STATE TRANSIT AUTHORITY

JULY 2020

GROUNDWATER MONITORING EVENT - MAY 2020 STA MONA VALE BUS DEPOT, 58 DARLEY STREET, MONA VALE, NSW

********])

Question today Imagine tomorrow Create for the future

Groundwater Monitoring Event - May 2020 STA Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW

State Transit Authority

WSP

Level 27, 680 George Street Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001

Tel: +61 2 9272 5100 Fax: +61 2 9272 5101 wsp.com

REV	DATE	DETAILS
Rev A	16/07/2020	Revision A

	NAME	DATE	SIGNATURE
Prepared by:	Nick Gilmour	16/07/2020	Nicle Col
Reviewed by:	Colin McKay	16/07/2020	What what where we have the second se
Approved by:	Colin McKay	16/07/2020	What what where the second sec

This document may contain confidential and legally privileged information, neither of which are intended to be waived, and must be used only for its intended purpose. Any unauthorised copying, dissemination or use in any form or by any means other than by the addressee, is strictly prohibited. If you have received this document in error or by any means other than as authorised addressee, please notify us immediately and we will arrange for its return to us.

wsp

TABLE OF CONTENTS

1.1 I 1.2 (INTRODUCTION BACKGROUND OBJECTIVES	
1.2 (1
	OBJECTIVES	
-		1
2	SCOPE OF WORKS	2
3 I	DATA QUALITY OBJECTIVES	3
4 I	PREVIOUS INVESTIGATIONS	5
5 I	METHODOLOGY	7
5.1 0	GROUNDWATER GAUGING	7
5.2	GROUNDWATER SAMPLING AND ANALYSIS	7
5.3	SURFACE WATER SAMPLING	7
5.4	SAMPLE STORAGE AND HANDLING	8
5.5 I	LABORATORY ANALYSIS	8
6 I	FIELD FINDINGS	9
6.1	GROUNDWATER WELL CONDITIONS	9
6.2 I	PHASE SEPARATED HYDROCARBONS	9
	GROUNDWATER AND SURAFACE WATER FIELD PARAMETERS	. 10
7	ASSESSMENT CRITERIA	.12
8	ANALYTICAL RESULTS AND DISCUSSION	.14
8.1 I	LABORATORY RESULTS	. 14
		14
	COMPARISON WITH PREVIOUS GROUNDWATER RESULTS	15
8.1.3	SURFACE WATER SAMPLING RESULTS	15
-	MONITORED NATURAL ATTENUATION	_
	PSH THICKNESS AND DISTRIBUTION DISSOLVED PHASE CONCENTRATIONS	
	GEOCHEMICAL PARAMETERS	
8.3	SUMMARY OF RISK	. 17
7 /	PARAMETERS ASSESSMENT CRITERIA ANALYTICAL RESULTS AND DISCUSSION	-

vsp

9	QUALITY ASSURANCE/ QUALITY CONTROL	19
10	CONCLUSIONS AND RECOMMENDATIONS	20
11	REFERENCES	21
12	LIMITATIONS	22

ABBREVIATIONS

ANZECC	Australian and New Zealand Environment and Conservation Council
BTEX	Benzene, toluene, ethyl benzene and xylene
COC	Chain of custody
CSM	Conceptual Site Model
DO	Dissolved oxygen
DQI	Data quality indicators
DQO	Data quality objectives
EC	Electrical conductivity
GME	Groundwater Monitoring Event
H_2S	Hydrogen Sulfide
HSL	Health Screening Level
LOR	Limit of Reporting
mAHD	Metres above Australian Height Datum
mBGL	Metres below ground level
mBTOC	Metres below top of casing
MNA	Monitored natural attenuation
MW	Monitoring well
NATA	National Association of Testing Authorities
ND	Not Detected
NEPM	National Environment Protection Measure
NSW EPA	New South Wales Environment Protection Authority
ORP	Oxidation/reduction potential
PAHs	Polycyclic aromatic hydrocarbons
pН	Unit of measurement for acidity and alkalinity
PSH	Phase separated hydrocarbons
QA/QC	Quality assurance / quality control
RPD	Relative Percentage Difference
STA	State Transit Authority
SWL	Standing Water Level
ToC	Top of casing (of monitoring well)
TOC	Total organic carbon
TRH	Total recoverable hydrocarbons (C ₁₀ to C ₄₀)
UST	Underground storage tank
vTRH	Volatile total recoverable hydrocarbons (C ₆ to C ₁₀)
WD	Well Depth
WHS	Workplace Health and Safety
WSP	WSP Australia Pty Ltd

1 INTRODUCTION

1.1 BACKGROUND

WSP Australia Pty Ltd (WSP) was commissioned by State Transit Authority (STA) to undertake ongoing groundwater monitoring at the bus depot at 58 Darley Street, Mona Vale, NSW (the site). The site is owned by STA and is currently used as an operational bus depot. The site location and layout are presented on Figures 1 and 2, Appendix A.

The NSW EPA declared the site as significantly contaminated land on 11 November 2014 (declaration number 20141101) and a voluntary management proposal (VMP) and a VMP communications plan were prepared by STA and submitted to the NSW EPA in January 2015. Since that time the site has been managed under the VMP, which under various revisions has consistently had the objective of assessment of the extent of impacts, assessment of the risk of the contamination and removal of the hydrocarbon impact to the extent practicable.

WSP has previously prepared a remediation action plan (RAP) relating to the site (WSP, 2020). The main contamination concern is the presence of a phase separated hydrocarbon (PSH) and the associated dissolved phase hydrocarbon plume that is present in groundwater on the site's western boundary. The PSH and dissolved phase plume extends beyond the site's boundary, beneath neighbouring sites and Taronga Place to the west. The most recent remedial strategy (WSP, 2020) includes a more aggressive fluid pump and treat system (rather that a program of active skimming alone) both onsite and offsite, along with a program of ongoing groundwater monitoring events (GMEs) to assess the plume dynamics and the natural attenuation conditions.

Routine groundwater monitoring has been undertaken on and in the vicinity of the site since 2014. This report represents the results of the routine groundwater monitoring event completed in May 2020 (note the samples occurred on 30 April and 1 May but for simplicity we have referred to the event as the "May 2020 GME").

1.2 OBJECTIVES

The current agreed voluntary management proposal (VMP, approval number 20191731) includes requirements for STA to provide ongoing data on the groundwater quality beneath the site and surrounds through a program of 6 monthly groundwater monitoring events (GMEs).

The key objectives of this GME are to:

- Conduct groundwater gauging of all available groundwater wells to monitor the groundwater flow directions and to
 estimate extent and apparent thickness of phase separated hydrocarbons (PSH);
- Obtain ongoing data on the groundwater and surface water quality and monitor the influence of natural attenuation processes on the groundwater plume contaminants;
- Provide recommendations to manage groundwater conditions (if required).

2 SCOPE OF WORKS

To meet the project objectives, WSP carried out the following scope of work:

- A Health, Environment and Safety Plan (HESP) was prepared which included Safe Work Method Statement for all tasks;
- 23 wells on Site were gauged during the May 2020 event using an interface probe which can detect the presence of PSH and determine the standing water level (SWL). Where PSH was detected the observed thickness was recorded and the presence was confirmed using dedicated disposable bailers;
- The May 2020 groundwater sampling program focused on the following wells:
 - Offsite Wells: MW08, MW12, MW15, MW16, MW17, MW22, MW26, MW32, MW33, MW35; and
 - Onsite Wells: MW02, MW07, MW28, MW29, MW30.
- Sampling was conducted using a peristaltic pump (low-flow technique) where possible and HydraSleeve samplers in high traffic areas (MW22).
- At each location the fieldwork included:
 - Measurement of groundwater field parameters including pH, dissolved oxygen (DO), electrical conductivity (EC), redox conditions (ORP) and temperature prior to the collection of groundwater samples from the above locations.
 - Comments on odour, sheen presence/absence, colour and flow characteristics at each sampling location.
 - Collection of samples in laboratory prepared sampling bottles, which were then stored on ice and delivered to the laboratory for analysis.
- Chemical analysis included:
 - Primary contaminants of concern (TRH and BTEXN); and
 - Monitored natural attenuation parameters including ionic balance (pH, TDS, Na⁺, K⁺, Ca²⁺, Mg²⁺, NH₄⁺, Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻, PO₄³⁻ and F⁻), dissolved iron (Fe²⁺), manganese (Mn), Arsenic (As), methane, and biochemical oxygen demand (BOD).
- Analysis of groundwater samples was conducted at a NATA certified laboratory (Envirolab);
- Collection of Quality Assurance/Quality Control (QA/QC) groundwater samples included an intra-laboratory and inter-laboratory duplicates and one trip blank.
- Once results were received, they were compared with the adopted Site criteria; and
- This report has been prepared with reference to the NSW EPA, 2011 Guidelines for Consultants Reporting on Contaminated Sites and NEPC, 2013 National Environment Protection (Assessment of Site Contamination) Measure, 1999 to detail the findings of the groundwater monitoring.

3 DATA QUALITY OBJECTIVES

Development of Data Quality Objectives (DQOs) is a systematic process used to define the type, quantity and quality of data supporting decisions which relate to the environmental condition of a site. The USEPA DQO process has been adopted for this project. The DQOs involved following a series of seven steps. Table 3.1 outlines the seven steps and comments on how the objective will be addressed.

Data quality indicators (DQIs) set qualitative and quantitative compliance measures to ensure the data is reliable. DQIs for the project are provided in Table 3.2.

STEP	OBJECTIVE	COMMENTS
1	State the problem	The problem under consideration is that the site and surrounds contain PSH and TRH in groundwater. Though the concentrations in the dissolved plume surrounding the PSH do not exceed available health or ecological criteria, the extent of the plume, and the thickness and extent of the PSH should continue to be monitored to assess the efficacy of the current skimming (and future total fluids removal) system and whether conditions on the site and surrounds are improving with time.
2	Identify the decision	Is the condition of the site and surrounds improving with time and with implementation of the remediation system? Do groundwater contaminant concentrations exceed risk-based assessment criteria for off-site residential receptors? Are contaminants migrating to surface water receptors?
3	Identify inputs to the decision	 The following inputs were considered: gauging results of PSH thickness and interpreted groundwater contours. current and historical concentrations of contaminants detected in groundwater and surface water. relevant groundwater assessment criteria.
4	Defines the study boundary	The study boundaries are the site boundaries and the surrounds to the west of the site that are defined by the available well network.
5	Develop a decision rule	 Based on the available site assessment information, elements of the decision rule should be related to the remediation objectives and include: has the program adequately delineated the extent of groundwater contamination? has the program adequately assessed the risk posed by the contamination? and has the program removed PSH from the groundwater to the extent practicable?
6	Specify acceptable limits on decision errors	The quality control assurance plan and compliance with data quality indicators is outlined in Section 10 for groundwater data.
7	Optimise the design for obtaining data	The well network and sampling plan have been determined to be appropriate for the purposes of the assessment and is routinely evaluated through review of the monitoring results.

Table 3.1 Data quality objectives

Table 3.2: Data Quality Indicators

Data quality indicator	Frequency	Criteria		
Precision				
Intra-laboratory field duplicates	1/20 samples	<30% RPD ¹		
Inter-laboratory field duplicates	1/20 samples	<30% KPD ²		
Laboratory internal duplicates	1/20 samples	<30% RPD		
Laboratory method blanks	1/20 samples	< LOR		
Trip Spike	Minimum 1 per media	70% to 130%		
Trip Blank	Minimum 1 per media	< LOR		
Accuracy				
Matrix spikes	1/20 samples	70% to 130%		
Rinsate blanks	1 per day per equipment	<lor< td=""></lor<>		
Laboratory blanks	1 per sampling event	<lor< td=""></lor<>		
Representativeness				
Sampling handling storage and transport appropriate for media and analytes	Each batch	Review		
Samples analysed within holding times	All Samples	14 days – organics		
Comparability				
Standard operating procedures used for sample collection and handling (including decontamination)	All Samples	Review		
Standard analytical methods used for all analyses	All Samples	Review		
Consistent field conditions, sampling staff and laboratory analysis	All Samples	Review		
Limits of reporting appropriate and consistent	All Samples	Review		
Completeness				
COCs completed and appropriate	All Samples	Review		
Appropriate documentation for testing	All Samples	Review		

Notes:

 If the RPD is greater than the pre-determined data quality indicator, a judgment will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

4 PREVIOUS INVESTIGATIONS

WSP completed a Contaminated Site Assessment (CSA) for the site in 2012, which identified soil and groundwater impacted with concentrations of Total Recoverable Hydrocarbons (TRH) and Polycyclic Aromatic Hydrocarbons (PAH) exceeding the adopted site criteria for commercial/industrial land-use. WSP concluded that the findings were indicative of the presence of phase-separated hydrocarbons (PSH) potentially sourced from a diesel spill sump pit within the site's refuelling area. WSP also recommended that STA prepare and submit a Contaminated Land Notification Form in accordance with NSW EPA, 2009 *Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.* This notification was submitted to the NSW EPA on 7 February 2012.

Based on the findings of the CSA, WSP was then engaged by STA to conduct further on and off-site delineation of soil and groundwater impact at the site (two separate investigations). WSP concluded that hydrocarbon impact was located within the vicinity of the site's refuelling area and extended in a northerly and westerly direction from this location, corresponding with the determined groundwater flow direction. In addition, WSP confirmed that identified impact was restricted to groundwater and sandy soils immediately above the groundwater table (1m - 2mbgl), which indicated that soil impact was likely to be associated with a groundwater plume rather than spot sources of contamination across the Site (WSP, 2012).

A RAP was prepared for the Site by WSP in May 2013, to address on-going liability and risk associated with the identified hazards and to render the site suitable for on-going commercial/industrial use.

Following preparation of the original RAP in 2013, STA engaged Australian Environmental Services (AES) to carry out targeted remedial works recommended in that document including removal of the Site's diesel spill sump pit, removal of the underground petroleum storage system (UPSS) and installation of an active onsite groundwater skimmer system at the site boundary. STA also engaged Environment and Natural Resource Solutions (ENRS) to implement an on-going groundwater monitoring program that included eight rounds of testing.

The NSW EPA declared the site as significantly contaminated land on 11 November 2014 and a Voluntary Management Proposal (VMP) and a VMP Communications Plan were prepared by STA and submitted to the NSW EPA in January 2015. Since that time the site has been managed under the VMP, which under various revisions has consistently had the objective of assessment of the extent of impacts, assessment of the risk of the contamination and removal of the hydrocarbon impact to the extent practicable.

A revision to the first version of the RAP was prepared in 2015 (WSP, 2015), which updated the criteria to align with the NEPC, 2013 *National Environment Protection (Assessment of Site Contamination) Measure* 1999, summarised various remedial works carried out since 2013 and recommended trialling of various groundwater and PSH remedial technologies, along with ongoing monitoring work. Most of those investigation works had by 2018 been carried out, and STA has implemented a more permanent phase-separated hydrocarbon (PSH) skimming system on the Site and surrounds. Therefore, a further RAP revision was developed in July 2018, and revised and re-released in July 2019, December 2019, and May 2020. The latest RAP (WSP, 2020d) provides a more comprehensive summary of remedial works, aligned with the current plans for site remediation and documents results of assessments carried out to date. The RAP reinforces the need for ongoing PSH removal, with a change following consultation with remediation contractors, to a more aggressive fluid pump and treat system (rather than skimming alone), and the need for ongoing monitoring to demonstrate the plume stability and evidence of natural attenuation.

The most recent GME (WSP, 2020c) found PSH in nine offsite wells north-west of the bus refuelling bay (MW10, MW18, MW19, MW20, MW21, MW25, MW31, MW32 and MW33), ranging from 99 mm to 797 mm. PSH was also found in two onsite wells (MW28 and MW30), ranging from 291 mm to 431 mm. It is likely that PSH is also present in the inaccessible skimmer wells (MW05, MW09, MW13, MW14). Overall the PSH thickness measured remained within historical ranges. The dissolved phase hydrocarbon plume surrounding the PSH impacted area appeared relatively stable and, while not delineated in most directions, the concentrations appeared to attenuate significantly with distance from the PSH affected area.

Available wells in the backfilled sands of the stormwater easement were dry indicating that this potential pathway was not complete at the time of the assessment. No hydrocarbons were detected in the surface waters of the drainage line to the north of the plume, including samples from upgradient, at the site boundary and downgradient of the site.

Clear evidence of biodegradation of hydrocarbons occurring in the groundwater, within dissolved hydrocarbon plume was observed. The range of redox conditions suggested a dynamic system, but in places, the redox conditions appear quite reducing and may indicate that the rate of degradation is limited by the availability of electron acceptors.

An arsenic plume is present in the groundwater beneath the site and surrounds. The source of the plume is uncertain, but the distribution and concentrations appear relatively stable.

WSP considered the site is suitable for its continued use as an operational bus depot and surrounding sites are also suitable for ongoing commercial/industrial use. Based on the current site orientation and activities, the risk posed by the identified contamination to human or ecological receptors was considered low.

5 METHODOLOGY

5.1 GROUNDWATER GAUGING

Monitoring wells were gauged with an interface probe to determine the well depth (WD), standing water levels (SWL), identify the potential presence of PSH and determine the direction/gradient of groundwater flow. A total of 24 wells were gauged as part of the May 2020 GME.

Gauging was conducted within the shortest possible timeframe to minimise variation as a result of water table fluctuations. The interface probe was thoroughly decontaminated between each monitoring well with a phosphate-free detergent (Decon 90) and rinsed with potable water to minimise the risk of cross-contamination.

Where PSH was detected with the interface probe, the inferred thickness was recorded, and the presence was confirmed by a bailer. The thickness of PSH is recorded in Table 6.1, and in Table 1, Appendix B. Thicknesses are also presented in Figure 4, Appendix A along with an inferred extent of PSH.

The extrapolated flow direction from the gauging is presented schematically in the groundwater contours provided in Figure 5 of Appendix A. The groundwater flow direction and contours presented in this figure are based upon the overall gauging dataset. Some monitoring points recorded anomalous level readings which may be attributed to variable recharge across the partially sealed surfaces, the effects of localized skimming activities and possible measurement errors or interferences caused by the PSH presence, and potential for leaking services in the area.

5.2 GROUNDWATER SAMPLING AND ANALYSIS

Samples were collected from 16 monitoring wells. Wells which were sampled were purged using the peristaltic pump with new disposable tubing used at each sample location.

Field parameters (pH, dissolved oxygen, reduction/oxidation (redox), electrical conductivity and temperature) were monitored using a water quality meter, calibrated prior to use. The groundwater was visually assessed for turbidity and evidence of contamination, such as odour or visible hydrocarbon sheen. Groundwater samples were collected following stabilisation of the field physicochemical parameters to ensure that the samples were indicative of groundwater flowing through the well screen.

The calibration certificates for the interface probe and groundwater quality meter are provided in Appendix D.

Field observations and measurements are provided in Section 6.3 of this report, and Table 1 of Appendix B. Copies of field sheets with physiochemical groundwater data obtained during sampling are provided in Appendix C.

5.3 SURFACE WATER SAMPLING

Two surface water samples were collected on 01 May 2020. The sampling locations are shown on Figure 3, Appendix A. Samples from S01 and S03 were collected as a grab sample from the flowing water in the drainage line directly into the laboratory provided sample bottles, with the exception of the samples for metals which were field filtered prior to placing into the nitric acid preserved bottle.

The water quality meter was placed into the flowing drainage line. Field parameters (pH, dissolved oxygen, reduction/oxidation (redox), electrical conductivity and temperature) were monitored using a water quality meter placed directly into the drainage line.

Field observations were recorded and are presented in Section 6.3 and Table 1 of Appendix B. Copies of field sheets with physiochemical groundwater data obtained during sampling are provided in Appendix C.

5.4 SAMPLE STORAGE AND HANDLING

Samples were placed into appropriately preserved bottles. All samples were immediately placed in coolers with ice bricks for transportation to the laboratory.

A chain of custody (CoC) form was filled out with the sampling date, sampler's contact details, sample ID's, and required analyses, and dispatched to the laboratory with the samples.

A copy of the chain of custody documentation is included with laboratory certificates in Appendix E.

5.5 LABORATORY ANALYSIS

Groundwater samples were analysed for identified contaminants of concern (TRH & BTEXN), metals and a suite of monitored natural attenuation (MNA) parameters (pH, TDS, major cations, major anions and nutrients).

Sample analysis was conducted by Envirolab (NATA No. 2901). A set of QA/QC duplicate/triplicate samples were included in the sampling program based on the frequency adopted from the NEPM 2013 guidelines of one duplicate and triplicate sample for every 20 primary samples collected. Secondary quality assurance analysis (inter-laboratory duplicate analysis) was conducted by SGS (NATA No. 2562) in October 2019 and Eurofins (NATA No. 1261) in May 2020. All analyses were undertaken in accordance with NATA accredited methods as detailed on the laboratory certificates of analysis (Appendix E).

6 FIELD FINDINGS

6.1 GROUNDWATER WELL CONDITIONS

The following general observations were made in regards to the condition of wells during gauging:

- MW04, MW06 and MW27 appear to be lost, and MW11 has been abandoned;
- MW36 was dry. Note: MW36 and MW37 are shallow wells installed into the stormwater easement, to the depth of the stormwater culvert to assess if this was a potential conduit for hydrocarbon migration.

6.2 PHASE SEPARATED HYDROCARBONS

All locations where PSH was detected with the interface probe or had been encountered previously were visually confirmed using a disposable plastic bailer. Apparent PSH thicknesses are presented below in Table 6.1. It is likely that PSH is also present in the skimmer wells that were inaccessible at the time (MW09 and MW14).

DATE	MW05	MW09	MW10	MW13	MW14	MW18	MW19	MW20	MW21	MW25	MW28	MW30	MW31	MW32	MW33
24/08/2012	0.257	-	-			-	-	-	-	-	-	-	-	-	-
19/11/2012	-	0.3	-			-	-	-	-	-	-	-	-	-	-
30/01/2014	-	0.08	0.55			-	-	-	-	-	-	-	-	-	-
21/06/2014	-	0.41	0.5			-	-	-	-	-	-	-	-	-	-
13/10/2014	-	0.475	0.446			-	-	-	-	-	-	-	-	-	-
11/02/2015	-	0.207	0.181			-	-	-	-	-	-	-	-	-	-
9/12/2015	-	0.295	0.23			0.482	0.265	-	-	-	-	-	-	-	-
12/09/2016	-	0.05	0.235			-	0.174	0.189	0.342	0	-	-	-	-	-
14/02/2017	-	0.447	0.616			-	0.546	0.165	0.593	0	-	-	-	-	-
29/08/2017	-	0.35	0.11			-	0.412	0.267	0.205	0.005	-	-	-	-	-
10/04/2018	-	0.622	0.557			-	0.593	0.617	0.709	0	-	-	-	-	-
18/10/2018	-	-	0.145			0.156	-	0.345	-	0.06	-	-	-	-	-
24/05/2019	-	-	0.463			0.442	0.165	0.468	0.354	0.145	-	-	-	-	-
31/10/2019	-	0.130	0.384			0.284	0.029	0.458	0.271	0.078	-	-	-	-	-
07/02/2020	-	-	0.145			0.446	0.365	0.640	0.415	0.099	0.431	0.291	0.797	0.497	0.123
01/05/2020	0.153	-	0.169	0.006	0.113	0.104	0.11	0.295	0.237	0.064	0	0	0.051	0	0

Table 6.1 Summary of identified PSH (m)

Notes:

 $1 \quad 0 = PSH \text{ not detected}$

2 -= Well not assessed on that date (or not present at the time).

6.3 GROUNDWATER AND SURAFACE WATER FIELD PARAMETERS

Measured field parameters are provided in Table 6.2, indicating:

- The temperature of groundwater ranged between 16.3 to 25.6 °C;
- pH ranged between 6.65 to 7.37 pH units indicating slightly acidic to neutral groundwater conditions;
- Electrolytic conductivity ranged between 222 to 2,071 µS/cm indicating fresh to slightly saline groundwater conditions;
- Dissolved oxygen ranged between 0.01 ppm and 0.35 ppm which indicates low dissolved oxygen saturation in the measured locations;
- Redox potential ranged between -141.3mV and +151.4mV indicating mildly to strongly anaerobic groundwater conditions in the measured locations;

Table 6.2	Stabilised Field P	hysiochemical	Parameters and	d Field Observations
	Slabiliseu Fielu F	I I y SIUCHEI I II Cal	r alameters and	

WELL ID	STABILIS	SED FIE		METER	S					
	STANDING WATER LEVEL (MBTOC)	PH (FIELD)	REDOX (FIELD)	ELECTRICAL CONDUCTIVITY (FIELD)	TEMPERATURE (FIELD)	DISSOLVED OXYGEN (FIELD)	COMMENTS			
Groundwater										
MW01	1.68	7	-72.1	652	16.3	0.04	So little water in well that peri-pump was not running through flow cell effectively. Approx. 400mL purged into flow cell. Well purged dry and unable to sample			
MW02	1.57	7.13	-133.9	738	24.5	0.11	-			
MW07	1.866	6.84	-82.4	222	18.9	0.04	Turbid, Brown colour, HC sheen			
MW08	2.05	7.37	-141.3	1089	21.4	0.03	Clear, with some black roots			
MW12	1.71	6.99	-120.7	2071	21.9	0.11	clear, no odour			
MW15	1.82	6.8	-56.3	1412	24.9	0.04	-			
MW16	1.516	7	151.4	904	25.6	0.28	clear, slight HC odour			
MW17	1.765	7.28	19	794	23.2	0.35	-			
MW22	3.22	7.29	-77.4	633	22.2	0.03	Brown, slight odour, medium turbidity			
MW26	1.554	6.98	-114.9	964	24.6	0.09	High turbidity, brown orange, no sheen, HC Odour			
MW28	1.43	7.2	-120.5	720	22.4	0.14	-			
MW29	1.939	6.79	-120	858	21.2	0.19	-			
MW30	1.6	7.23	-134.6	726	22.1	0.08	-			

MW32	2.004	6.65	-120	1056	24.3	0.1	Clear				
MW33	1.881	6.91	-114.2	793	23.7	0.01	Clear, slight HC odour				
MW35	1.512	7.03	65.6	722	20.9	0.08	Clear, no odour				
Surface Water											
S01	-	-	-	-	-	-	Not flowing, insufficient water to collect parameters				
S02	-	-	-	-	-	-	Dry				
S03	-	-	-	-	-	-	Not flowing, insufficient water to collect parameters				

7 ASSESSMENT CRITERIA

WSP has applied guidance from Schedule B1 of NEPM 2013 in selection of site criteria for health (via vapour intrusion and drinking water pathways) and ecological receptors. Guideline values are listed in Table 7.1. The NEPM ecological criteria are based on ANZECC 2000 criteria that have been updated in the ANZG, 2018 guidance.

It is noted that HSLs are only relevant to dissolved phase hydrocarbons, and where the groundwater is more than 2m below the ground surface. Where PSH is present or the groundwater is shallow HSLs should not be used and it should be assumed that HSLs for some contaminants, if present, may be exceeded. However, previous sub-slab vapour assessments (WSP 2017) and recent indoor air vapour assessments (WSP, 2020b) have shown that vapour risk to the indoor air environment is unlikely to be significant. The criteria are presented here, and in results tables, for indicative purposes only.

Application of NEPM ecological criteria as "groundwater" investigation criteria is a conservative approach as the guidelines were derived for receiving waters. The closest downgradient ecological receptor is an open storm water channel located approximately 300 m north-west of the site (down hydraulic gradient). The channel flows into Cahill Creek and then Winnererremy Bay (part of Pittwater) approximately 1 km northwest of the site. As Cahill Creek and Winnererremy Bay are tidal, criteria for marine ecosystems have been adopted.

, , ,				
NEPM, 2013 HSLS FOR VAPOUR INTRUSION COMERCIAL / INDUSTRIAL	NEPM, 2013 HILS FOR DRINKING WATER	NHMRC, 2008 RECREATIONAL CRITERIA (10 × HILS)	NEPM, 2013 GILS FOR MARINE WATER	ANZG, 2018 95% TRIGGER VALUES FOR MARINE WATER
6,000 ⁽²⁾	-	-	-	-
Non Limiting ⁽²⁾	-	-	-	-
-	-	-	-	-
-	-	-	-	-
5,000 ⁽²⁾	1	10	500	700
Non Limiting ⁽²⁾	300	3,000	-	5
Non Limiting ⁽²⁾	800	8,000	-	180
-	-	-	-	350
-	-	-	-	75
-	-	-	-	200
Non Limiting ⁽²⁾	600	6,000	-	-
Non Limiting ⁽²⁾	-	-	16	16
		100		
	HSLS FOR VAPOUR INTRUSION COMERCIAL / INDUSTRIAL 6,000 ⁽²⁾ Non Limiting ⁽²⁾ - 5,000 ⁽²⁾ Non Limiting ⁽²⁾ Non Limiting ⁽²⁾ - - Non Limiting ⁽²⁾ Non Limiting ⁽²⁾	HSLS FOR VAPOUR INTRUSION COMERCIAL / INDUSTRIALHILS FOR DRINKING WATER6,000(2)-6,000(2)-Non Limiting(2)5,000(2)1Non Limiting(2)300Non Limiting(2)800Non Limiting(2)800Non Limiting(2)600	HSLS FOR VAPOUR INTRUSION COMERCIAL / INDUSTRIALHILS FOR DRINKING WATERRECREATIONAL CRITERIA (10 × HILS)6,000 ⁽²⁾ 6,000 ⁽²⁾ Non Limiting ⁽²⁾ 5,000 ⁽²⁾ 110Non Limiting ⁽²⁾ 3003,000Non Limiting ⁽²⁾ 8008,00010Non Limiting ⁽²⁾ 8006,000Non Limiting ⁽²⁾ 6006,000	HSLS FOR VAPOUR INTRUSION COMERCIAL / INDUSTRIALHILS FOR DRINKING WATERRECREATIONAL CRITERIA (10 × HILS)GILS FOR MARINE WATER6,000 ⁽²⁾ 6,000 ⁽²⁾ 6,000 ⁽²⁾ Non Limiting ⁽²⁾ 10500Non Limiting ⁽²⁾ 3003,000

Table 7.1 Summary of proposed criteria (µg/L)

CONTAMINANT	NEPM, 2013 HSLS FOR VAPOUR INTRUSION COMERCIAL / INDUSTRIAL	NEPM, 2013 HILS FOR DRINKING WATER	NHMRC, 2008 RECREATIONAL CRITERIA (10 × HILS)	NEPM, 2013 GILS FOR MARINE WATER	ANZG, 2018 95% TRIGGER VALUES FOR MARINE WATER
Cadmium	-	2	20	0.7	5.5
Chromium	-	50	500	4.4	4.4
Copper	-	2,000	20,000	1.3	1.3
Lead	-	10	100	4.4	4.4
Mercury	-	1	10	0.1	0.4
Nickel	-	20	200	7	70
Zinc	-	_	_	15	15

Notes:

- 1 HSLs based on Sand texture and groundwater present between 2 and 4 m mBGL.
- 2 HSL are not directly applicable where groundwater <2 mBGL.

8 ANALYTICAL RESULTS AND DISCUSSION

Summary results for groundwater samples collected during May 2020 are provided in Tables 2 to 4, Appendix B. Tables 2 and 3 also includes historical results from the previous groundwater monitoring program.

Copies of the chain of custody (CoC) documentation and NATA accredited laboratory analytical certificates for the current monitoring event are provided in Appendix E.

8.1 LABORATORY RESULTS

8.1.1 COMPARISON WITH SITE CRITERIA

The following is a summary of the findings of the groundwater analysis from the current sampling event completed in May 2020 compared with the criteria presented in Section 7.

