

Combined Preliminary and Detailed Site Investigation

Project Details

Principal Author

Report Title Combined Preliminary and Detailed Site Investigation: Green Renovation Works at Bayview Golf Course, Bayview,

NSW

William Xu

Client Bayview Golf Club

Document P2309440JR04V01

Director Andrew Norris

Manager Gray Taylor

Document History

Issue	Issue Date	Status	Description / Comment	Author	Reviewer	Approved
1	1/09/2023	Draft	Final Release	WX	ВМ	GT

© Copyright Martens & Associates Pty Ltd Suite 201, 20 George St, Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 P +61-2-9476-9999 | mail@martens.com.au | www.martens.com.au

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording, recording, the coording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

Content

1	Introd	luction	7
	1.1	Overview	7
	1.2	Proposed Development	7
	1.3	Previous Assessments	7
	1.4	Objectives	7
	1.5	Scope of Work	8
	1.6	Reference Guidelines and Planning Instruments	8
2	IA and	d Site Background Information	9
	2.1	IA and Site Identification and Environmental Settings	9
	2.2	Hydrogeology and Groundwater Use	10
3	Prelin	ninary Site Investigation	12
	3.1	Historical Aerial Photography	12
	3.2	Northern Beaches Council Development Records	13
	3.3	NSW EPA and Department of Defence Records	13
	3.4	External Potentially Contaminating Activities	14
4	Site W	Valkover Inspection	15
5	Conce	eptual Site Model	16
	5.1	Areas of Environmental Concern	16
	5.2	Potential Exposure Pathways and Receptors	16
	5.3	CSM Discussion	17
6	Samp	ling, Analysis and Quality Plan	18
	6.1	Overview	18
	6.2	Data Quality Objectives	18
	6.3	Data Quality Indicators	20
	6.4	Site Assessment Criteria	21
	6.5	Soil Investigation Methodology	22
	6.6	Laboratory Analytical Suite	23
7	Invest	tigation Results	25
	7.1	Subsurface Conditions	25
	7.2	Field Observations	25
	7.3	Soil Analytical Results	25
	7.4	QA/QC Data Review	26
8	Discu	ssion and Conclusion	27
9	Limita	ations	29
10	Refere	ences	30
11	Attacl	hment A: Maps	31
12	Attacl	hment B: Proposed Masterplan	32
13	Attacl	hment C: Aerial Photograph	168
14	Attacl	hment D: Desktop Contamination Searches	169
15		hment E: Borehole Logs	
16	Attacl	hment F: Summary Tables	171
17	Attacl	hment G: Data Quality Assessment	172

18 Attachment H: Laboratory Analytical Results, COC and Sample Receipt.... 173

Tables

Table 1: Site identification and environmental setting information	9
Table 2: Summary of groundwater bore records	11
Table 3: Historical aerial photography observations	12
Table 4: Northern Beaches Council DA Records.	13
Table 5: NSW EPA and Department of Defence Records	13
Table 6: Summary of Site inspection observations	15
Table 7: Potential contamination sources and contaminants of potential concern	16
Table 8: Conceptual site model	16
Table 9: Data Quality Objectives	18
Table 10: Data Quality Indicators	20
Table 11: Site Assessment Criteria	22
Table 12: Investigation and sampling methodology	23
Table 13: Summary of Soil Laboratory Analysis	24
Table 14: Summary of Soil Analytical Results	25

