/lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250173.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	101
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	97
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	96
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	98
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	103
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	101
5	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	97
OP Pesticides in Soil						I	/lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250173.002		Dichlorvos	mg/kg	0.5	1.8	2	60 - 140	90
		Diazinon (Dimpylate)	mg/kg	0.5	1.8	2	60 - 140	92
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	2	60 - 140	90
		Ethion	mg/kg	0.2	1.4	2	60 - 140	72
5	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	91
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	84
PAH (Polynuclear Aro	matic Hydrocarb	ons) in Soil				I	/lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250173.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	105
		Acenaphthylene	mg/kg	0.1	3.9	4	60 - 140	98
		Acenaphthene	mg/kg	0.1	3.8	4	60 - 140	96
		Phenanthrene	mg/kg	0.1	4.0	4	60 - 140	101
		Anthracene	mg/kg	0.1	3.8	4	60 - 140	95
		Fluoranthene	mg/kg	0.1	3.9	4	60 - 140	98
		Pyrene	mg/kg	0.1	3.7	4	60 - 140	93
		Benzo(a)pyrene	mg/kg	0.1	4.1	4	60 - 140	102
S	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	89
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	91
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	84
PCBs in Soil						I	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250173.002		Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	99

TOC in Soil				I	Nethod: ME-(A	U)-[ENV]AN188	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250228.002	Total Organic Carbon	%w/w	0.05	0.30	0.325	80 - 120	94

Total Phenolics in Soil						N	/lethod: ME-(A	U)-[ENV]AN295
Sample Number	Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB250311.002	Total Phenols		mg/kg	0.5	18	20	80 - 120	92

Total Recoverable Elements i	otal Recoverable Elements in Soll/Waste Solids/Materials by ICPOES					ME-(AU)-[EN\	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250221.002	Arsenic, As	mg/kg	1	330	318.22	80 - 120	104
	Cadmium, Cd	mg/kg	0.3	4.7	4.81	70 - 130	99
	Chromium, Cr	mg/kg	0.5	38	38.31	80 - 120	98
	Copper, Cu	mg/kg	0.5	310	290	80 - 120	108
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	102
	Lead, Pb	mg/kg	1	93	89.9	80 - 120	103
	Tin, Sn	mg/kg	3	43	41.7	80 - 120	102

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

		aste Solids/Materials by ICPOES (continued)					ME-(AU)-[ENV	-
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
LB250221.002		Zinc, Zn	mg/kg	2	270	273	80 - 120	101
race Metals (Diss	olved) in Water by	ICPMS				1	Method: ME-(Al	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B249830.002		Arsenic, As	µg/L	1	20	20	80 - 120	100
		Cadmium, Cd	µg/L	0.1	22	20	80 - 120	110
		Chromium, Cr	µg/L	1	21	20	80 - 120	106
		Copper, Cu	μg/L	1	21	20	80 - 120	105
		Lead, Pb	μg/L	1	20	20	80 - 120	99
		Nickel, Ni	µg/L	1	22	20	80 - 120	109
		Zinc, Zn	μg/L	5	23	20	80 - 120	113
RH (Total Recove	rable Hydrocarbon	is) in Soil					Method: ME-(Al	U)-[ENV]AN
Sample Number	-	Parameter	Units	LOR	Result	Expected	Criteria %	
LB250173.002		TRH C10-C14	mg/kg	20	49	40	60 - 140	123
		TRH C15-C28	mg/kg	45	49	40	60 - 140	123
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	98
	TRH F Bands	TRH >C10-C16	mg/kg	25	50	40	60 - 140	125
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	110
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	100
BH (Total Decove	rable Undreserber				-			
	rable Hydrocarbon	·			_		Method: ME-(Al	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
_B249984.002		TRH C10-C14	μg/L	50	1400	1200	60 - 140	119
		TRH C15-C28	μg/L	200	1400	1200	60 - 140	117
		TRH C29-C36	μg/L	200	980	1200	60 - 140	82
	TRH F Bands	TRH >C10-C16	μg/L	60	1400	1200	60 - 140	113
		TRH >C16-C34 (F3)	μg/L	500	1200	1200	60 - 140	102
		TRH >C34-C40 (F4)	μg/L	500	610	600	60 - 140	102
OC's in Soil							Method: ME-(Al	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B250177.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	5.1	5	60 - 140	102
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	4.9	5	60 - 140	98
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	4.9	5	60 - 140	99
	Halogenated	Chlorobenzene	mg/kg	0.1	4.8	5	60 - 140	96
	Monocyclic	Benzene	mg/kg	0.1	4.5	5	60 - 140	89
	Aromatic	Toluene	mg/kg	0.1	4.4	5	60 - 140	88
		Ethylbenzene	mg/kg	0.1	4.3	5	60 - 140	87
								86
		m/p-xylene	mg/kg	0.2	8.6	10	60 - 140	00
		m/p-xylene o-xylene	mg/kg mg/kg	0.2	8.6 4.6	10 5	60 - 140 60 - 140	91
	Surrogates							
	Surrogates	o-xylene	mg/kg	0.1	4.6	5	60 - 140	91
	Surrogates	o-xylene d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg	0.1	4.6 9.4	5 10	60 - 140 70 - 130	91 94
	Surrogates Trihalomethan	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg	0.1 - -	4.6 9.4 9.5	5 10 10	60 - 140 70 - 130 70 - 130	91 94 95
OCs in Water		o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg	0.1 - - -	4.6 9.4 9.5 8.5	5 10 10 10 5	60 - 140 70 - 130 70 - 130 70 - 130 70 - 130	91 94 95 85 112
	Trihalomethan	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform	mg/kg mg/kg mg/kg mg/kg	0.1 - - 0.1	4.6 9.4 9.5 8.5 5.6	5 10 10 10 5	60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(Al	91 94 95 85 112 U)-[ENV]AN
Sample Number	Trihalomethan	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter	mg/kg mg/kg mg/kg mg/kg Units	0.1 - - 0.1 LOR	4.6 9.4 9.5 8.5 5.6 Result	5 10 10 5 Expected	60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(Al Criteria %	91 94 95 85 112 U)-[ENV]AN Recovery
Sample Number	Trihalomethan	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L	0.1 - - 0.1 LOR 0.5	4.6 9.4 9.5 8.5 5.6 Result 55	5 10 10 5 5 Expected 45.45	60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(Al Criteria % 60 - 140	91 94 95 85 112 U)-[ENV]AN Recovery 122
Sample Number	Trihalomethan	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	0.1 - - 0.1 LOR 0.5 0.5	4.6 9.4 9.5 8.5 5.6 Result 55 55	5 10 10 5 5 Expected 45.45 45.45	60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Vethod: ME-(Al Criteria % 60 - 140 60 - 140	91 94 95 85 112 U)-[ENV]AN Recovery 122 122
Sample Number	Trihalomethan	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	0.1 - - 0.1 LOR 0.5	4.6 9.4 9.5 8.5 5.6 Result 55	5 10 10 5 5 Expected 45.45	60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(Al Criteria % 60 - 140	91 94 95 85 112 U)-[ENV]AN Recover 122
ample Number	Trihalomethan	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene	тg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 0.5 1	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110	5 10 10 5 Expected 45.45 45.45 45.45 90.9	60 - 140 70 - 130 70 - 130 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	91 94 95 85 112 U)-[ENV]AN Recovery 122 122 122 117
ample Number	Trihalomethan Monocyclic Aromatic	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	тg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5	4.6 9.4 9.5 8.5 5.6 Result 55 55 55 53	5 10 10 5 Expected 45.45 45.45 45.45	60 - 140 70 - 130 70 - 130 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140	91 94 95 85 112 U)-[ENV]AN Recovery 122 122 122 117 116
Sample Number	Trihalomethan	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	тg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 0.5 1 0.5	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45 10	60 - 140 70 - 130 70 - 130 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	91 94 95 85 112 U)-[ENVJAN Recovery 122 122 122 117 116 117 101
ample Number	Trihalomethan Monocyclic Aromatic	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	тg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 0.5 1 0.5 -	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1 10.3	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45	60 - 140 70 - 130 70 - 130 60 - 140 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130	91 94 95 85 112 U)-[ENVJAr Recover 122 122 117 116 117
Sample Number B249903.002	Trihalomethan Monocyclic Aromatic Surrogates	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate)	тg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 0.5 1 0.5 - -	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45 10 10	60 - 140 70 - 130 70 - 130 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130	91 94 95 85 112 U)-[ENV]Ar Recover 122 122 122 117 116 117 101 103 101
Sample Number B249903.002	Trihalomethan Monocyclic Aromatic Surrogates Hydrocarbons in S	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parametor Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll	mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 1 0.5 - - - -	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1 10.3 10.1	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45 10 10	60 - 140 70 - 130 70 - 130 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Yothod: ME-(Al	91 94 95 85 112 U)-[ENV]A' Recover 122 122 122 117 116 117 101 103 101 U)-[ENV]A'
Sample Number B249903.002 Olatile Petroleum Sample Number	Trihalomethan Monocyclic Aromatic Surrogates Hydrocarbons in S	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) OI Parameter Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 1 0.5 - - - LOR	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1 10.3 10.1 10.3 10.1	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45 10 10 10 10	60 - 140 70 - 130 70 - 130 60 - 140 Vethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Vethod: ME-(Al Criteria %	91 94 95 85 112 U)-[ENV]AN Recovery 122 122 122 117 116 117 101 103 101 U)-[ENV]AN Recovery
Sample Number B249903.002 Olatile Petroleum Sample Number	Trihalomethan Monocyclic Aromatic Surrogates Hydrocarbons in S	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) OI Parameter TRH C6-C10	mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 1 0.5 - - - LOR 25	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1 10.3 10.1 10.3 10.1 Result 65	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45 10 10 10 10 20 5	60 - 140 70 - 130 70 - 130 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Viethod: ME-(Al Criteria % 60 - 140	91 94 95 85 112 U)-[ENV]AN Recovery 122 122 122 117 116 117 101 103 101 U)-[ENV]AN Recovery 70
Sample Number B249903.002 Diatile Petroleum Sample Number	Trihalomethan Monocyclic Aromatic Surrogates Hydrocarbons in S	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) OI Parameter Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 1 0.5 - - - LOR	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1 10.3 10.1 10.3 10.1	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45 10 10 10 10	60 - 140 70 - 130 70 - 130 60 - 140 Vethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Vethod: ME-(Al Criteria %	91 94 95 85 112 U)-[ENV]AN Recovery 122 122 122 117 116 117 101 103 101 U)-[ENV]AN Recovery
Sample Number B249903.002 Olatile Petroleum Sample Number	Trihalomethan Monocyclic Aromatic Surrogates Hydrocarbons in S	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) OI Parameter TRH C6-C10	mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 1 0.5 - - - LOR 25	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1 10.3 10.1 10.3 10.1 Result 65	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45 10 10 10 10 20 5	60 - 140 70 - 130 70 - 130 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Viethod: ME-(Al Criteria % 60 - 140	91 94 95 85 112 U)-[ENV]AN Recovery 122 122 122 117 116 117 101 103 101 U)-[ENV]AN Recovery 70
Sample Number .B249903.002	Trihalomethan Monocyclic Aromatic Surrogates Hydrocarbons in S	o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Chloroform Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) OI Parameter TRH C6-C10 TRH C6-C9	mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 - - 0.1 LOR 0.5 0.5 0.5 1 0.5 - - - LOR 25 20	4.6 9.4 9.5 8.5 5.6 Result 55 55 53 110 53 10.1 10.3 10.1 10.3 10.1 Result 65 59	5 10 10 5 Expected 45.45 45.45 45.45 90.9 45.45 10 10 10 10 Expected 92.5 80	60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Wethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Vethod: ME-(Al Criteria % 60 - 140 60 - 140	91 94 95 85 112 U)-[ENV]AN Recovery 122 122 122 117 116 117 101 103 101 U)-[ENV]AN Recovery 70 73