NEPM (2013) health screening criteria (vapour intrusion pathway):

 Concentrations of TRH and BTEXN in groundwater samples were reported below applicable vapour heath screening levels (HSLs) for commercial/industrial (D) sites in groundwater;

NEPM (2013) Groundwater Investigation Levels (GILs) for Drinking Waters:

Arsenic concentrations exceeded the adopted NEPM (2013) drinking water criteria of 10 μg/L at MW02 (14 μg/L), MW07 (66 μg/L), MW08 (12 μg/L), MW16 (84 μg/L), MW22 (23 μg/L), MW26 (46 μg/L), MW28 (20 μg/L), MW29 (120 μg/L), MW30 (20 μg/L), and MW33 (24 μg/L).

NEPM (2013) Groundwater Investigation Levels (GILs) for Marine Waters:

- Arsenic concentrations exceeded the adopted NEPM (2013) GIL of 13 μg/L at MW02 (14 μg/L), MW07 (66 μg/L), MW16 (84 μg/L), MW22 (23 μg/L), MW26 (46 μg/L), MW28 (20 μg/L), MW29 (120 μg/L), MW30 (20 μg/L), and MW33 (24 μg/L).
- Copper concentrations exceeded the adopted NEPM (2013) GIL of 1.3 μg/L in MW35 (9 μg/L) S01 (9 μg/L) and S03 (11 μg/L).
- Zinc concentrations exceeded the adopted NEPM (2013) GIL of 15 μg/L in S01 (46 μg/L) and S03 (62 μg/L).
- Nitrate concentrations exceeded the ANZECC (2000) Trigger Values (95% species protection) for Marine Ecosystems (0.16 mg/L) at MW17 (1.5 mg/L) and MW32 (0.28 mg/L).

ANZG (2018) Trigger Values (95% species protection) for Marine Ecosystems

- Arsenic concentrations exceeded the adopted NEPM (2013) GIL of 13 μg/L at MW02 (14 μg/L), MW07 (66 μg/L), MW16 (84 μg/L), MW22 (23 μg/L), MW26 (46 μg/L), MW28 (20 μg/L), MW29 (120 μg/L), MW30 (20 μg/L), and MW33 (24 μg/L).
- Copper concentrations exceeded the adopted ANZG (2018) GIL of 1.3 μ g/L in S01 (9 μ g/L) and S03 (11 μ g/L).
- Zinc concentrations exceeded the adopted ANZG (2018) GIL of 15 μg/L in S01 (46 μg/L) and S03 (62 μg/L).

8.1.2 COMPARISON WITH PREVIOUS GROUNDWATER RESULTS

During the May 2020 monitoring event, PSH was generally detected in the same locations as has been previously detected. The notable exception was that some of the new wells that had PSH detected in February did not have it detected in May 2020 (MW28, MW30, MW32 and MW33). The thickness of the PSH, where present continues to fluctuate over a relatively wide range in the various impacted wells and PSH recorded was a thickness within historical ranges. This current round the general thickness was less than the previous event in most locations.

Table 2 in Appendix B presents a summary of historical results over time. The results continue to confirm that the dissolved phase plume is dominated by F2 and F3 hydrocarbon fractions with very minor F1 and trace or non-detect BTEX. It is noted that while the PSH impact remains it will continue to feed the dissolved plume and so while the dissolved plume may reach a stable (steady-state) condition, it will not attenuate until the PSH extents declines. Whilst PSH was not observed in MW28, MW30, MW32 and MW33 at this event, the dissolved concentrations in MW30 and MW33 in particular were elevated and may indicated near saturated conditions.

Arsenic appears relatively ubiquitous beneath the main plume. The source is unknown and possibly unrelated to the bus depot use, although it is noted that there is a correlation between locations with PSH or high dissolved phase hydrocarbons and elevated arsenic. It is possible that the redox conditions beneath the plume are favouring dissolution of the arsenic from the solid phase to the groundwater, possibly through dissolution of iron minerals in the sandy soils as discussed in the RAP (WSP, 2020). Generally, the trends appear relatively stable.

8.1.3 SURFACE WATER SAMPLING RESULTS

The stormwater sampling was completed on 01 May 2020 where according to the Bureau of meteorology approximately 14 mm of rain fell. No sheen or odour was noted nor evidence of groundwater discharge.

The results indicated that no detectable hydrocarbons were present. This provides a line of evidence that despite the proximity of the PSH to the stormwater easement, it is unlikely that the contamination is leaking into the system putting the ecology of the creek or downstream receptors at risk.

The depth of the stormwater culvert at sampling point, S02, is 1.198 mBGL. MW36, which was installed adjacent to the stormwater culvert and S02, is installed to a depth of 1.266 mBGL. Both MW36 and S02 were observed to be dry during the GME. Therefore, standing water level is below the stormwater culvert and the likelihood of groundwater discharge to the stormwater culvert is considered unlikely.

8.2 MONITORED NATURAL ATTENUATION

Natural attenuation is a reduction in contaminant concentration and mass by naturally occurring physical, chemical or biological processes in groundwater. Monitored natural attenuation (MNA) is the assessment of natural attenuation processes to determine whether they are taking place at a sufficient rate to mitigate the environmental impacts of a contaminant (DEP, 2004).

WSP has adopted a 'lines of evidence' approach to assessing whether natural attenuation processes are acting at a sufficient rate to mitigate any environmental impacts associated with the hydrocarbon plumes identified on-site.

These lines of evidence include;

- Assessment of PSH thickness and changes in plume areas;
- Assessment of dissolved phase hydrocarbon concentrations; and
- Assessment of geochemical parameters as MNA indicators.

8.2.1 PSH THICKNESS AND DISTRIBUTION

Apparent PSH thickness during the May 2020 round of monitoring were generally consistent with previous mentoring, with some locations showing a slight decrease. Historical data demonstrates that at each location, there is a relatively wide range of fluctuations in PSH thickness. Overall there has been no appreciable improvement in the PSH condition on the site. The well network is unable to delineate the longitudinal spread of the plume to the north west at this point in time. The absence of PSH in the new wells MW28, MW30, MW32 and MW33 where PSH was previously detected warrants further investigation. It may be that the groundwater in the vicinity took some time to re-establish equilibrium following the drilling works. Conditions in these wells will continue to be assessed on a 6 monthly basis.

The inferred plume, based on the May 2020 data is shown on Figure 4, along with gauging measurements of PSH thickness in the wells.

8.2.2 DISSOLVED PHASE CONCENTRATIONS

Based on the information presented in Section 8.1, the dissolved concentrations of hydrocarbons in sampled locations appears relatively consistent with historical data, with minor fluctuations in various wells.

The spatial distribution of dissolved phase hydrocarbons is consistent with previous sampling events, suggesting that the dissolved phase plume is relatively stable, or very gradually deteriorating on the north western periphery. As discussed in Section 8 improvement in the dissolved phase concentrations and extent are only likely to occur once the PSH extent declines as the dissolved plume is fed by the PSH.

8.2.3 GEOCHEMICAL PARAMETERS

A typical natural attenuation process involves petroleum hydrocarbons acting as electron donors in oxidation-reduction reactions resulting in biodegradation of hydrocarbon molecules. Monitoring the concentrations of specific electron acceptors in the groundwater can indicate whether natural attenuation processes are taking place within a dissolved phase hydrocarbon plume (DEP, 2004). Natural attenuation parameters are presented in Table 4 in Appendix B.

Important chemical parameters which may indicate natural attenuation processes are occurring include:

- Alkalinity (as bicarbonate) resulting from an increase in CO₂ (a by-product of microbial respiration), expected to
 increase within the plume;
- Decline in redox potential as oxygen sources (electron acceptors) are depleted, resulting in:
 - Decrease in dissolved oxygen initially (until depleted) the most readily available electron acceptor in the aquifer;
 - Decrease in nitrate concentrations and corresponding increase in ammonia (a reduced form of nitrogen); and
 - If redox drops substantially then decrease in sulphate and corresponding increase in H₂S odours and dissolved methane.

The following conclusions can be made with respect to natural attenuation processes across the site;

- Recorded redox results are low both within and outside of the plume, and the strongest reducing conditions are generally associated with hydrocarbon presence; this indicates microbial degradation processes are acting on the plume;
- Sulphate was generally present across the site and surrounds at varying concentrations. The lowest sulphate results were in well immediately downgradient of the PSH plume, but highest in locations cross gradient from the plume; these results are further evidence for microbial degradation occurring, but given that the sulphate is low downgradient of the plume, it may indicate that electron acceptors are limited.

Dissolved methane was present in all wells within the dissolved plume but most elevated in MW07 and MW29 (upgradient of the PSH) and MW16 (downgradient of the PSH). Methane was absent in background location MW17).

Overall, there are strong correlations between natural attenuation indicators and the plume footprint. The range of natural attenuation parameter concentrations indicates that the system is in a dynamic state, and generally, there are sufficient electron acceptors available to stimulate microbial degradation. However, the rate of degradation may be limited to some extent, particularly where strongly reducing sulphate reduction and methanogenesis conditions appear to be present.

8.3 SUMMARY OF RISK

A conceptual site model is presented in the RAP (WSP, 2020). In summary, the CSM found that under the current land use of the site and surrounds the identified contaminants present a low risk to human receptors. In the event of excavation or earthworks which expose impacted soils or groundwater, there is a moderate risk to human health via ingestion or dermal contact with contaminated soils or groundwater which would require management under a Construction Environmental Management Plan (CEMP) and site-specific safe work method statements (SWMS). An EMP has been prepared for the site and surrounds to assist in the management of these risks.

Vapour risk has been shown via sub-slab measurement to be acceptably low.

The contaminants present a low to moderate risk to on-site and offsite ecological receptors. Given the industrial nature of the site setting and using of surrounding properties, the local ecology is not considered to require high protection measures. The existing gardens and trees over the area of the plume appear to be healthy and unstressed by the hydrocarbon impact to the underlying groundwater.

Risks to more distant downgradient human and ecological receptors are unlikely given the low toxicity of the PSH constituents (except for naphthalene – which was not recorded ecological criteria during this monitoring round) and the evidence for microbial degradation occurring. Monitoring wells beyond the extent of the PSH impacted area of the plume, to the west, indicate that dissolve phase concentrations attenuate with distance. It is, however, possible that the hydrocarbons may migrate more rapidly via preferential pathways provided by local services. The recent additional well installation work included drilling two bores into backfill materials surrounding the stormwater culvert to the north of the plume (MW36 and MW37). At the time of the May sampling event MW36 was dry, with MW37 recording hydrocarbon concentrations less than laboratory detection limits. This indicates that the potential for accelerated migration via this pathway is incomplete and unlikely to be significant. In addition, the depth of the stormwater culvert at sampling point, S02, is 1.198 mBGL. MW36, which was installed adjacent to the stormwater culvert and S02, is installed to a depth of 1.266 mBGL. Both MW36 and S02 were observed to be dry during the GME. Therefore, standing water level is below the stormwater culvert and the likelihood of groundwater discharge to the stormwater culvert is considered unlikely. Ongoing monitoring of the wells will be required, however, across a wider range of seasonal conditions. Wells around the sewer main that passes beneath the plume is unknow at this stage due to access constraints.

Inorganic contamination of the groundwater, primarily an arsenic plume, is present beneath the site and surrounds. This is unlikely to relate the Bus Depot activities and maybe a more regional issue possibly related to historical agricultural or turf production. There does, however, appear to be a correlation between hydrocarbon impacted locations and elevated arsenic possibly indicating that the low redox conditions induced by the plume may be solubilizing arsenic from the solid phase minerals. This solubilisation may be a secondary effect of the low redox firstly affecting the iron chemistry in the aquifer, solubilizing iron and thus reducing the capacity of the aquifer, in the vicinity of the hydrocarbon plume, to sorb arsenic to iron minerals.

Risks presented by the arsenic plume are unlikely to preclude general industrial use of the site and surrounds but would be of concern during excavations works. However, the precautions required under the EMP for minimising dermal and ingestion risks presented by the hydrocarbons during construction works would assist in managing this risk as well.

Ecological risk associated with the arsenic is unknown as the extent of the plume is uncertain as is the origin of the arsenic. The risk to residents some distance from the site is also uncertain, however, given the shallow groundwater

downgradient of the site is unlikely to be used for potable supply the risk is likely to be of a recreational exposure scenario. Results from the groundwater in the vicinity of the site have generally been lower than health-based recreational criteria.

The results of this latest groundwater monitoring event continue to support the above.

9 QUALITY ASSURANCE/ QUALITY CONTROL

Field quality control procedures included rigorous sample collection, decontamination procedures and sample documentation. WSP implemented QA/QC procedures during groundwater sampling by collecting representative QA/QC samples for laboratory analysis. Following this analysis, laboratory and sampling data quality objectives were assessed and reported in terms of data precision, accuracy and completeness.

All field instruments were calibrated prior to use. Calibration certificates are included in Appendix B.

The following QA/QC samples were collected in the field and analysed:

- QA01 and QA02 are intra-laboratory duplicates of primary groundwater samples MW12 and MW07; QA01A and QA02A are inter-laboratory duplicates of these primary groundwater samples taken during the May 2020 monitoring round;
- Trip Blank is a trip blank sample analysed to assess the potential for cross-contamination resulting from sample storage, handling and transport; Trip Spike is a trip spike sample analysed to assess the potential for loss of volatile contaminants from the samples during storage, handling and transport; taken during the May 2020 monitoring round.
- Laboratory QA/QC included chain-of-custody documentation, sample integrity and holding times, use of acceptable NATA-registered laboratory methods and laboratory QA/QC results (refer to laboratory certificates provided in Appendix E).

Table 5 in Appendix B presents the results of various data quality indicators. The following comments are made as a summary regarding the quality of the analytical components of this project:

- Sample integrity and container requirements were documented as acceptable, though temperature upon receipt at the laboratory was not ideal (16.5°C). Nevertheless, the samples were received on the final day of sampling, and the trip spikes showed acceptable recovery indicating volatile losses in transit were unlikely to be a concern;
- All sample holding times and other QA/QC criteria for volatile contaminants were deemed acceptable;
- All other holding time compliances were documented as acceptable
- Field pHs were similar to lab pHs (ratio between 0.96 and 1.05) as shown in see Table 4;
- Field ECs were generally similar to lab ECs (ratio between 0.82 and 1.26) except for the results for MW07 (3.83) which was unexpectedly high as shown in see Table 4;
- The charge balance between cations and anions was generally less than 10% as shown in see Table 4, with the exception of the result from MW32. The results show that the testing generally included all significant ions and that the analysis of those ions balanced.
- Relative Percentage Differences (RPDs) between the primary samples and both the intra-laboratory and interlaboratory duplicates were generally within the acceptable ranges. Result's that exceeded 30% relative difference were recorded in two results from one of the inter-laboratory duplicate pairs (MW07/QA02A) with a maximum RPD of 51.4 recorded. This deviation is relatively minor and may be due to slight differences in lab methods.
- Trip blank and trip spike results were acceptable (provided in Table 5, Appendix B);
- The laboratories (Envirolab and SGS) were NATA accredited for all analyses undertaken;
- All laboratory QA/QC method blanks and field blanks were found to be within acceptable limits.

In summary, the QAQC data is determined to be of sufficient quality to ensure the validity of the conclusions reached for this assessment and characterisation of the site from a contamination perspective.

10 CONCLUSIONS AND RECOMMENDATIONS

Based on the results presented in this report, WSP provides the following conclusions and recommendations:

- PSH was recorded in three offsite wells north-west of the bus refuelling bay (MW10, MW18, MW19, MW20, MW21, MW25 and MW31), ranging from 51 mm to 237 mm. PSH was also found in three onsite well (MW05, MW13 and MW14) ranging from 6mm to 169 mm. Apparent PSH thickness generally decreased during the May 2020 round of monitoring; however, the historical data demonstrates that at each location, there is a relatively wide range of fluctuations in PSH thickness.
- The dissolved phase hydrocarbon plume surrounding the PSH impacted area appears relatively stable and, while not delineated in most directions, the concentrations appear to attenuate significantly with distance from the PSH affected area.
- Available wells in the backfilled sands of the stormwater easement were dry or had non detect hydrocarbons
 indicating that this potential pathway is not complete at the time of this assessment.
- No hydrocarbons were detected in the surface waters of the drainage line to the north of the plume, including samples from upgradient, at the site boundary and downgradient of the site.
- There is clear evidence of biodegradation of hydrocarbons occurring in the groundwater, within dissolved hydrocarbon plume. The range of redox conditions suggest a dynamic system, but in places, the redox conditions appear quite reducing and may indicate that the rate of degradation is limited by the availability of electron acceptors.
- An arsenic plume is present in the groundwater beneath the site and surrounds. The source of the plume is uncertain, but the distribution and concentrations appear relatively stable.
- The site is considered suitable for its continued use as an operational bus depot. Surrounding sites are also suitable for ongoing commercial/industrial use. Based on the current site orientation and activities, the risk posed by the identified contamination to human or ecological receptors is considered low. In the event of excavation or earthworks which expose impacted soils or groundwater, there is an increased risk to human health via ingestion and dermal contact with contaminated material which would require management through occupational exposure controls in accordance with health and safety legislation. In addition, an EMP has been prepared for the site and surrounds to assist in management of these risks (WSP, 2020e).

WSP recommends that:

- Implementation of the PSH removal system in accordance with Section 5.4 of the RAP (WSP, 2020d),
- Groundwater conditions should continue to be assessed in accordance with Section 6.2 of the RAP,

11 REFERENCES

- ANZECC/ARMCANZ (2018), Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.
- Australian Government Bureau of Meteorology, 2019 Australian Groundwater Explorer (<u>www.bom.gov.au</u>) Accessed 23/07/2019
- CRC Care, 2013 Technical Report No 23 Petroleum hydrocarbon vapour intrusion assessment: Australian guidance.
- ENRS, 2018 Groundwater Monitoring Event (GME) Report April 2018
- National Environment Protection Council (2013) National Environment Protection Measure 2013 Assessment of Site Contamination. Schedule B(1): Guideline on the Investigation Levels for Soil and Groundwater;
- WSP, 2017a Soil Vapour Assessment STA Bus Depot 58 Darley Street, Mona Vale NSW
- WSP, 2017b Environmental Management Plan Mona Vale Bus Depot 58 Darley Street, Mona Vale NSW Rev B, dated April 2017
- WSP, 2019a Groundwater Monitoring Event October 2018 STA Mona Vale Bus Depot 58 Darley Street, Mona Vale, NSW (report dated January 2019)
- WSP, 2019b Remediation Action Plan (Revised 2019) State Transit Bus Depot, 58 Darley Street Mona Vale, New South Wales (dated December 2019)
- WSP, 2020a Factual Record of Well Installation Works, Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW (report dated March 2020)
- WSP, 2020b Offsite Vapour Intrusion Assessment, STA Mona Vale (report dated March 2020)
- WSP, 2020c Groundwater Monitoring Event Oct 2019 and Feb 2020 STA Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW (report dated May 2020)
- WSP 2020d Remediation Action Plan (Revised 2020) State Transit Bus Depot, 58 Darley Street Mona Vale, New South Wales (report dated May 2020)
- WSP, 2020e Environmental Management Plan, Mona Vale Bus Depot 58 Darley St, Mona Vale NSW (Report dated June 2020)

12 LIMITATIONS

This Report is provided by WSP Australia Pty Limited (WSP) for State Transit Authority (Client) in response to specific instructions from the Client and in accordance with WSP's proposal dated 27 August (Agreement).

PERMITTED PURPOSE

This Report is provided by WSP for the purpose described in the Agreement, and no responsibility is accepted by WSP for the use of the Report in whole or in part, for any other purpose (Permitted Purpose).

QUALIFICATIONS AND ASSUMPTIONS

The services undertaken by WSP in preparing this Report were limited to those specifically detailed in the Report and are subject to the scope, qualifications, assumptions and limitations set out in the Report or otherwise communicated to the Client.

Except as otherwise stated in the Report and to the extent that statements, opinions, facts, conclusion and / or recommendations in the Report (Conclusions) are based in whole or in part on information provided by the Client and other parties identified in the report (Information), those Conclusions are based on assumptions by WSP of the reliability, adequacy, accuracy and completeness of the Information and have not been verified. WSP accepts no responsibility for the Information.

The Conclusions are reflective of the current Site conditions and cannot be regarded as absolute without further extensive intrusive investigations, outside the scope of the services set out in the Agreement and are indicative of the environmental condition of the Site at the time of preparing the Report. As a general principle, vertical and horizontal soil or groundwater conditions are not uniform. No monitoring, common or intrusive testing or sampling technique can eliminate the possibility that monitoring or testing results or samples taken, are not totally representative of soil and / or groundwater conditions encountered at the Site. It should also be recognised that Site conditions, including subsurface conditions can change with time due to the presence and concentration of contaminants, changing natural forces and man-made influences.

Within the limitations imposed by the scope of the services undertaken by WSP, the monitoring, testing (intrusive or otherwise), sampling for the preparation of this Report has been undertaken and performed in a professional manner in accordance with generally accepted practices, using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made. WSP has prepared the Report without regard to any special interest of any person other than the Client when undertaking

the services described in the Agreement or in preparing the Report.

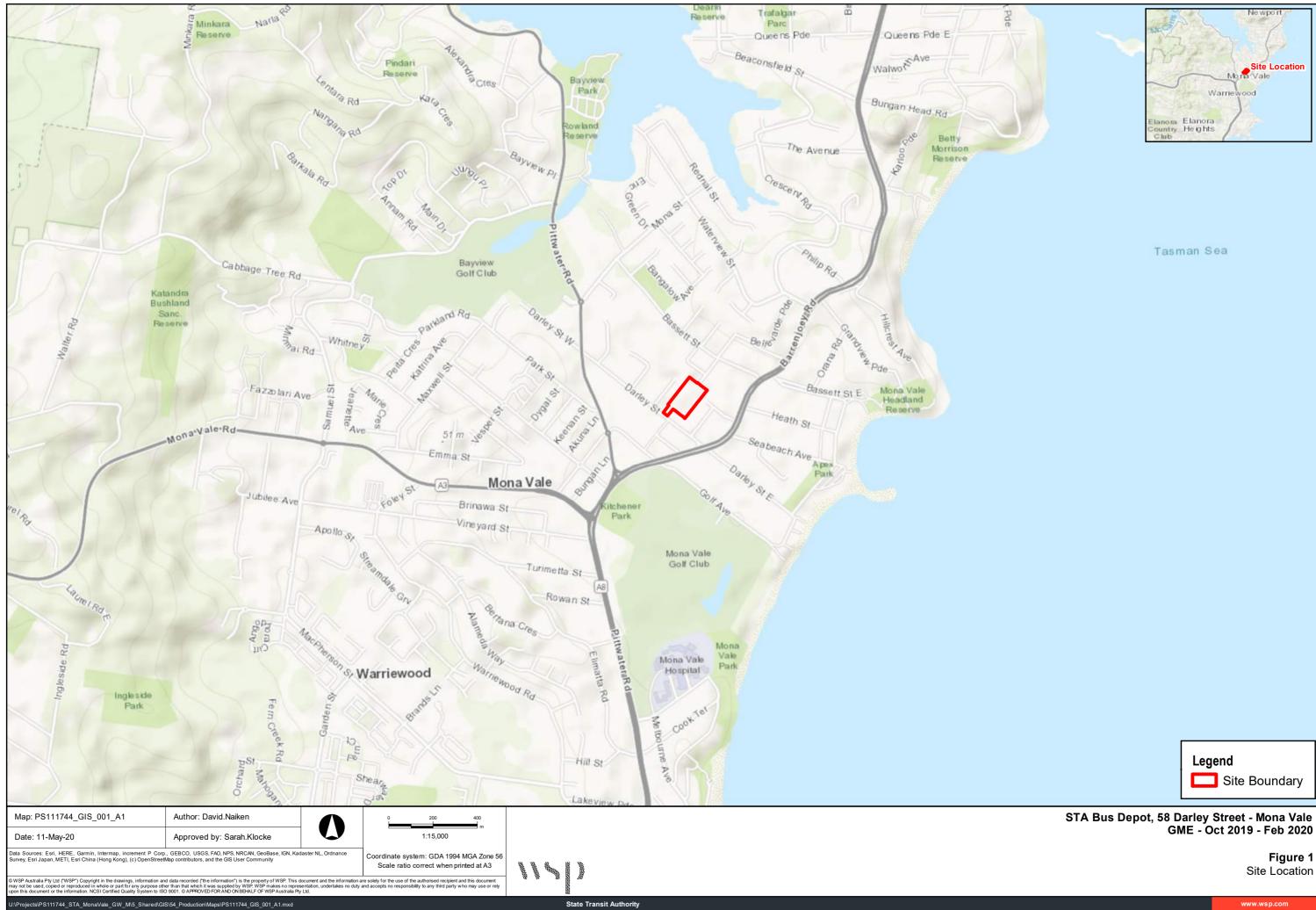
USE AND RELIANCE

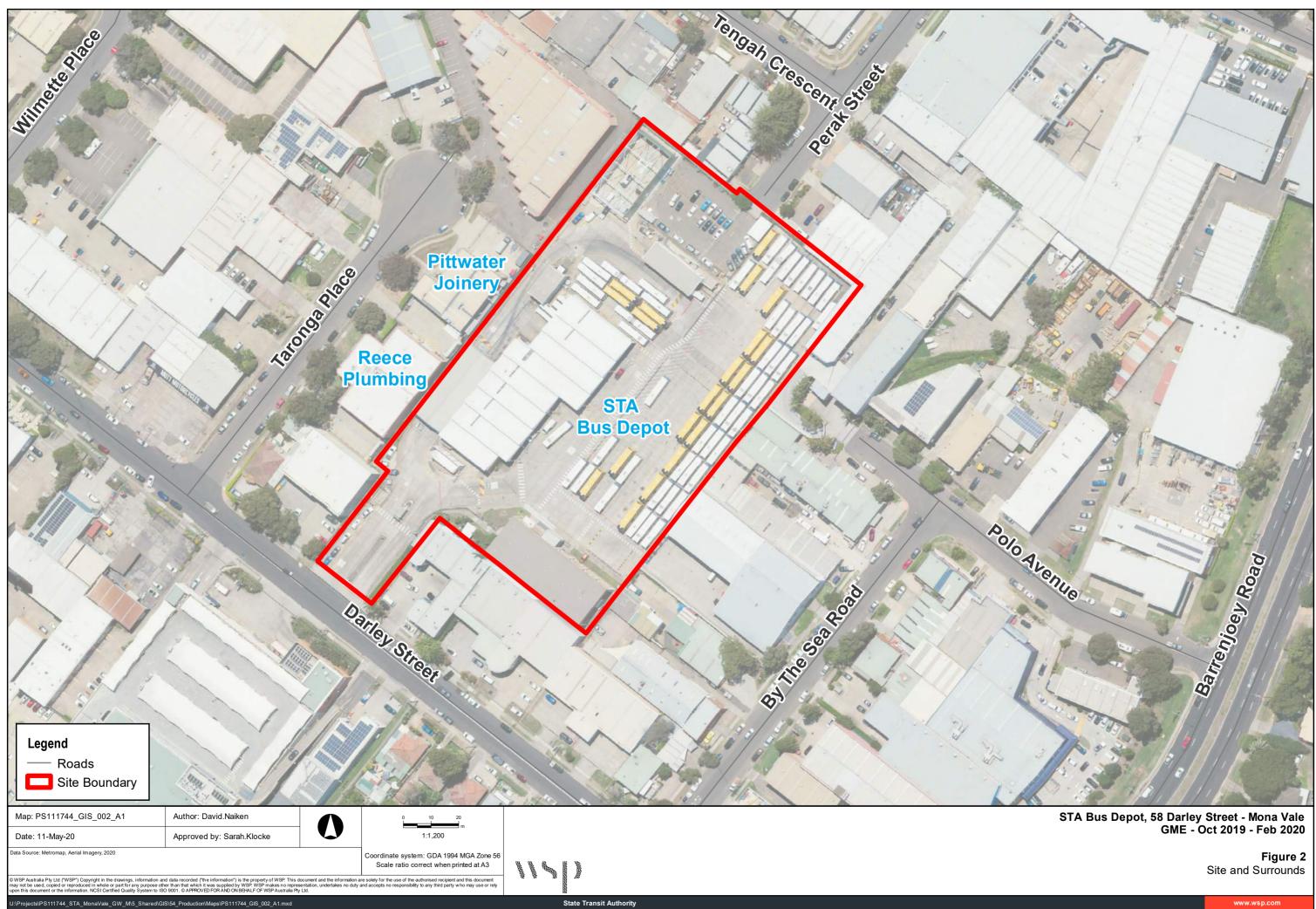
This report should be read in its entirety and must not be copied, distributed or referred to in part only. The Report must not be reproduced without the written approval of WSP. WSP will not be responsible for interpretations or conclusions drawn. This Report (or sections of the Report) should not be used as part of a specification for a project or for incorporation into any other document without the prior agreement of WSP.

