

DETAILED SITE INVESTIGATION (DSI)

Property Address Stage 1 & 2 - 5 Skyline Place, Frenchs Forest NSW

> **Prepared for** Platino Properties Pty Ltd

> > Date

February 2021

- PO Box 4405 ,East Gosford, NSW 2250 | ABN: 86 635577641 | www.FoundationES.com.au 1 🛙 🖪 I

DOCUMENT CONTROL REGISTER

Document Information				
Job Number	E1100-4			
Document Number	1			
Report Title	Detailed Site Investigation (DSI)			
Site Address	Stage 1 & 2 - 5 Skyline Place, Frenchs Forest NSW			
Prepared for	Platino Projects Pty Ltd			

Document Review			
Revision Number Date Issued Description Issued By			
0	22/02/21	Initial Issue	Ben Buckley

Distribution Register		
Distribution Method	Custodian	Issued to
Electronic	B. Buckley	Foundation Earth Sciences Office
Electronic	Sarkis Elia	Platino Properties Pty Ltd

Authorisation and Release			
	Signature	Name	Date
Authorised	ber buckley	Benjamin Buckley- Director B.Env Sc., BSc (Forensics)	22/02/2021

AIP	Australian Institute of Petroleum Ltd	QA/QC	Quality Assurance, Quality Control
ANZECC	Australian and New Zealand Environment and Conservation Council	RAC	Remediation Acceptance Criteria
AST	Aboveground Storage Tank	RAP	Remediation Action Plan
BGL	Below Ground Level	RPD	Relative Percentage Difference
BTEX	Benzene, Toluene, Ethyl benzene and Xylene	SAC	Site Assessment Criteria
COC	Chain of Custody	SVC	Site Validation Criteria
DA	Development Approval	TCLP	Toxicity Characteristics Leaching Procedure
DP	Deposited Plan	ТРН	Total Petroleum Hydrocarbons
DQOs	Data Quality Objectives	UCL	Upper Confidence Limit
EPA	Environment Protection Authority	UST	Underground Storage Tank
ESA	Environmental Site Assessment	VHC	Volatile Halogenated Compounds
HIL	Health-Based Soil Investigation Level	VOC	Volatile Organic Compounds
LGA	Local Government Area	DPI	Department of Primary Industries
NEHF	National Environmental Health Forum		
NEPC	National Environmental Protection Council		
NHMRC	National Health and Medical Research Council		
ОСР	Organochlorine Pesticides		
ОРР	Organophosphate Pesticides		
РАН	Polycyclic Aromatic Hydrocarbon		
РСВ	Polychlorinated Biphenyl		
PID	Photo Ionisation Detector		
PQL	Practical Quantitation Limit		

ABBREVIATIONS

TABLE OF CONTENTS

1.0	INTRODUCTION	11
2.0	OBJECTIVE	12
3.0	SCOPE OF WORKS	13
4.0	SITE IDENTIFICATION AND SITE HISTORY REVIEW	14
4.1	SITE IDENTIFICATION	14
4.2	REVIEW OF HISTORICAL MAPS	15
4.3	UNDERGROUND SERVICES	15
4.4	REVIEW OF AERIAL PHOTOGRAPHS	16
4.1	TITLE SEARCH	17
4.2		
4.3	NSW EPA RECORDS	18
4.4	NSW EPA POEO REGISTER	19
4.5		
4.6	PLANNING CERTIFICATES	22
4.7		
4.8		
4.9		
4.1	0 INTEGRITY ASSESSMENT	27
5.0	REVIEW OF ENVIRONMENTAL INFORMATION	28
5.0 6.0	REVIEW OF ENVIRONMENTAL INFORMATION	
	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION	31
6.0	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION PROPOSED DEVELOPMENT	31 31
6.0 6.1	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION PROPOSED DEVELOPMENT SITE VISIT	31 31 32
6.0 6.1 7.0	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION	31 31 32 32
6.0 6.1 7.0 7.1	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION	.31 .31 .32 .32 .32
6.0 6.1 7.0 7.1 7.2	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION	.31 .32 .32 .32 .35
6.0 6.1 7.0 7.1 7.2 8.0 9.0	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION	 31 31 32 32 32 35 40
6.0 6.1 7.0 7.1 7.2 8.0 9.0 10.0	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION PROPOSED DEVELOPMENT SITE VISIT GENERAL SITE OBSERVATIONS PRELIMINARY CONCEPTUAL SITE MODEL (CSM) REVIEW OF DATA QUALITY OBJECTIVES	 31 31 32 32 32 35 40 45
6.0 6.1 7.0 7.1 7.2 8.0 9.0 10.0 10	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION PROPOSED DEVELOPMENT SITE VISIT GENERAL SITE OBSERVATIONS PRELIMINARY CONCEPTUAL SITE MODEL (CSM) REVIEW OF DATA QUALITY OBJECTIVES INTRUSIVE SOIL INVESTIGATION	 31 31 32 32 35 40 45 45
6.0 6.1 7.0 7.1 7.2 8.0 9.0 10.0 10	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION	 31 31 32 32 32 35 40 45 45 47
6.0 6.1 7.0 7.1 7.2 8.0 9.0 10.0 10 10 10	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION PROPOSED DEVELOPMENT SITE VISIT GENERAL SITE OBSERVATIONS PRELIMINARY CONCEPTUAL SITE MODEL (CSM) REVIEW OF DATA QUALITY OBJECTIVES INTRUSIVE SOIL INVESTIGATION 1 SOIL ASSESSMENT 2 SAMPLING DENSITY AND RATIONALE	 31 31 32 32 32 35 40 45 45 47 47
6.0 6.1 7.0 7.1 7.2 8.0 9.0 10.0 10 10 10 10 11.0	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION PROPOSED DEVELOPMENT SITE VISIT GENERAL SITE OBSERVATIONS PRELIMINARY CONCEPTUAL SITE MODEL (CSM) REVIEW OF DATA QUALITY OBJECTIVES INTRUSIVE SOIL INVESTIGATION 1 SOIL ASSESSMENT 2 SAMPLING DENSITY AND RATIONALE 3 SAMPLING METHODOLOGY	 31 31 32 32 32 35 40 45 47 47 49
6.0 6.1 7.0 7.1 7.2 8.0 9.0 10.0 10 10 10 10 11.0 11	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION PROPOSED DEVELOPMENT SITE VISIT GENERAL SITE OBSERVATIONS PRELIMINARY CONCEPTUAL SITE MODEL (CSM) REVIEW OF DATA QUALITY OBJECTIVES INTRUSIVE SOIL INVESTIGATION 1 SOIL ASSESSMENT 2 SAMPLING DENSITY AND RATIONALE 3 SAMPLING METHODOLOGY GROUNDWATER INVESTIGATION	 31 31 32 32 32 35 40 45 45 47 47 49
6.0 6.1 7.0 7.1 7.2 8.0 9.0 10.0 10 10 10 10 11.0 11 11	REVIEW OF CONSTRUCTION AND SERVICE INFORMATION PROPOSED DEVELOPMENT SITE VISIT GENERAL SITE OBSERVATIONS PRELIMINARY CONCEPTUAL SITE MODEL (CSM) REVIEW OF DATA QUALITY OBJECTIVES INTRUSIVE SOIL INVESTIGATION 1 SOIL ASSESSMENT 2 SAMPLING DENSITY AND RATIONALE 3 SAMPLING METHODOLOGY GROUNDWATER INVESTIGATION	 31 31 32 32 35 40 45 47 47 49 50

12.0 QUALITY ASSURANCE / QUALITY CONTROL	53
12.1 GENERAL QA/QC	53
12.2 SAMPLE CONTAINERS	53
12.3 DECONTAMINATION	54
12.4 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES	55
12.5 SAMPLE TRANSPORT	55
12.6 TRIP SPIKE	55
12.7 TRIP BLANK	56
12.8 FIELD DUPLICATE SAMPLES	56
12.9 TRIP SPIKE AND TRIP BLANK RESULTS	64
12.10LABORATORY QA/QC	65
12.11 QA/QC RESULTS	66
12.12 QA/QC EVALUATION / CONCLUSION	69
13.0 SITE ASSESSMENT CRITERIA	70
13.1 SOILS	70
13.1.1 HEALTH INVESTIGATION LEVELS (HILS)	70
13.1.2 HEALTH SCREENING LEVELS (HSLS)	73
13.1.3 (EILS) AND (ESLS)	75
13.2 ASBESTOS	79
13.3 AESTHETIC CONSIDERATIONS	80
13.4 GROUNDWATER	
14.0 RESULTS	83
14.0 RESULTS	83
SOIL	
SOIL 14.1 HEAVY METALS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 14.2.2 ECOLOGICAL SCREENING LEVELS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 14.2.2 ECOLOGICAL SCREENING LEVELS 14.3 PAH, OCP & PCB	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 14.2.2 ECOLOGICAL SCREENING LEVELS 14.3 PAH, OCP & PCB 14.3.1 HEATH INVESTIGATION LEVELS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 14.2.2 ECOLOGICAL SCREENING LEVELS 14.3 PAH, OCP & PCB 14.3.1 HEATH INVESTIGATION LEVELS 14.3.2 EILS & ESLS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 14.2.2 ECOLOGICAL SCREENING LEVELS 14.3 PAH, OCP & PCB 14.3.1 HEATH INVESTIGATION LEVELS 14.3.2 EILS & ESLS 14.4 ASBESTOS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 14.2.2 ECOLOGICAL SCREENING LEVELS 14.3 PAH, OCP & PCB 14.3.1 HEATH INVESTIGATION LEVELS 14.3.2 EILS & ESLS 14.4 ASBESTOS GROUNDWATER 14.5 HEAVY METALS 14.6 TRH & BTEXN	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 14.2.2 ECOLOGICAL SCREENING LEVELS & MANAGEMENT LIMITS 14.3 PAH, OCP & PCB 14.3.1 HEATH INVESTIGATION LEVELS 14.3.2 EILS & ESLS 14.4 ASBESTOS GROUNDWATER 14.5 HEAVY METALS 14.6 TRH & BTEXN 14.7 PAH	
SOIL 14.1 HEAVY METALS	
SOIL 14.1 HEAVY METALS 14.1.1 HEATH INVESTIGATION LEVELS 14.1.2 ECOLOGICAL INVESTIGATION LEVELS 14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 14.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 14.2.2 ECOLOGICAL SCREENING LEVELS & MANAGEMENT LIMITS 14.3 PAH, OCP & PCB 14.3.1 HEATH INVESTIGATION LEVELS 14.3.2 EILS & ESLS 14.4 ASBESTOS GROUNDWATER 14.5 HEAVY METALS 14.6 TRH & BTEXN 14.7 PAH	
SOIL 14.1 HEAVY METALS	

16	2 GROUNDWATER QUALITY	95
16	3 DUTY TO REPORT	95
17.0	CONCLUSION AND RECOMMENDATION	97

LIST OF TABLES

Table 1: Site Identification Review 14
Table 2 Review of Aerial Photographs 16
Table 3 Land Title Search 17
Table 4: Site Condition and Surrounding Environment Review 28
Table 5: Site Inspection Review 33
Table 6: Areas and Contaminants of Concern 35
Table 7: Potentially Contaminated Media 35
Table 8: Sampling Information - Soil
Table 9: Sampling Information – Groundwater 49
Table 10: Summary of Well Construction Details 50
Table 11: Groundwater Elevations & Observations
Table 13: QA/QCs Frequencies 53
Table 14: Soil Field Duplicate Samples
Table 15: Groundwater Field Duplicate Samples 56
Table 16a: Intra-lab Soil Sample D1 RPDs 58
Table 16b: Intra-lab Soil Sample D2 RPDs
Table 17: Intra-lab Groundwater Sample GWD1 RPDs 60
Table 18a: Inter-lab Soil Sample SS1 RPDs 61
Table 18b: Inter-lab Soil Sample SS2 RPDs62
Table 19: Inter-lab Groundwater Sample GWSS1 RPDs 63
Table 20: Trip Spike64
Table 21: Trip Blank
Table 22: QA/QC Results Summary66
Table 23: Health Investigation Levels (HIL) Criteria for Soil Contaminants
Table 24: Health Screening Levels (HSL) Criteria 74
Table 25: Ecological Investigation Levels (EIL) and Ecological Screening Levels (ESL)
Criteria78

Table 26: Health Screening Levels for Asbestos	79
Table 27: Updated CSM Soil	90

LIST OF FIGURES AND APPENDICES

Figure 1	Site Location
Figure 2	Site Features
Figure 3	Borehole Locations & Exceedance Plan
Appendix A	DBYD Plans
Appendix B	NSW EPA Records
Appendix C	Site Photographs
Appendix D	DPI (Office of Water) Database Records
Appendix E	Bureau of Meteorology
Appendix F	Proposed Development Plans & Survey
Appendix G	Borehole Logs
Appendix H	NATA Accredited Laboratory Certificates
Appendix I	Field Record Forms
Appendix J	Council Acid Sulphate Soil Map
Appendix K	Summary Tables
Appendix L	Council Records
Appendix M	Aerial Photographs
Appendix N	Land Title Search
Appendix O	Planning Certificates
Appendix P	SafeWork Records

EXECUTIVE SUMMARY

Foundation Earth Sciences was appointed by Platino Properties Pty Ltd to undertake a Detailed Site Investigation (DSI) for the property situated at Stage 1 & 2 - 5 Skyline Place, Frenchs Forest NSW ("the site").

Refer to **Figure 1** - Site Location , **Figure 2** - Site Features & **Figure 3** Borehole Locations and Exceedance Plan.

The site is currently occupied by administrative/commercial/light industrial properties & ground level car parking. Existing one & two storey warehouse and offices will be retained to the southern portion of the site. The north portion of the site is proposed to be redeveloped into mixed use senior living apartment including commercial areas on the lower ground floor & ground floor, landscaping, deep soil areas and a basement car parking with car parking spaces in the lower ground level.

Soils sampled across the Site were assessed against the Site Acceptance Criteria (SAC) provided by the National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013) Table 1A - Residential B & HIL D – Commercial/ Industrial.

Based on the results of the investigation, the site may be considered *suitable* for the proposed development, subject to the following;

 It is considered that the site could be deemed suitable for the proposed development subject to the implementation of a Remediation Action Plan (RAP) to manage the abovementioned environmental concerns including further Investigation to assess the inaccessible areas and to satisfy the minimum requirements by NSW EPA Sampling Design Guidelines. Any soil requiring removal from the site, as part of future site works, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).

If during any potential site works, significant odours and / or evidence of gross contamination (including asbestos) not previously detected are encountered, or any other significant unexpected occurrence, site works should cease in that area, at least temporarily, and the environmental consultant should be notified immediately to set up a response to this unexpected occurrence.

Thank you for the opportunity of undertaking this work. We would be pleased to provide further information on any aspects of this report.

1.0 INTRODUCTION

Foundation Earth Sciences was appointed by Platino Properties Pty Ltd to undertake a Detailed Site Investigation (DSI) for the property situated at Stage 1 & 2 - 5 Skyline Place, Frenchs Forest NSW ("the site").

Refer to Figure 1 - Site Location and Figure 2 - Site Features.

The site is currently occupied by administrative/commercial/light industrial properties & ground level car parking. Existing one & two storey warehouse and offices will be retained to the southern portion of the site. The north portion of the site is proposed to be redeveloped into mixed use senior living apartment including commercial areas on the lower ground floor & ground floor, landscaping, deep soil areas and a basement car parking with car parking spaces in the lower ground level. The Site Assessment forms part of SEPP 55 Guideline (Remediation of Land) with a proposed redevelopment to determine the end land-use suitability of the property.

Soils sampled across the Site were assessed against the Site Acceptance Criteria (SAC) provided by the National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013) Table 1A - Residential B & HIL D –Commercial & Industrial.

2.0 OBJECTIVE

The NSW Office of Environment and Heritage (OEH) indicate that a Detailed Site Environmental Investigation should provide comprehensive information on:

- Any issues raised in preliminary investigations;
- The type, extent and level of contamination;
- Contaminant dispersal in the air, surface water, soil and dust;
- The potential effects of contaminants on public health and the environment;
- Where applicable, off-site impacts on soil, sediment and biota; and
- The adequacy and completeness of all information available to be used in making decisions on remediation.

The project objectives of this Detailed Site Investigation (DSI) has been requested to determine the potential for onsite contamination arising from any areas of concern located within the site and its surrounding area. This investigation will consider the potential for suspected historical activities to have caused contamination at the Site and determine land use suitability for the proposed land use.

The proposed investigation program and the Detailed Site Investigation are designed to assess the presence of any unacceptable on site or off-site risk to human health or the environment. The report will draw conclusions regarding the land use suitability of the Site for the proposed land use or provide recommendations to enable such conclusions and determine the need for a further assessment. The scope of works for this Detailed Site Investigation (DSI) included:

- Collecting site information, review of historical information and past site practices, (site surveys, site records on waste management practices, NSW Land Titles Office records of ownership, aerial photographs obtained from the NSW Department of Lands, WorkCover NSW records and site interviews);
- A site inspection to identify areas of environmental concern, on-site waste disposal practices and location of sewers, drains, holding tanks, Underground Storage Tanks, Aboveground Storage Tanks and pits, spills and ground discolouration etc.;
- A targeted soil boring/sampling investigative study formulating and conducting a sampling plan and borehole investigation; the soil samples are taken and submitted for analysis on particular contaminants;
- Groundwater monitoring, well installation and sampling program based on site access;
- Laboratory analysis and results from sample analysis findings and comparison to regulatory guidelines;
- Quality Assurance/Quality Control (QA/QC) all QA/QC procedures were undertaken in accordance with the Foundation Earth Sciences Quality Assurance/Quality Control manual;
- Interpretation of results and findings; and
- Recommendations and final conclusions drawn from interpretation of the results.

4.0 SITE IDENTIFICATION AND SITE HISTORY REVIEW

4.1 Site identification

The site is identified as follows:

Site Identifier	Site Details		
Site Location	Stage 1 & 2 - 5 Skyline Place, Frenchs Forest NSW		
Lot/DP	SP49558		
Site Coordinates #	NE corner: Latitude: -33.750544, Longitude: 151.238242		
	NW cor	ner: Latitude: -33.750395, Longitude: 151.237143	
	SE corne	er: Latitude: -33.751606, Longitude: 151.238013	
	SW corr	ner: Latitude: -33.751446, Longitude: 151.236933	
Parish	Manly Cove		
County	Cumberland		
Site Area ##	1.263 ha		
Local Government Area (LGA)	Northern Beaches		
Zoning###	B7 – Business Park		
Surrounding Land Uses	North	Frenches Forest Road East then Residential	
	South	Commercial/ industrial	
	East	Commercial/ industrial	
	West	Commercial/ industrial	

Table 1: Site Identification Review

Notes: # Six Maps

Appendix F – Proposed Development Plans and Survey
refer to NSW Planning Portal
https://www.planningportal.nsw.gov.au/find-a-property

4.2 Review of Historical Maps

A review of the maps originally produced by Higinbotham & Robinson was undertaken. No relevant information was found as part of this assessment.

4.3 Underground Services

Dial Before You Dig' plans were requested and reviewed for the Site. Plans were provided by Ausgrid, Jemena Gas, NBN Co, Optus and/or Uecomm, Pipe Networks, Sydney Water & Telstra NSW. The plans did not indicate the presence of any major underground services or utility easements at the site except some minor communication cables and an Ausgrid Substation is located at the north boundary. It is noted that this underground service is considered a potential preferential pathway.

Refer to **Appendix A** – DBYD Plans

4.4 Review of aerial photographs

A number of aerial photographs obtained from the NSW Department of Lands and/or the Land and Property Information Spatial Information Exchange website "Six maps" were reviewed as part of this DSI. Copies of the aerial photographs are kept in the offices of Foundation Earth Sciences and are available for examination upon request. The results of this review are presented in the following table:

Year		Site	Surrounding areas
1943	Rural	The site appeared to be trees covered cleared land and part of a larger rural residential property.	The surrounding area appeared to be entirely similar rural areas with the excepting of rural residential properties to the east.
1970	Commercial/ Rural residential	The site has been developed and appeared to be occupied by one big house in the southern boundary. It is a part of the big site be connected to the south.	N: Road then low density residential S: Vacant (belong to the same site) E: Vacant (belong to the same site) then Commercial. / industrial W: Trees
1991	Commercial/industrial	The property at 5 Skyline Place appeared to contain some warehouses in the southern and western portion with rest of the site was used for car parking purpose.	N: Road then low density residential S: Industrial E: Road then Commercial/ industrial W: Commercial/ industrial
2018	Commercial/industrial	No obvious change from previous aerial photo	No obvious change from previous aerial photo with the exception of: E: extension/ more development than before
Current	As per inspection	The site is as inspected (section 7.1)	As per inspection

Table 2 Review of Aerial Photographs

In summary, the aerial photographs indicate the site has been part of a larger rural area until at least 1943. From 1943 to 1970 the site had been redeveloped to include one big building in the south-eastern corner. Sometime between 1970 and 1991 the site demolished and developed into warehouses and car parking spaces. All site surfaces appeared sealed and used for industrial/commercial purpose from at least 1991 and remained mostly unchanged to the present date.

The surrounding land had been rural area in all directions with the excepting of rural residential properties noticed to the east in the 1943 aerial photograph. Residential land use, including higher density dwellings, has continued to the north since 1970. Progressive industrial/commercial land use has been noticed to the south, east and west from 1970.

Appendix M – Aerial Photographs.

4.1 Title search

A review of historical documents held at the NSW Department of Lands offices was undertaken to characterise the previous land use and occupiers of the site.

SP49558 (No Stage 1 & 2 - 5 Skyline Place, Frenchs Forest)				
Year	Proprietor	Company/Personal Occupation		
Current	Lease to different business entities			
2004	Trust Company of Australia	Lease to different commercial entities		
1992	A.I. Mclean Pty Ltd			
1992	State Authorities Superannuation Board			
1986	State Superannuation Board			
1986	LEDA Holdings Pty Ltd			
1985	Mirvac Pty Ltd			

Table 3 Land Title Search

SP49558 (No Stage 1 & 2 - 5 Skyline Place, Frenchs Forest)		
Year	Proprietor	Company/Personal Occupation
1981	Myer Shopping Centres Proprietary	
1955	Northern Forests Development Pty Ltd	
1931	Jidney Arthur Walsh Charlotte Helen Macintyres	

In summary, the land titles have indicated the following:

The site owned by the same private individuals before 1931 and then transferred and under different business entities until 1985. In 2004, the site was subdivided into a strata plan and leased to different business entities.

Appendix N – land titles.

4.2 Anecdotal Evidence

No anecdotal evidence was available at the time of the investigation.

4.3 NSW EPA Records

The NSW EPA publishes records of contaminated sites under Section 58 of the Contaminated Land Management (CLM) Act 1997. The notices relate to investigation

and/or remediation of site contamination considered to pose a significant risk of harm under the definition in the CLM Act.

A search of the database revealed that the subject site is not listed and there were no listed properties in the suburb of Frenchs Forest.

It should be noted that the NSW EPA record of Notices for Contaminated Land does not provide a record of all contaminated land in NSW.

Refer to **Appendix B** – NSW EPA Records.

4.4 NSW EPA POEO Register

A search of the POEO Register revealed that the site was not listed.

Refer to **Appendix B** – NSW EPA Records for a copy of the POEO register search.

4.5 Council Records

The Northern Beaches Council database was accessed in order to disclose file records relating to the site and the search revealed the following:

Stage 1 & 2 - 5 Skyline Place, Frenchs Forest

- Development Application 1995/587
- Use of Unit E at No.5 Skyline Place for production, editing and associated offices that used by a Pay Television Company
- Consent No. 95/613

- Development Application 1991/362
- The current tenants of Unit D are to expand and occupy warehouse space of Unit C for wholesaling of electronic equipment.
- Consent No. 91/318
- Development Application 1991/363
- The current tenants of Unit B are to expand and occupy first floor office and part the ground floor showroom areas of Unit C for storage, administration and distribution of electronic equipment.
- Consent No. 91/317
- Development Application 1989/628
- Occupation of Unit A, No.5 Skyline Place for manufacturing, warehousing, distribution and office use for a computer company
- Consent No. 89/541
- Development Application 1989/498
- Use of Unit A, No.5 Skyline Place as a warehouse for the distribution of hair care and beauty products, associated offices, amenities, laboratory and showroom
- Company Sabre Corporation
- Consent No. 89/418
- Development Application 0450/86
- The former Drive-In-Threatre site was subdivided for industrial development
- Consent No. 86/113

- Development Application 1988/654
- Use for internal partitioning and use of existing factory Unit E for warehouse and distribution of computer software, with associated offices, showroom and workshop.
- Company State Authorities Superannuation Board
- Consent No. 89/1
- Development Application 1988/98
- For internal partitioning and use of factory Unit C for the storage and distribution of books, magazines and periodicals for the publishing industry.
- Tenant: Child& Associates Publishing Pty Ltd
- Consent No. 88/88
- Development Application 1987/73
- Use of Unit B at No.5 Skyline Place as a warehouse, wholesale showroom and ancillary offices.
- Consent No. 87/82
- Development Application 1987/164
- Use of Unit A at No.5 Skyline Place as a warehouse, service centre and distribution centre for computer hardware and software and associated offices.
- Consent No. 87/180
- Development Application 1987/72
- Use of Unit B at No.5 Skyline Place as a warehouse, showroom and offices for the storage and distribution of electronic sound equipment by Pioneer

Electronics(Australia) Pty Ltd and computer equipment by Rank Electronics(Australia) Pty Ltd.

- Consent No. 87/82

Refer to Appendix L – Council Records

4.6 Planning Certificates

The Planning Certificate – Section 10.7(2) (formerly Section 149) of the Environmental Planning & Assessment Act 1979 for the site was provided by the client. A summary of the information pertaining to site is provided below:

SP49558 (5 Skyline Place)

- The Warringah Local Environmental Plan 2011 applies to this land.
- The Draft State Environmental Planning Policy (Environmental) & (Primary Production and Rural Development) apply to this land.
- The following planning proposals may affect the land
- Dee Why Town Centre Planning Controls (PEX2018/002)
- The site is currently zoned B7 Business Park
- The land does not include or comprise critical habitat.
- The land is not in a heritage conservation area.
- The land does not contain an item of environmental heritage.
- The State Environmental Planning Policy(Sydney Region Growth Centres) 2006 does not apply to the land
- The following complying development codes may be carried out
- Housing Code
- Rural Housing Code

- Low Rise Medium Density Code
- Housing Alterations Code
- General Development Code
- Commercial and Industrial Alterations Code
- Commercial and Industrial (New Buildings and Additions) Code
- Container Recycling Facilities Code
- Subdivisions Code
- Demolition Code
- Fire Safety Code
- The land is not within a proclaimed mine subsidence district.
- The land is not affected by any road widening or road realignment under division
 2 of part 3 of the Roads Act 1993.
- The land is not affected by a policy or resolution that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence & acid sulphate soils or any other risk other than flooding.
- The land is not reserved, in part or whole, for acquisition by a public authority, as referred to in Section 27 of the Act.
- The land is not subject to flood related development controls.
- The Northern Beaches Contributions Plan 2018 applies to the property.
- The land is identified as bush fire prone land on the Draft Northern Beaches Bush Fire Prone Land Map 2018.
- The land is not biodiversity certified land or part of the Threatened Species Conservation.

Refer to Appendix O – Planning Certificates

4.7 SafeWork NSW

Foundation Earth Sciences submitted a request for information on the Storage of Hazardous Chemicals at the site from the database records of SafeWork NSW. The search result has not located any records pertaining to the premises.

Refer to **Appendix P** – SafeWork Records.

4.8 Previous Reports

One previous report was identified at the time of writing this report and is listed below:

Foundation Earth Sciences (2018), Stage 1 Preliminary Site Investigation, Stage 1
 & 2 - 5 Skyline Place, Frenchs Forest NSW, Report Job No: E1100, dated 07/05/2018.

Foundation Earth Sciences was appointed by Platino Properties Pty Ltd to undertake a Preliminary Site Investigation (PSI) for the property situated at 1&Stage 1 & 2 - 5 Skyline Place, Frenchs Forest NSW ("the site").

Based on the investigation including the previous site history, underground services plans & site inspection, the potential for significant soil and/or groundwater impact is considered medium. In applying the NEPM 2013 Schedule B2 "Guideline on Site Characterisation"; there is sufficient evidence, uncertainty and/ or suspicion of contamination, therefore further investigation is recommended.

The following areas identified in the CSM as a potential concern are addressed as follows:

- Areas of potential filling (underground services, stockpile, driveway areas and visible fill)
- Site history (illegal dumping including fill onsite)
- Surrounding land uses including the existence of underground storage tanks
- Car parking areas / building degradation

The following data gaps were identified:

- The SafeWork NSW records has been searched, but has not been received and/or reviewed as part of this investigation.
- The presence of groundwater
- The proposed development plans include deep soil areas which are recommended for intrusive investigation to determine site suitability in relation to the proposed development.

In Summary

Based on the results of this investigation it is considered that the risks to human health and the environment associated with soil and groundwater contamination at the site are medium in the context of the proposed use of the site. The site *can be made suitable* for the proposed development, subject to the following recommendations:

• Preparation of a Detailed Site Investigation (Phase 2 Environmental Site assessment) by a suitably qualified Environmental Consultant.

If during any potential site works any significant unexpected occurrence is identified, site works should cease in that area, at least temporarily, and the environmental

consultant should be notified immediately to set up a response to this unexpected occurrence.

4.9 Summary of site history

In summary:

- The aerial photographs indicate the site has been part of a larger rural area until at least 1943. From 1943 to 1970 the site had been redeveloped to include one big building in the south-eastern corner. Sometime between 1970 and 1991 the site demolished and developed into warehouses and car parking spaces. All site surfaces appeared sealed and used for industrial/commercial purpose from at least 1991 and remained mostly unchanged to the present date.
- The surrounding land had been rural area in all directions with the excepting of rural residential properties noticed to the east in the 1943 aerial photograph. Residential land use, including higher density dwellings, has continued to the north since 1970. Progressive industrial/commercial land use has been noticed to the south, east and west from 1970.
- The site owned by the same private individuals before 1931 and then transferred and under different business entities until 1985. In 2004, the site was subdivided into a strata plan and leased to different business entities.
- NSW EPA Records reveal that the subject site is not listed.
- Foundation Earth Sciences submitted a request for information on the Storage of Hazardous Chemicals at the site from the database records of SafeWork NSW. The search result has not located any records pertaining to the premises.
- The Northern Beaches Council database was accessed in order to disclose file records relating to the site and the search revealed the following:
 - In 1995, used of Unit E at No.5 Skyline Place for production, editing and associated offices that used by a Pay Television Company

- In 1991, the current tenants of Unit D were to expand and occupy warehouse space of Unit C for wholesaling of electronic equipment.
- In 1989, occupation of Unit A, No.5 Skyline Place for manufacturing, warehousing, distribution and office use for a computer company
- In 1988, for internal partitioning and used of factory Unit C for the storage and distribution of books, magazines and periodicals for the publishing industry.
- In 1987, used of Unit A at No.5 Skyline Place as a warehouse, service centre and distribution centre for computer hardware and software and associated offices.

4.10 Integrity Assessment

The information found in the historical sources has been found to be in general concurrence. It is therefore considered that accuracy of this data is acceptable for this investigation.

5.0 REVIEW OF ENVIRONMENTAL INFORMATION

Site Information	Descriptions
Sensitive Receivers	The nearest sensitive human receptors are the current and future
	users of the site, construction workers during the site
	redevelopment and the general public.
	The nearest downgradient watercourse is the Trefoil Creek
	located approximately 450m northwest of the site.
Soil Landscape	The Soil Landscape Map viewed on NSW ESPADE indicates that
Review of NSW Soil and Land	the site is located within the Mittagong landscape area. These
Information website ESPADE.	soils are considered stony soils with low soil fertility and low
	available water capacity.
Topography	The topography viewed on NSW ESPADE indicated the following
Review of NSW Soil and Land	for the Mittagong Landscape:
Information website ESPADE.	
	Gently undulating plateau, 200-1000 m in width, with level to
	gently inclined slope gradients of <10%.
	Local relief is <30 m. Rock outcrop is absent.
	Based on the site inspection it was determined that the site had
	an approximate slope of 5-10° to the west.
Geological Profile	The Geological Map of Sydney (Geological Series Sheet 9130,
	Scale 1:100,000, 1983), published by the Department of Mineral

Table 4: Site Condition and Surrounding Environment Review

Site Information	Descriptions					
	Resources	indicates t	he resid	ual soils	within the si	ite to be
	underlain by Triassic Age Shale of the Wianamatta Group,			a Group,		
	comprising shale and laminite.					
Presence of Acid Sulphate Soils	A review of the "No.90 Parramatta_ Prospect" map indicated that					
Review of NSW Department of	there is a "No Known Occurrence" of acid sulphate soil materials					
Land & Water Conservation	within the s	oil profile.				
(DLWC) Acid Sulphate Soil Risk						
Maps (Edition Two, December	Furthermore, and in accordance to the Warringah Local					
1997, Scale 1:250,000 .	Environmer	ntal Plan	2011 "A	cid Sulfa	te Soils Ma	ps Sheet
	ASS_018" the site is not located in Class 1 to 5.					
A copy of the Council Risk Map						
is located in Appendix J.						
Localised Hydrogeology	Number	Location	Depth	SWL	Use	Water
		from Site				Bearing Zones
Review of DPI (Office of Water)	GW020065	200 E	114.90	-	Waste	-
Database.					Disposal	
	GW020067	200 E	137.20	-	Waste	-
Copies of the groundwater					Disposal	
bore records are located in:						
Appendix D – DPI (Office of						
Water) Database Records.						
Nearest Surface Water Body	The nearest downgradient watercourse is the Trefoil Creek					
	located app	proximately	450m no	rthwest of	the site.	

Site Information	Descriptions
Nearest Active Service Station	1.8km southeast of the site
(Google Maps Search)	
Local Meteorology	The monthly rainfall of the local surrounding area is represented
(Bureau of Meteorology BOM	by the data collected from the BOM rainfall gauge located in
website)	Belmorse (Evelyn Place), which is located approximately 1.9km
Appendix E – BOM Data.	from Frenchs Forest. The records indicate that the mean monthly
	rainfall in March (date of fieldwork) was 133.9mm and the
	highest monthly rainfall in March was 334.2mm.

6.0 REVIEW OF CONSTRUCTION AND SERVICE INFORMATION

6.1 Proposed Development

The site is currently occupied by administrative/commercial/light industrial properties & ground level car parking. Existing one & two storey warehouse and offices will be retained to the southern portion of the site. The north portion of the site is proposed to be redeveloped into mixed use senior living apartment including commercial areas on the lower ground floor & ground floor, landscaping, deep soil areas and a basement car parking with car parking spaces in the lower ground level.

Refer to **Appendix F** - Proposed Development Plans & Survey.

7.0 SITE VISIT

7.1 General

The site was visited on the 25th & 26th of March 2019 by Foundation Earth Sciences Environmental Scientists to inspect the site for any potential sources of contamination.

The following items were considered as part of the site visit:

- Description of the building structures;
- Site surroundings;
- Present and past industrial processes and operations at the site;
- Surface water, groundwater, stormwater and sewer;
- Present and past storage of chemicals and wastes associated with site use and their on-site location;
- Waste management practices and management of hazardous materials;
- Presence of Underground Storage Tanks or Above Ground Storage Tanks;
- Odour; and
- Occupational health and safety.

7.2 Site observations

At the time of the site visit the following observations were made as per the following table:

Factors Considered	Description
Buildings & Structures on Site	The site at 5 Skyline Place is rectangular in shape and was occupied
	by two to three storeys buildings with flat roofs and consisted of
	grassed areas, concrete slabs, driveway, car park, cracking and/or
	staining was noticed on the concrete slabs. The buildings are located
	in the southern and western part of the site and used as office and
	storage warehouse for different businesses and northwest corner of
	the site is used as a gym.
Percentage Hard-standing	80%
surface	
Concrete Condition	Average
Chemical Storage	No chemicals were noted within the accessible areas of the site.
Above and Underground	USTs and ASTs were not identified within the accessible areas
Storage Tanks	property.
Trade Waste Pits	No trade waste agreements or pits were identified for the building.
Nearby Electrical Transformers	One electrical transformers were identified within the northern
	boundary of 5 Skyline Place
Asbestos	No fibro cement sheeting was identified within the building
	structures in accessible areas.
Soil Staining and Odours	Soil odours were identified within a few borehole locations of the
	property. No significant soil staining was noted during the inspection
Stormwater and Sewer	Stormwater and sewage were connected to the local utilities.

Table 5: Site Inspection Review

A summary of the current tenants on site: (base on site inspection and internet search)

- No. 5 Skyline Place, Frenchs Forst
- Unit A, UGL & Fighting Chance

- UGL is an engineering company provides construction, maintenance and asset management service to rail, resources and infrastructure sectors and corporate real estate, facilities management and business process outsourcing to property users.

- Fighting Chance is a non-profit organisation which exists to enrich the lives of young adults with disability in Australia

- Unit B, Jindex
- Design, manufacture and sales of Pinch Valve and other types of valves.
- Unit C, SAPRO Australia
- Wholesales and retails of food delicacies
- Unit D, EZGO Augusta Golf Cars Pty Ltd
- The distributors of all E-Z-GO Cushman and Bad Boy Buggies products for Australia and the Pacific Region.
- Unit E, Anytime Fitness
- A health and fitness club.

Refer to **Figure 2** - Site Features and **Appendix C** – Site Photographs.

8.0 PRELIMINARY CONCEPTUAL SITE MODEL (CSM)

Based on the above information, site history and site walkover, the areas of potential concern and associated contaminants for the site CSM were identified. These are summarised in the following table.

Known and potential contamination source	Associated Contaminants
Historical Site Uses (printing & tyre repair workshop)	Heavy Metals, TRH, BTEX, PAH, OCP, PCB
Imported Fill	Heavy Metals, TRH, BTEX, PAH, OCP, PCB
Car parking Areas	TRH, BTEX, PAH
Building degradation/ Demolition	Heavy Metals and Asbestos
Surrounding Land Use (production, wholesaling, publishing & manufacturing)	TRH, BTEX, VOC

Table 6: Areas and Contaminants of Concern

Known and potential contamination source	Associated Contaminants
Fill Material	There is the potential for contamination to be present in the upper fill material.
Groundwater	There is the potential for the leaching of contaminants into groundwater onsite and also migration of the contaminants.
Ground Gas	Given the historical site uses; ground gas is considered to a potential contaminated medium.

Table 7: Potentially Contaminated Media

Potential for Migration

Contaminants generally migrate from site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site history review, site inspection and previous report are present in solid (e.g. impacted fill, asbestos), liquid (e.g. dissolved in water) and gaseous/vapour forms.

Aerial photography has indicated that there were some unsealed ground surfaces and therefore, there is the potential for migration of contaminants via wind-blown dust.

Rainfall infiltration at the site is expected to occur in unsealed areas. There is therefore the potential that soil contamination could result in impacts to shallow groundwater.

The historical uses include printing and production, wholesaling, publishing & manufacturing. Therefore, the site has the potential for possible migration of contaminant ground gas / soil vapour.
Potential Exposure Pathways

Potential exposure pathways include:

- Dermal;
- Ingestion; and
- Inhalation.

Due to the presence of exposed potentially impacted soil/fill on ground surfaces, dermal and inhalation exposure is considered a potential exposure pathway.

The potential for ingestion of soil is considered as a potential exposure pathway. Although groundwater is not used at the site, there is the potential, for ingestion of contaminants via groundwater removed from monitoring wells.

There is the potential for vapour to be present in the underlying profile within the site. As such, these gases potentially pose a risk to human health via the inhalation pathway.

The proposed development does contain the construction and development of a basement. Because of these dermal and inhalation exposure pathways by potentially contaminated groundwater is a potential.

Receptors

Potential receptors of environmental impact present within the site which will be required to be addressed with respect to the suitability of the site for the proposed use include:

- Excavation/construction/maintenance workers conducting activities at the site, who may potentially be exposed to COPCs through direct contact with impacted soils, Vapour Intrusion and/or groundwater present within excavations and/or inhalation of dusts/fibres associated with impacted soils;
- Future occupants/users of the site may potentially be exposed to COPCs through direct contact with impacted soils and/or ingestion of impacted soils and/or inhalation of dusts/fibres associated with impacted soils and/or exposure to vapour; and/or
- Offsite sensitive receptors of groundwater; and/or
- Flora species to be established on vegetated areas of the site.
- Trefoil Creek

Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPCs as either liquids or gases.

Man-made preferential pathways are present throughout the site, generally associated with fill materials and services present beneath existing ground surface. Fill materials and service lines are anticipated to have a higher permeability than the underlying natural soil and/or bedrock.

The plans did not indicate the presence of any major underground services or utility easements at the site except some minor communication cables and an Ausgrid Substation is located at the north boundary. It is noted that this underground service is considered a potential preferential pathway.

9.0 REVIEW OF DATA QUALITY OBJECTIVES

The DQOs were also prepared using Appendix IV of the Site Auditor Guidelines. These require 7 steps. The steps being

- a. State the problem
- b. Identify the decisions
- c. Identify inputs to decision
- d. Define the study boundaries
- e. Develop a decision rule
- f. Specify limits on decision errors
- g. Optimise the design for obtaining data

9.1 State the Problem

The site requires to be confirmed suitable for the proposed development. The site is proposed to be redeveloped and has had some areas of potential concern, those being historical land uses, possible areas of imported fill of unknown origin, degradation of the building materials and leakages from vehicles on site.

Technically defensible evidence needs to be provided so that the identified Site does not present an unacceptable risk to human health or the environment and is suitable for the intended land use.

9.2 Identify the Decisions

The decisions to be made on the contamination and the new environmental data required includes considering relevant site contamination criteria for each medium (fill, soil and sediment). A proposed use of the 95% UCL on the mean concentrations for all soil chemicals of potential concern must be less than the site criteria identified for the relevant land use suitability.