Abbreviations

4460	Actual said sulfate sail	MDT	Manahutultin
AASS	Actual acid sulfate soil	MBT	Monobutyltin
ABC	Ambient background concentrations	MNA	Monitored natural attenuation
ACM	Asbestos containing material	MPE	Multi phase extraction
AEC	Area of environmental concern	NAPL	Non aqueous phase liquid
AF	Asbestos fines	NATA	National Association of Testing Authorities
AMP	Asbestos Management Plan	ND	No data
ANZECC	Australia and New Zealand Environment Conservation Council	NEPC	National Environment Protection Council
ANZG	Australian and New Zealand Governments	NEPM	National Environment Protection Measure
ASC NEPM	National Environmental Protection (Assessment of Site Contamination) Measure (2013)	ОСР	Organochloride pesticides
ASS	Acid sulfate soil	OEH	NSW Office of Environment and Heritage
ASSMAC	Acid Sulfate Soils Management Advisory Committee	OPP	Organophosphorus pesticides
AST	Above ground storage tank	PACM	Potential asbestos containing material
BGL	Below ground level	PAH	Polycyclic aromatic hydrocarbons
ВН	Borehole	PASS	Potential acid sulfate soil
BTEXN	Benzene, toluene, ethylbenzene, xylene, naphthalene	PCB	Polychlorinated biphenyl
CEMP	Construction Environmental Management Plan	PCEMP	Post Construction Environmental Management Plan
coc	Chain of custody	PESA	Preliminary Environmental Site Assessment
COPC	Contaminants of potential concern	PFAS	Per- and polyfluoroalkyl substances
DA	Development application	PID	Photoionisation detector
DBT	Dibutyltin	ppb	Parts per billion
DEC	Department of Environment and Conservation	ppm	Parts per million
DECC	Department of Environment and Climate Change	PQL	Practical quantitative limit (interchangeable with EQL and LOR)
DNAPL	Dense non aqueous phase liquid	PSI	Preliminary Site Investigation
DP	Deposited Plan	QA/QC	Quality assurance / quality control
DPI	NSW Department of Primary Industry	RAC	Remediation acceptance criteria
DPIW	NSW Department of Primary Industry – Water	RAP	Remedial Action Plan
DQI	Data quality indicators	HHRA	Human Health Risk Assessment
DQO	Data quality objectives	RPD	Relative percentage difference
DSI	Detailed Site Investigation	SAC	Site assessment criteria
EAC	Ecological assessment criteria	SAQP	Sampling and Analysis Quality Plan
EIL	Ecological investigation level	SEPP	State Environmental Planning Policy
EMP	Environmental Management Plan	SIL	Soil investigation level
EPA	NSW Environmental Protection Authority	SOP	Standard operating procedure
EQL	Estimated quantitation limit (interchangeable with PQL and LOR)	SWL	Standing water level
ESA	Environmental Site Assessment	SWMS	Safe Work Method Statement
ESL	Ecological screening level	тв	Trip blank
FA	Fibrous asbestos	ТВТ	Tributyl tin
GIL	Groundwater investigation level	TCLP	Toxicity characteristics leaching procedure
HIL	Health investigation level	TEQ	Toxic equivalency factor
НМ	Heavy metals	TP	Test pit
HSL	Health screening level	TPH	Total petroleum hydrocarbons
IA	Investigation area	TRH	Total recoverable hydrocarbons
ISQG	Interim Sediment Quality Guideline	TS	Trip spike
ITP	Inspection Testing Plan	UCL	Upper confidence limit
LGA	Local government area	UPSS	Underground petroleum storage system
LNAPL	Light non aqueous phase liquid	UST	Underground storage tank
LOR	Limit of reporting (interchangeable with EQL and PQL)	VHC	
		VOC	Volatile proprie compounds
MA	Martens & Associates Pty Ltd		Volatile organic compounds
mAHD	Metres, Australian Height Datum	WHS	Work health and safety
mbgl	Metres below ground level	WHSP	Work Health and Safety Plan

1 Introduction

1.1 Overview

This report, prepared by Martens and Associates (MA), documents a Combined Preliminary and Detailed Site Investigation (PSI & DSI) to support a Development Application (DA) for proposed renovation works to 12 greens to Northern Beaches Council (NBC) ('the Council') at 52 Cabbage Tree Road and 1825 Pittwater Road, Bayview, NSW ('the site') on behalf of Bayview Golf Club ('the Client').

The investigation area (**IA**) for this combined PSI and DSI are only within the areas of proposed renovation works for the 12 greens as shown in Map 02 of Attachment A.