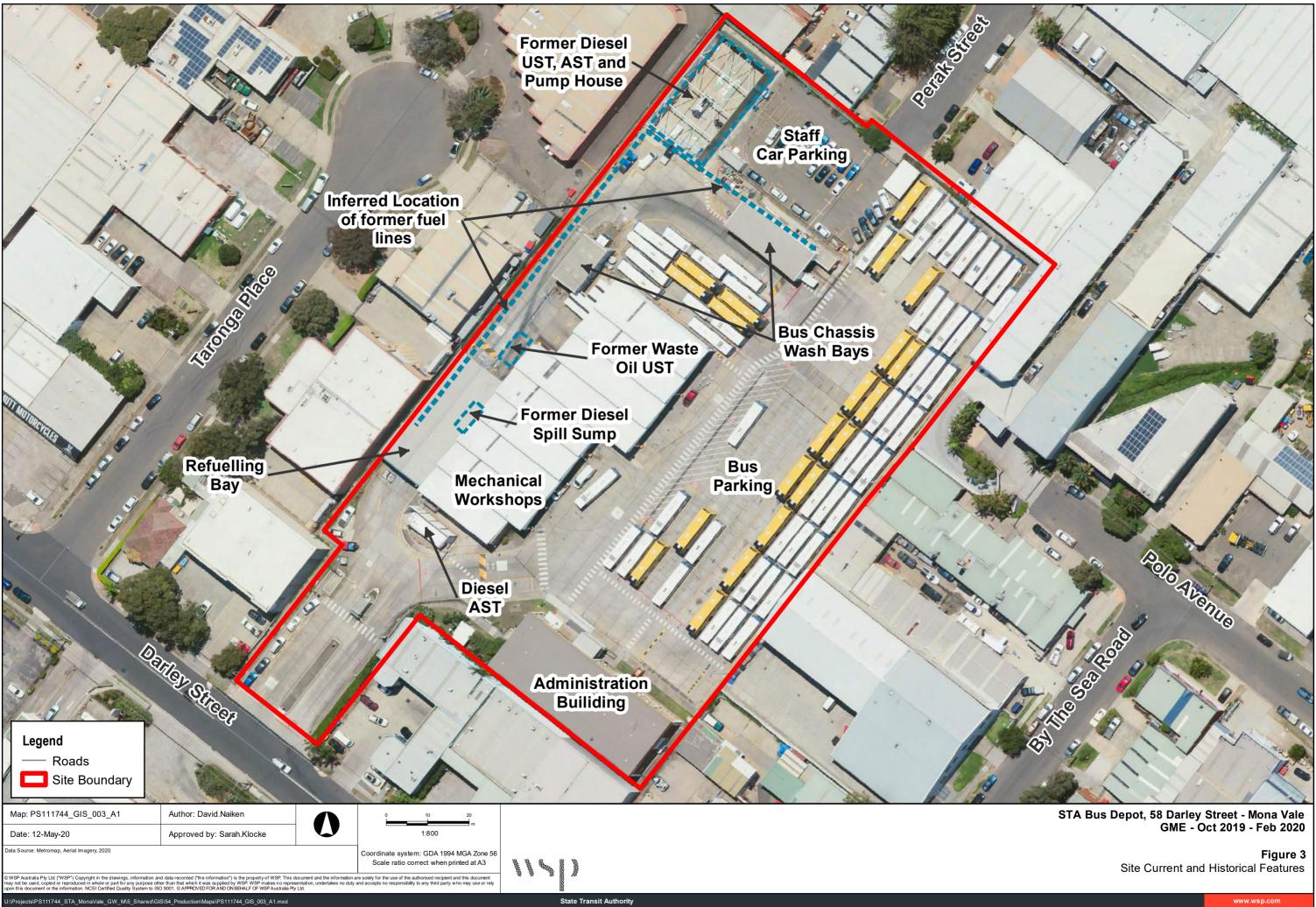
WSP is not (and will not be) obliged to provide an update of this Report to include any event, circumstance, revised Information or any matter coming to WSP's attention after the date of this Report. Data reported and conclusions drawn are based solely on the information made available to WSP at the time of preparing the Report. The passage of time; unexpected variations in ground conditions; manifestations of latent conditions; or the impact of future events (including (without limitation) changes in policy, legislation, guidelines, scientific knowledge; and changes in interpretation of policy by statutory authorities); may require further investigation or subsequent re-evaluation of the Conclusions. This Report can only be relied upon for the Permitted Purpose and may not be relied upon for any other purpose. The Report does not purport to recommend or induce a decision to make (or not make) any purchase, disposal, investment,

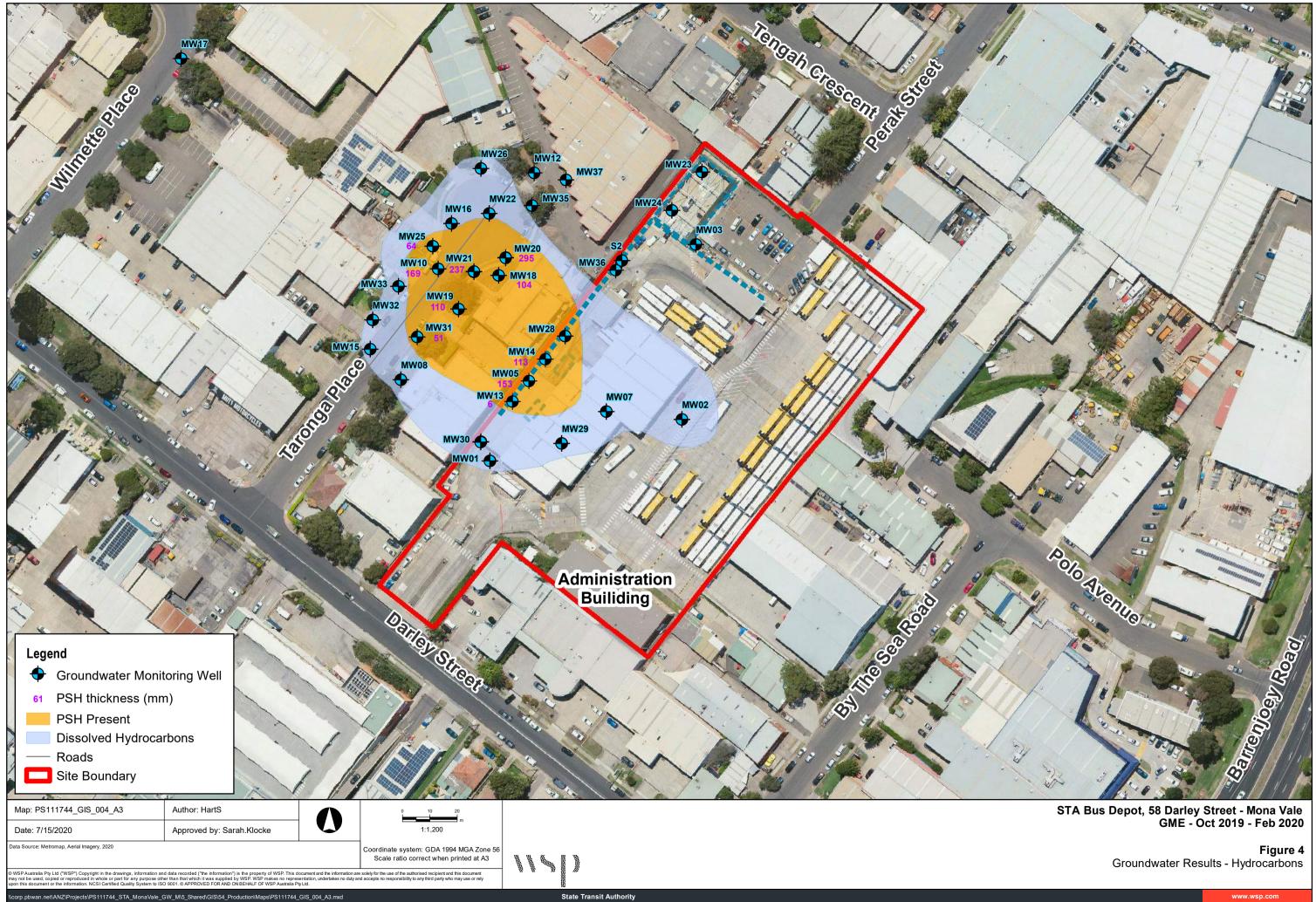
divestment. financial

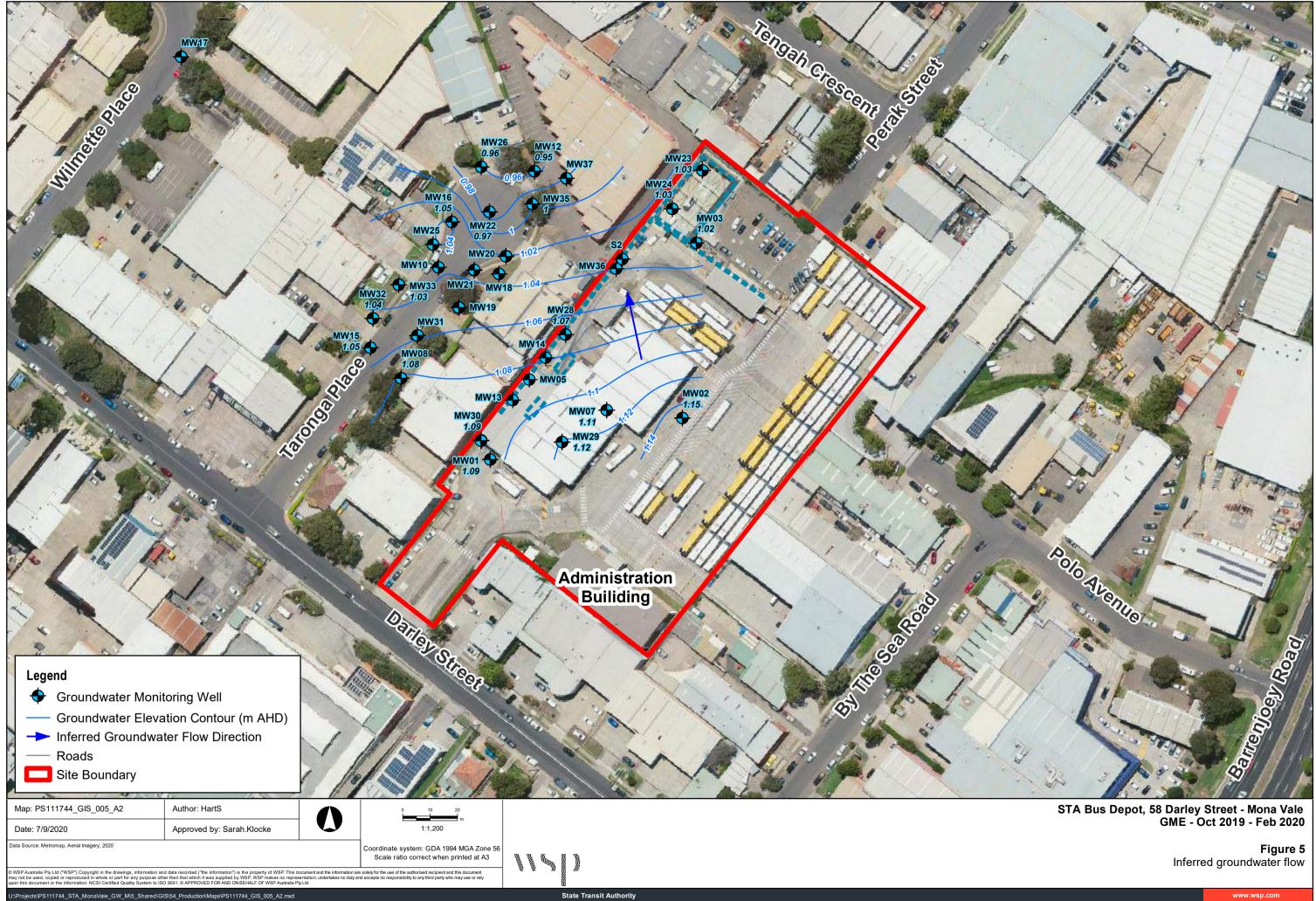
commitment or otherwise. It is the responsibility of the Client to accept (if the Client so chooses) the Conclusions and implement any recommendations in an appropriate, suitable and timely manner.


In the absence of express written consent of WSP, no responsibility is accepted by WSP for the use of the Report in whole or in part by any party other than the Client for any purpose whatsoever. Without the express written consent of


WSP, any use which a third party makes of this Report or any reliance on (or decisions to be made) based on this Report is at the sole risk of those third parties without recourse to WSP. Third parties should make their own enquiries and obtain independent advice in relation to any matter dealt with or conclusions expressed in the Report. *DISCLAIMER*


No warranty, undertaking or guarantee whether expressed or implied, is made with respect to the data reported or the conclusions drawn. To the fullest extent permitted at law, WSP, its related bodies, corporate and its officers, employees and agents assumes no responsibility and will not be liable to any third party for, or in relation to, any losses, damages or expenses (including any indirect, consequential or punitive losses or damages or any amounts for loss of profit, loss of revenue, loss of opportunity to earn profit, loss of production, loss of contract, increased operational costs, loss of business opportunity, site depredation costs, business interruption or economic loss) of any kind whatsoever, suffered or incurred by a third party.


APPENDIX A FIGURES



www.wsp.cor

APPENDIX B ANALYTICAL RESULTS SUMMARY

							Gau\ging Data				Field Pa	ameters				
							Standing Water Level (mBTOC)	SH thickness (m)	Adjusted Standing Water Level (mAHD)	pH (Field)	edox (Field)	Electrical Conductivity Field)	emperature (Field)	Dissolved Oxyven (Field)	Vell headspace PID	omments
Units							Sta	PS	Ad	PH units	mV	μS/cm	 ℃	ppm	ppm	<u>°</u>
Laboratory PQ	L									0.01	0.01	1	0.1	0.01	0.1	
Well ID MW01	Easting	Northing	Ground (mAHD) 2.85	TOC (mBGL) 0.063	TOC (mAHD) 2.787	Date 10-01-12	-	0	-	7.21	29.8	911	25.7	0.07	-	
MW01	-	-	2.85	0.063	2.787	24-08-12	-	0	-	7.06	-28.3	640	17.2	0.1	-	-
MW01 MW01	-	-	2.85 2.85	0.063	2.787 2.792	19-10-18 23-05-19	1.70 1.81	0	1.08 0.99	6.8 6.11	-127.7 -81.4	846 824	20.1 23.2	3.1 0	- 35.6	clear, no odour Clear, colourless, slight HC odour
MW01 MW01	-	-	2.85	0.058	2.792 2.792	31-10-19 06-02-20	1.75 1.81	0	1.05 0.99	6.91 -	-127.8	839	23.2	0	-	Clear, colourless, odourless Gauge only
MW01 MW02	343028.490	6272627.098	2.861 2.73	0.069	2.781 2.659	01-05-20	1.687	0	1.09	7.00	-72.1 367.7	652 909	16.3 25.7	4.24 0.16	-	Well purged dry and unable to sample
MW02	-	-	2.73	0.071	2.659	24-08-12	-	0	-	6.96	-24	737	18.9	0.16	-	-
MW02 MW02	-	-	2.73	0.071	2.659 2.679	19-10-18 23-05-19	1.58 1.66	0	1.08 1.02	- 7.15	- -141.6	- 600	- 24.4	- 0	- 1.2	Guage only Clear, colourless, odourless
MW02 MW02	-	-	2.73	0.051	2.679	31-10-19 06-02-20	1.60 1.66	0	1.08 1.02	7.29	-156.9	546	24	0.3	-	Clear, colourless, odourless
MW02	- 343098.340	- 6272642.155	2.73	0.051	2.679	01-05-20	1.557	0	1.02	- 7.13	-133.9	- 738	- 24.5	- 0.11	-	Gauge only
MW03			2.51	0.04	2.47	10-01-12	-	0	-	6.99	173.6	1413	25.4	-	-	-
MW03 MW03	-	-	2.51	0.04	2.47 2.47	24-08-12 19-10-18	- 1.68	0	- 0.80	6.94 7.04	-22.6 -75.4	1349 924	19.2 21.2	0.32	-	- clear, no odour
MW03 MW03	-	-	2.51 2.51	0.051	2.459 2.459	23-05-19 06-02-20	1.77	0	0.69	5.33	37.8	899 -	23.4	0	0.2	Clear, colourless, odourless Inaccessible - Under new bus port
MW03	343103.394	6272705.772	2.808	-	2.706	01-05-20	1.683	0	1.02	-	-	-	-	-	-	Gauge only
MW04 MW04	-	-	2.78 2.78	-	-	10-01-12 24-08-12	-	0	-	7.33	55.2 -28.9	55.2 784	22.7 17.4	0.16	-	- -
MW04 MW05	-	-	2.78 2.57		-	06-02-20 24-08-12	-	0.257	-	-	-	-	-	-	-	-
MW05 MW05	- 343042.618	- 6272656.105	2.57	-	-	06-02-20	- 1.614	- 0.153	- 1.17	-	-	-	-		-	- -
MW06	-	-	2.92	-	-	24-08-12	-	0	-	7.44	-50.1	456	16.8	1.67	-	-
MW07 MW07	-	-	3	0.142	2.858 2.858	24-08-12 19-10-18	1.853	0	2.86 1.01	6.81 6.97	-15.8 -158.1	738 757	18.5 18.9	0.19	-	- clear, slight HC odour
MW07 MW07	-	-	3.13 3.13	0.142	2.988 2.988	23-05-19 31-10-19	1.964 1.902	0	1.02 1.09	6.72 6.88	-127.3 -115.8	852 762	21.7 20.0	0 0.29	1.1	Clear, colourless, slight HC odour
MW07	-	-	3.13	0.142	2.988	06-02-20	1.873	0	1.12	-	-	-	-	-	-	Gauge only
MW07 MW08	343070.781	6272644.938 -	3.111 3.04	0.139	2.972	01-05-20 19-11-12	1.864 -	0	1.11 -	6.84 6.89	82.4 -129.6	2220 113	18.9 21.2	10.56 ⁽²⁾ 0.67	-	Turbid, Brown colour, HC sheen -
MW08 MW08-B	342996 342996.15	62772656 6272656.64	3.04 3.22	-	-	30-01-14 21-06-14	-	0	-	- 7.14	- -88	- 1000	- 20.8	- 0.01	-	Dry -
MW08-B	342996.15	6272656.64	3.22	-	-	13-10-14	-	0	-	7.21	-114	915	18.4	0.38	-	-
MW08-B MW08-B	342996.15 342996.15	6272656.64 6272656.64	3.22 3.22	-	-	11-02-15 09-12-15	-	0	-	7.08 7.19	-187 -182	1087 903	21.2 20.8	0.18	-	
MW08-B MW08-B	342996.15 342996.15	6272656.64 6272656.64	3.22 3.22	0.08	3.14	19-10-18 23-05-19	2.07	0-	1.07	-	-	-	-	-	- 1.1	Insufficient water for all samples Insufficient water for all samples
MW08 MW08	342996.15 342996.15	6272656.64	3.22 3.22	0.08	3.14 3.14	31-10-19 06-02-20	- 2.05	- 0	- 1.09	-	-	-	-	-	-	Dry at 2.04 m
MW08	342996.063	6272656.64 6272656.704	3.218	0.08	3.135	01-05-20	2.052	0	1.08	7.37	-141.3	1089	21.4	0.35	-	Gauge only, Dry Clear, with some black roots
MW09 MW09	- 343030.91	- 6272672.59	2.89 3.01	-	-	19-11-12 30-01-14	-	0.3 0.08	-	- 6.3	81	- 953	- 23.2	-	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	21-06-14 13-10-14	-	0.41 0.475	-	7.05 6.73	-127 -128	715 708	20 16.9	0.15	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	11-02-15 09-12-15	-	0.207	-	7.1	-160 -251	563 702	23 21.2	0.25	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	12-09-16 14-02-17	-	0.05	-	7.81	-237	483 750.63	17.8 24.1	0.93	-	
MW09	343030.91	6272672.59	3.01	-	-	29-08-17	-	0.35	-	6.96	-283	745	19.4	-	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	10-04-18 19-10-18	-	0.622	-	7.09	-251	728	- 24.1	-	-	Inacessible
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	23-05-19 31-10-19	- 2.00	- 0.13	-	-	-	-	-	-	-	Inacessible PSH present so not sampled
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	06-02-20 01-05-20	-	-	-	-	-	-	-	-	-	Inacessible
MW10	-	-	-	-	-	02-04-13	-	0.02	-	6.97	-146	761	26.8	1.25 -	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	-	-	30-01-14 21-06-14	-	0.55 0.5	-	6.66 7.02	-85 -135	890 717	26.2 22.1	0.07	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	-	-	13-10-14 11-02-15	-	0.446	-	7.37 6.98	-148 -171	747 846	20 26.1	0.38	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81	-	-	09-12-15 12-09-16	-	0.23	-	6.96 7.41	-223 -232	740 605	24.4 20.8	0.41	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	-	-	14-02-17 29-08-17	-	0.616	-	7.02 6.7	-187.3 -289	294.24 833	26 21.3	0.03	-	
MW10 MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81	- 0.08	- 2.73	10-04-18 18-10-18	- 1.71	0.557	- 1.14	7.2	-172	927	21.7	-	-	IP malfunction, PSH measured with bailer
MW10	343009.73	6272696.86	2.81	0.08	2.73	23-05-19	2.23	0.463	0.88	-	-	-	-	-	76.7	PSH present so not sampled
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	0.08	2.73 2.73	31-10-19 06-02-20	2.13 2.01	0.384	0.92 0.84	-	-	-	-	-	-	PSH present so not sampled Gauge only
MW10 MW11	343009.661	6272696.901 -	2.781 2.67	0.08	2.683	01-05-20 19-11-12	1.850 -	0.169 0	0.97	- 7.6	- -170.3	- 793	- 21.5	- 0.57	-	Gauge only -
MW11 MW11	343048.97 343048.97	6272701.3 6272701.3	2.77	-	-	30-01-14 21-06-14	-	0	-	6.8 6.94	-96 -120	848 730	25.2 20.5	- 0.23	-	-
MW11 MW11 MW11	343048.97 343048.97	6272701.3 6272701.3	2.77	-	-	13-10-14 11-02-15	-	0	-	6.79 6.9	-157	668 774	18.9 24.9	0.14	-	
MW11	343048.97	6272701.3	2.77	-	-	09-12-15	-	0	-	6.98	-214	637	23.3	0.32	-	- Abandoned after this date
MW12 MW12	- 3403044	- 6272732	2.6 2.71	-	-	19-11-12 30-01-14	-	0	-	- 7.2	169.3 -	115 -	19.6 -	0.01	-	- -
MW12-B MW12-B	343044.64 343044.64	6272731.85 6272731.85	2.68 2.68	-	-	21-06-14 13-10-14	-	0	-	7.55 7.16	-76 -195	1066 2300	18.8 17.6	1.08 0.17	-	-
MW12-B MW12-B	343044.64 343044.64	6272731.85 6272731.85	2.68 2.68	-	-	11-02-15 09-12-15	-	0	-	7.14 7.11	-194 -201	1247 1300	22.6 21.5	0.07	-	-
MW12-B MW12-B	3403044 3403044	6272732 6272732	2.68	0.085	2.595 2.595	18-10-18 23-05-19	1.54	0	1.06 0.85	7.1	-165.3 -155.4	3687 2688	18.3 20.9	2.37 0.13	- 1.4	Clear, faint H2S odour, free flowing Clear, colourless, odourless
MW12-B	3403044	6272732	2.68	0.085	2.595	31-10-19	1.67	0	0.93	7.06	-135.4	1688	19.9	0.1	-	-
MW12-B MW12-B	3403044 343044.548	6272732 6272731.9	2.68 2.681	0.085	2.595 2.597	06-02-20 30-04-20	1.74 1.643	0	0.86	- 6.99	120.7	- 2071	21.9	- 0.11	-	Gauge only clear, no odour
MW13 MW14	343036.657 343048.648	6272648.752 6272664.038	2.684 2.605	-	-	01-05-20 01-05-20	1.509 1.513	0.006 0.113	1.18 1.19	-	-	-	-	-	-	Gauge only
MW15 MW15	342984.96 342984.96	6272667.61 6272667.61	3.01 3.01	-	-	30-01-14 21-06-14	-	0	-	7.09 6	69 -19	909 1025	28.2 22.2	- 0.2	-	-
MW15 MW15	342984.96 342984.96	6272667.61 6272667.61	3.01 3.01	-	-	13-10-14 11-02-15	-	0	-	6.96 6.84	6 -12	1012 962	20.6	0.2	-	
MW15	342984.96	6272667.61	3.01	-	-	09-12-15	-	0	-	6.96	47	768	25	0.55	-	-
MW15 MW15	342984.96 342984.96	6272667.61 6272667.61	3.01 3.01	0.154 0.135	2.856 2.875	18-10-18 23-05-19	1.836 1.938	0	1.02 0.94	- 6.56	- 33.5	- 1261	- 24.8	- 1.1	- 2.8	Guage only Clear, colourless, odourless
MW15 MW15	342984.96 342984.96	6272667.61 6272667.61	3.01 3.01	0.135	2.875 2.875	31-10-19 06-02-20	1.89 1.94	0	0.99 0.94	6.81	19.1 -	1302 -	23.7	0	-	- Gauge only
MW15 MW16	342984.957 343014.6	6272667.696 6272713.36	3.004 2.62	0.138	2.866	30-04-20 02-11-13	1.820 -	0	1.05	6.8 -	-56.3	1412 -	24.9	6.84	-	-
						J= 11-13			1		1	1				

								Gau\ging Data	4			Field Pa	rameters			
									Adjusted Standing Water Level (mAHD)			,ity	_	(Field)		
							5 -	Ű.	ding			cal Conductivity	Temperature (Field)	ven (I	e PID	
							Standing Water Level (mBTOC)	SH thickness (m)	Stan HD)		(pla	Conc	ure (Oxyven	Well headspace	ν.
							ding (mB	thick	sted : (mA	pH (Field)	Redox (Field)	t) (I	berat	Dissolved	head	ments
							tanc evel	SHt	Adjus evel	H	Sedo	Electric (Field)	emp	Disso	Vell	Co di
Units										pH units	mV	μS/cm	°C	ppm	ppm	
Laboratory PQ	L									0.01	0.01	1	0.1	0.01	0.1	
Well ID	Easting	Northing	Ground (mAHD)	TOC (mBGL)	TOC (mAHD)	Date										
MW16	343014.6	6272713.36	2.62	-	-	30-01-14		0	-	6.7	-101	835	28.8	-	-	-
MW16 MW16	343014.6 343014.6	6272713.36 6272713.36	2.62	-	-	21-06-14 13-10-14	-	0	-	6.82 6.28	-95 -105	822 938	21.9 21.5	1.6 0.32	-	
MW16	343014.6	6272713.36	2.62	-	-	11-02-15	-	0	-	6.94	-149	850	28.3	0.23	-	- ·
MW16 MW16	343014.6 343014.6	6272713.36 6272713.36	2.62	- 0.139	- 2.481	09-12-15	- 1.512	0	- 0.97	6.87 6.89	-139 -149.1	801 759	26.2 22.8	1.14 0.11	-	- clear, faint sweet odour, free flowing
MW16	343014.6	6272713.36	2.62	0.08	2.54	23-05-19	1.603	0	0.94	6.51	-108.3	784	25	0	0.8	Clear, colourless, odourless
MW16 MW16	343014.6 343014.6	6272713.36 6272713.36	- 2.62	- 0.139	- 2.481	31-10-19 06-02-20	1.56 1.602	0	-	6.99	-169.4	724	23.5	0.11	-	- Gauge only
MW16	343014.532	6272713.402	2.615	0.079	2.536	30-04-20	1.491	0	1.05	7.00	151.4	904	25.6	0.28	-	clear, slight HC odour
MW17 MW17	342916.14 342916.14	6272773.34 6272773.34	2.656 2.656	-	-	02-11-13 30-01-14	-	0	-	- 6.69	- 88	- 787	- 25.5	-	-	<u> </u>
MW17 MW17	342916.14	6272773.34	2.656	-	-	21-06-14	-	0	-	6.29	54	792	20.4	0.23	-	
MW17	342916.14	6272773.34	2.656 2.656	-	-	13-10-14 11-02-15	-	0	-	6.77 6.14	42 30	691 674	20.2	0.33	-	-
MW17 MW17	342916.14 342916.14	6272773.34 6272773.34	2.656	-	-	09-12-15	-	0	-	6.14 7.37	30 23	674	25.1 23.6	0.17	-	
MW17	342916.14	6272773.34	2.656	0.102	2.554	19-10-18	1.803	0	0.75	7.42	88.6	743	21.9	2.28	-	-
MW17 MW17	342916.14 342916.14	6272773.34 6272773.34	2.656 2.656	0.102	2.554 2.554	23-05-19 31-10-19	1.884 1.848	0	0.67	7.25 7.2	27.6 23.8	788 940	23.1 21.7	0.09	1.1	Clear, colourless, odourless
MW17	342916.14	6272773.34	2.656	0.102	2.554	06-02-20	-	-	-	-	-	-	-	-	-	
MW17 MW18	342916.076 343033.19	6272773.415 6272695.48	2.687	0.091	2.596	01-05-20	1.747	0 0.482	0.85	7.28 7.01	19 -220	794 785	23.2 23.2	0.35	-	
MW18	343033.19	6272695.48	-	0.074	-	19-10-18	1.738	0.156	-	-	-	-	-	-	-	IP malfunction, PSH measured with bailer
MW18 MW18	343033.19 343033.19	6272695.48 6272695.48	-	0.06	-	23-05-19 31-10-19	2.248 2.054	0.442	-	-	-	-	-	-	68	PSH present so not sampled PSH present so not sampled
MW18	343033.19	6272695.48	-	0.06	-	06-02-20	2.251	0.446	-	-	-	-	-	-	-	Gauge only
MW18 MW19	343031.656 343017.09	6272694.545 6272682.25	2.826	0.053	2.773	01-05-20	1.816	0.104	-	7.12	-246	693	20.9	0.37	-	
MW19 MW19	343017.09	6272682.25	3.08	-	-	12-09-16	-	0.174	-	7.12	-240	674	19.1	1.23	-	
MW19	343017.09	6272682.25	3.08	-	-	14-02-17	-	0.546	-	7.66 6.94	-145 -184	707.84 750	23.44 20.8	2.13	-	
MW19 MW19	343017.09 343017.09	6272682.25 6272682.25	3.08 3.08	-	-	29-08-17 10-04-18	-	0.412	-	6.94 7	-184	698	20.8	-	-	
MW19	343017.09	6272682.25	3.08	0.088	2.992	19-10-18	-	-	-	-	-	-	-	-	-	Remediation system prevents sampling
MW19 MW19	343017.09 343017.09	6272682.25 6272682.25	3.08	0.08	3	23-05-19 31-10-19	2.23 2.07	0.165	0.91	-	-	-	-	-	49.2	PSH present so not sampled PSH present so not sampled
MW19	343017.09	6272682.25	3.08	0.08	3	06-02-20	2.39	0.37	0.92	-	-	-	-	-	-	Gauge only
MW19 MW20	343017.022 342034.94	6272682.364 6272702.51	3.071 2.69	0.064	3.007	01-05-20	2.041	0.11	1.06	6.99	-252	671	19.7	0.53	-	
MW20	342034.94	6272702.51	2.69	-	-	14-02-17	-	0.165	-	6.94	-127.8	909.1	24	0.22	-	-
MW20 MW20	342034.94 342034.94	6272702.51 6272702.51	2.69	-	-	29-08-17 10-04-18	-	0.267	-	6.86 7.25	-267 -257	776	20.5 24.6	-	-	
MW20	342034.94	6272702.51	2.69	0.08	2.61	19-10-18	1.548	0.345	1.35	-	-	-	-	-	-	IP malfunction, PSH measured with bailer
MW20 MW20	342034.94 342034.94	6272702.51 6272702.51	2.69 2.69	0.07	2.62	23-05-19 31-10-19	2.122 2.053	0.468	0.89	-	-	-	-	-	80.5	PSH present so not sampled PSH present so not sampled
MW20	342034.94	6272702.51	2.69	0.07	2.62	06-02-20	2.033	0.438	0.95	-	-	-	-	-	-	Gauge only
MW20	343034.233	6272700.868	2.687	0.069	2.618	01-05-20	1.843	0.295	1.02	7.42	227	705	20.0	0.70		
MW21 MW21	343029.12 343029.12	6272699.84 6272699.84	2.79	-	-	12-09-16	-	0.342	-	7.13 7.12	-227 -139.5	705 887.49	20.9 24.8	0.79	-	
MW21	343029.12	6272699.84	2.79	-	-	29-08-17	-	0.205	-	6.91	-187	796	21.7	-	-	· · ·
MW21 MW21	343029.12 343029.12	6272699.84 6272699.84	2.79 2.79	- 0.092	2.698	10-04-18 19-10-18	- 1.68	0.709	-	7.11	-164	712	25.6	-	-	- Remediation system prevents sampling
MW21	343029.12	6272699.84	2.79	0.08	2.71	23-05-19	1.774	0.354	1.23	-	-	-	-	-	51	PSH present so not sampled
MW21 MW21	343029.12 343029.12	6272699.84 6272699.84	2.79 2.79	0.08	2.71 2.71	31-10-19 06-02-20	1.986 2.12	0.271 0.415	0.95	-	-	-	-	-	-	PSH present so not sampled Gauge only
MW21	343022.694	6272695.845	2.776	0.081	2.695	01-05-20	1.890	0.237								
MW22 MW22	343028.28 343028.28	6272731.99 6272731.99	2.67	-	-	12-09-16	-	0	-	7.03 6.89	-170 -154.4	748 901.83	20.7 27.7	0.82	-	
MW22	343028.28	6272731.99	2.67	-	-	29-08-17	-	0	-	7.01	-208	794	21.1	-	-	
MW22 MW22	343028.28 343028.28	6272731.99 6272731.99	2.67	- 0.091	- 2.579	10-04-18 18-10-18	- 1.61	0	- 0.97	7.08 7.09	-185 -132.4	902 920	27.3 22.6	- 0.75	-	- Sweet odour. Sampled by hydrasleeve
MW22	343028.28	6272731.99	2.67	0.085	2.585	23-05-19	1.70	0	0.88	6.88	-78	950	23.3	0.98	3	Faint HC, slightly turbid
MW22 MW22	343028.28 343028.28	6272731.99 6272731.99	2.67 2.67	0.085	2.585 2.585	01-11-19 06-02-20	1.66 1.72	0	0.92	6.95 -	-141.4	920	22.6	0.06	-	Nil Turbidity, colourless, odourless Gauge only
MW22 MW22	343028.28	6272731.99	2.67	0.085	2.585	30-04-20	1.72	0	0.86	7.29	-77.4	633	22.2	3.09	-	Gauge only Brown, slight odour, medium turbidity
MW23	343105.75	6272731.99	2.5 2.5	-	-	29-08-17 10-04-18		0	-	7	-223 -177	817 976	19.4 15.1	-	-	
MW23 MW23	343105.75 343105.75	6272731.99 6272731.99	2.5	0.073	2.427	10-04-18	1.339	0	- 1.09	6.99 -	-1//	976	- 15.1	-	-	- Guage only
MW23	343105.75	6272731.99	2.5	0.088	2.412	24-05-19	1.44	0	0.97	6.93	-73.3	911	21.1	0	0.3	Clear, colourless, odourless
MW23 MW23	343105.75 343105.686	6272731.99 6272732.072	2.5 2.45	0.088	2.412 2.372	06-02-20	- 1.341	- 0	- 1.03	-	-	-	-	-	-	Inaccessible - Under new bus port Guage only
MW24	343094.78	6272718.13	2.54	-	-	29-08-17	-	0	-	7.28	-191	887	20.6	-	-	
MW24 MW24	343094.78 343094.78	6272718.13 6272718.13	2.54	- 0.085	- 2.455	10-04-18 19-10-18	- 1.37	0	- 1.09	7.07 7.19	-102 -101.1	765 829	25.3 20.5	- 0.11	-	- clear, no odour
MW24	343094.78	6272718.13	2.54	0.089	2.451	24-05-19	1.48	0	0.97	6.48	-51.3	818	23.1	0	0.2	Clear, colourless, odourless
MW24 MW24	343094.78 343094.701	6272718.13 6272718.205	2.54 2.495	0.089	2.451 2.415	06-02-20	- 1.388	- 0	- 1.03	-	-	-	-	-	-	Inaccessible - Under new bus port Guage only
MW25	343094.701 343007.79	6272718.205	2.495		- 2.415	12-09-16	-	0	-	7.3	-196	692	21	0.53	-	Guage only
MW25	343007.79	6272705.16	2.75	-	-	14-02-17	-	0	-	7.16	-131.9	812.02	25.2	0.09	-	-
MW25 MW25	343007.79 343007.79	6272705.16 6272705.16	2.75 2.75	-	-	29-08-17 10-04-18	-	0.005	-	7.13 7.24	-198 -197	804 786	21.5 26	-	-	 thin film
MW25 MW25	343007.79 343007.79	6272705.16 6272705.16	2.75 2.75	0.116	2.634 2.67	19-10-18 23-05-19	1.654 1.905	0.06	1.03 0.89	-	-	-	-	-	- 52.2	IP malfunction, PSH measured with bailer PSH present so not sampled
	343007.79	1 02/2/03.10	1 2.73	U.UO	2.07	22-02-18	L.302	U.145	1 0.09						1 JZ.Z	