The decisions made in completing this assessment are as follows:

- Does the site or is the site likely to present a risk of harm to humans or the environment
- Is the site currently suitable for the proposed land use being residential with soil access
- Is there a potential for soil and groundwater contamination
- Is there a potential for offsite migration issues
- Does the sampling results meet the site criteria proposed
- If not, does the site require remediation works

9.3 Identify Inputs to Decision

This step requires the identification of the environmental variables/characteristics that need measuring, identification of which media (fill, soil etc.) need to be collected, identification of the site criteria for each medium of concern and appropriate analytical testing. Inputs include:

- Existing site information
- Site history

- Regional geology, topography and hydrogeology
- Potential contaminants
- Proposed Land Use
- Site assessment criteria
- Results as measured against criteria

9.4 Define the Study Boundaries

Specific spatial and temporal aspects must be provided to identify the boundaries of the investigation and to identify any restrictions that may hinder the assessment process. The site is located at Stage 1 & 2 - 5 Skyline Place, Frenchs Forest NSW. The site is approximately 12,570 m² in area.

Refer to **Figure 1** - Site Location and **Figure 2** – Site Features.

9.5 Develop a Decision Rule

The information obtained through this assessment will be used to characterise the soils and the groundwater on the site in terms of contamination issues and risks to human health and the environment. The decision rule in characterising the site will be as follows:

- Laboratory test results will be measured against the criteria provided within this report
- The site will be deemed suitable for the proposed use if the following criteria are fulfilled:
 - Soil and groundwater concentrations are within background levels

- QA/QC shows data can be relied upon
- Results generally meet regulatory criteria
- Results are from NATA accredited laboratories
- o Detection limits are below assessment criteria
- Results can be shown to be of minimal concern

9.6 Specify Limits on Decision Errors

The limits on decision errors for this assessment are as follows:

- The assessment criteria adopted from the guidelines within this report have risk probabilities already incorporated.
- The acceptable limits for inter/intra laboratory duplicate sample comparisons are laid out within our protocols.
- The acceptable limits for laboratory QA/QC parameters are based upon the laboratory reported acceptable limits and those stated within the NEPM 2013 Guidelines.

9.7 Optimise the Design for Obtaining Data

A resource-effective sampling and analysis design was undertaken for data collection that satisfies the DQO's. The sampling and analytical plan is designed to avoid Type 1 and Type 2 errors and includes defining minimum sample numbers required to detect contamination as determined with procedures provided in the NSW EPA 1995 Sampling Design Guidelines and AS 4482.1 - 2005 and appropriate quality control procedures.

Furthermore, only laboratories accredited by NATA for the analysis undertaken were used. The laboratory data was assessed from quality data calculated during this

assessment. Field QA/QC protocols adopted and incorporate traceable documentation of procedures used in the sampling and analytical program and in data verification procedures.

10.0 INTRUSIVE SOIL INVESTIGATION

The intrusive soil investigation took place on the 25th -26th March 2019 and was designed to meet the Data Quality Objectives.

10.1 Soil Assessment

Samples were recovered from fifteen (15) borehole locations across the site and were labelled BH1 to BH15. These locations were selected to detect any contamination that may have originated from past and present activities, and due to potential excavation and future development in these areas.

Ana	lyte / Analyte Group		HEAVY	TOU	DTEX	DALL	000	DOD	PH / CEC /	TRH C6-C10	Asbestos ID/
		SAMPLING DATE	METALS (8)	TRH	BTEX	PAH	OCP	PCB	%CLAY	& BTEXN	%w/w
Sample	Depth (m)										
BH1	0.1-0.2	26.3.2019	~	~	~	~	~	~			
BH1 BH2	0.1=0.2	25.3.2019	~	*	~	~	-	~			~
BH2 BH2	2.0-2.1	25.3.2019	~	~	~	~	~	~			•
BH3	1.2-1.3	25.3.2019	~	~	~	~	~	~			
BH3	2.9-3.0	25.3.2019	~	~	~	~	~	~			
BH3 BH4	0.1-0.2	25.3.2019	~	~	~	~	~	~			
BH4	2.0-2.1	25.3.2019	~	~	~	~	~	~			
BH4	4.1-4.2	25.3.2019	~	~	~	~	~	~			
BHS	0.7-0.8	26.3.2019	~	~	~	~	~	~			
BH5	1.3-1.4	26.3.2019	~	~	~	~	~	~			
BH6	0.2-0.3	25.3.2019	~	~	~	~	~	~		ł	
BH7	0.2-0.3	25.3.2019	~	>	~	~	~	~			
BH8	0.3-0.4	25.3.2019	~	>	~	~	~	~			
BH8	0.7-0.8	25.3.2019	~	~	~	~	~	~			
BH9	0.2-0.3	26.3.2019	~	>	~	~	~	~	~		
BH9	0.6-0.7	26.3.2019	~	>	~	~	~	~	~		
BH10	0.2-0.3	25.3.2019	~	~	~	~	~	~			
BH11	0.3-0.4	26.3.2019	~	>	~	~	~	~			
BH11	0.7-0.8	26.3.2019	~	>	~	~	~	~			
BH11	1.3-1.4	26.3.2019	~	~	~	~	~	~			
BH12	0.4-0.5	25.3.2019	~	~	~	~	~	~			
BH13	0.1-0.2	25.3.2019	~	~	~	~	~	~			~
BH14	0.1-0.2	26.3.2019	~	~	~	~	~	~			
BH15	0.2-0.3	26.3.2019	~	~	~	~	~	~			
D1	-	25.3.2019	~	*	~	~	~	~			
D2	-	26.3.2019	~	>	~	~	~	~			
SS1	-	25.3.2019	~	>	~	~	~	~			
SS2	-	26.3.2019	~	~	~	~	~	~			
TS1	-	25.3.2019								~	
TB1	-	25.3.2019								~	
TS2	-	26.3.2019								~	
TB2	-	26.3.2019							1	~	

Table 8: Sampling Information - Soil

The locations of the boreholes and samples are shown in Figure 3 and details of the boreholes are presented in **Appendix G** – Borehole Logs.

Based on information from all boreholes, the surface and sub-surface profile across the site is generalised as follows:

- Fill: Silty Clay, Clayey Silt, Clayey Sandy Silt & Silty Sandy Clay
- Natural: Silty CLAY;
- Bedrock: SANDSTONE, extremely weathered

10.2 Sampling Density and Rationale

The NSW EPA "Sampling Design Guidelines" (September 1995) requires a minimum sampling density of twenty-three (23) sampling points for a site area of approximately 1.263ha.

Foundation Earth Sciences recovered twenty-four soil samples from fifteen boreholes located across the open areas of the site. Sampling was limited in nature and not designed to meet the above guidelines, but target any potential areas of concern with consideration given to accessibility and limitations in relation to underground services & access.

10.3 Sampling Methodology

In summary:

- Soil samples were also collected directly from the push tube / split spoon sampler.
- Soil samples were collected using a hand auger, DCP and U50 to collect undisturbed samples.
- Samples were transferred directly into appropriately labelled clean laboratory supplied containers;
- Samples were transferred into chilled eskies for sample preservation;
- A Chain of Custody was completed and forwarded to the laboratory. Sampling analysis was based on field observations and were in accordance to the schedule outlined in Section 12.

• Soil samples were submitted to their respective laboratories as specified in Section 12.4.

Sampling of asbestos was undertaken as follows:

- Soil samples were submitted to their respective laboratories as specified in Section 12.4.
- A minimum 10L sample from each sample location was recovered;
- Each sample (minimum of 10 L) was screened through a 7mm sieve and the material retained on the sieve examined for any bonded ACM and / or suspect material and forwarded to the laboratory for analysis if any suspected ACM is encountered;
- If visible FA material is present or suspected, the soil should be wetted to minimise the release of fibres;
- Identified bonded ACM and FA should be weighed for each sample; and
- One wetted 500ml sample from each sampling location was submitted for laboratory analysis for AF.

11.0 GROUNDWATER INVESTIGATION

11.1 Groundwater Assessment

Foundation Earth Sciences installed two groundwater monitoring well on the $25^{th} - 26^{th}$ March 2019 as part of the Limited DSI. Samples were recovered from one (1) groundwater well labelled as GW1 at the time of sampling. The schedule of analysis is provided below:

SAMPLE ID	SAMPLING DATE	HEAVY METALS	TRH	BTEX	РАН	voc	TRH C6-C10 & BTEXN
Benviron Group DSI							
GW1	5.4.2019	х	х	х	х	х	
GWD1	5.4.2019	х	х	х	х	х	
GWSS1	5.4.2019	х	х	х	х	х	
TS1	-					х	х
TB1	-					х	х

Table 9: Sampling Information – Groundwater

The location of the groundwater well is shown in **Figure 3** –Borehole Locations & Exceedance Plan and details of the boreholes are presented in **Appendix G** – Borehole Logs.

Refer to **Appendix I** – Field Record Forms.

11.2 Groundwater Methodology

Groundwater monitoring wells were constructed on the 4th March 2019 by adopting the following methodology:

- 50mm diameter, Class 18PVC threaded and flush joined casing and 0.45 machine-slotted screens were used;
- Coarse, washed sand and gravel was placed in the annulus surrounding the piping to a height of the screen;
- Bentonite pellets were placed in the annulus to form an impermeable plug near the top of the well to prevent surface runoff from entering directly into the well;
- A PVC cap was placed on the casing;
- 100mm diameter stainless steel flushed covers were used for all well finishes and concreted onto the ground surface.

Well ID	Total	Screening	Surface	Water	Comment
	Depth	(m)	Level (RL)	Bearing	
BH3 /GW1	8.6	2.6-8.6	Appro 155	Weathered	Current
				Sandstone	
BH9/GW2	8.5	2.5-8.5	Appro 156	Weathered	Current/Dry
				Sandstone	

Table 10: Summary of Well Construction Details

Notes:

1. RLs was estimated from the closest point on the site plan provided in Appendix F.

The following works were carried out upon completion of the well installations:

 The wells were developed by removing at least three well volumes until groundwater parameters reached equilibrium and no further turbidity improvements were observed.

Drilling and installation of the monitoring wells was carried out on the $25^{th} - 26^{th}$ March 2019, using a combination of solid stem auguring, under supervision of Foundation Earth Sciences.

11.3 Groundwater Sample Collection

Groundwater sampling was undertaken on the 05th April 2019. Prior to sampling, the resting water level was recorded within the well while checking for the presence of phase separated hydrocarbon.

Sampling was completed using a low flow peristaltic pump – a low flow/minimum drawdown sampling technique used to minimise any disturbance to the aquifer.

Field measured parameters were collected using a certified and calibrated YSI Quatro Plus water quality meter. Samples were collected when field measured parameters (pH, electrical conductivity, redox potential, dissolved oxygen and temperature) had stabilised. The samples were placed into appropriate laboratory supplied bottles and preserved on ice. The peri pump and other sampling equipment were decontaminated before and after use to avoid possible cross contamination. All samples collected were preserved on ice and couriered directly to the laboratory under COC documentation.

11.4 Groundwater Observations

Well ID	Well Depth	Surface Level RL	Groundwater Depth Measured (m BGL)	Groundwater Level (RL)	PSH Depth
BH3 /GW1	8.6	Appro 155	6.17	148.83	None

Table 11: Groundwater Elevations & Observations

Notes:

2. RLs were estimated from the closest point on the site plan provided in Appendix F.

12.0 QUALITY ASSURANCE / QUALITY CONTROL

12.1 General QA/QC

The frequency required for each field quality assurance / quality control (QA/QC) sample is presented in the table below.

Table 13: QA/QCs Frequencies

	Intra Lab	Inter Lab	Rinsate	Spikes	Blanks
Sampling	1 in 20	1 in 20	1/day	1/day	1/day
Frequency					

During the contamination assessment the integrity of data collected is considered vital. With the assessment of the site, a number of measures were taken to ensure the quality of the data. These are as follows:

12.2 Sample Containers

Soil samples collected during the investigation were placed immediately into laboratory prepared glass jars with Teflon lid inserts. Standard identification labels were adhered to each individual container and labelled according to depth, date, sampling team and media collected.

12.3 Decontamination

All equipment used in the sampling program was decontaminated prior to use and between samples to prevent cross contamination. Decontamination of equipment involved the following procedures:

- Cleaning equipment in potable water to remove gross contamination;
- Cleaning in a solution of Decon 90;
- Rinsing in clean demineralised water then wiping with clean lint free cloths;

Foundation Earth Sciences also adopted a sampling gradient of lowest to highest potential contamination to minimise the impact of cross contamination. This gradient was determined from the historical review and the on-site inspection that was carried out prior to sampling.

Although Foundation Earth Sciences maintains consistent sampling procedures, a rinsate sample is obtained to ensure false positive samples are not generated and that decontamination procedures are effective in preventing cross contamination. The Rinsate water is collected after being in contact generally with the trowel used for sampling. Analytical results that target the contaminants of concern are compared to a blank sample, which is taken directly from the rinsate water container supplied by the laboratory.

A rinsate sample was not collected as the samples were taken either directly from the push tube / split spoon sampler or U50 tube and therefore the chance for cross-contamination was minimal.

12.4 Sample Tracking, Identification and Holding Times

All samples were forwarded to Envirolab and ALS Environmental under recognised chain of custodies with clear identification outlining the date, location, sampler and sample ID. All samples were recorded by the laboratory as meeting their respective holding times. The sample tracking system is considered adequate for the purposes of sample collection.

12.5 Sample Transport

All samples were packed into an esky with ice from the time of collection. A trip blank and trip spike are collected where appropriate. These were transported under chain of custody from the site to Envirolab Pty Ltd and ALS Environmental, both NATA registered laboratories. During the project, the laboratory reported that all the samples arrived intact and were analysed within holding times for the respective analytes.

Samples were kept below 4°C at all times, soil samples submitted for asbestos analysis are not required to be kept below 4°C.

12.6 Trip Spike

Trip Spike samples were obtained from the laboratory prior to conducting field sampling where volatile substances are suspected. Foundation Earth Sciences QA/QC procedures for the collection of environmental samples involves the collection of trip blanks, trip spikes and duplicate samples both intra and inter laboratory.

12.7 Trip Blank

A trip blank accompanied the sampling for the sampling process and is not separated from the sample collection and transportation process. The purpose of the trip blank is to identify whether cross-contamination is occurring during the sample collection and transport process.

12.8 Field Duplicate Samples

The tables below list the duplicate soil samples collected with their corresponding primary samples.

Primary Sample	Sample Depth (m BGL)	Intra Duplicate	Inter Duplicate	Date Sampled
BH13	0.1-0.2	D1	SS1	25.03.2019
BH14	0.1-0.2	D2	SS2	26.03.2019

Table 14: Soil Field Duplicate Samples

Primary Sample	Screen Zone (m bgl)	Intra Duplicate	Inter Duplicate	Date Sampled
BH3/GW1	2.6-8.6	GWD1	GWSS1	05.04.2019

Field duplicate samples for soil were prepared in the field through the following process:

- A larger than normal quantity of soil is recovered from the sample location selected for duplication.
- Two Portions of the sub-sample are immediately transferred, one for an intralaboratory duplicate and another as a sample.
- Samples are placed into a labelled, laboratory supplied 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jars are labelled as the sample and duplicate and immediately placed in a chilled esky.

Soil Intra-Laboratory duplicate samples were sent to Envirolab Pty Ltd while Inter-Laboratory duplicate samples were sent to ALS Environmental.

A summary of the test results with the Relative Percentage Difference (RPD) is presented in the following tables.

The comparisons between the duplicates and original samples indicate acceptable RPDs when they comply with criteria which are commonly set at:

- less than 30% for inorganics and 50% for organics
- greater than five (5) times the laboratory limit of recording (LOR)
- greater than 50% of the relevant health investigation level (HIL) concentration.

The tables, below, give details of intra laboratory and inter laboratory duplicates.

	BH13	ENVIROLAB	RELATIVE PERCENTAGE
ANALYTE	0.1-0.2	D1	DIFFERENCE
	mg/kg	mg/kg	%
HEAVY METALS			
Arsenic	<4	<4	-
Cadmium	<0.4	<0.4	-
Chromium	15	13	14
Copper	19	12	45
Lead	5	9	57
Mercury	<0.1	<0.1	-
Nickel	21	20	5
Zinc	26	27	4
TRH			
C10-C14	<50	<50	-
C15-C28	<100	<100	-
C29-C36	<100	<100	-
втех			
Benzene	<0.2	<0.2	-
Toulene	<0.5	<0.5	-
Ethylbenzene	<1	<1	-
Xylenes - Total	<1	<1	-
POLYCYCLIC HYDROCARBONS (PAH)			
Benzo(a)pyrene	<0.05	<0.05	-
Total PAH	<0.05	<0.05	-
ORGANOCHLORINE PESTICIDES			
Heptachlor	<0.1	<0.1	-
Aldrin	<0.1	<0.1	-
Dieldrin	<0.1	<0.1	-
DDD	<0.1	<0.1	-
DDE	<0.1	<0.1	-
DDT	<0.1	<0.1	-
Chlordane (trans & cis)	<0.1	<0.1	-
POLYCHLORINATED BIPHENYLS			
Total PCB	<0.1	<0.1	-

Table 16a: Intra-lab Soil Sample D1 RPDs

	BH14	ENVIROLAB	RELATIVE PERCENTAGE
ANALYTE	0.1-0.2	D2	DIFFERENCE
	mg/kg	mg/kg	%
HEAVY METALS			
Arsenic	<4	<4	-
Cadmium	<0.4	<0.4	-
Chromium	10	10	0
Copper	12	12	0
Lead	17	18	6
Mercury	<0.1	<0.1	-
Nickel	7	8	13
Zinc	38	39	3
TRH			
C10-C14	<50	<50	-
C15-C28	130	130	-
C29-C36	<100	<100	-
втех			
Benzene	<0.2	<0.2	-
Toulene	<0.5	<0.5	-
Ethylbenzene	<1	<1	-
Xylenes - Total	<1	<1	-
POLYCYCLIC HYDROCARBONS (PAH)			
Benzo(a)pyrene	0.09	0.06	40
Total PAH	0.78	0.06	171
ORGANOCHLORINE PESTICIDES			
Heptachlor	<0.1	<0.1	-
Aldrin	<0.1	<0.1	-
Dieldrin	<0.1	<0.1	-
DDD	<0.1	<0.1	-
DDE	<0.1	<0.1	-
DDT	<0.1	<0.1	-
Chlordane (trans & cis)	<0.1	<0.1	-
POLYCHLORINATED BIPHENYLS			
Total PCB	<0.1	<0.1	-

Table 16b: Intra-lab Soil Sample D2 RPDs

ANALYTE	Envirolab GW1	DUPLICATE GWD1	RELATIVE PERCENTAGE DIFFERENCE
	ug/l	ug/l	%
HEAVY METALS			
Arsenic	1	1	0
Cadmium	<0.1	<0.1	-
Chromium	<1	<1	-
Copper	<1	4	-
Lead	<1	<1	-
Mercury	<0.05	<0.05	-
Nickel	18	17	6
Zinc	31	30	3
TRH			
C6-C10 (F1)	<10	<10	-
C10-C16 (F2)	<50	<50	-
BTEX			
Benzene	<1	<1	-
Toulene	<1	<1	-
Ethylbenzene	<1	<1	-
Xylenes - Total	<2	<2	-
POLYCYCLIC HYDROCARBONS (PAH)			
Benzo(a)pyrene	<0.1	<0.1	-
Naphthalene	<0.2	<0.2	-
voc			
Vinyl Chloride	<10	<10	-
Chloroform	<1	<1	-

Table 17: Intra-lab Groundwater Sample GWD1 RPDs

The comparisons between the intra-laboratory duplicates and corresponding original samples for soil and groundwater indicated generally acceptable RPD overall.

	BH13	ALS	RELATIVE PERCENTAGE
ANALYTE	0.1-0.2	SS1	DIFFERENCE
	mg/kg	mg/kg	%
HEAVY METALS			
Arsenic	<4	<5	-
Cadmium	<0.4	<1	-
Chromium	15	30	67
Copper	19	10	62
Lead	5	11	75
Mercury	<0.1	<0.1	-
Nickel	21	22	5
Zinc	26	35	30
ткн			
C10-C14	<50	<50	-
C15-C28	<100	<100	-
C29-C36	<100	<100	-
втех			
Benzene	<0.2	<0.2	-
Toulene	<0.5	<0.5	-
Ethylbenzene	<1	<0.5	-
Xylenes - Total	<1	<0.5	-
POLYCYCLIC HYDROCARBONS (PAH)			
Benzo(a)pyrene	<0.05	<0.5	-
Total PAH	<0.05	<0.5	-
ORGANOCHLORINE PESTICIDES			
Heptachlor	<0.1	<0.05	-
Aldrin	<0.1	<0.05	-
Dieldrin	<0.1	<0.05	-
DDD	<0.1	<0.05	-
DDE	<0.1	<0.05	-
DDT	<0.1	<0.05	-
Chlordane (trans & cis)	<0.1	<0.05	-
POLYCHLORINATED BIPHENYLS			
Total PCB	<0.1	<0.1	-

Table 18a: Inter-lab Soil Sample SS1 RPDs

ALS	RELATIVE PERCENTAGE
SS2	DIFFERENCE
mg/kg	%
_	
<5	-

Table 18b: Inter-lab Soil Sample SS2 RPDs

BH14

ANALYTE	0.1-0.2	SS2	DIFFERENCE
	mg/kg	mg/kg	%
HEAVY METALS			
Arsenic	<4	<5	-
Cadmium	<0.4	<1	-
Chromium	10	9	11
Copper	12	10	18
Lead	17	17	0
Mercury	<0.1	<0.1	-
Nickel	7	6	15
Zinc	38	37	3
TRH			
C10-C14	<50	<50	-
C15-C28	130	<100	-
C29-C36	<100	<100	-
BTEX			
Benzene	<0.2	<0.2	-
Toulene	<0.5	<0.5	-
Ethylbenzene	<1	<0.5	-
Xylenes - Total	<1	<0.5	-
POLYCYCLIC HYDROCARBONS (PAH)			
Benzo(a)pyrene	0.09	<0.5	-
Total PAH	0.78	<0.5	-
ORGANOCHLORINE PESTICIDES			
Heptachlor	<0.1	<0.05	-
Aldrin	<0.1	<0.05	-
Dieldrin	<0.1	<0.05	-
DDD	<0.1	<0.05	-
DDE	<0.1	<0.05	-
DDT	<0.1	<0.05	-
Chlordane (trans & cis)	<0.1	<0.05	-
POLYCHLORINATED BIPHENYLS			
Total PCB	<0.1	<0.1	-

	Envirolab	DUPLICATE	RELATIVE PERCENTAGE
ANALYTE	GW1	GWD1	DIFFERENCE
	ug/l	ug/l	%
HEAVY METALS	···0/ ·		~
Arsenic	1	1	0
Cadmium	<0.1	<0.1	-
Chromium	<1	<1	-
Copper	<1	4	-
Lead	<1	<1	-
Mercury	<0.05	<0.05	-
Nickel	18	17	6
Zinc	31	30	3
TRH			
C6-C10 (F1)	<10	<10	-
C10-C16 (F2)	<50	<50	-
BTEX			
Benzene	<1	<1	-
Toulene	<1	<1	-
Ethylbenzene	<1	<1	-
Xylenes - Total	<2	<2	-
POLYCYCLIC HYDROCARBONS (PAH)			
Benzo(a)pyrene	<0.1	<0.1	-
Naphthalene	<0.2	<0.2	-
voc			
Vinyl Chloride	<10	<10	-
Chloroform	<1	<1	-

Table 19: Inter-lab Groundwater Sample GWSS1 RPDs

The comparisons between the inter-laboratory duplicates and corresponding original samples for soil and groundwater indicated generally acceptable RPD overall, with the exception of the concentration of arsenic, total PAH, chromium, copper and lead for soil which exceeded the DQOs for this project, however these exceedances are not considered significant because they are most likely due to the heterogeneity of the sample or low concentrations within the sample.

Field duplicates provide an indication of the whole investigation process, including the sampling process, sample preparation and analysis. The accuracy of the data is considered to be adequate due to the effect on confidence intervals with low concentrations in the samples and their duplicates.

12.9 Trip Spike and Trip Blank Results

Trip Spike samples were obtained from the laboratory prior to conducting field sampling where volatile substances are suspected. Trip spike and trip blank samples were collected to assess the effect of sample handling on volatile concentrations in the samples collected and the results are listed in the tables below:

ANALYTE	TS1 Trip Spike % Soil (mg/kg) 25.3.2019	ANALYTE	TS1 Trip Spike % water (ug/L) 5.4.2019
BTEX		BTEX	
Benzene	92%	Benzene	106%
Toluene	93%	Toluene	103%
Ethyl Benzene	95%	Ethyl Benzene	107%
O-Xylenes	95%	O-Xylenes	108%
M & P Xylenes	97%	M & P Xylenes	104%

Table 20: Trip Spike

ANALYTE	TS2 Trip Spike % Soil (mg/kg) 26.03.2019
BTEX	
Benzene	95%
Toluene	96%
Ethyl Benzene	95%
O-Xylenes	95%
M & P Xylenes	95%

Results discussed in Section 12.11

ANALYTE

TRH

C6-C10

Benzene

Toluene

Naphthalene

Ethyl Benzene

Total Xylenes

BTEX

Trip Blank		Trip Blank
Soil (TB1)	ANALYTE	Water (TB1)
mg/kg		ug/L
25.3.2019		05.04.2019
	TRH	

10

NA

<1

<1

<1

<1 <LOR

Table 21: Trip Blank

C6-C10

Naphthalene

Ethyl Benzene

Total Xylenes

Benzene

Toluene

VOCs

BTEX

<25

<1

<0.2

<0.5

<1

<1

ANALYTE	Trip Blank Soil (TB2) mg/kg
TRH	
C6-C10	<25
BTEX	
Naphthalene	<1
Benzene	<0.2
Toluene	<0.5
Ethyl Benzene	<1
Total Xylenes	<1

Results discussed in Section 12.11

12.10 Laboratory QA/QC

The integrity of analytical data provides the second step in the QA/QC process for total data compliance. The data validation techniques adopted by Foundation Earth Sciences are based upon techniques published by the US EPA and in line with methods and guidelines adopted by the NSW EPA and outlined in the NEPM, 2013.

Descriptions are provided of the specific mechanisms used in the assessment of accuracy, precision and useability of analytical data within the project.

Refer to **Appendix H**- NATA Laboratory Test Results.

12.11 QA/QC Results

The QA/QC results for soil collected at the site are summarised in the table below:

Table 22: QA/QC Results Summary

Data Quality Indicator	Results	DQI Met
Completeness		
Soil & Groundwater		
Data from critical samples is considered valid	Data is considered valid	Yes
Satisfactory frequency / result for QC samples	The QC results are considered adequate for the purpose of the investigation	Yes
Field documentation completed	Field records are complete	Yes
Boreholes logs & COCs completed and	Logs, COCs and holding times have been	Yes
holding times complied with	completed and complied with	
Comparability		
Soil & Groundwater		
Standard operating procedures used	Yes	Yes
Consistent field conditions, sampling	Sampling was conducted by one	Yes
staff and laboratory analysis	Foundation Earth Sciences scientist operating under the SOPs. The laboratories remained consistent	

Data Quality Indicator	Results	DQI Met
	throughout the investigation	
Same analytical methods used	All analytical methods used between	Yes
	laboratories were based on the	
	USEPA/APHA methods	
Limit of reporting appropriate and	The LORs were the same within each	Yes
consistent	laboratory but differed between the	
	primary and secondary laboratories. The	
	LORs were considered appropriate based	
	on the results.	
Representativeness		
Soil & Groundwater		
Sampling appropriate for media and	All sampling was conducted in	Yes
analytes	accordance with Foundation Earth	
	Sciences SOPs.	
Samples adequately preserved	The majority of samples collected were	Yes
	received by laboratories at the correct	
	temperature. Where relevant, samples	
	were stored in acid-preserved containers	
	supplied by laboratories.	
Precision		
Soil & Groundwater		
CODe environmentate and examplicate with the	The recovery of field dualization was	Voc
SOPs appropriate and complied with in	The recovery of field duplicates was	Yes
relation to field duplicates	conducted in accordance with	
	Foundation Earth Sciences SOPs s to	
	allow for the assessment of field	
	precision.	
RPDs of the field duplicates within	RPDs of >50% were identified in a	Partial
control limits	number of samples analysed for metals&	
	total PAH and was likely due to the	

Data Quality Indicator	Results	DQI Met
	heterogeneity of the sample and/or the	
	low concentrations in the sample. Given	
	that the majority of RPDs for the	
	remaining analytes were <50%, the data	
	set was considered to be adequately	
	precise.	
Ds of the laboratory duplicates	The RPDs of the laboratory duplicates	Yes
thin control limits	were within the control limits.	
curacy		
il & Groundwater		
Ps appropriate and complied with in	Yes	Yes
ation to field blanks		
sate Blanks, trip blanks & laboratory	Laboratory blanks & trip blanks were free	Yes
inks free of contaminants	of contaminants.	
rrogate spikes within control limits	Yes	Yes
poratory control spikes within control	Laboratory Control Spike recoveries were	Partial
its	within control limits with the exception	
	of laboratory certificate 214514-Revision	
	R01 for the soil spike. TRH Soil C10- C40	
	NEPM # Percent Recovery is not possible	
	to report as the high concentration of	
	analytes in the samples 214514-3 and 13	
	have caused interference.	
atrix Spike recoveries within control	Matrix spike recoveries were within	Yes
lits	control limits.	
p spike recoveries within control	Yes	Yes
lits		

12.12 QA/QC Evaluation / Conclusion

In summary, the findings of the QA/QC evaluation indicated the following:

- Data Completeness The data set is considered complete.
- Data Comparability The data set is considered comparable.
- Data Representativeness The data set is considered representable.
- Data Precision The following non-conformance was identified with regards to data precision:
 - RPDs of >50% were identified in a number of samples analysed for metals& total PAH and was likely due to the heterogeneity of the sample and/or the low concentrations in the sample. Given that the majority of RPDs for the remaining analytes were <50%, the data set was considered to be adequately precise.
- Data Accuracy The following non-conformance was identified with regards to data accuracy:
 - Laboratory Control Spike recoveries were within control limits with the exception of laboratory certificate 214514-Revision R01 for the soil spike.
 TRH Soil C10- C40 NEPM # Percent Recovery is not possible to report as the high concentration of analytes in the samples 214514-3 and 13 have caused interference.

It is therefore considered that the data is sufficiently reliable and that the results can be used for the purpose of this project.

13.0 SITE ASSESSMENT CRITERIA

13.1 SOILS

13.1.1 Health Investigation Levels (HILs)

To assess the contamination status of soils at a site, the NSW EPA refers to the document entitled National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (Amendment 2013).

The site is currently occupied by administrative/commercial/light industrial properties & ground level car parking. Existing one & two storey warehouse and offices will be retained to the southern portion of the site. The north portion of the site is proposed to be redeveloped into mixed use senior living apartment including commercial areas on the lower ground floor & ground floor, landscaping, deep soil areas and a basement car parking with car parking spaces in the lower ground level. The Site Assessment forms part of SEPP 55 Guideline (Remediation of Land) with a proposed redevelopment to determine the end land-use suitability of the property.

Soils sampled across the Site were assessed against the Site Acceptance Criteria (SAC) provided by the National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013) Table 1A - Residential B & HIL D –Commercial & Industrial.

The site will be assessed against the NEPM exposure scenario 'Residential B & HIL D – Commercial & Industrial' Health Investigation Levels of the above-mentioned guidelines and specifically refers to the following:

HIL 'B' Residential with minimal opportunities for soil access: includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments

HIL 'D' Commercial/industrial includes premises such as shops, offices, factories and industrial sites.

Only *HIL 'B' Criteria values are* adopted and compared in the result summary table in Appendix K as the values are more stringent to *HIL 'B'*. (*The soil testing results exceed HIL 'D' will exceed HIL 'B'*)

The soil regulatory guidelines are presented in the table below.