1.2 Proposed Development

From the plans provided by the client (CC, 2023), we understand that works are proposed to upgrade 12 greens, requiring varying amounts of cut and fill across the works areas. It is understood that the maximum proposed excavation depth is 1.75 mbgl. Details regarding proposed works at each green complex are provided in Appendix B.

1.3 Previous Assessments

MA have completed a number of land contamination assessments for various sections of the wider site as part of various proposed development works including a seniors living development and flood mitigation and drainage works. The following reports have previously been completed:

- Martens & Associates (2017) Detailed Site Investigation: Proposed Flood Mitigation Earthworks – Bayview Golf Course, Bayview, NSW, Job No. P1706099JR03V01.
- Martens & Associates (2017) Remedial Action Plan: Proposed Flood Mitigation Earthworks – Bayview Golf Course, Bayview, NSW, Job No. P1706099JR05V01.

Previous investigations did not include any assessment of the current IA (12 greens proposed for upgrades) and therefore previous assessment results have not considered as part of this combined PSI and DSI.

1.4 Objectives

The objectives for this combined PSI and DSI include:

- Provide an assessment of past investigations, IA uses based on a review of available historical records.
- 2. Assess the current conditions of the IA and surrounding land use via a detailed site walkover inspection.
- 3. Identify potential contamination sources / areas of environmental concern (AEC) and contaminants of potential concern (COPC)
- 4. Prepare a conceptual site model (CSM).
- 5. Quantify potential risks from contamination within the IA by undertaking a program of intrusive investigation, soil sampling and laboratory analysis.

6. Provide comment on the suitability of the IA for the proposed works, and where required, provide recommendations for additional investigations.

1.5 Scope of Work

The scope of works includes the following:

- 1. Review of available online mapping resources.
- 2. Review of available online hydrogeological and groundwater information.
- 3. Review of information relevant to the IA including available historical records, images and regulatory information relating to potential land contamination issues.
- 4. A walkover inspection to review current land use, potential contaminating activities and neighbouring land use.
- 5. Intrusive soil investigation at sampling points located within recognised AECs to observed existing soil conditions and collect representative soil samples.
- 6. Laboratory analysis of samples for COPC.
- 7. Preparation of a report in general accordance with the relevant sections of ASC NEPM (2013), NSW EPA (2017 and 2020) and SEPP (2021).

1.6 Reference Guidelines and Planning Instruments

This assessment was prepared in general accordance with the following guidelines and planning policies:

- 1. NSW DUAP (1998) Managing Land Contamination: Planning Guidelines
- 2. State Environmental Planning Policy (Resilience and Hazards) 2021.
- 3. ASC NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure (referred to as ASC NEPM (2013)).
- 4. NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- 5. NSW EPA (2022) Sampling Design Guidelines Part 1 Application
- 6. NSW EPA (2020) Consultants Reporting on Contaminated Land, Contaminated Land Guidelines.
- 7. HEPA (2020) PFAS National Environmental Management Plan, Version 2.0.

2 IA and Site Background Information

2.1 IA and Site Identification and Environmental Settings

IA and Site identification details and environmental settings are summarised in Table 1. The location of the site and general surrounding area are shown in Appendix A.