NAMOE										7.24	-197	760	20			
MW25	343007.79	6272705.16	2.75	0.116	2.634	19-10-18	1.654	0.06	1.03	-	-	-	-	-	-	IP malfunction, PSH measured with bailer
MW25	343007.79	6272705.16	2.75	0.08	2.67	23-05-19	1.905	0.145	0.89	-	-	-	-	-	52.2	PSH present so not sampled
MW25	343007.79	6272705.16	2.75	0.08	2.67	31-10-19	1.78	0.058	0.94	-	-	-	-	-	-	PSH present so not sampled
MW25	343007.79	6272705.16	2.75	0.08	2.67	06-02-20	1.904	0.099	0.85	-	-	-	-	-	-	Gauge only
MW25	343007.702	6272705.231	2.763	0.08	2.666	01-05-20	1.707	0.064	1.01	-	-	-	-	-	-	PSH present so not sampled
MW26	343025.25	6272733.38	2.58	-	-	12-09-16	-	0	-	7.05	-192	711	19.7	0.75	-	-
MW26	343025.25	6272733.38	2.58	-	-	14-02-17	-	0	-	6.94	-139.2	868.81	26.5	0.07	-	-
MW26	343025.25	6272733.38	2.58	-	-	29-08-17	-	0	-	7.02	-207	825	20.5	-	-	-
MW26	343025.25	6272733.38	2.58	-	-	10-04-18	-	0	-	7.01	-110	895	26.8	-	-	-
MW26	343025.25	6272733.38	2.58	0.088	2.492	19-10-18	1.564	0	0.93	7.04	-139.3	908	21	0.1	-	clear, slight H2S odour
MW26	343025.25	6272733.38	2.58	0.078	2.502	23-05-19	1.654	0	0.85	6.98	-142.2	965	24.5	0	1.1	light brown, slightly turbid, odourless
MW26	343025.25	6272733.38	2.58	0.078	2.502	31-10-19	1.623	0	0.88	6.97	-133.3	876	21.1	0.16	-	Clear, colourless, odourless
MW26	343025.25	6272733.38	2.58	0.078	2.502	06-02-20	1.671	0	0.83	-	-	-	-	-	-	Gauge only
MW26	343025.201	6272733.419	2.593	0.079	2.514	30-04-20	1.554	0	0.96	6.98	114.9	964	24.6	0.09	-	Turbid, brown-orange, no sheen, HC Odour
MW27	-	-	-	-	-	06-02-20	-	-	-	-	-	-	-	-	-	Inaccessible - Under new bus port
MW28	-	-	-	-	-	07-02-20	2.085	0.431	-	7.14	126.8	722	20.2	0.04	-	strong odour, turbid, brown
MW28	343055.852	6272672.366	2.554	0.053	2.501	01-05-20	1.431	0	1.07	7.20	-120.5	817	22.4	0.14	-	
MW29	-	-	-	-	-	07-02-20	1.804	0	-	6.94	76.4	926	21.4	0	-	very strong odour
MW29	343054.576	6272633.403	3.125	0.065	3.06	01-05-20	1.939	0	1.12	6.79	-120	858	21.2	0.19	-	
MW30	-	-	-	-	-	07-02-20	1.995	0.291	-	6.19	-92.1	855	19.9	0	-	strong odour, turbid, brown
MW30	343025.122	6272633.926	2.767	0.073	2.694	01-05-20	1.600	0	1.09	7.23	-134.6	726	22.1	0.08	-	
MW31	-	-	-	-	-	07-02-20	2.486	0.797	-	6.65	-132.1	839	20.9	0	-	strong odour, highly turbid, brown, sheen
MW31	343002.044	6272672.118	3.051		2.921	01-05-20	1.903	0.051								
MW32	-	-	-	-	-	07-02-20	2.302	0.497	-	7.17	-173.9	2665	20.2	0	-	odour, highly turbid, brown
MW32	342985.813	6272678.267	3.182	0.134	3.048	30-04-20	2.004	0	1.04	6.65	120	1056	24.3	0.1		Clear
MW33	-	-	-	-	-	07-02-20	1.908	0.123	-	6.92	38.1	921	20.4	0.01	-	strong odour, highly turbid, brown
MW33	342995.208	6272690.515	3.023	0.114	2.909	30-04-20	1.881	0	1.03	6.91	-114.2	793	23.7	0.14		Clear, slight HC odour

(Gau∖ging Data	1			Field Pa	rameters			
Standing Water Level (mBTOC)	PSH thickness (m)	Adjusted Standing Water Level (mAHD)	pH (Field)	Redox (Field)	Electrical Conductivity (Field)	Temperature (Field)	Dissolved Oxyven (Field)	Well headspace PID	Comments
			pH units	mV	μS/cm	°C	ppm	ppm	
			0.01	0.01	1	0.1	0.01	0.1	

	Stan Leve	HSH	Adju Leve	Hd	Redo	Elect (Fiel	Tem	Disse	Well	C C C
Units				pH units	mV	μS/cm	°C	ppm	ppm	
Laboratory PQL				0.01	0.01	1	0.1	0.01	0.1	
Well ID Easting Northing Ground (mAHD) TOC (mBGL) TOC (mAHD) Date										

Weinib	Lasting	Northing	Ground (IIIAND)	TOC (IIIDOL)		Date										
MW35	-	-	-	-	-	07-02-20	1.785	0	-	7.53	-151.8	658	20.9	0.02	-	
MW35	343043.816	6272719.883	2.592	0.08	2.512	30-04-20	1.512	0	1.00	7.03	65.6	722	20.9	8.62		Clear, no odour
MW36 ¹	-	-	-	-	-	07-02-20	-	-	-	-	-	-	-	-	-	Dry
MW36 ¹	343074.303	6272696.487	2.606	-	-	01-05-20	-	-	-	-	-	-	-	-	-	Dry
MW37 ¹	-	-	-	-	-	07-02-20	-	-	-	-	-	-	-	-	-	Dry
MW37 ¹	343056.214	6272729.368	2.742	-	2.647	01-05-20	1.678	-	-	7.11	113.1	840	20.5	0.08	-	Moderate turbidity, No odour
S01	-	-	-	-	-	07-02-20	-	-	-	7.81	124.9	2769	18.0	3.22	-	Surface water samples - upstream of site
S01	-	-	-	-	2.359	30-04-20	-	-	-	-	-	-	-	-	-	
S02	-	-	-	-	-	07-02-20	-	-	-	7.81	138.2	2941	17.9	3.50	-	Surface water samples - onsite
S02	343076.457	6272699.985	2.460	-	2.359	30-04-20	-	-	-	-	-	-	-	-	-	Dry
S03	-	-	-	-	-	07-02-20	-	-	-	7.97	137.1	2731	17.3	3.70	-	Surface water sample - downstream of site
S03	-	-	-	-	-	30-04-20	-	-	-	-	-	-	-	-	-	

TOC = Top of Casing mAHD = metres above the Australian Height Datum mTOC = metres below Top of Casing

mBGL = metres below ground level

Wells installed adjacent to underground service trench
 Result outside of likely range, possible instrument or transcription error.

vsp

						Heavy	/ Metals				Т	РН		TF	RH				B	TEX				PAHs	
			enic - Dissolved	dmium - Dissloved	omium - Dissolved	pper - Dissolved	id - Dissolved	rcury - Dissolved	kel - Dissolved	c - Dissolved	H C6-C9	H C10-C36	TRH C6-C10	TRH >C10-C16	TRH >C16-C34	TRH >C34-C40	Jzene	nene	ylbenzene	p-xylene	ylene	al xylene	phthalene	nzo(a)pyrene	al PAH
			Ars	ĕ	5	<u> </u>	Lea Lea	ž	ž	zin	<u> </u>	<u> </u>	표	5	£	4	Be	<u>2</u>	덆	Ě	Š	<u>d</u>	Š	Be	<u>5</u>
Units Laboratory PQL			μg/L 1	μg/L 0.1	μg/L 1	μg/L 1	μg/L 1	μg/L 0.1	μg/L 1	μg/L 1	μg/L 10	μg/L 125	μg/L 10	μg/L 50	μg/L 100	μg/L 100	μg/L 1	μg/L 1	μg/L 1	μg/L 2	μg/L 1	μg/L 3	μg/L 1	μg/L 1	μg/L 0.1
	er HSLs for Vapour Intrusion (Sand - 2m - <4m)	-	0.1	1	1	1	0.1	1	1	10	125	6000	NL	100	100	5000	NL	NL	NL	NL	NL	NL		0.1
NEPM GIL Drinking			10	2	50	2000	10	1	20								1	800	300			600			
NEPM GIL Marine	Waters		13*	0.7	4.4	1.3	4.4	0.1	7	15							500			200*	350*		50		
ANZG 2018 - Ma	rine (95% species protectio	n)	13*	5.5	4.4	1.3	4.4	0.4	70	15							700	180	5	200*	350*		70		
Lab Report. 67411	Well ID MW01	Date 10-01-12	11	<0.1	<1	<1	<1	< 0.05	<1	<1	<10	4900	-	-	-	-	<1	<1	<1	<2	<1	<3	33	<1	68
77958	MW01	24-08-12	-	-	-	-	-	-	-	-	<10	1280		-	-	-	<1	<1	<1	<2	<1	<3	3	<1	13
203543	MW01	19-10-18	44	<0.1	<1	<1	<1	< 0.05	<1	5	<10	3600	29	1900	1600	<100	<1	<1	<1	<2	<1	-	16	-	-
218279	MW01	23-05-19	11	<0.1	<1	<1	<1	<0.05	<1	4	<10	680	25	440	220	<100	<1	<1	<1	<2	<1	<3	3	-	-
229899	MW01	31-10-19	23	<0.1	<1	<1	<1	< 0.05	<1	4	<10	510	<10	310	190	<100	<1	<1	<1	<2	<1	<3	<1	-	-
67411	MW02	10-01-12	41	<0.1	<1	<1	<1	< 0.05	2	<1	<10	<250	-	-	-	-	<1	<1	<1	<2	<1	<3	<1	<1	ND
77958 218279	MW02 MW02	24-08-12 23-05-19	- 18	<0.1	- <1	<1	- <1	< 0.05	- <1	- 3	<10 <10	<250 <250	- <10	<50	<100	<100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	<1 <1	<1	ND -
229899	MW02	31-10-19	10	<0.1	<1	<1	<1	< 0.05	<1	3	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW02	01-05-20	14	-	-	-	-	-	-	-	<10	61	<10	79	<100	<100	<1	<1	<1	<2	<1	<3	15	-	-
67411	MW03	10-01-12	5	<0.1	<1	<1	<1	<0.05	2	<1	<10	<250	-	-	-	-	<1	<1	<1	<2	<1	<3	<1	<1	ND
77958	MW03	24-08-12	-	-	-	-	-	-	-	-	<10	<250	-	-	-	-	<1	<1	<1	<2	<1	<3	<1	<1	ND
203543	MW03	19-10-18	4	<0.1	<1	<1	<1	< 0.05	1	7	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	-	<1	-	-
218279 67411	MW03 MW04	23-05-19	3	<0.1	<1	<1	<1	<0.05 <0.05	1 <1	4 <1	<10 <10	<250 <250	<10	<50	<100	<100	<1 <1	<1 <1	<1	<2	<1	<3	<1 <1	- <1	- ND
77958	MW04	24-08-12	-	-	-	-	-		-	-	<10	<250	-	-	-	-	<1	<1	<1	<2	<1	<3	<1	<1	ND
-	MW05	24-08-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
77958	MW06	24-08-12	-	-	-	-	-	-	-	-	<10	<250	-	-	-	-	<1	<1	<1	<2	<1	<3	<1	<1	ND
77958	MW07	24-08-12	-	-	-	-	-	-	-	-	41	2110	-	-	-	-	4	<1	<1	<2	<1	<3	140	<1	156
203543	MW07	19-10-18	74	<0.1	<1	<1	<1	< 0.05	<1	5	16	4800	38	2700	2100	<100	<1	<1	<1	<2	<1	-	44	-	-
218279	MW07	23-05-19	98	<0.1	<1	<1	<1	< 0.05	<1	3	<10	1220	33	720	450	<100	<1	<1	<1	<2	<1	<3	45	-	-
229899 242120	MW07 MW07	<u>31-10-19</u> 01-05-20	65 66	<0.1	<1	<1	<1	< 0.05	<1	3	<10 12	1310 8,300	<10 43	700	570 3,900	<100 <100	<1 <1	<1	<1 <1	<2	<1	<3	<1 42	-	-
81841	MW08	19-11-12	-	-	-	-	-	-	-	-	<10	1070	-	-	-	-	<1	<1	<1	<2	<1	<3	8	<1	16
112083	MW08	21-06-14	5	<0.1	2	5	3	< 0.05	4	16	<10	570	12	290	220	<100	<1	<1	<1	<2	<1	<3	1	-	-
117589	MW08	13-10-14	2	<0.1	<1	<1	<1	<0.05	2	3	<10	<125	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
123376	MW08	11-02-15	5	<0.1	<1	<1	<1	< 0.05	1	2	<10	495	<10	<50	410	<100	<1	5	<1	<2	<1	<3	<1	-	-
138949	MW08	09-12-15	5	<0.1	<1	<1	<1	< 0.05	<1	<1	<10	290	<10	150	200	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120 104302	MW08 MW09	01-05-20	12 6	<0.1	- <1	<1	- <1	< 0.05	- 13	- 3	<10 27	6,390 44600	<10 88	2,100 22000	4,400 21000	<100 <100	<1 <1	<1 <1	<1	<2	<1	<3	4 600	-	-
112083	MW09	21-06-14	42	<0.1	<1	<1	<1	< 0.05	5	5	38	19150	64	9500	9000	<100	<1	<1	<1	<2	<1	<3	78	-	-
117589	MW09	13-10-14	64	<0.1	<1	<1	<1	< 0.05	4	7	27	48850	51	24000	24000	<100	1	<1	<1	<2	<1	<3	89	-	-
123376 138949	MW09 MW09	11-02-15 09-12-15	53 67	<0.1	<1 <1	<1 <1	<1	<0.05 <0.05	4	1 <1	38 22	174340 6600	80 55	85000 4100	81000 2600	<100 <100	<1	<1 <1	<1 <1	<2	<1 <1	<3	180 150	-	-
153522	MW09	12-09-16	57	<0.1	<1	<1	<1	< 0.05	1 <1	<1	19	13400	66	6100	7200	<100	<1 <1	<1	<1	<2	<1	<3	190	-	-
161939	MW09	14-02-17	54	<0.1	<1	<1	<1	< 0.05	<1	3	25	56100	68	30000	26000	<100	<1	<1	<1	<2	<1	<3	120	-	-
174472	MW09	29-08-17	26	<0.1	<1	<1	<1	< 0.05	1	1	16	9200	39	4600	4600	<100	<1	<1	<1	<2	<1	<3	86	-	-
189182 81841	MW09 MW10	10-04-18 02-04-13	36	< 0.1	<1	<1	<1	< 0.05	3	<1	33 <10	29400 5650	100	17000	13000	<100	<1	<1 <1	<1 <1	<2	<1	<3	120 46	- <1	- 92
104302	MW10 MW10	30-01-14	4	<0.1	<1	<1	<1	< 0.05	6	4	22	17980	65	8000	9500	<100	2	<1	<1	<2	<1	<3	190	-	-
112083	MW10	21-06-14	25	<0.1	<1	<1	<1	<0.05	1	5	23	36620	41	19000	17000	<100	<1	<1	<1	<2	<1	<3	86	-	-
117589	MW10	13-10-14	30	<0.1	<1	<1	<1	< 0.05	2	2	21	36550	43	19000	17000	<100	1	<1	<1	<2	<1	<3	83	-	-
123376 138949	MW10 MW10	11-02-15 09-12-15	38 35	<0.1	<1 <1	<1 <1	<1	<0.05 <0.05	1	2	15 11	18950 12400	46 37	8900 6900	9500 5900	<100 <100	1 <1	<1 <1	<1 <1	<2	<1 <1	<3	120 68	-	-
153522	MW10	12-09-16	31	<0.1	<1	<1	<1	< 0.05	1	<1	11	8500	47	3800	4800	<100	<1	<1	<1	<2	<1	<3	120	-	-
161939	MW10	14-02-17	51	<0.1	<1	<1	<1	<0.05	<1	1	<10	28900	<10	14000	13000	<100	<1	<1	<1	<2	<1	<3	140	-	-
174472	MW10	29-08-17	39	<0.1	<1	<1	<1	< 0.05	1	1	28	9300	67	4600	4600	<100	<1	<1	<1	<2	<1	<3	140	-	-
189182 229899	MW10 MW10	10-04-18 31-10-19	50 32	<0.1	<1 <1	<1 <1	<1	<0.05 <0.05	1	1	10 <10	76000 690	53 <10	44000 360	35000 300	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	94 <1	-	-
81841	MW10 MW11	19-11-12	-	-	-	-	-	-	-	-	<10	490	-	-	-	- 100	<1	<1	<1	<2	<1	<3	18	<1	22
104302	MW11	30-01-14	10	<0.1	<1	<1	<1	<0.05	5	4	<10	1080	27	720	400	<100	<1	<1	<1	<2	<1	<3	<1	-	-
112083	MW11	21-06-14	100	<0.1	<1	<1	<1	< 0.05	1	7	10	1280	28	770	380	<100	<1	<1	<1	<2	<1	<3	13	-	-
117589 123376	MW11 MW11	13-10-14 11-02-15	120 220	<0.1	<1 <1	<1 <1	<1	<0.05 <0.05	5	5	29 <10	408	78 42	150 810	200 450	<100 <100	<1 <1	<1	<1 <1	<2	<1 <1	<3	18 <1	-	-
138949	MW11 MW11	09-12-15	140	<0.1	<1	<1	<1	< 0.05	1	<1	<10	1210	42	960	280	<100	<1	<1	<1	<2	<1	<3	5	-	-
81841	MW12	19-11-12	-	-	-	-	-	-	-	-	<10	<250	-	-	-	-	<1	<1	<1	<2	<1	<3	<1	<1	ND
104302	MW12	30-01-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
112083 117589	MW12 MW12	21-06-14	<u>11</u> 6	<0.1	1 <1	1 <1	2 <1	<0.05 <0.05	1 <1	11 <1	22 <10	<125 <125	25 <10	<50 <50	<100 <100	<100 <100	<1 <1	2 <1	<1 <1	<2	<1 <1	<3	<1 <1	-	-
123376	MW12 MW12	11-02-15	6	<0.1	<1	<1	<1	< 0.05	2	2	<10	<125	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
I													-										-		

vsp

	•					Heavy	Metals				Т	PH		TI	RH				B	ТЕХ				PAHs	
			Arsenic - Dissolved	Cadmium - Dissloved	Chromium - Dissolved	Copper - Dissolved	Lead - Dissolved	Mercury - Dissolved	Nickel - Dissolved	Zinc - Dissolved	TRH C6-C9	TRH C10-C36	F1 TRH C6-C10	F2 TRH >C10-C16	F3 TRH >C16-C34	F4 TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Total xylene	Naphthalene	Benzo(a)pyrene	Total PAH
Units			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Laboratory PQL	er HSLs for Vapour Intrusion (Sand 2m <4m)	1	0.1	1	1	1	0.1	1	1	10	125	10 6000	50 NL	100	100	1 5000	1 NL	1 NL	2 NL	1 NL	3 NL	1 NL	1	0.1
NEPM GIL Drinking		3anu - 2m - 84m)	10	2	50	2000	10	1	20				0000	INL			1	800	300	INL	INL	600	INL		
NEPM GIL Marine V	•		13*	0.7	4.4	1.3	4.4	0.1	7	15							500		500	200*	350*	000	50		
	rine (95% species protectio	n)	13*	5.5	4.4	1.3	4.4	0.4	70	15							700	180	5	200*	350*		70		
	, <u> </u>	,												1							1	1			
Lab Report.	Well ID	Date																							
138949	MW12	09-12-15	5	<0.1	<1	<1	<1	< 0.05	1	1	<10	<100	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	
203543 218279	MW12 MW12	18-10-18 23-05-19	3	<0.1	<1 <1	<1 <1	<1 <1	<0.05 <0.05	<1 <1	4	<10 <10	<250 <250	<10 <10	<50 <50	<100 <100	<100 <100	<1 <1	<1	<1	<2	<1 <1	<3	<1 <1	-	-
229899	MW12	31-10-19	3	<0.1	<1	<1	<1	< 0.05	<1	6	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW12	30-04-20	8	-	-	-	-	-	-	-	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
100305	MW15	02-11-13	<1	0.1	2	8	2	< 0.05	2	110	<10	680	<10	290	380	<100	<1	<1	<1	<2	<1	<3	<1	<1	2.3
104302	MW15	30-01-14	<1	<0.1	<1	1	<1	< 0.05	14	11	<10	470	<10	290	200	<100	<1	<1	<1	<2	<1	<3	16	-	-
112083	MW15 MW15	21-06-14	<1	<0.1	<1	1	<1	< 0.05	3	7	<10	245	<10	58	130	<100	<1	<1	<1	<2	<1	<3	<1	-	-
117589 123376	MW15 MW15	13-10-14	<1 <1	<0.1	<1 <1	<1	<1 <1	<0.05 <0.05	3	2	<10 <10	<125 <125	<10 <10	<50 <50	<100 120	<100 <100	<1 <1	<1	<1	<2	<1 <1	<3	<1 <1	-	-
138949	MW15 MW15	09-12-15	<1	<0.1	<1	1	<1	<0.05	<1	<1	<10	<123	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
218279	MW15	23-05-19	<1	<0.1	<1	<1	<1	< 0.05	<1	3	<10	1558	<10	170	1400	<100	<1	<1	<1	<2	<1	<3	<1	-	-
229899	MW15	31-10-19	<1	<0.1	<1	<1	<1	<0.05	<1	4	<10	2400	<10	140	2,300	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW15	30-04-20	<1	-	-	-	-	-	-	-	<10	2,400	<10	93	2,300	<100	<1	<1	<1	<2	<1	<3	<1	-	-
100305 104302	MW16 MW16	02-11-13 30-01-14	17 8	<0.1	<1	<1 <1	1 <1	<0.05	15 21	25 8	15 15	3890 4640	17 33	1500 1700	2300 2900	<100 <100	1 <1	<1 <1	<1	<2	<1 <1	<3	<1 34	<1	- 1.4
112083	MW16	21-06-14	37	<0.1	<1	<1	<1	< 0.05	10	5	27	3300	33	1300	1900	<100	<1	<1	<1	<2	<1	<3	4	-	
117589	MW16	13-10-14	33	<0.1	<1	<1	<1	< 0.05	11	22	22	2740	39	810	1900	<100	<1	<1	<1	<2	<1	<3	3	-	
123376	MW16	11-02-15	46	<0.1	<1	<1	<1	<0.05	14	2	19	2010	34	890	990	<100	<1	<1	<1	<2	<1	<3	1	-	-
138949	MW16	09-12-15	42	<0.1	2	<1	<1	< 0.05	9	1	12	2470	19	1200	1300	<100	<1	<1	<1	<2	<1	<3	2	-	· ·
203543 218279	MW16 MW16	18-10-18 23-05-19	41 60	<0.1	<1 <1	<1 <1	<1 <1	<0.05 <0.05	8	4	27 <10	1340 2030	41 <10	570 950	870 1100	<100 <100	<1 <1	<1	<1	<2	<1 <1	<3	<1 <1	-	-
229899	MW16	31-10-19	71	<0.1	<1	<1	<1	< 0.05	6	4	23	2030	34	990	1,300	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW16	30-04-20	84	-	-	-	-	-	-	-	22	3,810	39	1,500	2,300	<100	<1	<1	<1	<2	<1	<3	<1	-	-
100305	MW17	02-11-13	3	<0.1	1	2	<1	<0.05	3	9	<10	<125	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	<1	-
104302	MW17	30-01-14	2	<0.1	<1	2	<1	<0.05	9	8	<10	<125	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
112083	MW17 MW17	21-06-14	2	<0.1	<1	3	1	< 0.05	7	43	<10	2540	<10	1200	1300	<100	<1	<1	<1	<2	<1	<3	5	-	-
117589 123376	MW17 MW17	11-02-15	2	<0.1	<1 <1	3	<1 <1	<0.05 <0.05	2	16 27	<10	<125 <125	<10 <10	<50 <50	<100 100	<100 <100	<1 <1	<1	<1	<2	<1 <1	<3	<1 <1	-	-
138949	MW17	09-12-15	2	<0.1	<1	2	<1	< 0.05	<1	3	<10	<100	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	1	-	
203543	MW17	19-10-18	2	<0.1	<1	1	<1	<0.05	<1	4	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	>1	-	-
218279	MW17	23-05-19	2	<0.1	<1	<1	<1	< 0.05	<1	3	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
229899 242120	MW17 MW17	31-10-19 01-05-20	2	<0.1	<1	1	<1	< 0.05	<1	4	<10 <10	<250 180	<10 <10	<50 92	<100 110	<100 <100	<1 <1	<1	<1	<2	<1 <1	<3	<1 3	-	
138949	MW17 MW18	09-12-15	27	<0.1	<1	<1	<1	< 0.05	3	2	<10	9000	<10	5400	3900	<100	<1	<1	<1	<2	<1	<3	16	-	-
138949	MW19	09-12-15	36	<0.1	<1	<1	<1	< 0.05	<1	2	<10	4100	18	2700	1600	<100	<1	1	1	<2	1	<3	53	-	-
153522	MW19	12-09-16	37	<0.1	<1	<1	<1	<0.05	<1	<1	<10	1680	27	500	1200	<100	<1	<1	<1	<2	<1	<3	44	-	-
161939	MW19	14-02-17	28	<0.1	<1	<1	<1	< 0.05	<1	2	20	65000	63	35000	30000	<100	<1	<1	1	<2	<1	<3	100	-	-
174472 189182	MW19 MW19	29-08-17 10-04-18	25 26	<0.1	<1 <1	<1 <1	<1 <1	0.2 <0.05	<1 <1	1 2	18 23	10700 11800	50 64	5300 6900	5400 5200	<100 <100	<1 <1	<1	<1	<2	<1 <1	<3	74 89	-	-
153522	MW19	12-09-16	36	<0.1	<1	<1	<1	< 0.05	3	<1	10	43720	40	22000	22000	<100	<1	<1	<1	<2	<1	<3	140	-	-
161939	MW20	14-02-17	59	<0.1	<1	<1	<1	<0.05	3	1	23	7600	49	4100	3400	<100	<1	<1	<1	<2	<1	<3	82	-	-
174472	MW20	29-08-17	35	<0.1	<1	<1	<1	<0.05	2	1	37	21400	78	12000	9800	<100	<1	<1	<1	<2	<1	<3	130	-	-
189182	MW20	10-04-18	45	<0.1	<1	<1	<1	< 0.05	2	<1	27	46000	87	27000	20000	<100	<1	<1	<1	<2	<1	<3	200	-	-
153522 161939	MW21 MW21	12-09-16 14-02-17	17 14	<0.1	<1 <1	<1 <1	<1 <1	<0.05 <0.05	3	<1	<10 <10	3440 426840	25 22	1500 230000	1900 200000	<100 280	<1 <1	<1	<1	<2	<1 <1	<3	94 130	-	-
174472	MW21 MW21	29-08-17	14	<0.1	<1	<1	<1	< 0.05	3	1	16	12800	33	6300	6500	<100	<1	<1	<1	<2	<1	<3	47	-	-
189182	MW21	10-04-18	22	<0.1	<1	<1	<1	<0.05	2	1	<10	43000	50	25000	20000	<100	<1	<1	<1	<2	<1	<3	94	-	-
153522	MW22	12-09-16	40	<0.1	<1	<1	<1	< 0.05	3	2	<10	680	<10	250	430	<100	<1	<1	<1	<2	<1	<3	<1	-	-
161939 174472	MW22 MW22	14-02-17 29-08-17	66 60	<0.1	<1 <1	<1	<1	<0.05 <0.05	2	3	11 16	690	20 35	390	270 280	<100 <100	<1 <1	<1	<1	<2	<1	<3	8	-	-
174472	MW22 MW22	10-04-18	60 37	<0.1	<1 <1	<1 <1	<1 <1	< 0.05	2	2	<10	690 300	<10	390 220	<100	<100	<1 <1	<1	<1 <1	<2	<1 <1	<3	12 2	-	-
203543	MW22 MW22	18-10-18	57	<0.1	<1	<1	<1	<0.05	3	16	11	1230	28	470	710	<100	<1	<1	<1	<2	<1	<3	7	-	-
218279	MW22	23-05-19	49	<0.1	<1	<1	<1	<0.05	3	5	<10	870	26	510	360	<100	<1	<1	<1	<2	<1	<3	2	-	-
242120	MW22	30-04-20	23	-	-	-	-	-	-	-	<10	270	<10	190	140	<100	<1	<1	<1	<2	<1	<3	<1	-	-
174472 189182	MW23 MW23	29-08-17 10-04-18	4	<0.1	<1 <1	<1	<1 <1	<0.05 <0.05	<1	2	<10 <10	100	<10 <10	<50 <50	<100 <100	<100 <100	<1 <1	<1	<1	<2	<1	<3	<1 <1	-	-
218279	MW23 MW23	23-05-19	2	<0.1	<1 <1	<1 <1	<1 <1	< 0.05	<1 <1	5	<10	<100 <250	<10	<50	<100	<100	<1 <1	<1	<1 <1	<2	<1 <1	<3	<1 <1	-	-
174472	MW24	29-08-17	6	<0.1	<1	<1	<1	< 0.05	<1	1	<10	100	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
189182	MW24	10-04-18	6	<0.1	<1	<1	<1	<0.05	<1	<1	<10	<100	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
203543	MW24	19-10-18	4	<0.1	<1	<1	<1	<0.05	<1	7	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-