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum H	Hydrocarbons in V	Vater				N	lethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB249903.002		TRH C6-C10	μg/L	50	820	946.63	60 - 140	87
		TRH C6-C9	μg/L	40	700	818.71	60 - 140	85
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.1	10	60 - 140	101
		d8-toluene (Surrogate)	µg/L	-	10.3	10	70 - 130	103
		Bromofluorobenzene (Surrogate)	μg/L	-	10.1	10	70 - 130	101
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	500	639.67	60 - 140	78

	n Soil							nod: ME-(Al	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E232596.001	LB250173.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	- 0.2	- 109
			Heptachlor Aldrin	mg/kg	0.1	0.2	<0.1	0.2	109
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	- 105
			Delta BHC	mg/kg mg/kg	0.1	0.2	<0.1	0.2	103
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1		-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	104
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	112
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	110
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
			Total OC VIC EPA	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	-	103
P Pesticides in	1 Soil	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15		- nod: ME-(Al	
		Surrogates					Meth	nod: ME-(Al	J)-[ENV]AN
QC Sample	Sample Number	Surrogates	Parameter	Units	LOR	Result	<mark>Mett</mark> Original		J)-[ENV]AN Recove
QC Sample		Surrogates	Parameter Dichlorvos	Units mg/kg	LOR 0.5		Meth Original <0.5	<mark>nod: ME-(Al</mark> Spike	J)-[ENV]AN
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate	Units mg/kg mg/kg	LOR 0.5 0.5	Result 1.8 <0.5	Meth Original <0.5 <0.5	nod: ME-(AU Spike 2	J)-[ENV]AN Recove 89
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate)	Units mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.5	Result 1.8 <0.5 1.8	Meth Original <0.5	nod: ME-(AL Spike 2 -	J)-[ENV]AN Recove 89 -
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate	Units mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5	Result 1.8 <0.5	Meth Original <0.5 <0.5	nod: ME-(AU Spike 2 - 2	J)-[ENV]AN Recove 89 - 90
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion	Units mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.5 0.2	Result 1.8 <0.5 1.8 <0.2	Metr Original <0.5 <0.5 <0.5 <0.2	nod: ME-(AL Spike 2 - 2 -	J)-[ENV]AN Recove 89 - 90 -
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.5 0.2 0.2	Result 1.8 <0.5	Original <0.5	nod: ME-(AL Spike 2 - 2 - -	J)-[ENV]AN Recove 89 - 90 - -
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2	Result 1.8 <0.5 1.8 <0.2 <0.2 <0.2 1.8	Metr Original <0.5 <0.5 <0.2 <0.2 <0.2 <0.2	nod: ME-(AL Spike 2 - 2 - - 2	J)-[ENV]AN Recove 89 - 90 - - 88
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5 1.8 <0.2 <0.2 1.8 <0.2 1.8 <0.2	Metr Original <0.5 <0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	nod: ME-(AL Spike 2 - 2 - 2 - 2 -	J)-[ENV]AN Recove 89 - 90 - - 88
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - 2 - - 2 - 2 -	J)-[ENV]AN Recove 89 - 90 - - - 88 - - -
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(Al Spike 2 - 2 - 2 - 2 - - -	J)-[ENV]AN Recove 89 - 90 - - 88 - - - -
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.2	Result 1.8 <0.5	Meth Original <0.5	rod: ME-(AL Spike 2 - 2 - 2 - 2 - 2 - 2 - 2	U)-[ENV]AN Recove 89 - 90 - - - 88 - - - - - 73
QC Sample	Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - - 2 - - - 2 - - 2 - - 2 -	J)-[ENV]AN Recove 89 - 90 - - - 88 88 - - - - 73
P Pesticides in QC Sample SE232596.001	Sample Number		Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides*	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7	Result 1.8 <0.5	Metric Original <0.5	nod: ME-(AL Spike 2 - 2 - - 2 - 2 - - 2 - - 2 - -	U)-[ENV]AN Recove 89 - - - - - 88 - - - - - - - 73 - -
QC Sample SE232596.001	Sample Number LB250173.004	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.2 1.7 -	Result 1.8 <0.5	Metric Original <0.5	nod: ME-(AL Spike 2 - 2 - - 2 - - 2 - - - 2 - - - - - -	U)-[ENV]AN Recove 89 - - - - - 888 - - - - - - - - - - -
QC Sample SE232596.001	Sample Number LB250173.004	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - - 2 - - - 2 - - - - - - - - -	J)-[ENV]AN Recove 89 - - - - - - - - - - - - -
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - - 2 - - - - - - - - - - - - -	U)-[ENV]AN Recove 89 - - - - - - - - - - - - - - - - - -
QC Sample SE232596.001	Sample Number LB250173.004	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - - 2 - - - 2 - - - - - - - - -	U)-[ENV]AN Recove 89 - - - - - - - - - - - - - - - - - -
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - - 2 - - - - - - - - - - - - -	J)-[ENV]AN Recove 89 - - - - - - - - - - - - - - - - - -
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 1-methylnaphthalene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - 2 - - 2 - - - - - - - - - - - -	J)-[ENV]AN Recove 89 - 90 - - - 88 88 - - - - - 88 - - - - 88 - - - - 89 84 J)-[ENV]AN 5 - - - - - - - - - - - - - - - - - -
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - 2 - 2 - - - - - - - - - - - - - -	J)-[ENV]AN Recove 89 - 90 - 88 - - - - 88 - - - - 89 84 J)-[ENV]AN Recove 105 - - - - - - - - - - - - -
QC Sample SE232596.001	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene	Units mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - 2 - 2 - - - 2 - - - - - - - - - -	J)-[ENV]AI Recove 89 - 90 - - 88 - - - - 89 84 J)-[ENV]AI Recove 105 - - 97 96
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylaphthalene Acenaphthylene Acenaphthene Fluorene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - 2 - - 2 - - - - - - - - - - - - -	J)-[ENV]AN Recover 89 - 90 - - 88 - - - - 89 84 J)-[ENV]AN Recover 105 - - - 97 96 -
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Plorene Phenanthrene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - - - - - - - - - - - - - - - -	J)-[ENV]AN Recover 89 - - - - - - - - - - - - -
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 1-methylnaphthalene 1-methylinaphthalene Acenaphthylene Acenaphthylene Plenanthrene Phenanthrene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - 2 - - - - - - - - - - - - - -	J)-[ENV]AN Recove 89 - - - - - - - - - - - - -
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 1-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	Units mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - 2 - - - - - - - - - - - - - -	J)-[ENV]AN Recove 89 - - - - - - - - - - - - -
QC Sample SE232596.001 AH (Polynuclea QC Sample	Sample Number LB250173.004 ar Aromatic Hydrocarb Sample Number	Surrogates	Parameter Dichlorvos Dimethoate Diazinon (Dimpylate) Fenitrothion Malathion Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl Methidathion Ethion Azinphos-methyl (Guthion) Total OP Pesticides* 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) Parameter Naphthalene 1-methylnaphthalene 1-methylinaphthalene Acenaphthylene Acenaphthylene Plenanthrene Phenanthrene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Result 1.8 <0.5	Meth Original <0.5	nod: ME-(AL Spike 2 - - - 2 - - - - - - - - - - - - - -	J)-[ENV]AI Recove 89 - - - - - - - - - - - - -

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

AH (Polynuclea	r Aromatic Hydrocarbo	ons) in Soil (con	inued)				Meth	od: ME-(AL	J)-[ENV]AN42
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE232596.001	LB250173.004		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.0	<0.1	4	101
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.0</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.0	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.2</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.2	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.1</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.1	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	31	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	87
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	89
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	84
CBs in Soil							Meth	od: ME-(AU	J)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE232596.001	LB250173.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	95
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	103
OC in Soil							Meth	od: ME-(AU	J)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover

Total Phenolics in	n Soil					Met	hod: ME-(Al	J)-[ENV]AN295
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE232596.001	LB250311.004	Total Phenols	mg/kg	0.5	19	<0.5	20	96

otal Recoverabl	e Elements in Soil/Waste Solids/	Materials by ICPOES				Method: ME	-(AU)-[ENV	JAN040/AN32
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE232698.001	LB250221.004	Arsenic, As	mg/kg	1	53	7	50	93
		Cadmium, Cd	mg/kg	0.3	46	<0.3	50	91
		Chromium, Cr	mg/kg	0.5	53	4.9	50	96
		Copper, Cu	mg/kg	0.5	62	20	50	84
		Nickel, Ni	mg/kg	0.5	48	1.9	50	93
		Lead, Pb	mg/kg	1	110	260	50	-296 ④
		Zinc, Zn	mg/kg	2	100	66	50	67 ④
<mark>race Metals (Di</mark> s QC Sample	ssolved) in Water by ICPMS Sample Number	Parameter	Units	LOR	Result	Mett Original	<mark>nod: ME-(Al</mark> Spike	J)-[ENV]AN31 Recovery
SE232529.023	LB249830.004	Arsenic, As	µg/L	1	20	-0.073	20	101
		Cadmium, Cd	µg/L	0.1	22	-0.054	20	110
		Chromium, Cr	μg/L	1	21	0.038	20	107
		Copper, Cu	μg/L	1	21	0.052	20	106
		Lead, Pb	µg/L	1	19	0.023	20	97
		Nickel, Ni	µg/L	1	22	-0.021	20	111
		Zinc, Zn	μg/L	5	26	0.186	20	128
RH (Total Reco	verable Hydrocarbons) in Soil					Mett	nod: ME-(Al	J)-[ENV]AN40
•								

7/6/2022

	-	ns) in Soil (continu	•					iod: ME-(Al	
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
232596.001	LB250173.004		TRH C10-C14	mg/kg	20	47	<20	40	118
			TRH C15-C28	mg/kg	45	48	<45	40	120
			TRH C29-C36	mg/kg	45	<45	<45	40	95
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	25	48	<25	40	12
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	44	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	11
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
's in Soil							Meth	od: ME-(Al	D-IENVIA
Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Reco
232596.001	LB250177.004	Fumigants			0.1	<0.1	<0.1	- эріке	Reco
32390.001	LB250177.004	Fulligants	2,2-dichloropropane	mg/kg				-	-
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1		
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	-	
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	-	-
		Aliphatics	Chloromethane	mg/kg	1	<1	<1	-	-
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	-	-
			Bromomethane	mg/kg	1	<1	<1	-	
			Chloroethane	mg/kg	1	<1	<1	-	-
			Trichlorofluoromethane	mg/kg	1	<1	<1	-	-
			lodomethane	mg/kg	5	<5	<5	-	-
			1,1-dichloroethene	mg/kg	0.1	5.0	<0.1	5	10
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	-	-
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	-	
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	-
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	-
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichloroethane	mg/kg	0.1	4.8	<0.1	5	9
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	-	
			1,1-dichloropropene		0.1	<0.1	<0.1	-	
				mg/kg	0.1	<0.1	<0.1	-	
			Carbon tetrachloride	mg/kg					
			Dibromomethane	mg/kg	0.1	<0.1	<0.1	-	-
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	4.9	<0.1	5	9
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	-	-
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-	
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	-	-
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	-	-
		Halogenated	Chlorobenzene	mg/kg	0.1	4.7	<0.1	5	9
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	-	
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	-
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	_
			1,2,4-trichlorobenzene		0.1	<0.1	<0.1	-	
				mg/kg					
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
		Monocyclic	Benzene	mg/kg	0.1	4.3	<0.1	5	8
		Aromatic	Toluene	mg/kg	0.1	4.3	<0.1	5	8
			Ethylbenzene	mg/kg	0.1	4.3	<0.1	5	8
			m/p-xylene	mg/kg	0.2	8.4	<0.2	10	8

/OC's in Soil (co	-		D		100	D			J)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE232596.001	LB250177.004	Monocyclic	o-xylene	mg/kg	0.1	4.5	<0.1	5	90
		Aromatic	Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1		-
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	-	-
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	-	-
			n-butylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
		Nitrogenous	Acrylonitrile	mg/kg	0.1	<0.1	<0.1	-	-
		Compounds	2-nitropropane	mg/kg	10	<10	<10	-	-
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	-	-
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	-	-
			Vinyl acetate	mg/kg	10	<10	<10	-	-
			MEK (2-butanone)	mg/kg	10	<10	<10	-	-
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	-	-
			2-hexanone (MBK)	mg/kg	5	<5	<5	-	-
		Polycyclic	Naphthalene (VOC)	mg/kg	0.1	<0.1	<0.1	-	-
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	-	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.3	8.1	10	93
		Sunogates			-	9.3	7.9	10	93
			d8-toluene (Surrogate)	mg/kg					
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.5	8.6	10	85
		Totals	Total Xylenes	mg/kg	0.3	13	<0.3	-	-
			Total BTEX	mg/kg	0.6	26	<0.6	-	-
			Total VOC*	mg/kg	24	51	<24	-	-
			Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	-	-
			Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	25	<1.8	-	-
			Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	25	<1.8	-	-
		Trihalometha	Chloroform	mg/kg	0.1	5.6	<0.1	5	111
		nes	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	-	-
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	-	-
			Bromoform	mg/kg	0.1	<0.1	<0.1	-	-
OCs in Water							Mett	nod: ME-(AL	
		_	Demonstern	1114	1.00	Descult			
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE232574.001	LB249903.023	Monocyclic	Benzene	µg/L	0.5	52	<0.5	45.45	113
		Aromatic	Toluene	µg/L	0.5	50	<0.5	45.45	111
			Ethylbenzene	µg/L	0.5	49	<0.5	45.45	108
			m/p-xylene	µg/L	1	97	<1	90.9	107
			o-xylene	μg/L	0.5	49	<0.5	45.45	107
		Polycyclic	Naphthalene (VOC)	μg/L	0.5	54	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.0	9.5	-	90
			d8-toluene (Surrogate)	μg/L	-	9.3	9.3	-	93
			Bromofluorobenzene (Surrogate)	μg/L	-	10.7	11	-	107
olatile Petroleu	m Hydrocarbons in S	oil					Mett	nod: ME-(AL	
	-		Demonstern	1114		Descult			
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE232596.001	LB250177.004		TRH C6-C10	mg/kg	25	64	<25	92.5	69
			TRH C6-C9	mg/kg	20	56	<20	80	71
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.3	8.1	10	93
			d8-toluene (Surrogate)	mg/kg	-	9.3	7.9	10	93
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.5	8.6	-	85
		VPH F	Benzene (F0)	mg/kg	0.1	4.3	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	38	<25	62.5	61
olatile Petroleu	m Hydrocarbons in W	/ater					Meth	nod: ME-(AL	J)-[ENV]AN
	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
	LB249903.023		TRH C6-C10					-	
			IKE 00-010	µg/L	50	990	<50	946.63	105
	20240000.020		TRU 00.00	-				0.10	
QC Sample SE232574.001	EB240000.020		TRH C6-C9	µg/L	40	850	<40	818.71	104
	LD240000.020	Surrogates	TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L	- 40	850 9.0 9.3	<40 9.5 9.3	818.71 -	104 90 93

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Volatile Petroleur	m Hydrocarbons in W	/ater (continued)					Meth	nod: ME-(AU)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE232574.001	LB249903.023	Surrogates	Bromofluorobenzene (Surrogate)	μg/L	-	10.7	11	-	107
		VPH F	Benzene (F0)	µg/L	0.5		<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	700	<50	639.67	109

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Sergio Raposeira El AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	sergio.raposeira@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25568 Brookvale	SGS Reference	SE232924 R0
Order Number	E25568	Date Received	08 Jun 2022
Samples	7	Date Reported	16 Jun 2022

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate

Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Samples

2 items

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	7 Water	
Date documentation received	8/6/2022	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	6°C	Sufficient sample for analysis	Yes	
Furnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