Heavy Metals Arsenic 500 NEPM 2013 - Table 1(A)1 HILs Beryllium 90 NEPM 2013 - Table 1(A)1 HILs Boron 40000 NEPM 2013 - Table 1(A)1 HILs Cadmium 150 NEPM 2013 - Table 1(A)1 HILs Chromium (VI) 500 NEPM 2013 - Table 1(A)1 HILs Cobalt 600 NEPM 2013 - Table 1(A)1 HILs Copper 30000 NEPM 2013 - Table 1(A)1 HILs Lead 1200 NEPM 2013 - Table 1(A)1 HILs Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 HILs Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Zinc 60000 NEPM 2013 - Table 1(A)1 HILs Zinc 60000 NEPM 2013 - Table 1(A)1 HILs Zinc 60000 NEPM 2013 - Table 1(A)1 HILs Zincinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Chordane 90 NEPM 2013 - Table 1(A)1 HILs Chordane	simple sustainable solutions	Residential B	Reference
Beryllium 90 NEPM 2013 - Table 1(Å)1 HILs Boron 40000 NEPM 2013 - Table 1(A)1 HILs Cadmium 150 NEPM 2013 - Table 1(A)1 HILs Chromium (VI) 500 NEPM 2013 - Table 1(A)1 HILs Cobalt 600 NEPM 2013 - Table 1(A)1 HILs Copper 30000 NEPM 2013 - Table 1(A)1 HILs Lead 1200 NEPM 2013 - Table 1(A)1 HILs Manganese 14000 NEPM 2013 - Table 1(A)1 HILs Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 HILs Nickel 1200 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Zinc 60000 NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Organochtorine Pesticides 10 NEPM 2013 - Table 1(A)1 HILs Organochtorine Pesticides 10 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Hords 15	Heavy Metals	500	
Boron 40000 NEPM 2013 - Table 1(A)1 HILs Cadmium 150 NEPM 2013 - Table 1(A)1 HILs Chromium (VI) 500 NEPM 2013 - Table 1(A)1 HILs Cobalt 600 NEPM 2013 - Table 1(A)1 HILs Copper 30000 NEPM 2013 - Table 1(A)1 HILs Lead 1200 NEPM 2013 - Table 1(A)1 HILs Manganese 14000 NEPM 2013 - Table 1(A)1 HILs Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 HILs Methyl Mercury 30 NEPM 2013 - Table 1(A)1 HILs Nickel 1200 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Quante (Free) 300 NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 200 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Foldes 15<			
Cadmium 150 NEPM 2013 - Table 1(A)1 HILs Chromium (VI) 500 NEPM 2013 - Table 1(A)1 HILs Cobalt 600 NEPM 2013 - Table 1(A)1 HILs Copper 30000 NEPM 2013 - Table 1(A)1 HILs Manganese 1200 NEPM 2013 - Table 1(A)1 HILs Manganese 14000 NEPM 2013 - Table 1(A)1 HILs Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 HILs Methyl Mercury 30 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs System 1400 NEPM 2013 - Table 1(A)1 HILs Cycyclic Aromatic Hydrocarbons (PAHs 60000 NEPM 2013 - Table 1(A)1 HILs Cycyclic Aromatic Hydrocarbons (PAHs 300 NEPM 2013 - Table 1(A)1 HILs Chordane 90 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chordane 90 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Phenols <t< td=""><td></td><td></td><td></td></t<>			
Chromium (VI) 500 NEPM 2013 - Table 1(Å)1 HILs Cobalt 600 NEPM 2013 - Table 1(Å)1 HILs Copper 30000 NEPM 2013 - Table 1(Å)1 HILs Manganese 1200 NEPM 2013 - Table 1(Å)1 HILs Manganese 14000 NEPM 2013 - Table 1(Å)1 HILs Mercury (Inorganic) 120 NEPM 2013 - Table 1(Å)1 HILs Metruy (Inorganic) 120 NEPM 2013 - Table 1(Å)1 HILs Selenium 1400 NEPM 2013 - Table 1(Å)1 HILs Solei (Free) 300 NEPM 2013 - Table 1(Å)1 HILs Znc 60000 NEPM 2013 - Table 1(Å)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(Å)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(Å)1 HILs Chordane 90 NEPM 2013 - Table 1(Å)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(Å)1 HILs Chordane 90 NEPM 2013 - Table 1(Å)1 HILs Chordane 90 NEPM 2013 - Table 1(Å)1 HILs Chordane 90 NEPM 2013 - Table 1(Å)1 HILs Phenols 45000 NEPM 201			
Cobalt 600 NEPM 2013 - Table 1(A)1 HILs Copper 30000 NEPM 2013 - Table 1(A)1 HILs Lead 1200 NEPM 2013 - Table 1(A)1 HILs Manganese 14000 NEPM 2013 - Table 1(A)1 HILs Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 HILs Methyl Mercury 30 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Corrinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Corrinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Corrinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Corrinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Corrinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Corrinogenic PAHs (as Bap TEQ) 600 NEPM 2013 - Ta			
Copper 30000 NEPM 2013 - Table 1(A)1 HILs Lead 1200 NEPM 2013 - Table 1(A)1 HILs Marganese 14000 NEPM 2013 - Table 1(A)1 HILs Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 HILs Methyl Mercury 30 NEPM 2013 - Table 1(A)1 HILs Nickel 120 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 0 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 0 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieddrin 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Polenols 4500	. ,		
Lead 1200 NEPM 2013 - Table 1(A)1 HILs Manganese 14000 NEPM 2013 - Table 1(A)1 HILs Metnyl Mercury 30 NEPM 2013 - Table 1(A)1 HILs Methyl Mercury 30 NEPM 2013 - Table 1(A)1 HILs Selenium 1200 NEPM 2013 - Table 1(A)1 HILs Solenium 1400 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Polycyclic Aromatic Hydrocarbons (PAHs) Carcinogenic PAHs (as Bap TEQ) 4 Carcinogenic PAHs (as Bap TEQ) 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides DDT + DDE + DDD 600 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Hethyl Advo NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Nepd 2013 - Table 1(A)1 HILs Nepd 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs NEPM 2013 - Table 1(A)1 HILs Potenols 400 NEPM 2013 - Table 1(A)1 HILs NEPM 2013 - Table 1(A)1 HILs Potenols 45000 NEPM 2013 - Table			
Manganese 14000 NEPM 2013 - Table 1(A)1 Hills Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 Hills Methyl Mercury 30 NEPM 2013 - Table 1(A)1 Hills Nickel 1200 NEPM 2013 - Table 1(A)1 Hills Selenium 1400 NEPM 2013 - Table 1(A)1 Hills Selenium 1400 NEPM 2013 - Table 1(A)1 Hills Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 Hills Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 Hills Corringgenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 Hills Total PAHs 400 NEPM 2013 - Table 1(A)1 Hills Organochlorine Pesticides 00 NEPM 2013 - Table 1(A)1 Hills Chiordane 90 NEPM 2013 - Table 1(A)1 Hills Chiordane 90 NEPM 2013 - Table 1(A)1 Hills Chordane 90 NEPM 2013 - Table 1(A)1 Hills Chordane 90 NEPM 2013 - Table 1(A)1 Hills Phenols 15 NEPM 2013 - Table 1(A)1 Hills Polychlorinated Biphenyls (PCBs) Polychlorinated Biphenyls (PCBs) POlychlorinated Biphenyls (PCB			
Mercury (Inorganic) 120 NEPM 2013 - Table 1(A)1 HILs Methyl Mercury 30 NEPM 2013 - Table 1(A)1 HILs Nickel 1200 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Total PAHs 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides DDT + DDD 600 NEPM 2013 - Table 1(A)1 HILs Chiordane 90 NEPM 2013 - Table 1(A)1 HILs Hethyl Hethyl A00 NEPM 2013 - Table 1(A)1 HILs Chiordane 90 NEPM 2013 - Table 1(A)1 HILs Hethyl Hethyl A00 NEPM 2013 - Table 1(A)1 HILs Chiordane 90 NEPM 2013 - Table 1(A)1 HILs NEOB 1(A)1 HILs Polychorinated Biphenyls (PCBs NEPM 2013 - Table 1(A)1 HILs NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs 1200 NEPM 2013 - Table 1(A)1 HILs </td <td></td> <td></td> <td></td>			
Methyl Mercury 30 NEPM 2013 - Table 1(A)1 HILs Nickel 1200 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Zinc 60000 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Polycyclic Aromatic Hydrocarbons (PAHs) Carcinogenic PAHs (as Bap TEQ) Carcinogenic PAHs 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 00 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chordane 90 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Pols 15 NEPM 2013 - Table 1(A)1 HILs Pols 15 NEPM 2013 - Table 1(A)1 HILs Pols 130 NEPM 2013 - Table 1(A)1 HILs Pols </td <td>-</td> <td></td> <td></td>	-		
Nickel 1200 NEPM 2013 - Table 1(A)1 HILs Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Zinc 60000 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Polycyclic Aromatic Hydrocarbors (PAHs) 300 NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 00 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 00 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Phenols 15 NEPM 2013 - Table 1(A)1 HILs Phenols 10 NEPM 2013 - Table 1(A)1 HILs Potychlorinated Biphenyls (PCBs) PCBs 1200 PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 340 NEPM 2013 - Table 1(A)1 HILs Chlorynifos		_	
Selenium 1400 NEPM 2013 - Table 1(A)1 HILs Zinc 60000 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Polycyclic Aromatic Hydrocarbons (PAHs) Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Total PAHs 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides NEPM 2013 - Table 1(A)1 HILs Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides NEPM 2013 - Table 1(A)1 HILs Chordane 90 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Hebdsulfan 400 NEPM 2013 - Table 1(A)1 HILs Phenols NEPM 2013 - Table 1(A)1 HILs Phenols NEPM 2013 - Table 1(A)1 HILs Phenols 4700 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) PCBs PCBs 1200 NEPM 2013 - Table 1(A)1 HILs			
Zinc 60000 NEPM 2013 - Table 1(A)1 HILs Cyanide (Free) 300 NEPM 2013 - Table 1(A)1 HILs Polycyclic Aromatic Hydrocarbons (PAHs) Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Total PAHs 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides DDT + DDE + DDD 600 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs HCB 15 NEPM 2013 - Table 1(A)1 HILs Phetols 10 NEPM 2013 - Table 1(A)1 HILs Potso 10 NEPM 2013 - Table 1(A)1 HILs Potnols 45000 NEPM 2013 - Table 1(A)1 HILs Potnols 45000 NEPM 2013 - Table 1(A)1 HILs Potnols 4700 NEPM 2013 - Table 1(A)1 HILs Potnotinated Biphenyls (PCBs) Potnotinated Biphenyls (PCBs) Potno			
Cyanide (Free) 300 NEPM 2013 - Table 1 (A)1 HILs Polycyclic Aromatic Hydrocarbons (PAHs) Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1 (A)1 HILs Total PAHs 400 NEPM 2013 - Table 1 (A)1 HILs Organochlorine Pesticides U DDT + DDE + DDD 600 NEPM 2013 - Table 1 (A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1 (A)1 HILs Chlordane 90 NEPM 2013 - Table 1 (A)1 HILs Endosulfan 400 NEPM 2013 - Table 1 (A)1 HILs Heptachlor 10 NEPM 2013 - Table 1 (A)1 HILs Heptachlor 10 NEPM 2013 - Table 1 (A)1 HILs Heptachlor 10 NEPM 2013 - Table 1 (A)1 HILs Phenols 45000 NEPM 2013 - Table 1 (A)1 HILs Phenols 45000 NEPM 2013 - Table 1 (A)1 HILs Polychlorinated Biphenyls (PCBs) POlychlorinated Biphenyls (PCBs) PCBs 1200 NEPM 2013 - Table 1 (A)1 HILs Other Pesticides 340 NEPM 2013 - Table 1 (A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1 (A)1 HILs Gene			
Polycyclic Aromatic Hydrocarbons (PAHs) Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Total PAHs 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 5 100 DDT + DDE + DDD 600 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs HCB 15 NEPM 2013 - Table 1(A)1 HILs Phenols 15 NEPM 2013 - Table 1(A)1 HILs Phenols 130 NEPM 2013 - Table 1(A)1 HILs Cresols 4700 NEPM 2013 - Table 1(A)1 HILs Cresols 4700 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifen			
Carcinogenic PAHs (as Bap TEQ) 4 NEPM 2013 - Table 1(A)1 HILs Total PAHs 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 0 NEPM 2013 - Table 1(A)1 HILs DDT + DDE + DDD 600 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs HCB 15 NEPM 2013 - Table 1(A)1 HILs Phenols 15 NEPM 2013 - Table 1(A)1 HILs Phenols 45000 NEPM 2013 - Table 1(A)1 HILs Pentos 130 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) POlychlorinated Biphenyls (PCBs) PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 470 NEPM 2013 -	· · · ·		NEP W 2013 - Table 1(A)T THES
Total PAHs 400 NEPM 2013 - Table 1(A)1 HILs Organochlorine Pesticides 000 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs HCB 15 NEPM 2013 - Table 1(A)1 HILs Phenols 10 NEPM 2013 - Table 1(A)1 HILs Phenols 10 NEPM 2013 - Table 1(A)1 HILs Phenols 45000 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) PCBs PCBs PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 340 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Y 900 NEPM 2013 - Table 1(A)1 HILs			NEPM 2013 - Table 1(A)1 Hills
Organochlorine Pesticides DDT + DDE + DDD 600 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs HCB 15 NEPM 2013 - Table 1(A)1 HILs Phenols 10 NEPM 2013 - Table 1(A)1 HILs Phenols 15 NEPM 2013 - Table 1(A)1 HILs Pensols 45000 NEPM 2013 - Table 1(A)1 HILs Pentachlorophenol 130 NEPM 2013 - Table 1(A)1 HILs Cresols 4700 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) PCBs PCBs PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Y 470 NEPM 2013 - Table 1(A)1 HILs Y 900 N			
DDT + DDE + DDD 600 NEPM 2013 - Table 1(A)1 HILs Aldrin + Dieldrin 10 NEPM 2013 - Table 1(A)1 HILs Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs HCB 15 NEPM 2013 - Table 1(A)1 HILs Phenols 15 NEPM 2013 - Table 1(A)1 HILs Phenols 15 NEPM 2013 - Table 1(A)1 HILs Pentachlorophenol 130 NEPM 2013 - Table 1(A)1 HILs Cresols 4700 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) PCBs PCBs PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs		400	
Aldrin + Dieldrin 10 NEPM 2013 - Table 1(Å)1 HILs Chlordane 90 NEPM 2013 - Table 1(Å)1 HILs Endosulfan 400 NEPM 2013 - Table 1(Å)1 HILs Heptachlor 10 NEPM 2013 - Table 1(Å)1 HILs Heptachlor 10 NEPM 2013 - Table 1(Å)1 HILs HCB 15 NEPM 2013 - Table 1(Å)1 HILs Phenols 15 NEPM 2013 - Table 1(Å)1 HILs Phenols 45000 NEPM 2013 - Table 1(Å)1 HILs Pentachlorophenol 130 NEPM 2013 - Table 1(Å)1 HILs Cresols 4700 NEPM 2013 - Table 1(Å)1 HILs Polychlorinated Biphenyls (PCBs) PCBs Dephenyls (PCBs) PCBs 1200 NEPM 2013 - Table 1(Å)1 HILs Other Pesticides 340 NEPM 2013 - Table 1(Å)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(Å)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(Å)1 HILs YA,5-T 900 NEPM 2013 - Table 1(Å)1 HILs MCPA 900 NEPM 2013 - Table 1(Å)1 HILs MCPA 900 NEPM 2013 - Table 1(Å)1 HILs		600	NEPM 2013 - Table 1(A)1 Hills
Chlordane 90 NEPM 2013 - Table 1(A)1 HILs Endosulfan 400 NEPM 2013 - Table 1(A)1 HILs Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs HCB 15 NEPM 2013 - Table 1(A)1 HILs Phenols 15 NEPM 2013 - Table 1(A)1 HILs Phenols 45000 NEPM 2013 - Table 1(A)1 HILs Pentachlorophenol 130 NEPM 2013 - Table 1(A)1 HILs Cresols 4700 NEPM 2013 - Table 1(A)1 HILs POlychlorinated Biphenyls (PCBs) NEPM 2013 - Table 1(A)1 HILs PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Y 900 NEPM 2013 - Table 1(A)1 HILs Y 900 NEPM 2013 - Table 1(A)1 HILs Y 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPA			
Endosulfan 400 NEPM 2013 - Table 1 (Å)1 HILs Heptachlor 10 NEPM 2013 - Table 1 (Å)1 HILs HCB 15 NEPM 2013 - Table 1 (Å)1 HILs Phenols 15 NEPM 2013 - Table 1 (Å)1 HILs Phenols 45000 NEPM 2013 - Table 1 (Å)1 HILs Pentachlorophenol 130 NEPM 2013 - Table 1 (Å)1 HILs Cresols 4700 NEPM 2013 - Table 1 (Å)1 HILs Polychlorinated Biphenyls (PCBs) PCBs 1200 NEPM 2013 - Table 1 (Å)1 HILs Other Pesticides 1200 NEPM 2013 - Table 1 (Å)1 HILs NEhorpyrifos Bifenthrin 840 NEPM 2013 - Table 1 (Å)1 HILs NEhorpyrifos Bifenthrin 840 NEPM 2013 - Table 1 (Å)1 HILs NEhorpyrifos 2,4,5-T 900 NEPM 2013 - Table 1 (Å)1 HILs NEPM 2013 - Table 1 (Å)1 HILs ACPA 900 NEPM 2013 - Table 1 (Å)1 HILs NCPA 900 NEPM 2013 - Table 1 (Å)1 HILs NCPA 900 NEPM 2013 - Table 1 (Å)1 HILs MCPA 900 NEPM 2013 - Table 1 (Å)1 HILs NCPB 900 NEPM 2013 - Table 1 (Å)1		-	
Heptachlor 10 NEPM 2013 - Table 1(A)1 HILs HCB 15 NEPM 2013 - Table 1(A)1 HILs Phenols 45000 NEPM 2013 - Table 1(A)1 HILs Pentachlorophenol 130 NEPM 2013 - Table 1(A)1 HILs Cresols 4700 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) 4700 NEPM 2013 - Table 1(A)1 HILs PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs			
HCB 15 NEPM 2013 - Table 1(A)1 HILs Phenols 45000 NEPM 2013 - Table 1(A)1 HILs Pentachlorophenol 130 NEPM 2013 - Table 1(A)1 HILs Cresols 4700 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) 4700 NEPM 2013 - Table 1(A)1 HILs PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 470 NEPM 2013 - Table 1(A)1 HILs Atrazine 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Stractides 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mcoprop 900 NEPM 2013 - Table 1(A)1 HI			
Phenols45000NEPM 2013 - Table 1(A)1 HILsPentachlorophenol130NEPM 2013 - Table 1(A)1 HILsCresols4700NEPM 2013 - Table 1(A)1 HILsPolychlorinated Biphenyls (PCBs)PCBs1200NEPM 2013 - Table 1(A)1 HILsOther PesticidesAtrazine470NEPM 2013 - Table 1(A)1 HILsChlorpyrifos340NEPM 2013 - Table 1(A)1 HILsBifenthrin840NEPM 2013 - Table 1(A)1 HILsBifenthrin840NEPM 2013 - Table 1(A)1 HILsQ4,5-T900NEPM 2013 - Table 1(A)1 HILs2,4,5-T900NEPM 2013 - Table 1(A)1 HILsMCPA900NEPM 2013 - Table 1(A)1 HILsMCPA900NEPM 2013 - Table 1(A)1 HILsMCPB900NEPM 2013 - Table 1(A)1 HILsMcOps900NEPM 2013 - Table 1(A)1 HILsMcOps900NEPM 2013 - Table 1(A)1 HILsMcPB900NEPM 2013 - Table 1(A)1 HILsMcPB900NEPM 2013 - Table 1(A)1 HILsMcPB900NEPM 2013 - Table 1(A)1 HILsMcOprop900NEPM 2013 - Table 1(A)1 HILsPicloram6600NEPM 2013 - Table 1(A)1 HILsOther Organics900NEPM 2013 - Table 1(A)1 HILs	·	-	
Phenols 45000 NEPM 2013 - Table 1(A)1 HILs Pentachlorophenol 130 NEPM 2013 - Table 1(A)1 HILs Cresols 4700 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides Atrazine 470 NEPM 2013 - Table 1(A)1 HILs Other Pesticides Atrazine 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs	Phenols	-	
Pentachlorophenol130NEPM 2013 - Table 1(A)1 HILsCresols4700NEPM 2013 - Table 1(A)1 HILsPolychlorinated Biphenyls (PCBs)PCBs1200NEPM 2013 - Table 1(A)1 HILsOther PesticidesAtrazine470NEPM 2013 - Table 1(A)1 HILsChlorpyrifos340NEPM 2013 - Table 1(A)1 HILsBifenthrin840NEPM 2013 - Table 1(A)1 HILsHerbicides2,4,5-T900NEPM 2013 - Table 1(A)1 HILs2,4-D1600NEPM 2013 - Table 1(A)1 HILsMCPA900NEPM 2013 - Table 1(A)1 HILsMCPB900NEPM 2013 - Table 1(A)1 HILsMecoprop900NEPM 2013 - Table 1(A)1 HILsPicloram6600NEPM 2013 - Table 1(A)1 HILs		45000	NEPM 2013 - Table 1(A)1 HILs
Cresols 4700 NEPM 2013 - Table 1(A)1 HILs Polychlorinated Biphenyls (PCBs) PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides Atrazine 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Herbicides 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs McCoroprop 900 NEPM 2013 - T	Pentachlorophenol	130	
Polychlorinated Biphenyls (PCBs) PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 470 NEPM 2013 - Table 1(A)1 HILs Atrazine 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Herbicides 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs McOprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs	·	4700	
PCBs 1200 NEPM 2013 - Table 1(A)1 HILs Other Pesticides 470 NEPM 2013 - Table 1(A)1 HILs Atrazine 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Herbicides 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs McOprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs	Polychlorinated Biphenyls (PCBs	3)	
Atrazine 470 NEPM 2013 - Table 1(A)1 HILs Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Herbicides 2 900 NEPM 2013 - Table 1(A)1 HILs 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs			NEPM 2013 - Table 1(A)1 HILs
Chlorpyrifos 340 NEPM 2013 - Table 1(A)1 HILs Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Herbicides 900 NEPM 2013 - Table 1(A)1 HILs 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs Other Organics 000 NEPM 2013 - Table 1(A)1 HILs	Other Pesticides		
Bifenthrin 840 NEPM 2013 - Table 1(A)1 HILs Herbicides 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs Other Organics 000 NEPM 2013 - Table 1(A)1 HILs	Atrazine	470	NEPM 2013 - Table 1(A)1 HILs
Herbicides 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs Other Organics 000 NEPM 2013 - Table 1(A)1 HILs	Chlorpyrifos	340	NEPM 2013 - Table 1(A)1 HILs
Herbicides 2,4,5-T 900 NEPM 2013 - Table 1(A)1 HILs 2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs Other Organics 000 NEPM 2013 - Table 1(A)1 HILs		840	NEPM 2013 - Table 1(A)1 HILs
2,4-D 1600 NEPM 2013 - Table 1(A)1 HILs MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 900 NEPM 2013 - Table 1(A)1 HILs Other Organics Other Organics NEPM 2013 - Table 1(A)1 HILs	Herbicides		
MCPA 900 NEPM 2013 - Table 1(A)1 HILs MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 900 NEPM 2013 - Table 1(A)1 HILs Other Organics Other Organics NEPM 2013 - Table 1(A)1 HILs	2,4,5-T	900	
MCPB 900 NEPM 2013 - Table 1(A)1 HILs Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs Other Organics Other Organics NEPM 2013 - Table 1(A)1 HILs	2,4-D	1600	NEPM 2013 - Table 1(A)1 HILs
Mecoprop 900 NEPM 2013 - Table 1(A)1 HILs Picloram 6600 NEPM 2013 - Table 1(A)1 HILs Other Organics Image: Complexity of the second seco	МСРА	900	
Picloram 6600 NEPM 2013 - Table 1(A)1 HILs Other Organics	МСРВ	900	
Picloram 6600 NEPM 2013 - Table 1(A)1 HILs Other Organics	Mecoprop	900	NEPM 2013 - Table 1(A)1 HILs
		6600	
PDBE (Br1-Br9) 2 NEPM 2013 - Table 1(A)1 HILs			
	PDBE (Br1-Br9)	2	NEPM 2013 - Table 1(A)1 HILs

Table 23: Health Investigation Levels (HIL) Criteria for Soil Contaminants
Benvirons' groups'	Commerical/Industrial D	Reference
Heavy Metals	0000	
Arsenic	3000 500	NEPM 2013 - Table 1(A)1 HILs
Beryllium		NEPM 2013 - Table 1(A)1 HILs
Boron	300000	NEPM 2013 - Table 1(A)1 HILs
Cadmium	900 3600	NEPM 2013 - Table 1(A)1 HILs
Chromium (VI)		NEPM 2013 - Table 1(A)1 HILs
Cobalt	4000	NEPM 2013 - Table 1(A)1 HILs
Copper	240000	NEPM 2013 - Table 1(A)1 HILs
Lead	1500	NEPM 2013 - Table 1(A)1 HILs
Manganese	60000	NEPM 2013 - Table 1(A)1 HILs
Mercury (Inorganic)	730	NEPM 2013 - Table 1(A)1 HILs
Methyl Mercury	180	NEPM 2013 - Table 1(A)1 HILs
Nickel	6000	NEPM 2013 - Table 1(A)1 HILs
Selenium 	10000	NEPM 2013 - Table 1(A)1 HILs
Zinc	400000	NEPM 2013 - Table 1(A)1 HILs
Cyanide (Free)	1500	NEPM 2013 - Table 1(A)1 HILs
Polycyclic Aromatic Hydrocarbon		
Carcinogenic PAHs (as Bap TEQ)	40	NEPM 2013 - Table 1(A)1 HILs
Total PAHs	4000	NEPM 2013 - Table 1(A)1 HILs
Organochlorine Pesticides		
DDT + DDE + DDD	3600	NEPM 2013 - Table 1(A)1 HILs
Aldrin + Dieldrin	45	NEPM 2013 - Table 1(A)1 HILs
Chlordane	530	NEPM 2013 - Table 1(A)1 HILs
Endosulfan	2000	NEPM 2013 - Table 1(A)1 HILs
Heptachlor	50	NEPM 2013 - Table 1(A)1 HILs
НСВ	80	NEPM 2013 - Table 1(A)1 HILs
Phenols		
Phenols	240000	NEPM 2013 - Table 1(A)1 HILs
Pentachlorophenol	660	NEPM 2013 - Table 1(A)1 HILs
Cresols	25000	NEPM 2013 - Table 1(A)1 HILs
Polychlorinated Biphenyls (PCBs		
PCBs	7	NEPM 2013 - Table 1(A)1 HILs
Other Pesticides		
Atrazine	2500	NEPM 2013 - Table 1(A)1 HILs
Chlorpyrifos	2000	NEPM 2013 - Table 1(A)1 HILs
Bifenthrin	4500	NEPM 2013 - Table 1(A)1 HILs
Herbicides	5000	
2,4,5-T	5000	NEPM 2013 - Table 1(A)1 HILs
2,4-D	9000	NEPM 2013 - Table 1(A)1 HILs
MCPA	5000	NEPM 2013 - Table 1(A)1 HILs
МСРВ	5000	NEPM 2013 - Table 1(A)1 HILs
Mecoprop	5000	NEPM 2013 - Table 1(A)1 HILs
Picloram	35000	NEPM 2013 - Table 1(A)1 HILs
Other Organics		
PDBE (Br1-Br9)	10	NEPM 2013 - Table 1(A)1 HILs

Note - All values are in mg/kg

13.1.2 Health Screening Levels (HSLs)

The HSLs are applicable to generic land uses such as residential, commercial/industrial or recreational/public open space and different soil types between the ground surface and soils >4 metres below ground level. The HILs have been applied to assess human health risks via the inhalation and direct contact pathways of exposure.

It should be noted that HSL D can be used in lieu of HSL B for buildings that comprise car parks or commercial properties on the ground floor.

For assessing TRH and BTEX contamination at sites used for sensitive land use, such as residential, the NEPM refers to the Health Screening Levels (HSLs) "HSL A and HSLB".

For selection of the health screening criteria an assessment of the in-situ soil profile should be undertaken. The soil profile consisted of predominantly Clay, Sand or Silt.

Benviron &	HSLA& HSLB	HSLA& HSLB	HSLA& HSLB	HSL A & HSL B	HSL D	HSL D	HSL D	HSL D	Soil Saturation	Reference
simple sustainable solutions	0m to <1m	1m to <2m	2m to <4m	4m+	0m to <1m	1m to <2m	2m to <4m	4m+	Concentra tion (Csat)	
SAND										
Toluene	160	220	310	540	NL	NL	NL	NL	560	NEPM 2013 - Table 1(A) 3 HSLs
Ethylbenzene	55	NL	NL	NL	NL	NL	NL	NL	64	NEPM 2013 - Table 1(A) 3 HSLs
Xylenes	40	60	95	170	NL	NL	NL	NL	300	NEPM 2013 - Table 1(A) 3 HSLs
Naphthalene	3	NL	NL	NL	NL	NL	NL	NL	9	NEPM 2013 - Table 1(A) 3 HSLs
Benzene	0.5	0.5	0.5	0.5	3	3	3	3	360	NEPM 2013 - Table 1(A) 3 HSLs
F1	45	70	110	200	260	370	630	NL	950	NEPM 2013 - Table 1(A) 3 HSLs
F2	110	240	440	NL	NL	NL	NL	NL	560	NEPM 2013 - Table 1(A) 3 HSLs
SILT										
Toluene	480	NL	NL	NL	NL	NL	NL	NL	640	NEPM 2013 - Table 1(A) 3 HSLs
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	69	NEPM 2013 - Table 1(A) 3 HSLs
Xylenes	110	310	NL	NL	NL	NL	NL	NL	330	NEPM 2013 - Table 1(A) 3 HSLs
Naphthalene	5	NL	NL	NL	NL	NL	NL	NL	10	NEPM 2013 - Table 1(A) 3 HSLs
Benzene	0.7	1	2	3	4	4	6	10	440	NEPM 2013 - Table 1(A) 3 HSLs
F1	50	90	150	290	250	360	590	NL	910	NEPM 2013 - Table 1(A) 3 HSLs
F2	280	NL	NL	NL	NL	NL	NL	NL	570	NEPM 2013 - Table 1(A) 3 HSLs
CLAY										
Toluene	480	NL	NL	NL	NL	NL	NL	NL	630	NEPM 2013 - Table 1(A) 3 HSLs
Ethylbenzene	NL	NL	NL	NL	NL	NL	NL	NL	68	NEPM 2013 - Table 1(A) 3 HSLs
Xylenes	110	310	NL	NL	NL	NL	NL	NL	330	NEPM 2013 - Table 1(A) 3 HSLs
Naphthalene	5	NL	NL	NL	NL	NL	NL	NL	10	NEPM 2013 - Table 1(A) 3 HSLs
Benzene	0.7	1	2	3	4	6	9	20	430	NEPM 2013 - Table 1(A) 3 HSLs
F1	50	90	150	290	310	480	NL	NL	850	NEPM 2013 - Table 1(A) 3 HSLs
F2	280	NL	NL	NL	NL	NL	NL	NL	560	NEPM 2013 - Table 1(A) 3 HSLs

Table 24: Health Screening Levels (HSL) Criteria

Note - All values are in mg/kg

13.1.3 (EILs) and (ESLs)

Ecological Investigation Levels (EILs) -

The NEPM 2013 states that "Ecological investigation levels (EILs) for the protection of terrestrial ecosystems have been derived for common contaminants in soil based on a species sensitivity distribution (SSD) model developed for Australian conditions. EILs have been derived for As, Cu, CrIII, DDT, naphthalene, Ni, Pb and Zn

Insufficient data was available to derive ACLs for arsenic (As), DDT, lead (Pb) and naphthalene. As a result, the derived EILs are generic to all soils and are presented as total soil contaminant concentrations in Tables 1B (4) and 1B (5) within the NEPM 2013.

For the purposes of EIL derivation, a contaminant incorporated in soil for at least two years is considered to be aged for the purpose of EIL derivation. The majority of contaminated sites are likely to be affected by aged contamination. Fresh contamination is usually associated with current industrial activity and chemical spills".

The following process describes the method for calculation of site specific EILs.

A. EILs for Ni, Cr III, Cu, Zn and Pb aged contamination (>2 years)

Steps 1–4 below describe the process for deriving site-specific EILs for the above elements using Tables 1B (1) – 1B (4), which can be found at the end of the NEPM 2013.

 Measure or analyse the soil properties relevant to the potential contaminant of concern (pH, CEC, organic carbon, clay content). Sufficient samples need to be taken for these determinations to obtain representative values for each soil type in which the contaminant occurs.

- Establish the sample ACL for the appropriate land use and with consideration of the soil-specific pH, clay content or CEC. The ACL for Cu may be determined by pH or CEC and the lower of the determined values should be selected for EIL calculation. Note that the ACL for Pb is taken directly from Table 1(B) 4.
- 3. Calculate the contaminant ABC in soil for the particular contaminant and location from a suitable reference site measurement or other appropriate method.
- 4. Calculate the EIL by summing the ACL and ABC:

$$EIL = ABC + ACL$$

B. EILs for As, DDT and naphthalene

EILs for aged contamination for DDT and naphthalene are not available and the adopted EIL is based on fresh contamination taken directly from Table 1B (5). The EILs for As, DDT and naphthalene are generic i.e. they are not dependent on soil type and are taken directly from Table 1B (5). Only EILs for fresh contamination are available for As, DDT and naphthalene due to the absence of suitable data for aged contaminants.

Ecological Screening Levels (ESLs) -

Ecological screening levels (ESLs) are presented based on a review of Canadian guidance for petroleum hydrocarbons in soil and application of the Australian methodology (Schedule B5b) to derive Tier 1 ESLs for BTEX, benzo(a)pyrene and F1 and F2 (Warne 2010a, 2010b) The Canadian Council of the Ministers of the Environment (CCME) has adopted riskbased TPH standards for human health and ecological aspects for various land uses in the *Canada-wide standard for petroleum hydrocarbons (PHC) in soil* (CCME 2008) (CWS PHC). The standards established soil values including ecologically based criteria for sites affected by TPH contamination for coarse- and fine-grained soil types.

Table 25: Ecological Investigation Levels (EIL) and Ecological Screening Levels (ESL) <u>Criteria</u>

Benviron & group &	Contaminant Age/Soil Texture	National parks and areas of high conservation value	Urban residential and open public spaces	Commercial and industrial	Reference				
	Ecological Investigation Levels (EILs)								
Heavy Metals									
Arsenic	Fresh	20	50	80	NEPM 2013 - Table 1(B) 1-5 EILs				
	Aged	40	100	160	NEPM 2013 - Table 1(B) 1-5 EILs				
Chromium (III)	Fresh	Site Speci	fic Calculation Requi	ired	NEPM 2013 - Table 1(B) 1-5 EILs				
	Aged	010 0000		lioa	NEPM 2013 - Table 1(B) 1-5 EILs				
Copper	Fresh	Site Speci	fic Calculation Requi	ired	NEPM 2013 - Table 1(B) 1-5 EILs				
	Aged		•		NEPM 2013 - Table 1(B) 1-5 EILs				
Lead	Fresh	1 10	270	440	NEPM 2013 - Table 1(B) 1-5 EILs				
	Aged	470	1 100	1800	NEPM 2013 - Table 1(B) 1-5 EILs				
Nickel	Fresh	Site Speci	fic Calculation Requi	ired	NEPM 2013 - Table 1(B) 1-5 EILs				
	Aged	010 0000		lioa	NEPM 2013 - Table 1(B) 1-5 EILs				
Zinc	Fresh	Site Speci	fic Calculation Requi	ired	NEPM 2013 - Table 1(B) 1-5 EILs				
	Aged		no oaroaation rtoqu	lioa	NEPM 2013 - Table 1(B) 1-5 EILs				
Polycyclic Aromatic Hyd		/							
Naphthalene	Fresh	10	170	370	NEPM 2013 - Table 1(B) 1-5 EILs				
	Aged	10	170	370	NEPM 2013 - Table 1(B) 1-5 EILs				
Organochlorine Pesticio			4.00						
DDT	Fresh	3	180	640	NEPM 2013 - Table 1(B) 1-5 EILs				
	Aged	3	180	640	NEPM 2013 - Table 1(B) 1-5 EILs				
		ological Screening Lev	eis (ESLS) and Mar	hagement Limits					
F1 (C ₆ -C ₁₀)	Coarse	405*	4.00*	04.5*	NEPM 2013 - Table 1(B) 6-7 EILs				
	Fine	125*	180*	215*	NEPM 2013 - Table 1(B) 6-7 EILs				
F1 (C ₆ -C ₁₀)	Coarse		700	700	NEPM 2013 - Table 1(B) 6-7 EILs				
(Management Limits)	Fine	-	800	800	NEPM 2013 - Table 1(B) 6-7 EILs				
F2 (>C ₁₀ -C ₁₆)	Coarse				NEPM 2013 - Table 1(B) 6-7 EILs				
	Fine	25*	120*	170*	NEPM 2013 - Table 1(B) 6-7 EILs				
F2 (>C ₁₀ -C ₁₆)	Coarse		1000	1000	NEPM 2013 - Table 1(B) 6-7 EILs				
(Management Limits)	Fine	-	1000	1000	NEPM 2013 - Table 1(B) 6-7 EILs				
F3 (>C ₁₆ -C ₃₄)	Coarse	-	300	1700	NEPM 2013 - Table 1(B) 6-7 EILs				
- (- 16 - 34)	Fine	-	1300	2500	NEPM 2013 - Table 1(B) 6-7 EILs				
F3 (>C ₁₆ -C ₃₄)	Coarse		2500	3500	NEPM 2013 - Table 1(B) 6-7 EILs				
(Management Limits)	Fine		3500	5000	NEPM 2013 - Table 1(B) 6-7 EILs				
		-							
F4 (>C ₃₄ -C ₄₀)	Coarse	-	2800	3300	NEPM 2013 - Table 1(B) 6-7 EILs				
	Fine	-	5600	6600	NEPM 2013 - Table 1(B) 6-7 EILs				
F4 (>C ₃₄ -C ₄₀)	Coarse		10000	10000	NEPM 2013 - Table 1(B) 6-7 EILs				
(Management Limits)	Fine	-	10000	10000	NEPM 2013 - Table 1(B) 6-7 EILs				
Benzene	Coarse	10	50	75	NEPM 2013 - Table 1(B) 6-7 EILs				
	Fine	10	65	95	NEPM 2013 - Table 1(B) 6-7 EILs				
Toluene	Coarse	10	85	135	NEPM 2013 - Table 1(B) 6-7 EILs				
	Fine	65	105	135	NEPM 2013 - Table 1(B) 6-7 EILs				
Ethylbenzene	Coarse	1.5	70	165	NEPM 2013 - Table 1(B) 6-7 EILs				
	Fine	40	125	185	NEPM 2013 - Table 1(B) 6-7 EILs				
Xylenes	Coarse	10	105	180	NEPM 2013 - Table 1(B) 6-7 EILs				
	Fine	1.6	45	95	NEPM 2013 - Table 1(B) 6-7 EILs				
Benzo(a)pyrene	Coarse	0.7	0.7	0.7	NEPM 2013 - Table 1(B) 6-7 EILs				
	Fine	0.7	0.7	0.7	NEPM 2013 - Table 1(B) 6-7 EILs				
Iotes Urban residential/public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Sched ule B7. 2 Aged values are applicable to arsenic contamination present in soil for at least two years. For fresh contamination refer to Schedule B5c.									

Insufficient data was available to calculate aged values for DDT and naphthalene, consequently the values for fresh contamination should be used.

Insufficient data was available to calculate ACLs for As, DDT and naphthalene. The EIL should be taken directly from Table 1B(5).

ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

'-' indicates that insufficient data was available to derive a value.

3

4 5 6

7

8

9

To obtain F1, subtract the sum of BTEX concentrations from C6-C10 fraction and subtract naphthalene from >C10-C16 to obtain F2.

Management limits are applied after consideration of relevant ESLs and HSLs

Separate management limits for BTEX and nap hthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

13.2 Asbestos

Health screening for asbestos in soil, which are based on scenario-specific likely exposure levels, are adopted from the WA DoH guidelines and are referred in Table 7 in Schedule B1. The following health screening levels for asbestos can be seen below:

	Health Screening Levels (w/w)						
Form of Asbestos	Residential A	Residential B	Recreational C	Commercial/Industrial D			
Bonded ACM	0.01%	0.04%	0.02%	0.05%			
FA and AF (Friable Asbestos)	0.001%						
All forms of asbestos	No visible asbestos for surface soil						

Table 26: Health Screening Levels for Asbestos

13.3 Aesthetic Considerations

Schedule B1 in NEPC (2013) requires the consideration of aesthetic issues arising from soils and groundwater within the site. The following assessment criteria were adopted when considering aesthetics:

- no persistently malodourous soils or extracted groundwater;
- no persistent hydrocarbon sheen on surface water;
- no staining or discolouration in soils, taking into consideration the natural state of the soil; and
- no large or frequently occurring anthropogenic materials present (to the extent practicable).

13.4 Groundwater

The NSW DECC has endorsed the use of the Groundwater Investigation Levels (GILs) given in the 1999 NEPM 'Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater' (Amendment 2013) and the water quality trigger levels given in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC & ARMCANZ, 2000). These Guidelines provide criteria for:

• Aquatic ecosystems – both marine and fresh waters

The NEPM advises that 'when assessing groundwater contamination, the GILs are to be applied at the point of extraction and as response levels at the point of use, or where there is a likelihood of an adverse environmental effect at the point of discharge'.

For assessing groundwater quality, it is first necessary to assess the potential uses of groundwater downgradient of the site being assessed.

Potential uses of groundwater downgradient of the site include:

- Discharge to water bodies sustaining aquatic ecosystems particularly Fresh Water.
- Extraction of groundwater by local users.

The threshold concentrations presented in the ANZECC (2000) Fresh and Marine Waters Quality Guidelines are considered applicable for the protection of aquatic ecosystems of the receiving waters. As these guidelines apply to receiving waters, it is generally conservative to apply these to groundwater discharging to receiving waters. It is important to note that these are not threshold values at which an environmental problem is likely to occur if exceeded, rather, if the trigger values are exceeded, then further action is required which may include either further site-specific investigations to assess whether or not there is an actual problem or management / remedial action should be undertaken.

It is considered that *Fresh water trigger* values are applicable for investigating chemical concentrations in groundwater at the site. The nearest watercourse is Trefoil Creek located approximately 450m northwest of the site. It is understood that the NSW EPA policy is that the trigger values for the protection of 95% of aquatic ecosystems should be used as groundwater assessment criteria when considering moderately or highly disturbed receiving environments. The receiving waters for groundwater at the site are considered to be moderately disturbed ecosystems and the ANZECC (2000) 95% protection values are therefore considered appropriate groundwater assessment criteria for the site.

SOIL

The laboratory certificates are presented in **Appendix H** – NATA Accredited Laboratory Certificates.

A summary of the results together with the assessment criteria adopted are provided in **Appendix K** – Summary Tables.

14.1 HEAVY METALS

14.1.1 Heath Investigation Levels

As indicated in Table K1 all the heavy metals were below the respective LOR and/or the Health Investigation Level (HIL) for a residential development, that being the HIL 'B'.

14.1.2 Ecological Investigation Levels

The EILs for Copper, Zinc, Lead, Nickel and Chromium III were derived by adding the Ambient Background Concentration (ABC) to the Added Contaminant Limits (ACL), as per the following formula:

EIL = ABC + ACL

The ABC for the site has been determined by recovering a sample from an appropriate reference point, that being:

- BH9 (0.2-0.3m)
- BH9 (0.6-0.7m)

The soil samples collected from BH7 were analysed for pH, CEC & %CLAY to provide the background parameters for the soil on the site.

As shown in Table K1 all of the locations were below the site derived EILs.

14.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE

14.2.1 Heath Screening Levels & Management Limits

As indicated in Table K1, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), benzene, toluene, ethyl benzene, xylenes and naphthalene concentrations were below the HSL 'A' & HSL 'B' for a Clay/ Sand/Silt soil profile with a source depth of "Om to <1m" and/or "1m to <2m" and/or "2m to <4m" and/or "4m+" with the exception of

 The Naphthalene concentration of 23mg/kg in BH8 (0.3-0.4m) exceeded the HSL A& B(CLAY) criteria of 5mg/kg

As shown in Table K1, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}), F4 (C_{34} - C_{40}), concentrations were below the Management Limits for a fine-grained and or coarse-grained soil texture in a "residential parkland and public open space".

14.2.2 Ecological Screening Levels

As indicated in Table K1, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}), F4 (C_{34} - C_{40}), benzene, toluene, ethyl benzene, xylenes and benzo(a)pyrene concentrations were below the ESL for a fine-grained and/or coarse-grained soil texture in an "urban residential and public open space" with the exception of the following:

- A F2(C10- C16) concentration of 240mg/kg in BH8 (0.3-0.4m) exceeded the ESL criteria of 120mg/kg.
- A F3(C16- C34) concentration of 2400mg/kg in BH8 (0.3-0.4m) exceeded the ESL criteria of 1300mg/kg.
- A F3(C16- C34) concentration of 1900mg/kg in BH15 (0.2-0.3m) exceeded the ESL criteria of 1300mg/kg.
- The benzo(a)pyrene concentrations of 2.3mg/kg in BH4 (2.0-2.1m), 8.1mg/kg in BH8 (0.3-0.4m),3.6mg/kg in BH10 (0.2-0.3m) & 3.2mg/kg in BH15(0.2-0.3m) exceeded the ESL criteria of 0.7mg/kg.

14.3 PAH, OCP & PCB

14.3.1 Heath Investigation Levels

As indicated in Table K1, the concentrations of the benzo(a)pyrene (as TEQ), Total PAH, OCP & PCB were below the Health Investigation Level (HIL) for a residential development, that being the HIL 'B' and/or the limit of reporting (LOR) with the exception of the following:

The Bap TEQ concentrations of 12mg/kg in BH8 (0.3-0.4m), 5mg/kg in BH10 (0.2-0.3m) & 4.4mg/kg in BH15(0.2-0.3m) exceeded the HIL criteria of 4mg/kg.

14.3.2 EILs & ESLs

As indicated in Table K1, the concentrations of arsenic, naphthalene and DDT were below the EILs & ESLs for urban residential and public open space.

14.4 Asbestos

As shown in Table K1, the soil sample tested for Asbestos was below the %w/w asbestos for FA & AF adjusted assessment criteria & below the %w/w asbestos ACM – Residential use, childcare centres, preschools etc.

GROUNDWATER

The laboratory certificates are presented in **Appendix H** – NATA Accredited Laboratory Certificates.

A summary of the results together with the assessment criteria adopted are provided in **Appendix K** – Summary Tables.

14.5 HEAVY METALS

As indicated in Table K2, dissolved copper, nickel and zinc were detected at concentrations above or equal to the respective groundwater investigation level for the

95% protection of freshwater aquatic ecosystems in GW1 and/or associated field duplicates.

The remaining metals concentrations were either below the laboratory limits of reporting (LOR) or their respective assessment criteria.

14.6 TRH & BTEXN

As shown In Table K2, the BTEXN concentrations were either less than the laboratory limit of reporting (LOR) and/or below the assessment criteria.

As indicated in Table K2, the TRH F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), benzene, toluene, ethyl benzene, xylenes and naphthalene concentrations were below the HSL 'A' & HSL 'B' for a Sand profile with a source depth of "4m to <8m".

14.7 PAH

As indicated in Table K2, the PAH concentrations were either less than the laboratory limit of reporting (LOR) and/or below the assessment criteria.

14.8 VOCs in Groundwater

As indicated in Table K3, the VOC concentrations were either less than the laboratory limit of reporting (LOR) and/or below the adopted assessment criteria.

Refer to **Appendix H** – NATA Accredited Laboratory Certificates.

15.0 UPDATED CONCEPTUAL SITE MODEL (CSM)

Chemical of Concern:

Soil contaminations are found in a few borehole locations (designated BH4, BH8, BH10 & BH15) with the contaminants of concern being benzo(a)pyrene, TRH F2(C10-C16), TRH F3(C16-C34), Naphthalene& B(a)p TEQ .

Levels of dissolved heavy metals were detected above groundwater investigation levels. However, these excursions were considered to be background levels and therefore of limited concerns.

Potential for Migration

Contaminants generally migrate from site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The redevelopment works at site will created minimal unsealed ground surfaces and therefore, there is a low risk for migration of contaminants via wind-blown dust. Likewise, rainfall infiltration at the site is not expected due to the proposed sealed surfaces across the site based on the proposed development. The removal of the contaminated soil, will reduced the risk for any ongoing / future migration of contaminants.

Potential Exposure Pathways (Transport of Chemicals of Concern)

Potential exposure pathways include:

- Dermal;
- Ingestion; and
- Inhalation.

The potential for ingestion of soil is considered a potential exposure pathway based on the proposed at grade development. There is no risk for ingestion of contaminants via groundwater removed from monitoring wells as no monitoring wells will remain on the site post remediation works.

Based on the health screening limits (HSLs) for both soil and groundwater observed during the DSI; dermal and inhalation exposure pathways by potentially contaminated soil, groundwater and vapour is considered a low to medium risk.

Receptors

<u>Human:</u>

The site groundwater is not currently used for or planned to be used for drinking water as town water is provided by Sydney Water. The most likely human receptor(s) would be persons exposed to groundwater extracted from a bore and used for non-domestic purposes such as for stock watering, recreation such as to fill household pools and water gardens, including watering of fruit and vegetables in private gardens.

The nearest watercourse is Trefoil Creek located approximately 450m northwest of the site.

Ecological

The ecological receptors would be surface water and benthic organisms in Trefoil Creek. This assumes that the any contaminations can be transported offsite in groundwater via interconnected fractures in the shale and/or sandstone to Amaroo Gully.

Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
Benzo(a)pyrene impacts at BH4	Site users or the general	Dermal contact, inhalation or ingestion of	Yes (Current)	Medium	Direct contact with impacted soils is available
	public	exposed impacted soils	No (Future)	Negligible	Contaminated soils are likely to be removed during basement excavation works.
	The aquatic ecosystems at Trefoil Creek	Migration of impacted groundwater and surface	Yes (Current)	High	Impacted fill soil contamination could migrate off site with surface water run-off.
			No (Future)	Negligible	If present, contaminated groundwater is likely to be remediated and any remaining residual contamination would likely be at negligible concentrations.
	Underlying Leaching and Aquifer migration of contaminants through	Yes (Current)	Medium	Groundwater infiltration is likely to be higher within sandy or weathered bedrock zones.	
		groundwater infiltration	No (Future)	Negligible	Contaminated soils are likely to be removed during basement excavation works.

Table 27: Updated CSM Soil

Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
PAH, TRH & BTEX impacts	Site users or the general public	Dermal contact, inhalation or ingestion of exposed impacted soils	Yes (Current)	Medium	Direct contact with impacted soils is available
at BH8			No (Future)	Negligible	If present, contaminated soil is likely to be remediated and any remaining residual contamination would likely be at negligible concentrations.
	The aquatic ecosystems at Trefoil Creek	Migration of impacted groundwater and surface water run-	Yes (Current)	High	Impacted fill soil contamination could migrate off site with surface water run-off.
		Leaching and migration of contaminants through	No (Future)	Negligible	If present, contaminated groundwater is likely to be remediated and any remaining residual contamination would likely be at negligible concentrations.
	Underlying Aquifer		Yes Current)	Medium	Groundwater infiltration is likely to be higher within sandy or weathered bedrock zones.
		groundwater infiltration	No (Future)	Negligible	If present, contaminated soil is likely to be remediated and any remaining residual contamination would likely be at negligible concentrations.

Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
PAH impacts at BH10	Site users or the general public	Dermal contact, inhalation or ingestion of	Yes (Current)	Medium	Direct contact with impacted soils is available
		exposed impacted soils	No (Future)	Negligible	If present, contaminated soil is likely to be remediated and any remaining residual contamination would likely

Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
					be at negligible concentrations.
	The aquatic ecosystems at Amaroo Gully / Blackbutt	Migration of impacted groundwater and surface water run-	Yes (Current)	High	Impacted fill soil contamination could migrate off site with surface water run-off.
	Creek	off	No (Future)	Negligible	If present, contaminated groundwater is likely to be remediated and any remaining residual contamination would likely be at negligible concentrations.
	Underlying Leaching and Aquifer migration of contaminants through	migration of	Yes Current)	Medium	Groundwater infiltration is likely to be higher within sandy or weathered bedrock zones.
		groundwater infiltration	No (Future)	Negligible	If present, contaminated soil is likely to be remediated and any remaining residual contamination would likely be at negligible concentrations.

Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
PAH & TRH impacts	Site users or the general public	Dermal contact, inhalation or ingestion of	Yes (Current)	Medium	Direct contact with impacted soils is available
at BH15		exposed impacted soils	No (Future)	Negligible	If present, contaminated soil is likely to be remediated and any remaining residual contamination would likely be at negligible concentrations.
	The aquaticMigration ofecosystems atimpactedAmaroo Gully /groundwater andBlackbuttsurface water run-		Yes (Current)	High	Impacted fill soil contamination could migrate off site with surface water run-off.
	Creek	off	No (Future)	Negligible	If present, contaminated groundwater is likely to be remediated and any

Potential Sources	Potential Receptor	Potential Exposure Pathways	Complete Linkages	Risk	Justification
					remaining residual contamination would likely be at negligible concentrations.
	Underlying Aquifer	Leaching and migration of contaminants through	Yes Current)	Medium	Groundwater infiltration is likely to be higher within sandy or weathered bedrock zones.
		groundwater infiltration	No (Future)	Negligible	If present, contaminated soil is likely to be remediated and any remaining residual contamination would likely be at negligible concentrations.

Data Gaps

The following Data gaps were identified for the site:

- Additional sampling in areas which were inaccessible in order to satisfy the NEPM 2013 and sampling design guidelines.
- Delineation of current hotspots identified within the site.

16.0 DISCUSSION

16.1 SOILS

The depth of the impacted soil at borehole BH4 is within 2.5m of the site surfaces. The soil results exceeded the ESL guidelines for benzo(a)pyrene, however the location is in the proposed basement area, therefore remediation of these locations is not required as the soil will be removed offsite with basement excavation earthworks.

The site has some areas of potential concern, those being historical land uses (commercial/ industrial), surrounding land use (commercial/ industrial), possible areas of imported fill of unknown origin, degradation of the building materials and leakages from vehicles on site.

The following borehole locations; BH8, BH10& BH15, require remediation in order to render the site suitable for the proposed development.

Information pertaining to the above mentioned locations is included below:

- The TRH F2(C10-C16), F3(C16-C34), Naphthalene, benzo(a)pyrene & Bap TEQ concentrations within BH8 is located in the fill layer to a depth of 0.4m BGL.
- The benzo(a)pyrene & Bap TEQ concentrations within BH10 is located in the fill layer to a depth of 0.3m BGL.
- The TRH F3(C16-C34), benzo(a)pyrene & Bap TEQ concentration within BH15 is located in the fill layer to a depth of 0.3m BGL.

Any soil requiring removal from the site, as part of future site works, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).

Reference should be made to Figure 3 & 4 in for a copy of the locations on the site

16.2 GROUNDWATER QUALITY

The groundwater monitoring undertaken by Foundation Earth Sciences has no concerns with TRH, BTEXN, PAH & VOC in relation to the adopted guidelines.

Levels of dissolved heavy metals were detected above groundwater investigation levels. However, these excursions were considered to be background levels and therefore of limited concerns based on the following reason;

 Foundation Earth Sciences has extensive contaminated land experience in the Sydney Basin, which has indicated a common pattern of groundwater to be impacted by heavy metals. This is likely to be associated with progressive development and an increase in population growth and/or density.

16.3 DUTY TO REPORT

Under Section 60 of the Contaminated Land Management Act 1997, the owner of the land is required to notify contamination in circumstances as indicated in the NSW EPA (2015) *Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997*.

Sites that are significantly impacted by soil, groundwater and ground gases are likely to require notification to the NSW EPA under section 60 of the CLM Act. A decision process for use by site owners or responsible persons considering reporting contamination under section 60 is provided in Appendix 1 (Figure 1) of the aforementioned guidelines.

17.0 CONCLUSION AND RECOMMENDATION

Based on the results of the investigation, the site can be considered *suitable* for the proposed development, subject to the following;

- It is considered that the site could be deemed suitable for the proposed development subject to the implementation of a Remediation Action Plan (RAP) to manage the abovementioned environmental concerns including further Investigation to assess the inaccessible areas and to satisfy the minimum requirements by NSW EPA Sampling Design Guidelines.
- Any soil requiring removal from the site, as part of future site works, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).

If during any potential site works, significant odours and / or evidence of gross contamination (including asbestos) not previously detected are encountered, or any other significant unexpected occurrence, site works should cease in that area, at least temporarily, and the environmental consultant should be notified immediately to set up a response to this unexpected occurrence.

Thank you for the opportunity of undertaking this work. We would be pleased to provide further information on any aspects of this report.

18.0 LIMITATIONS

To the best of our knowledge information contained in this report is accurate at the date of issue, however, subsurface conditions, including groundwater levels and contaminant concentrations, can change in a limited time. This should be borne in mind if the report is used after a protracted delay.

There is always some disparity in subsurface conditions across a site that cannot be fully defined by investigation. Hence it is unlikely that measurements and values obtained from sampling and testing during environmental works carried out at a site will characterise the extremes of conditions that exist within the site.

There is no investigation that is thorough enough to preclude the presence of material that presently or in the future, may be considered hazardous at the site. Since regulatory criteria are constantly changing, concentrations of contaminants presently considered low may, in the future, fall under different regulatory standards that require remediation.

Opinions expressed herein are judgements and are based on our understanding and interpretation of current regulatory standards and should not be construed as legal opinions.

REFERENCES

- Australian and New Zealand Environment and Conservation Council (ANZECC) (1996)
 Drinking Water Guidelines.
- Australian and New Zealand Environment and Conservation Council (ANZECC) (2000)
 Guidelines for Fresh and Marine Waters.
- Department of Urban Affairs and Planning EPA (1998) "Managing Land Contamination Planning Guidelines SEPP 55 Remediation of Land".
- National Environmental Protection Council (NEPC) (1999) National Environmental Protection (Assessment of Site Contamination) Measure. Amendment 2013
- National Health and Medical Research Council (NHMRC) & National Resource Management Ministerial Council (NRMMC) "National Water Quality Management Strategy, Australian Drinking Water Guidelines" (2011)
- NSW EPA (2014) "Technical Note: Investigation of Service Station Sites".
- NSW EPA (2009) "Guidelines on Significant Risk of Harm from contaminated land and the duty to report".
- NSW OEH "Guidelines for Consultants Reporting on Contaminated Sites" (2011).
 NSW Environment Protection Authority, Sydney.
- NSW DEC, "Guidelines for the Assessment and Management of Groundwater Contamination" (March 2007).
- NSW DEC "Guidelines for the NSW Site Auditor Scheme" (2006, 2nd edition). NSW Environment Protection Authority, Sydney.
- NSW EPA (2014) "Waste Classification Guidelines, Part 1: Classifying Waste";
- NSW EPA "Guidelines for Consultants Reporting on Contaminated Sites" (2011).
 NSW Environment Protection Authority, Sydney.
- NSW EPA (2014) "Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997";

- NSW EPA "Sampling Design Guidelines" (1995). NSW Environment Protection Authority, Sydney.
- US EPA "Regional Screening Level (RSL) Summary Tables" (2016). United States Environment Protection Authority.
- SLR Consulting Pty Ltd (2016), Stage 1 Preliminary Site Investigation, 844-846 Pacific Highway, Gordon NSW, Report ID: 610.16831-R01, dated 14th October 2016.

FIGURE 1: SITE LOCATION

FIGURE 2: SITE FEATURES

Feature No 1 2 3 4 5 6	Details Car park Vegetations Loading Dock/ Warehouse Gym - Anytime Fitness Office Driveway			Do 2 4 4 1 4 1 4 1 4 1 4 1 4 4 1 4 4 1 4 4 1 4 4 4 1 4 4 4 1 4 4 4 1 4 4 4 1 4 4 4 4 1 4	PP 215329 FREMORIS FOREST NOAD EAST 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	N
Кеу				drawn RL	Site Features Plan	
Site Location		((Benviron & group	FIGURE 2	Reference: Six Map Scale 1:1,128	
		×	simple sustainable solutions	∠ Job #	5 Skyline Place, Frenchs Forest NSW	

FIGURE 3: BOREHOLE LOCATIONS & EXCEEDANCE PLAN

		A N
GWD1	GWSS1	
3 17	16	
1 30	30	
4		
eedance Plan		

APPENDIX A: DBYD PLANS

WARNING: This document is confidential and may also be privileged. Confidentiality nor privilege is not waived or destroyed by virtue of it being transmitted to an incorrect addressee. Unauthorised use of the contents is therefore strictly prohibited. Any information contained in this document that has been extracted from our records is believed to be accurate, but no responsibility is assumed for any error or omission. Optus Plans and information supplied are valid for 30 days from the date of issue. If this timeline has elapsed please raise a new enquiry.

Sequence Number: 81486529

For all Optus DBYD plan enquiries – Email: <u>Fibre.Locations@optus.net.au</u> For urgent onsite assistance contact 1800 505 777 Optus Limited ACN 052 833 208

	Mn	0m 10m 20m 30m 40m 50m 60m
T elstra	For all Telstra DBYD plan enquiries -	Sequence Number: 81486528
	email - Telstra.Plans@team.telstra.com For urgent onsite contact only - ph 1800 653 935 (bus hrs)	
TELSTRA C	ORPORATION LIMITED A.C.N. 051 775 556	in plot area. Please read the Duty of Care and
Generated On 21/03/2019 16:02:05		contact Telstra Plan Services should you require any assistance.

The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

	DIST (AA) OC 1X3371 M01 12/2030 (AA)	
T elstra	For all Telstra DBYD plan enquiries - email - Telstra.Plans@team.telstra.com	Sequence Number: 81486528
	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present in plot area. Please read the Duty of Care and
TELSTRA CORPORATION LIMITED A.C.N. 051 775 556		contact Telstra Plan Services should you require any assistance.
Generated On 21/03/2019 16:02:08		

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

Response Cover Letter

Date: 21/03/2019

PIPE Networks

Level 17, 127 Creek St Brisbane QLD 4000 Phone: +61 732339895 Fax: +61 732339880

To: Mr ray Liu - (Benvrion Group - Mr ray Liu Unit 3 112 Fairfield Street Fairfield East NSW 2165

- Customer ID: 1643055

Email: ray@benvirongroup.com.au Phone: 0466 385 221 Fax: Not Supplied Mobile: 0430712310

Dear Mr ray Liu

The following is our response to your Dial Before You Dig enquiry.

Assets Affected: PIPE Networks ASSETS ARE NOT AFFECTED BY YOUR ENQUIRY

Sequence Number:	81486526
Location:	5 Skyline Place Frenchs Forest NSW 2086
Commencement Date:	25/03/2019

Please read over the attached documents for more information about your enquiry.

DISCLAIMER: No responsibility/liability is taken by PIPE Networks for any inaccuracy, error, omission or action based on the information supplied in this correspondence.

Note: If the works fall in an area that adjacent to PIPE Networks infrastructure, a pre-inspection is required prior to commencement of works. Contact PIPE Networks to arrange an inspection time. **NO WORKS TO COMMENCE PRIOR TO INSPECTION.**

Attention: Mr ray Liu Fax: Not Supplied DBYD Enquiry Number: 81486526

Date: < Enquiry date >

Location: 5 Skyline Place Frenchs Forest NSW 2086

DBYD ENQUIRY RETURN:

PIPE Networks **DOES NOT** own or operate telecommunications network infrastructure within the request area detailed above.

Should the scope of your work or the area of your work change, please contact as below to receive further advice.

Due to continued network expansion, the network information can only be considered valid and accurate for 28 days from issue.

PIPE Networks will seek compensation for any damage to its network through negligence or ignorance of duty of care.

Should you require any further information, please contact as below:

PIPE NETWORKS Ph (07) 3233 9895 Email: <u>dbyd@pipenetworks.com</u> (for information specifically on this job only)

Indicative Plans

Issue Date:	21/03/2019	DIAL BEFORE
Location:	5 Skyline Place , Frenchs Forest , NSW , 2086	YOU DIG www.1100.com.au

1	

•	LEGEND nbn ()	
34	Parcel and the location	
(5)	Pit with size "5"	
25	Power Pit with size "2E". Valid PPT Size: e.g. 2E, 5E, 6E, 8E, 9E, E, null.	
	Manhole "M"	
2 PO-T-25.0m P40-20.0m 9	Cable count of trench is 2. One "Other size" PVC conduit (PO) owned by Telstra (-T-), between pits of sizes, "5" and "9" are 25.0m apart. One 40mm PVC conduit (P40) owned by NBN, between pits of sizes, "5" and "9" are 20.0m apart.	
	2 Direct buried cables between pits of sizes ,"5" and "9" are 10.0m apart.	
-0	Trench containing any INSERVICE (Copper/RF/Fibre) cables.	
-0	Trench containing only DESIGNED/CONSTRUCTED (Copper/RF/Fibre/Power) cables.	
-0	Trench containing any INSERVICE (Power) cables.	
BROADWAY ST	Road and the street name "Broadway ST"	
Scale	0 20 40 60 Meters 1:2000 1 cm equals 20 m	

Emergency Contacts

You must immediately report any damage to **nbn™** network that you are/become aware of. Notification may be by telephone - 1800 626 329.

Job No 15973507

Caller Details

Contact:	Mr ray Liu
Company:	Benvrion Group
Address:	Unit 3 112 Fairfield Stree
	Fairfield East NSW 2165

Liu on Group 112 Fairfield Street

Caller Id: 1643055 Phone: 0466 385 221 Mobile: 0430712310 Fax: Email:

Not Supplied

ray@benvirongroup.com.au

Dig Site and Enguiry Details

WARNING: The map below only displays the location of the proposed dig site and does not display any asset owners' pipe or cables. The area highlighted has been used only to identify the participating asset owners, who will send information to you directly.

Your Responsibilities and Duty of Care

• If plans are not received within 2 working days, contact the asset owners directly & quote their Sequence No.

• ALWAYS perform an onsite inspection for the presence of assets. Should you require an onsite location, contact the asset owners directly. Please remember, plans do not detail the exact location of assets.

• Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.

- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using this service, you agree to Privacy Policy and the terms and disclaimers set out at www.1100.com.au
- For more information on safe excavation practices, visit www.1100.com.au

Asset Owner Details

The assets owners listed below have been requested to contact you with information about their asset locations within 2 working days.

Additional time should be allowed for information issued by post. It is your responsibility to identify the presence of any underground assets in and around your proposed dig site. Please be aware, that not all asset owners are registered with the Dial Before You Dig service, so it is your **responsibility** to identify and contact any asset owners not listed here directly. ****** Asset owners highlighted by asterisks ****** require that you visit their offices to collect plans.

Asset owners highlighted with a hash require that you call them to discuss your enquiry or to obtain plans.

Seq. No.	Authority Name	Phone	Status
81486527	Ausgrid	0249510899	NOTIFIED
81486530	Jemena Gas North	1300880906	NOTIFIED
81486532	NBN Co, NswAct	1800626762	NOTIFIED
81486529	Optus and/or Uecomm, Nsw	1800505777	NOTIFIED
81486526	PIPE Networks, Nsw	1800201100	NOTIFIED
81486531	Sydney Water	132092	NOTIFIED
81486528	Telstra NSW, Central	1800653935	NOTIFIED

END OF UTILITIES LIST

APPENDIX B: NSW EPA RECORDS

Number	Name	Location	
		13 RODBOROUGH ROAD, FRENCHS FOREST,	
7551	3M AUSTRALIA PTY LTD	NSW 2086	
		13 RODBOROUGH ROAD, FRENCHS FOREST,	
1019148 3M AUSTRALIA PTY LTD		NSW 2086	
		13 RODBOROUGH ROAD, FRENCHS FOREST,	
1044336	3M AUSTRALIA PTY LTD	NSW 2086	
	ALCON LABORATORIES (AUSTRALIA) PTY	10 & 11/25 FRENCHS FOREST ROAD EAST,	
6050	LTD	FRENCHS FOREST, NSW 2086	
	ALCON LABORATORIES (AUSTRALIA) PTY	10 & 11/25 FRENCHS FOREST ROAD EAST,	
1048452	LTD	FRENCHS FOREST, NSW 2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1532783	Bei Qin Bo	2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1542760	COMMUNITY ASSOCIATION DP270902	2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1532863	David Xing	2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
3085778172	David Xing	2086	
1542562	David Xing	FRENCHS FOREST, NSW 2086	
		Northern Beaches Hospital Connectivity	
	FERROVIAL AGROMAN (AUSTRALIA) PTY.	and Network Enhancements Project,	
-1	LTD.	FRENCHS FOREST, NSW 2086	
		Northern Beaches Hospital Connectivity	
	FERROVIAL AGROMAN (AUSTRALIA) PTY.	and Network Enhancements Project,	
20673	LTD.	FRENCHS FOREST, NSW 2086	
		Northern Beaches Hospital Connectivity	
	FERROVIAL AGROMAN (AUSTRALIA) PTY.	and Network Enhancements Project,	
1538344	LTD.	FRENCHS FOREST, NSW 2086	
		Northern Beaches Hospital Connectivity	
	FERROVIAL AGROMAN (AUSTRALIA) PTY.	and Network Enhancements Project,	
3085780134	LTD.	FRENCHS FOREST, NSW 2086	
		Northern Beaches Hospital Connectivity	
	FERROVIAL AGROMAN (AUSTRALIA) PTY.	and Network Enhancements Project,	
1548318	LTD.	FRENCHS FOREST, NSW 2086	
		Northern Beaches Hospital Connectivity	
	FERROVIAL AGROMAN (AUSTRALIA) PTY.	and Network Enhancements Project,	
1552903	LTD.	FRENCHS FOREST, NSW 2086	
		Northern Beaches Hospital Connectivity	
	FERROVIAL AGROMAN (AUSTRALIA) PTY.	and Network Enhancements Project,	
1560778	LTD.	FRENCHS FOREST, NSW 2086	
		Northern Beaches Hospital Connectivity	
	FERROVIAL AGROMAN (AUSTRALIA) PTY.	and Network Enhancements Project,	
1562465	LTD.	FRENCHS FOREST, NSW 2086	

Iospital Connectivity cements Project, ISW 2086 Iospital Connectivity cements Project, ISW 2086
ISW 2086 Iospital Connectivity cements Project, ISW 2086
lospital Connectivity cements Project, ISW 2086
cements Project, ISW 2086
ISW 2086
lospital Connectivity
cements Project,
ISW 2086
lospital Connectivity
cements Project,
ISW 2086
lospital Connectivity
cements Project,
ISW 2086
ENCHS FOREST, NSW
ISW 2086
ENCHS FOREST, NSW
ENCHS FOREST, NSW
ISW 2086
ENCHS FOREST, NSW
ENCHS FOREST, NSW
ENCHS FOREST, NSW
ISW 2086
ENCHS FOREST, NSW
ENCHS FOREST, NSW
ENCHS FOREST, NSW

		Lot 1 DP270902, FRENCHS FOREST, NSW	
3085778273	Shuguang Xu	2086	
		15 Rodborough Road, FRENCHS FOREST,	
12114	SILTECH PTY LTD	NSW 2086	
		15 Rodborough Road, FRENCHS FOREST,	
1093326	SILTECH PTY LTD	NSW 2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1533165	Wei Ru Niu	2086	
		Lot 15 DP 270902, FRENCHS FOREST, NSW	
1543471	Xiaomin Lian	2086	
1542551	Xiu Cheng Zhang	FRENCHS FOREST, NSW 2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1533168	Xui Cheng Zhang	2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
3085778237	Xui Cheng Zhang	2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1533169	Yi Ling Jin	2086	
		2 Bayview Close, FRENCHS FOREST, NSW	
1541655	Yi Ling Jin	2086	
1542561	Yinglu Wang	FRENCHS FOREST, NSW 2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1533173	Yue De Ji	2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
3085778282	Yue De Ji	2086	
1542546	Yue De Ji	FRENCHS FOREST, NSW 2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1533174	Zheng Cai Ge	2086	
		Lot 1 DP270902, FRENCHS FOREST, NSW	
1542540	Zheng Cai Ge	2086	
1542541	Zi Lin Liu	FRENCHS FOREST, NSW 2086	

Туре	Status	Issued date
POEO licence	No longer in force	24-May-00
s.58 Licence Variation	Issued	25-Jul-02
s.58 Licence Variation	Issued	9-Feb-05
	100000	510000
POEO licence	Surrendered	3-Apr-00
s.58 Licence Variation	Issued	3-Jun-05
s.91 Clean Up Notice	Issued	12-Oct-15
	135424	12 000 15
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	12-Oct-15
Denalty Matica	laguad	17 Dec 15
Penalty Notice s.91 Clean Up Notice	Issued Issued	17-Dec-15 7-Sep-16
S.51 Clean Op Notice	155020	7-3ep-10
Penalty Notice	Withdrawn	
POEO licence	Issued	19-Oct-15
s.58 Licence Variation	Issued	24-Feb-16
Penalty Notice	Issued	2-Sep-16
s.96 Prevention Notice	Issued	17-Jan-17
		1/ Jun 1/
s.58 Licence Variation	Issued	7-Jun-17
c EQ Liconco Voriation	liceuod	20 100 10
s.58 Licence Variation	Issued	30-Jan-18
s.58 Licence Variation	Issued	2-Mar-18

s.58 Licence Variation	Issued	19-Jun-18
s.58 Licence Variation	Issued	3-Aug-18
s.58 Licence Variation	Issued	9-Aug-18
s.58 Licence Variation	Issued	19-Oct-18
Penalty Notice	Issued	23-Jan-19
s.91 Clean Up Notice	Issued	12-Oct-15
Penalty Notice	Issued	17-Dec-15
s.91 Clean Up Notice	Issued	12-Oct-15
Penalty Notice	Issued	17-Dec-15
s.91 Clean Up Notice	Issued	12-Oct-15
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	12-Oct-15
Penalty Notice	Issued	17-Dec-15
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	12-Oct-15
Penalty Notice	Withdrawn	
s.91 Clean Up Notice	Issued	12-Oct-15
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	12-Oct-15
Penalty Notice	Issued	17-Dec-15
s.91 Clean Up Notice	Issued	12-Oct-15

Penalty Notice	Issued	17-Dec-15
POEO licence	Surrendered	13-Oct-05
s.58 Licence Variation	Issued	24-Nov-08
s.91 Clean Up Notice	Issued	12-Oct-15
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	12-Oct-15
Penalty Notice	Issued	17-Dec-15
s.91 Clean Up Notice	Issued	12-Oct-15
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	12-Oct-15
Penalty Notice	Issued	17-Dec-15
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	12-Oct-15
s.91 Clean Up Notice	Issued	7-Sep-16
s.91 Clean Up Notice	Issued	7-Sep-16

APPENDIX C: SITE PHOTOGRAPHS

SITE PHOTOGRAPHS

Client:	Platino Properties Pty Ltd
Project:	Limited DSI
Site Location:	5 Skyline Place, Frenchs Forest NSW
Job No.:	E1100-2 Frenchs Forest

Photo 1

View of the garden bed area/ northern boundary

Looking east Inspected 25.03.2019

Photo 3

View of drilling at the fron of warehouse looking south Inspected 25.03.2019

Photo 5

View of drill BH9/GW2 Looking northwest Inspected 26.03.2019

View of drilling at the car park Looking west Inspected 25.03.2019

Photo 4

View of the electrical transformer at the north noundary looking south Inspected 26.03.2019

Photo 6

View of drilling at the front of warehouse looking southheast Inspected 26.03.2019

APPENDIX D: DPI (OFFICE OF WATER) DATABASE RECORDS

WaterNSW Work Summary

GW020067

Licence:		Licence Status	:		
		Authorised Purpose(s) Intended Purpose(s)		L	
Work Type:	Bore open thru rock				
Work Status:					
Construct.Method:	Cable Tool				
Owner Type:	Federal Govt				
Commenced Date: Completion Date:	01/10/1962	Final Depth Drilled Depth			
Contractor Name:	(None)				
Driller:					
Assistant Driller:					
Property: GWMA: GW Zone:		Standing Water Level (m) Salinity Description Yield (L/s)			
Site Details					
Site Chosen By:					
		County Form A: CUMBERL Licensed:	Paris AND MAN	sh ILY COVE	Cadastre 52
Region: 10	- Sydney South Coast	CMA Map: 9130-3N			
River Basin: 213 RIV	- SYDNEY COAST - GEORGES	Grid Zone:		Scale:	
Area/District:	EK				
Elevation: 0.00 Elevation Source: (Un	0 m (A.H.D.) known)	Northing: 6264015.0 Easting: 336964.00			33°45'05.1"S 151°14'23.2"E
GS Map: -		MGA Zone: 56		Coordinate Source:	GD.,PR. MAP
Construction					

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1	1	Casing	Pressure Cemented Casing	0.00	1.80				
1	1	Casing		0.00	64.60	152			
1	1	Opening	Perforations	7.30	8.80	152		1	
1	1	Opening	Perforations	57.90	57.90	152		2	

Water Bearing Zones

From Thickness WBZ Type То

Duration Salinity D.D.L. Yield Hole

https://realtimedata.waternsw.com.au/wgen/users/74fb0573490641c38fdc174e242366fc/gw020067.agagpf_org.wsr.htm?1554778456904&1554778458178

S.W.L.

(m)	(m)	(m)		(m)	(m)	· · ·	Depth (m)	(hr)	(mg/L)
93.50	97.40	3.90	Consolidated						

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)		-	
0.00	0.30		Topsoil	Topsoil	
0.30	1.52	1.22	Clay Red Sandstone	Clay	
1.52	5.48	3.96	Pipe Clay White	Clay	
5.48	6.40	0.92	Clay Grey	Clay	
6.40	7.62		Clay Yellow	Clay	
7.62	7.92		Driller	(Unknown)	
7.92	8.22		Clay Grey	Clay	
8.22	9.14		Driller	(Unknown)	
9.14	20.11		Sandstone	Sandstone	
20.11	21.64	1.53	Driller	(Unknown)	
21.64	33.22	11.58	Sandstone	Sandstone	
33.22	34.44	1.22	Clay White	Clay	
34.44	38.70		Sandstone	Sandstone	
38.70	39.31	0.61	Clay White	Clay	
39.31	59.74		Sandstone	Sandstone	
59.74	60.96		Shale	Shale	
60.96			Sandstone Clay Seams	Sandstone	
62.48	73.15	10.67	Clay White Grey Seams Sandstone	Clay	
73.15	88.39	15.24	Sandstone	Sandstone	
88.39	89.61		Shale	Shale	
89.61	93.26	3.65	Sandstone	Sandstone	
93.26			Clay White	Clay	
	101.80		Sandstone Water Supply	Sandstone	
	102.71		Shale Clay	Shale	
102.71	137.16	34.45	Sandstone	Sandstone	

Remarks

19/02/1975: SITED RAAF BASE BROOKVALE 19/02/1975: RECHARGE TEST CAPACITY 0.177 L/S

*** End of GW020067 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

WaterNSW Work Summary

GW020065

Licence:		Lice	Licence Status:					
		Authorised Intended	Purpose(s): Purpose(s): WASTE DISI	POSAL				
Work Type:	Bore open thru rock							
Work Status:								
Construct.Method:	Cable Tool							
Owner Type:	Federal Govt							
Commenced Date: Completion Date:	01/05/1962		Final Depth: 114.90 m illed Depth: 114.90 m					
Contractor Name:	(None)							
Driller:								
Assistant Driller:								
Property: GWMA: GW Zone:		Standing Wate Salinity I	er Level (m): Description: Yield (L/s):					
Site Details								
Site Chosen By:								
		Form A: Licensed:	County CUMBERLAND	Parish MANLY COVE	Cadastre 52			
Region: 10 -	- Sydney South Coast	CMA Map:	9130-3N					
	- SYDNEY COAST - GEORGES	Grid Zone:		Scale:				
RIV Area/District:	ER							
Elevation: 0.00 Elevation Source: (Un	0 m (A.H.D.) known)		6264072.000 336967.000		33°45'03.2"S 151°14'23.3"E			
GS Map: -		MGA Zone:	56	Coordinate Source:	gd.,pr. Map			
• • •								

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1	1	Casing	Corrugated Galvanised Iron	0.00	12.10	152			

Water Bearing Zones

From (m)	To (m)	Thickness (m)	<i></i>	S.W.L. (m)		Yield (L/s)	Hole Depth (m)		Salinity (mg/L)				
85.30	110.90	25.60	Consolidated										

Drillers Log

From	То		Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	0.30	0.30	Topsoil	Topsoil	
0.30	4.87	4.57	Clay	Clay	
4.87	8.22	3.35	Pipe Clay White	Clay	
8.22	10.66	2.44	Driller	(Unknown)	
10.66	33.22	22.56	Sandstone	Sandstone	
33.22	34.13	0.91	Sandstone	Sandstone	
34.13	35.96	1.83	Shale Clay	Shale	
35.96	56.38	20.42	Sandstone	Sandstone	
56.38	56.99	0.61	Mudstone Clay	Mudstone	
56.99	61.87	4.88	Shale	Shale	
61.87	110.94	49.07	Sandstone Water Supply	Sandstone	
110.94	114.90	3.96	Shale	Shale	

Remarks

19/02/1975: SITED RAAF BASE BROOKVALE 19/02/1975: RECHARGE TEST CAPACITY 0.758 L/S

*** End of GW020065 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

APPENDIX E: BUREAU OF METEOROLOGY

Monthly Rainfall (millimetres)

BELROSE (EVELYN PLACE)

Station Number: 066188 · State: NSW · Opened: 1991 · Status: Open · Latitude: 33.74°S · Longitude: 151.22°E · Elevation: 168 m

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
1991							76.0	7.6	9.8	24.4	53.6	249.6	
1992	112.7	485.6	98.7	258.6	52.5	96.0	14.8	38.4	24.6	72.6	163.6	221.8	1639.9
1993	77.4	93.6	101.2	49.4	13.6	66.0	76.4	72.1	160.6	65.0	80.2	64.4	919.9
1994	58.0	116.2	187.6	118.6	45.0	75.4	81.0	19.2	40.4	44.2	69.6	100.4	955.6
1995	172.2	119.4	254.6	65.4	228.6	142.4	3.0	0.6	204.4	47.2	143.8	131.2	1512.8
1996	137.0	56.8	61.0	21.6	156.8	147.5	50.8	189.2	123.4	29.0	97.0	35.2	1105.3
1997	168.2	203.8	38.0	5.8	163.4	144.4	181.4	22.4	116.4	83.8	60.6	45.8	1234.0
1998	106.2	48.4	25.2	452.8	340.6	139.0	98.4	441.8	40.4	50.6	75.0	44.8	1863.2
1999	208.0	230.4	51.6	357.8	73.8	96.4	180.4	89.4	43.0	189.2	70.8	102.6	1693.4
2000	74.8	25.2	334.2	73.6	59.8	39.2	39.8	26.2	36.6		203.2	56.0	
2001	88.4	157.0	113.4	141.4	293.4	11.8	121.0	62.8	21.6	47.0	94.6	71.8	1224.2
2002	86.0	362.1	95.8	24.0	105.6	32.2	10.8	64.2		27.6	30.4	102.4	
2003	12.4	120.0	255.6	226.8	356.2	62.6	51.8	43.6	4.0	102.6	144.4	84.0	1464.0
2004	62.6	149.8	93.2	70.8	5.6	8.7	56.6	105.4	52.1	314.6	75.0	89.6	1084.0
2005	83.4	138.8	139.2	48.6	123.2	106.4	85.4	3.4	51.8	78.2	127.2	29.4	1015.0
2006	159.6	75.6	36.4	11.0	45.8	133.2	112.8	62.2	150.2	17.8	61.0	56.0	921.6
2007	68.2	123.0	68.4	200.2	16.8	359.6	44.4	135.0	44.4	40.6	164.6	129.8	1395.0
2008	92.4	322.0	67.4	167.4	12.0	210.2	72.6	44.6	101.4	68.4	87.6	71.6	1317.6
2009	54.8	184.4	97.2	156.8	134.6	115.2	65.2	5.2	7.4	197.2	16.6	88.2	1122.8
2010	45.8	353.0	85.8	40.6	124.2	124.4	122.6	36.4	72.6	74.6	154.6	104.4	1339.0
2011	71.6	30.6	290.8	211.8	109.2	95.6	290.4	47.0	106.2	50.6	177.0	148.8	1629.6
2012	187.8	197.4	226.8	170.0	31.7	214.7	44.3	11.4	28.2	35.0	68.4	47.4	1263.1
2013	222.8	155.8	103.8	176.6	89.4	273.4	14.0	15.4	59.8	38.0	247.8	40.8	1437.6
2014	28.0	69.2	125.6	103.4	23.6	85.2	15.6	252.4	77.8	53.6	22.0	162.4	1018.8
2015	227.4	72.4	55.4	255.8	123.6	91.2	43.6	48.0	94.6	39.6	202.4	86.8	1340.8
2016	344.0	16.0	137.0	63.2	8.4	380.2	108.0	124.4	64.8	29.6	33.8	75.2	1384.6
2017	24.6	202.4	278.8	57.4	45.8	149.8	6.8	28.8	0.8	41.0	64.8	43.6	944.6
2018	50.6	96.6	112.6	29.8	22.4	130.6	5.8	6.2	59.0	205.8	107.0	89.6	916.0
2019	38.6	77.4	212.8										

Quality control: 12.3 Done & acceptable, 12.3 Not completed or unknown

© Copyright Commonwealth of Australia 2019, Bureau of Meteorology. Prepared using Climate Data Online, Bureau of Meteorology http://www.bom.gov.au/climate/data. Contact us using details on http://www.bom.gov.au/climate/how/contacts.shtml. We have taken all due care but cannot provide any warranty nor accept any liability for this information. http://www.bom.gov.au/other/copyright.shtml

Monthly Rainfall (millimetres)

BELROSE (EVELYN PLACE)

Station Number: 066188 · State: NSW · Opened: 1991 · Status: Open · Latitude: 33.74°S · Longitude: 151.22°E · Elevation: 168 m

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Mean	109.4	153.0	133.9	131.8	103.9	130.8	74.1	71.5	66.5	76.6	103.4	91.9	1269.7
Lowest	12.4	16.0	25.2	5.8	5.6	8.7	3.0	0.6	0.8	17.8	16.6	29.4	916.0
5th percentile	25.8	27.1	37.0	14.2	9.5	17.9	6.2	4.0	5.0	25.4	24.9	37.2	920.2
10th percentile	35.4	43.1	47.5	23.0	13.0	36.4	9.6	5.9	8.8	28.4	32.8	42.8	930.8
Median	84.7	121.5	102.5	103.4	73.8	115.2	60.9	44.1	52.1	50.6	83.9	85.4	1263.1
90th percentile	212.4	331.3	262.6	256.9	254.5	238.2	139.9	151.3	134.1	192.4	184.6	152.9	1635.8
95th percentile	225.8	358.9	286.6	328.0	326.4	333.7	181.1	230.3	157.5	203.2	202.9	201.0	1682.7
Highest	344.0	485.6	334.2	452.8	356.2	380.2	290.4	441.8	204.4	314.6	247.8	249.6	1863.2

Statistics for this station calculated over all years of data

1) Calculation of statistics

Summary statistics, other than the Highest and Lowest values, are only calculated if there are at least 20 years of data available.

2) Gaps and missing data

Gaps may be caused by a damaged instrument, a temporary change to the site operation, or due to the absence or illness of an observer.

3) Further information

http://www.bom.gov.au/climate/cdo/about/about-rain-data.shtml.

Product code: IDCJAC0001 reference: 46123968 Created on Tue 09 Apr 2019 12:57:11 PM EST

© Copyright Commonwealth of Australia 2019, Bureau of Meteorology. Prepared using Climate Data Online, Bureau of Meteorology http://www.bom.gov.au/climate/data. Contact us using details on http://www.bom.gov.au/climate/how/contacts.shtml. We have taken all due care but cannot provide any warranty nor accept any liability for this information. http://www.bom.gov.au/other/copyright.shtml

APPENDIX F: PROPOSED DEVELPOMENT PLANS AND SURVEY

А	ORIGINAL ISSUE	15.01.21
ISSUE	REVISIONS	DATE

SCALE:	AS SHOWN	DRAWING
SUBSET:	SITE PLAN	DA101
DRAWN BY:	SU/WH/SP	ISSUE A

FILE: BIM Server: BIM21 - BIMcloud Basic for ARCHICAD 21/SKY5 (LOT1)

APPENDIX G: BOREHOLE LOGS

Hole No: E	pth (m)
Sheet 1 ENGINEERING LOG OF DRILLED BOREHOLE Client: Project: Test Method: HA Project: Limited Detailed Site Investigation Test Method: HA Project: Client: Styline Place, Frenchs Forest NSW Date: 2.6.03.2019 Logged It ML Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fr. No HC odours or stiannin Or as No HC odours or stiannin Or as No HC odours or stiannin International Comm Or as No HC odours or stiannin International Comm Internating the place of themedium grained, brown with grass <td>of 1 iy: RL</td>	of 1 iy: RL
ENGINEERING LOG OF DRILLED BOREHOLE Client: Project: Test Method: HA Project: Limited Detailed Site Investigation Test Method: HA Project Location: S Skyline Place, Frenchs Forest NSW Date: 26.03.2019 Logged It Image: Styline Place, Frenchs Forest NSW Date: 26.03.2019 Logged It Image: Styline Place, Frenchs Forest NSW Date: 26.03.2019 Logged It Image: Styline Place, Frenchs Forest NSW Date: 26.03.2019 Logged It Image: Styline Place, Frenchs Forest NSW Date: 26.03.2019 Logged It Image: Styline Place, Frenchs Forest NSW Date: NA Multional Comm ML Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fr. Os So No det BBL @O.4m BGL(Collapse) Not colspan="2"	iy: RL
Client: Platino Properties Pty Ltd Test Location: Refer to Figure 2 Project: Limited Detailed Site Investigation Test Method: HA Project: 5 Skyline Place, Frenchs Forest NSW Date: 26.03.2019 Logged I Variation Surface Level: N/A Surface Level: N/A Surface Level: N/A Variation Test Method: HA Surface Level: N/A Variation Test Method: MA Surface Level: N/A Variation Test Method: No Surface Level: N/A Variation Test Method: MA Surface Level: N/A Main Test Method: MA Surface Level: N/A Main Test Method: MA Main Main Test Method: MA Surface Level: N/A Main Test Method: Main Main Main Test Method: M	
Project: Limited Detailed Site Investigation Test Method: HA Project: Location: 5 Skyline Place, Frenchs Forest NSW Date: 26.03.2019 Logged I Surface Level: N/A Surface Level: N/A Surface Level: N/A Additional Comm 1 0.1 0.1 0.1 No visual fibro cement fra 0.1 0.1 0.1 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.1 0.3 0.4 Fill of BH1 @0.4m BGL(Collapse) No HC odours or stiannin 0.5 0.7 0.8 0.9 1.0 1.1 1.1 1.2 1.3 1.4 Fill @0.4m BGL(Collapse) Image: Collapse for the fill of BH1 @0.4m BGL(Collapse)	
Project Location: 5 Skyline Place, Frenchs Forest NSW Date: 26.03.2019 Logged b Jag Jag <td< td=""><td></td></td<>	
Surface Level: N/A image: state problem Surface Level: N/A image: state problem 0.1 0.1 0.1 0.2 ML 0.3 0.4 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass 0.4 No visual fibro cement frame 0.5 0.6 0.7 0.8 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.4	
Image: state in the state i	oth (m)
0.1 ML Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.3 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.3 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.3 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.3 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.4 0.5 End of BH1 @0.4m BGL(Collapse) Image: Silt of the second sec	oth (m)
0.1 ML Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.3 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.3 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.3 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.3 0.4 Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.4 0.5 End of BH1 @0.4m BGL(Collapse) Image: Silt of the second sec	oth (i
0.1 ML Fill: Clayey Silt, fine to medium grained, brown with grass No visual fibro cement fra 0.2 0.3 No Visual fibro cement fra 0.3 0.4 0.3 0.4 0.4 End of BH1 @0.4m BGL(Collapse) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4	
Image: Constraint of the second se	
0.3 0.4 0.5 End of BH1 @0.4m BGL(Collapse) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.4	
0.5 End of BH1 @0.4m BGL(Collapse) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.4	0.3
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4	0.4
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4	0.5
09 10 1.1 1.2 1.3 1.4	0.7
1.0 1.1 1.2 1.3 1.4	0.8
1.1 1.2 1.3 1.4	0.9
12 13 14	1.0
1.4	1.2
	1.3
	1.4
1.6	1.6
1.7	1.7
1.8	1.8
2.0	2.0
2.1	2.1
22 23	2.2
2.4	2.4
2.5	2.5
2.6	2.6
2.8	2.7
2.9	2.9
30	3.0
3.1 3.2	3.1
3.3	3.3
3.4	3.4
3.5	3.5
3.7	3.7
3.8	3.8
<u>3.9</u> 4.0	3.9
4.0 4.1	4.0
4.2	4.2
4.3	4.3
4.4 4.5	4.4
4.6	4.6
47	4.7
4.8	4.8
5.0	4.9
5.1	5.1
52 53	5.2
5.3 5.4	5.3
5.5	5.5
5.6	5.6
5.7 5.8	5.7
5.9	5.9
6.0	6.0
Explanatory Notes: <u>Consistency Density Index Samples</u> <u>Moisture</u>	
VS Very Soft VL Very Loose B Bulk Sample D Dry	
S Soft L Loose D Disturbed Sample M Moist	
F Firm MD Medium Dense U50 Undisturbed Sample W Wet St Stiff D Dense (50mm diam.) Wp Plastic Limit	
St St St Very Stiff VD Very Dense N S.P.T. Value WI Liquid Limit	
H Hard	