vvsp

						Heavy	Metals				Т	PH		TI	RH				BT	ГЕХ				PAHs	
			Arsenic - Dissolved	Cadmium - Dissloved	Chromium - Dissolved	Copper - Dissolved	Lead - Dissolved	Mercury - Dissolved	Nickel - Dissolved	Zinc - Dissolved	ТКН С6-С9	ТКН С10-С36	F1 TRH C6-C10	F2 TRH >C10-C16	F3 TRH >C16-C34	F4 TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Total xylene	Naphthalene	Benzo(a)pyrene	Total PAH
Units			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Laboratory PQL			1	0.1	1	1	1	0.1	1	1	10	125	10	50	100	100	1	1	1	2	1	3	1	1	0.1
NEPM Groundwater H	ISLs for Vapour Intrusion	(Sand - 2m - <4m)											6000	NL			5000	NL	NL	NL	NL	NL	NL		
NEPM GIL Drinking Wa	ater		10	2	50	2000	10	1	20								1	800	300			600			
NEPM GIL Marine Wat	ters		13*	0.7	4.4	1.3	4.4	0.1	7	15							500			200*	350*		50		
ANZG 2018 - Marine	e (95% species protectio	on)	13*	5.5	4.4	1.3	4.4	0.4	70	15							700	180	5	200*	350*		70		
Lab Report.	Well ID	Date																							
218279	MW24	23-05-19	4	< 0.1	<1	<1	<1	< 0.05	<1	4	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1		
153522	MW25	12-09-16	8	<0.1	<1	<1	<1	< 0.05	<1	<1	<10	380	<10	97	320	<100	<1	<1	<1	<2	<1	<3	1	-	-
161939	MW25	14-02-17	8	<0.1	<1	<1	<1	< 0.05	<1	1	<10	450	<10	150	290	<100	<1	<1	<1	<2	<1	<3	<1	-	-
174472	MW25	29-08-17	8	<0.1	<1	<1	<1	< 0.05	<1	2	<10	1390	<10	690	710	<100	<1	<1	<1	<2	<1	<3	6	-	-
189182	MW25	10-04-18	11	<0.1	<1	<1	<1	< 0.05	1	1	12	4700	20	2700	2100	<100	<1	<1	<1	<2	<1	<3	30	-	-
153522	MW26	12-09-16	47	<0.1	<1	<1	<1	< 0.05	2	2	<10	407	<10	150	270	<100	<1	<1	<1	<2	<1	<3	<1	-	-
161939	MW26	14-02-17	41	<0.1	<1	<1	<1	< 0.05	1	1	<10	297	<10	170	110	<100	<1	<1	<1	<2	<1	<3	<1	-	-
174472	MW26	29-08-17	48	<0.1	<1	<1	<1	< 0.05	2	2	12	500	23	290	210	<100	<1	<1	<1	<2	<1	<3	<1	-	-
189182	MW26	10-04-18	46	<0.1	<1	<1	<1	< 0.05	1	<1	10	300	15	220	<100	<100	<1	<1	<1	<2	<1	<3	1	-	-
203543	MW26	19-10-18	40	<0.1	<1	<1	<1	< 0.05	2	3	12	560	28	260	260	240	<1	<1	<1	<2	<1	<3	<1	-	-
218279	MW26	23-05-19	46	<0.1	<1	<1	<1	< 0.05	2	3	<10	460	<10	280	180	<100	<1	<1	<1	<2	<1	<3	<1	-	-
229899	MW26	31-10-19	42	<0.1	<1	<1	<1	< 0.05	2	2	<10	370	<10	290	250	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW26	30-04-20	46	-	-	-	-	-	-	-	<10	370	<10	160	140	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236498	MW28	07-02-20	28	<0.1	<1	<1	<1	< 0.05	2	3	<10	1830	<10	830	970	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW28	01-05-20	20	-	-	-	-	-	-	-	<10	202	<10	130	<100	<100	<1	<1	<1	<2	<1	<3	1	-	-
236498	MW29	07-02-20	8	<0.1	<1	<1	<1	< 0.05	2	1	<10	8100000	<10	4000000	3000000	20000	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW29	01-05-20	120	-	-	-	-	-	-	-	34	17,500	78	10,000	7,000	<100	<1	<1	<1	<2	<1	<3	21	-	-
236498	MW30	07-02-20	7	< 0.1	<1	<1	<1	< 0.05	<1	<1	20	51110	67	28000	22000	110	<1	<1	<1	<2	1	1	4	-	-
242120	MW30	01-05-20	20	-	-	-	-	-	-	-	<10	3,380	<10	1,800	1,600	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236498	MW31	07-02-20	4	<0.1	<1	<1	<1	< 0.05	<1	<1	<10	2600000	26	2000000	1000000	<10,000	<1	<1	<1	<2	<1	<3	210	-	-
236498	MW32	07-02-20	1	<0.1	<1	2	<1	< 0.05	<1	1	<10	11420	<10	5100	6200	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW32	30-04-20	2	-	-	-	-	-	-	-	<10	9,000	<10	3,500	5,700	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236498	MW33	07-02-20	2	<0.1	<1	1	<1	< 0.05	<1	2	<10	101110	<10	52000	47000	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW33	30-04-20	24	•	-	-	-	-	-	-	<10	5,750	<10	2,100	3,800	<100	<1	<1	<1	<2	<1	<3	4	-	-
242120	MW35	30-04-20	6	-	-	-	-	-	-	-	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120	MW37	30-04-20	5	-	-	-	-	-	-	-	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-

S03 S03

212420

1

07-02-20

<1

<0.1

1

<0.05

5

62

11

				Heavy	Metals				T	PH		TF	RH				BT	ΈX				PAHs	
	Arsenic - Dissolved	Cadmium - Dissloved	Chromium - Dissolved	Copper - Dissolved	.ead - Dissolved	Mercury - Dissolved	Nickel - Dissolved	Zinc - Dissolved	TRH C6-C9	TRH C10-C36	F1 TRH C6-C10	F2 TRH >C10-C16	F3 TRH >C16-C34	F4 TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Total xylene	Va phthalen e	Benzo(a)pyrene	Total PAH
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Laboratory PQL	1	0.1	1	1	1	0.1	1	1	10	125	10	50	100	100	1	1	1	2	1	3	1	1	0.1
NEPM Groundwater HSLs for Vapour Intrusion (Sand - 2m - <4m)											6000	NL			5000	NL	NL	NL	NL	NL	NL		
NEPM GIL Drinking Water	10	2	50	2000	10	1	20								1	800	300			600			
NEPM GIL Marine Waters	13*	0.7	4.4	1.3	4.4	0.1	7	15							500			200*	350*		50		
ANZECC 2018 - Marine (95% species protection)	13*	5.5	4.4	1.3	4.4	0.4	70	15							700	180	5	200*	350*		70		
Lab Report. Well ID Date																							
236498 S01 07-02-20	3	<0.1	2	10	1	<0.5	<1	42	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
242120 S01 01-05-20	1	<0.1	<1	9	2	<0.05	4	46	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236489 S02 07-02-20	3	<0.1	2	11	1	<0.5	<1	40	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236498 \$03 07-02-20	2	<0.1	1	10	<1	<0.05	<1	40	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
							_											-		-			1 1

<10

<250

<10

<50

<100

<100

<1

<1

<1

<2	<1	<3	<1	-	-
<2	<1	<3	<1	-	-
<2	<1	<3	<1	-	-
<2	<1	<3	<1	-	-
<2	<1	<3	<1	-	-

vvsp

	_						Mis	scellane	ous										1	MNA In	dicators	s (mg/L)					
			Electrical Conductivity (Lab)	Electrical Conductivity (field)	Electrical Conductivity (lab : field) ratio	рН (Lab)	pH (Field)	pH (lab : field) ratio	Total Dissolved Solids	EC:TDS Ratio	Dissolved Iron	Disolved Manganese	Methane	Calcium (Filtered)	Magnesium (Filtered)	Potassium (Filtered)	Sodium (Filtered)	Ammonia (as N)	Bicarbonate Alkalinity as CaCO3	Carbonate alkalinity as CaCO3	Hydroxide	Chloride	Fluoride	Sulfate	Nitrate (as N)	Nitrite (as N)	Phosphate (as P)	Alkalinity (total)
Units			μS/cm	μS/cm	μS/cm	pH Units	pH Units	%	mg/L		mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Laboratory PQL			2	0.1		0.1	0.01	0.1	2		0.05	0.05	5	0.1	0.1	0.2	0.1	0.01	5	1	5	1	0.02	1	0.005	0.005	0.005	5
NEPM Groundwate	r HILs for Drinking Water		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	500	11.3	0.91	-	-
ANZG 2018 - Mai	ine (95% species protection	on)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.91	-	-	-	-	-	-	2.4	-	-	-
NEPM GIL Marine \	Vaters		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.91	-	-	-	-	-	-	0.16	-	-	-
Lab Report.	Well ID MW12	Date 30-04-20	1,700	2071	0.820859	7.3	6.99	1.044349	1100	1.55	2	0.069	25	160	41	0.1	180		440	<f.< th=""><th>-5</th><th>270</th><th>0.5</th><th>80</th><th>0.02</th><th></th><th><0.005</th><th>440</th></f.<>	-5	270	0.5	80	0.02		<0.005	440
242120								1.044349			3				41	9.1		-	440	<5	<5			80		-	< 0.005	
242120	MW15	30-04-20	1,300	1412	0.92068	7.1	6.8 7		870	1.49	0.05	0.28	30	170	25	7.1	100	-	430	<5	<5	160	<0.1	80	0.13	-	0.008	430 420
242120 242120	MW16 MW22	30-04-20 30-04-20	810 690	904	0.896018	7.2		1.028571	470	1.72	14	0.03	1500	130	14	5.4 4.3	19	-	420 360	<5	<5 <5	23 24	0.3	<1	< 0.005	-	< 0.005	360
242120	MW26	30-04-20	890	633 964	0.923237	7	7.29 6.98	1.002865	410 540	1.68 1.65	5	0.15	1300 440	110 150	11 16	4.5	21 32	-	570	<5 <5	<5	37	0.3	13	<0.005 <0.005	-	<0.005 <0.005	570
242120	MW02	01-05-20	690	738	0.923237	7.2	7.13	1.002865	380	1.815	5.5	0.037	270	130	10	5.5	23	-	360	<5	<5	22	0.4	9	< 0.005	-	< 0.005	360
242120	MW07	01-05-20	850	222	3.828829	7.2	6.84	1.023392	490	1.815	17	0.021	3200	110	7.1	4.5	18	-	550	<5	<5	25	0.4	3	< 0.005	-	< 0.005	550
242120	MW08	01-05-20	1100	1089	1.010101	7.3	7.37	0.990502	670	1.64	5.1	0.25	310	180	14	3	75	-	400	<5	<5	100	0.3	26	0.055	-	< 0.005	400
242120	MW17	01-05-20	810	794	1.020151	7.5	7.28	1.03022	510	1.59	<10	0.099	<5	140	13	3.8	28	-	320	<5	<5	47	0.1	35	1.5	-	0.11	320
242120	MW28	01-05-20	810	720	1.125	7.2	7.2	1	500	1.62	5.7	0.04	13	140	16	3.3	17	-	410	<5	<5	22	0.4	22	<0.005	-	< 0.005	410
242120	MW29	01-05-20	860	858	1.002331	6.8	6.79	1.001473	510	1.69	23	0.068	4400	170	7	4.4	20	-	480	<5	<5	23	0.2	<1	<0.005	-	<0.005	480
242120	MW30	01-05-20	760	726	1.046832	7.3	7.23	1.009682	440	1.73	4.4	0.055	2000	110	12	5	37	-	340	<5	<5	50	0.3	23	<0.005	-	< 0.005	340
242120	MW32	01-05-20	1100	1056	1.041667	7	6.65	1.052632	760	1.45	0.74	0.28	32	190	22	3.9	43	-	700	<5	<5	79	0.2	58	0.28	-	0.008	700
242120	MW33	01-05-20	740	793	0.933165	7.1	6.91	1.027496	460	1.61	16	0.13	980	130	13	2.3	12	-	410	<5	<5	16	0.2	2	< 0.005	-	<0.005	410
242120	MW35	01-05-20	1100	722	1.523546	7.3	7.03	1.038407	670	1.64	75	0.049	70	150	21	6.7	68	-	430	<5	<5	120	0.4	32	<0.005	-	<0.005	430
242120	MW37	01-05-20	880	840	1.047619	7.5	7.11	1.054852	480	1.83	3.3	0.098	1600	96	16	5.7	73	-	340	<5	<5	80	0.6	9	0.04	-	<0.005	340

vsp

	_		Catio	ns (mill	iequiva	lents)		Α	nions (ı	nilliequ	ivalent	s)					Ioni	c Balan	ce and l	Ratios		
			Calcium	Magnesium	Potassium	Sodium	Bicarbonate	Carbonate	Hydroxide	Chloride	Fluoride	Sulfate	Nitrate	Phosphate	Sum Cations	Sum Anions	lonic Balance	Alkalinity:Sum of Anions	NO3:Sum of Anions	NH4:Sum of Cations	SO4:Sum Anions	Leachate: Native cations (L:N)
Units			meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	%	%	%	%	%	%
Laboratory PQL																						
NEPM Groundwat	er HILs for Drinking Water		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ANZG 2018 - Ma	arine (95% species protectio	n)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NEPM GIL Marine	Waters		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lab Report.	Well ID	Date																				
242120	MW12	30-04-20	7.98	3.37	0.23	7.83	8.79	0.00	0.00	7.62	0.03	1.67	0.00	0.00	19.42	18.10	4%	49%	0%	-	9%	1%
242120	MW15	30-04-20	8.48	2.06	0.18	4.35	8.59	0.00	0.00	4.51	0.00	1.67	0.01	0.00	15.07	14.78	1%	58%	0%	-	11%	1%
242120	MW16	30-04-20	6.49	1.15	0.14	0.83	8.39	0.00	0.00	0.65	0.02	0.00	0.00	0.00	8.60	9.06	-3%	93%	0%	-	0%	2%
242120	MW22	30-04-20	5.49	0.91	0.11	0.91	7.19	0.00	0.00	0.68	0.02	0.12	0.00	0.00	7.42	8.01	-4%	90%	0%	-	2%	2%
242120	MW26	30-04-20	7.49	1.32	0.14	1.39	11.39	0.00	0.00	1.04	0.02	0.27	0.00	0.00	10.33	12.73	-10%	90%	0%	-	2%	1%
242120	MW02	01-05-20	5.49	0.82	0.18	1.00	7.19	0.00	0.00	0.62	0.00	0.19	0.00	0.00	7.49	8.00	-3%	90%	0%	-	2%	2%
242120	MW07	01-05-20	8.48	0.58	0.12	0.78	10.99	0.00	0.00	0.71	0.02	0.06	0.00	0.00	9.97	11.77	-8%	93%	0%	-	1%	1%
242120	MW08	01-05-20	8.98	1.15	0.08	3.26	7.99	0.00	0.00	2.82	0.02	0.54	0.00	0.00	13.47	11.37	8%	70%	0%	-	5%	1%
242120	MW17	01-05-20	6.99	1.07	0.10	1.22	6.39	0.00	0.00	1.33	0.01	0.73	0.11	0.02	9.37	8.58	4%	74%	1%	-	8%	2%
242120	MW28	01-05-20	6.99	1.32	0.08	0.74	8.19	0.00	0.00	0.62	0.02	0.46	0.00	0.00	9.13	9.29	-1%	88%	0%	-	5%	1%
242120	MW29	01-05-20	8.48	0.58	0.11	0.87	9.59	0.00	0.00	0.65	0.01	0.00	0.00	0.00	10.04	10.25	-1%	94%	0%	-	0%	1%
242120	MW30	01-05-20	5.49	0.99	0.13	1.61	6.79	0.00	0.00	1.41	0.02	0.48	0.00	0.00	8.21	8.70	-3%	78%	0%	-	6%	2%
242120	MW32	01-05-20	9.48	1.81	0.10	1.87	13.99	0.00	0.00	2.23	0.01	1.21	0.02	0.00	13.26	17.46	-14%	80%	0%	-	7%	1%
242120	MW33	01-05-20	6.49	1.07	0.06	0.52	8.19	0.00	0.00	0.45	0.01	0.04	0.00	0.00	8.14	8.70	-3%	94%	0%	-	0%	1%
242120	MW35	01-05-20	7.49	1.73	0.17	2.96	8.59	0.00	0.00	3.38	0.02	0.67	0.00	0.00	12.34	12.66	-1%	68%	0%	-	5%	1%
242120	MW37	01-05-20	4.79	1.32	0.15	3.18	6.79	0.00	0.00	2.26	0.03	0.19	0.00	0.00	9.43	9.27	1%	73%	0%	-	2%	2%

vsp

Appendix B - Table 5 QA/QC Results

State Transit Authority Groundwater Monitoring 58 Darley Street, Mona Vale NSW

Inorganic QA/QC DQIs

Well ID	Lab pH : Field pH	Lab EC : Field EC	Lab EC : TDS	Ionic Balance %
MW02	1.01	0.93	1.82	4%
MW07	1.02	3.83	1.73	1%
MW08	0.99	1.01	1.64	-3%
MW12	1.04	0.82	1.55	-4%
MW15	1.04	0.92	1.49	-10%
MW16	1.03	0.90	1.72	-3%
MW17	1.03	1.02	1.59	-8%
MW22	0.96	1.09	1.68	8%
MW26	1.00	0.92	1.65	4%
MW28	1.00	1.13	1.62	-1%
MW29	1.00	1.00	1.69	-1%
MW30	1.01	1.05	1.73	-3%
MW32	1.05	1.04	1.45	-14%
MW33	1.03	0.93	1.61	-3%
MW35	1.04	1.52	1.64	-1%
MW37	1.05	1.05	1.83	1%

Trip Blank and Trip Spike									
Analyte	TB1	TS1							
TRH C6 - C10	<10	-							
TRH C6 - C10 Less BTEX	<10	-							
Toluene	<1	106%							
Ethylbenzene	<1	105%							
m+p-xylene	<2	104%							
o-xylene	<1	107%							
Naphthalene	<1	-							

Intra Laboratory Duplicate Anl	aysis May 2020							
Analyte	Units	LOR	MW12	QA01	RPD	MW07	QA02	RPD
TRH C6 - C9	μg/L	10	<10	<10	-	12	<10	-
TRH C6 - C10	μg/L	10	<10	<10	-	43	32	29.3
Benzene	μg/L	1	<1	<1	-	<1	<0.5	-
Toluene	μg/L	1	<1	<1	-	<1	<0.5	-
Ethylbenzene	μg/L	1	<1	<1	-	<1	<0.5	-
m+p-xylene	μg/L	2	<2	<2	-	<2	<1	-
o-xylene	μg/L	1	<1	<1	-	<1	<0.5	-
Naphthalene	μg/L	1	<1	<1	-	<1	47	-
TRH C10 - C14	μg/L	50	<50	<50	-	2200	1800	20.0
TRH C15 - C28	μg/L	100	<100	<100	-	6100	4800	23.9
TRH C29 - C36	μg/L	100	<100	<100	-	<100	<100	-
TRH >C10 - C16	μg/L	50	<50	<50	-	4400	3500	22.8
TRH >C16 - C34	μg/L	100	<100	<100	-	3900	3100	22.9
TRH >C34 - C40	μg/L	100	<100	<100	-	<100	<100	-

Inter Laboratory Duplicate Anl	Inter Laboratory Duplicate Anlaysis May 2020											
Analyte	Units	LOR	MW12	QA01A	RPD	MW07	QA02A	RPD				
TRH C6 - C9	μg/L	10	<10	<40	-	12	<400	-				
TRH C6 - C10	μg/L	10	<10	<50	-	43	<500	-				
Benzene	μg/L	1	<1	<0.5	-	<1	<5	-				
Toluene	μg/L	1	<1	<0.5	-	<1	<5	-				
Ethylbenzene	μg/L	1	<1	<0.5	-	<1	<5	-				
m+p-xylene	μg/L	2	<2	<1	-	<2	<10	-				
o-xylene	μg/L	1	<1	<0.5	-	<1	<5	-				
Naphthalene	μg/L	1	<1	<0.5	-	<1	130	-				
TRH C10 - C14	μg/L	50	<50	<50	-	2200	1500	37.8				
TRH C15 - C28	μg/L	100	<100	<200	-	6100	4900	21.8				
TRH C29 - C36	μg/L	100	<100	<200	-	<100	770	-				
TRH >C10 - C16	μg/L	50	<50	<60	-	4400	2600	51.4				
TRH >C16 - C34	μg/L	100	<100	<500	-	3900	4400	12.0				
TRH >C34 - C40	μg/L	100	<100	<500	-	<100	<500	-				

APPENDIX C FIELD SHEETS

Contaminated Land Management Standard Form 3.2.1: Groundwater Gauging Record

Job num	ber:	- de set	PS1/177	4								
Client:		1	STA	1								
Site loca	tion:		58 Dard	58 Darley Street, Mona Vale NSW								
Date:		Index .	RO OU	30.04.20								
Person o	nsite:	- N.		AW, UM								
Well ID	Location	Depth to water (mBTOC)	Depth to LNAPL (mBTOC)	LNAPL thickness (m)	Total well depth	Comments						
MW26		1.554	(IIIBTOC)		(mBTOC)							
bankaras M	W25	1707	1.643	0.050	3.52	0121						
MN16	~	1.491	1.045	2.056		Nophoto						
WW33		1.88			2.20	Blochage in						
MW32		2.004	*		3.950	vell.						
MW15	1.820	1.806		2.75	3.926	HC odour						
-	-	7		2.133	+. 828-							
MWIZ		1.643	4		410							
1137	1	1.678			4.10							
MW35		1.512			203							
W22		1.396			4.02 3.22	- 14 - 14						
NW20		1.843	1.548		3.57	1 1						
14		-			557							
NWIS	2	1.816	1.712		7.88	- And						
					3.88							
nwel		1.890	1.653		3.80							
	39. s	2-041										
1619	11111	193	1.931		4.66							
121	Ref V		Sula 1		7.00	Mar .						
131		1.9003	1-852		3.31							
AL US		4			1 -1							
MW16		1.850	1.681	Sumal a subalit								
	140	Surger Surger										
						- Le						
				A. J. Martin								
in her			+									
Ø. Ý				5.17								
	ager:											

Version: A

Date: 8/12/14

Contaminated Land Management Standard Form 3.2.1: Groundwater Gauging Record

Job num	ber:		PS11174	4		
Client:			STA .			
Site locat	tion:	Contractions of	mona lala	2	144. A.	1
Date:		Transfer Street	1/5/20	See States		
Person o	nsite:		AW + L	04		
Well ID	Location	Depth to water (mBTOC)	Depth to LNAPL (mBTOC)	LNAPL thickness (m)	Total well depth (mBTOC)	Comments
MW23	onsile	1.341		and the second se	2.974	
MW24		1.388			3.879	
502				- 14	1.198	- Cherrory were
MW36	10-1-1-1			-	1-266	
MWOZ		1.683			2.864	and they
MWZS		1.431	- -	-	3.725	
MW30		1.600			2.675	1. 1. 1. 1. N. 1.
Minor		1.687	Status		2.884	strong HC
mw29		1-939			3.35	110
MWO7		1.864			3.29	
MWOZ		1.557	and the second		2.70	
ALL I				N.		
MW14		1.513	1.400	in the	2.05	1 100 0
MWOS		1.614	1.461	- William	2.51	7 andres
MNIB	100 V ret	1.509	1.503	a internet	2.24	I not to
540 S.	* ***	A				Casina
		1944 1944 1944				
	1	1. S. 1. S. 1. S. 1. S.	\$ ····	a man		
MWON	offsik	2.052	· • ·		2.16	Starbag
MUIT	1.1	1.747	and the second	and the second	274	
II'NI (4		1	1		
/	> acce	DS VIE 14	Istron PT		1	
503	heighta	& wall = 1.42	. water (u	tode, podd	les	1
	1			1.00.1	nus.	
501	A Aster	1.00 01748		1	1.30	-
	nuia k		Hie + se	altshage	- Polu P	THE
parties	101001			1) 200 g-	1001	
			A Start	200		27
Desta	manager:	SHJ	1 1		-	CALIFORNIA S

nan Date: Approver: C. Faull

. Faull Date: 8/12/14

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job nun	nber:	PSIII7	44		Well ID:		MILIZ	2	
Client:		STA.	Ø	44. 	Sampling	g date:	20.0	4.20	
Site loc	ation:	more	Vale	-	Sampler		AW,	LDH	
Casing E)iameter (m	m): 501	nan		Depth to g	groundwate	er from TOC	Before Sampling (m): 2004	
Depth to	LNAPL (mr	n): 🦟			Depth to g	groundwate	er from TOC	After Sampling (m): 2.013	
LNAPL t	hickness (m	nm):	-	a an	Initial Pun	np Speed (Purging):		
Method/p	oump type:	per:			Initial Pump Speed (Sampling):				
Start tim	e (2400 hr):	-	•	411	Pump depth (from base of well):				
Well dep	th from TO	c(m): 3	-926		Actual pu	rge volume	e (L):	1 36 10	
Well con	dition:				Did well p	urge 'dry'?	YIM	If yes, volume (L)?	
Bore vol	ume:	11	12.11		(1 bore volume = 2L/m for 50 mm well or 8L/m for 100 mm well)				
Purging	and Wate	r Quality P	arameters	:	A CONTRACTOR OF				
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.)	
	26	2.034	690	241	81	1277	8.15	11000	

(min)	Vol (L)	(mBTOC)	(units)	(°C)	(uS/cm)	(mV)	20 (ppm)	odour, sheen, pump rate etc.).	
	24	2.034	6,90	24.1	871	127.7	0.15	clear.	
i i i i	4 2014 BL	2.034	6.65	24.3	1056	120.0	0.10		
		p p	1		Maria I.				
							~	1	
			14					н.	
						,			
_			_			1			
						-			
Stabilis: Range:	abilisation - 0.1 m +/-0.05 +/- 3%		+/-10mV	+/- 10%	+/- 0.2°C				
Water q	uality meter	ID:	0		Calibratio	n date:			
Did field	d parameters	stabilise?	Yes No / N	A	Was the well dry purged Yes /No				
Sampli	ng details:				Analysis required:				
Method	/pump type:				TRH			Phenols	
Tubing	material:				TRH silica	gel		Metals (see COC for list)	
Samplin	ng equipmen	t:			BTEXN			MNA	
Hydroca	arbon sheen	observed?:	Yes No	>	VOC			Nutrients	
Primaril	y Sample ID	0	1.20	1	PAH			Other	
Were sa	amples filtere	d? (Yes) No	С	d	QC samples collected? Yes / No				
Preservations:					If yes – QC Sample IDs:				
Other co	omments and	ents and observations (i.e. photos, object				ckages, varia	ances to san	npling procedure):	

Field scientist:	Project manager:	11
		11

Version: A

Approver: C. Faull

Contaminated Land Managemen Standard Form 3.2.2: Groundwater Sampling Record

Job nui	mber:	851113	144		Well ID:		NAM	33		
Client:		STA	,		Samplin	g date:	30.0	33		
Site loc	ation:	Non	e val	e.	Sample	r:	QA			
Casing I	Diameter (n	nm): 5	Um		Depth to	groundwat	er from TO	C Before Sampling (m): 1-88		
	LNAPL (m		-		Depth to groundwater from TOC After Sampling (m): / - &					
	hickness (I					mp Speed				
	pump type:		i Pung	p.	Initial Pu	mp Speed ((Sampling):			
	e (2400 hr)	C 1002 M	~ ~		Pump de	pth (from b	ase of well)	:		
		C (m): 3.	95		Actual pu	urge volum	e (L):			
Well con	dition: C	joud		5.5.5	Did well	ourge 'dry'	Y/N	If yes, volume (L)?		
Bore vol	ume:				(1 bore vo	lume = 2L/r	n for 50 mm	well or 8L/m for 100 mm well)		
Purging	and Wate	r Quality P	arameter	s:		State .				
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.).		
9.22	h. A.	1.891	6.94	23.6	803	-103-9	0.43	Clear		
1.04	2 4 3	1.893	641	23.7	793	-114.2	0.14	Bto (
			2					slight HCO.		
						1000		0		
	-			1	and the second		and and a set of	State State State		
11.7				-	100		- 48	Park of the		
_										
						75.00				
Stabilisat Range:	ion	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C			
Water qu	ality meter	ID:	_		Calibration date:					
Did field	parameters	stabilise?	Yes/No/I	NA	The second second		a v. C	7		
	g details:			the second			ged Yes (N	9		
	ump type:	and the second	Contraction of the second			required:				
Tubing m		And State			TRH			Phenols		
	equipment			1	TRH silica	gei		Metals (see COC for list)		
		observed?:	Yes INO)	BTEXN	and the		MNA		
	Sample ID:		resilie)	VOC			Nutrients		
	and the second s	d? (Yes) No		Contraction of	PAH	and the second	6	Other		
Preservat				Constant of the second	Contraction of the local distance of the loc	The second second	1? Yes No)		
the second serve	10 10 10 10 MP	observatio	na li a pha	too shiset		Sample ID				
	and		na (i.e. pho	nos, objects	in well/block	ages, varia	nces to sam	pling procedure):		
Field scie	entist	An	North L		Desisat		sh			
					Project m	anager:	510			
-		100								
Version: A	a statement of the stat	Reviewer:	M. Hannan	Date:	100	Approve	r: C. Faull	Date: 8/12/14		

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job numl	per:	85111=	744		Well ID:	1800 and a	MW26			
Client:		STA			Sampling	g date:		4.20		
Site locat	ion:	Moneva	le		Sampler:		AW			
Casing Dia	ameter (mi	m): 5	Ö		Depth to groundwater from TOC Before Sampling (m): 15					
Depth to L	NAPL (mr	n): 🦳			Depth to groundwater from TOC After Sampling (m): 1.52					
LNAPL thi	ckness (m	m): —	-		Initial Pun	np Speed (Purging):			
Method/pu	imp type:	Peri			Initial Pun	np Speed (Sampling):	A State		
Start time	A	7.47			Pump dep	oth (from ba	ase of well)			
Well depth	from TOC	c (m): 3.	52		Actual pu	rge volume	e (L):			
Well cond	ition: Gr	rad - an	bres!		Did well p	urge 'dry'?	YIN	If yes, volume (L)?		
Bore volu	me: Y				(1 bore vol	ume = 2L/n	n for 50 mm	well or 8L/m for 100 mm well)		
Purging a	and Wate	r Quality P	arameters	s:						
fime Purged DTW pH		pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.)			
Tital	1		6.98	24.6	964	114.9	0.09	High Turbidity Brow		
	-							No sheen, ACadawa		
								100		
			*		1.100					
		Yester								
Stabilisati Range:	on	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C			
Water qua	lity meter	ID: 451			Calibration date:					
Did field p	arameters	stabilise?	Yes No / I	NA	Was the w	ell dry pur	ged Yes	Ja,		
Sampling	details:		~		Analysis	required:	C			
Method/pu	imp type:				TRH			Phenols		
Tubing ma	aterial:				TRH silica	gel		Metals (see COC for list)		
Sampling	equipmen	t:			BTEXN			MNA		
Hydrocarb	on sheen	observed?:	Yes No		VOC			Nutrients		
Primarily S	Sample ID		U					Other		
Were sam	ples filtere	d? Yes / N	0			es collecte	d? Yes			
Preservati	ons:	0			255		(/		
Other com	ments an	d observatio	ons (i.e. ph	otos, obiect	If yes – QC Sample IDs: s in well/blockages, variances to sampling procedure):					
			(pri			ages, ran		inpinig procodulo).		
	entist:	NN			Project manager: SK					