Table 1: Site identification and environmental setting information

Item	Description / Comment			
Site address	52 Cabbage Tree Road and 1825 Pittwater Road, Bayview, NSW			
Lot / DP	Lot 1 in DP 662920			
	Lot 5 in DP 45114			
	Lot 191 in DP 1039481			
	Lot A in DP 339874			
	Lot 150 in DP 1003518			
	Lots 1, 2 and 3 in DP 986894			
	Lot 300 in DP 1139238			
	Lot 1 in DP 19161.			
Approximate area of	2.0856 ha			
proposed development works (IA)	(By calculation - QGIS)			
Local Government Area	Northern Beaches Council			
Zoning	RE2 – Private Recreation			
	(Pittwater Local Environmental Plan 2014)			
Current use	Golf Course			
Proposed use	Golf Course			
Geology	The published geological map covering this area indicates that the IA is predominantly underlain by Quaternary deposits: silty to peaty quartz sand, silt, and clay with ferruginous and humic cementation in places and common shell layers.			
	The north western and south eastern portion is indicated to be underlain by Newport Formation and Garie Formation: interbedded laminate, shale, quartz, to lithic-quartz sandstone and clay pellet sandstone (Sydney 1:100 000 Geological Sheet 9130, 1st edition).			
	The location of geological units within the site are presented in Appendix A (Map 05).			
Soil landscape	Soil landscape mapping from eSPADE (NSW DPE, 2023) platform identified the following soil landscapes within the site:			
	Deep Creek Landscape at the central and western portion – deep (>200 cm) Podzols on well-drained terraces, Siliceous Sands on current floodplain and Humus Podzols in low lying areas.			
	Disturbed Terrain Landscape at the eastern portion – turfed fill areas commonly capped with up to 40 cm of sandy loam or up to 60 cm of compacted clay over fill or waste materials.			
	Erina Soil Landscape at the western and south eastern portion – moderately deep to deep Yellow Podzolic Soils on fine grained bedrock with Yellow Podzolic Soils and Yellow Earths on coarse grained parent material with Yellow Earths on footslopes and deep structured loams and Yellow Earths along drainage lines.			

Item	Description / Comment
	Watagan Soil Landscape at the north western portion – allow to deep (30–200 cm) Lithosols / Siliceous Sands and Yellow Podzolic Soils on sandstones; moderately deep (100–200 cm) Brown Podzolic Soils, Red Podzolic Soils and Gleyed Podzolic Soils on shale.
	Tuggerah Soil Landscape at the southern portion – deep (>200 cm) Podzols on dunes and Podzols / Humus Podzol intergrades on swales.
	The location of mapped soil landscapes within the site are presented in Appendix A (Map 06).
Topography	Soil landscape mapping from eSPADE (NSW DPE, 2023) provide descriptions of topography for the following soil landscapes present within the site:
	Deep Creek Soil Landscape – Level to gently undulating alluvial floodplain draining the Hawkesbury Sandstone. Local relief <5m, slopes <3%. Depositional floors of steeply dissected valleys of the Hornsby Plateau. Partially cleared tall open woodland and weed infested tall open forest and closed forest.
	Disturbed Terrain Landscape – Level plain to hummocky terrain, extensively disturbed by human activity, including complete disturbance, removal or burial of soil. Local relief <10m, slopes <30%. Landfill includes soil, rock, building and waste materials. Original vegetation completely cleared, replaced with turf or grassland.
	 Erina Soil Landscape - Undulating to rolling rises and low hills with local relief <60 m and slopes <25%. Rounded narrow crests with moderately inclined slopes. Extensively cleared tall open-forest with open-heathland in exposed coastal areas.
	Watagan Soil Landscape - Rolling to very steep hills and slopes. Local relief ranges from 50–220 m and slope gradients are >25%. Crests and ridges are convex and narrow (<300 m). Hillslopes are steep with talus slopes often containing sandstone boulders. Occasional narrow sandstone and colluvial benches are present. Slopes with gradients>70% often have cliffs and scarps >10 m high.
	In conclusion, the southern golf course is generally flat with slopes <3% and grades between 0 and 5 mAHD, apart for the south eastern portion which grades up to 22 m AHD with a northerly aspect.
	The northern golf course has steep slopes (up to 30%) with a southerly aspect and grades 5 and 46 mAHD.
	Mapping of topography for the site is provided in Appendix A (Map 03).
Surface hydrology	Depressions and swamps in the northern and eastern portions of the site collect water during rainfall events. Cahill Creek flows from the northern to the eastern portion of the site.
	The site generally drains generally centrally to an inlet which ultimately connects to Winnererremy Bay, Pittwater, located approximately 260 m north east of the site.
Surrounding land use	Land uses surrounding the Site includes:
	North – Residential developments.
	East – Pittwater High School.
	South – Residential developments.
	South east – Commercial and industrial developments.
	West – Residential developments.