0499

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250802	04 Jun 2022	08 Jun 2022	18 Jun 2022	14 Jun 2022	18 Jun 2022	15 Jun 2022
GW_BH2	SE232924.002	LB250802	04 Jun 2022	08 Jun 2022	18 Jun 2022	14 Jun 2022	18 Jun 2022	15 Jun 2022
GW BH3	SE232924.003	LB250802	04 Jun 2022	08 Jun 2022	18 Jun 2022	14 Jun 2022	18 Jun 2022	15 Jun 2022
nions by Ion Chromatog		LBLOODL	0100112022	00 0011 2022	10 0011 2022	TT OUT LOLL		
						_		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250502	04 Jun 2022	08 Jun 2022	02 Jul 2022	09 Jun 2022	02 Jul 2022	15 Jun 2022
GW_BH2	SE232924.002	LB250502	04 Jun 2022	08 Jun 2022	02 Jul 2022	09 Jun 2022	02 Jul 2022	15 Jun 2022
GW_BH3	SE232924.003	LB250502	04 Jun 2022	08 Jun 2022	02 Jul 2022	09 Jun 2022	02 Jul 2022	15 Jun 2022
lercury (dissolved) in Wa	iter						Method: ME-(AU)-[ENV	AN311(Perth)/Al
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250500	04 Jun 2022	08 Jun 2022	02 Jul 2022	09 Jun 2022	02 Jul 2022	09 Jun 2022
GW_BH2	SE232924.002	LB250500	04 Jun 2022	08 Jun 2022	02 Jul 2022	09 Jun 2022	02 Jul 2022	09 Jun 2022
GW_BH3	SE232924.003	LB250500	04 Jun 2022	08 Jun 2022	02 Jul 2022	09 Jun 2022	02 Jul 2022	09 Jun 2022
GWQD1	SE232924.004	LB250500	04 Jun 2022	08 Jun 2022	02 Jul 2022	09 Jun 2022	02 Jul 2022	09 Jun 2022
QR1	SE232924.007	LB250500	04 Jun 2022	08 Jun 2022	02 Jul 2022	09 Jun 2022	02 Jul 2022	09 Jun 2022
etals in Water (Dissolve	d) by ICPOES						Method: I	VIE-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Sample Name GW BH1	Sample NO. SE232924.001	LB250603	04 Jun 2022	08 Jun 2022	01 Dec 2022	10 Jun 2022	01 Dec 2022	10 Jun 2022
GW_BH2	SE232924.001 SE232924.002	LB250603	04 Jun 2022	08 Jun 2022	01 Dec 2022	10 Jun 2022	01 Dec 2022	10 Jun 2022
GW_BH3	SE232924.002 SE232924.003	LB250603	04 Jun 2022	08 Jun 2022	01 Dec 2022	10 Jun 2022	01 Dec 2022	10 Jun 2022
	SE232924.003	LB250003	04 Juli 2022	06 Juli 2022	01 Dec 2022	10 Juli 2022		
C Pesticides in Water							Method: I	VIE-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
GW_BH2	SE232924.002	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
GW_BH3	SE232924.003	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
GWQD1	SE232924.004	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
QR1	SE232924.007	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
P Pesticides in Water							Method: I	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	16 Jun 2022
GW BH2	SE232924.002	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	16 Jun 2022
GW_BH3	SE232924.003	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	16 Jun 2022
GWQD1	SE232924.004	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	16 Jun 2022
QR1	SE232924.007	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	16 Jun 2022
	ic Hydrocarbons) in Water							ME-(AU)-[ENV]AI
		00 8-6	Compled	Dessived	Extraction Due	Everenced		
Sample Name	Sample No.	QC Ref	Sampled 04 Jun 2022	Received 08 Jun 2022	Extraction Due	Extracted 09 Jun 2022	Analysis Due 19 Jul 2022	Analysed
GW_BH1	SE232924.001	LB250499			11 Jun 2022			15 Jun 2022
GW_BH2	SE232924.002	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
GW_BH3	SE232924.003	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
GWQD1	SE232924.004	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	16 Jun 2022 16 Jun 2022
QR1	SE232924.007	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	
otal Phenolics in Water							Method: I	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250503	04 Jun 2022	08 Jun 2022	18 Jun 2022	09 Jun 2022	18 Jun 2022	09 Jun 2022
GW_BH2	SE232924.002	LB250503	04 Jun 2022	08 Jun 2022	18 Jun 2022	09 Jun 2022	18 Jun 2022	09 Jun 2022
GW_BH3	SE232924.003	LB250503	04 Jun 2022	08 Jun 2022	18 Jun 2022	09 Jun 2022	18 Jun 2022	09 Jun 2022
nee Metele (Disselved)	in Water by ICPMS						Method: I	VIE-(AU)-[ENV]A
ace metals (Dissolved)	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
		LB250756	04 Jun 2022	08 Jun 2022	01 Dec 2022	14 Jun 2022	01 Dec 2022	15 Jun 2022
Sample Name	SE232924.001							
Sample Name GW_BH1	SE232924.001 SE232924.002			08 Jun 2022	01 Dec 2022	14 Jun 2022	01 Dec 2022	15 100 2022
Sample Name GW_BH1 GW_BH2	SE232924.002	LB250756	04 Jun 2022	08 Jun 2022 08 Jun 2022	01 Dec 2022 01 Dec 2022	14 Jun 2022 14 Jun 2022	01 Dec 2022 01 Dec 2022	15 Jun 2022 15 Jun 2022
Sample Name GW_BH1 GW_BH2 GW_BH3	SE232924.002 SE232924.003	LB250756 LB250756	04 Jun 2022 04 Jun 2022	08 Jun 2022	01 Dec 2022	14 Jun 2022	01 Dec 2022	15 Jun 2022
Sample Name GW_BH1 GW_BH2	SE232924.002	LB250756	04 Jun 2022					

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

TRH (Total Recoverable I	,							ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
GW_BH2	SE232924.002	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
GW_BH3	SE232924.003	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
GWQD1	SE232924.004	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
QR1	SE232924.007	LB250499	04 Jun 2022	08 Jun 2022	11 Jun 2022	09 Jun 2022	19 Jul 2022	15 Jun 2022
/OCs in Water							Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GW_BH2	SE232924.002	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GW_BH3	SE232924.003	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GWQD1	SE232924.004	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GWTB1	SE232924.005	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GWTS1	SE232924.006	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
QR1	SE232924.007	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
olatile Petroleum Hydrod	arbons in Water						Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH1	SE232924.001	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GW_BH2	SE232924.002	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GW_BH3	SE232924.003	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GWQD1	SE232924.004	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GWTB1	SE232924.005	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
GWTS1	SE232924.006	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022
QR1	SE232924.007	LB250880	04 Jun 2022	08 Jun 2022	18 Jun 2022	15 Jun 2022	18 Jun 2022	16 Jun 2022

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Sample Name GW_BH1 GW_BH2 GW_BH3 Sample Name GW_BH1 GW_BH2 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH1 GW_BH2 GW_BH3 Sample Name GW_BH3 GW_BH1 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH4 GW_BH4 GW_BH3 GW_BH4 GW_BH3 GW_BH4 GW_BH3 GW_BH4	Sample Number SE232924.001 SE232924.002 SE232924.003 Sample Number SE232924.001 SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.002 SE232924.003 SE232924.003 SE232924.003 SE232924.003 SE232924.001 SE232924.002 SE232924.001 SE232924.001 SE232924.001 SE232924.001 SE232924.002 SE232924.001 SE232924.002 SE232924.002 SE232924.002 SE232924.002 SE232924.002 SE232924.002 SE232924.002	Units % % % Units % % % % % Units % %	Criteria 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130%	Recovery % 115 122 117 E-(AU)-[ENV]AN4 Recovery % 68 60 64 80 76 78 E-(AU)-[ENV]AN4 Recovery % 68 60 64 60 68 60 68 60 64 60 64
GW_BH2 GW_BH3 GW_BH3 GW_BH1 GW_BH3 GW_BH3 GW_BH3 GW_BH3 Sample Name GW_BH3 GW_BH3 GW_BH3 GW_BH3 GW_BH1 GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH3 GW_BH3	SE232924.002 SE232924.003 Sample Number SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.002 SE232924.002 SE232924.003 SE232924.002 SE232924.003 SE232924.003 SE232924.001 SE232924.001 SE232924.001 SE232924.002 SE232924.001 SE232924.001 SE232924.001 SE232924.002	% %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130%	122 117 E-(AU)-[ENV]AN4 Recovery % 68 60 64 80 76 78 E-(AU)-[ENV]AN4 Recovery % 68 60 64
GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH3 GW_BH2 GW_BH3 Sample Name GW_BH3 Sample Name GW_BH3 GW_BH3	SE232924.003 Sample Number SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.002 SE232924.003 SE232924.003 SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.002 SE232924.001 SE232924.002 SE232924.001 SE232924.001 SE232924.001 SE232924.002	% Units % % % % Units % Units % % % % % % % % % % % % % % % % % % %	40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130%	117 E-(AU)-[ENV]AN4 Recovery % 68 60 64 80 76 78 E-(AU)-[ENV]AN4 Recovery % 68 60 64
Sample Name GW_BH1 GW_BH2 GW_BH3 GW_BH4 GW_BH3 GW_BH3 Sample Name GW_BH3 GW_BH3 GW_BH3 GW_BH4 GW_BH3 GW_BH4 GW_BH4 GW_BH5 GW_BH4 GW_BH5 GW_BH4 GW_BH5 GW_BH4 GW_BH5 GW_BH4 GW_BH5 GW_BH4 GW_BH5 GW_BH5	Sample Number SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.002 SE232924.003 SE232924.003 SE232924.003 SE232924.003 SE232924.001 SE232924.001 SE232924.002 SE232924.001 SE232924.003 SE232924.001 SE232924.001 SE232924.001 SE232924.001	Units % % % % % Units % % %	Method: Mi 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Criteria 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130%	E-(AU)-[ENV]AN4 Recovery % 68 60 64 80 76 78 E-(AU)-[ENV]AN4 Recovery % 68 60 64
GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3 Sample Name GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.002 SE232924.003 SE232924.003 SE232924.003 SE232924.003 SE232924.003 SE232924.001 SE232924.001 SE232924.002 SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.001 SE232924.002	% % % % % Units % % %	Criteria 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 40 - 130% 40 - 130% 40 - 130%	Recovery % 68 60 64 80 76 78 E-(AU)-[ENV]AM4 Recovery % 68 60 68 60
GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3 Sample Name GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.002 SE232924.003 SE232924.003 SE232924.003 SE232924.003 SE232924.003 SE232924.001 SE232924.001 SE232924.002 SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.001 SE232924.002	% % % % % Units % % %	Criteria 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: ME Criteria 40 - 130% 40 - 130% 40 - 130%	Recovery % 68 60 64 80 76 78 E-(AU)-[ENV]AM4 Recovery % 68 60 68 60
GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3 Sample Name GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.002 SE232924.003 SE232924.003 SE232924.003 SE232924.003 SE232924.003 SE232924.001 SE232924.001 SE232924.002 SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.001 SE232924.002	% % % % % Units % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130%	68 60 64 80 76 78 E-(AU)-[ENV]AN4 Recovery % 68 68 60 64
GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3 Sample Name GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.002 SE232924.003 SE232924.001 SE232924.002 SE232924.003 SE232924.003 Second	% % % % Units % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130%	60 64 80 76 78 E-(AU)-[ENV]AN4 Recovery % 68 68 60 64
GW_BH3 GW_BH1 GW_BH2 GW_BH3 Sample Name GW_BH3 GW_BH4 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.003 SE232924.001 SE232924.002 SE232924.003 SE232924.003 SE232924.001 SE232924.002 SE232924.002 SE232924.003 SE232924.001 SE232924.002	% % % Units % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130%	64 80 76 78 E-(AU)-[ENV]AN4 Recovery % 68 60 60 64
GW_BH1 GW_BH2 GW_BH3 Sample Name GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.001 SE232924.002 SE232924.003 Sample Number SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.002	% % Units % % %	40 - 130% 40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130%	80 76 78 E-(AU)-[ENV]AN4 Recovery % 68 60 64
GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH2 GW_BH3	SE232924.002 SE232924.003 Sample Number SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.002	% % Units % % %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130%	76 78 E-(AU)-[ENV]AN4 Recovery % 68 60 64
GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH2 GW_BH3	SE232924.003 Sample Number SE232924.001 SE232924.002 SE232924.003 SE232924.003 SE232924.001 SE232924.002	% Units % % %	40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130%	78 E-(AU)-[ENV]AN Recovery % 68 60 64
Sample Name GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	Sample Number SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.002	Units % % % %	Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130%	E-(AU)-[ENV]AN4 Recovery % 68 60 64
GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.002	% % %	Criteria 40 - 130% 40 - 130% 40 - 130%	Recovery % 68 60 64
GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.002	% % %	40 - 130% 40 - 130% 40 - 130%	68 60 64
GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.001 SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.002	% % %	40 - 130% 40 - 130% 40 - 130%	68 60 64
GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.002 SE232924.003 SE232924.001 SE232924.001 SE232924.002	% % %	40 - 130% 40 - 130%	60 64
GW_BH3 GW_BH1 GW_BH2 GW_BH3	SE232924.003 SE232924.001 SE232924.002	%	40 - 130%	
GW_BH1 GW_BH2 GW_BH3	SE232924.002			
GW_BH2 GW_BH3	SE232924.002	0/_		80
GW_BH3		/0	40 - 130%	76
	SE232924.003	%	40 - 130%	78
	SE232924.001	%	40 - 130%	65
GW_BH2	SE232924.002	%	40 - 130%	57
GW_BH3	SE232924.003	%	40 - 130%	57
000_000		,,,	10 100,0	
				Method: MA-1
Sample Name	Sample Number	Units	Criteria	Recovery %
GW_BH1	SE232924.001	%	10 - 150%	87
GW_BH2	SE232924.002	%	10 - 150%	141
GW_BH3	SE232924.003	%	10 - 150%	114
GW_BH1	SE232924.001	%	10 - 150%	102
GW_BH2	SE232924.002	%	10 - 150%	96
GW_BH3	SE232924.003	%	10 - 150%	70
GW_BH1	SE232924.001	%	10 - 150%	99
GW_BH2	SE232924.002	%	10 - 150%	90
GW_BH3	SE232924.003	%	10 - 150%	74
GW_BH1	SE232924.001	%	10 - 150%	57
GW_BH2	SE232924.002	%	10 - 150%	89
GW_BH3	SE232924.003	%	10 - 150%	84
GW_BH1	SE232924.001	%	10 - 150%	86
GW_BH2	SE232924.002	%	10 - 150%	117
GW_BH3	SE232924.003	%	10 - 150%	87
GW_BH1	SE232924.001	%	10 - 150%	147
GW_BH2	SE232924.002	%	10 - 150%	273 †
GW_BH3	SE232924.003	%	10 - 150%	191 †
GW_BH1	SE232924.001	%	10 - 150%	117
GW_BH2	SE232924.002	%	10 - 150%	109
GW_BH3	SE232924.003	%	10 - 150%	88
GW_BH1	SE232924.001	%	10 - 150%	98
GW_BH2	SE232924.002	%	10 - 150%	96
GW_BH3	SE232924.003	%	10 - 150%	92
GW BH1	SE232924.001	%	10 - 150%	107
GW_BH2	SE232924.002	%	10 - 150%	105
GW_BH3	SE232924.003	%	10 - 150%	102
				101
				99
				99
				104
				97
				102
				117
	GW_BH1 GW_BH2 GW_BH3 GW_BH1 GW_BH2 GW_BH3 GW_BH3 GW_BH3 GW_BH2 GW_BH3 GW_BH4 GW_BH3 GW_BH4 GW_BH4 GW_BH4 GW	GW_BH1 SE232924.001 GW_BH2 SE232924.002 GW_BH3 SE232924.003 GW_BH1 SE232924.002 GW_BH2 SE232924.001 GW_BH2 SE232924.002 GW_BH3 SE232924.003 GW_BH3 SE232924.001 GW_BH2 SE232924.003 GW_BH2 SE232924.003 GW_BH2 SE232924.003 GW_BH3 SE232924.003 GW_BH3 SE232924.002 GW_BH3 SE232924.002	GW_BH1 SE332924.001 % GW_BH2 SE232924.002 % GW_BH3 SE232924.003 % GW_BH1 SE232924.002 % GW_BH2 SE232924.002 % GW_BH3 SE232924.002 % GW_BH3 SE232924.003 % GW_BH2 SE232924.003 % GW_BH3 SE232924.003 % GW_BH3 SE232924.003 % GW_BH3 SE232924.003 % GW_BH3 SE232924.002 % <td< td=""><td>GW_BH1 SE232924.001 % 10 - 150% GW_BH2 SE232924.002 % 10 - 150% GW_BH3 SE232924.003 % 10 - 150% GW_BH1 SE232924.001 % 10 - 150% GW_BH2 SE232924.002 % 10 - 150% GW_BH3 SE232924.002 % 10 - 150% GW_BH3 SE232924.003 % 10 - 150% GW_BH3 SE232924.002 % 10 - 150% GW_BH1 SE232924.003 % 10 - 150% GW_BH3 SE232924.001 % 10 - 150% GW_BH3 SE232924.002 % 10 - 150% GW_BH3 SE232924.002 % 10 - 150% GW_BH3 SE232924.001 % 10 - 150% GW_BH3 SE232924.001 % 10 - 150%</td></td<>	GW_BH1 SE232924.001 % 10 - 150% GW_BH2 SE232924.002 % 10 - 150% GW_BH3 SE232924.003 % 10 - 150% GW_BH1 SE232924.001 % 10 - 150% GW_BH2 SE232924.002 % 10 - 150% GW_BH3 SE232924.002 % 10 - 150% GW_BH3 SE232924.003 % 10 - 150% GW_BH3 SE232924.002 % 10 - 150% GW_BH1 SE232924.003 % 10 - 150% GW_BH3 SE232924.001 % 10 - 150% GW_BH3 SE232924.002 % 10 - 150% GW_BH3 SE232924.002 % 10 - 150% GW_BH3 SE232924.001 % 10 - 150% GW_BH3 SE232924.001 % 10 - 150%