								Joh No. 51100.2	
								Job No: E1100-2 Hole No: BH2	
								Sheet 1 of 1	
Clien		ING	LUG	OF D	RILLED BOREHOLE Platino Properties Pty Ltd	Test Loc	ation:	Refer to Figure 2	
Proje					Limited Detailed Site Investigation	Test Me		Drill Rig	
Proje	ect Locatio	n:			5 Skyline Place, Frenchs Forest NSW	Date:		25.03.2019 Logged by:	RL
						Surface I	_evel: N	I/A	1
Groundwater	e ts	log		ition		. c	ncy/ sity		ê
Groundwa	Samples/ Field Tests Depth (m)	Graphic Log	Unified	Classification		Moisture Condition	Consistency/ Rel. Density		Depth (m)
Gro		xxxx	Uni	Clas	Description	Mo Cor	Cor Rel.	Additional Comments	
	0.1			F	Fill: Silty Clay, low to medium plasticity, brown/ dark brown	м	s	No visual fibro cement frags	0.1
	0.3				with gravels			No HC odours or stianning noticed	0.3
	0.4								0.4
	0.6								0.6
	0.7								0.7
	0.8	8888							0.8
	1.0								1.0
	1.1	888							1.1
	1.2	3888							1.2
	1.4	3888							1.4
	1.5	888							1.5
	1.6								1.6
	1.8	<u> </u>							1.8
	1.9	3888		F	Fill: Silty Clay, low to medium plasticity, grey	м	S/F	No visual fibro cement frags	1.9 2.0
	2.0	3888		г	with small gravels	IVI	5/1	No HC odours or stianning noticed	2.0
	2.2							-	2.2
	2.3								2.3 2.4
	2.4								2.4
	2.6								2.6
	2.7								2.7
	2.9								2.9
	3.0								3.0
	3.1 3.2		San	dstone	SANDSTONE, weathered, white	D	н		3.1 3.2
	3.3								3.3
	3.4								3.4
-	3.5 3.6				End of BH2 @3.5m BGL				3.5 3.6
	3.7								3.7
	3.8								3.8
	3.9								3.9 4.0
	4.1								4.1
	4.2								4.2
	4.4								4.4
	4.3 4.4 4.5 4.6 4.7								4.5
	4.6								4.6
	4.8								4.8
	4.9								4.9
	5.0 5.1								5.0
	5.1 5.2 5.3								5.2
	5.3								5.3
	5.4 5.5								5.4
	5.6								5.6
	5.7								5.7 5.8
	5.8								5.8
Ш	6.0								6.0
	natory Note stency	es:			Density Index Samples		Moistu	re	
vs	Very Sof	t			VL Very Loose B Bulk Sample		D Dry		
s	Soft				L Loose D Disturbed Sample		M Mo		
F St	Firm Stiff				MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.)		W We Wp Pla	t stic Limit	
VSt	Very Stif	f			VD Very Dense N S.P.T. Value			uid Limit	
н	Hard								

_					WATER WELL LOG					
LIE N ROJE		Platino Limited	Properti Detailed	es Pty Ltd I Site Investigati	na		BOREHOLE NO. DATE.	BH3/GW1 25.03.2019		
DCA'	TION	5 Skylin		Frenchs Forest I			JOB NO.	E1100-2	Ber	viron s group
DGG	OD ED BY\	Drill Rig RL					SURFACE ELEV. CHECKED BY	MS	-	
pth	Sample	Graphic Symbol	Ground Water	Classification Symbol	Soil Description (Plasticity, particle characteristics, colour, moisture, etc)	Moisture	Consis / Density	Observations	Well	on Desi
m)).1		syntox	****	F	Fill: Silty Clay, low to medium plasticity, dark brown				Construct	on Co
).2).3		\mathbb{N}			with gravels	м	s		-	Cen
1.4		\sim							-	Car
).5).6		KX							1	
).7).8		\otimes								54
1.9		\otimes								
1		ЬX			with tile & brick pieces between 1.0-1.5m BGL					Bento
2		\sim						No HC odours or staining No visual fibro cement frags		
4 5		\mathbb{N}							-	Sa
6		\mathbb{N}							-	Sa Car
.7 8		\mathbb{X}					н		:	1
9		KX			Sandstone, extremely weatherd, light yellow/white	D/M	н			Carl
1		\mathbb{N}							-	
3		\geq							-	-
5		KX			Fill: Silty Clay, low to medium plasticity, brown	1			: _	. 1
7		\otimes								Sa
8 9		\otimes		1				No HC odours or staining	31	
1		M		1				No visual fibro cement frags	:	
2				Sandstone	SANDSTONE, weathered, yellow	D	н		:	
4									: -	Scr
5 6									:	
7 8									:	
3					becoming white				:	
1				1					: -	
3				1					:	- 1
4 5 5									:	1
7									:	Sa
8									:	
9				ĺ					: -	
2				ĺ					:	Scr
2 3 4				ĺ					:	- 1
4 5									:	
6									: _	
7 8										
9 5									-	
1			-					SWL 6.17m BGL 05.04.2019	1	
2 3									: _	-
4 5									-	
5 6										
.7 8									1	
9										
1					possible waterseepage from driller (a soft layer/gap)					54
2										
4										Scr
5 6										
7									:[-]	Sen
3				1					:	
1				1					:	. 1
2									:	
4				1					-1	Sa
5										Sa
5		007070707			End of BH3/GW1 @ 8.6m				•	1
3				1						
1. 1										
1										
1 1										
5										
Ł										
1										
1										
2										
.4				ĺ						
.5 .6				ĺ						
L7										
.9										
L				ĺ						
Sym	bols	g groundwa	tor in	n horehol-	Soil Classification	ı	1			
	Water s	g groundwa eepage in t	ver level in orehole (1	wet)	Clay Particle size less than 0.002mm Sit Particle size between 0.002 and 0. Sand Particle size between 0.06 and 20 Gravel Particle size between 2.0 and 60mr	16mm nm				
		sample take ace water s undwater sa	in at indic ample	ated depth	Gravel - Particle size between 2.0 and 60mr					
w	e Conditio	on			Strength - Unconfined compressive strength is S bot - Unconfined compressive strength is F Firm - Unconfined compressive strength is St Stiff - Unconfined compressive strength is VS Volves VS Volves VB - Unconfined compressive strength is VB - Unconfined compressive strength is H Head - Unconfined compressive strength is	iss than 25k 5-50kP.h	Pa			
stu		n fennilu theo	uah finaer	5	F Firm - Unconfined compressive strength 5	0-100kPa				
itui Iry Aoi	- Runs at - Does visit	s not run fre	ely but no	free water	St Stiff Unconfined compressive strength 1 VSt Very Stiff Unconfined compressive strength 2 H Hard Unconfined compressive strength g	00-200kPa				

_								Job No: E1100-2	
								Hole No: BH4	
								Sheet 1 of 1	
EN Clier		RING	LOG	OFL	PRILLED BOREHOLE Platino Properties Pty Ltd	Test Loc	ation:	Refer to Figure 2	
Proj					Limited Detailed Site Investigation	Test Me		Drill Rig	
Proj	ect Locatio	on:			5 Skyline Place, Frenchs Forest NSW	Date:		25.03.2019 Logged by:	RL
		1	1			Surface	_evel: N	I/A	
ater	5 E	go-		tion			ity sity		ê
Groundwater	Samples/ Field Tests Depth (m)	Graphic Log	Unified	Classification		Moisture Condition	Consistency/ Rel. Density		Depth (m)
Gro		XXXXX	Unif	Clas	Description	Moi Con	Con Rel.	Additional Comments	_
	0.1	-XXXX		F	Fill: Silty Clay, low to medium plasticity, brown/ dark brown	м	S	No visual fibro cement frags	0.1
	0.3	- XXXX			with gravels		-	No HC odours or stianning noticed	0.3
	0.4	1000							0.4
	0.5								0.5
	0.7								0.7
	0.8	-8888							0.8
	1.0								1.0
	1.1								1.1
	1.2								1.2
	1.4								1.4
	1.5								1.5
	1.6								1.6
	1.8								1.8
	1.9	KXXXX						No visual fibro cement frags	1.9 2.0
	2.0							No HC odours or stianning noticed	2.0
	2.2								2.2
	2.3								2.3
	2.5								2.5
	2.6								2.6
	2.7								2.7
	2.9								2.9
	3.0								3.0
	3.1								3.1
	3.3								3.3
	3.4								3.4
	3.6	8888		F	Fill: Silty Clay, low to medium plasticity, brown/ orange	D/M	S		3.6
	3.7	8888							3.7
	3.8	8888							3.8 3.9
	4.0	<u> </u>							4.0
	4.1	$\times \times \times \times$						No visual fibro cement frags No HC odours or stianning noticed	4.1
	4.2	XXXXX						ne outfurs or stianning noticed	4.2
	4.4	<u>~~~~</u>							4.4
	4.5	8888							4.5 4.6
	4.0	8888							4.6
	4.8	MANAGER							4.8
	4.9 5.0	1000000	Sand	dstone	SANDSTONE, weathered, yellow	D	н		4.9 5.0
	5.1				End of BH4 @5.0m BGL				5.1
	5.2								5.2
	5.3								5.3 5.4
	5.5								5.5
	5.6								5.6 5.7
	5.8								5.8
	5.9								5.9
Expla	6.0 anatory Not	tes:	I			1		1	6.0
Cons	istency				Density Index Samples		Moistu		
vs s	Very So Soft	oft			VL Very Loose B Bulk Sample L Loose D Disturbed Sample		D Dry M Mo		
S F	Soft Firm				MD Medium Dense U50 Undisturbed Sample		W We		
St	Stiff				D Dense (50mm diam.)			stic Limit	
VSt H	Very Sti Hard	iff			VD Very Dense N S.P.T. Value		WI Liq	uid Limit	
<u></u>	i lai U								

								-	
								Job No: E1100-2	
								Hole No: BH5 Sheet 1 of 1	
_		RIN	IG L	OG OF D	RILLED BOREHOLE				
Clier Proje					Platino Properties Pty Ltd Limited Detailed Site Investigation	Test Loc Test Me		Refer to Figure 2 Drill Rig	
	ect Loca	tion:			5 Skyline Place, Frenchs Forest NSW	Date:	uiou.	26.03.2019 Logged by:	RL
				[Surface	Level: N	I/A	_
ater	s	_	80	ion			t∧ (
Groundwater	Samples/ Field Tests	Depth (m)	Graphic Log	Unified Classification		Moisture Condition	Consistency/ Rel. Density		Depth (m)
Gro			Gra		Description	Moi Con	Con Rel.	Additional Comments	
	_	0.1 0.2		Concrete	Concrete				0.1
	_	D.3 X		Fill	Fill: Silty Clay, low to medium plasticity, brown/ dark brown	м	S		0.3
		0.4 X 0.5 X	***		with gravels				0.4
	_	D.6 X	***						0.6
		0.7 X 0.8 X	***					No visual fibro cement frags No stianning but odours noticed	0.7
		0.9 X	***						0.8
		1.0	***						1.0
		1.1 1.2	***						1.1
		1.3	\otimes	Fill	Fill: Silty Sandy Clay, medium to high plasticity, brown	М	F	No visual fibro cement frags	1.3
		1.4	\otimes					No stianning but odours noticed	1.4
	:	1.6	\otimes						1.6
		1.7	\otimes						1.7
	:	1.9	***						1.9
-		2.0 🔀 2.1 🔅			N: Silty Sandy CLAY, medium to high plasticity, brown/grey	м	F/St		2.0
		2.2			/orange	101	.,		2.2
		2.3							2.3
	_	2.4							2.4
ΙΓ		2.6			End of BH5 @2.5m BGL				2.6
	_	2.7 2.8							2.7
	_	2.9							2.9
		3.0 3.1							3.0
		3.2							3.2
	_	3.3 3.4							3.3 3.4
		3.5							3.5
		3.6 3.7							3.6
		3.8							3.8
		3.9							3.9
	_	4.0 4.1							4.0
	_	4.2							4.2
	_	4.3 4.4							4.3
	4	4.5							4.5
	_	4.6 4.7							4.6
	4	4.8							4.8
		4.9 5.0							4.9 5.0
		5.0							5.0
		5.2							5.2
	_	5.3 5.4							5.3
	-	5.5							5.5
	_	5.6 5.7							5.6 5.7
		5.8							5.8
	_	5.9 6.0							5.9 6.0
	natory N							1	0.0
Consi VS	istency Very S	Soft			Density Index Samples VL Very Loose B Bulk Sample		Moistur D Dry		
vs s	Soft				L Loose D Disturbed Sample		M Mo	ist	
F	Firm				MD Medium Dense U50 Undisturbed Sample		W We		
St VSt	Stiff Very S	Stiff			D Dense (50mm diam.) VD Very Dense N S.P.T. Value			stic Limit uid Limit	
н	Hard								

									Job No: E1100-2 Hole No: BH6	
									Sheet 1 of 1	
ΕN	GINE	EERI	NG L	.0G	OF D	RILLED BOREHOLE				
Clier							Test Loc		Refer to Figure 2	
Proj	ect: ect Lo	catio	n.				Test Me Date:	thod:	Drill Rig 25.03.2019 Logged by:	RL
		catio					Surface	Level: N		
er					ç			1		
Groundwater	Samples/ Field Tests	(L)	Graphic Log	-	Classification		ar ion	Consistency/ Rel. Density		(E
roun	Samples/ Field Tests	Depth (m)	iraph	Unified	lassif	Description	Moisture Condition	onsis el. De	Additional Comments	Depth (m)
6	Śц	0.1		2	U	Description	20	U R	Additional comments	0.1
		0.2			F	Fill: Silty Clay, low to medium plasticity, brown/ dark brown	м	S	No visual fibro cement frags	0.2
-		0.3	****			with gravels			No HC odours or stianning noticed	0.3
		0.5	33333							0.5
		0.6	****							0.6
		0.7	38883							0.7
		0.9	38883							0.9
		1.0	38888							1.0
		1.1	3888							1.1
		1.3	3888							1.3
		1.4								1.4
		1.5 1.6		-	F	Sandstone, extremely weatherd, light yellow/white	D	н		1.5
		1.7	****							1.7
-		1.8	****							1.8
		1.9 2.0			F	Fill: Silty Clay, low to medium plasticity, dark brown	м	s		1.9 2.0
		2.1	****							2.1
		2.2			СН	N:Silty Sandy CLAY, medium to high plasticity, orange/grey				2.2
		2.3				/brown				2.3
		2.5								2.5
		2.6	8888 S							2.6
		2.7								2.7
		2.9								2.9
		3.0	<u> </u>							3.0
		3.1 3.2				End of BH6 @3.0m BGL				3.1
		3.3								3.3
		3.4								3.4
		3.5 3.6								3.5
		3.7								3.7
		3.8								3.8
		3.9 4.0								3.9 4.0
		4.1								4.1
		4.2								4.2
		4.3 4.4								4.3
		4.5								4.5
		4.6 4.7								4.6
		4.7								4.7
		4.9								4.9
		5.0								5.0
		5.1 5.2								5.1
		5.3								5.3
		5.4 5.5								5.4
		5.5								5.5
		5.7								5.7
		5.8								5.8
		5.9 6.0								5.9 6.0
	anatory	/ Note	s:			· · · · ·				
Cons VS	istency	<u>/</u> ry Soft				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dry		
vs s	Sof					L Loose D Disturbed Sample		M Mo		
F	Firr	n				MD Medium Dense U50 Undisturbed Sample		W We		
St VSt	Stif		F			D Dense (50mm diam.) VD Very Dense N S.P.T. Value			stic Limit uid Limit	
VSt H	Ver Har	ry Stiff rd				VE Very Dense IN S.P.1. Value		www.Liqi	uru Emilit	
	. 101	-								

1									Job No: E1100-2	
1									Hole No: BH7 Sheet 1 of 1	
1									50000 IUII	
ΕN	IGINF	EERI	NG I	OG	OF D	RILLED BOREHOLE				
Clie						Platino Properties Pty Ltd	Test Loc	ation:	Refer to Figure 2	
	ject:					Limited Detailed Site Investigation	Test Me		Drill Rig	
Pro	ject Lo	catior	1:			5 Skyline Place, Frenchs Forest NSW	Date: Surface		25.03.2019 Logged by:	RL
h							Juildce			
Groundwater	/ ts	ê	Log		Classification		a, C	Consistency/ Rel. Density		Ê
nudv	Samples/ Field Tests	Depth (m)	Graphic Log	Unified	ssifica		Moisture Condition	isiste Den		Depth (m)
Gro	Sarr Fiel		~~~~~~	Uni	Clas	Description	Mo Con	Con Rel.	Additional Comments	
		0.1	58883		F	Fill: Silty Clay, low to medium plasticity, brown	м	s	No visual fibro cement frags	0.1
		0.3	38883					5	No HC odours or stianning noticed	0.3
		0.4	38883							0.4
		0.5	****							0.5
		0.7	58883							0.7
		0.8				SANDSTONE, weathered, white/grey	D	н		0.8
		0.9								0.9
		1.0								1.0
		1.2								1.2
		1.3								1.3
		1.4 1.5								1.4
		1.6	******			End of BH7 @1.5m BGL				1.6
		1.7								1.7
		1.8 1.9								1.8
		2.0								2.0
		2.1								2.1
		2.2								2.2
		2.3								2.3
		2.5								2.5
		2.6								2.6
		2.7								2.7
		2.8								2.8
		3.0								3.0
		3.1								3.1
		3.2 3.3								3.2 3.3
		3.4								3.4
		3.5								3.5
		3.6 3.7								3.6 3.7
		3.8								3.8
		3.9								3.9
		4.0 4.1								4.0
		4.1								4.1
		4.3								4.3
		4.4								4.4
		4.5 4.6								4.5
		4.0								4.0
		4.8								4.8
		4.9 5.0								4.9
		5.0								5.0
		5.2								5.2
		5.3								5.3
		5.4 5.5								5.4
		5.6								5.6
		5.7								5.7
		5.8								5.8
		5.9 6.0								5.9 6.0
Exp	lanatory		s:					. <u> </u>		5.0
	sistency					Density Index Samples		Moistu		
vs s	Ver Sof	ry Soft 't				VL Very Loose B Bulk Sample L Loose D Disturbed Sample		D Dry M Mo		
F	Firr					MD Medium Dense U50 Undisturbed Sample		W We		
St	Stif					D Dense (50mm diam.)			stic Limit	
VSt		ry Stiff				VD Very Dense N S.P.T. Value		WI Liqi	uid Limit	
н	Har	a								

									1	
									Job No: E1100-2]
									Hole No: BH8 Sheet 1 of 1	
									Sheet 1011	
FN	GINF	FRI	NGT	06	OF D	RILLED BOREHOLE				
Clien					0.0		Test Loc	ation:	Refer to Figure 2	
Proje							Test Me	thod:	Drill Rig	
Proje	ect Loo	ation	:				Date: Surface		25.03.2019 Logged by:	RL
. 1							Suilace			T
Groundwater	/ sts	(r	Log		Classification		a, ⊊	Consistency/ Rel. Density		Ê
vbru .	Samples/ Field Tests	Depth (m)	Graphic Log	Unified	sifica		Moisture Condition	siste Den		Depth (m)
Gro	Field		-Ser	Unii	Clas	Description	Con	Con Rel.	Additional Comments	
		0.1	8888		F	Fill: Silty Clay, low to medium plasticity, brown	м	s	No visual fibro cement frags	0.1
		0.3	888		•			5	No stianning but odours noticed	0.3
		0.4	888							0.4
		0.5								0.5
	-	0.0	~~~~						No visual fibro cement frags	0.7
		0.8			СН	N: Silty CLAY, meidum to high plasticity, grey	м	F/St	No stianning but odours noticed	0.8
		0.9								0.9
		1.0								1.0
ΙL		1.2								1.2
		1.3				SANDSTONE, weathered, yellow	D	н		1.3
		1.4 1.5								1.4
		1.6				End of BH8 @1.5m BGL				1.6
		1.7								1.7
		1.8 1.9								1.8
		2.0								2.0
		2.1								2.1
		2.2								2.2
		2.3								2.3
		2.5								2.5
		2.6								2.6
		2.7								2.7
		2.9								2.9
		3.0								3.0
		3.1 3.2								3.1
		3.3								3.3
		3.4								3.4
		3.5								3.5
		3.6 3.7								3.6
		3.8								3.8
		3.9								3.9
		4.0 4.1								4.0
		4.1								4.1
		4.3								4.3
		4.4 4.5								4.4
		4.5								4.5
		4.7								4.7
		4.8								4.8
		4.9 5.0								4.9 5.0
		5.1								5.1
		5.2								5.2
		5.3 5.4								5.3 5.4
		5.4								5.4
		5.6								5.6
		5.7								5.7 5.8
		5.8 5.9								5.8
		6.0								6.0
	inatory					Density Index				
Consi VS	istency Ver	y Soft				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dry		
s	Soft					L Loose D Disturbed Sample		M Mo	ist	
F	Firn					MD Medium Dense U50 Undisturbed Sample		W We		
St VSt	Stiff Ver	f y Stiff				D Dense (50mm diam.) VD Very Dense N S.P.T. Value			stic Limit uid Limit	
H	Har									
		86	ROUN	WATER WELL LOG						
--	---------------------	------------------------	--	---	-------------------------------	-----------------------------	--	-------------------	-------------	------------------
LIENT	Platino	Propertie	is Pty Ltd			BOREHOLE NO.	BH9/GW2	_		
OJECT	Limited 5 Skylin	Detailed e Place, F	Site Investigation Frenchs Forest N	on NSW		DATE. JOB NO.	26.03.2019 E1100-2	B	nvir gro	on; up
GGED BY	Drill Rig RL		1	1	T	SURFACE ELEV. CHECKED BY	- MS	_		
^{pth} Sample	Graphic Symbol	Ground Water	Classification Symbol	Soil Description (Plasticity, particle characteristics, colour, moisture, etc)	Moisture	Consis / Density	Observations	Well Construct	tion	Design
0.1 0.2 0.3 0.4	\otimes		F	Fill: Silty Clay , low to medium plasticity, brown	м	s	No HC odours or staining No visual fibro cement frags			Collar Cement
0.5 0.6 0.7			CL	N: Silty CLAY, low to medium plasticity, white/grey	м	F	No HC odours or staining No visual fibro cement frags			Casing Sand
0.8 0.9 1										Bentonite
12 13 14 15 16			Sandstone	Sandstone, extremely weatherd, light yellow/white	D/M	н				Sand
15 16 17 18 19 2 21 22 23 24										Casing
21 22 23 24 25 26										
2.6 2.7 2.8 2.9 3								-		Sand
3.1 3.2 3.3 3.4								-		Screen
35 36 37 38 39										
4 4.1 4.2 4.3 4.4 4.5								-		Sand
4.5 4.6 4.7 4.8 4.9										
5 5.1 5.2 5.3										Screen
5.4 5.5 5.6 5.7								-		
5.8 5.9 6 6.1										Sand
6.2 6.3 6.4 6.5 6.6										
6.7 6.8 6.9								-		
7 7.1 7.2 7.3 7.4										Screen
7.5 7.6 7.7 7.8										
7.9 8 8.1 8.2							Dev. 05.04.2012	_		
8.3 8.4 8.5				End of BH9/GW2 @ 8.5m	_		Dry 05.04.2019			Sand
8.6 8.7 8.8 8.9				LING OF D17/GW2 (# 6.311)						
9 9.1 9.2 9.3 9.4										
9.5 9.6 9.7 9.8										
9.9 10 10.1 10.2										
10.3 10.4 10.5 10.6 10.7										
10.8 10.9 11										
Samples				Soil Classification Clay - Particle size lass than 0.000mm Silt - Particle size between 0.002 and Sand - Particle size between 2.0 and 6 Gravel - Particle size between 2.0 and 6	1 1 0.06mm 2.0mm 0mm					
Bit 10.5 - Soft ample take a indicated depth Care VM - Soft ample take a indicated depth Soft ample take a indicated depth Emergitin Notated Control of take a indicated depth Emergitin Notated Control of take a indicated depth Emergitin VM - Soft ample take a indicated depth VM - Soft ample take a indicated depth										
N Wet - Free	water visib	e on soil s	surface	H Hard - Unconfined compressive streng	th greater than	400kPa				

									Job No: E1100-2	
									Hole No: BH10	
									Sheet 1 of 1	
_		EERI	NG L	OG	OF D	RILLED BOREHOLE				
Clie						Platino Properties Pty Ltd Limited Detailed Site Investigation	Test Loc		Refer to Figure 2	
	ject: ject Lo	catio	n:			5 Skyline Place, Frenchs Forest NSW	Test Me Date:	thou:	Drill Rig 25.03.2019 Logged by:	RL
	,						Surface	Level: N		
-					-			_		
Groundwater	sts	Ê	Graphic Log		Classification		a 5	Consistency/ Rel. Density		Ê
vpun	Samples/ Field Tests	Depth (m)	phic	Unified	ssific		Moisture Condition	Consistency, Rel. Density		Depth (m)
Gro	San Fiel		de a	Uni	Cla	Description	Mo	Cor Rel	Additional Comments	
		0.1			F	Fill: Silty Clay, low to medium plasticity, brown	м	s	No visual fibro cement frags	0.1
		0.2				This since endy, low to median plasticity, brown	IVI	3	No HC odours or stianning noticed	0.2
		0.4								0.4
		0.5								0.5
		0.6								0.6
		0.7						F/St		0.7
		0.9						.,		0.9
		1.0								1.0
		1.1						l		1.1
		1.2 1.3		Sar	ndstone	SANDSTONE, weathered, white	D	н		1.2
		1.3								1.3
		1.5			<u> </u>					1.5
		1.6				End of BH10 @1.5m BGL				1.6
		1.7								1.7
		1.8								1.8
		2.0								2.0
		2.1								2.1
		2.2								2.2
		2.3								2.3
		2.4								2.4
		2.6								2.6
		2.7								2.7
		2.8								2.8
		2.9 3.0								2.9 3.0
		3.1								3.1
		3.2								3.2
		3.3								3.3
		3.4 3.5								3.4
		3.5								3.5 3.6
		3.7								3.7
		3.8								3.8
		3.9								3.9
		4.0 4.1								4.0
		4.1								4.1
		4.3								4.3
		4.4								4.4
		4.5 4.6								4.5 4.6
		4.6								4.6
		4.7								4.7
		4.9								4.9
		5.0								5.0
		5.1 5.2								5.1 5.2
		5.2								5.2
		5.4								5.4
		5.5								5.5
		5.6 5.7								5.6
		5.7								5.7 5.8
		5.9								5.9
		6.0								6.0
	anatory		s:	_						
	sistency					Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dra		
vs s	Vei Sof	ry Soft ft				VL Very Loose B Bulk Sample L Loose D Disturbed Sample		D Dry		
F	Fin					MD Medium Dense U50 Undisturbed Sample		W We		
St	Stil					D Dense (50mm diam.)			stic Limit	
VSt		ry Stiff	f			VD Very Dense N S.P.T. Value		WI Liq	uid Limit	
н	Ha	ra								

								Job No: E1100-2	
								Hole No: BH11	
								Sheet 1 of 1	
		ER	NG L	.OG OF D	RILLED BOREHOLE	_			
Clien Proje					Platino Properties Pty Ltd Limited Detailed Site Investigation	Test Loc Test Me		Refer to Figure 2 Drill Rig	
	ect Loo	catio	n:		5 Skyline Place, Frenchs Forest NSW	Date:	tilou.	26.03.2019 Logged by:	RL
						Surface	Level: N		
5				c					
wate	s/ sts	Ê	C Log	cation		e 5	ency. nsity		Ê
Groundwater	samples/ Field Tests	Depth (m)	Graphic Log	Unified Classification		Moisture Condition	Consistency/ Rel. Density		Depth (m)
5	Sar Fie		сŋ		Description Concrete	ĕ S	Co Re	Additional Comments	
		0.1		Concrete	concrete				0.1
		0.3		F	Fill: Silty Clay, low to medium plasticity, brown/ dark brown	м	s	No visual fibro cement frags	0.3
		0.4			with gravels			No stianning but odours noticed	0.4
		0.5							0.5
		0.6		СН	N: Silty CLAY, meidum to high plasticity, grey/ white			No visual fibro cement frags	0.6
		0.7		GI	, com, meloan to ngr prostory, grey/ write		F/St	No stianning but odours noticed	0.7
		0.9					1		0.9
		1.0				<u> </u>	<u> </u>		1.0
		1.1		Sandstone	SANDSTONE, weathered, white/ grey	D	н		1.1
		1.2		Janustone	Shines rome, weathered, Willey grey	0	п	No visual fibro cement frags	1.2
		1.4					1	No stianning but odours noticed	1.4
ļĒ		1.5							1.5
		1.6	l		End of BH11 @1.5m BGL		1		1.6
		1.7							1.7
		1.8							1.8
		2.0							2.0
		2.1							2.1
		2.2							2.2
		2.3 2.4							2.3
		2.5							2.5
		2.6							2.6
		2.7							2.7
		2.8 2.9							2.8
		3.0							3.0
		3.1							3.1
		3.2							3.2
		3.3							3.3
		3.4 3.5							3.4
		3.6							3.6
		3.7							3.7
		3.8							3.8
		3.9							3.9
		4.0	1				1		4.0
		4.2	1				1		4.2
		4.3	l				1		4.3
		4.4							4.4
		4.5 4.6							4.5
		4.0	1						4.0
		4.8	1						4.8
		4.9							4.9
		5.0					1		5.0
		5.1 5.2					1		5.1
		5.2	1				1		5.2
		5.4]				1		5.4
		5.5					1		5.5
		5.6 5.7	ł				1		5.6 5.7
		5.7	1				1		5.7
		5.9	1				1		5.9
		6.0							6.0
	natory		es:		Density Index				
Consi VS	istency Ver	y Soft	r		Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dry		
s s	Soft		-		L Loose D Disturbed Sample		M Mo		
F	Firn	n			MD Medium Dense U50 Undisturbed Sample		W We		
St	Stif				D Dense (50mm diam.)			stic Limit	
VSt H	Ver Har	y Stifl d	r		VD Very Dense N S.P.T. Value		wi Liqi	uid Limit	
	ildf	J							

									Job No: E1100-2 Hole No: BH12	
									Sheet 1 of 1	
		ERI	NG L	OG O	F DF	RILLED BOREHOLE	-			
Clier						Platino Properties Pty Ltd	Test Loc		Refer to Figure 2	
Proj Proj	ect: ect Loc	ation	:			Limited Detailed Site Investigation 5 Skyline Place, Frenchs Forest NSW	Test Me Date:	u100:	Drill Rig 25.03.2019 Logged by:	RL
							Surface	Level: N		_
ter			ы		ч			> >		
dwa	les/ Tests	(m)	iic Lo	φ	ficati		tion	stenc ensit		(m) =
Groundwater	Samples/ Field Tests	Depth (m)	Graphic Log	Jnified	Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
		0.1		Conc		Concrete				0.1
-		0.2								0.2
		0.4		Cł	ł	N: Silty CLAY, medium to high plasticity, red/grey	D/M	St	No visual fibro cement frags	0.4
		0.5							No HC odours or stianning noticed	0.5
		0.6								0.6
		0.8								0.8
		0.9								0.9
		1.0				End of BH12 @1.0m BGL				1.0
		1.2								1.2
	ŀ	1.3 1.4								1.3
		1.4								1.4
		1.6								1.6
		1.7								1.7
		1.9								1.9
		2.0								2.0
		2.1 2.2								2.1
		2.3								2.3
		2.4								2.4
		2.6								2.5
		2.7								2.7
		2.8 2.9								2.8
		3.0								3.0
		3.1								3.1
		3.2 3.3								3.2
		3.4								3.4
		3.5 3.6								3.5 3.6
		3.7								3.7
		3.8								3.8
	ŀ	3.9 4.0								3.9 4.0
	ľ	4.1								4.1
		4.2 4.3								4.2
	ŀ	4.4								4.3
		4.5								4.5
	ŀ	4.6 4.7								4.6
		4.7								4.7
		4.9								4.9
		5.0 5.1								5.0
	ľ	5.2								5.2
		5.3								5.3
		5.4 5.5								5.4
		5.6								5.6
		5.7 5.8								5.7 5.8
	ŀ	5.8								5.8
Ш		6.0								6.0
	anatory istency		:			Density Index Samples		Moistu	re	
VS		y Soft				VL Very Loose B Bulk Sample		D Dry		
s	Soft					L Loose D Disturbed Sample		M Mo		
F St	Firm Stiff					MD Medium Dense U50 Undisturbed Sample D Dense (50mm diam.)		W We Wp Pla	t stic Limit	
VSt		y Stiff				VD Very Dense N S.P.T. Value			uid Limit	
н	Hard	d								

									1		
									Job No:	E1100-2	
									Hole No: Sheet	BH13 1 of 1	
									Sheet	1011	
FN	GINF	FRI	NGI	OG	OF D	RILLED BOREHOLE					
Clien					0. 0	Platino Properties Pty Ltd	Test Lo	cation:	Refer to Figu	ure 2	
Proje						Limited Detailed Site Investigation	Test Me	ethod:	HA		
Proje	ect Loc	ation	:			5 Skyline Place, Frenchs Forest NSW	Date:	Lough	25.03.2019	Logged by:	RL
1		T					Surrace	Level: N	I/A		
Groundwater	ts	ê	Bo		lassification			ncy/			ê
vpun	Samples/ Field Tests	Depth (m)	Graphic Log	Unified	sifica		Moisture Condition	Consistency/ Rel. Density			Depth (m)
Gro	Fiel		Gra		U	Description	Mo Con	Con Rel.		ional Comments	
		0.1			ML	Fill: Clayey Sandy Silt, fine to medium grained, brown with grass roots				o cement frags or stianning noticed	0.1
		0.3							D1/SS1	or stanning noticed	0.3
	-	0.4				End of BH13 @0.3m BGL(Collapse)					0.4
	-	0.5									0.5
		0.7									0.7
	-	0.8									0.8
	ŀ	0.9									0.9
		1.1									1.1
	ļ	1.2					1	1			1.2
	ŀ	1.3 1.4					1	1			1.3
	ŀ	1.4					1	1			1.4
	ļ	1.6					1	1			1.6
	ŀ	1.7 1.8									1.7
		1.9									1.9
		2.0									2.0
		2.1 2.2									2.1
	ŀ	2.2									2.2
	ļ	2.4									2.4
	ŀ	2.5 2.6									2.5
	ŀ	2.0									2.0
	ļ	2.8									2.8
	ŀ	2.9 3.0									2.9
		3.1									3.1
	-	3.2									3.2
	ŀ	3.3 3.4									3.3
		3.5									3.5
	-	3.6									3.6
	ŀ	3.7 3.8									3.7
		3.9									3.9
	-	4.0									4.0
	ŀ	4.1 4.2					1	1			4.1
	ľ	4.3									4.2
	ļ	4.4					1	1			4.4
	ŀ	4.5 4.6									4.5
	ŀ	4.7					1	1			4.0
	ļ	4.8					1	1			4.8
	ŀ	4.9 5.0									4.9 5.0
	ŀ	5.1					1	1			5.1
	ļ	5.2					1	1			5.2
	-	5.3 5.4									5.3 5.4
	ŀ	5.4					1	1			5.4
	ļ	5.6					1	1			5.6
	ŀ	5.7 5.8									5.7
	ŀ	5.8 5.9					1	1			5.8
		6.0					1	1			6.0
	natory					Density Index Complete					
Consi VS	istency Very	y Soft				Density Index Samples VL Very Loose B Bulk Sample		Moistu D Dry			
s	Soft					L Loose D Disturbed Sample		M Mo	ist		
F	Firm					MD Medium Dense U50 Undisturbed Sample		W We			
St VSt	Stiff Very	y Stiff				D Dense (50mm diam.) VD Very Dense N S.P.T. Value			stic Limit uid Limit		
H	Hard					· · · · · · · · · · · · · · · · · · ·					
	_	_		_							

										Job No: E1100-2	
										Hole No: BH14 Sheet 1 of 1	
FN	GINFI	FRING	10	G O		RILLED BOREHOLE					
Clier				00		Platino Properties Pt	y Ltd	Test Loc	ation:	Refer to Figure 2	
Proj						Limited Detailed Site Inve		Test Met		HA	
Proj	ect Loca	ation:				5 Skyline Place, Frenchs Fo	rest NSW	Date:		26.03.2019 Logged by:	RL
—	<u> </u>		1					Surface	Level: N	I/A	1
ater	s	~ ⁸⁰			U U			_	cy/		_
wpu	Samples/ Field Tests	h (m hic L	Po d	2 5	Llassification			ture	isten Dens		ц н
Groundwater	Samples/ Field Tests	Depth (m) Graphic Log	Unified	5 5	Class	Description		Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
		0.1	2	ML		Fill: Clayey Silt, fine to medium grained, bro	own with grass			No visual fibro cement frags	0.1
-		0.2				roots				No HC odours or stianning noticed	0.2
-		0.3	2			End of BH14 @0.3m BGL(Collapse)				D2/SS2	0.3
	-	0.5									0.4
		0.6									0.6
	_	0.7									0.7
		0.8									0.8
		0.9									0.9
		1.0									1.0
	-	1.2									1.2
	-	1.3									1.3
		1.4									1.4
	-	1.5 1.6									1.5 1.6
		1.7									1.0
	_	1.8									1.8
	-	1.9									1.9
	-	2.0									2.0
		2.1 2.2									2.1
		2.2									2.2
	-	2.4									2.4
		2.5									2.5
	-	2.6									2.6
	-	2.7 2.8									2.7
		2.8									2.8
	-	3.0									3.0
		3.1									3.1
		3.2									3.2
	-	3.3 3.4									3.3
	-	3.4									3.4
		3.6									3.6
		3.7									3.7
		3.8									3.8
		3.9 4.0									3.9 4.0
	-	4.0									4.0
		4.2									4.2
		4.3									4.3
	-	4.4									4.4
	-	4.5									4.5
		4.6									4.6
		4.8									4.8
	-	4.9									4.9
	Ļ	5.0									5.0
	┝	5.1 5.2									5.1
		5.2									5.2 5.3
		5.4									5.4
		5.5									5.5
		5.6									5.6
		5.7 5.8									5.7 5.8
	-	5.8									5.8
		6.0									6.0
Expla	anatory I							•			
	istency					Density Index Samples			Moistu		
۷S	Very	Soft				VL Very Loose B Bulk Samp L Loose D Disturbed S			D Dry M Mo		
S F	Soft Firm					MD Medium Dense U50 Undistur			W We		
St	Stiff					D Dense (50mm dia				stic Limit	
VSt	Very	Stiff				VD Very Dense N S.P.T. Valu				uid Limit	
н	Hard										

								Г	
								Job No: E1100-2 Hole No: BH15	
								Sheet 1 of 1	
EN	GINE	ERI	NG L	OG OF	DRILLED BOREHOLE				
Clien					Platino Properties Pty Ltd	Test Loc		Refer to Figure 2	
Proje	ect: ect Loc	ation	<u>.</u>		Limited Detailed Site Investigation 5 Skyline Place, Frenchs Forest NSW	Test Me Date:	thod:	Drill Rig 26.03.2019 Logged by:	RL
110,0		Jucioi			5 Skymie Fidee, Fenens Forest Now	Surface	Level: N		NL.
er				ç			1		
dwat	ests	<u>(</u>	c Log	d icatic		a io	tenc) ensity		Ē
Groundwater	Samples/ Field Tests	Depth (m)	Graphic Log	Unified Classification	Description	Moisture Condition	Consistency/ Rel. Density	Additional Comments	Depth (m)
6	S T	0.1	0	⊃ ∪ Concrete		20	U ~	Additional comments	0.1
		0.2	××××>						0.2
		0.3	****	F	Fill: Silty Clay, low to medium plasticity, brown/ dark brown with gravels	D/M	S/F	No visual fibro cement frags No stianning OR odours noticed	0.3
		0.4			with grovers			No stanning OK buours noticed	0.4
		0.6							0.6
		0.7	****						0.7
		0.8							0.8
		1.0					1		1.0
╎┝		1.1 1.2		CL	N: Silty Sandy CLAY, low to medium plasticity, white/ grey	D/M	St		1.1
		1.2			,,,,,	5/141			1.3
		1.4					1		1.4
∣⊦		1.5 1.6			End of BH15 @1.5m BGL				1.5 1.6
		1.0					1		1.0
		1.8					1		1.8
		1.9 2.0							1.9 2.0
		2.1							2.0
		2.2							2.2
		2.3 2.4							2.3
		2.4							2.4
		2.6							2.6
		2.7 2.8							2.7
		2.9							2.9
		3.0							3.0
		3.1 3.2							3.1 3.2
		3.3							3.3
		3.4							3.4
		3.5 3.6							3.5
		3.7							3.7
		3.8							3.8
		3.9 4.0					1		3.9
		4.1					1		4.1
		4.2					1		4.2
		4.3 4.4					1		4.3
		4.5					1		4.5
		4.6					1		4.6
		4.7 4.8					1		4.7
		4.9					1		4.8
		5.0					1		5.0
		5.1 5.2					1		5.1 5.2
		5.3					1		5.3
		5.4					1		5.4
		5.5 5.6					1		5.5
		5.7					1		5.7
		5.8					1		5.8
		5.9 6.0					1		5.9 6.0
Expla	natory		s:		1	1	ı	1	0.0
	istency				Density Index Samples		Moistu		
vs s	Ver Soft	y Soft t			VL Very Loose B Bulk Sample L Loose D Disturbed Sample		D Dry M Mo		
F	Firm				MD Medium Dense U50 Undisturbed Sample		W We		
St	Stiff				D Dense (50mm diam.)			stic Limit	
VSt H	Ver	y Stiff d			VD Very Dense N S.P.T. Value		WI Liq	uid Limit	
	rial	J							

APPENDIX H: NATA ACCREDITED LABORATORY CERTIFICATES

				Chain	n of C	of Custody Record	cord				
Benviron Group PO Box 4405, East Gosford NSW 2250 <u>ben@benvirongroup.com.au</u>	vSW 2250 <u>au</u>	÷			Ъ Ь	Project Manager:	Michael Silk		Project #:	E1100-2	
michael@benvirongroup.com.au.ray@benvirongroup.com.au emerson@benvirongroup.com.au	<u>som.au;ray@benvir</u> com.au	ongroup.	com.au		Sa	Sampled By:	RL		Project Name:	Frenchs Forest DSI	
ph: +61466 385 221 ALS Environmental					Pu	Purchase Order #:	N/A		Quote #:		
277-289 woodpark Road, Smithfield,2164 email: Vibeshan.dayalan@alsglobal.com ph: +61287848555	nithfield,2164 Isglobal.com				Pa	Page #:			Turnaround time:	Standard	
					-		Analytes				Sample
							 		Forvironmental Division		Comments
Date Matrix H	Heavy Metals (8)	ТКН	BTEXN	РАН	8	PCB		10	Sydney Work Order Reference ES1909674	ALS Suites	
25.03.2019 Soil	×	×	×	×	×	×				S- 8	Keep
26.03.2019 Soil	×	×	×	×	×	×				89 V	Keep
				-							
									Terepriorie : - 51-2-3784 8555		
Special Directions and Coments:											
	Ray Liu				Received By	V Sange	20-19			Method of shipment	ľ
	(Allan			<u></u>	Signature	ñ.	210)			courier	-
	27.03.2019				Date	283 2019	1240 K	· Mg			

`

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1909674		
Client	: BENVIRON GROUP	Laboratory	: Environmental Division Sydney
Contact	: MR MICHAEL SILK	Contact	: Customer Services ES
Address	: PO BOX 4405 EAST GOSFORD NSW 2250	Address	277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: michael@benvirongroup.com.au	E-mail	: ALSEnviro.Sydney@ALSGlobal.com
Telephone	+61 02 0466 385 221	Telephone	+61-2-8784 8555
acsimile	:	Facsimile	: +61-2-8784 8500
Project	: E1100-2 Frenchs Forest DSI	Page	: 1 of 3
Order number	:	Quote number	: EB2017BENVIRON0001 (EN/222)
C-O-C number	:	QC Level	: NEPM 2013 B3 & ALS QC Standard
Site	:		
Sampler	: RAY LIU		

Dates

Date Samples Received Client Requested Due Date	: 28-Mar-2019 13:40 : 03-Apr-2019	Issue Date Scheduled Reporting Date	: 29-Mar-2019 : 03-Apr-2019
Delivery Details			
Mode of Delivery	: Undefined	Security Seal	: Not Available
No. of coolers/boxes	: 1	Temperature	: 5.1'C - Ice present
Receipt Detail		No. of samples received / analysed	2/2

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- . Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples. .