Version: A

Reviewer: M. Hannan Da

Date: Approver: C. Faull

I Date: 8/12/14

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job nu	mber:	PSIII	774		Well ID			105		
Client:		STA						35		
Site lo	cation:	Mona	vale		Sample	ing date:	30	.04.20		
Casing	Diameter (r	nm). 53	m							
	o LNAPL (m		-		Depth to	o groundwa	ater from T(DC Before Sampling (m): /- S/		
LNAPL	thickness (nm): —	_	1.7	Initial P	o groundwa	ater from T(DC After Sampling (m):		
Method	/pump type	Peri	Prop)	Initial Pump Speed (Purging):					
	ne (2400 hr)	:			Initial Pump Speed (Sampling): Pump depth (from base of well):					
Well dep	oth from TO)C (m): /	:02			urge volum		1):		
Well cor	ndition:	Gree	102				A. (P			
Bore vol	lume:	0.0				purge 'dry'		Joe, volume (L);		
Purging	and Wate	er Quality F	aramota		(1 bore v	olume = 2L/	m for 50 mm	well or 8L/m for 100 mm well)		
Time	Purged	DTW	pH	7			-			
(min)	Vol (L)	(mBTOC)	(units	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour,		
11:58	16.	1.542	7.00	21.5	738	51.7	8.31	odour, sheen, pump rate etc.).		
	24	1.544	7.05	21.3	843	51.1	854	ciera, no edour		
-		1.546	7.03	20.9	722	15.6	8.60			
			31				- sec	and the second se		
		-								
			-					1.24		
			<u>.</u>							
Stabilisati Range:	ion	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	1/ 0.0%0			
Water qua	ality meter II	D:								
Did field p	arameters	stabilise?	AND IN		Calibration					
Sampling			es NOTIN	A		the second se	ged Yes (N	2		
Method/pu			in the	and the	Analysis	required:				
Tubing ma					TRH			Phenols		
	equipment:				TRH silica	gel		Metals (see COC for list)		
					BTEXN			MNA		
Primarily S		bserved?:			VOC			Nutrients		
		6	V35		PAH			Other		
	les filtered	? Yes / No			QC sample	s collected	? Yes No			
Preservatio					If yes - OC Secol US					
other com	ments and o	observation	s (i.e. photo	os, objects	in well/blocka	ages, varian	ices to same	ling procedure):		
	A	Ant			and the second			5 provodu 6).		
Field scier	ntist: r	1.0			Project manager: SR					

Version: A

Approver: C. Faull Date

II Date: 8/12/14

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job numb	per:	PS1117	144		Well ID:	1113	MWI	1 1 -		
Client:		STA			Sampling	date:	301	4/20		
Site locat	ion:	monal	Vale		Sampler:		P	il		
-	ameter (mm	1	mh					Before Sampling (m): (-?		
27.5	_NAPL (mm				Depth to groundwater from TOC After Sampling (m):					
	ickness (mr					np Speed (F	175	High		
	ump type:	Peri	* ¹⁰⁰			np Speed (S		low.		
	(2400 hr):	HEARS			Pump dep	th (from ba	ase of well):			
C Status	140 7	C (m): 2.7	+53		Actual pur	rge volume	+ (L): 🦪			
Well cond	lition:	General		l.	Did well p	urge 'dry'?	Y / N	If yes, volume (L)?		
Bore volu		000.			(1 bore vol	ume = 2L/m	n for 50 mm	well or 8L/m for 100 mm we		
TRADUCTOR		r Quality Pa	arameters	s:						
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, co odour, sheen, pump rate		
10.16		1.846	6.84	24.7	1387	-54.4				
10.20	B2	1.856	6.82	25.0		-56.5	6.54			
	3	-	6.80	24.9	1412	-56.3	6.84			
							4			
						100	11	and the second second		
	11 10									
							and the second s			
Stabilisa Range:	tion	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C			
Water qu	uality meter	r ID:			Calibration date:					
Did field	parameter	rs stabilise?	Kes No /	/ NA	Was the well dry purged Yes / No					
and the second s	ng details:	12	No.			s required				
	/pump type:	1 5 5			TRH			Phenols		
	material:	A CONTRACTOR			TRH silic	a gel	15	Metals (see COC for lis		
	ng equipme	nt:			BTEXN			MNA		
		en observed	2. Yes/N	lo	VOC	1.		Nutrients		
	ly Sample II	+			PAH Other					
	amples filte	CA	No			ples collec	ted? Yes	(No)		
Preserv		lea.				QC Sample		<u> </u>		
		d abcorva	tione (i.e. t	abotos obie	2			ampling procedure):		
Other Co	omments a	Ind onserve	tions (i.e. P	1000, 00,	010 11 11	501.03				
					Project manager: Sh					

Version: A

Reviewer: M. Hannan

annan Date:

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job num	ing Diameter (mm): 50m				Well ID:		MWI	2		
Client:		STA	1		Sampling	g date:	30.0	14.20		
Site loca	ation:	Monav	jale		Sampler	• K. K.				
Casing D	iameter (m	m): 50	1~		Depth to	groundwat	er from TO	C Before Sam	pling (m): + G4	
Depth to	LNAPL (mr	m):	•					C After Sampli		
	hickness (m		•		Initial Pump Speed (Purging):					
	oump type:		Pomp		Initial Pur	np Speed ((Sampling):			
	e (2400 hr):		•		Pump der	oth (from b	ase of well)):		
		C (m): 4	(0	in the	Actual pu	irge volume	ə (L):			
Well cond	dition:	6000	L		Did well p	ourge 'dry'?	? Y / N	lf yes, volum	me (L)?	
Bore volu	ıme:								or 100 mm well)	
Purging	and Wate	er Quality P	arameter	s:					-	
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (t odour, sheer	turbidity, colour n, pump rate etc	
10:43	IL	1.669	6.95	21.7	2693	-88.7	0.70		, no odou	
	26	1.7008		21.9	2384	105.4	0.13			
0:53	32	1.714	6.99	21.9	2071	120.7	0.11			
									A Contraction	
								17		
						1		44	A Martin	
Stabilisati	ion								State of the second	
Range:		- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C		All States	
Water qua	ality meter I	ID:	\sim		Calibration date:					
Did field r	parameters	s stabilise?	Yes No / M	NA	Was the w	vell dry pur	ged Yes (N	NO)		
Sampling	g details:					required:		1	16 B C C	
Method/p	ump type:				TRH			Phenols	10 A. M.	
Tubing ma	aterial:		•		TRH silica	gel		Metals (see C	COC for list)	
Sampling	equipment	t:			BTEXN			MNA		
Hydrocarl	ydrocarbon sheen observed?: Yes / No							Nutrients		
Primarily	Sample ID:	A		PAH		4	Other			
Were sam	ples filtere	ed? Yes / No)		QC samples collected? Yes / No					
Preservati	ions:	1				C Sample ID	4		Λ.	
Other con	nments and	d observatio	ons (i.e. pho	otos, objects	1.172			npling procedur		
		M	No.				1			
Field scie	entist:	nw			Project m	anager:	SR			

an Date:

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job num	ber:	PSIII7	44		Well ID:		Martina	10 MW 16		
Client:		STA			Sampling	date:	30.0			
Site locat	tion:	Mona	vale		Sampler	2	AW			
Casing Di	iameter (mr	m): 🐠	50	1.5.1	Depth to g	roundwat	er from TOC	C Before Sampling (m):		
Depth to I	LNAPL (mn	n): —			Depth to groundwater from TOC After Sampling (m): 1 - 57					
LNAPL th	nickness (m				Initial Pun	np Speed (Purging):			
Method/p	ump type:		Pump	•	Initial Pur	np Speed ((Sampling):			
	e (2400 hr):	- /		41 14	Pump dep	th (from b	ase of well):			
Well dept	th from TOC	C (m):		a. 1	Actual pur	rge volume	ə (L):	A		
Well cond	lition:				Did well p	ourge 'dry'?	?Y/N	If yes, volume (L)?		
Bore volu	ime:	1			(1 bore vol	ume = 2L/r	n for 50 mm	well or 8L/m for 100 mm well)		
Purging	and Wate	r Quality Pa	arameters	s: ø						
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.		
8:50	26		7.00	25.6	904	151.4	CAR DEB	Clear, Slight H		
							0.28	00		
								and a start of the		
			1		-					
						0	1. 1			
								/ X		
			-							
	_							and the second s		
Stabilisati	lon									
Range:	-	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C	1		
Water qua	ality meter	ID:	_		Calibration date:					
Did field r	parameters	s stabilise?	Yes / No / I	NA	Was the w	vell dry pu	rged Yes	AV CONTRACTOR		
Samplin	g details:	Constanting of the	-		Analysis	required:				
Method/p	oump type:	a			TRH	allocard.		Phenols		
Tubing m	aterial:			1	TRH silica	gel	and a	Metals (see COC for list)		
Sampling	g equipmen	it:	The state		BTEXN		A. E.	MNA		
Hydrocar	Hydrocarbon sheen observed?: Yes / No							Nutrients		
Primarily	Primarily Sample ID:					VOC Nutrients PAH Other				
Were sam	Vere samples filtered? Yes / No					QC samples collected? Yes / No				
Preservat	tions:				If yes – QC Sample IDs:					
Other cor	nments an	d observatio	ons (i.e. ph	otos, object				mpling procedure):		
		ч.,					da			
Field sci	entist: I/	in			Project n	nanager:	Sr~			

.

1/1

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job num	ber:	PS11175	74		Well ID:		MW3	7		
Client:	ex de la	STA			Sampling	date:	30.01	1.20		
Site locat	tion:	Moner	Jak		Sampler:	and and				
Casing Dia	ameter (mr	n): 50	~		Depth to g	roundwate	er from TOC	Before Sampling (m): 1.678		
Depth to L	NAPL (mn	n): —	-	669	Depth to g	roundwate	er from TOC	After Sampling (m): 1.672		
LNAPL thi	ickness (m	m):			Initial Pun	np Speed (F	Purging):			
Method/pu	ump type:	Peri	Pinp		Initial Pun	np Speed (S	Sampling):			
Start time	(2400 hr):	1. 1		19	Pump dep	th (from ba	ase of well):			
Well dept	h from TOO	A	03		Actual pu	rge volume	e (L):			
Well cond	lition:	Gread	S. S. S.		Did well p	urge 'dry'?	Y / N	If yes, volume (L)?		
Bore volu	me:	1	ijar -		(1 bore vo	ume = 2L/n	n for 50 mm	well or 8L/m for 100 mm well)		
Purging	and Wate	r Quality Pa	arameters	3:	and the second					
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.).		
11:30	IL	1.738	7.15	20.4	936	38.5	0.42	No adaw, moderate		
	1 10 10						1	turbid,		
11:33	21	1.726	7.12	20.5	864	108.1	0.11			
11:35		1.722	7.11	20.5	840	113.1	2.08			
								· · · · · · · · · · · · · · · · · · ·		
			*		1					
Stabilisat Range:	tion	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C			
	ality meter	ID:			Calibration date:					
Did field	parameter	s stabilise?	Yes / No /	NA	Was the	well dry pu	rged Yes /			
Samplin	g details:				Analysis	s required	:			
Carlos Ca	oump type:				TRH			Phenols		
Tubing n	naterial:				TRH silic	a gel		Metals (see COC for list)		
Sampling	g equipme	nt:			BTEXN			MNA		
Hydroca	rbon sheel	n observed?	: Yes/No)	VOC			Nutrients		
Primarily	Sample I	D:	4W3-	ł	PAH			Other		
Were sa	Were samples filtered? Yes / No					QC samples collected? Yes / to				
Preserva	ations:	\bigcirc			If yes - 0	C Sample	IDs:			
Other co	omments a	nd observat	ions (i.e. p	hotos, objec	ts in well/blo	ockages, va	riances to sa	ampling procedure):		
Field so	cientist:	HW			Project	manager:	SK			
					-					

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job numb	er:	PS1117	74		Well ID:		MC	5-4.		
Client:		STA	· /		Sampling	date:	30	>4.		
Site locat	ion:	Moral	Jale		Sampler:					
		-	mi		Depth to ar	oundwate	from TOC	Before Sampling (m): しうう		
	ameter (mm				Depth to groundwater from TOC After Sampling (m):					
	NAPL (mm ckness (mi				Initial Pump Speed (Purging):					
and a second	imp type:	1hda 1	10011		Initial Pum					
Start time	(2400 hr):	punt	, wort		Pump dept	h (from ba	se of well):			
Nell dept	from TOC	:(m): 3,	22		Actual pur	ge volume	(L):	11		
Nell cond		Gove	٢		Did well pu	rge 'dry'?	Y P/N	If yes, volume (L)?		
Bore volu		000		19	(1 bore volu	ume = 2L/m	for 50 mm	well or 8L/m for 100 mm well)		
		r Quality Pa	arameters		de		1			
Fime (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc		
,			24K	. 22.2	632 -	177.4	3.09	11111		
an		-	776		-			Bolino		
			1.01				12	WI CON		
								Slight Bolow		
						-		and a torl		
								Must in stat		
							el temp			
							and the state			
Stabilisa	tion						+/- 0.2°C			
Range:	uon	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2 C			
Water qu	ality meter	r ID:	6		Calibratic	on date:		6		
Did field	parameter	s stabilise?	Yes/No/I	A	Was the v	well dry pu	rged Yes/	(No')		
Samplin	ng details:		~		Analysis	required				
1.1	pump type	Hondre	Seere	2	TRH			Phenols		
Tubing	material:	1. 100-			TRH silica	a gel		Metals (see COC for list)		
K.	g equipme	nt:			BTEXN		der.	MNA		
			: Yes/No		VOC			Nutrients		
	Hydrocarbon sheen observed?: Yes / No Primarily Sample ID:					PAH Other				
	Primarily Sample ID: Were samples filtered? (Yes)/ No					QC samples collected? Yes No				
	Preservations:					If yes - QC Sample IDs:				
		nd observat	tions (i.e. pł	notos, obje		N		ampling procedure):		
		M		<u></u>	Project	manager:	Sh			
Field s	cientist:	no	ř.		Project	managel	on			

Reviewer: M. Hannan Date:

Approver: C. Faull

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job nun	nber:	PS11174	4		Well ID:		Mu	102		
Client:		STA	8		Sampling	date:	1.5	102		
Site loca	ation:	Mona	- Vale	/	Sampler:					
Casing D	lameter (mi	m): 50.			Depth to g	roundwate	r from TOC	Before Sampling (m):		
Depth to	LNAPL (mr	n): —			Depth to groundwater from TOC After Sampling (m): 5 44					
LNAPL t	hickness (m	nm): —			Initial Pum	p Speed (I	Purging):			
Method/p	oump type:	per	2 pump		Initial Pum	np Speed (Sampling):			
Start tim	e (2400 hr):	10-30			Pump dep	th (from ba	ase of well):			
Well dep	th from TO	C (m):			Actual pur	rge volume	(L):			
Well con	dition:				Did well p	urge 'dry'?	Y / N.	If yes, volume (L)?		
Bore vol	ume:			Sur sur	(1 bore vol	ume = 2L/n	n for 50 mm	well or 8L/m for 100 mm well)		
Purging	and Wate	r Quality P	arameters	s:						
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.		
A MARINE	11	5.67	7.12	24.8	812-	-123-9	0.14	and the second		
	21	1.564	7.13	24.6	748-	128.2	0.11			
		1.565	713	24.5	738 -	-133.9	0.11	A CARLES AND A CAR		
-			_							
								· · · · · · · · · · · · · · · · · · ·		
								12		
Stabilisa Range:	ition	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C			
2	ality meter	ID:	~		Calibration date:					
Did field	parameters	s stabilise?	Ves/No/I	NA	Was the well dry purged Yes No					
	ng details:		0			required:	6	2		
	pump type:				TRH			Phenols		
Tubing r	naterial:				TRH silica	ael	X	Metals (see COC for list)		
	g equipmer	nt:			BTEXN	3		MNA		
		observed?	: Yes/No		VOC			Nutrients		
	y Sample ID		1		PAH			Other		
	Were samples filtered? Yes / No					QC samples collected? Yes No				
	Preservations:					C Sample I	1			
		id observati	ons (i.e. ph	otos, object				mpling procedure):		
Field so	cientist:			1	Project manager:					
11010 30	Jonuou				riojoori					

Reviewer: M. Hannan

Hannan Date:

1/1

****\$P

30

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job num	nber:	PSIII	744		Well ID:		MW	28		
Client:		STA			Sampling	g date:	1,1	5/20		
Site loca	ation:	Mona	vale		Sampler:		ph	7		
Casing D	Diameter (m	im): 504	n		Depth to	groundwate	er from TOC	C Before Sampling (m): 1.4		
Depth to	LNAPL (mr			heria	Depth to groundwater from TOC After Sampling (m): 144					
LNAPL th	hickness (m	(A.)			Initial Pur	mp Speed (I	Purging):			
Method/p	pump type:				Initial Pur	mp Speed (Sampling):			
	e (2400 hr):	V			Pump der	oth (from ba	ase of well):	:		
Well dept	th from TO	C(m): 3.	725	Line in the	Actual pu	irge volume	÷(L):			
Well cond	dition: (bead			Did well p	ourge 'dry'?	?Y/N	If yes, volume (L)?		
Bore volu	ume:				(1 bore vo	lume = 2L/n	n for 50 mm	well or 8L/m for 100 mm well)		
Purging	and Wate	er Quality Pa	arameter	s:						
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour odour, sheen, pump rate etc		
8.08	1	1.444	7.40	22.1	820	-95.7	0.65			
8.10	2	1.433	7.26	22.4	816	-111.1	0.26			
	3	1.441	7.20	22.4	817	-120.5	0.14			
					192					
				_						
- State - Stat	14 +							76		
Stabilisat	ition	4		1.001						
Range:		- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C			
Water qu	ality meter	ID:	0		Calibration date:					
Did field	parameters	s stabilise?	Yes No /	NA	Was the well dry purged Yes No					
Samplin	ng details:		\bigcirc		Analysis	required:				
Method/r	pump type:				TRH			Phenois		
Tubing m	naterial:				TRH silica	a gel		Metals (see COC for list)		
Sampling	g equipmen	ıt:			BTEXN			MNA		
Hydroca	Hydrocarbon sheen observed?: Yes / No							Nutrients		
Primarily	Primarily Sample ID:						1	Other		
Were sar	Vere samples filtered? (Yes) No					QC samples collected? Yes / No				
Preserva	ations:	~				C Sample I				
Other co	mments an	d observati	ons (i.e. pr	notos, objec				mpling procedure):		
		۸.					c _			
Field sc	ientist:	nu			Project manager: SR					

Version: A

Hannan Date:

Contaminated Land Manag Standard Form 3.2.2. Groundwater Sampling Record

	0	CIII Th	14	V	Well ID:		MW29	2 /2		
b numbe	r: [5111	*	1	Sampling da	ate:	1.5.7	10 1		
ient:		Monal	rte	1	Sampler:					
te locatio					Depth to gro	undwater	from TOC B	Before Sampling (m).		
	meter (mm)		-		Depth to gro	oundwater	r from TOC A	After Sampling (m): 1.944		
	APL (mm):				Initial Pump Speed (Purging):					
	kness (mm	1):	C.m.R		Initial Pump	Speed (S	Sampling):			
lethod/pur		121	fund		Pump depth	h (from ba	ase of well):			
start time (2400 hr):	101.2.3	5		Actual purg			(1)2		
		(m): 3.3	3		Did well put	rge 'dry'?	?Y/N	If yes, volume (L)?		
Nell condi					(1 bore volu	ume = 2L/r	n for 50 mm	well or 8L/m for 100 mm well)		
Bore volu	me:			X	(1	14				
Purging a		r Quality Pa	arameters.	Temp	EC	Redox	DO (ppm)	Comments (turbidity, colou odour, sheen, pump rate et		
Time	Purged Vol (L)	DTW (mBTOC)	pH (units)	(°C)	(uS/cm)	(mV)	0.20			
(min) ら.ころ		954	682	21.7	011	-111.5	0.25			
4.07	a	954	6.81	21.5		116.0				
	3	11	6.79	21.2	858-	-120	0.19			
	5									
-]				_						
						1	<i>n</i>			
						1 10	% +/- 0.2°			
Stabilis	ation	- 0.1 m	+/-0.05	5 +/- 3%	% +/-10mV	/ +/- 10	% +/- 0.2			
Range:		_				tion date:		·		
Water of	quality met	er ID:	a Vac / No	/NA	Was the	e well dry	purged Yes	3 / No		
Did fie	d paramet	ters stabilise	17 Yes/110	/ 19/3		sis requir		1111111111		
Samp	ling detail	ls:			TRH	10.		Phenols		
	d/pump typ				TRH sil	lica del		Metals (see COC for list		
Tubin	g material:				BTEXN			MNA		
Samp	ling equipr	ment:	\cap			1		Nutrients		
Hydro	ocarbon sh	neen observe	ed?: Yes/	No	VOC			Other		
	arily Sampl				PAH		ollected? Ye	0s / NO		
Were	samples f	filtered? Yes	s / No							
Pres	ervations:				If yes	- QC San	npie ius.	to sampling procedure):		
Othe	r commen	ts and obse	rvations (i.e	a. photos, c Ę	0.			to sampling procedure):		
		- it		-	Proj	ect mana	ager:	R		
Fiel	d scientis	st: V	w							

Reviewer: M. Hannan Date:

1/

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job nu Client:		571	744	1	Well ID):	M	.130		
Site loc		Mon	T to	4	Sampl	ling date:	11.	CIDIS		
	(b)		avate		Sample			1 ju		
	Diameter (n		0		Depth t	o aroundw	ator from T			
	o LNAPL (m		-		Depth t	e groundw	iter from T(OC Before Sampling (m): /		
	thickness (r		-		Depth to groundwater from TOC After Sampling (m): / C Initial Pump Speed (Purging):					
	/pump type:	101	ri funt	8	Initial Pump Speed (Sampling):					
	ne (2400 hr):				Pump d	epth (from	base of well	: 		
	oth from TO	,⊂ (m): 3	.675		Actual p	ourge volum	100 (I)·):		
Well cond	and house	Gre	ad			purge 'dry'				
Bore volu										
Purging	and Wate	er Quality P	arameter	rs:	(1 0010 1	JIUME = ZL/I	n for 50 mm	n well or 8L/m for 100 mm wel		
(min)	Purged Vol (L)	DTW (mBTOC)	рH	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)			
839			726	221	724	-127.2	A 16	odour, sheen, pump rate e		
8.41	2		7.23	22.1	726	-134.6	0.10			
					100	1.4.0	0.08	*		
	F						*			
						3	*			
		F						1		
+					, PAR					
1										
Stabilisatio Range:	on	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	1.100/				
	lity meter ID			17.070	11-0.2 C					
		stabilise? Ye	T		Calibration					
Sampling o		tabiliser Te	es/No/NA	Α	Was the we	ell dry purg	ed Yes/No	.)		
					Analysis r			/		
lethod/pum					TRH					
Fubing mate					TRH silica ge	iel		Phenols Metals (ass 200 for more		
ampling eq					BTEXN	1		Metals (see COC for list)		
ydrocarbor	n sheen ob	bserved?: Y	Yes / No		VOC			MNA		
rimarily Sar		0			PAH			Nutrients		
	es filtered?	Yes / No	St. E.			- collected?		Other		
reservation					QC samples If yes – QC S					
ther comme	ents and ot	oservations	(i.e. photos	s, objects ir	n well/blocka	ges, varianc	es to sampli	ing procedure):		
ield scienti							20 10 COLUMN	ig procedure):		
	151.		1.1.15	F	Project man	nager: *				

Version: A

nan Date:

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

							4		
Job numb	ber:	PS11174	44		Well ID:		MWO		
Client:		STA			Sampling	date:	01.05	.26	
Site locat	tion:	monel	vale		Sampler:				
	iameter (mn				Depth to gr	roundwate	r from TOC	Before Sampling (m): 1.80	
1070	LNAPL (mm				Depth to gr	roundwate	r from TOC	After Sampling (m): 1.8	
	ickness (m				Initial Pump				
Caracteria de la construction	ump type:				Initial Pump	p Speed (S	Sampling):		
	e (2400 hr):				Pump dept	th (from ba	ase of well):		
		C (m): 3-2	29		Actual purg	ge volume	: (L):		
Well cond					Did well pu		\sim) If yes, volume (L)?	
Bore volu					(1 bore volu	ume = 2L/m	n for 50 mm	well or 8L/m for 100 mm well	
1		er Quality Pa	arameters	s:					
Furging Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	odour, sheen, pump rate e	
9:53	11	1.864	6.89	18.9	2.3	84.2	10.72		
	22	1.866	6.84	18.9	2.2	82.4	10.56	Turbid, brown	
		-							
								i i	
Stabilisat Range:	ition	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C	2	
	uality meter	r ID:	-		Calibration date:				
Did field	parameter	rs stabilise?	Yes / No /	NA	Was the v	well dry pu	urged Yes	NO	
	ng details:				Analysis	s required	1:		
	/pump type:				TRH			Phenols	
	material:	1.19			TRH silica	a gel		Metals (see COC for list)	
	ng equipme	ent:	3	÷	BTEXN			MNA	
		en observed?	0	VOC			Nutrients		
-	ly Sample II		U.		PAH		\bigcirc	Other	
	amples filte		No		QC same	ples collect	ted Yes	No	
Preserva	vations:	U		×	lf yes – G	QC Sample	e IDs: Q	AUZ /QAUZA	
		and observa	tions (i.e. p	hotos, obje		53		sampling procedure):	
							- 1-		
Field c	cientist:	An			Project	manager	: SR		

,

Date: 8/12/14 Approver: C. Faull

1/1

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job num	ber:	PSILIT	44		Well ID:		line	57 F.W			
Client:		PSILI7 STA Mun	1	1	Sampling	date:	1.5	T.W			
Site loca	tion:	pune	vale		Sampler:						
Casing D	iameter (mr	n):			Depth to g	roundwate	er from TOC	Before Sampling (m):			
	LNAPL (mn				Depth to groundwater from TOC After Sampling (m): 2.052						
LNAPL th	nickness (m	m):			Initial Pump Speed (Purging):						
Method/p	ump type:				Initial Purr	p Speed (Sampling):				
Start time	e (2400 hr):				Pump dep	th (from ba	ase of well):				
Well dept	th from TOC	C (m):			Actual put	ge volume	e (L):				
Well con	dition:			-	Did well p	urge 'dry'?	Y / N	If yes, volume (L)?			
Bore volu	ume:				(1 bore vol	ume = 2L/n	n for 50 mm	well or 8L/m for 100 mm well)			
Purging	and Wate	r Quality P	arameters		37 . B						
Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.			
	2	*	7.04	21.7	1102	-1422.	0.54	orage brown			
	3		737	21.4	1381	-141.3	0.32	der m black rock.			
								black roch.			
_						-					
Stabilisa Range:	ition	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C				
Water qu	uality meter	ID:	~		Calibration date:						
Did field	parameter	s stabilise?	Yes No / I	NA	Was the v	well dry pu	rged Yes	No			
Sampli	ng details:			AT SIDE	Analysis	required	:				
Method/	pump type:				TRH			Phenols			
Tubing	material:				TRH silica	a gel		Metals (see COC for list)			
Samplin	ig equipme	nt:		0	BTEXN			MNA			
Hydroca	arbon sheer	n observed?	: Yes(/No)	VOC			Nutrients			
Primaril	Primarily Sample ID:					PAH Other					
Were samples filtered? Yes No					QC samples collected? Yes / No						
Preserv	ations:				lf yes – C	C Sample	IDs:				
Other c	omments a	nd observat	ions (i.e. ph	iotos, objec	cts in well/blo	ckages, vai	riances to sa	mpling procedure):			
	12				D. 1.						
Field s	cientist:				Project	manager:					

Version: A

nan Date:

Approver: C. Faull Date: 8/12/14

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job number:	PS111744	Well ID:	MWIT			
Client:	STA	Sampling date:	01.05.20			
Site location:	Mona Vale	Sampler:				
Casing Diameter	(mm):	Depth to groundwat	ter from TOC Before Sampling (m):			
Depth to LNAPL (mm):	Depth to groundwat	ter from TOC After Sampling (m): 1.743			
LNAPL thickness	(mm):	Initial Pump Speed (Purging):				
Method/pump typ	e:	Initial Pump Speed (Sampling):				
Start time (2400 h	r):	Pump depth (from b	base of well):			
Well depth from T	OC (m):	Actual purge volume (L):				
Well condition:		Did well purge 'dry'? Y / (Å) If yes, volume (L)?				
Bore volume:		(1 bore volume = 2L/m for 50 mm well or 8L/m for 100 mm well)				

Purging and Water Quality Parameters:

Time (min)	Purged Vol (L)	DTW (mBTOC)	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.)	
1:32	16	1.763	7.39	23.3	800	23.4	1.65		
1:35	76		7.34	23.2	796	210	0.65		
1:38	3L	1.765	7.28	.23.2	-914	19.0	0.35		
Stabilisat Range:	tion	- 0.1 m	+/-0.05	+/- 3%	+/-10mV	+/- 10%	+/- 0.2°C		
Water qu	ality meter	ID:			Calibration date:				
Did field	parameters	stabilise?	Yes / No / N	NA	Was the well dry purged Yes / No				
Samplin	g details:				Analysis	required:			
Method/p	ump type:				TRH			Phenols	
Tubing m	aterial:				TRH silica	gel		Metals (see COC for list)	
Sampling	j equipmen	t:			BTEXN			MNA	
Hydrocar	bon sheen	observed?:	Yes / No		VOC			Nutrients	
Primarily	Sample ID:				PAH			Other	
Were sam	nples filtere	d? Yes / No)		QC sampl	es collecte	d? Yes/N	0	
Preservat	tions:				If yes – Q	C Sample I	Ds:		
Other cor	mments and	d observatio	ons (i.e. ph	otos, objects	s in well/bloc	kages, varia	ances to san	npling procedure):	
Field sci					Breiset n				

Field scientist:

Project manager:

Version: A

Reviewer: M. Hannan

. Hannan Date:

Approver: C. Faull Date: 8/12/14

115])

Contaminated Land Management Standard Form 3.2.2: Groundwater Sampling Record

Job number:	PS11174	44		Well ID:		MWO		
Client:	STA			Sampling o	date:	1.5.2	0	
Site location:	Monal	Vale		Sampler:	14			
Casing Diameter (r		dan se		Depth to groundwater from TOC Before Sampling (m): 1. 6 7				
Depth to LNAPL (n				Depth to gr	oundwate	r from TOC	After Sampling (m):	
_NAPL thickness (Initial Pump	p Speed (P	urging):		
Method/pump type	0 1			Initial Pump	p Speed (S	ampling):		
Start time (2400 hr): 8.55				Pump dept	h (from ba	se of well):		
Well depth from T				Actual purg	ge volume	(L):		
Well condition:	6			Did well pu	irge 'dry'?	Y / N	If yes, volume (L)?	
Bore volume:	4			(1 bore volu	ume = 2L/m	1 for 50 mm	well or 8L/m for 100 mm well)	
Purging and Wa	ter Quality P	arameters	s:	28				
Time Purge (min) Vol (L	d DTW	pH (units)	Temp (°C)	EC (uS/cm)	Redox (mV)	DO (ppm)	Comments (turbidity, colour, odour, sheen, pump rate etc.)	
·····,		70	163	6.52	- 72.1	4.24		
Stabilisation Range:	able to -0.1 m	+/-0.05	- ple +/- 3%	+/-10mV	+/- 10%	+/- 0.2°C		
Water quality me		6		Calibratio				
Did field parame	ters stabilise?	Yes / No)	NA	Was the v	well dry pu	urged (Yes)	No	
Sampling detai	ils:	1000		Analysis	s required	l:		
Method/pump ty				TRH			Phenols	
Tubing material		a.		TRH silica	a gel		Metals (see COC for list)	
Sampling equip				BTEXN			MNA	
Hydrocarbon sh		?: Yes/N	10	VOC			Nutrients	
Primarily Sampl				PAH			Other	
Were samples f		No		QC sam	ples collec	cted? Yes/	No	
Preservations:					QC Sample			
		<i>c c</i>	-hatas obi	ects in well/blr	ockages, va	ariances to s	ampling procedure):	
Other comment	s and observa	tions (i.e.)	onotos, obje		Jone group			
Other comment	s and observa	tions (i.e.)	photos, obje		manager			

Version: A

Approver: C. Faull

Date:

APPENDIX D CALIBRATION CERTIFICATES

Multi Parameter Water Meter

airmet Air-Met Scientific Pty Ltd 1300 137 067

Instrument Serial No.