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous Samples (continued) Method: MA-1523 Recovery % Parameter Sample Nar Sample Numb Units Criteria (13C5-PFHxA) Isotopically Labelled Internal Recovery Standard GW BH3 SE232924.003 % 10 - 150% 100 (13C5-PFPeA) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 % 10 - 150% 101 GW_BH2 SE232924.002 10 - 150% 100 % GW BH3 SE232924.003 % 10 - 150% 102 (13C6-PFDA) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 10 - 150% 99 % SE232924.002 GW BH2 10 - 150% 91 % GW BH3 SE232924 003 % 10 - 150% 85 (13C7-PFUdA) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 10 - 150% 90 % 108 GW_BH2 SE232924.002 10 - 150% % GW BH3 SE232924.003 % 10 - 150% 93 (13C8-PFOS) Isotopically Labelled Internal Recovery Standard SE232924.001 77 GW_BH1 % 10 - 150% GW BH2 SE232924.002 10 - 150% 86 % GW BH3 SE232924 003 % 10 - 150% 107 (13C8-PFOSA) Isotopically Labelled Internal Recovery Standard GW BH1 SE232924.001 % 10 - 150% 83 GW BH2 SE232924.002 % 10 - 150% 57 GW BH3 SE232924.003 % 10 - 150% 58 (13C9-PFNA) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 10 - 150% 91 % GW_BH2 SE232924.002 10 - 150% 85 % GW BH3 SE232924.003 % 10 - 150% 93 (D3-N-MeFOSA) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 10 - 150% 63 % SE232924.002 GW BH2 10 - 150% 65 % GW BH3 SE232924 003 % 10 - 150% 60 (D3-N-MeFOSAA) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 10 - 150% % 75 GW_BH2 SE232924.002 106 % 10 - 150% GW BH3 SE232924.003 % 10 - 150% 93 (D5-N-EtFOSA) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 % 10 - 150% 77 GW BH2 SE232924.002 10 - 150% 79 % GW BH3 SE232924.003 % 10 - 150% 63 (D5-N-EtFOSAA) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 % 10 - 150% 60 GW BH2 SE232924.002 10 - 150% 80 % GW BH3 SE232924.003 10 - 150% 68 % (D7-N-MeFOSE) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 % 10 - 150% 83 GW_BH2 SE232924.002 10 - 150% 80 % GW BH3 SE232924.003 % 10 - 150% 64 (D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard GW_BH1 SE232924.001 10 - 150% % 71 GW BH2 SE232924.002 10 - 150% 78 % GW BH3 SE232924 003 10 - 150% 58 % **VOCs in Water** Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %	
Bromofluorobenzene (Surrogate)	GW_BH1	SE232924.001	%	40 - 130%	102	
	GW_BH2	SE232924.002	%	40 - 130%	101	
	GW_BH3	SE232924.003	%	40 - 130%	101	
	GWQD1	SE232924.004	%	40 - 130%	102	
	GWTB1	SE232924.005	%	40 - 130%	97	
	GWTS1	SE232924.006	%	40 - 130%	93	
	QR1	SE232924.007	%	40 - 130%	100	
d4-1,2-dichloroethane (Surrogate)	GW_BH1	SE232924.001	%	40 - 130%	87	
	GW_BH2	SE232924.002	%	40 - 130%	87	
	GW_BH3	SE232924.003	%	40 - 130%	86	
	GWQD1	SE232924.004	%	40 - 130%	88	
	GWTB1	SE232924.005	%	40 - 130%	85	
	GWTS1	SE232924.006	%	40 - 130%	93	
	QR1	SE232924.007	%	40 - 130%	89	
d8-toluene (Surrogate)	GW_BH1	SE232924.001	%	40 - 130%	82	
	GW_BH2	SE232924.002	%	40 - 130%	89	
	GW_BH3	SE232924.003	%	40 - 130%	89	
	GWQD1	SE232924.004	%	40 - 130%	83	
	GWTB1	SE232924.005	%	40 - 130%	87	
	GWTS1	SE232924.006	%	40 - 130%	94	
	QR1	SE232924.007	%	40 - 130%	88	