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL

default 00:00 on		,		/OC/PCB/8 Metals
Matrix: SOIL	Olienteenrijee	Client sample ID	- EA055-103 ure Content	- S-08 BTEXN/PAH/O
Laboratory sample	Client sampling date / time	Client sample ID	SOIL - E Moisture	SOIL - TRH/B
ES1909674-001	25-Mar-2019 00:00	SS1	✓	✓
ES1909674-002	26-Mar-2019 00:00	SS2	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

ACCOUNTS PAYABLE		
- A4 - AU Tax Invoice (INV)	Email	accounts@benvirongroup.com.au
BEN BUCKLEY		
 *AU Certificate of Analysis - NATA (COA) 	Email	ben@benvirongroup.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ben@benvirongroup.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ben@benvirongroup.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	ben@benvirongroup.com.au
- Chain of Custody (CoC) (COC)	Email	ben@benvirongroup.com.au
- EDI Format - ENMRG (ENMRG)	Email	ben@benvirongroup.com.au
- EDI Format - ESDAT (ESDAT)	Email	ben@benvirongroup.com.au
- EDI Format - XTab (XTAB)	Email	ben@benvirongroup.com.au
EMERSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	emerson@benvirongroup.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	emerson@benvirongroup.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	emerson@benvirongroup.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	emerson@benvirongroup.com.au
- Chain of Custody (CoC) (COC)	Email	emerson@benvirongroup.com.au
- EDI Format - ENMRG (ENMRG)	Email	emerson@benvirongroup.com.au
- EDI Format - ESDAT (ESDAT)	Email	emerson@benvirongroup.com.au
- EDI Format - XTab (XTAB)	Email	emerson@benvirongroup.com.au
MICHAEL SILK		
 *AU Certificate of Analysis - NATA (COA) 	Email	michael@benvirongroup.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	michael@benvirongroup.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	michael@benvirongroup.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	michael@benvirongroup.com.au
- Chain of Custody (CoC) (COC)	Email	michael@benvirongroup.com.au
- EDI Format - ENMRG (ENMRG)	Email	michael@benvirongroup.com.au
- EDI Format - ESDAT (ESDAT)	Email	michael@benvirongroup.com.au
- EDI Format - XTab (XTAB)	Email	michael@benvirongroup.com.au
RAY LIU		
 *AU Certificate of Analysis - NATA (COA) 	Email	ray@benvirongroup.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ray@benvirongroup.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ray@benvirongroup.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	ray@benvirongroup.com.au
- Chain of Custody (CoC) (COC)	Email	ray@benvirongroup.com.au
- EDI Format - ENMRG (ENMRG)	Email	ray@benvirongroup.com.au
- EDI Format - ESDAT (ESDAT)	Email	ray@benvirongroup.com.au
- EDI Format - XTab (XTAB)	Email	ray@benvirongroup.com.au

QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: ES1909674	Page	: 1 of 5			
Client	BENVIRON GROUP	Laboratory	: Environmental Division Sydney			
Contact	: MR MICHAEL SILK	Telephone	: +61-2-8784 8555			
Project	: E1100-2 Frenchs Forest DSI	Date Samples Received	: 28-Mar-2019			
Site	:	Issue Date	: 03-Apr-2019			
Sampler	: RAY LIU	No. of samples received	: 2			
Order number	:	No. of samples analysed	: 2			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055)							
SS1	25-Mar-2019				01-Apr-2019	08-Apr-2019	✓
Soil Glass Jar - Unpreserved (EA055) SS2	26-Mar-2019				01-Apr-2019	09-Apr-2019	~
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)							
SS1	25-Mar-2019	01-Apr-2019	21-Sep-2019	<i>✓</i>	01-Apr-2019	21-Sep-2019	✓
Soil Glass Jar - Unpreserved (EG005T) SS2	26-Mar-2019	01-Apr-2019	22-Sep-2019	1	01-Apr-2019	22-Sep-2019	1
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T)							
SS1	25-Mar-2019	01-Apr-2019	22-Apr-2019	~	01-Apr-2019	22-Apr-2019	✓
Soil Glass Jar - Unpreserved (EG035T) SS2	26-Mar-2019	01-Apr-2019	23-Apr-2019	1	01-Apr-2019	23-Apr-2019	1
EP066: Polychlorinated Biphenyls (PCB)							
Soil Glass Jar - Unpreserved (EP066)							
SS1	25-Mar-2019	01-Apr-2019	08-Apr-2019	1	02-Apr-2019	11-May-2019	1
Soil Glass Jar - Unpreserved (EP066)							
SS2	26-Mar-2019	01-Apr-2019	09-Apr-2019	~	02-Apr-2019	11-May-2019	✓
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068)	25-Mar-2019	01-Apr-2019	08-Apr-2019	1	02-Apr-2019	11-May-2019	,
SS1 Dell Olece Lee Hannesen (FD000)	25-Mar-2019	01-Apr-2019	06-Api-2019	~	02-Apr-2019	11-iviay-2019	✓
Soil Glass Jar - Unpreserved (EP068) SS2	26-Mar-2019	01-Apr-2019	09-Apr-2019	1	02-Apr-2019	11-May-2019	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM))							
SS1	25-Mar-2019	01-Apr-2019	08-Apr-2019	~	02-Apr-2019	11-May-2019	✓
Soil Glass Jar - Unpreserved (EP075(SIM)) SS2	26-Mar-2019	01-Apr-2019	09-Apr-2019	1	02-Apr-2019	11-May-2019	1
	20-Widi-2019	01-Api-2019	03-Api-2019	√	02-Api-2019	1 1-1viay-2019	✓

Page	: 3 of 5
Work Order	: ES1909674
Client	: BENVIRON GROUP
Project	: E1100-2 Frenchs Forest DSI

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.	
Method	Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080)								
SS1	25-Mar-2019	01-Apr-2019	08-Apr-2019	1	01-Apr-2019	08-Apr-2019	✓	
Soil Glass Jar - Unpreserved (EP071) SS1	25-Mar-2019	01-Apr-2019	08-Apr-2019	4	02-Apr-2019	11-May-2019	1	
Soil Glass Jar - Unpreserved (EP080)				_		-		
SS2	26-Mar-2019	01-Apr-2019	09-Apr-2019	1	01-Apr-2019	09-Apr-2019	✓	
Soil Glass Jar - Unpreserved (EP071)								
SS2	26-Mar-2019	01-Apr-2019	09-Apr-2019	-	02-Apr-2019	11-May-2019	\checkmark	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions								
Soil Glass Jar - Unpreserved (EP080)								
SS1	25-Mar-2019	01-Apr-2019	08-Apr-2019	✓	01-Apr-2019	08-Apr-2019	\checkmark	
Soil Glass Jar - Unpreserved (EP071)								
SS1	25-Mar-2019	01-Apr-2019	08-Apr-2019	✓	02-Apr-2019	11-May-2019	✓	
Soil Glass Jar - Unpreserved (EP080)								
SS2	26-Mar-2019	01-Apr-2019	09-Apr-2019	✓	01-Apr-2019	09-Apr-2019	✓	
Soil Glass Jar - Unpreserved (EP071)								
SS2	26-Mar-2019	01-Apr-2019	09-Apr-2019	 ✓ 	02-Apr-2019	11-May-2019	\checkmark	
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
SS1	25-Mar-2019	01-Apr-2019	08-Apr-2019	1	01-Apr-2019	08-Apr-2019	✓	
Soil Glass Jar - Unpreserved (EP080)								
SS2	26-Mar-2019	01-Apr-2019	09-Apr-2019	<i>✓</i>	01-Apr-2019	09-Apr-2019	\checkmark	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

Work Order	: ES1909674	Page	: 1 of 9	
Client	BENVIRON GROUP	Laboratory	: Environmental Division	Sydney
Contact	: MR MICHAEL SILK	Contact	: Customer Services ES	
Address	: PO BOX 4405 EAST GOSFORD NSW 2250	Address	: 277-289 Woodpark Roa	ad Smithfield NSW Australia 2164
Telephone	: +61 02 0466 385 221	Telephone	: +61-2-8784 8555	
Project	: E1100-2 Frenchs Forest DSI	Date Samples Received	: 28-Mar-2019	
Order number	:	Date Analysis Commenced	: 01-Apr-2019	
C-O-C number	:	Issue Date	03-Apr-2019	
Sampler	: RAY LIU			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 2			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES	(QC Lot: 2268882)							
ES1909600-055	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	3	7	77.6	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	12	81.8	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	10	17	58.5	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	10	9	10.3	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	<5	<5	0.00	No Limit
ES1909792-032	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	1	1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	10	10	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	39	43	10.2	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	23	25	9.35	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	50	51	2.53	0% - 50%
	EG005T: Lead	7439-92-1	5	mg/kg	15	16	0.00	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	92	82	11.5	0% - 50%
A055: Moisture Co	ntent (Dried @ 105-11	0°C) (QC Lot: 2269583)							
ES1909673-001	Anonymous	EA055: Moisture Content		0.1	%	1.2	1.5	26.3	No Limit
G035T: Total Reco	overable Mercury by Fi	IMS (QC Lot: 2268881)							
ES1909600-055	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1909792-032	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP066: Polychlorina	ated Biphenyls (PCB)	(QC Lot: 2268125)	·						
ES1909674-001	SS1	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
P068A: Organochl	orine Pesticides (OC)	(QC Lot: 2268124)							
ES1909674-001	SS1	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page	: 3 of 9
Work Order	: ES1909674
Client	: BENVIRON GROUP
Project	: E1100-2 Frenchs Forest DSI

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochle	orine Pesticides (OC)(QC Lot: 2268124) - continued							
ES1909674-001	SS1	EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2268122)							
ES1909815-002	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	6.8	5.8	15.6	0% - 50%
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	3.7	3.5	4.65	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	1.8	1.7	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	12.3	11.0	11.2	0% - 20%
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 4 of 9
Work Order	: ES1909674
Client	: BENVIRON GROUP
Project	: E1100-2 Frenchs Forest DSI

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Poly	nuclear Aromatic Hyd	rocarbons (QC Lot: 2268122) - continued							
ES1909674-001	SS1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total P	Petroleum Hydrocarbor	ns (QC Lot: 2268123)							
ES1909815-002	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	28000	27200	2.50	0% - 20%
		EP071: C29 - C36 Fraction		100	mg/kg	3260	3300	1.42	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	4580	4490	2.05	0% - 20%
ES1909674-001	SS1	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total P	Petroleum Hydrocarbor	ns (QC Lot: 2268754)							
ES1909673-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1909827-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	Recoverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 2268123)							
ES1909815-002	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	24700	24200	2.24	0% - 20%
	landinginiouo	EP071: >C34 - C40 Fraction		100	mg/kg	1800	1890	4.89	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	11000	10700	2.47	0% - 20%
ES1909674-001	SS1	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ED080/071: Total E	Pocovorablo Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 2268754)							
EP080/071. Total P			C6_C10	10	ma/ka	<10	<10	0.00	No Limit
ES1909827-001	Anonymous	EP080: C6 - C10 Fraction	_	10	mg/kg	<10	<10	0.00	No Limit
E91909027-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<u><u></u> </u>	0.00	NO LIMIT

Page	5 of 9
Work Order	: ES1909674
Client	: BENVIRON GROUP
Project	: E1100-2 Frenchs Forest DSI

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP080: BTEXN (QC	Lot: 2268754)										
ES1909673-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit		
ES1909827-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit		

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl
EG005(ED093)T: Total Metals by ICP-AES(QCI	Lot: 2268882)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	103	86	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	104	83	113
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	96.9	76	128
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	100	86	120
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	100	80	114
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	105	87	123
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	112	80	122
EG035T: Total Recoverable Mercury by FIMS	(QCLot: 2268881)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	77.3	70	105
EP066: Polychlorinated Biphenyls (PCB) (QCL	.ot: 2268125)							
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	104	62	126
EP068A: Organochlorine Pesticides (OC) (QCL	_ot: 2268124)							
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	103	69	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	99.8	65	117
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	104	67	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	108	68	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	107	65	117
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.9	67	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	87.9	69	115
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	95.0	62	118
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	85.4	63	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.2	66	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	83.3	64	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	85.8	66	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	85.8	67	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.5	67	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	95.4	69	115
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	94.8	69	121
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	104	56	120
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	106	62	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	102	66	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	102	64	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	83.3	54	130

Page	: 7 of 9
Work Order	: ES1909674
Client	: BENVIRON GROUP
Project	E1100-2 Frenchs Forest DSI

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLc	ot: 2268122) - con	tinued						
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	110	77	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	118	72	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	115	73	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	118	72	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	124	75	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	122	77	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	124	73	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	123	74	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	106	69	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	110	75	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	95.4	68	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	105	74	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	109	70	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	88.5	61	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	85.0	62	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	85.3	63	121
EP080/071: Total Petroleum Hydrocarbons (QCLot: 22681	23)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	84.2	75	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	91.6	77	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	99.5	71	129
P080/071: Total Petroleum Hydrocarbons (QCLot: 22687	54)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	82.5	68	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (OCL	ot: 2268123)						1
EP000071: Total Recoverable Hydrocarbons - NEPM 2013 EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	86.6	77	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	101	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	90.9	63	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCLo							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	79.5	68	128
EP080: BTEXN (QCLot: 2268754)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	91.5	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	77.4	67	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	73.8	65	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	84.8	66	118
· ·	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	83.4	68	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	105	63	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2268882)							
ES1909600-055	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	104	70	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.7	70	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	97.6	70	130	
		EG005T: Copper	7440-50-8	250 mg/kg	94.0	70	130	
		EG005T: Lead	7439-92-1	250 mg/kg	94.0	70	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	95.0	70	130	
		EG005T: Zinc	7440-66-6	250 mg/kg	97.3	70	130	
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2268	881)						
ES1909600-055	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	76.7	70	130	
EP066: Polychlorii	nated Biphenyls (PCB) (QCLot: 2268125)							
ES1909674-001	SS1	EP066: Total Polychlorinated biphenyls		1 mg/kg	101	70	130	
EP068A: Organocl	hlorine Pesticides (OC) (QCLot: 2268124)							
ES1909674-001	SS1	EP068: gamma-BHC	58-89-9	0.5 mg/kg	123	70	130	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	81.0	70	130	
		EP068: Aldrin	309-00-2	0.5 mg/kg	107	70	130	
		EP068: Dieldrin	60-57-1	0.5 mg/kg	90.7	70	130	
		EP068: Endrin	72-20-8	2 mg/kg	92.4	70	130	
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	96.1	70	130	
EP075(SIM)B: Poly	vnuclear Aromatic Hydrocarbons (QCLot:	2268122)						
ES1909674-001	SS1	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	104	70	130	
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	112	70	130	
EP080/071: Total P	Petroleum Hydrocarbons (QCLot: 2268123	3)						
ES1909674-001	SS1	EP071: C10 - C14 Fraction		523 mg/kg	91.0	73	137	
		EP071: C15 - C28 Fraction		2319 mg/kg	114	53	131	
		EP071: C29 - C36 Fraction		1714 mg/kg	114	52	132	
EP080/071: Total P	Petroleum Hydrocarbons (QCLot: 2268754							
ES1909673-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	92.5	70	130	
EP080/071: To <u>tal F</u>	Recoverable Hydrocarbons - NEPM 2013 F	ractions (QCLot: 2268123)						
ES1909674-001	SS1	EP071: >C10 - C16 Fraction		860 mg/kg	106	73	137	
		EP071: >C16 - C34 Fraction		3223 mg/kg	118	53	131	
		EP071: >C34 - C40 Fraction		1058 mg/kg	92.3	52	132	

Page	: 9 of 9
Work Order	: ES1909674
Client	: BENVIRON GROUP
Project	: E1100-2 Frenchs Forest DSI

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP080/071: Total Re	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 2268754) - continued						
ES1909673-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	104	70	130	
EP080: BTEXN (QC	:Lot: 2268754)							
ES1909673-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	89.4	70	130	
		EP080: Toluene	108-88-3	2.5 mg/kg	97.3	70	130	
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	86.3	70	130	
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	105	70	130	
			106-42-3					
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	89.2	70	130	
		EP080: Naphthalene	91-20-3	2.5 mg/kg	90.0	70	130	

CERTIFICATE OF ANALYSIS

Work Order	ES1909674	Page	: 1 of 7
Client	: BENVIRON GROUP	Laboratory	: Environmental Division Sydney
Contact	: MR MICHAEL SILK	Contact	: Customer Services ES
Address	: PO BOX 4405	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	EAST GOSFORD NSW 2250		
Telephone	: +61 02 0466 385 221	Telephone	: +61-2-8784 8555
Project	: E1100-2 Frenchs Forest DSI	Date Samples Received	: 28-Mar-2019 13:40
Order number	:	Date Analysis Commenced	: 01-Apr-2019
C-O-C number	:	Issue Date	03-Apr-2019 16:35
Sampler	: RAY LIU		Iac-MRA NATA
Site	:		
Quote number	: EN/222		
No. of samples received	: 2		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)pervlene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero
- EP071: Results of sample SS2 have been confirmed by re-extraction and re-analysis.

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SS1	SS2	 	
	Cli	ient sampli	ng date / time	25-Mar-2019 00:00	26-Mar-2019 00:00	 	
Compound	CAS Number	LOR	Unit	ES1909674-001	ES1909674-002	 	
				Result	Result	 	
EA055: Moisture Content (Dried @ 1	105-110°C)						
Moisture Content		1.0	%	10.6	13.8	 	
EG005(ED093)T: Total Metals by ICF	P-AFS						
Arsenic	7440-38-2	5	mg/kg	<5	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	<1	 	
Chromium	7440-47-3	2	mg/kg	30	9	 	
Copper	7440-50-8	5	mg/kg	10	10	 	
Lead	7439-92-1	5	mg/kg	11	17	 	
Nickel	7440-02-0	2	mg/kg	22	6	 	
Zinc	7440-66-6	5	mg/kg	35	37	 	
EG035T: Total Recoverable Mercur	y by FIMS						
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	 	
EP066: Polychlorinated Biphenyls (PCB)						
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	 	
EP068A: Organochlorine Pesticides	(00)						
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	 	

Page	: 4 of 7
Work Order	: ES1909674
Client	: BENVIRON GROUP
Project	 E1100-2 Frenchs Forest DSI

				SS1	SS2			
	Client sampling date / time			25-Mar-2019 00:00	26-Mar-2019 00:00			
Compound	CAS Number	LOR	Unit	ES1909674-001	ES1909674-002			
				Result	Result			
EP068A: Organochlorine Pesticides	(OC) - Continued							
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2			
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05			
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2			
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05			
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05			
	0-2							
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5			
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5			
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5			
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5			
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5			
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5			
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5			
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5			
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5			
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5			
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5			
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5			
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2			
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		10	mg/kg	<10	<10			
C10 - C14 Fraction		50	mg/kg	<50	<50			
C15 - C28 Fraction		100	mg/kg	<100	<100			
C29 - C36 Fraction		100	mg/kg	<100	120			
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	120			
EP080/071: Total Recoverable Hydro	carbons NEDM 201							

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SS1	SS2				
	Client sampling date / time			25-Mar-2019 00:00	26-Mar-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1909674-001	ES1909674-002				
				Result	Result				
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Continued									
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10				
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10				
>C10 - C16 Fraction		50	mg/kg	<50	<50				
>C16 - C34 Fraction		100	mg/kg	<100	150				
>C34 - C40 Fraction		100	mg/kg	<100	130				
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	280				
 ^ >C10 - C16 Fraction minus Naphthalene 		50	mg/kg	<50	<50				
(F2)									
EP080: BTEXN									
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2				
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5				
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5				
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5				
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2				
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5				
Naphthalene	91-20-3	1	mg/kg	<1	<1				
EP066S: PCB Surrogate	01 20 0		3 3						
Decachlorobiphenyl	2051-24-3	0.1	%	88.9	85.9				
			,,,						
EP068S: Organochlorine Pesticide Su Dibromo-DDE	21655-73-2	0.05	%	90.6	107				
		0.05	70	50.0	107				
EP068T: Organophosphorus Pesticide		0.05	0/	04.0	400				
DEF	78-48-8	0.05	%	94.0	122				
EP075(SIM)S: Phenolic Compound Su		0.5	01		07 -				
Phenol-d6	13127-88-3	0.5	%	93.3	87.7				
2-Chlorophenol-D4	93951-73-6	0.5	%	86.7	82.6				
2.4.6-Tribromophenol	118-79-6	0.5	%	67.9	76.6				
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	0.5	%	98.3	93.2				
Anthracene-d10	1719-06-8	0.5	%	84.7	83.0				
4-Terphenyl-d14	1718-51-0	0.5	%	82.4	77.4				
EP080S: TPH(V)/BTEX Surrogates									
1.2-Dichloroethane-D4	17060-07-0	0.2	%	111	98.4				

Page	: 6 of 7
Work Order	: ES1909674
Client	: BENVIRON GROUP
Project	E1100-2 Frenchs Forest DSI

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			SS1	SS2			
	Client sampling date / time				26-Mar-2019 00:00			
Compound	CAS Number	LOR	Unit	ES1909674-001	ES1909674-002			
				Result	Result			
EP080S: TPH(V)/BTEX Surrogates - Continued								
Toluene-D8	2037-26-5	0.2	%	87.7	92.1			
4-Bromofluorobenzene	460-00-4	0.2	%	95.5	94.3			

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surro	gate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Su	urrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surro	gates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

APPENDIX I: FIELD RECORD FORMS
Site Inspection Daily Worksheet Record

PROJECT NAME: Limited ()	(2 PROJECT NO: 6/100-2
CLIENT: plath	DATE: 25 (03/2019
SITE ADDRESS: 5 Shy Cre	place. Therefes Torget.
SITE CONTACT: Sautis	PHONE: 9404 888 143
REPRESENTATIVE: QL	3
TITLE: C'M (K True Tingle	M PHONE: 0419 583 20
FIELD NOTES:	
Start Time S120	Finish Time 2530PM
Weather Sunuy	Rainfall (mm)
Wind Direction	Wind Speed
Humidity	
Odours Present	Staining Present
Environmental and Safety Concerns	
- One GU (Bug	(GN 3) Zustallin
- Six soil Bore	holeg
Actions	
Site Safety Induction	Stormwater Control
Dust Suppression	Traffic Control
Machinery onsite	Equipment onsite

Site Inspection Daily Worksheet Record

- 1.4

PROJECT NAME: Limber D	
CLIENT: Plattup, C Paul	Mothach) DATE: 25/03/2019
SITE ADDRESS: 5 Sky (he	place .
SITE CONTACT: R Sally	6 PHONE: 0409888143
REPRESENTATIVE: 2L	\$
TITLE: Ciul & Tenes	Fryin PHONE: 0419 540319
FIELD NOTES:	0
Start Time 7:30	Finish Time 3730
Weather Gight taln/Clowy	Rainfall (mm)
Wind Direction	Wind Speed
Humidity	
Odours Present (e)	Staining Present 🕺 🗸
Environmental and Safety Concerns	
- Q OHE GWX	Soil
- eight soll 1	localing
Actions	
Site Safety Induction	Stormwater Control
Dust Suppression	Traffic Control
Machinery onsite	Equipment onsite
	······

APPENDIX J: COUNCIL ACID SULPHATE SOIL MAP

APPENDIX K: SUMMARY TABLES

										-									-				_								_	-		
	Sample	Information				Heavy Me	tals (mg/	'kg)				TRH (m	g/kg)			BTI	EX (mg/l	kg)		I	PAH (mg	/kg)				00	CP (mg/	kg)					ASBESTO	JS
Label	Depth (m BGL)	Date	Soil Type	RSENIC	udmum IROMIUM	DPER	AD	ercury CKEL	AC .	(C ₆ -C ₁₀) ²	(>C ₁₀ -C ₁₆) ³	(C ₆ -C ₁₀)	(C ₁₆ -C ₃₄)	(C ₃₄ -C ₄₀)	ENZENE	DLUENE	HYL BENZENE	OTAL XYLENES	APHTHALENE	:NZO(A)PYRENE	‹RINOGENIC PAHs (as Bap TEC	JTAL PAH APHTHALENE	DT + DDD + DDE	DRIN + DIELDRIN	ILORDANE	IDOSULFAN	IDRIN	PIACHLUK B	ЕТНОХУСНLOR	OXAPHENE DT	OTAL PCB	w/w (AF /FA)	w/w (ACM)	bestos ID
0				Ā	<u>5</u> 5	8	LE	<u> </u>	ZIZ	E	E	E	1 E	F4	8	Ĕ	E	Ĕ	ż	BE	S	P ž		AL	B	Z U		H H	ž	Ĕ	- I	%	%	Asl
BH1 BH2 BH3 BH3 BH4 BH4 BH4 BH5 BH5 BH5 BH6 BH7 BH8 BH7 BH8 BH9 BH9 BH9 BH10 BH11 BH11 BH11 BH11 BH11 BH11 BH12 BH13 BH14 BH15 D1 D2	0.1-0.2 0.2-0.3 2.0-2.1 1.2-1.3 2.9-3.0 0.1-0.2 2.0-2.1 4.1-4.2 0.7-0.8 1.3-1.4 0.2-0.3 0.2-0.3 0.2-0.3 0.2-0.3 0.3-0.4 0.7-0.8 1.3-1.4 0.7-0.8 1.3-1.4 0.7-0.8 1.3-1.4 0.7-0.8 1.3-1.4 0.7-0.8 1.3-1.4 0.7-0.2 0.1-0.2 0.1-0.2 0.2-0.3	26.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 26.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 26.03.2019 26.03.2019 26.03.2019 26.03.2019 26.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 25.03.2019 26.03.2019 26.03.2019 26.03.2019 26.03.2019 26.03.2019 26.03.2019 26.03.2019 26.03.2019 26.03.2019	F - Clayed Silt F - Silty Clay F - Silty Clay N - Silty CLAY F - Clayed Sandstone N - Silty CLAY F - Clayed Sandy Silt F - Clayed Silt F - Silty Clay	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4 9 0.4 9 0.4 11 0.4 23 0.4 8 0.4 23 0.4 8 0.4 60 0.4 10 0.4 11 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 14 0.4 12 0.4 13 0.4 14 0.4 18 0.4 19 0.4 19 0.4 10 0.4 17 0.4 13 0.4 13 0.4 13 0.4 13 0.4 13	13 6 9 5 <1 18 11 1 3 6 9 15 3 <1 23 2 14 7 <1 3 19 12 6 12 12	9 14 16 7 34 12 7 10 12 11 16 10 19 30 12 16 14 14 13 27 5 17 12 9	0.1 5 0.1 6 0.1 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1 4 0.1 3 0.1 4 0.1 3 0.1 4 0.1 4 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 2 0.1 2 0.1 7 0.1 8 0.1 7 0.1 8 0.1 2 0.1 2 0.1 2 0.1 2 <tr tr=""> 0.1<!--</td--><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td> <25 <25</td><td>\$\delta_0\$ \$\delta_0\$ \$\delta_0\$ \$</td><td><25</td> <25</tr>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 <25 <25	\$\delta_0\$ \$\delta_0\$ \$\delta_0\$ \$	<25	50 < 100 50 < 200 50 < 100 50	<100	 <0.2 <0.2<td>$\begin{array}{c} 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\$</td><td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td><td></td><td>a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a</td><td><pre>c0.05 c0.05 c0.05 c0.05 c0.05 c0.05 c0.05 c0.05 c0.05 c0.04 c0.05 c</pre></td><td><0.5</td> <0.5	$\begin{array}{c} 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a	<pre>c0.05 c0.05 c0.05 c0.05 c0.05 c0.05 c0.05 c0.05 c0.05 c0.04 c0.05 c</pre>	<0.5	$c_{0.05}$ <0. $c_{0.05}$ <0. $c_{0.05}$ <0. $c_{0.05}$ <0. $c_{0.05}$ <0. $c_{0.05}$ <0. $c_{0.05}$ <0. $c_{0.05}$ <0. $c_{0.05}$ <0. 0.99 <0. 9.2 1 0.91 <0. 1.3 <0. 0.05 <0. $c_{0.05}$ <0. c_{0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\$	<0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.1 & < 0.1 \\ < 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0.1 & < 0.1 \\ 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 0 0.1 0	1 <0.1	 - <0.001 - -<!--</td--><td><0.01</td><td>- ND - - - - - - - - - - - - - - - - - -</td>	<0.01	- ND - - - - - - - - - - - - - - - - - -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 <25 <25	\$\delta_0\$ \$\delta_0\$ \$\delta_0\$ \$	<25																															
SS1 SS2	-	25.03.2019 26.03.2019	-		<1 30 <1 9	10 10		<0.1 22 <0.1 6	2 35 37	<10 <10		<10 <5	50 <100 50 150		<0.2 <0.2	<0.5 <0.5	<0.5 <0.5			<0.5 <0.5		<0.5 <0. <0.5 <0.						.05 <0.0		- <0. - <0.		-	-	-
	NEPM (20 Fill BH Natural E M (2013) ESLs - (F (2013) ESLs - (Coar NEPM (2013)	3 (2013) HIL B 113) EIL & ESLs ¹ 9 (0.2-0.3m) BH9 (0.6-0.7m) Fine Grain Soil - Cla rse Grain Soil - Cla 9 HSL A & B (CLAY) n to <1m	nd /Gravel) ¹		0.4 1 150 500 410 410	120		0.1 1 120 1,20 40 30			120	25 5	1,300	100 0 5,600 2,800	65	0.5 105 85 480	1 125 70 NL	45 105	1	0.05 0.7 0.7		0.05 0. 400 17	1 0.1 600 0	0.1				.1 0.1 0 15	0.1	0.1 0. 30 18	1	0.001	0.01	0.1
	2m Soil Saturation	n to <2m n to <4m 4m+ <u>Concentration (Csa</u>) HSL A & B (SAND								90 150 290 850	NL NL NL 560				1 2 3 430	NL NL NL 630	NL NL NL 68	NL NL	NL NL NL 10															
	Om 1m Soil Saturation NEPM (2013	n to <1m n to <2m Concentration (Csa 3) HSL A & B (SILT)	at)							45 70 950	240 560				0.5 360	560	NL 64	40 60 300	NL 9															
		n to <1m Concentration (Csa	at)							50 910	280 570							110 330																
	M (2013) Manage	ement Limit (Fine G	Grain Soil)										00 3,500																					
Nepn Notes	NEPM (201 %w/w asbe	nent Limit (Coarse 3) HSL - Asbestos estos for FA and AF for ACM - Resident										700 1,0	00 2,500) 10,000																		0.001%	0.01%	Detected

Table K1

Urban residential / public open space is broadly equivalent to the HIL-A, HIL-B and HIL-C land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7. To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction. To obtain F2 subtract naphthalene from the ×C10⁻C16 fraction. Calculated HSL is Non Limiting per NEPM (2013) Not detected

2 3

NL ND

								<u>Tabl</u>	<u>e K2</u>														
Sample I	Information				Heavy	Metals				TR	RH				BTEX						PAH		
SAMPLE ID	Date	ARSENIC	CADMIUM	CHROMIUM	COPPER	LEAD	MERCURY	NICKEL	ZINC	F1 (C ₆ -C ₁₀) ²	F2 (>C ₁₀ -C ₁₆) ³	BENZENE	TOLUENE	ETHYL BENZENE	M/P-XYLENE	O-XYLENE	NAPHTHALENE	TOTAL-XYLENE	BENZO(A)PYRENE	ANTHRACENE	PHENANTHRENE	FLUORANTHENE	NAPHTHALENE
Benviron G	Group DSI 2018																						
GW1	5.4.2019	1	<0.1	<1	<1	<1	<0.05	18	31	<10	<50	<1	<1	<1	<2	<1	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.2
GWD1	5.4.2019	1	<0.1	<1	4	<1	<0.05	17	30	<10	<50	<1	<1	<1	<2	<1	<1	<1	<0.1	<0.1	<0.1	<0.1	<0.2
GWSS1	5.4.2019	1	<0.1	<0.1	<1	<1	<0.1	16	30	<20	<100	<1	<2	<2	<2	<2	<2	<2	<0.05	<0.1	<0.1	<0.1	<0.1
	solution (LOR)	1	0.1	1	1	1	0.05	1	1	10	50	1	1	1	2	1	1	2	0.1	0.1	0.1	0.1	0.2
Fresh	undwater Investigation Levels Waters ² Iiability (Trigger Values) ³	24/13	0.20	1.00	1.40	3.40	0.06	11.00	8.00			950	- 180	- 80	200 -	350 -			- 0.1	- 0.01	- 0.6	- 1	16 -
	e Water ²	-	0.70	4.40	1.30	4.40	0.10	7.00	15.00			500	-	-	-	-			-	-	-	-	50
	ng Water ⁴	10.00	2.00	50.00	<u>2.00</u>	10.00	1.00	20.00	-			1	800	300	6	00			0.01	-	-	-	-
	PM (2013) HSL A & B (CLAY)																						
	to <4m									NL	NL	5,000	NL	NL	-	-	NL	NL					
	to <8m									NL	NL	5,000	NL	NL	-	-	NL	NL					
	8m +									NL 0.000	NL 2.000	5,000	NL	NL 2.000	-	-	NL 170	NL					
Solub	ility Limit									9,000	3,000	59,000	61,000	3,900	-	-	170	21,000					

Notes

1

2

3

4

All units are in ug/L

Investigation Levels apply to typical slightly-moderately disturbed systems

QSAR derived, statistical distribution method used, 95% trigger values applied as per ANZECC 2000

Investigation levels are taken from the health values of the Australian Drinking Water Guidelines NHMRC 2011

NL Non Limiting

								10	ble	<u>K3</u>																	
Samp	le Information				ALKA	NES				ŀ	ALKENE	S							BEN	ZENE	S					Other	VOC
SAMPLE ID	GME DATE	TETRACHLOROMETHANE (CARBON TETRACHLOR	FRICHLOROMETHANE (CHLOROFORM)	BROMODICHLOROMETHANE	RIHALOMETHANES (TOTAL)	l, 2-DICHLOROETHANE	CYCLOHEXANE	1,1,2-TRICHLOROETHANE	CHLOROETHENE (VINYL CHLORIDE)	TRICHLOROETHENE	CIS-1,2-DICHLOROETHENE	L,1-DICHLOROETHENE	retrachloroethene (pce perchloroethene	CHLOROBENZENE	1,2-DICHLOROBENZENE	L,3-DICHLOROBENZENE	L,4-DICHLOROBENZENE	L,2,3-TRICHLOROBENZENE	L,2,4-TRICHLOROBENZENE	SOPROPYL BENZENE (CUMENE)	SEC-BUTYL BENZENE	L,3,5-TRIMETHYL BENZENE	V-PROPYL BENZENE	N-BUTYL BENZENE	1.2.4 - TRIMETHYLBENZENE	LISOPROPYL TOULENE	HEXACHLOROBUTADIENE
Benviro	n Group DSI 2018		<u></u>		<u></u>					<u></u>			_ <u> </u>		-	-	H	-	-		S	-	2	2			<u> </u>
GW1	5.4.2019	<1	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GWD1	5.4.2019	<1	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GWSS1	5.4.2019	<0.05		<0.1	<0.1	<0.1	-	-	<0.3	<0.05	<0.1		<0.05	<0.1		<0.1				-	-	<0.05		-	<0.05	-	<0.04
	of Resolution (LOR)	1	1	1	1	1	1	1	10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	roundwater Investigation Levels																		0.5								
	esh Waters ²	NV	NV		-	NV	NV	6,500	NV	NV	NV	NV	NV	NV	160	260	60	3	85						NV		NV
Ма	rine Waters ²							1,900									60		20								
Marin	e Low reliability									330.00																	
Fresh Water Low rel	iability (Trigger Values -99%) ^a		370		-																						
Fresh Water Low rel	iability (Trigger Values -95%) ^b				-					330										30							
Drir	nking Water ⁴	3	3		250	3			0.30		60	30	50														
	eening Levels (RSLs) May 2016																										
US EPA MCLs ^c							NV													NV	NV	NV	NV	NV	NV	NV	
US EPA Tapwater ^d							13,000														2,000					NV	
Notes 1 2 4 - - a: b: C:	All units are in ug/L Investigation levels apply to typical slight Investigation levels are taken from the he NV - no derived value " - " Not Tested QSAR derived, statistical distribution met US EPA Region 9 RSL (MCLs) utilised in ab	ealth value hod used, hod used,	es of the A 99% trigg 95% trigg	Australian ger value ger value	Drinking applied a applied a	as per ANZ as per ANZ	uidelines N ZECC guidel ZECC guidel	ines for slig	ghtly-mo ghtly-mo	derately d	isturbed s	, stems		<u>IL</u>							2,000	120		1,000			<u> </u>

APPENDIX L: COUNCIL RECORDS

	ACTIO		OR	D		P. F	431	1/5			/	
STREE	T No.		ST	REET	SA	y 11	ie Pl		Fro.		-	
LOT No	·				·····		· • • • • • • • • • • • • • •	5080HB /		16.11	* \$ /	eres
	۹	••••					····.		• • • • • • • •	• • • • •	· /	•••••
· · · · · · · · · · · · · · · · · · ·	SMENT No	D(0 NO	T LEAV	UILDIN	G IN ST	RONG SUNLI					
RELAT	TEO FILES PEIZ	96]F	15	-16			TIME PERIOD			7	<u>a</u> .	
					SERS		ASE NOTE	· · · · · · · · · · · · · · · · · · ·		<u> </u>	Ppri	84
A TO	D TRANSFER A FILE TO ANOTH	ER B TO REC	RETURN			0 10	HAVE FILE RESUBM		FINISF	LE IS NO	T TO LEAN	64
•	Place your mitials in "Initials" column	2.	Complete	e "Iniliais" c • "Date relu			Compjete "Initials" co Place date required in column.		GENTR	A:		UT THE C
	Place name of officer to whom the file is to go on the next line) 3. 5	Send Ille	" column. to Cenical F irs are cefere			Send file te Central A		G. THIS FI	LE IS TO	BE RETUR	NED TO
	Place date in "Date" column Note transfer on your transfer slip	inda COT	cators, E esponse	ach lism of nce will have		FR CC	PERS ARE NOT BE RE OM THIS FILE WITHO INCURRENCE OF THE	ИТТЫГ 上	PRESE	NT ACTIO	IN IS COM	H Cze 2
<u> </u>	FOR ACTION			TION TA	VEN.	·M/	NAGER.	%	PURPO	SES.	BE HELO I	NCE
Folig	Reterred Tp	On	INITIALS	DATE	RESUB.	Faliq		ACTION		AC	TION TA	KEN
	1.0	Date		RECORDS	DATE		Reterrep		On Date	INSTIAL		PESUB
R	T. D. C. I	12.6	· · · ·		<u> </u>	0	ARCITINE	<u>= S</u>	1.3/8			1.1
 -	P. GATTENB-1	10/2/57	We.	265	, · -	下:	KA ·	·		12	POLY	8
TAT	1		ee .	1-1-1-	ľ	1.			ļ	<u> ;</u>		
<u>***</u>		126	- <u>-</u>			X.			<u>-</u> -		1	
	1 Totaler	2, 1	₩.	.*		 	1					
	C (AL D	26/Z	no	·					<u> </u>			
1	Jep.s	16/3	12				1			<u> </u>	 -	1
C.B	Por De	24/2					· · · ·			<u> </u>	+	
		23	1, 7			1					╂───	
	P	ie · k	i.	10-2-1			····			<u> </u>		
. K	them 1	40			1				<u> </u>		<u>+ ~ ~ ~</u>	1
·	Gua-	Insal	m	7							<u> </u>	
<u>`</u> V	Tles	37/5	2		/							1
	<u> </u>	<u></u>	2/							1		
	- Telanson	<u>16</u>	W)	<i>I</i> .							ļ	1
	Al Compete	16	Ki l	1.7							ļ	
	s. Kipiovich		KK I	46/81				··				
	rorown 9	687(7.68					!		· ·	ק. ד.
L I	- Los -		20	10/10/						<u>.</u>		
	2 Sctart 1	9245	5	128. 9k		• • • • •		··· ·· · ··· 				1
	Brown 4	047	t_{i}^{2+}	tat				+		-,	 	- Çu
<u>A</u> R P	Grient.	140/14	Z,	ISM	and the second	- :	te este any este a		······································		ē,	6
<u> </u>	Internet -	1 84.	UK,	יין בין ייז ו	· · · · ·			· · ·		,		\mathbf{N}
<u><u>R</u></u>	Dy	dist	Ço				n 4 - , - , . , . , . , . , . , . , . , . ,				 ,	0
	Y TSEMB'S	16 hr	S.S.	9-1.89			••••••••••••••••••••••••••••••••••••••		 - 1.			
ر سند مرد	h'ILSON	3/8 9	MO.				····	MAKE	JP NEW		· · : []	
- Jil	Mr. hate-	14	men	14/89		L.		FILE COV	ER NO	N		
_K17.	ľ	3.8 AJ	· · · · ·	-		Į	and the second second					
l		***	FIL	ES Ballan	Ľ					5		
									\mathbf{F}_{i}			if c
			111111 (220)	 	(414)							
				力学					<i>v</i>		, and a second se	
and the second	and the second	4		1.5654	19 Marca	a a star a star Se a star a star Se a star a star	All a fills of the second s	~)				
					24					- <u>, ,</u>	1	
					0	C M	SN.			Υ.	:	1
			/	H	SH	IRE	CLEP	<u> </u>		.	~_/	/

19/00.