YSI Quatro Pro Plus 18G103307

			Comments
	Test	Pass	
Item	Charge Condition	1	
attery	Fuses	1	
	Capacity	1	
	Capacity		
	Operation	¥ .	
Switch/keypad	Intensity	1	
Display	Operation	1	
	(segments)		
	Condition	1	
Grill Filter	Seal	1	
	Condition	1	
PCB	Condition	1	
Connectors		1	
Sensor	1. pH	1	
	2. mV	1	
	3. EC	1	
	4. D.O	1	
	5. Temp		
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:	a la serie de la s		

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
				332474	pH 9.81
1. pH 10.00		pH 10.00		330737	pH 6.98
2. pH 7.00		pH 7.00		330734	pH 4.08
3. pH 4.00		pH 4.00		346052/342074	226.9mV
4. mV		227.4mV		333787	2.74mS
5. EC		2.76mS	-	1904288592	0.00ppm
6. D.O		0.00ppm		MultiTherm	23.1°C
7. Temp		23.4°C	_	111900	

Calibrated by:

Sarah Lian

Calibration date:

29/04/2020

Next calibration due:

29/05/2020

29/4/20

Oil / Water Interface Meter

Instrument Serial No.

Geotech Interface Meter (30M) 4441

		Pass	Comments
Item	Test		
Battery	Compartment	V	
Sattery	Capacity	✓	
	Cleaned/Decon.	1	
Probe	Operation	1	
	Condition	1	
Connectors	Condition	1	
	Cleaned	1	
Tape Check	Checked for cuts	1	
Connectors	Checked for cuts		
Instrument Test	At surface level	✓	
	-		

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:

Remy Tarasin

Calibration date:

Next calibration due:

27/06/2020

28/04/2020

APPENDIX E LABORATORY TRANSCRIPTS

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 242120

Client Details	
Client	WSP Australia Pty Limited
Attention	Sarah Klocke
Address	GPO Box 5394, Sydney, NSW, 2001

Sample Details	
Your Reference	<u>PS111744</u>
Number of Samples	24 Water
Date samples received	01/05/2020
Date completed instructions received	04/05/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	11/05/2020
Date of Issue	11/05/2020
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Chris Guo, Senior Chemist, Air Hannah Nguyen, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 242120 Revision No: R00

Page | 1 of 28

Client Reference: PS111744

vTRH(C6-C10)/BTEXN in Water						
Our Reference		242120-1	242120-2	242120-3	242120-4	242120-5
Your Reference	UNITS	MW17	MW08	MW07	MW30	MW29
Date Sampled		01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	06/05/2020	06/05/2020	06/05/2020	06/05/2020	06/05/2020
TRH C ₆ - C ₉	µg/L	<10	<10	12	<10	34
TRH C ₆ - C ₁₀	µg/L	<10	<10	43	<10	78
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	43	<10	78
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	3	4	42	<1	21
Surrogate Dibromofluoromethane	%	103	103	101	103	101
Surrogate toluene-d8	%	97	100	99	97	98
Surrogate 4-BFB	%	106	105	104	108	112
vTRH(C6-C10)/BTEXN in Water						
Our Reference						
Our Reference		242120-6	242120-7	242120-8	242120-9	242120-10
Your Reference	UNITS	242120-6 MW02	242120-7 MW28	242120-8 MW22	242120-9 MW32	242120-10 MW33
	UNITS					
Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33
Your Reference Date Sampled	UNITS -	MW02 01/05/2020	MW28 01/05/2020	MW22 30/04/2020	MW32 30/04/2020	MW33 30/04/2020
Your Reference Date Sampled Type of sample	UNITS - -	MW02 01/05/2020 Water	MW28 01/05/2020 Water	MW22 30/04/2020 Water	MW32 30/04/2020 Water	MW33 30/04/2020 Water
Your Reference Date Sampled Type of sample Date extracted	UNITS - - µg/L	MW02 01/05/2020 Water 05/05/2020	MW28 01/05/2020 Water 05/05/2020	MW22 30/04/2020 Water 05/05/2020	MW32 30/04/2020 Water 05/05/2020	MW33 30/04/2020 Water 05/05/2020
Your Reference Date Sampled Type of sample Date extracted Date analysed	-	MW02 01/05/2020 Water 05/05/2020 06/05/2020	MW28 01/05/2020 Water 05/05/2020 07/05/2020	MW22 30/04/2020 Water 05/05/2020 07/05/2020	MW32 30/04/2020 Water 05/05/2020 07/05/2020	MW33 30/04/2020 Water 05/05/2020 07/05/2020
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - μg/L	MW02 01/05/2020 Water 05/05/2020 06/05/2020 <10	MW28 01/05/2020 Water 05/05/2020 07/05/2020 <10	MW22 30/04/2020 Water 05/05/2020 07/05/2020 <10	MW32 30/04/2020 Water 05/05/2020 07/05/2020 <10	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - μg/L μg/L	MW02 01/05/2020 Water 05/05/2020 06/05/2020 <10 <10	MW28 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10	MW22 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10	MW32 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ TRH C ₆ - C ₁₀ less BTEX (F1)	- - μg/L μg/L μg/L	MW02 01/05/2020 Water 05/05/2020 06/05/2020 <10 <10 <10	MW28 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10	MW22 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10	MW32 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 TRH C6 - C10 less BTEX (F1) Benzene	- - μg/L μg/L μg/L μg/L	MW02 01/05/2020 Water 05/05/2020 06/05/2020 <10 <10 <10 <10	MW28 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10	MW22 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10	MW32 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 TRH C6 - C10 less BTEX (F1) Benzene Toluene	- - μg/L μg/L μg/L μg/L μg/L	MW02 01/05/2020 Water 05/05/2020 <10 <10 <10 <10 <11 <1	MW28 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <11	MW22 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <11	MW32 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <10 <11 <1	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <1 <1
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 TRH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene	- - µg/L µg/L µg/L µg/L µg/L µg/L	MW02 01/05/2020 Water 05/05/2020 <10 <10 <10 <10 <11 <1 <1 <1	MW28 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <1 <1 <1 <1	MW22 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <1 <1 <1 <1	MW32 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <10 <1 <1 <1	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <1 <1 <1 <1
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 TRH C6 - C10 IRH C6 - C10 IRH C6 - C10 Ethylbenzene m+p-xylene	- - µg/L µg/L µg/L µg/L µg/L µg/L	MW02 01/05/2020 Water 05/05/2020 06/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW28 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <1 <1 <1 <1 <1 <1 <2	MW22 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <2	MW32 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <2
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 TRH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-xylene	- - µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	MW02 01/05/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW28 01/05/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW22 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW32 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 TRH C6 - C10 IRH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-xylene	- - - - - - - - - - - - - -	MW02 01/05/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW28 01/05/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW22 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW32 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	MW33 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

Client Reference: PS111744

vTRH(C6-C10)/BTEXN in Water						
Our Reference		242120-11	242120-12	242120-13	242120-14	242120-15
Your Reference	UNITS	MW26	MW15	MW12	MW37	MW16
Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	07/05/2020	07/05/2020	07/05/2020	07/05/2020	07/05/2020
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	22
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	39
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	39
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	101	103	103	102	101
Surrogate toluene-d8	%	99	101	100	99	100
Surrogate 4-BFB	%	108	105	108	108	112
vTRH(C6-C10)/BTEXN in Water						
vTRH(C6-C10)/BTEXN in Water Our Reference		242120-16	242120-17	242120-18	242120-19	242120-20
	UNITS	242120-16 MW35	242120-17 S01	242120-18 S03	242120-19 QA01	242120-20 QA02
Our Reference	UNITS					
Our Reference Your Reference	UNITS	MW35	S01	S03	QA01	QA02
Our Reference Your Reference Date Sampled	UNITS	MW35 30/04/2020	S01 01/05/2020	S03 01/05/2020	QA01 30/04/2020	QA02 01/05/2020
Our Reference Your Reference Date Sampled Type of sample	UNITS - -	MW35 30/04/2020 Water	S01 01/05/2020 Water	S03 01/05/2020 Water	QA01 30/04/2020 Water	QA02 01/05/2020 Water
Our Reference Your Reference Date Sampled Type of sample Date extracted	-	MW35 30/04/2020 Water 05/05/2020	S01 01/05/2020 Water 05/05/2020	S03 01/05/2020 Water 05/05/2020	QA01 30/04/2020 Water 06/05/2020	QA02 01/05/2020 Water 06/05/2020
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed	-	MW35 30/04/2020 Water 05/05/2020 07/05/2020	S01 01/05/2020 Water 05/05/2020 07/05/2020	S03 01/05/2020 Water 05/05/2020 07/05/2020	QA01 30/04/2020 Water 06/05/2020 07/05/2020	QA02 01/05/2020 Water 06/05/2020 07/05/2020
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - μg/L	MW35 30/04/2020 Water 05/05/2020 07/05/2020 <10	S01 01/05/2020 Water 05/05/2020 07/05/2020 <10	S03 01/05/2020 Water 05/05/2020 07/05/2020 <10	QA01 30/04/2020 Water 06/05/2020 07/05/2020 <10	QA02 01/05/2020 Water 06/05/2020 07/05/2020 <10
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - μg/L μg/L	MW35 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10	S01 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10	S03 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10	QA01 30/04/2020 Water 06/05/2020 07/05/2020 <10 <10	QA02 01/05/2020 Water 06/05/2020 07/05/2020 <10 32
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C $_6$ - C $_9$ TRH C $_6$ - C $_{10}$ TRH C $_6$ - C $_{10}$ less BTEX (F1)	- - μg/L μg/L μg/L	MW35 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10	S01 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10	S03 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10	QA01 30/04/2020 Water 06/05/2020 07/05/2020 <10 <10	QA02 01/05/2020 Water 06/05/2020 07/05/2020 <10 32 32
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ TRH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - μg/L μg/L μg/L μg/L	MW35 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10	S01 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10	S03 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10	QA01 30/04/2020 Water 06/05/2020 07/05/2020 <10 <10 <10 <10	QA02 01/05/2020 Water 06/05/2020 07/05/2020 <10 32 32 32 <1
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ TRH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - μg/L μg/L μg/L μg/L μg/L	MW35 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <10 <1	S01 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <11	S03 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <11 <1	QA01 30/04/2020 Water 06/05/2020 <10 <10 <10 <10 <10 <11 <1	QA02 01/05/2020 Water 06/05/2020 07/05/2020 <10 32 32 32 <1 <1
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_10$ TRH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene	- - µg/L µg/L µg/L µg/L µg/L µg/L	MW35 30/04/2020 Water 05/05/2020 07/05/2020 <10	S01 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <11 <1 <1	S03 01/05/2020 Water 05/05/2020 07/05/2020 <10	QA01 30/04/2020 Water 06/05/2020 07/05/2020 <10 <10 <10 <10 <1 <1 <1 <1	QA02 01/05/2020 Water 06/05/2020 07/05/2020 <10 32 32 32 <1 <1 <1 <1
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ TRH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - µg/L µg/L µg/L µg/L µg/L µg/L	MW35 30/04/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	S01 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <2	S03 01/05/2020 Water 05/05/2020 07/05/2020 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <2	QA01 30/04/2020 Water 06/05/2020 07/05/2020 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	QA02 01/05/2020 Water 06/05/2020 07/05/2020 <10 32 32 32 <1 <1 <1 <1 <1 <1 <1 <2
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_10$ TRH $C_6 - C_{10}$ IRH $C_6 - C_{10}$ IRH $C_6 - C_{10}$ Enzene Toluene Ethylbenzene m+p-xylene o-xylene	- - µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	MW35 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	S01 01/05/2020 Water 05/05/2020 <10 <10 <10 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	S03 01/05/2020 Water 05/05/2020 <10 <10 <10 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	QA01 30/04/2020 Water 06/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	QA02 01/05/2020 Water 06/05/2020 <10 <10 32 32 <1 <1 <1 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Our ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10TRH C6 - C10TRH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-xyleneNaphthalene	- - - - - - - - - - - - - -	MW35 30/04/2020 Water 05/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	S01 01/05/2020 Water 05/05/2020 07/05/2020 <10	S03 01/05/2020 Water 05/05/2020 07/05/2020 <10	QA01 30/04/2020 Water 06/05/2020 <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	QA02 01/05/2020 Water 06/05/2020 <10 <10 32 32 <1 <1 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

vTRH(C6-C10)/BTEXN in Water					
Our Reference		242120-21	242120-22	242120-23	242120-24
Your Reference	UNITS	RB01	RB02	Trip Spike	Trip Blank
Date Sampled		30/04/2020	01/05/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water
Date extracted	-	06/05/2020	06/05/2020	05/05/2020	05/05/2020
Date analysed	-	07/05/2020	07/05/2020	06/05/2020	06/05/2020
TRH C ₆ - C ₉	μg/L	<10	<10	[NA]	<10
TRH C6 - C10	µg/L	<10	<10	[NA]	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	[NA]	<10
Benzene	μg/L	<1	<1	112%	<1
Toluene	μg/L	<1	<1	106%	<1
Ethylbenzene	μg/L	<1	<1	105%	<1
m+p-xylene	μg/L	<2	<2	104%	<2
o-xylene	μg/L	<1	<1	107%	<1
Naphthalene	μg/L	<1	<1	[NA]	<1
Surrogate Dibromofluoromethane	%	117	114	91	93
Surrogate toluene-d8	%	98	97	100	98
Surrogate 4-BFB	%	108	109	106	108

svTRH (C10-C40) in Water						
Our Reference		242120-1	242120-2	242120-3	242120-4	242120-5
Your Reference	UNITS	MW17	MW08	MW07	MW30	MW29
Date Sampled		01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	05/05/2020	05/05/2020	05/05/2020	06/05/2020	06/05/2020
TRH C ₁₀ - C ₁₄	µg/L	<50	810	2,200	880	4,500
TRH C ₁₅ - C ₂₈	µg/L	180	5,300	6,100	2,500	13,000
TRH C ₂₉ - C ₃₆	µg/L	<100	280	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	95	2,100	4,500	1,800	10,000
TRH >C10 - C16 less Naphthalene (F2)	µg/L	92	2,100	4,400	1,800	10,000
TRH >C ₁₆ - C ₃₄	µg/L	110	4,400	3,900	1,600	7,000
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	123	#	#	#	#

svTRH (C10-C40) in Water						
Our Reference		242120-6	242120-7	242120-8	242120-9	242120-10
Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33
Date Sampled		01/05/2020	01/05/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	06/05/2020	06/05/2020	06/05/2020	06/05/2020	06/05/2020
TRH C ₁₀ - C ₁₄	μg/L	61	62	120	1,200	850
TRH C15 - C28	µg/L	<100	140	150	7,800	4,900
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	94	130	190	3,500	2,100
TRH >C10 - C16 less Naphthalene (F2)	μg/L	79	130	190	3,500	2,100
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	140	5,700	3,800
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	120	130	109	#	#

svTRH (C10-C40) in Water						
Our Reference		242120-11	242120-12	242120-13	242120-14	242120-15
Your Reference	UNITS	MW26	MW15	MW12	MW37	MW16
Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	06/05/2020	06/05/2020	06/05/2020	06/05/2020	06/05/2020
TRH C ₁₀ - C ₁₄	µg/L	160	<50	<50	<50	710
TRH C15 - C28	µg/L	210	2,300	<100	<100	3,100
TRH C ₂₉ - C ₃₆	µg/L	<100	100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	160	93	<50	<50	1,500
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	160	93	<50	<50	1,500
TRH >C ₁₆ - C ₃₄	µg/L	140	2,300	<100	<100	2,300
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	127	#	111	117	#
svTRH (C10-C40) in Water						
		242120-16	242120-17	242120-18	242120-19	242120-20
svTRH (C10-C40) in Water	UNITS			242120-18 S03		
svTRH (C10-C40) in Water Our Reference	UNITS	242120-16	242120-17		242120-19	242120-20
svTRH (C10-C40) in Water Our Reference Your Reference	UNITS	242120-16 MW35	242120-17 S01	S03	242120-19 QA01	242120-20 QA02
svTRH (C10-C40) in Water Our Reference Your Reference Date Sampled	UNITS -	242120-16 MW35 30/04/2020	242120-17 S01 01/05/2020	S03 01/05/2020	242120-19 QA01 30/04/2020	242120-20 QA02 01/05/2020
svTRH (C10-C40) in Water Our Reference Your Reference Date Sampled Type of sample	UNITS - -	242120-16 MW35 30/04/2020 Water	242120-17 S01 01/05/2020 Water	S03 01/05/2020 Water	242120-19 QA01 30/04/2020 Water	242120-20 QA02 01/05/2020 Water
svTRH (C10-C40) in Water Our Reference Your Reference Date Sampled Type of sample Date extracted	-	242120-16 MW35 30/04/2020 Water 05/05/2020	242120-17 S01 01/05/2020 Water 05/05/2020	S03 01/05/2020 Water 05/05/2020	242120-19 QA01 30/04/2020 Water 05/05/2020	242120-20 QA02 01/05/2020 Water 05/05/2020
svTRH (C10-C40) in Water Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed	-	242120-16 MW35 30/04/2020 Water 05/05/2020 06/05/2020	242120-17 S01 01/05/2020 Water 05/05/2020 06/05/2020	S03 01/05/2020 Water 05/05/2020 06/05/2020	242120-19 QA01 30/04/2020 Water 05/05/2020 06/05/2020	242120-20 QA02 01/05/2020 Water 05/05/2020 06/05/2020
svTRH (C10-C40) in Water Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - μg/L	242120-16 MW35 30/04/2020 Water 05/05/2020 06/05/2020 <50	242120-17 S01 01/05/2020 Water 05/05/2020 06/05/2020 <50	S03 01/05/2020 Water 05/05/2020 06/05/2020 <50	242120-19 QA01 30/04/2020 Water 05/05/2020 06/05/2020 <50	242120-20 QA02 01/05/2020 Water 05/05/2020 06/05/2020 1,800
svTRH (C10-C40) in Water Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - μg/L μg/L	242120-16 MW35 30/04/2020 Water 05/05/2020 06/05/2020 <50 <100	242120-17 S01 01/05/2020 Water 05/05/2020 06/05/2020 <50 <100	S03 01/05/2020 Water 05/05/2020 06/05/2020 <50 <100	242120-19 QA01 30/04/2020 Water 05/05/2020 06/05/2020 <50 <100	242120-20 QA02 01/05/2020 Water 05/05/2020 06/05/2020 1,800 4,800
svTRH (C10-C40) in Water Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - µg/L µg/L µg/L	242120-16 MW35 30/04/2020 Water 05/05/2020 06/05/2020 <50 <100 <100	242120-17 S01 01/05/2020 Water 05/05/2020 06/05/2020 <50 <100 <100	S03 01/05/2020 Water 05/05/2020 06/05/2020 <50 <100	242120-19 QA01 30/04/2020 Water 05/05/2020 06/05/2020 <50 <100 <100	242120-20 QA02 01/05/2020 Water 05/05/2020 06/05/2020 1,800 4,800 <100
svTRH (C10-C40) in WaterOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ TRH >C_{10} - C_{16}	- - μg/L μg/L μg/L μg/L	242120-16 MW35 30/04/2020 Water 05/05/2020 06/05/2020 <50 <100 <100 <50	242120-17 S01 01/05/2020 Water 05/05/2020 06/05/2020 <50 <100 <100 <50	S03 01/05/2020 Water 05/05/2020 06/05/2020 <50	242120-19 QA01 30/04/2020 Water 05/05/2020 06/05/2020 <50 <100 <100 <50	242120-20 QA02 01/05/2020 Water 05/05/2020 06/05/2020 1,800 4,800 <100 3,600
svTRH (C10-C40) in WaterOur ReferenceYour ReferenceDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ TRH >C_{10} - C_{16}TRH >C_{10} - C_{16} less Naphthalene (F2)	- μg/L μg/L μg/L μg/L μg/L	242120-16 MW35 30/04/2020 Water 05/05/2020 06/05/2020 <50 <100 <100 <50 <50 <50	242120-17 S01 01/05/2020 Water 05/05/2020 06/05/2020 <50 <100 <100 <50 <50 <50	S03 01/05/2020 Water 05/05/2020 06/05/2020 <50	242120-19 QA01 30/04/2020 Water 05/05/2020 06/05/2020 <50 <100 <100 <50 <50 <50	242120-20 QA02 01/05/2020 Water 05/05/2020 06/05/2020 1,800 4,800 <100 3,600 3,500

svTRH (C10-C40) in Water			
Our Reference		242120-21	242120-22
Your Reference	UNITS	RB01	RB02
Date Sampled		30/04/2020	01/05/2020
Type of sample		Water	Water
Date extracted	-	05/05/2020	05/05/2020
Date analysed	-	06/05/2020	06/05/2020
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100
Surrogate o-Terphenyl	%	126	87

HM in water - dissolved						
Our Reference		242120-1	242120-2	242120-3	242120-4	242120-5
Your Reference	UNITS	MW17	MW08	MW07	MW30	MW29
Date Sampled		01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Arsenic-Dissolved	µg/L	2	12	66	20	120
Iron-Dissolved	µg/L	<10	5,100	17,000	4,400	23,000
Manganese-Dissolved	µg/L	99	250	34	55	68
HM in water - dissolved	'					
Our Reference		242120-6	242120-7	242120-8	242120-9	242120-10
Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33
Date Sampled		01/05/2020	01/05/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Arsenic-Dissolved	µg/L	14	20	23	2	24
Iron-Dissolved	µg/L	5,500	5,700	5,000	740	16,000
Manganese-Dissolved	μg/L	21	40	150	280	130
HM in water - dissolved						
Our Reference		242120-11	242120-12	242120-13	242120-14	242120-15
Your Reference	UNITS	MW26	MW15	MW12	MW37	MW16
Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Arsenic-Dissolved	µg/L	46	<1	8	5	84
Iron-Dissolved	µg/L	9,000	50	3,000	3,300	14,000
Manganese-Dissolved	µg/L	37	280	69	98	30

HM in water - dissolved				
Our Reference		242120-16	242120-17	242120-18
Your Reference	UNITS	MW35	S01	S03
Date Sampled		30/04/2020	01/05/2020	01/05/2020
Type of sample		Water	Water	Water
Date prepared	-	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	05/05/2020	05/05/2020	05/05/2020
Arsenic-Dissolved	µg/L	6	1	1
Cadmium-Dissolved	µg/L	[NA]	<0.1	<0.1
Chromium-Dissolved	µg/L	[NA]	<1	<1
Copper-Dissolved	µg/L	[NA]	9	11
Lead-Dissolved	µg/L	[NA]	2	1
Mercury-Dissolved	µg/L	[NA]	<0.05	<0.05
Nickel-Dissolved	µg/L	[NA]	4	5
Zinc-Dissolved	µg/L	[NA]	46	62
Iron-Dissolved	µg/L	7,500	[NA]	[NA]
Manganese-Dissolved	µg/L	49	[NA]	[NA]

Metals in Water - Dissolved						
Our Reference		242120-1	242120-2	242120-3	242120-4	242120-5
Your Reference	UNITS	MW17	MW08	MW07	MW30	MW29
Date Sampled		01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	07/05/2020	07/05/2020	07/05/2020	07/05/2020	07/05/2020
Date analysed	-	08/05/2020	08/05/2020	08/05/2020	08/05/2020	08/05/2020
Silicon*- Dissolved	mg/L	4.6	6.4	7.7	5.6	8.9
Metals in Water - Dissolved						
Our Reference		242120-6	242120-7	242120-8	242120-9	242120-10
Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33

Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33
Date Sampled		01/05/2020	01/05/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	07/05/2020	07/05/2020	07/05/2020	07/05/2020	07/05/2020
Date analysed	-	08/05/2020	08/05/2020	08/05/2020	08/05/2020	08/05/2020
Silicon*- Dissolved	mg/L	4.5	5.0	4.1	9.8	7.6

Metals in Water - Dissolved						
Our Reference		242120-11	242120-12	242120-13	242120-14	242120-15
Your Reference	UNITS	MW26	MW15	MW12	MW37	MW16
Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date digested	-	07/05/2020	07/05/2020	07/05/2020	07/05/2020	07/05/2020
Date analysed	-	08/05/2020	08/05/2020	08/05/2020	08/05/2020	08/05/2020
Silicon*- Dissolved	mg/L	5.5	7.8	6.4	5.1	8.1

Metals in Water - Dissolved		
Our Reference		242120-16
Your Reference	UNITS	MW35
Date Sampled		30/04/2020
Type of sample		Water
Date digested	-	07/05/2020
Date analysed	-	08/05/2020
Silicon*- Dissolved	mg/L	5.9

Ion Balance						
Our Reference		242120-1	242120-2	242120-3	242120-4	242120-5
Your Reference	UNITS	MW17	MW08	MW07	MW30	MW29
Date Sampled		01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Date analysed	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Calcium - Dissolved	mg/L	140	180	170	110	170
Potassium - Dissolved	mg/L	3.8	3.0	4.5	5.0	4.4
Sodium - Dissolved	mg/L	28	75	18	37	20
Magnesium - Dissolved	mg/L	13	14	7.1	12	7.0
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	320	400	550	340	480
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	320	400	550	340	480
Sulphate, SO4	mg/L	35	26	3	23	<1
Chloride, Cl	mg/L	47	100	25	50	23
Ionic Balance	%	4.0	7.0	-9.0	-2.0	-2.0
Ion Balance				-	-	•
Our Reference		242120-6	242120-7	242120-8	242120-9	242120-10
Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33

Our Reference		242120-0	242120-7	242120-0	242120-9	242120-10
Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33
Date Sampled		01/05/2020	01/05/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Date analysed	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Calcium - Dissolved	mg/L	110	140	110	190	130
Potassium - Dissolved	mg/L	7.0	3.3	4.3	3.9	2.3
Sodium - Dissolved	mg/L	23	17	21	43	12
Magnesium - Dissolved	mg/L	10	16	11	22	13
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	360	410	360	700	410
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	360	410	360	700	410
Sulphate, SO4	mg/L	9	33	6	58	2
Chloride, Cl	mg/L	22	22	24	79	16
Ionic Balance	%	-3.0	-2.0	-5.0	-14	-2.0

Ion Balance						
Our Reference		242120-11	242120-12	242120-13	242120-14	242120-15
Your Reference	UNITS	MW26	MW15	MW12	MW37	MW16
Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/05/2020	4/05/2020	4/05/2020	4/05/2020	04/05/2020
Date analysed	-	04/05/2020	4/05/2020	4/05/2020	4/05/2020	04/05/2020
Calcium - Dissolved	mg/L	150	170	160	96	130
Potassium - Dissolved	mg/L	5.5	7.1	9.1	5.7	5.4
Sodium - Dissolved	mg/L	32	100	180	73	19
Magnesium - Dissolved	mg/L	16	25	41	16	14
Hydroxide Alkalinity (OH^{-}) as $CaCO_{3}$	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	570	430	440	340	420
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO ₃	mg/L	570	430	440	340	420
Sulphate, SO4	mg/L	13	80	80	9	<1
Chloride, Cl	mg/L	37	160	270	80	23
Ionic Balance	%	-10	2.0	3.0	1.0	-3.0

Ion Balance		
Our Reference		242120-16
Your Reference	UNITS	MW35
Date Sampled		30/04/2020
Type of sample		Water
Date prepared	-	4/05/2020
Date analysed	-	4/05/2020
Calcium - Dissolved	mg/L	150
Potassium - Dissolved	mg/L	6.7
Sodium - Dissolved	mg/L	68
Magnesium - Dissolved	mg/L	21
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	430
Carbonate Alkalinity as CaCO ₃	mg/L	<5
Total Alkalinity as CaCO₃	mg/L	430
Sulphate, SO4	mg/L	32
Chloride, Cl	mg/L	120
Ionic Balance	%	0

Miscellaneous Inorganics						
Our Reference		242120-1	242120-2	242120-3	242120-4	242120-5
Your Reference	UNITS	MW17	MW08	MW07	MW30	MW29
Date Sampled		01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Date analysed	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
рН	pH Units	7.5	7.3	7.0	7.3	6.8
Electrical Conductivity	μS/cm	810	1,100	850	760	860
Total Dissolved Solids (grav)	mg/L	510	670	490	440	510
Nitrate as N in water	mg/L	1.5	0.055	<0.005	<0.005	<0.005
Fluoride, F	mg/L	0.1	0.3	0.3	0.3	0.2
Phosphate as P in water	mg/L	0.11	<0.005	<0.005	<0.005	<0.005
BOD	mg/L	<5	<5	21	<5	9
Ferrous Iron	mg/L	<0.05	5.9	18	4.8	23

Miscellaneous Inorganics						
Our Reference		242120-6	242120-7	242120-8	242120-9	242120-10
Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33
Date Sampled		01/05/2020	01/05/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Date analysed	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
рН	pH Units	7.2	7.2	7.0	7.0	7.1
Electrical Conductivity	µS/cm	690	810	690	1,100	740
Total Dissolved Solids (grav)	mg/L	380	500	410	760	460
Nitrate as N in water	mg/L	<0.005	<0.005	<0.005	0.28	<0.005
Fluoride, F	mg/L	0.4	0.4	0.3	0.2	0.2
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	0.008	<0.005
BOD	mg/L	<5	<5	<5	<5	<5
Ferrous Iron	mg/L	5.3	5.7	5.9	0.45	16

Miscellaneous Inorganics						
Our Reference		242120-11	242120-12	242120-13	242120-14	242120-15
Your Reference	UNITS	MW26	MW15	MW12	MW37	MW16
Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
Date analysed	-	04/05/2020	04/05/2020	04/05/2020	04/05/2020	04/05/2020
рН	pH Units	7.0	7.1	7.3	7.5	7.2
Electrical Conductivity	µS/cm	890	1,300	1,700	880	810
Total Dissolved Solids (grav)	mg/L	540	870	1,100	480	470
Nitrate as N in water	mg/L	<0.005	0.13	0.02	0.04	<0.005
Fluoride, F	mg/L	0.4	<0.1	0.5	0.6	0.3
Phosphate as P in water	mg/L	<0.005	0.008	<0.005	<0.005	<0.005
BOD	mg/L	<5	<5	<5	<5	<5
Ferrous Iron	mg/L	9.0	<0.05	3.1	3.1	13