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Parameter Sample Name Sample Number Units Criteria Recovery % Bromofluorobenzene (Surrogate) GW BH1 40 - 130% SE232924.001 % 102 GW_BH2 SE232924.002 % 40 - 130% 101 GW_BH3 SE232924.003 % 40 - 130% 101 GWQD1 SE232924.004 % 40 - 130% 102 QR1 SE232924.007 % 40 - 130% 100 d4-1,2-dichloroethane (Surrogate) GW_BH1 SE232924.001 60 - 130% 87 % GW BH2 SE232924 002 % 60 - 130% 87 GW_BH3 SE232924.003 % 60 - 130% 86 GWQD1 SE232924.004 60 - 130% 88 % QR1 SE232924.007 % 60 - 130% 89 d8-toluene (Surrogate) GW_BH1 SE232924.001 % 40 - 130% 82 GW_BH2 SE232924.002 % 40 - 130% 89 GW BH3 SE232924.003 % 40 - 130% 89 GWQD1 SE232924.004 % 40 - 130% 83 QR1 SE232924.007 40 - 130% 88 %

SE232924 R0

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Alkalinity			Meth	od: ME-(AU)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result
LB250802.001	Total Alkalinity as CaCO3	mg/L	5	<5

Anions by Ion Chromatography in Water

Anions by Ion Chromatography in Water			Meth	od: ME-(AU)-[ENV]AN245
Sample Number	Parameter	Units	LOR	Result
LB250502.001	Chloride	mg/L	1	<1.0
	Sulfate, SO4	mg/L	1	<1.0

Mercury (dissolved) in Water

Sample Number	Parameter	Units	LOR	Result
LB250500.001	Mercury	mg/L	0.0001	<0.0001

Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved) by ICPOES			Meth	od: ME-(AU)-[ENV]AN320
Sample Number	Parameter	Units	LOR	Result
LB250603.001	Calcium, Ca	mg/L	0.1	<0.1
	Magnesium, Mg	mg/L	0.1	<0.1
	Potassium, K	mg/L	0.2	<0.2
	Sodium, Na	mg/L	0.1	<0.1
OC Pesticides in Water			Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB250499.001	Hexachlorobenzene (HCB)	µg/L	0.1	<0.1
	Alpha BHC	μg/L	0.1	<0.1
	Lindane (gamma BHC)	µg/L	0.1	<0.1
	Heptachlor	μg/L	0.1	<0.1
	Aldrin	μg/L	0.1	<0.1
	Beta BHC	μg/L	0.1	<0.1
	Delta BHC	µg/L	0.1	<0.1
	Heptachlor epoxide	µg/L	0.1	<0.1
	Alpha Endosulfan	μg/L	0.1	<0.1
	Gamma Chlordane	μg/L	0.1	<0.1
	Alpha Chlordane	μg/L	0.1	<0.1
	p,p'-DDE	μg/L	0.1	<0.1
	Dieldrin	µg/L	0.1	<0.1
	Endrin	µg/L	0.1	<0.1
	Beta Endosulfan	µg/L	0.1	<0.1
	p,p'-DDD	μg/L	0.1	<0.1
	p,p'-DDT	µg/L	0.1	<0.1
	Endosulfan sulphate	μg/L	0.1	<0.1
	Endrin aldehyde	μg/L	0.1	<0.1
	Methoxychlor	μg/L	0.1	<0.1
	Endrin ketone	μg/L	0.1	<0.1
	Isodrin	μg/L	0.1	<0.1
	Mirex	μg/L	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	59
OP Pesticides in Water			Meth	od: ME-(AU)-[ENV]AN42(
Sample Number	Parameter	Units	LOR	Result
LB250499.001	Dichlorvos	μg/L	0.5	<0.5
	Dimethoate	ug/l	0.5	<0.5

Sample Number	Parameter	Units	LOR	Result
LB250499.001	Dichlorvos	μg/L	0.5	<0.5
	Dimethoate	μg/L	0.5	<0.5
	Diazinon (Dimpylate)	μg/L	0.5	<0.5
	Fenitrothion	μg/L	0.2	<0.2
	Malathion	μg/L	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2
	Parathion-ethyl (Parathion)	μg/L	0.2	<0.2
	Bromophos Ethyl	μg/L	0.2	<0.2
	Methidathion	µg/L	0.5	<0.5
	Ethion	µg/L	0.2	<0.2
	Azinphos-methyl	µg/L	0.2	<0.2

SE232924 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OP Pesticides in Water (continued) Method: ME-(AU)-[ENV]AN420 LOR Result Sample Number Parameter Units LB250499.001 Surrogates 2-fluorobiphenyl (Surrogate) % 68 d14-p-terphenyl (Surrogate) % 88 PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420 Sample Number LOR Result Parameter LB250499.001 Naphthalene µg/L 0.1 < 0.1 2-methylnaphthalene µg/L 0.1 <0.1 1-methylnaphthalene 0.1 <0.1 µg/L Acenaphthylene 0.1 < 0.1 µg/L Acenaphthene µg/L 0.1 <0.1 Fluorene <0.1 0.1 µg/L < 0.1 Phenanthrene µg/L 0.1 Anthracene µg/L 0.1 <0.1 Fluoranthene <0.1 0.1 µg/L Pyrene 0.1 < 0.1 µg/L Benzo(a)anthracene µg/L 0.1 <0.1 Chrysene 0.1 <0.1 µg/L Benzo(a)pyrene µg/L 0.1 < 0.1 Indeno(1,2,3-cd)pyrene µg/L 0.1 <0.1 Dibenzo(ah)anthracene 0.1 <0.1 µg/L Benzo(ghi)perylene µg/L 0.1 < 0.1 Surrogates d5-nitrobenzene (Surrogate) % 54 2-fluorobiphenyl (Surrogate) % 68 d14-p-terphenyl (Surrogate) % 88 **Total Phenolics in Water** Method: ME-(AU)-[ENV]AN295

Sample Number	Parameter	Units	LOR	Result
LB250503.001	Total Phenols	mg/L	0.05	<0.05

Trace Metals (Dissolved) in Water by ICPMS

Parameter	Units	LOR	Result
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	µg/L	5	<5
in Water		Meth	od: ME-(AU)-[ENV]AN4
	Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	Arsenic, Asµg/LCadmium, Cdµg/LChromium, Crµg/LCopper, Cuµg/LLead, Pbµg/LNickel, Niµg/LZinc, Znµg/L	Arsenic, As μg/L 1 Cadmium, Cd μg/L 0.1 Chromium, Cr μg/L 1 Copper, Cu μg/L 1 Lead, Pb μg/L 1 Nickel, Ni μg/L 1 Zinc, Zn μg/L 5

Sample Number LOR Parameter Result LB250499.001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 µg/L 200 <200 TRH C29-C36 200 <200 µg/L TRH C37-C40 200 <200 µg/L

VOCs in Water				Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB250880.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		Iodomethane	μg/L	5	<5
		1,1-dichloroethene	μg/L	0.5	<0.5

Method: ME-(AU)-[ENV]AN318

SE232924 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

mplo Number	ued)	Paramotor	Units	LOR	od: ME-(AU)-[ENV]
mple Number	Hologopotod Alishatian	Parameter			Result
50880.001	Halogenated Aliphatics	Dichloromethane (Methylene chloride)	µg/L	2	<5
		Allyl chloride	μg/L		
		trans-1,2-dichloroethene	µg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
		cis-1,2-dichloroethene	μg/L	0.5	<0.5
		Bromochloromethane	μg/L	0.5	<0.5
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	µg/L	0.5	<0.5
		Carbon tetrachloride	µg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane		0.5	<0.5
			μg/L		
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	μg/L	1	<1
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	µg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene		0.5	<0.5
	Halogenated Aromatics		μg/L		
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	µg/L	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
	nyarooarbono	Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	µg/L	0.5	<0.5
		tert-butylbenzene	µg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene		0.5	<0.5
			μg/L		
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
		MtBE (Methyl-tert-butyl ether)	μg/L	2	<1
		Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	µg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene (VOC)	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide		2	<2
			µg/L		
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	90
		d8-toluene (Surrogate)	%	-	90
		Bromofluorobenzene (Surrogate)	%	-	101
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5

METHOD BLANKS

SE232924 R0

Method: ME-(AU)-[ENV]AN433

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water

Sample Number		Parameter	Units	LOR	Result
LB250880.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	90
		d8-toluene (Surrogate)	%	-	90
		Bromofluorobenzene (Surrogate)	%	-	101

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Method: ME-(AU)-[ENV]AN320

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Alkalinity Method: ME-(AU)-[EN								ENVJAN135
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232993.001	LB250802.023	Total Alkalinity as CaCO3	mg/L	5	97	95	20	2
SE233033.002	LB250802.024	Total Alkalinity as CaCO3	mg/L	5	190	200	18	3

Anions by Ion Chromatography in Water

Anions by Ion Chromatography in Water Method: ME-(AU)-[ENV]						ENVJAN245		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232889.001	LB250502.014	Sulfate, SO4	mg/L	1	98	98	16	0
SE232924.003	LB250502.018	Chloride	mg/L	1	240	250	15	2
		Sulfate, SO4	mg/L	1	45	43	17	3

Mercury ((dissolved) in Water

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232934.008	LB250500.014	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Metals in Water (Dissolved) by ICPOES

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232965.002	LB250603.014	Calcium, Ca	mg/L	0.1	180	180	15	0
		Magnesium, Mg	mg/L	0.1	570	570	15	0
		Potassium, K	mg/L	0.2	54	53	15	1
		Sodium, Na	mg/L	0.1	3600	3600	15	1
SE232974.001	LB250603.019	Calcium, Ca	mg/L	0.1	47	46	15	1
		Magnesium, Mg	mg/L	0.1	140	140	15	1
Total Phenolics in	Water					Meth	od: ME-(AU)-[ENVJAN29
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232924.003	LB250503.013	Total Phenols	mg/L	0.05	<0.05	<0.05	187	0

ele (Disselved) in Water by ICDM

Trace Metals (Diss	olved) in Water by ICPMS					Meth	od: ME-(AU)-[ENVJAN31
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE233033.003	LB250756.014	Arsenic, As	µg/L	1	<1	<1	200	0
		Cadmium, Cd	µg/L	0.1	8.1	8.1	16	0
		Chromium, Cr	µg/L	1	<1	<1	200	0
		Copper, Cu	µg/L	1	2	1	80	15
		Lead, Pb	µg/L	1	<1	<1	200	0
		Nickel, Ni	µg/L	1	13	12	23	4
		Zinc, Zn	µg/L	5	19	15	45	27
SE233048.004	LB250756.021	Arsenic, As	µg/L	1	<1	<1	200	0
		Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
		Chromium, Cr	µg/L	1	<1	<1	200	0
		Copper, Cu	µg/L	1	<1	<1	200	0
		Lead, Pb	µg/L	1	<1	<1	200	0
		Nickel, Ni	µg/L	1	<1	<1	200	0
		Zinc, Zn	µg/L	5	<5	<5	200	0
RH (Total Recove	rable Hydrocarbons) in Water					Meth	od: ME-(AU)-[ENVJAN40
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %

SE232924.007 LB250499.014 TRH C10-C14 µg/L 50 <50 <50 200 0 TRH C15-C28 200 <200 <200 200 0 µg/L TRH C29-C36 200 <200 <200 200 0 µg/L TRH C37-C40 µg/L 200 <200 <200 200 0 TRH C10-C40 320 <320 <320 200 0 µg/L TRH F Bands TRH >C10-C16 µg/L 60 <60 <60 200 0 TRH >C10-C16 - Naphthalene (F2) µg/L 60 <60 <60 200 0 TRH >C16-C34 (F3) <500 <500 500 200 0 µg/L TRH >C34-C40 (F4) 500 <500 µg/L <500 200 0 VOCs in Water Method: ME-(AU)-[ENV]AN433

Original	Duplicate	Parameter	Units	LOR

16/6/2022

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RP
E232924.002	LB250880.025	Fumigants	2,2-dichloropropane	µg/L	0.5	< 0.5	<0.5	200	
	20200000.020	i unigunto	1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	172	
			cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	200	
			trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	200	
			1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	200	
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	200	
		Aliphatics	Chloromethane	µg/L	5	<5	<5	200	
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	174	
			Bromomethane	μg/L	10	<10	<10	200	
			Chloroethane	µg/L	5	<5	<5	200	
			Trichlorofluoromethane	µg/L	1	<1	<1	200	
			Iodomethane	µg/L	5	<5	<5	200	
			1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	200	
			Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	200	
			Allyl chloride	μg/L	2	<2	<2	200	
			trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	200	
			1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	200	
			cis-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	200	
			Bromochloromethane	μg/L	0.5	<0.5	<0.5	200	
			1,2-dichloroethane					200	
				μg/L	0.5	<0.5	<0.5		
			1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	200	
			1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	200	
			Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	200	
			Dibromomethane	µg/L	0.5	<0.5	<0.5	200	
			Trichloroethene (Trichloroethylene, TCE)	µg/L	0.5	<0.5	<0.5	200	
			1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	200	
			1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	200	
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	200	
			1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	200	
			cis-1,4-dichloro-2-butene	μg/L	1	<1	<1	200	
			1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	200	
			1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5	200	
			trans-1,4-dichloro-2-butene	μg/L	1	<1	<1	200	
			1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	200	
			Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	200	
							<0.5	200	
		Halogenated Aromatics	Chlorobenzene	µg/L	0.5	<0.5			
		Aromatics	Bromobenzene	µg/L	0.5	<0.5	<0.5	200	
			2-chlorotoluene	µg/L	0.5	<0.5	<0.5	200	
			4-chlorotoluene	µg/L	0.5	<0.5	<0.5	200	
			1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	200	
			1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	200	
			1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	200	
			1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	200	
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	200	
		Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	
		Aromatic	Toluene	µg/L	0.5	<0.5	<0.5	200	
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	
			m/p-xylene	μg/L	1	<1	<1	200	
			o-xylene	μg/L	0.5	<0.5	<0.5	200	
			Styrene (Vinyl benzene)	μg/L	0.5	<0.5	<0.5	200	
			Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	<0.5	200	
					0.5	<0.5	<0.5	200	
			n-propylbenzene	μg/L					
			1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	200	
			tert-butylbenzene	µg/L	0.5	<0.5	<0.5	200	
			1,2,4-trimethylbenzene	μg/L	0.5	<0.5	<0.5	200	
			sec-butylbenzene	µg/L	0.5	<0.5	<0.5	200	
			p-isopropyltoluene	μg/L	0.5	<0.5	<0.5	200	
			n-butylbenzene	μg/L	0.5	<0.5	<0.5	200	
		Nitrogenous	Acrylonitrile	µg/L	0.5	<0.5	<0.5	200	
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	<10	200	

Method: ME-(ALI)-IENVIAN433

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOCs in Water (continued)

OCs in water (c	onanuea)						Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE232924.002	LB250880.025	Oxygenated	Vinyl acetate	μg/L	10	<10	<10	200	0
		Compounds	MEK (2-butanone)	μg/L	10	<10	<10	200	0
			MIBK (4-methyl-2-pentanone)	μg/L	5	<5	<5	200	0
			2-hexanone (MBK)	μg/L	5	<5	<5	200	0
		Polycyclic	Naphthalene (VOC)	μg/L	0.5	<0.5	<0.5	200	0
		Sulphonated	Carbon disulfide	μg/L	2	<2	<2	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	8.7	8.6	30	0
			d8-toluene (Surrogate)	μg/L	-	8.9	8.9	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	10.1	10.1	30	0
		Trihalomethan	Chloroform (THM)	μg/L	0.5	<0.5	<0.5	200	0
		es	Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5	200	0
			Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	200	0
			Bromoform (THM)	μg/L	0.5	<0.5	<0.5	200	0
olatile Petroleum	Hydrocarbons in Wa	ter					Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
E232924.002	LB250880.026		TRH C6-C10	μg/L	50	<50	<50	200	0
			TRH C6-C9	μg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	8.7	8.6	30	0
			d8-toluene (Surrogate)	µg/L	-	8.9	8.9	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	10.1	10.1	30	0
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0

Method: ME-(AU)-[ENV]AN320

91

97

106

109

80 - 120

80 - 120

80 - 120

80 - 120

50.5

50.5

55

50.5

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Alkalinity					N	lethod: ME-(A	U)-[ENV]AN135
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250802.002	Total Alkalinity as CaCO3	mg/L	5	68	59.5	76 - 124	114

Anions by Ion Chromatography in Water

Anions by Ion Chromatography in Water Method: ME-(AU					U)-[ENV]AN245		
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250502.002	Chloride	mg/L	1	19	20	80 - 120	95
	Sulfate, SO4	mg/L	1	19	20	80 - 120	94

Metals in Water (Dissolved) by ICPOES Sample Number Units LOR Result Expected Criteria % Recovery % Parameter LB250603.002 Calcium, Ca mg/L 0.1 46 49 Magnesium, Mg 0.1 mg/L Potassium, K mg/L 0.2 58 0.1 55

OC Pesticides in Water									
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %	
LB250499.002	_	Heptachlor	µg/L	0.1	0.2	0.2	60 - 140	114	
	_	Aldrin	µg/L	0.1	0.2	0.2	60 - 140	103	
	_	Delta BHC	µg/L	0.1	0.2	0.2	60 - 140	121	
	_	Dieldrin	µg/L	0.1	0.2	0.2	60 - 140	122	
	_	Endrin	µg/L	0.1	0.3	0.2	60 - 140	127	
		p,p'-DDT	µg/L	0.1	0.3	0.2	60 - 140	130	
Surroga	gates	Tetrachloro-m-xylene (TCMX) (Surrogate)	µg/L	-	0.14	0.15	40 - 130	90	

mg/L

0.05

mg/L

0.18

0.2

OP Pesticides in Wa	DP Pesticides in Water Method: ME-(AU)-[ENV]AN420							
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250499.002 Dichlorv		Dichlorvos	µg/L	0.5	7.1	8	60 - 140	89
		Diazinon (Dimpylate)	µg/L	0.5	7.8	8	60 - 140	97
		Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	7.4	8	60 - 140	93
		Ethion	µg/L	0.2	7.2	8	60 - 140	90
	Surrogates	2-fluorobiphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	70
		d14-p-terphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	74

Method: ME-(AU)-[ENV]AN420 PAH (Polynuclear Aromatic Hydrocarbons) in Water LOR Result Expected Criteria % Recovery % Sample Number Parameter LB250499.002 Naphthalene 0.1 25 40 60 - 140 63 µg/L Acenaphthylene µg/L 0.1 33 40 60 - 140 81 Acenaphthene µg/L 0.1 33 40 60 - 140 83 Phenanthrene 0.1 35 40 60 - 140 87 µg/L 60 - 140 Anthracene µg/L 0.1 34 40 86 Fluoranthene µg/L 0.1 35 40 60 - 140 88 0.1 35 40 60 - 140 87 Pyrene µg/L Benzo(a)pyrene µg/L 0.1 38 40 60 - 140 96 Surrogates d5-nitrobenzene (Surrogate) µg/L 0.3 0.5 40 - 130 52 -2-fluorobiphenyl (Surrogate) 0.4 0.5 40 - 130 70 µg/L d14-p-terphenyl (Surrogate) µg/L 0.4 0.5 40 - 130 74 Method: ME-(AU)-[ENV]AN295 **Total Phenolics in Water** Expected Criteria % Recovery % Sample Number Units LOR Result Parameter

a Matala (Dissolved) in Water by ICDMS

Total Phenols

Sodium, Na

Method: ME (ALD JEND/JANI249

80 - 120

Trace Metals (Dissolved) in water by					n n		O)-[EINV]MIND IO
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250756.002	Arsenic, As	µg/L	1	18	20	80 - 120	91
	Cadmium, Cd	µg/L	0.1	21	20	80 - 120	103
	Chromium, Cr	µg/L	1	21	20	80 - 120	107
	Copper, Cu	µg/L	1	21	20	80 - 120	106
	Lead, Pb	µg/L	1	19	20	80 - 120	97
	Nickel, Ni	µg/L	1	21	20	80 - 120	106