Gr Gr 1 24.3×17.9 = 434.97 6.3×5.9 <u>= 37:17.</u> = 46.2 3.52 13.2 10.56 10.01 - 8.4. 3.5×2.4 16.96 4.06 10.3× 4.1 = 42.23 - 4.06 - 413.95 6.2x ? 43.4 38 88 16.8×36 ---2}----10 * 4.2 42 7.1×7.8 = 55.38 4.1 × 3.6 14.76 328.42 = (24 89) 25 paces -74-6-43 (24.75) 251 space 8 742 37 Waxehouse 31.4×11.4. = 357.96 = 132.48 7.2× 18.4 - 60. -----430:44 + 29 58 14.3×6 + 85.8 11.17 = 111 12.6 558.421 (361) sparces regid (35.9)

2 milling (8·5·01 Alen . each and beta 270 خرر of wellede in calon) (96.2) · sonoels 4 16.211 29.4 1.1×2.5 9.6 9.1-29 SIXT 9 1.5 2.1 8.32 0. 2 × 6. 2 6.8 ۰. P.E × 8.2 76.01 5.1 2.6 8. 81 C.8×9.1 76.51 20.12 3.5 × 8 E 6.08 90.7 2.91 5.47 79.5 7. 95.01 -xh-c 4.9 751

• • • line A. <u>consert</u> <u>gr. Fl. 983 (150. 10), Fl 413 (130</u> <u>cors rog'd. 19.66</u> <u>13.76</u> Gtotal 34 (33.42) car spaces right <u>current proposal</u> gr.fl. 557 office 1/30 (st.fl. 413 1/30 426 warehouse 1/50 <u>Scarsrag</u>d 18:57 13.76 <u>8:52</u> 27:09 5_total______ total______ total______ 37 car spaces are provided in 4 deficient spaces.

floor area, <u>.</u> LU × 24 576. . ._ ___. = 15 .1..... 557 1/50 = 11.14 if accessed as showroom 18.56 if an eccesed as office: _____ -------- ---_____ _____ _____ ----

WARRINGAH SHIRE COUNCIL

• 1

5811

INSTRUCTION TO SOLICITOR Wilshire Webb Son & Doyle.
MATTER Appeal to the Land & Environment Court against conditions 28 & 32
of Development Consent No. 86/113 dated 16th April, 1986.
Lot A, F.P. 327468, Lot A, F.P. 391811 & Part Lot A, F.P.391810,
proposed Lot 15, Frenchs Forest Road East, Frenchs Porest.
PAPERS FORWARDED (. 12 / 9 /19 86) Council File PF:1796/Locs 15 & 16.
······································
INSTRUCTIONS (
1. Attend callover at Land & Environment Court on 30.9.86 at 9.00a.m.
2. Defend appeal on Council behalf as required.
· · · · · · · · · · · · · · · · · · ·
······
· · · · · · · · · · · · · · · · · · · ·
PF"1796/Lots 15 & 16. FILE NO.
INITIATING OFFICER Mr. Steven Evans. Town Planning Branch. 982-0374
INITIATING OFFICER
•••••••••••••••••••••••••••••••••••••••
1 ploto
SHIRE CLERK

,

.

: · · :

.

۰, , з÷

••• ,

.

١

Her."

• • • ł

1, 2

H. Wilshire Webb, Son & Doyle

SOLICITORS

140 SUSSEX STREET, SYDNEY 2000

Telephone: 29 3311 D.X. 298 Also at Mann Street, GOSFORD

OUR REF: NDH:DP5811 YOUR REF:

20th November, 1986

John Hamilton Hughes, Solicitor DX 10582 NORTH SYDNEY

Dear Sir,

RE: Warringah Shire Council ats Colin Graham, Alcock, Giles Tribe Pty. Limited

We confirm, following our discussions that Council officers are prepared to recommend to the Council that the proceedings be resolved on the following basis:-

- 1: Appeal No. 10452 of 1986 Consent Orders enclosed.
- 2: Your client to provide a cheque in favour of the Council for the total sum of \$18,828.00 and the Council to return the two Deeds of Guarantee submitted to the Council under cover of your letter dated 30th July 1986.
- 3: Appeal No. 20616 of 1986 Consent Orders enclosed.
- 4: Council to provide a cheque to Leda Holdings Pty. Limited in the sum of \$2,801.00 being the Council's agreed proportion of fees of K. R. Stubbs & Associates Pty. Limited in respect of drainage design.

We note your advice that your client accepts the resolution of the proceedings on this basis and the matter will be reported on to a meeting of the Development Unit of the Council for authority to effect the proposed settlement tomorrow morning.

The writer will appear before the Registrar at 2pm in respect of proceedings no. 20616 of 1986 and will inform the Registrar that both matters are settled subject to ratification by the meeting of the Development Unit and request that both proceedings be listed for mention only before an Assessor of the Court on Monday morning.

Yours faithfully, H. WILSHIRE WEBB, SON & DOYLE

H. WILSHIRE WEBB NEIL D. HOWIE G.D. GERSBACH I.E. WOODWARD

H. Wilshire Webb, Son & Doyle

SOLICITORS

140 SUSSEX STREET, SYDNEY 2000

Telephone: 29 3311

D.X. 298

OUR REF: NDH:DP YOUR REF:

GOSFORD

Also at Mann Street,

PF 1796/Lots 15 & 16

The General Manager, Warringah Shire Council, FILE	SHIRE COUNCIL 19th November, 1986 NOV 1500 = 3.30pm by <u>Courser</u> . 5.50 hoon <u>PF 1796 /15</u> 16
---	---

ATTENTION: Mr. D. Johnson

Dear Sir,

RE: Instruction No. 5811 - Colin Graham, Alcock, Giles Tribe Pty. Limited - Lot 15 Frenchs Forest Road East, Frenchs Forest - Appeal to the Land & Environment Court

Further to our telephone conversation with Mr. Johnson this morning we now enclose the following:-

- Letter to John Hamilton Hughes, Solicitor of todays 1: date.
- Consent Orders for Appeal No. 10452 of 1986. 2:
- Consent Orders for Appeal No. 20616 of 1986. 3:

It is proposed that the matter be mentioned before an Assessor of the Court on Monday morning to enable the Consent Orders to be made and for the Council to receive a cheque for the total sum of \$18,828.00. It will be necessary for the Council to provide to the applicant:-

- A cheque in favour of Leda Holdings for the Engineering a) fees of \$2,801.00 or alternatively a letter in the same terms as referred to in our letter to the Solicitor for the Applicant.
- **b**) The original guarantees enclosed with the letter from the Solicitor for the Applicant dated 30th July 1986.

Yours faithfully, H. WILSHIRE WEBB, SON & DOYLE

encl.

DJis lette ho rwebs sat n

H. WESHIRE WEBB NEIL D. HOWIE G.D. GERSBACH LE. WOODWARD

IN THE LAND AND ENVIRONMENT COURT OF NEW SOUTH WALES
No. 10452 of 19 86
COLIN GRAHAM, ALCOCK, GILES TRIBE PTY. LIMITED Applicant
WARRINGAH SHIRE COUNCIL
CONSENT ORDERS

BY CONSENT: -THE COURT ORDERS: -

2:

3:

1: The Appeal be upheld.

Condition 28 of Consent No. 86/113 dated 16th April 1986 as modified on the 16th July 1986 be amended by the deletion of the amount of "\$32,500.00" therein appearing and the substitution in lieu therefore of the amount "\$16,500.00".

Condition 32 of Consent No. 86/113 dated 16th April 1986 as modified on the 16th July 1986 be amended by the deletion of the sum "\$31,044.00" therein appearing and the substitution in lieu therefore of the figure "\$2,328.00".

There be no order as to costs.

ORDERED:

4:

BY THE COURT

E. C. IRWIN REGISTRAR

Solicitor for the Respondent

H. WILSHIRE WEBB, <u>SON & DOYLE</u> Solicitors, 140 Sussex Street, Sydney. NSW 2000. TEL: 29 3311 DX : 298

REF: NDH

Solicitor for the Applicant

AK/	THE	L	AND	AND	
BNV	IRONME	NT COU	JRT C	OF NEW	
SOU	TH WAL	25			•
No.	20616	of 19	86		
			• -		

LEDA HOLDINGS PTY. LIMITEDApplicant

WARRINGAH SHIRE COUNCIL

BY CONSENT: -THE COURT ORDERS: -

The Appeal be upheld.

Condition 29 of Building Approval no. 1862 of 1986 dated 30th July 1986 be deleted and the following substituted in lieu therefore:-

"29. The metal tray sheeting/roofing to be permanently treated with an anti-glare finish."

There be no order as to costs.

3:

1:

2:

CONSENT ORDERS

ORDERED:

BY THE COURT

E. C. IRWIN REGISTRAR.

H. WILSHIRE WEBB, SON & DOYLE Solicitors, 140 Sussex Street, Sydney. NSW 2000.

TEL: 29 3311 DX : 298 REF: NDH Solicitor for the Applicant

Solicitor for the Respondent

H. Wilshire Webb, Son & Doyle

SOLICITORS

140 SUSSEX STREET, SYDNEY 2000

Telephone: 29 3311

D.X. 298

GOSFORD OUR REF. NDH: DP

Also at Mann Street,

YOUR REF: PF 1796/Lots 15 & 16

	WARRINGAH SHIRE COUNCIL 	19th November, 1986
Civic Centre, Bittwater Boad	20 NOV 1986 REF. TO: D. Johnson FILE WITH: D. Johson 15/ FILE NO. PF 1796/1455	MARGENT ENTION: Mr. D. Johnson

Dear Sir,

RE: Instruction No. 5811 - Colin Graham, Alcock, Giles Tribe Pty. Limited - Lot 15 Frenchs Forest Road East, Frenchs Forest - Appeal to the Land & Environment Court

We enclose a copy of a Statement of Evidence filed on behalf of the Applicant by Mr. C. R. Pickering, Chartered Engineer.

We confirm our advice that this afternoon after a number of discussions the Applicant advised that he was prepared to resolve the appeals on the following basis:-

- 1: The contribution under Condition 28 be \$16,500.
- 2: The contribution under Condition 32 to be the amount of \$2,328.00
- 3: The Applicant to pay the fees of the Engineer for drawing the drainage design to the extent of its proportion of the total costs of drainage.
- 4: The Council to agree to the modification of Condition 29 of the building approval as requested by the Applicant.

We have already received verbal instructions from Mr. Seagg of the Health and Building Department that Council will consent to the modification of Condition 29 of the building approval.

As discussed with Mr. Johnson, we confirm our advice that the costs of the hearing of the appeals which are listed for two days would amount to at least an additional \$2,000 even if Council succeeded in obtaining the full amount of drainage contribution

H. WILSHIRE WEBB NEIL D. HOWIE G.D. GERSBACH I.E. WOODWARD

. ---

calculated on proportions of the areas of the catchment which is presently assessed in the sum of \$19,500 for the subject land. Whilst the applicant by its offer must be conceding its considerations that Council has good prospects of succeeding, the circumstances of the earlier subdivision approval provides an arguable basis for the Applicants claim that the Council should not receive a further drainage contribution over and above the works carried out at subdivision stage.

In the circumstances we would recommend that we be instructed as a matter of urgency to settle the proceedings on the basis that conditions 28 and 32 be amended as offered by the Applicant and that the total amount of \$18,828 be paid with the guarantees being returned to the Applicant. In addition Council to pay the Applicant or to the Engineer the sum of \$2,801 in respect of the account from the Engineer to the Applicant in the sum of \$3,754.00.

Yours faithfully, H. WILSHIRE WEBB, SON & DOYLE

encl.

N450/St.

K.A. BTUBBE & ABSOCIATES PTY.LTD.

STATEMENT OF EVIDENCE

C.R. PICKERING B. Sc.Eng. (Civil), M.I.E. Aust.

LEDA HOLDINGS PTY. LTD. V WARRINGAH SHIRE COUNCIL

RE: Lot 15 Frenchs Forest Road East, Frenchs Forest

Condition Appealed against:-

(28) "The applicant is required to contribute a sum of \$32,500 towards the extension of the piped drainage system in Frenchs Forest Road to this and property. This contribution is to be paid prior to building approval."

The former Drive-In-Theatre site was subdivided for Industrial Development.

2. Stormwater drainage works and roadworks were constructed as part of the subdivision to Council's satisfaction.

3. The stormwater drainage works included provision for connection of Lot 15 (375mm dia. pipeline constructed from system in Frenchs Forest Road and provided with a pit within Lot 15 for future connection).

The stormwater works connected to an existing Council system which conveyed stormwater to the northern side of Frenchs Forest Road and thence generally in a northerly direction through a residential estate.

5. Construction of the stormwater works commenced in September, 1985.

Prior to this construction commencing (November, 1984) 6. Council approved a stormwater design some 160 metres to the west of Lot 15 within Frenches Forest Road which made provision for the upstream catchment which included Lot 15.

The average co-efficient of runoff for Lot 15: -7.

- a) Prior to subdivision -- 0.86
- b) Subsequent to development -- 0.83

The time of concentration for Lot 15:-

- a) Prior to subdivision -- 6 min.
- b) Subsequent to development -- 6 min.

C.R. PICKERING

8.

Chartered/Engineer 17. 11. 86

H. WILSHIRE WEBB NEIL D. HOWIE G.D. GERSBACH I.E. WOODWARD

H. Wilshire Webb, Son & Doyle

SOLICITORS 140 SUSSEX STREET, SYDNEY 2000

Telephone: 29 3311

D.X. 298

Also at Marca Street, OOSFORD

OUR REF: NDH:DP YOUR REF:

PF 1796/Lots 15 & 16

14th November, 1986

The General Manager, Warringah Shire Council, Civic Centre, Pittwater Road, DEE WHY

WARRINGAM BAIRE COUNCIL - CLAL HE WE UNDS -JT NOV 1900 C. Seage REF. TO: FILE WITH D Johson 15/9/86 15/16 FILE NO. PF 1796/5. ATTENTION: Seagg Mr

Dear Sir,

Instruction No. 5811 - Colin Graham, Alcock, Giles Tribe Pty. Limited - Lot 15, Frenchs Forest Road East, Frenchs Forest - Appeal to the Land & Environment Court RE:

We refer to our letter dated 13th November, 1986 addressed to Council (Mr. D. Johnson).

We now enclose the following:-

1:

- Copy Class 2 Application to the Land & Environment Court of New South Wales returnable at 2pm on 20th November, 1986 appealing against condition 29 of the building approval requiring a colour bond roof.
- Notice of Motion returnable at the same time seeking 2: that Class 2 appeal be heard with the Class 1 appeal.
- 3:

encl.

Affidavit by Mr. Hughes sworn 13th November, 1986.

Would Council please provide us with an instruction to appear on the Notice of Motion and, if appropriate, to defend the appeal or take any action necessary protect Council's interests in the appeal.

If the Council has no objection to an appropriate modification to condition 29 of the building approvel would Council please advise the wording of an appropriately modified condition 29.

Council's urgent instructions by no later than Tuesday morning is requested to avoid unnecessary costs being incurred.

Yours faithfully, H. WILSHIRE WEBB, SON & DOYLE

H. WILSHIRE WEBB NEIL D. HOWIE G.D. GERSBACH I.E. WOODWARD

H. Wilshire Webb, Son & Doyle

SOLICITORS

140 SUSSEX STREET, SYDNEY 2000

Telephone: 29 3311

D.X. 298

Also at Mann Street, GOSFORD

NDH: DP5811 YOUR REF:

13th November, 1986

John Hamilton Hughes, Solicitor, DX 10582 NORTH SYDNEY

Dear Sir,

RE: Warringah Shire Council ats Colin Graham, Alcock, Giles Tribe Pty. Limited (Leda Holdings Pty. Limited) Lot 15, Skyline Place, Frenchs Forest

We refer to our telephone conversation on Wednesday 12th November.

We confirm our advice that in respect of condition 28 of the Consent as modified, on checking the calculation of the contribution required by Council for the purposes of the hearing of the appeal, the amount now required is the sum of \$21,667.00, that is approximately one third of the estimated costs of the drainage works in the sum of \$65,000.00.

In respect of condition 32 we are also instructed that the Department of Main Roads have now advised that there will be no requirement for signal control at the junction of Frenchs Forest Road East and Skyline Place. The Council now seeks a contribution in respect of Lot 15 in the sum of \$2,328.00 in respect of contribution for works required to protect the local road systems from through traffic intrusion, namely Frenchs Forest Road West and Romford/Iris/Tristram Roads.

.....

Yours faithfully, H. WILSHIRE WEBB, SON & DOYLE

H. Wilshire Webb, Son & Doyle

SOLICITORS

140 SUSSEX STREET, SYDNEY 2000

Telephone: 29 3311

Also at Mann Street, GOSFORD

D.X. 298

WARBINGAN SHIRE COUNCIL - CENTRAL RECONDS -

1 4 NOV 1986 REF. TO: D. Johnson

FILE NO. PF1796 Jo

FILE WITH: D. Johnson 15/9/86

OUR REF. DP

YOUR REF: PF 1796/Lots 15 & 16

13th November, 1986

ATTENTION: MR D JOHNSON

The General Manager, Warringah Shire Council, Civic Centre, Pittwater Road, DEE WHY

Dear Sir,

Instruction No. 5811 - Colin Graham, Alcock, Giles Tribe RE: Pty. Limited - Lot 15, Frenchs Forest Road East, Frenchs Forest - Appeal to the Land & Environment Court

We confirm our earlier advice that the appeal against conditions of development consent under Section 97 of the Environmental Planning and Assessment Act has been listed for hearing on Monday 24th November and Tuesday 25th November, 1986 before an Assessor of the Court.

The appeal is against conditions 28 and 32 of Development Consent no. 86/113 dated 16th April 1986 as modified in the form of modified development consent dated 16th July 1986. The stated position of the applicant is that it seeks the deletion of each condition.

We have also been informed yesterday by the Solicitor for the applicant that the applicant also intends to lodge a Class 2 building appeal against the imposition of a condition of building approval requiring a colour bond roof to the development. We further understand that the applicant intends filing and serving a Notice of Motion seeking that the Class 2 appeal be heard at the same time as the class 1 appeal relating to conditions 28 and 32.

We comment separately on the issues raised by conditions 28 and 32.

Condition 28 - drainage of the site to the public stormwater drainage system in Frenchs Forest Road East The relevant conditions of Consent 86/113 dated 16th April 1986 are as follows:-

1:

1

Condition 14 requiring the connection of roof and site drainage to Council's underground stormwater system from a pitt within the property boundary by means of a RCP of 375mm minimum diameter.

- 2: Condition 18 requiring the submission of Engineering plans including stormwater run off calculations and details of proposed structures etc. to be approved by the Engineers Department.
- 3: Condition 19 requiring, inter alia, construction of drainage works within the road reserve to comply with Council's specifications.
- 4: Condition 22 requiring stormwater from the property to be piped by gravitational means to Council's stormwater system and to the satisfaction of Council's Engineer.
- 5: Condition 28 requiring the applicant to address in the Engineering plans the adequacy of the two public stormwater drainage systems to which the site presently drains and the need for drainage amplification and the provision of the extension of the public stormwater system in the southern side of Frenchs Forest Road East.
- 6: Condition 29 requiring the design of internal drainage to give consideration to reducing and detaining the rate of stormwater run off from the site.

Following a request for the "deletion and/or modification of condition 28" from Leda Holdings Pty. Limited in a letter dated 28th May 1986 the Council on the 16th July, 1986 issued a modified form of Consent amending condition 28 to require a contribution of \$32,500.00 towards the extension of the pipe drainage system in Frenchs Forest Road to the property to be paid prior to building approval.

The basis for the request for deletion and/or modification of condition 28 by the applicant was on the grounds:-

- a) The Council had a responsibility to ensure that the public stormwater system on the southern side of Frenchs Forest Road East was available to the site as a condition of the subdivision approvals.
- b) The development will not increase the amount of stormwater run off from the site from the amount of run off from the site in its condition at the time of subdivision that is with a bitumen tarmac surface in fact there may be a reduction in the amount of stormwater run off from the site as a result of the development.

- 2 -

Andition 28 and the associated conditions in the Consent dated 16th April 1986 required the developer to carry out the design and construction of drainage works which pursuant to condition 28 could include the need for drainage amplification and the provision of the extension of the public stormwater system on the southern side of Frenchs Forest Road East with the design and construction to be to the satisfaction of Council's Engineer. The modified condition 28 (16th July 1986) provided the other option of the applicant paying a contribution to the Council towards the extension of the drainage system in Frenchs Forest Road East.

condition 28 in its original form Section 91(3)(f) As to authorises the imposition of a condition requiring the carrying out of works (whether or not being works on the land to which the application relates) relating to any matter referred to in Section 90(1) applicable to the development the subject of the Consent. The carrying out of works from the land to the public drainage system and the amplification of the public drainage system would be a head of consideration under Section 90(1)(b)(h)(1)(o) and possibly (q) and (r). The test of the validity of such a condition has on a number of occasions been stated by the Courts to be that the condition must be for a planning purpose; it must fairly and reasonably relate to a development; and it must be reasonable.

As to condition 28 as modified Section 91(3)(h) authorises a condition to be imposed under Section 94 which permits, relevantly, the payment of a monetary contribution towards provision or improvement of amenities or services. For the subject matter the section requires:-

- 1: That the proposed development is likely to require the provision of or increase the demand for additional drainage in the public system or amplification of the existing drainage system.
- 2: In all the circumstances of the case it is reasonable to impose a requirement for a monetary contribution.
- 3: That the contribution sought by the Council is , reasonable in all the circumstances.

Whether or not the works are to be carried out by the applicant or a contribution is to be paid essentially the same considerations apply as to a sufficient nexus between the development and the required works and that the extent of the works required are reasonable. In any event it would appear that the applicant and Council prefer a contribution and it is probable on the hearing of the appeal that the issues will relate by agreement to the modified condition requiring a contribution.

From our discussions with Mr. D. Johnson we understand that Council has assessed a contribution on the following basis:- 1:

۲. ال

At the time of development consent and subdivision approval under Part XII of the Local Government Act for the subdivision Council required Skyline Place to drain to a pit on Frenchs Forest Road adjacent to the pathway to the north and approximately one third along the frontage of the subject land from Skyline Place. These works were constructed. Whilst it is clear that it now appears that approximately two thirds of the area of the subject land could not reasonably have been expected to drain to that pit the considerations at the subdivision stage in respect of drainage related to undeveloped land.

2:

- Whether or not at the time of subdivision approval it was appropriate for the two thirds section of the area of the land to drain its surface waters to the street table the development of the land for the erection of buildings and construction of hard surface areas and the consequent construction of a formal drainage system at the very least increased the concentration of waters whether or not it can be demonstrated that such development increased the volume of waters from the land in its undeveloped state.
- 2: The present system of public drainage along the northern pathway, inter alia, from the pit adjacent to the frontage of the subject land is presently inadequate.
- 3: The development of the subject land generates a requirement for the construction of a further pit nearer the western boundary of the subject land on Frenchs Forest Road East and for the construction of 375mm piping to this pit and to link this pit with further existing pits on Frenchs Forest Road East to the west of Nandi Avenue which in turn link to an existing drainage system which is adequate to take all necessary drainage from the public system; from the subject land; and other lands in the catchment area.
- 4: Over and above the requirements of the drainage of the subject land Council sees a necessity for the pipe to be 675mm width to accommodate the additional drainage through the public system from the relevant catchment which includes Skyline Place and Lots 11 and 12 and part of Frenchs Forest East.
- 5: The required contribution towards the construction of the additional pit, the installation of the piping to 675mm, the upgrading of the two further pits to connect with the drainage system west of Nandi Avenue can be based on the relevant areas of the lands within the catchment.

The catchment is identified as Lots 11 and 12 (the Hooker land) representing 42% of the total catchment area, the public roads consisting of part of Frenchs Forest Road East and Skyline Place representing 14% and the subject land representing 45%. In respect of the subject land as one third of the area as a result of the construction of drainage for Skyline Place drains to Skyline Place, this area should not be included in the contribution leaving a net area of 30% for the subject land of the total area of the catchment for assessment of contribution.

- 7:
- The catchment plan prepared by Ledingham Hensby Oxley & Partners Pty. Limited in addition to the areas referred to also identifies land to the west of the subject land as being included within the catchment area. These lands to the west already drain adequately to the existing drainage system to the west of Nandi Avenue and do not require any additional drainage to the proposed drainage works to connect the catchment area identified by the Council.

÷

;;

- 8: The Council identifies the cost of the applicant carrying out those works arising solely from the development (i.e. the construction of the additional pit and the construction of a 375mm pipe) as being approximately \$35,000. The cost of the works proposed by the Council is approximately \$65,000. This figure has been confirmed by calculations prepared by the applicant's Engineers in a sum of about \$75,000. (These calculations should be available on the hearing).
- 9: The Council now assesses the contribution required at 30% of \$65,000 that is \$19,500.

We consider that the Council has reasonable prospects of obtaining a contribution in the sum of \$19,500 provided the above matters can be established in evidence and there is no dispute as to the adequacy or otherwise of the two systems or as to the cost calculation.

Condition 32 Traffic Management Contribution

Condition 32 as imposed on the 16th April 1986 required prior to the issue of building approval a Bank guarantee for the sum of \$31,044.00 to cover the cost of carrying out road works associated with traffic management on the relevant streets and the installation of traffic signals at the access point to Frenchs Forest Road if such were considered by Council to be required for the development of the land. The condition was modified on the 16th July, 1986 so as to require the lodgment of the guarantee prior to completion of the development and occupation following a request from the applicant that the guarantee be provided prior to the issue of a Section 317A Certificate (letter dated 12th June, 1986). The condition, in effect, is a condition imposed pursuant to Section 94 of the Act requiring a monetary contribution and depends for its validity upon the considerations arising from that Section.

Since the condition was imposed the Department of Main Roads has advised that there will be no requirement for signal control at the junction of Frenchs Forest Road East and Skyline Place. The contribution therefore relates to works required to protect the local road systems traffic management.

We would ask that Mr. Hewitt amplify his memo of 11th November, 1986 to establish the following matters:-

- 1: In what way is it said that traffic from the subject land may lead to a requirement for additional works to be carried out on the local road systems.
- 2: What are the precise works to be carried out.
- 3: What is the approximate costing of these works as presently known.
- 4: What stage in the planning process have these works reached and can it be said that it is more likely than not that these or at least works of a similar standard and cost will be constructed. What is the estimated date for construction of these works.
- 5: How is responsibility for these works allocated to the subject land.
- 6: The calculation leading to the conclusion that a contribution of \$2,328 for the subject land is required should be detailed.
- 7: All relevant policies or resolutions of the Council and any other traffic authorities or committees should be detailed to establish that the Council is undergoing a consistent and co-ordinated process of seeking contributions for development of this nature to the uprading of the local street system which can be said to be fair and equitable in its application to development.

Generally

We note that under cover of a letter dated 30th July, 1986 from the Solicitor for the applicant two deeds were provided to Council signed under common seal by Leda Holdings Pty. Limited and Citibank Limited which in effect provided the necessary guarantees sought by the Council pursuant to modified conditions 28 and 32. We have given consideration to whether as a result of the provision of these deeds the applicant is "dissatisfied with

the determination of the consent authority" pursuant to Section 97 of the Act. We are of the opinion that the Court would hold that the delivery of the deeds of guarantee to the Council was subject to Council accepting the implicit condition in the letter from the Solicitor of that date to the effect that appeals were to be lodged and that their client remained dissatisfied with the conditions with the further stipulation that "should the appeal be successful we will be seeking an order for repayment of the cash contribution ... ". The deeds were provided to enable the release of the building approval. We understand that the building approval was released and in our opinion the release of the building approval would constitute acceptance of the terms of the conditional delivery of the deeds of guarantee. In these circumstances we consider that the Court would hold that the applicant still "dissatisfied with the is а person determination".

- 7 -

Outline of evidence

In order to properly present the issues on the hearing of the appeal we would ask that the following matters be attended to:-

- 1: Three folders should be prepared with the following documents in order:-(a) An extract from WLEP 1985 map as to zoning of the land.
 - (b) The development application
 - (c) The owners consent
 - (d) The Environmental Impact Statement
 - (e) The report to Council or the Development Unit
 - (f) Any relevant correspondence prior to determination
 - (g) Council's Notice of Determination.
 - (h) All relevant correspondence leading up to the modification of the consent and a copy of the modified consent together with a copy of any report to the Development Unit or Council.
 - (i) The development consent plans.
 - (j) Drawing no. LH92/1 and 2 prepared by Ledingham Hensby Oxley & Partners Pty. Limited and any relevant correspondence in respect of this plan.

A separate folder should be provided which should contain a copy of all relevant development consents and subdivision approvals and plans relating to the earlier

2:

history of subdivision together with copies of any relevant correspondence.

- 3: The earlier subdivision files and the building approval file should be available with the development consent file.
- 4: A separate folder containing any relevant material in support of the traffic contribution.
- 5: Photographs of the subject land, Skyline Place, Lots 11 and 12, the relevant section of Frenchs Forest Road, the relevant existing pits and drainage systems should also be taken to assist the Court in assessing the evidence.
- 6: Mr. David Johnson should prepare a statement of evidence as to the relevant issues relating to condition 28. If it is anticipated that there is to be any dispute as to matters of engineering design or costing^{1t}may be of assistance to have Mr. K. Smith prepare an appropriate assessment of those aspects.
- 7: Mr. Hewitt should prepare a statement of evidence to cover the matters earlier referred to.

We would ask that the statements of evidence be available no later than Wednesday 19th November so that these statements may be exchanged with the applicant for any statements of evidence by experts to be called by the applicant.

We would also ask that all the material be available no later than Friday afternoon so that the writer may peruse the relevant material prior to the hearing on Monday 24th November.

We enclose a copy of a letter which we have sent to the Solicitor for the applicant.

Yours faithfully, H. WILSHIRE WEBB, SON & DOYLE

encl. And

 $\langle \mathbf{X} \rangle$

THE COUNCIL OF THE SHIRE OF WARRINGAH

All correspondence to be addressed to The General Manager, Civic Centre, Pittwater Road, Dee Why, 2099 DX 9118 Dee Why Telephone: (02) 982 0333 Fax: (02) 982 4770

File No: PF 1796/Lots 15,16 DJ.KH/1711e Your Ref:

21st November 1986

H Wilshire Webb Son & Doyle Solicitors 140 Sussex Street SYDNEY NSW 2000

'Dear Sir

re: Instruction No: 5811 Appeal to Land & Environment Court Lot 15 Frenchs Forest Road East, Frenchs Forest

Reference is made to your letter of 20th November 1986 in respect of the above matter.

In respect of Appeal 10452 Council advises it is prepared to agree to:-

- 1. The amendment of Condition 28 by the deletion of the amount of \$32,500 and the insertion of the amount of \$16,500.
- 2. Condition 32 by the deletion of the amount stated therein and the replacement with \$2,328.

3. We agree that there be no order as to costs.

We understand that the above amounts of \$18,828 will be exchanged for the bank guarantees held in respect of the above matters, the originals of such guarantees are attached hereto.

The appellants costs in respect of the engineering design fees paid in respect of Condition 28 amounted to \$3,724 and Council's share acknowledged as \$2,801 is attended to by the attached cheque.

Council's advice in respect of Appeal 20616 is being addressed separately by the Health and Building Branch of Environmental Services Division.

Yours faithfully

Discussed with Lo.M. 19-11-86

M A Knight DIVISIONAL MANAGER PUBLIC WORKS/ SHIRE ENGINEER

Enquiries: Mr D Johnson, Development & Subdivision Engineer, 8.30-10am, Mon-Fri

D FILE PART S-

THIS PART OF THE FILE IS NOW CLOSED OFF.

All further correspondence is to be actioned and filed on

PART ... of the file.

Any loose papers belonging to this file dated upto the date of the closure of this file, are to be returned to Central Records for attachment.

No loose papers out of the time period covered by this file are to be added.

L.D. EM ery. Records Manager

SEE WEW PART OF FILE

TOWN PLANNING DEPARTMENT To File From Culiff Date 29.4.87 Lot 15 D.P. ____ Address Style Pl. Frenchs Firet Subject <u>Car</u> parking allocation File NO. PF 4319/5 Nor 85104 21) submitted 29.4.87.1 Carsent 86/113 modified applieg. 158 campanhing spaces are provided (11 of which are stacked towards Frenchs Forest Road) Conset No 36/113 herditis 33 required the stacked spaces be allocated to a specific with. Applicate proposes the 11 spaces be allocated to Unit E, as well indicating the allocation of all spaces between specified units. - Using G.F.A. of 3693 sm blevehouse Showroom and 2101 sm office (meanined foren varking drawings ky applied (ne letter 16.6.86) and deducting wall thicknesses, amenities , considers , stavis , 60 sm loading bang) a total of 1444 conspaces are required under DCP 2. There is therefore an excess of 14 spaces provided over that - required Spaces Provided Apaces Required line A 22 (3)Д (3)29 42 (2) (14 158 Stepe additional spaces are allocated evenly (as possible) five units between the No objection to Dallocation of spaces between units as indicated on Plan 85104 21 dated many 86 submitted 164.87 2) allocation of the 11 stacked spaces to Unit E luling Ll (1, r.) 29.4.87

Graham Alcock Giles Tribe Pty Ltd

C S Graham B Arch FRAIA F J Alcock ARAIA D J Giles B Arch ARAIA A R Tribe B Arch Dip T&CP FRAIA MRAPI B J Woodmansey HNC Bidg (UK) F J B Johnston B Arch ARAIA

27th April 1987

٦

25670 -- 1, 2 8 APR 1997 -4.87

Architects and Town Planners

4 Bond Street Mosman NSW 2088 PO Box 596 Spit Junction NSW 2088 Telephone 02 960 3399 Facsimile 02 969 5874

Ref No. 8755

The Town Clerk Warringah Shire Council Civic Centre Pittwater Road DEE WHY NSW 2099

Attention: Christine Wright Town Planning Department

Re: Usage Application and Fitout Tenancy A <u>5 Skyline Place, Frenchs Forest</u>

With reference to your telephone enquiry, we now submit the following information:-

Staff: 30 Males and 13 Females.

OUTLINE OF USE:- The building will be used as warehouse, service centre and distribution centre for computer hardware and software, including any associated administration.

The tenant is "Wordplex Australia Pty. Ltd.".

GRAHAM ALCOCK GILES TRIBE PTY. LTD

Graham Alcock Giles Tribe Pty Ltd

Facsimile Transmission

<u>ن</u>يون ر

ţ

- Project TENANUY FITOUT, UNIT A 5 SKYLINE PLACE, FARNCH'S FOREST
- TO . WARRINGAN SUIRE COUNCIL
- Attn. CURIGTINE WRIGHT TOWN PLANNING OUPT.

Architects and Town Planners

4 Bond Street Mosman NSW 2088 PO Box 596 Spit Junction NSW 2088 Telephone 02 960 3399 Facsimile 02 969 5874

Date 16.4.87

From IAN MCAIG

1:200 PLAN OF GROUND FLOOR OF UNIT A.

Graham Alcock Giles Tribe Pty Ltd

C S Graham B Arch FRAIA F J Alcock ARAIA D J Gilles B Arch ARAIA A R Tribe B Arch Dip T&CP FRAIA MRAPI B J Woodmansey HNC Bidg (UK) F J B Johnston B Arch ARAIA

1	ARRINGAN SHIRE COUNCIL — CENTRAL RECORDS —
ł	1 S FEB 1987
l	REF. TO:
	FILE WITH:
	FILE No. pf 431915

Architects and Town Planners

4 Bond Street Mosman NSW 2088 PO Box 596 Spit Junction NSW 2088 Telephone 02 960 3399 Facsimile 02 969 5874

Ref No. 8723

6th February 1987

STATEMENT OF ENVIRONMENTAL EFFECTS

Re: Warehouse/Offices Unit B Lot 15, Frenchs Forest Road

1. General

There are no deleterious environmental effects attributable to this development.

2. Traffic/Parking/Access

Vehicle access is proposed via the main estate road. Off street car parking is provided in accordance with Council's code.

A loading dock is provided, with adequate turning areas for large delivery vehicles. It is anticipated that approximately four deliveries will be made to the site each day.

3. Neighbourhood Amenity

Noise: no noise generating equipment is proposed in this development.

Aesthetics: the building envelope will be unaltered.

Operation: 8.30 a.m. to 5.00 p.m. (Monday to Friday)

4. Wastes and Effluents

Normal refuse generated by the use will be stored and disposed of in accordance with Council's requirements. Wastes will be gathered and disposed of via a new arrestor pit, thence to the sewer. All work will be to the satisfaction of the MWS & DB.

GRAHAM ALCOCK GILES TRIBE PTY. LTD.

1 *

۸.