Miscellaneous Inorganics		
Our Reference		242120-16
Your Reference	UNITS	MW35
Date Sampled		30/04/2020
Type of sample		Water
Date prepared	-	04/05/2020
Date analysed	-	04/05/2020
рН	pH Units	7.3
Electrical Conductivity	μS/cm	1,100
Total Dissolved Solids (grav)	mg/L	670
Nitrate as N in water	mg/L	<0.005
Fluoride, F	mg/L	0.4
Phosphate as P in water	mg/L	<0.005
BOD	mg/L	<5
Ferrous Iron	mg/L	7.5

Dissolved Gases in Water							
Our Reference		242120-1	242120-2	242120-3	242120-4	242120-5	
Your Reference	UNITS	MW17	MW08	MW07	MW30	MW29	
Date Sampled		01/05/2020	01/05/2020	01/05/2020	01/05/2020	01/05/2020	
Type of sample		Water	Water	Water	Water	Water	
Date prepared	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020	
Date analysed	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020	
Methane	μg/L	<5	310	3,200	2,000	4,400	
Dissolved Gases in Water							
Our Reference		242120-6	242120-7	242120-8	242120-9	242120-10	
Your Reference	UNITS	MW02	MW28	MW22	MW32	MW33	
Date Sampled		01/05/2020	01/05/2020	30/04/2020	30/04/2020	30/04/2020	
Type of sample		Water	Water	Water	Water	Water	
Date prepared	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020	
Date analysed	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020	
Methane	μg/L	270	13	1,300	32	980	
Dissolved Gases in Water		·	·	·			
Our Reference		242120-11	242120-12	242120-13	242120-14	242120-15	
Your Reference	UNITS	MW26	MW15	MW12	MW37	MW16	
Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020	
T (00/04/2020	00/04/2020	00/04/2020	00/04/2020	00/04/202	

Date Sampled		30/04/2020	30/04/2020	30/04/2020	30/04/2020	30/04/2020
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Date analysed	-	05/05/2020	05/05/2020	05/05/2020	05/05/2020	05/05/2020
Methane	µg/L	440	30	25	1,600	1,500

Dissolved Gases in Water		
Our Reference		242120-16
Your Reference	UNITS	MW35
Date Sampled		30/04/2020
Type of sample		Water
Date prepared	-	05/05/2020
Date analysed	-	05/05/2020
Methane	µg/L	70

Method ID	Methodology Summary
AT-006	Dissolved gases determined by GC-FID using method USEPA SOP RSK175
A1-000	Dissolved gases determined by GC-FID using method USEFA SOF KSK175
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-076	Ferrous Iron is determined colourimetrically by discrete analyser. Waters samples are filtered on receipt prior to analysis.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Inorg-091	BOD - Analysed in accordance with APHA latest edition 5210 D and in house INORG-091.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH((C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			06/05/2020	8	05/05/2020	07/05/2020		05/05/2020	
Date analysed	-			07/05/2020	8	07/05/2020	08/05/2020		06/05/2020	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	8	<10	<10	0	125	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	8	<10	<10	0	125	
Benzene	µg/L	1	Org-023	<1	8	<1	<1	0	121	
Toluene	µg/L	1	Org-023	<1	8	<1	<1	0	127	
Ethylbenzene	µg/L	1	Org-023	<1	8	<1	<1	0	123	
m+p-xylene	µg/L	2	Org-023	<2	8	<2	<2	0	128	
o-xylene	µg/L	1	Org-023	<1	8	<1	<1	0	125	
Naphthalene	µg/L	1	Org-023	<1	8	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	104	8	103	115	11	84	
Surrogate toluene-d8	%		Org-023	95	8	101	96	5	101	
Surrogate 4-BFB	%		Org-023	107	8	104	116	11	101	

QUALITY CONTR	ROL: vTRH((C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			[NT]	10	05/05/2020	07/05/2020		05/05/2020	
Date analysed	-			[NT]	10	07/05/2020	08/05/2020		07/05/2020	
TRH C ₆ - C ₉	µg/L	10	Org-023	[NT]	10	<10	<10	0	127	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	[NT]	10	<10	<10	0	127	
Benzene	µg/L	1	Org-023	[NT]	10	<1	<1	0	126	
Toluene	µg/L	1	Org-023	[NT]	10	<1	<1	0	129	
Ethylbenzene	µg/L	1	Org-023	[NT]	10	<1	<1	0	125	
m+p-xylene	µg/L	2	Org-023	[NT]	10	<2	<2	0	128	
o-xylene	µg/L	1	Org-023	[NT]	10	<1	<1	0	126	
Naphthalene	µg/L	1	Org-023	[NT]	10	4	3	29	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	[NT]	10	102	113	10	86	
Surrogate toluene-d8	%		Org-023	[NT]	10	98	97	1	101	
Surrogate 4-BFB	%		Org-023	[NT]	10	107	115	7	102	

QUALITY CONTR	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	14	05/05/2020	08/05/2020		[NT]	
Date analysed	-			[NT]	14	07/05/2020	09/05/2020		[NT]	
TRH C ₆ - C ₉	µg/L	10	Org-023	[NT]	14	<10	<10	0	[NT]	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	[NT]	14	<10	<10	0	[NT]	
Benzene	µg/L	1	Org-023	[NT]	14	<1	<1	0	[NT]	
Toluene	µg/L	1	Org-023	[NT]	14	<1	<1	0	[NT]	
Ethylbenzene	µg/L	1	Org-023	[NT]	14	<1	<1	0	[NT]	
m+p-xylene	µg/L	2	Org-023	[NT]	14	<2	<2	0	[NT]	
o-xylene	µg/L	1	Org-023	[NT]	14	<1	<1	0	[NT]	
Naphthalene	µg/L	1	Org-023	[NT]	14	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	[NT]	14	102	117	14	[NT]	
Surrogate toluene-d8	%		Org-023	[NT]	14	99	96	3	[NT]	
Surrogate 4-BFB	%		Org-023	[NT]	14	108	110	2	[NT]	

QUALITY CONTR	ROL: vTRH(C6-C10)/E	3TEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	20	06/05/2020	08/05/2020			[NT]
Date analysed	-			[NT]	20	07/05/2020	09/05/2020			[NT]
TRH C ₆ - C ₉	μg/L	10	Org-023	[NT]	20	<10	11	10		[NT]
TRH C ₆ - C ₁₀	μg/L	10	Org-023	[NT]	20	32	31	3		[NT]
Benzene	µg/L	1	Org-023	[NT]	20	<1	<1	0		[NT]
Toluene	µg/L	1	Org-023	[NT]	20	<1	<1	0		[NT]
Ethylbenzene	µg/L	1	Org-023	[NT]	20	<1	<1	0		[NT]
m+p-xylene	µg/L	2	Org-023	[NT]	20	<2	<2	0		[NT]
o-xylene	µg/L	1	Org-023	[NT]	20	<1	<1	0		[NT]
Naphthalene	µg/L	1	Org-023	[NT]	20	47	62	28		[NT]
Surrogate Dibromofluoromethane	%		Org-023	[NT]	20	122	123	1		[NT]
Surrogate toluene-d8	%		Org-023	[NT]	20	96	99	3		[NT]
Surrogate 4-BFB	%		Org-023	[NT]	20	103	107	4		[NT]

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	242120-5
Date extracted	-			05/05/2020	4	05/05/2020	05/05/2020		05/05/2020	05/05/2020
Date analysed	-			05/05/2020	4	06/05/2020	06/05/2020		05/05/2020	06/05/2020
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	4	880	720	20	108	72
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	4	2500	1900	27	105	92
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	4	<100	<100	0	82	81
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	4	1800	1400	25	108	72
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	4	1600	1100	37	105	92
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	4	<100	<100	0	82	81
Surrogate o-Terphenyl	%		Org-020	88	4	#	#		78	#

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	242120-20
Date extracted	-			[NT]	14	05/05/2020	05/05/2020		05/05/2020	05/05/2020
Date analysed	-			[NT]	14	06/05/2020	06/05/2020		05/05/2020	06/05/2020
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	[NT]	14	<50	<50	0	110	#
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	[NT]	14	<100	<100	0	113	75
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	[NT]	14	<100	<100	0	92	102
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	[NT]	14	<50	<50	0	110	#
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	[NT]	14	<100	<100	0	113	75
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	[NT]	14	<100	<100	0	92	102
Surrogate o-Terphenyl	%		Org-020	[NT]	14	117	118	1	124	#

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	19	05/05/2020	05/05/2020			[NT]
Date analysed	-			[NT]	19	06/05/2020	06/05/2020			[NT]
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	[NT]	19	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	[NT]	19	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	[NT]	19	<100	<100	0		[NT]
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	[NT]	19	<50	<50	0		[NT]
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	[NT]	19	<100	<100	0		[NT]
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	[NT]	19	<100	<100	0		[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	19	99	129	26		[NT]

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	242120-2
Date prepared	-			05/05/2020	1	05/05/2020	05/05/2020		05/05/2020	05/05/2020
Date analysed	-			05/05/2020	1	05/05/2020	05/05/2020		05/05/2020	05/05/2020
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	2	2	0	97	90
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	101	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	100	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	[NT]
Iron-Dissolved	µg/L	10	Metals-022	<10	1	<10	<10	0	110	#
Manganese-Dissolved	µg/L	5	Metals-022	<5	1	99	100	1	103	#

QUALITY CC	NTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	05/05/2020	05/05/2020		[NT]	[NT]
Date analysed	-			[NT]	11	05/05/2020	05/05/2020		[NT]	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	[NT]	11	46	46	0	[NT]	[NT]
Iron-Dissolved	µg/L	10	Metals-022	[NT]	11	9000	9000	0	[NT]	[NT]
Manganese-Dissolved	µg/L	5	Metals-022	[NT]	11	37	36	3	[NT]	[NT]

QUALITY CON	TROL: Meta	ls in Wate	er - Dissolved			Du	Duplicate Spik				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	242120-2	
Date digested	-			07/05/2020	1	07/05/2020	07/05/2020		07/05/2020	07/05/2020	
Date analysed	-			08/05/2020	1	08/05/2020	08/05/2020		08/05/2020	08/05/2020	
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	1	4.6	4.6	0	108	102	
QUALITY CON	TROL: Meta	ls in Wate	er - Dissolved			Du	plicate		Spike Re	coverv %	
QUALITY CON Test Description	TROL: Meta Units	ls in Wate PQL	er - Dissolved Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re [NT]	covery % [NT]	
				Blank [NT]	# 11			RPD		, í	
Test Description	Units					Base	Dup.	RPD	[NT]	[NT]	

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	242120-2
Date prepared	-			04/05/2020	1	04/05/2020	04/05/2020		04/05/2020	05/05/2020
Date analysed	-			04/05/2020	1	04/05/2020	04/05/2020		04/05/2020	05/05/2020
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	140	130	7	99	#
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	3.8	3.8	0	99	102
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	28	27	4	86	#
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	13	13	0	97	98
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	320	330	3	[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	[NT]
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	320	330	3	109	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	35	35	0	102	91
Chloride, Cl	mg/L	1	Inorg-081	<1	1	47	47	0	90	82
Ionic Balance	%		Inorg-040	[NT]	1	4.0	1.0	120	[NT]	[NT]

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	10	04/05/2020	04/05/2020			[NT]
Date analysed	-			[NT]	10	04/05/2020	04/05/2020			[NT]
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	10	130	[NT]			[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	10	2.3	[NT]			[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	10	12	[NT]			[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	10	13	[NT]			[NT]
Hydroxide Alkalinity (OH [.]) as CaCO ₃	mg/L	5	Inorg-006	[NT]	10	<5	<5	0		[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	10	410	410	0		[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	10	<5	<5	0		[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	10	410	410	0		[NT]
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	10	2	2	0		[NT]
Chloride, Cl	mg/L	1	Inorg-081	[NT]	10	16	16	0		[NT]
Ionic Balance	%		Inorg-040	[NT]	10	-2.0	[NT]		[NT]	[NT]

QUALI	TY CONTRO)L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	04/05/2020	04/05/2020			
Date analysed	-			[NT]	11	04/05/2020	04/05/2020			
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	11	150	150	0		
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	11	5.5	5.6	2		
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	11	32	31	3		
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	11	16	16	0		
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	5	Inorg-006	[NT]	11	<5	[NT]			
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	11	570	[NT]			
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	11	<5	[NT]			
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	[NT]	11	570	[NT]			
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	11	13	[NT]			
Chloride, Cl	mg/L	1	Inorg-081	[NT]	11	37	[NT]			
Ionic Balance	%		Inorg-040	[NT]	11	-10	[NT]			

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	242120-2
Date prepared	-			04/05/2020	1	04/05/2020	04/05/2020		04/05/2020	05/05/2020
Date analysed	-			04/05/2020	1	04/05/2020	04/05/2020		04/05/2020	05/05/2020
рН	pH Units		Inorg-001	[NT]	1	7.5	7.4	1	103	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	810	810	0	103	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	510	500	2	100	[NT]
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	1.5	1.5	0	104	104
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	0.1	0.1	0	100	100
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.11	0.11	0	105	120
BOD	mg/L	5	Inorg-091	<5	1	<5	[NT]		92	[NT]
Ferrous Iron	mg/L	0.05	Inorg-076	<0.05	1	<0.05	<0.05	0	99	77

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	10	04/05/2020	04/05/2020			
Date analysed	-			[NT]	10	04/05/2020	04/05/2020			
рН	pH Units		Inorg-001	[NT]	10	7.1	7.0	1		
Electrical Conductivity	μS/cm	1	Inorg-002	[NT]	10	740	730	1		
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	[NT]	10	460	450	2		
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	10	<0.005	<0.005	0		
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	10	0.2	0.2	0		
Phosphate as P in water	mg/L	0.005	Inorg-060	[NT]	10	<0.005	<0.005	0		
BOD	mg/L	5	Inorg-091	[NT]	10	<5	[NT]			
Ferrous Iron	mg/L	0.05	Inorg-076	[NT]	10	16	[NT]			

QUALITY COI	NTROL: Mis	cellaneou	is Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	11	04/05/2020	04/05/2020			
Date analysed	-			[NT]	11	04/05/2020	04/05/2020			
рН	pH Units		Inorg-001	[NT]	11	7.0	[NT]			
Electrical Conductivity	μS/cm	1	Inorg-002	[NT]	11	890	[NT]			
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	[NT]	11	540	[NT]			
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	11	<0.005	[NT]			
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	11	0.4	[NT]			
Phosphate as P in water	mg/L	0.005	Inorg-060	[NT]	11	<0.005	[NT]			
BOD	mg/L	5	Inorg-091	[NT]	11	<5	[NT]			
Ferrous Iron	mg/L	0.05	Inorg-076	[NT]	11	9.0	8.9	1	[NT]	[NT]

QUALITY CON	NTROL: Diss	olved Ga	ses in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			05/05/2020	1	05/05/2020	05/05/2020		05/05/2020	
Date analysed	-			05/05/2020	1	05/05/2020	05/05/2020		05/05/2020	
Methane	μg/L	5	AT-006	<5	1	<5	<5	0	93	
QUALITY CON	NTROL: Diss	olved Ga	ses in Water			Du	plicate		Spike Re	covery %
QUALITY CON Test Description	NTROL: Diss Units	olved Ga PQL	ses in Water Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re [NT]	covery % [NT]
		_		Blank [NT]	# 11			RPD		
Test Description	Units	_				Base	Dup.	RPD	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Holding time exceedance - BOD, pH, NO3, PO4

8 HM in water - dissolved - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

TRH Water(C10-C40) NEPM - # Percent recovery for the surrogate is not possible to report due to interference from analytes (other than those being tested) in samples 242120-2, 3, 4, 4d, 5, 5ms, 9, 10, 12, 15, 20, 20ms.

Ion Balance - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Ferrous iron results are slightly higher than dissolved Iron for sample #2,3,4 and 8, but results are within the uncertainity of the two methods.

CHAIN OF CUSTODY - Client

ENVIROLAB SERVICES

					IKULAD	JLK	VIC	L3						-				\bigcirc
Client:	WSP A	ustralia Pty Ltd		Client	Project Name a	nd Nu	mber:							Envi	rola	b Se	rvice	S
Project Mgr:	Sa	rah Klocke					PS111	744						12 As	hley	St, C	hatsw	vood, NSW, 2067
Sampler:	A	my wray		PO No	b .:				PS11	1744								
Address:	Level 27, Ernst & Youn	g Centre 680 G	eorge Street	Enviro	olab Services Qu	ote N	0. :							Phon	e: 0 2	2 9910	0 620	D
				Date	results required	:				St	andar	rd TAT		Fax:	02	2 991(0 620	1
Email:	sarah.klocke@wsp.	com , amy.wra	ay@wsp.com	Or ch	oose: standard	/ 1 da	y / 2 d	ay / 3	day					E-ma	il: al	hie@e	enviro	labservices.com.au
Dhamai	0449420676	Fa		Note: 1 applies	nform lab in advance	e if urge	ent turna	round is	require	d -		S	urcharge	Conta	oti /	liloon	Hio	
Phone:	0448429676	Fax:		applies					T	Dee				Conta		Alleen	пе	0tr
┣───┬	Sample info	rmation			0		1	1	Tests	кер	uirea	1				1		Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	TRH/BTEXN	SWA (pH, EC, TDS, Ionic Balance (Ca, K, Mg, Na, Hardness, C03, HC03, OH, Total Alkalinity, Cl, S04), N03, Fe, Mn, Si	Ł	P04	BOD	Methane	Ferrous Iron	dissolved arsnic							Provide as much information about the sample as you can
	MW17	1/05/2020	Water	х	Х	Х	х	х	х	х	Х							
	MW08	1/05/2020	Water	х	х	Х	Х	Х	Х	Х	Х							1
	MW07	1/05/2020	Water	х	х	Х	Х	Х	Х	Х	Х							1
	MW30	1/05/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							
	MW29	1/05/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							Please filter metals where noted on bottles,
	MW02	1/05/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							Subsample as required.
	MW28	1/05/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							
	MW22	30/04/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							
	MW32	30/04/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							
	MW33	30/04/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							
	MW26	30/04/2020	Water	Х	Х	Х	Х	Х	Х	Х	Х							
	MW15	30/04/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							
	MW12	30/04/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							
	MW37	30/04/2020	Water	Х	х	Х	Х	Х	Х	Х	Х							
	MW16	30/04/2020			Х	Х	Х	Х	Х	Х	Х							
Relinquished	by (company):	WSP Australia	Pty Ltd	Recei	ved by (compan	y):								Sample	es Rec	eived:	Cool o	r Ambient (circle one)
Print Name:		Amy Wray		Print	Name:									Tempe	rature	e Recie	ved at:	(if applicable)
Date & Time:		1/05/2020		Date	& Time:									Transp	orted	by: Ha	and del	livered / courier
Signature:				Signa	ture:													Page No:

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

CHAIN OF CUSTODY - Client

ENVIROLAB SERVICES

					IKULAD S		VIC	_3										\bigcirc
Client:	WSP A	ustralia Pty Ltd		Client	Project Name a	nd Nur	nber:							Envir	ola	b Sei	rvice	S
Project Mgr:	Sa	rah Klocke				F	PS1117	44						12 As	hley	St, Cl	natsw	ood, NSW, 2067
Sampler:	A	my wray		PO No) .:				PS11	1744	ŀ							
Address:	Level 27, Ernst & Your	ig Centre 680 G	eorge Street	Enviro	olab Services Que	ote No	.:							Phone	e: 02	9910	6200)
				Date	results required:					St	andar	d TAT		Fax:	02	9910	620 :	1
Email:	<u>sarah.klocke@wsp.</u>	com , amy.wra	a <u>y@wsp.com</u>	Or ch	oose: standard /	1 day	/ 2 da	y / 3 d	lay					E-mai	l: al	nie@e	nviro	labservices.com.au
Dhanai	0449420676	Fax		Note: I applies	nform lab in advance	if urger	nt turnaro	ound is r	equired	-		SUI	rcharge	Conta	ct: A	iloon	Hio	
Phone:	0448429676	Fax:		applies					T 4 -	Deer				Conta		lieen	пе	0t-
	Sample info	rmation			υ				Tests	Req	ured	1		<u>г г</u>				Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	TRH/BTEXN	SWA (pH, EC, TDS, Ionic Balance (Ca, K, Mg, Na, Hardness, CO3, HCO3, OH, Total Alkalinity, CI, SO4), NO3, Fe, Mn, Si	L	P04	BOD	Methane	Ferrous Iron	dissolved arsnic	TRH/BTEXN/8 Metals	TRH/BTEXN					Provide as much information about the sample as you can
	MW35	30/04/2020	Water	Х	Х	Х	Х	х	Х	х	Х							
	S01	1/05/2020	Water	Х								Х						
	S03	1/05/2020	Water	Х								Х						
	QA01	30/04/2020	Water	Х									Х					
	QA01A	30/04/2020	Water	Х									Х					Please forward to SGS
	QA02	1/05/2020	Water	Х									Х					
	QA02A	1/05/2020	Water	Х									Х					Please forward to SGS
	RB01	30/04/2020	Water	Х									Х					
	RB02	1/05/2020	Water	Х									Х					
	Trip Spike		Water	Х									Х					
	Trip Blank		Water	Х									Х					
Relinquished	by (company):	WSP Australia	Pty Ltd	Recei	ved by (company	·):								Sample	s Rec	eived:	Cool o	r Ambient (circle one)
Print Name:		Amy Wray		Print	Name:									Temper	rature	Reciev	ved at:	(if applicable)
Date & Time		1/05/2020		Date	& Time:									Transpo	orted	by: Ha	nd del	ivered / courier
Signature:				Signa	ture:													Page No:

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

ANALYTICAL REPORT

Contact	Sarah Klocke	Manager	Huong Crawford
Client	WSP AUSTRALIA PTY LIMITED	Laboratory	SGS Alexandria Environmental
Address	Level 1, 121 Marcus Clarke Street Canberra ACT 2600	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 6201 9600	Telephone	+61 2 8594 0400
acsimile	02 9272 5101	Facsimile	+61 2 8594 0499
Email	sarah.klocke@wspgroup.com	Email	au.environmental.sydney@sgs.com
Project	PS111744	SGS Reference	SE205811 R0
Order Number	PS111744	Date Received	4/5/2020
Samples	2	Date Reported	11/5/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

VOC/VPH - The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES -

kmln

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

VOCs in Water [AN433] Tested: 6/5/2020

			QA01A	QA02A
			WATER	WATER
PARAMETER	UOM	LOR	- 30/4/2020 SE205811.001	- 1/5/2020 SE205811.002
Benzene	µg/L	0.5	<0.5	<5.0↑
Toluene	µg/L	0.5	<0.5	<5.0↑
Ethylbenzene	µg/L	0.5	<0.5	<5.0↑
m/p-xylene	µg/L	1	<1	<10↑
o-xylene	µg/L	0.5	<0.5	<5.0↑
Total Xylenes	µg/L	1.5	<1.5	<15↑
Total BTEX	µg/L	3	<3	<30↑
Naphthalene	µg/L	0.5	<0.5	130

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 6/5/2020

			QA01A	QA02A
			WATER	WATER
			- 30/4/2020	
PARAMETER	UOM	LOR	SE205811.001	SE205811.002
TRH C6-C9	µg/L	40	<40	<400↑
Benzene (F0)	µg/L	0.5	<0.5	<5.0↑
TRH C6-C10	µg/L	50	<50	<500↑
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<500↑

ANALYTICAL RESULTS

SE205811 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403]

|--|

			QA01A	QA02A
			WATER	WATER
			30/4/2020	1/5/2020
PARAMETER	UOM	LOR	SE205811.001	SE205811.002
TRH C10-C14	µg/L	50	<50	1500
TRH C15-C28	µg/L	200	<200	4900
TRH C29-C36	µg/L	200	<200	770
TRH C37-C40	µg/L	200	<200	<200
TRH >C10-C16	µg/L	60	<60	2600
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	2500
TRH >C16-C34 (F3)	µg/L	500	<500	4400
TRH >C34-C40 (F4)	µg/L	500	<500	<500
TRH C10-C40	µg/L	320	<320	7200

METHOD	
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

* NATA accreditation does not cover the performance of this service. **

Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. Raised/lowered Limit of ¢↓ Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	ŝ	LABORATORY DETAI	ILS
Contact	Sarah Klocke	Manager	Huong Crawford
Client	WSP AUSTRALIA PTY LIMITED	Laboratory	SGS Alexandria Environmental
Address	Level 1, 121 Marcus Clarke Street Canberra ACT 2600	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 6201 9600	Telephone	+61 2 8594 0400
Facsimile	02 9272 5101	Facsimile	+61 2 8594 0499
Email	sarah.klocke@wspgroup.com	Email	au.environmental.sydney@sgs.com
Project	PS111744	SGS Reference	SE205811 R0
Order Number	PS111744	Date Received	04 May 2020
Samples	2	Date Reported	11 May 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

IRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QA01A	SE205811.001	LB198757	30 Apr 2020	04 May 2020	07 May 2020	05 May 2020	14 Jun 2020	08 May 2020		
QA02A	SE205811.002	LB198757	01 May 2020	04 May 2020	08 May 2020	05 May 2020	14 Jun 2020	08 May 2020		
VOCs in Water Method: ME-(AU)-[ENV]AN433										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QA01A	SE205811.001	LB198860	30 Apr 2020	04 May 2020	07 May 2020	06 May 2020	15 Jun 2020	07 May 2020		
QA02A	SE205811.002	LB198860	01 May 2020	04 May 2020	08 May 2020	06 May 2020	15 Jun 2020	07 May 2020		
								ME-(AU)-[ENV]AN433		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QA01A	SE205811.001	LB198860	30 Apr 2020	04 May 2020	07 May 2020	06 May 2020	15 Jun 2020	07 May 2020		
QA02A	SE205811.002	LB198860	01 May 2020	04 May 2020	08 May 2020	06 May 2020	15 Jun 2020	07 May 2020		

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433

104

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QA01A	SE205811.001	%	40 - 130%	96
	QA02A	SE205811.002	%	40 - 130%	110
d4-1,2-dichloroethane (Surrogate)	QA01A	SE205811.001	%	40 - 130%	106
	QA02A	SE205811.002	%	40 - 130%	99
d8-toluene (Surrogate)	QA01A	SE205811.001	%	40 - 130%	101
	QA02A	SE205811.002	%	40 - 130%	104
/olatile Petroleum Hydrocarbons in Water					E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QA01A	SE205811.001	%	40 - 130%	96
	QA02A	SE205811.002	%	40 - 130%	110
d4-1,2-dichloroethane (Surrogate)	QA01A	SE205811.001	%	40 - 130% 106 40 - 130% 99 40 - 130% 101 40 - 130% 104 Miethod: ME-(AU)-[ENV]/ Criteria Recovery 40 - 130% 96	106
	QA02A	SE205811.002	%	60 - 130%	99
d8-toluene (Surrogate)	QA01A	SE205811.001	%	40 - 130%	101

SE205811.002

%

40 - 130%

QA02A

METHOD BLANKS

SE205811 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

					od: ME-(AU)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result
LB198757.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
					od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB198860.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	92
Volatile Petroleum Hy					od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB198860.001		TRH C6-C9	µg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	106
		Bromofluorobenzene (Surrogate)	%	-	92

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

RH (Total Recov									(ENV]AN4(
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE205802.001	LB198757.026		TRH C10-C14	µg/L	50	0	0	200	0
			TRH C15-C28	µg/L	200	1182	1081	48	9
			TRH C29-C36	µg/L	200	300	244	104	21
			TRH C37-C40	µg/L	200	0	0	200	0
			TRH C10-C40	µg/L	320	1482	1325	53	11
		TRH F Bands	TRH >C10-C16	µg/L	60	0	0	200	0
			TRH >C16-C34 (F3)	µg/L	500	1420	1278	67	11
			TRH >C34-C40 (F4)	µg/L	500	0	0	200	0
									(ENV)AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE205811.001	LB198860.020	Monocyclic	Benzene	µg/L	0.5	<0.5	0	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	0	200	0
			Ethylbenzene	µg/L	0.5	<0.5	0	200	0
			m/p-xylene	µg/L	1	<1	0	200	0
			o-xylene	µg/L	0.5	<0.5	0	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0.2617660428	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	11	9.9773877346	30	6
			d8-toluene (Surrogate)	µg/L	-	10	9.8677237867	30	2
			Bromofluorobenzene (Surrogate)	µg/L	-	9.6	9.6870589246	30	1
									(ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE205777.001	LB198860.019		TRH C6-C10	µg/L	50	<50	<50	200	0
			TRH C6-C9	µg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.2	10.3	30	1
			d8-toluene (Surrogate)	µg/L	-	10.2	9.8	30	4
			Bromofluorobenzene (Surrogate)	µg/L	-	10.0	9.2	30	8
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0
SE205811.001	LB198860.020		TRH C6-C10	µg/L	50	<50	0	200	0
			TRH C6-C9	µg/L	40	<40	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	11	9.9773877346	30	6
			d8-toluene (Surrogate)	µg/L	-	10	9.8677237867	30	2
			Bromofluorobenzene (Surrogate)	µg/L	-	9.6	9.6870589246	30	1
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	0	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	0	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB198757.002		TRH C10-C14	μg/L	50	1000	1200	60 - 140	85
LB190/37.002		TRH C15-C28	μg/L	200	1300	1200	60 - 140	109
		TRH C29-C36	μg/L	200	1400	1200	60 - 140	109
	TRH F Bands	TRH >C10-C16	μg/L	60	1200	1200	60 - 140	96
	TRITI Danus	TRH >C16-C34 (F3)	μg/L	500	1200	1200	60 - 140	124
		TRH >C34-C40 (F4)	µg/L	500	690	600	60 - 140	115
			P3					
	OCs in Water						Method: ME-(A	2.5
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
_B198860.002	Monocyclic	Benzene	μg/L	0.5	52	45.45	60 - 140	114
	Aromatic	Toluene	μg/L	0.5	48	45.45	60 - 140	106
		Ethylbenzene	μg/L	0.5	51	45.45	60 - 140	111
		m/p-xylene	µg/L	1	100	90.9	60 - 140	114
		o-xylene	µg/L	0.5	50	45.45	60 - 140	109
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	12	10	60 - 140	117
		d8-toluene (Surrogate)	μg/L	-	8.9	10	70 - 130	89
		Bromofluorobenzene (Surrogate)	µg/L	-	10	10	70 - 130	101
								U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB198860.002		TRH C6-C10	µg/L	50	930	946.63	60 - 140	98
		TRH C6-C9	μg/L	40	810	818.71	60 - 140	98
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	12	10	60 - 140	117
		d8-toluene (Surrogate)	µg/L	-	8.9	10	70 - 130	89
		Bromofluorobenzene (Surrogate)	µg/L	-	10	10	70 - 130	101
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	630	639.67	60 - 140	98

Bands

TRH C6-C10 minus BTEX (F1)

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Original	Spike	Recovery%	
SE205805.015	LB198860.021	Monocyclic	Benzene	µg/L	0.5	0	45.45	115	
		Aromatic	Toluene	μg/L	0.5	0	45.45	119	
			Ethylbenzene	μg/L	0.5	0	45.45	115	
			m/p-xylene	μg/L	1	0	90.9	116	
			o-xylene	μg/L	0.5	0	45.45	116	
		Polycyclic	Naphthalene	µg/L	0.5	0	-	-	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.66318158213	-	102]
			d8-toluene (Surrogate)	μg/L	-	9.87989366294	-	104	
			Bromofluorobenzene (Surrogate)	μg/L	-	10.3387142150	-	96]
									-[ENV]AN433
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE205805.015	LB198860.021		TRH C6-C10	µg/L	50	890	0	946.63	93
			TRH C6-C9	µg/L	40	770	0	818.71	94
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.2	9.66318158213	-	102
			d8-toluene (Surrogate)	µg/L	-	10.4	9.87989366294	-	104
			Bromofluorobenzene (Surrogate)	μg/L	-	9.6	10.33871421501	-	96
		VPH F	Benzene (F0)	µg/L	0.5	52	0	-	-

µg/L

50

570

0

639.67

89

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.