LB250503.002

92

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

ace metals (Diss	Sived) in Water by	ICPMS (continued)					Method: ME-(A	U)-[ENV]AN3
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250756.002		Zinc, Zn	μg/L	5	20	20	80 - 120	102
RH (Total Recove	rable Hydrocarboi	ns) in Water				N	Method: ME-(A	U)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
_B250499.002		TRH C10-C14	µg/L	50	1400	1200	60 - 140	115
		TRH C15-C28	µg/L	200	1400	1200	60 - 140	118
		TRH C29-C36	µg/L	200	1400	1200	60 - 140	120
	TRH F Bands	TRH >C10-C16	µg/L	60	1400	1200	60 - 140	120
		TRH >C16-C34 (F3)	µg/L	500	1300	1200	60 - 140	108
		TRH >C34-C40 (F4)	μg/L	500	830	600	60 - 140	139
OCs in Water						N	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB250880.002	Halogenated	1,1-dichloroethene	µg/L	0.5	60	45.45	60 - 140	132
	Aliphatics	1,2-dichloroethane	µg/L	0.5	57	45.45	60 - 140	126
		Trichloroethene (Trichloroethylene, TCE)	µg/L	0.5	54	45.45	60 - 140	119
	Halogenated	Chlorobenzene	μg/L	0.5	50	45.45	60 - 140	109
	Monocyclic	Benzene	µg/L	0.5	54	45.45	60 - 140	118

	Aromatic	Toluene	µg/L	0.5	54	45.45	60 - 140	118
		Ethylbenzene	µg/L	0.5	52	45.45	60 - 140	114
		m/p-xylene	µg/L	1	100	90.9	60 - 140	114
		o-xylene	µg/L	0.5	51	45.45	60 - 140	113
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.0	10	60 - 140	100
		d8-toluene (Surrogate)	µg/L	-	10.3	10	70 - 130	103
		Bromofluorobenzene (Surrogate)	µg/L	-	10.1	10	70 - 130	101
		Chloroform (TLIM)	ug/l	0.5	55	45.45	60 - 140	121
	Trihalomethan	Chloroform (THM)	µg/L	0.5		43.43	00 - 140	121
Volatile Petroleum I			µg/L	0.5				
Volatile Petroleum I Sample Number	Hydrocarbons in V		Units	LOR	Result		lethod: ME-(A	
	Hydrocarbons in V	Vater				N	lethod: ME-(A	U)-[ENV]AN433
Sample Number	Hydrocarbons in V	Vater Parameter	Units	LOR	Result	N Expected	Aethod: ME-(A Criteria %	U)-[ENV]AN433 Recovery %
Sample Number	Hydrocarbons in V	Vater Parameter TRH C6-C10	Units µg/L	LOR 50	Result 830	Expected 946.63	<mark>Aethod: ME-(A</mark> Criteria % 60 - 140	U)-[ENV]AN433 Recovery % 87
Sample Number	Hydrocarbons in V	Vater Parameter TRH C6-C10 TRH C6-C9	Units μg/L μg/L	LOR 50 40	Result 830 700	Expected 946.63 818.71	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN433 Recovery % 87 86
Sample Number	Hydrocarbons in V	Vater Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	Units µg/L µg/L µg/L	LOR 50 40	Result 830 700 10.0	Expected 946.63 818.71 10	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	U)-[ENV]AN433 Recovery % 87 86 100
Sample Number	Hydrocarbons in V	Vater Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units µg/L µg/L µg/L µg/L	LOR 50 40 -	Result 830 700 10.0 10.3	Expected 946.63 818.71 10 10	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 70 - 130	U)-[ENV]AN433 Recovery % 87 86 100 103

Method: ME-(AU)-[ENV]AN318

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Phenolics i	n Water					Met	nod: ME-(AL)-[ENV]AN295
QC Sample	Sample Number	Parameter	Unit	s LOR	Result	Original	Spike	Recovery%
SE232915.001	LB250503.004	Total Phenols	mg/L	0.05	0.17	<0.1	0.2	84

Trace Metals (Dissolved) in Water by ICPMS

							· · · · · ·	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE232924.001	LB250756.004	Arsenic, As	μg/L	1	20	<1	20	98
		Cadmium, Cd	μg/L	0.1	21	<0.1	20	104
		Chromium, Cr	μg/L	1	22	<1	20	107
		Copper, Cu	μg/L	1	22	1	20	102
		Lead, Pb	μg/L	1	19	<1	20	95
		Nickel, Ni	μg/L	1	25	4	20	103
		Zinc, Zn	µg/L	5	37	13	20	120

VOCs in Water Method: ME-(AU)-[ENV]AN43								
QC Sample	Sample Numbe	ər	Parameter	Units	LOR	Original	Spike	Recovery%
SE232924.007	LB250880.027	Monocyclic	Benzene	µg/L	0.5	<0.5	45.45	114
	Ar	Aromatic	Toluene	µg/L	0.5	<0.5	45.45	117
			Ethylbenzene	µg/L	0.5	<0.5	45.45	113
			m/p-xylene	µg/L	1	<1	90.9	112
			o-xylene	µg/L	0.5	<0.5	45.45	112
		Polycyclic	Naphthalene (VOC)	µg/L	0.5	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	8.9	-	94
			d8-toluene (Surrogate)	µg/L	-	8.8	-	101
			Bromofluorobenzene (Surrogate)	μg/L	-	10.0	-	99
olatile Petroleu	m Hydrocarbons in	Water					М	ethod: ME-(AU)-[ENV]A
QC Sample	Sample Numbe	ər	Parameter	Units	LOR	Original	Spike	Recovery%
SE232924.007	LB250880.027		TRH C6-C10	µg/L	50	<50	946.63	76

QC 3	ampie	Sample Number		Parameter	Units	LUK	Original	эріке	Recovery%
SE232	2924.007	LB250880.027		TRH C6-C10	µg/L	50	<50	946.63	76
				TRH C6-C9	µg/L	40	<40	818.71	77
			Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	8.9	-	94
				d8-toluene (Surrogate)	µg/L	-	8.8	-	101
				Bromofluorobenzene (Surrogate)	µg/L	-	10.0	-	99
			VPH F	Benzene (F0)	µg/L	0.5	<0.5	-	-
			Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	639.67	64

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or Calibration Check	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift. Calibration Standards are checked old versus new with a criteria of ±10%
Standard & Blank	

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".					
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.					
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.					
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.					
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: <u>Inorganics (water samples)</u> For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike⁴ Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less 					
All recoveries are to be reported to 3 significant figures.	 For all horganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS[#]/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ± 2 standard deviations of the expected value. 					

	<u>Organics</u>
	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	 Retention times are to vary by no more than 0.2 min.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
All recoveries are to be reported to 3 significant figures.	• Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS^{,*}/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ^AMatrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil					
Parameter	Container	Preservation	Maximum Holding Time		
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months		
Mercury	Glass with Teflon Lid	Nil	28 days		
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days		
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days		
Phenols	Glass with Teflon Lid	4°C ¹	14 days		
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days		
Asbestos	Sealed Plastic Bag	Nil	N/A		

Table QC2 - Containers, Preservation Requirements and Holding Times - Water				
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time	
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months	
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months	
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days	
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4ºC ¹	28 days	

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Ar	alytical Paran	neters, PQLs	and Methods - Soil
Parameter	Unit	PQL	Method Reference
	Meta	ls in Soil	
Arsenic - As ¹	mg / kg	1	USEPA 200.7
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7
Chromium - Cr ¹	mg / kg	1	USEPA 200.7
Copper - Cu ¹	mg / kg	1	USEPA 200.7
Lead - Pb ¹	mg / kg	1	USEPA 200.7
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A
Nickel - Ni ¹	mg / kg	1	USEPA 200.7
Zinc - Zn ¹	mg / kg	1	USEPA 200.7
Tota	al Petroleum Hyd	rocarbons (TP	Hs) in Soil
C_6 - C_9 fraction	mg / kg	25	USEPA 8260
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000
	BTE	X in Soil	
Benzene	mg / kg	1	USEPA 8260
Toluene	mg / kg	1	USEPA 8260
Ethylbenzene	mg / kg	1	USEPA 8260
m & p Xylene	mg / kg	2	USEPA 8260
o- Xylene	mg / kg	1	USEPA 8260
	Other Organic C	ontaminants i	n Soil
PAHs	mg / kg	0.05-0.2	USEPA 8270
CHCs	mg / kg	1	USEPA 8260
VOCs	mg / kg	1	USEPA 8260
SVOCs	mg / kg	1	USEPA 8260
OCPs	mg / kg	0.1	USEPA 8140, 8080
OPPs	mg / kg	0.1	USEPA 8140, 8080
PCBs	mg / kg	0.1	USEPA 8080
Phenolics	mg / kg	5	APHA 5530
	As	bestos	
Asbestos	mg / kg	Presence / Absence	AS4964-2004

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method
	Heavy	Metals		Chlorinated	l Hydroc	arbons	(CHCs)
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npound	s (VOCs)
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B
			ons (TPHs)	Phenolic Compounds			
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041
	BT	ΈX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscellaneous Parameters		ters	
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN
Polyciclic Are	omatic H	lydrocai	rbons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+
OrganoChlorine Pesticides (OCPs)			OrganoPhosphate Pesticides (OPPs)				
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141
DDT	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141
Dieldrin Endosulfan	μg/L	0.001	USEPA 8081	Dimethoate Expitrathion	μg/L	0.01	USEPA 8141
	μg/L	0.001	USEPA 8081	Fenitrothion	μg/L	0.01	USEPA 8141
Endrin Heptachlor	μg/L	0.001	USEPA 8081 USEPA 8081	Malathion Parathion	μg/L	0.01	USEPA 8141 USEPA 8141
Lindane	μg/L μg/L	0.001	USEPA 8081	Temephos	μg/L μg/L	0.01	USEPA 8141 USEPA 8141
Toxaphene	μg/L μg/L	0.001	USEPA 8081	Polychlorin			
	μg/∟	0.001		Individual PCBs	μg/L	0.01	USEPA 8081

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

QC Sample Type	Method of Assessment	Acceptable Range		
	Field QC	Acceptable Range		
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \times \frac{ X_1 - X_2 }{mean (X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL) 		
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		
_aboratory prepared Frip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%		
	Laboratory QC			
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample results > 10 LOR		
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)		
Matrix Spikes _aboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).		
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)		
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)		
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		