APPENDIX M: AERIAL PHOTOGRAPHS

Historical Aerial Photographs

E1100-2

5 Skyline Place, Frenchs Forest NSW

1943:

1970:

1991:

Current (Six Maps):

APPENDIX N: LAND TITLE SEARCH

Plan Inquiry

05/12/2016 11:47 AM

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - PLAN INQUIRY

Plan Number: SP49558

Plan Purpose: STRATA PLAN

Title System: TORRENS COMPILATION

First Lot: 1 Last Lot: 5

No. of Sheets: 5

Plan Registration Date: 7/6/1995

Surveyor: ANTHONY PAUL BRUNSKILL

Surveyor Reference: 9495S

Council: *NORTHERN BEACHES Council: WARRINGAH Approval Date: 16/3/1995 Approval Number: 1437/95

County: CUMBERLAND Parish: MANLY COVE

* indicates council has altered since plan registration

*** END OF SEARCH ***

E1100 Frenchs Forest

PRINTED ON 5/12/2016

 $\ensuremath{\mathbb S}$ State of New South Wales through the Land and Property Information 2016

Document Inquiry

05/12/2016 11:46 AM

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - DOCUMENT INQUIRY

Document Number: SP49558

Document Type: STRATA PLAN

Document Status: ACTION COMPLETE

Document Status Date: 7/6/1995

Lodged By: 77L PETER CORNELIUS & PARTNERS

Date Lodged: 4/4/1995

Affected Titles: 15/732494

*** END OF SEARCH ***

E1100 Frenchs Forest

PRINTED ON 5/12/2016

 $\ensuremath{\mathbb S}$ State of New South Wales through the Land and Property Information 2016

Req:R887452 /Doc:CT 04668-105 CT /Rev:07-Aug-2012 /Sts:OK.OK /Prt:05-Dec-2016 11:00 /Seq:1 of 2 Ref:E1100 Frenchs Forest /Src:Q

Councilerant the land within described 6ª REGISTRAR GENERAL (Second Produced a d energed yt pacember 1951 1.0 at 36 mto 4t. 3 o'clock in the after noon. 193 G197432 TRANSFER dated 23th normely 1954 is on the said Charles Millian Hopkins Elsie Mabel Hopkins and Joyce anderson to northern Forests Development Company Pty Limited of part (Aulyect Ir (menut) 14J G197432 BEGISTRAR GENERAL dated 4th February 1955 Produced 24th November 1954 and entered 24th October g # Februery 1955 and entered 25th June 1955 at 128 doct non Nº G237361. 0 0 55 ____o'clock in the 12 REGISTRAR GENERAL

Req:R887452 /Doc:CT 04668-105 CT /Rev:07-Aug-2012 /Sts:OK.OK /Prt:05-Dec-2016 11:00 /Seq:2 of 2 Ref:E1100 Frenchs Forest /Src:Q

160 The previous Franker No. G197432 contains a restricture Sated 24th October 1955 0 Registrar - general No. G- 323860; RANSFER dated 27ª gune 1955 from the sold Northern Joreals Development Confin Pty Limited to charles utilliam Hopkins, Else Mabel Hopkins and Joyce anderson as joint tarate of part of the land within described Produced 1st July 1955 and entered 24²⁰ October 1955 of the land within described ad entered 24th October 195 12 frees 10.7 Carlelical As to fart this Deed is cancelled and new Certificate of Title Issue. Vol 1038 Fal. 17.8 Vide 06202201 Registrar General. As to the reactive Vide 06.338614 4 Juli 6-197432 Registrar General

Req:R887438 /Doc:CT 04501-232 CT /Rev:06-Aug-2012 /Sts:OK.OK /Prt:05-Dec-2016 10:59 /Seq:1 of 2 Ref:E1100 Frenchs Forest /Src:Q

\$3549 2.29 New South Wales Appn. No. 10244 _ [CERTIFICATE OF TITLE.] Reference to last bertificates Fol. 172 and 173. Vol. 3589 REGISTER BOOK. 4501 For 232 VOL CANCELLED IM Sidney Arthur Malsh, of Manly, Manufacturer, Transferred under Instrument of Transfer Nº C. 78031 is now the propuetor of an Estate in fee simple subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in Those pieces of land situated Parish of Manly Love _____, and County of bumberland in the Shire of Maringah containing Three roods thirty four and three quarters perches or thereabouts being part of Lot 15 and One are five and one quarter perches or thereabouts being part of Lot 16 in Deposited Plan Nº 3392 Which said pieces of land are shown in the Plan hereon and therein edged red and are also shown in Plan annexed to the said Instrument of Transfer Nº C 78031 being also parts of 200 aves (Partion 52 of Parish) originally granted to Simeon Henry Peace and James Peace by brown Grant dated the 23rd day of February 1854. In witness whereof I have hereunto signed my name and affixed my Seal, this Twenty. First day of O epheunter 19 31. Amor onoke Whengard Signed in the presence of Aching Registrar General Ra French's Forest 327 3/10 lks. 454 1/2 1ks 286 4/10 /ks 12. Or. 51/4p 3r.343/4p 4541/211 17 16 2231/21K. No. C 286016, Sidney arthur Wals from the said_ CALEI 2 chains to one inch BANK OF NEW SOUTH WALES Produced and entered 8th at 4 gut pl 10 o'clos Notification referred to No. C 144374 MOBIGAGE dated 26th Under 1932 No. Bagh from the said bidney Arthur Walsh To. I howas Julkin DISCHARGE of within mortgage of Kedfor Metho dist Minister C147377 Daier 20th November _193 << Produced and entered 26 * Movember 1934 at 8 m to hot 11 gootoch in the Produced and entered 31st Delaber STRAR BENES 1932 noon. at 34mb 12 o'clock in the after noon. Roy W. Cores: 1 mo onokuo REGISTRAR GENERAL. Acting REGISTRAR GENERAL. SOUTH WE

Req:R887438 /Doc:CT 04501-232 CT /Rev:06-Aug-2012 /Sts:OK.OK /Prt:05-Dec-2016 10:59 /Seq:2 of 2 Ref:E1100 Frenchs Forest /Src:Q

DISCHARGE of within mortgage 2137177 C286016 dated 14Th 1942 10. May Produced and entered 1942 at semits At 2 o'clock in the after noon. REGISTRAR GENERAL No. #3.64584 MORTGAGE dated4 December 1950 from the said Lidney Artha Walch to She Burnond noy - Sam - Bowhold Co-operative Building Spirity Limited Produced & December 1950 and entered Meebruary 1951 12 o'clock in the at ______nson, Q. Wello REGISTRAR GENERAL Nob 218194 DISCHARGE of within mortgage F- 364 589 date 23 re fleren be 1954 Produce 24 Decerfy 5+ and entered the December 5+. at Rmtoft 1 o'clock in the flee ello 12 REGISTRAR GENERAL. 6 218195 TRANSFER dater Balob to Norther Joseoth Development Combany When within described at Small o'clock in the after poor REGISTRAR GENERAL 10 No. G323860 TRANSFER dated 272 from the said Northern Forests Development No. 6323860 Elsie mabel Elsie Mabel June 19 55 Limited to Charles William Hopkins Hopkins and Joyce anderson as joint terants of part of the land within described 19 55 and entered 24th October 1955 Produced 1st July 12 o'clock in the noon. Glificate C+++ . 11 REGISTRAR GENERAL. As to frant this Deed is concelled and new Certificate of Title issued Vol 7038 Fol. 178 ide 06 20220 1264 6323860 Registrar Gener the reader 1038 For 179 D6338614

Req:R887325 /Doc:CT 07038-179 CT /Rev:10-Aug-2012 /Sts:OK.OK /Prt:05-Dec-2016 10:51 /Seq:1 of 2 Ref:E1100 Frenchs Forest /Src:Q

	Primary Appn. No. 10244	New South	h 2729 alor	[CERTIFICATE OF TITLE.]
	Reference to Last Title s	J/rm South	g verdies.	
	Vol. 4501 Fol. 232		· M	
	" 4668 " 105	23/00	No C	Recister Book.
	•	Sec. 2 B		Vol. 7038 Fol. 179
1X T.28.				Issued on Order No.G338614 (part)
dawa pa	•			and request for consolidation
(NUMAOB				
" ""				21112
4. H. PZ				CANCELLED R
1900	NODREEDN RODRER DETRICONCENT			
54 K 2006	NORTHERN FORESTS DEVELOPMENT (
-2 11.5				eferred to, and also subject to such encumbrances,
98867—2	liens, and interests as are notified here	I CONTRACTOR	land situated	
	in the Shire of Warringah		of Manly Cove	, and County of Cumberland
			The second se	ot A in plan lodged with Transfer
				g also part of Portion 52 granted to
	Simeon Henry Pearce and James	Pearce on 23rd February 1854.		
notification t	In witness whereof I have hereunto sign Signed in the presence of	ed my name and affixed my Seal, this	Twenty-first	day of October , 19 55.
ie or any		2 ⁵	K571671	Registrar-General
rtifical		· ·	No. K. 5.74.671	NOTICE OF RESUMPTION
	French's Fore	st R ^d	is the proprietor o	an easement affecting that part of the land within
lis Co	11014/10	5770	described shown as	Var Nid Think on the plan hereon, freed from 71 4
to this Co			all other interests	
dding to this G		5287	all other interests. Entered and	may 1967
or adding to this G	S X	2283	all other interests. Entered and	may 1967
ering or adding to this G	B/10 LKS	2282	all other interests Entered and	may 1967 autom
st altering or adding to this G	15081/01HKS	1 5	entered and	Registrar General.
against altering or adding to this G	B/10 LKS	1 5	all other interests Entered and	may 1967
oned against altering or adding to this Certifica	B/10 LKS	2282 - 2284	Entered and	Registrar General. Registrar General.
	B/10 LKS	982 Lws - 2283	Entered and	Registrar General. 1372 by Southland Provident Finance
	17 16 105 % OLKS	982 LKS - 228	Cayeat G760	Registrar General. 1372 by Southland Provident Finance
	1508/10145	282 LKS - 2282 LT	Cayeat G760	Registrar General. 1372 by Southland Provident Finance
Persons are cautioned against altering or adding to this Ge	17 16 105 % OLKS	2582 Ra Ra	Cayeat G760	Registrar General. Registrar General. 2372 by Southland Provident Finance 2.7.1978
	17 16 105 % OLKS	2382 LKS - 2288	Entered and Entered and invest 6760 Wey is Hered 1 Own thereway Star 1978 Star 1978 Star 1978	Registrar General. Registrar General. 2372 by Southland Provident Finance 2.7.1978

the second hdrawn 80 NOTIFICATION REFERRED TO REGISTRAR GENERAL Covenant contained in Transfer No.G197432 affecting the part of the land above described formerly comprised in Certificate of Title Volume 4668 Folio 105: TRAS ES 200 NE. Registrar General. SOFTH te The interest of the Council of the shirle of Waaringah in the road . R to la shown on 1 2086765 D. P. Entered 2/ 5/1962 auon General 9668837 \$ 14292 0

Den

Req:R887325 /Doc:CT 07038-179 CT /Rev:10-Aug-2012 /Sts:OK.OK /Prt:05-Dec-2016 10:51 /Seq:2 of 2 Ref:E1100 Frenchs Forest /Src:Q

5155037 CAVEAT 5155 034 Limited Centres ftu tard 11-12-1880 Lapsed 30 2 REGISTRAR GENERAL SOUTH WHY RECISTERED PROPRIETOR Myer Shopping Centres Proprietary Limited by Transfer 5449667. Registered 12-5-1981 1960 REGISTRAR GENERAL COUTH NO 12 g VV 258926 careat by MIRVAC PTY. LIMITED Registered 24-7-1984 VZ 0 56218 .2.1985 Came Di REGISTRAR GENERAL REGISTERED PROPRIETOR Minsac Pty. Limited Jansfer V 562187. Registered 8.2.1985 STRUE GENES 7 Source 1 1.1.1.2.5T.A. Interests created pursuant to Section 888 Conveyancing Act, 1919, by the registration of DP 718814 Registered 26.11.1985. The interest of the Council of the Locol Government Area in the public road dedicated in DP 718814 Registered 26-11-1985 . Yes DPI# 718814 Registered 26-11-1985 This folio is cancelled as to whole/_____ upon creation of computer folios for lots 11 to 13 Congo in the abovementioned plan. The residue

Historical Search

05/12/2016 12:01 PM

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

5/12/2016 12:01PM

FOLIO: 13/718814

First Title(s): OLD SYSTEM Prior Title(s): VOL 7038 FOL 179

*** END OF SEARCH ***

Recorded		5 I	C.T. Issue	
27/11/1985		DEPOSITED PLAN EDITION 1	FOLIO (CREATED
4/12/1985	W91570	DEPARTMENTAL DEA	LING ED	OITION 2
9/12/1985	W53351	CAVEAT		
6/2/1986	W188138	CAVEAT		
20/3/1986	DP731209	DEPOSITED PLAN	FOLIO C	ANCELLED
27/8/1997	AM	ENDMENT: LOCAL GO	VT AREA	

Direct Info Pty Ltd - ABN 25 160 378 263 an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B (2) of the Real Property Act, 1900.

E1100 Frenchs Forest

PRINTED ON 5/12/2016

 $\ensuremath{\mathbb S}$ State of New South Wales through the Land and Property Information 2016

Historical Search

05/12/2016 11:59 AM

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

5/12/2016 11:59AM

FOLIO: 14/731209

First Title(s): OLD SYSTEM Prior Title(s): 13/718814

Recorded	Number	Type of Instrument	C.T. Issue
18/3/1986	DP731209	DEPOSITED PLAN	FOLIO CREATED
		EDITION 1	

26/3/1986 W261099 CAVEAT

1/5/1986 W301517 WITHDRAWAL OF CAVEAT

9/5/1986 DP732494 DEPOSITED PLAN FOLIO CANCELLED

27/8/1997 AMENDMENT: LOCAL GOVT AREA

*** END OF SEARCH ***

E1100 Frenchs Forest

PRINTED ON 5/12/2016

 $\ensuremath{\mathbb S}$ State of New South Wales through the Land and Property Information 2016

Req:R888452 /Doc:DL W370912 /Rev:22-Oct-2010 /Sts:OK.SC /Pgs:ALL /Prt:05-Dec-2016 11:58 /Seq:1 of 1 Ref:E1100 Frenchs Forest /Src:Q STAMP DUTY **RP 13** n.s w AMP DUTLES OFFICE e si e si TRANSFER of T REAL PROPERTY ACT, 1900 23/3 \$ If Part Only, Delete Whole and Give Details Location Torrens Title Reference WHOLE DESCRIPTION OF LAND Note (a) FOLIO IDENTIFIER FRENCHS FOREST 15/732494 TRANSFEROR Note (b) LEDA HOLDINGS PTY. LIMITED of 5th Floor, 98 Alfred Street, Milsons Point (the abovenamed TRANSFEROR) hereby acknowledges receipt of the consideration of =2,900,000.00ESTATE Note (c) and transfers an estate in fee simple in the land above described to the TRANSFEREE TRANSFEREE OFFICE USE ONLY Note (d) STATE SUPERANNUATION BOARD of 1 Margaret Street, Sydney TENANCY Note (e) as joint tenants/tenants in common subject to the following PRIOR ENCUMBRANCES 1. PRIOR ENCUMBRANCES Note (f) 2. NGS (906 DATE 4 line We hereby certify this dealing to be correct for the purposes of the Real Property Act, 1900. Common EXECUTION Signed in my presence by the transferor who is personally known to me ψĦ Note (g) THE COMMON SEAL of LEDA HOLDINGS PTY. LIMITED was hereunto Signature of Witness affixed by authority of the Board of Directors in the presence of:) Name of Witness (BLOCK LETTERS) Director Address and occupation of Wilness Signature of Transferor LR Secretary Signed in my presence by the transferee who is personally known to me Executed by STATE SUPERANNUATION BOARD by being signed, Note (a) Signature of Waness sealed and delivered by its Attorney STEPHEN JOHN HOWARS (who hereby states that at the time of executing this instrument he had no notice of revocation of Power of Attorney Registerad Name of Witness (BLOCK LETTERS) No. 812 Book 3652 under the authority of which he executes it a J. Howard Address and occupation of Witness Signature of Transferee same) in the presence of: Ð LOCATION OF DOCUMENTS TO BE COMPLETED BY LODGING PARTY LODGED BY STATE SUPERANNUATION BOARD OTHER CT Notes (h) and (i) MARGARET ST 乍 Herewith. SYDDEY In LTO with Produced by 814 C Delivery Box Number OFFICE USE ONLY REGISTERED -19 Checked Passed Secondary NE Directions 13 JUN 1986 Signed Extra Fee Delivery Directions CT 40

÷

•	DL W370911 /Rev:22-Oct-2010 /Sts:OK.SC	/Pgs:ALL /Prt:05-Dec-2016 11	•		
ef:E1100 Frenchs	Forest /Src:Q		OFF		
			→ ₩370		
		TRANSFER REAL PROPERTY ACT, 1900	T	3 2013	X R2/
y an a			•	\$ 30	Cete
de la	Torrens Title Reference	If Part Only, Delete Whole a	nd Give Details	Locati	on /
DESCRIPTION OF LAND Note (a)	V olume 7038 Folio 1 79	WHOLE PART-ONLY-BEING IN-NEW-SUBDIVIS		French's Fore	st
	now known as FOLIO IDENTIFER 15/7324	494			
	MIRVAC PTY LIMITED				
			-2 481 000 0	0	
blass (a)	 (the abovenamed TRANSFEROR) hereby acknowl ³⁴ and transfers an estate in fee simple in the land above described to the TRANSFEREE 	ledges receipt of the consideration of	\$2,401,000.0	0	
TRANSFEREE Note (d)	LEDA HOLDINGS PTY. LIMITED	of 98 Alfred Street, M	ilsons Point		OFFICE USE ONLY
ENANCY	as joint tenants/tenants in common				Ś.
PRIOR ENCUMBRANCES	subject to the following PRIOR ENCUMBRANCES				
Note (f)	DATE 30th may, 1986.				
	We hereby certify this dealing to be correct for the		00.		•
EXECUTION Note (g)	Signed in my presence by the transferor who is per Signature of Witness	rsonally known to me EXECUTED in my presence by MIRVAC PTY. LIMIT by being signed senied and delive by SIGVILLE AUS	ervd	}	
	Name of Watness (BLOCK LETTERS)	who is personally known to me a pointice of Revocation of the existence in the office of the 682 Root 3577 which this document is appreted.	uid who certifies he be Power of Alto	$\left(\begin{array}{c} has \\ rmey \\ N0, \\ y \text{ of } \end{array}\right)$	
	Address and occupation of Witness	SL nature of W	itness	Signature of Transfe	2 or
lote (g)	Signed in my presence by the transferee who is per				
	Name of Witness (BLOCK LETTERS)		\bigcap	-	5
	Address and occupation of Witness		solicit	or for synthetic transfer	ес Ј.Н. HUGHES 14-5-86
O BE COMPLETED		····	LOCA	TION OF DOCUMENTS	· · · · · · · · · · · · · · · · · · ·
Y LODGING PARTY otes (h)	LODGED BY STATE SUPERANUAT	rions Boged <u>ct</u>			
nd (i)	LODGED BY STATE SUPERANUATION I MARGARET ST SYDNEY			Herewith.	
	Setting Section State		F	Produced by	
FFICE USE ONLY	Delivery Box Number 814C Checked Passed REGISTERED	D19			
	CAZZ (S)	Second Direction			
	Signed Extra Fee	Delive Directio	ery I ons I		

1.09.1.0	000317D0C.DE E07000371(64.00-001	n-2010 /Sts:OK.SC /Pgs:ALL /Prt:05-Dec-2016 11:54 /Seq:1 of 1
Ref:E1	100 Frenchs Forest /Src:Q	TRANSFER Rect Property Act. 1900
	00*Z\$	00000000000000000000000000000000000000
(A)	LAND TRANSFERRED	
	Show no more than 20 References to Title. If appropriate, specify the share transferred.	Folio Identifier 15/732494
(8)	LODGED BY	L.T.O. Box NATIONAL AUSTRALIA BANK LIMITED, National Australia Bank House 255 George Street, Sydney 237 - 1111 FAX 237 - 1284 National Australia & Bank
(C)	TRANSFEROR	STATE AUTHORITIES SUPERANNUATION BOARD
(D)	acknowledges receipt of the consideration	on of
(E)	subject to the following ENCUMBRANC	LAND AND AND A REPORT
Ð		CLEAN PTY LIMITED ACN 000 404 295 idgemont Close, West Pennant Hills
(G)		as joint tenants/tenants in common
(H)	We certify this dealing correct for the pur Signed in my presence by the transferor DBLake Sentene Hakey L19, 83 Clarence S Name of Witness (BLOCK LET) Address of Witness	who is personally known to me. Executed by STATE AUTHORITIES
	Signed in my presence by the transferee	
	Name of Witness (BLOCK LETT	TERS)
~	Address of Witness	ANALA P. ANAL

Historical Search

05/12/2016 11:51 AM

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

5/12/2016 11:51AM

FOLIO: 15/732494

First Title(s): OLD SYSTEM Prior Title(s): 14/731209

	Number	Type of Instrument	
		DEPOSITED PLAN EDITION 1	FOLIO CREATED
13/6/1986	W370910	WITHDRAWAL OF	CAVEAT
13/6/1986	W370911	TRANSFER	
13/6/1986	W370912	TRANSFER	EDITION 2
17/11/1987	X169044	LEASE	EDITION 3
9/6/1988	X549904	LEASE	EDITION 4
3/8/1988	X737989	LEASE	EDITION 5
22/11/1988		APPLICATION FOR	REPLACEMENT
		FICATE OF TITLE	
22/11/1988	X987567	REQUEST	EDITION 6
5/7/1989	Y449561	LEASE	EDITION 7
21/7/1989	Y478581	LEASE	EDITION 8
29/9/1989	Y619835	LEASE	EDITION 9
21/5/1990	Y909089	LEASE	EDITION 10
19/11/1991	E28218	LEASE	EDITION 11
18/2/1992	E174284	REQUEST	EDITION 12
25/2/1992	E270447	LEASE	EDITION 13
8/4/1992	E375039	TRANSFER	EDITION 14
		CHANGE OF NAME VARIATION OF LEA	SE EDITION 15

18/1/1994 I954194 SUB-LEASE

7/6/1995 SP49558 STRATA PLAN FOLIO CANCELLED

END OF PAGE 1 - CONTINUED OVER

E1100 Frenchs Forest PRINTED ON 5/12/2016

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

5/12/2016 11:51AM

FOLIO: 15/732494 PAGE 2

Recorded Number Type of Instrument C.T. Issue

27/8/1997 AMENDMENT: LOCAL GOVT AREA

*** END OF SEARCH ***

E1100 Frenchs Forest

PRINTED ON 5/12/2016

© State of New South Wales through the Land and Property Information 2016

Req:R888273 /Doc:SP 0049558 P /Rev:09-Jun-1995 /Sts:OK.OK /Pgs:ALL /Prt:05-Dec-2016 11:48 /Seq:1 of 5

r D			_	P N D		S		
this space	In the second seco	Last Plan: DP 732494	Ref. Map : U (860 - 5 #	Purpose : STRATA PLAN	C.A. No. 1437 95 0F 16.3. 1995	Registered: 🦉 🖉 7. 6. 1995	STRATA PLAN 49558	* OFFICE USE ONLY
	Plan Drawing only to appear in this space	K.	NC	0	5 V	10 =	7 N	

".94 Gaal COUNCIL COUNCIL CIERK	Lengths are in metres	- F. 7 3 2 1 9 1 + 1 + 1	ATION PLAN	A PLAN 49558	Sheet No. 2 of 5 Sheets
			*OFFICE USE	ONLY	

FORM 2

ST"	Lengths are in metres	TO BE USED FO TO BE USED FO OF THE STRATES A RIGHT AND TES CAR SPACE TUM OF THE STRATEND 3M ABO SPECTIVE CAR SPACE NDS.	OUND FLOOR PLA	Sheet No. 3 of 5 Sheets STRATA PLAN 495
		ANGLE NCAR NCRETE		19558 *

Registered Surveyor 3 100

Reduction Ratio 1: 500

CNR.COLUMN --(0-15)

BALCONY

PT 2

BALCONY

קי

Ś

(499m²)

BALCONY

SEE

BALCONY

BALCONY

- 2.) THE STRATUM OF THE BALCONY E 3m. ABOVE THE UPPER SURFACE CONCRETE FLOOR EXCEPT WHERI
- I.) AREAS ARE APPROXIMATE AND USED FOR THE PURPOSES OF THE TITLES ACT 1973.

NOTES :-

AGGREGATE	S	4	З	2		LOTS	UNIT ENTITLEMENT
1000	265	181	159	159	562	UNIT	E OF TLEMENT

SECOND FLOOR PLAN

WARNING: CREASING OR FOLDING WILL LEAD TO REJECTION

₩9 ×1		MM	
CHECKL	PATA BE	STRATA	Sheet No.
		TA	5 of
in metres		PLAN	5 Sheets
SĂ O		49558 8	ts
			*

APPENDIX O: PLANNING CERTIFICATES

Northern Beaches Council Planning Certificate – Part 2&5

Applicant: Jack Prail 20 Young Street

Reference: Date:	09/04/2019	
Certificate No.	ePLC2019/2028	
Address of Property: Description of Property:	5 Skyline Place FRENCHS FOREST NSW 208 Lot CP SP 49558	86

Planning Certificate – Part 2

The following certificate is issued under the provisions of Section 10.7(2) of the *Environmental Planning and Assessment Act 1979* (as amended – formerly Section 149). The information applicable to the land is accurate as at the above date.

1. Relevant planning instruments and Development Control Plans

1.1 The name of each environmental planning instrument that applies to the carrying out of development on the land:

1.1a) Local Environmental Plan

Warringah Local Environmental Plan 2011

1.1b) State Environmental Planning Policies and Regional Environmental Plans

State Environmental Planning Policy 1—Development Standards State Environmental Planning Policy 19 – Bushland in Urban Areas State Environmental Planning Policy 21 – Caravan Parks State Environmental Planning Policy 30 – Intensive Agriculture State Environmental Planning Policy 33 – Hazardous and Offensive Development State Environmental Planning Policy 50 – Canal Estate Development State Environmental Planning Policy 55 – Remediation of Land State Environmental Planning Policy 62—Sustainable Aquaculture State Environmental Planning Policy 64 – Advertising and Signage State Environmental Planning Policy 65 – Design Quality of Residential Apartment Development State Environmental Planning Policy No 70—Affordable Housing (Revised Schemes) State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (State Significant Precincts) 2005

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017

Sydney Regional Environmental Plan No 20-Hawkesbury-Nepean River (No 2-1997)

State Environmental Planning Policy No 44-Koala Habitat Protection

Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005

Sydney Regional Environmental Plan No 9-Extractive Industry (No 2-1995)

1.2 Draft Environmental Planning Instruments

The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been subject of community consultation or on public exhibition under the Act (unless the Secretary has notified the Council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

1.2 a) Draft State Environmental Planning Policies

Review of State Environmental Planning Policy 44 – Koala Habitat Protection State Environmental Planning Policy No 64— Advertising and Signage (Amendment No 3) Draft State Environmental Planning Policy (Environment) Draft State Environmental Planning Policy (Primary Production and Rural Development)

Draft State Environmental Planning Policy (Primary Production and Rural Development) Draft Amendment to State Environmental Planning Policy (Affordable Rental Housing) 2009

1.2 b) Draft Local Environmental Plans

Planning Proposal - Ralston Avenue (Belrose) (PEX2013/0003)

Applies to land: Lot 1 DP 1139826, Ralston Avenue, Belrose

Outline: Amends WLEP 2000 and WLEP 2011 to:

- Rezone land on Ralston Avenue Belrose from Locality C8 Belrose North to part R2 Low Density Residential, part RE1 Public Recreation and part E3 Environmental Conservation.
- Introduce subdivision lot size and height of building controls to land proposed to be zoned R2 Low Density Residential.

Council resolution: 25 November 2014

Gateway Determination: 28 January 2015

Planning Proposal - Dee Why Town Centre Planning Controls (PEX2018/0002)

Applies to land: Dee Why Town Centre (boundaries identified within the Planning Proposal) **Outline:** Amends WLEP 2011 to:

- · Increase maximum permissible building heights
- Introduce floor space ratio controls
- Provide development standards in relation to car parking, building setbacks and building proportion
- · Identify additional "Key Sites"
- Implement a delivery mechanism for key infrastructure and public domain improvements **Council resolution:** 23 September 2014

Gateway Determination: 1 April 2015 amended 22 September 2016

1.3 Development Control Plans

The name of each development control plan that applies to the carrying out of development on the land:

Warringah Development Control Plan 2011

2. Zoning and land use under relevant Local Environmental Plans

For each environmental planning instrument or proposed instrument referred to in Clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

2.1 Zoning and land use under relevant Local Environmental Plans

2.1 (a), (b), (c) & (d)

The following information identifies the purposes for which development may be carried out with or without development consent and the purposes for which the carrying out of development is prohibited, for all zones (however described) affecting the land to which the relevant Local Environmental Plan applies.

EXTRACT FROM WARRINGAH LOCAL ENVIRONMENTAL PLAN 2011

Zone B7 Business Park

- 1 Objectives of zone
- To provide a range of office and light industrial uses.
- To encourage employment opportunities.

• To enable other land uses that provide facilities or services to meet the day to day needs of workers in the area.

• To create business park employment environments of high visual quality that relate favourably in architectural and landscape treatment to neighbouring land uses and to the natural environment.

• To minimise conflict between land uses in the zone and adjoining zones and ensure the amenity of adjoining or nearby residential land uses.

2 Permitted without consent

Nil

3 Permitted with consent

Centre-based child care facilities; Garden centres; Hardware and building supplies; Light industries; Neighbourhood shops; Office premises; Passenger transport facilities; Respite day care centres; Roads; Self-storage units; Take away food and drink premises; Warehouse or distribution centres; Any other development not specified in item 2 or 4

4 Prohibited

Advertising structures; Agriculture; Air transport facilities; Amusement centres; Animal boarding or training establishments; Boat building and repair facilities; Boat sheds; Business premises; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Entertainment facilities; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Forestry; Freight transport facilities;

Function centres; Heavy industrial storage establishments; Highway service centres; Home-based child care; Home businesses; Home occupations; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Information and education facilities; Marinas; Mooring pens; Moorings; Open cut mining; Places of public worship; Port facilities; Recreation facilities (major); Registered clubs; Research stations; Residential accommodation; Restricted premises; Retail premises; Rural industries; Service stations; Sex services premises; Storage premises; Tourist and visitor accommodation; Transport depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Waste or resource management facilities; Water recreation structures; Wharf or boating facilities; Wholesale supplies

Additional permitted uses

Additional permitted uses, if any, for which development is permissible with development consent pursuant to Clause 2.5 and Schedule 1 of the relevant Local Environmental Plan:

Nil

(e) Minimum land dimensions

The *Warringah Local Environmental Plan 2011* contains no development standard that fixes minimum land dimensions for the erection of a dwelling house on the land.

(f) Critical habitat

The land does not include or comprise critical habitat.

(g) Conservation areas

The land is not in a heritage conservation area.

(h) Item of environmental heritage

The land does not contain an item of environmental heritage.

2.2 Draft Local Environmental Plan - if any

For any proposed changes to zoning and land use, see Part 1.2 b) Please contact Council's Strategic and Place Planning unit with enquiries on 1300 434 434.

2A. Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

The State Environmental Planning Policy (Sydney Region Growth Centres) 2006 does not apply to the land.

3. Complying Development

The extent to which the land is land on which complying development may or may not be carried out under each of the codes for complying development because of the provisions of clauses

1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of *State Environmental Planning Policy* (*Exempt and Complying Development Codes*) 2008.

a) Housing Code

Complying Development under the Housing Code may be carried out on all of the land.

b) Rural Housing Code

Complying Development under the Rural Housing Code may be carried out on all of the land.

c) Low Rise Medium Density Code

Complying Development under the Low Rise Medium Density Code may not be carried out on all the land.

Note: Pursuant to clause 3B.63 of the *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008*, all land in Northern Beaches Council is a 'deferred area' meaning that the Low Rise Medium Density Code does not apply until 1 July 2019.

d) Greenfield Housing Code

Complying Development under the Greenfield Housing Code may not be carried out on all of the land.

e) Housing Alterations Code

Complying Development under the Housing Alterations Code may be carried out on all of the land.

f) General Development Code

Complying Development under the General Development Code may be carried out on all of the land.

g) Commercial and Industrial Alterations Code

Complying Development under the Commercial and Industrial Alterations Code may be carried out on all of the land.

h) Commercial and Industrial (New Buildings and Additions) Code

Complying Development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on all of the land.

i) Container Recycling Facilities Code

Complying Development under the Container Recycling Facilities Code may be carried out on all of the land.

j) Subdivisions Code

Complying Development under the Subdivisions Code may be carried out on all of the land.

k) Demolition Code

Complying Development under the Demolition Code may be carried out on all of the land.

I) Fire Safety Code

Complying Development under the Fire Safety Code may be carried out on all of the land.

4, 4A (Repealed)

4B. Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

The owner of the land (or any previous owner) has not consented in writing to the land being subject to annual charges under section 496B of the *Local Government Act 1993* for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

5. Mine Subsidence

The land has not been proclaimed to be a mine Subsidence (Mine Subsidence) district within the meaning of section 15 of the *Mine Subsidence (Mine Subsidence) Compensation Act, 1961.*

6. Road widening and road realignment

- (a) The land is not affected by a road widening or re-alignment proposal under Division 2 of Part 3 of the *Roads Act 1993*.
- (b) The land is not affected by a road widening or re-alignment proposal under an environmental planning instrument.
- (c) The land is not affected by a road widening or re-alignment proposal under a resolution of Council.

7. Council and other public authority policies on hazard risk restriction

- (a) Council has adopted a number of policies with regard to various hazards or risks which may restrict development on this land. The identified hazard or risk and the respective Council policies which affect the property, if any, are listed below (other than flooding see 7A):
- Nil
- (b) The following information applies to any policy as adopted by any other public authority and notified to the Council for the express purpose of its adoption by that authority being referred to in a planning certificate issued by the Council. The identified hazard or risk and the respective Policy which affect the property, if any, are listed below:

Bush Fire Prone Land

This land is identified on a Bush Fire Prone Land map certified by the Commissioner of the NSW Rural Fire Service as being bush fire prone land. The requirements of the NSW Rural Fire Service document *Planning for Bush Fire Protection* apply to this land. For further information please contact the Warringah Pittwater District Rural Fire Service.

Draft Northern Beaches Bush Fire Prone Land Map (BFPLM) 2018

This land is identified as bush fire prone land on the Draft Northern Beaches Bush Fire Prone Land Map 2018. The Northern Beaches BFPLM will supersede the Warringah BFPLM 2016, Pittwater BFPLM 2013 and Manly BFPLM 2010 from the date of its Certification by the Commissioner of the NSW Rural Fire Service. Please refer to the project page on Council's website for more information.

7A. Flood related development control Information

- (1) Development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is not subject to flood related development controls.
- (2) Development on the land or part of the land for any other purpose is not subject to flood related development controls.

8. Land reserved for acquisition

Environmental planning instrument referred to in Clause 1 does not make provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

9. Contribution plans

The following applies to the land:

Northern Beaches Contributions Plan 2018

9A. Biodiversity certified land

The land is not biodiversity certified land under Part 8 of the *Biodiversity Conservation Act 2016* (includes land certified under Part 7AA of the repealed *Threatened Species Conservation Act 1995*).

10. Biodiversity Stewardship Sites

The Council has not been notified by the Chief Executive of the Office of Environment and Heritage that the land is a biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the *Biodiversity Conservation Act 2016* (includes land to which a biobanking agreement under Part 7A of the repealed *Threatened Species Conservation Act 1995* relates).

10A. Native vegetation clearing set asides

Council has not been notified by Local Land Services of the existence of a set aside area under section 60ZC of the *Local Land Services Act 2013*.

11. Bush fire prone land

Bush Fire Prone Land The land is bush fire prone land.

Draft Northern Beaches Bush Fire Prone Land Map 2018

Some of the land is bush fire prone land.

12. Property vegetation plans

The Council has not been notified that the land is land to which a vegetation plan under the *Native Vegetation Act 2003* applies.

13. Orders under Trees (Disputes Between Neighbours) Act 2006

Council has not been notified of the existence of an order made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land.

14. Directions under Part 3A

There is not a direction by the Minister in force under section 75P(2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15. Site compatibility certificates and conditions for seniors housing

- (a) There is not a current site compatibility certificate (seniors housing), of which the council is aware, in respect of proposed development on the land.
- (b) No condition of consent applies to the property that limits the kind of people who may occupy the premises/ development. This refers only to consents granted after 11 October 2007 with conditions made in accordance with clause 18(2) of *State Environmental Planning Policy* (Housing for Seniors or People with a Disability) 2004.

<u>16. Site compatibility certificates for infrastructure, schools or</u> <u>TAFE establishments</u>

There is not a valid site compatibility certificate (infrastructure) or site compatibility certificate (schools or TAFE establishments), of which the council is aware, in respect of proposed development on the land.

17. Site compatibility certificate and conditions for affordable rental housing

- (a) There is not a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land.
- (b) There are not terms of a kind referred to in clause 17 (1) or 38 (1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.

18. Paper subdivision information

There is no current paper subdivision, of which council is aware, in respect of this land according to Part 16C of the *Environmental Planning and Assessment Regulation 2000*.

19. Site verification certificates

There is no current site verification certificate, of which council is aware, in respect of the land according to Part 4AA of the *State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.*

20. Loose-fill asbestos insulation

The residential dwelling erected on this land has not been identified in the Loose-Fill Asbestos Insulation Register as containing loose-fill asbestos ceiling insulation.

This clause applies to residential premises (within the meaning of Division 1A of part 8 of the Home Building Act 1989) that are listed in the register that is required to be maintained under that Division.

Contact NSW Fair Trading for more information.

21 Affected building notices and building product rectification

orders

- (1) There is not an affected building notice of which the council is aware that is in force in respect of the land.
- (2) There is not a building product rectification order of which the council is aware that is in force in respect of the land and has not been fully complied with, and
- (3) There is not a notice of intention to make a building product rectification order of which the council is aware has been given in respect of the land and is outstanding.

In this clause:

affected building notice has the same meaning as in Part 4 of the *Building Products (Safety) Act 2017. building product rectification order* has the same meaning as in the *Building Products (Safety) Act 2017.*

Additional matters under the Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the *Contaminated Land Management Act 1997* as additional matters to be specified in a planning certificate:

- (a) the land to which the certificate relates is not significantly contaminated land within the meaning of that Act
- (b) the land to which the certificate relates is not subject to a management order within the meaning of that Act
- (c) the land to which the certificate relates is not the subject of an approved voluntary management proposal within the meaning of that Act
- (d) the land to which the certificate relates is not subject to an ongoing maintenance order within the meaning of that Act
- (e) the land to which the certificate relates is not the subject of a site audit statement

If contamination is identified above please contact the Environmental Protection Authority (EPA) for further information.

Planning Certificate – Part 5

ePLC2019/2028

The following is information provided in good faith under the provisions of Section 10.7(5) of the *Environmental Planning and Assessment Act 1979* (as amended – formerly Section 149) and lists relevant matters affecting the land of which Council is aware. The Council shall not incur any liability in respect of any such advice.

Persons relying on this certificate should read the environmental planning instruments referred to in this certificate.

Company Title Subdivision

Clause 4.1 of the *Pittwater Local Environmental Plan 2014*, *Warringah Local Environmental Plan 2011* or *Manly Local Environmental Plan 2013* provides that land may not be subdivided except with the consent of the Council. This includes subdivision by way of company title schemes. Persons considering purchasing property in the Northern Beaches local government area the subject of a company title scheme are advised to check that the land has been subdivided with the consent of the Council.

District Planning

As part of ongoing NSW Planning Reforms, the Greater Sydney Commission is preparing six District plans for Sydney in consultation with local Councils. Northern Beaches LGA is part of the North District Plan. More information about the NSW Planning Reforms is available at the NSW Department of Planning (website: <u>www.planning.nsw.gov.au</u>).

Council Resolution To Amend Environmental Planning Instrument

The following instrument or resolution of Council proposes to vary the provisions of an environmental planning instrument, other than as referred to in the Planning Certificate – Part 2:

Planning Proposal - Response to Low Rise Medium Density Code

Applies to land: Certain land in the Pittwater Local Environmental Plan 2014 (PLEP 2014) and Manly Local Environmental Plan 2013 (MLEP 2013)

Outline: Seeks to amend the PLEP 2014 and MLEP 2013 in response to issues arising from the future implementation of the NSW Governments' SEPP (Exempt and Complying Development) Amendment (Low Rise Medium Density Code). The intent of the Planning Proposal is to prohibit:

- manor houses and multi-dwelling housing (including terraces) in zone R2 Low Density Residential zone under the Manly LEP 2013
- dual occupancy in zone R2 Low Density Residential zone under the Manly LEP 2013 and Pittwater LEP 2014
- multi-dwelling housing and dual occupancies in the R3 Zone in the Warriewood Valley under Pittwater LEP 2014

Council resolution: 26 June 2018

Planning Proposal - rezone deferred land within the Oxford Falls Valley & Belrose North area

Applies to land: Land within the B2 Oxford Falls Valley and C8 Belrose North localities of WLEP 2000 and land zoned E4 Environmental Living under WLEP 2011 at Cottage Point (Boundaries

identified within the Planning Proposal)

Outline: Amends WLEP 2000 and WLEP 2011 to:

- Transfer the planning controls for land within the B2 Oxford Falls Valley and C8 Belrose North localities of WLEP 2000 into the best fit zones and land use controls under WLEP 2011
- Rezone the majority of the subject land to E3 Environmental Management under WLEP 2011
- Rezone smaller parcels of land to E4 Environmental Living, RU4 Primary Production Small Lots, SP2 Infrastructure, SP1 Special Activities, R5 Large Lot Residential and R2 Low Density Residential under WLEP 2011
- Include various parcels of land as having additional permitted uses under Schedule 1 of WLEP 2011

Council resolution: 24 February 2015

Planning Proposal - 28 Lockwood Avenue, Belrose

Applies to land: 28 Lockwood Avenue, Belrose

Outline: Amends WLEP 2011 to:

- Permit additional land uses of 'residential flat building' and 'multi dwelling housing' on that part of the land fronting Lockwood Avenue only
- Prohibit the granting of development consent for a residential flat building or multi-dwelling housing on the land unless a minimum Floor Space Ratio of 0:5:1 is provided on the site for commercial premises.

Council resolution: 28 November 2017

Planning Proposal - Freshwater Village Carpark Reclassification

Applies to land: Oliver Street carpark and Lawrence Street carpark, Freshwater **Outline:** Amends WLEP 2011 to:

- Amend Schedule 4 Part 1 to include reference to the land
- Amend LZN_010 map to change the zoning from RE1 Public Recreation to SP2 -Infrastructure
- Amend HOB_010 map to implement a maximum height of building of 3 metres.

Council resolution: 27 November 2018

Additional Information Applying To The Land

Additional information, if any, relating to the land the subject of this certificate:

Nil

General Information

Threatened Species

Many threatened species identified under the *Biodiversity Conservation Act 2016* (NSW) and Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) are found within the former Local Government Area of Warringah (now part of Northern Beaches). Council's Natural Environment unit can be contacted to determine whether any site specific information is available for this property. Records of threatened flora and fauna are also available from the NSW Office of Environment and Heritage's Atlas of NSW Wildlife database: ">http://www.bionet.nsw.gov.au>

Potential threatened species could include:

(a) threatened species as described in the final determination of the scientific committee to list endangered and vulnerable species under Schedule 1 of the *Biodiversity Conservation Act 2016*, and/or

(b) one or more of the following threatened ecological communities as described in the final determination of the scientific committee to list the ecological communities under Schedule 2 of the *Biodiversity Conservation Act 2016*:

- Duffys Forest Ecological Community in the Sydney Basin Bioregion
- Swamp Sclerophyll Forest on Coastal Floodplain
- Coastal Saltmarsh of the Sydney Basin Bioregion
- Swamp Oak Floodplain Forest
- Bangalay Sand Forest of the Sydney Basin Bioregion
- Themeda grasslands on Seacliffs and Coastal Headlands
- Sydney Freshwater Wetlands in the Sydney Basin Bioregion
- Coastal Upland Swamp in the Sydney Basin Bioregion

- River-Flat Eucalypt Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions

Bush fire

Certain development may require further consideration under section 79BA or section 91 of the Environmental Planning and Assessment Act 1979, and section 100B of the Rural Fires Act, 1997 with respect to bush fire matters. Contact NSW Rural Fire Service.

Aboriginal Heritage

Many Aboriginal objects are found within the Local Government Area. It is prudent for the purchaser of land to make an enquiry with the Office of Environment and Heritage as to whether any known Aboriginal objects are located on the subject land or whether the land has been declared as an Aboriginal place under the *National Parks and Wildlife Act 1974* (NSW). The carrying out of works may be prevented on land which is likely to significantly affect an Aboriginal object or Aboriginal place. For information relating to Aboriginal sites and objects across NSW, contact: Aboriginal Heritage Information Management System (AHIMS) on (02) 9585 6345 or email **AHIMS@environment.nsw.gov.au**. Alternatively visit

http://www.environment.nsw.gov.au/licences/AboriginalHeritageInformationManagementSystem.htm.

Coastal Erosion

Information available to Council indicates coastal erosion may affect a greater number of properties and may present an increased risk to properties than that shown on published hazard maps of the Warringah coastline. Council's Natural Environment Unit can be contacted for further information.

Ray Brownlee PSM Chief Executive Officer 09/04/2019

APPENDIX P: SAFEWORKS RECORDS

Our Ref: 2003/022078 Your Ref: Michael Silk

5 December 2016

Attention: Michael Silk Benviron Group 3/112 Fairfield Street FAIRFIELD EAST NSW 2165

Dear Mr Silk

RE SITE1 & 5 Skyline Place, Franches Forest

I refer to your site search request received by SafeWork NSW on 9 November 2016 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the above mentioned premises.

For further information or if you have any questions, please call our Customer Service Centre on 13 10 50 or email <u>licensing@safework.nsw.gov.au</u>

Yours sincerely,

Sally Anderson obo Brent Jones Customer Service Officer Customer Service Centre - Operations SafeWork NSW