2.2 Hydrogeology and Groundwater Use

Review of WaterNSW Real-time Water Database identified 4 groundwater bores, either within the IA, or within 300 m of the IA. A summary of the available bore information provided on available records is provided in Table 2.

Table 2: Summary of groundwater bore records

Groundwater Direction and Distance Bore Identification		Depth To Groundwater (mBGL)	Registered Use	Water Bearing Zone Substrate
GW111610	Southern portion of the site	1.2	Recreation	Silty sand fill
GW014463	Western portion of the site	1.5	Irrigation	Sand
GW106813	200 m north of the site	11.4	Domestic	Sandstone
GW108920	250 m north west of the site	13.0	Domestic	No records

MA's Geotechnical Investigation (2023) intrusive investigation observed groundwater inflow between 0.8 – 1.3 mBGL across the site. Intrusive works for this PSI / DSI did not encounter groundwater up to 1.2 mbgl.

Based on saturated soil depths and the existing 0.25 m contour site plan, a permanent water table is expected beneath the main golf course at a level of the order of 0.1 to 0.5 mAHD.

3 Preliminary Site Investigation

3.1 Historical Aerial Photography

A selection of historical aerial photographs covering the period 1940 to 2023 have been reviewed to provide an understanding of historical land use and activities within the IA and on surrounding land. A summary of observations made from historical aerial photography is provided in Table 3.

Table 3: Historical aerial photography observations.

Year	Golf Course and IA Observations	Observation on Surrounding Land
1940 ¹	Much of the golf course land is grassed area with line of trees dividing fairways for golf course use.	Areas to the north and east remain vegetated and undeveloped.
	Existing dam and former structures observed at the eastern and south eastern portion of the golf course, respectively.	Much of the land to the south west is cultivated and occupied by orchards, with some horticultural activities.
		Low density residential dwellings in all directions except to the east.
1951 ¹	Some existing greens (1, 2, 4 and 13) were constructed within the IA.	Increased horticultural activities to the north and south west of the golf course.
		Increased residential structures to the south east.
1961 ¹	Some clearing and replanting of trees at the central portion for the construction of all of the remaining	Further increase in horticultural activities to the north, south west and south of the golf course.
greens, apart for the 3 rd green, at central and		Further increase in residential structures to the south and south east.
1971 ¹	Clearing of trees at the southern portion of the golf course.	Reduction in horticultural activities and clearing of vegetation to the south west of the golf course.
		Clearing of vegetation for the construction of residential structures and Pittwater High School to the north east and east of the golf course, respectively.
1978¹	Dams constructed at the western and central western portions of the golf course.	Increase in residential structures to the east, south and south west, and additional structures constructed at Pittwater High School.
		Some clearing of vegetation to the north.
1986¹	No notable changes.	Further clearing of vegetation for the construction of residential structures to the north of the golf course.
		Increase in residential structures all directions except for the north west and north east.
1994¹	Clearing of trees at location of the existing 3 rd green.	Increase in residential structures to the north and south.
2002¹	Existing 3 rd green was constructed within the IA	Increase in residential structures to the south west.
2005 ¹	No notable changes.	No notable changes.
2010 ²	Former structures were demolished and existing amenities building constructed at the southeast portion of the site.	No notable changes.
2016 ²	Hotel / villas were constructed at the southeast portion of the site.	No notable changes.

Year Golf Course and IA Observations		Observation on Surrounding Land	
2023 ²	No notable changes.	No notable changes.	

Notes:

Copies of historical aerial photographs used for review purposes are provided in Appendix C.

3.2 Northern Beaches Council Development Records

Historical development record relevant to 1825 Pittwater Road was provided by Northern Beaches Council in Appendix C. Applications with potentially contaminating activities associated with the IA are summarised in Table 4.

Table 4: Northern Beaches Council DA Records.

Application ID	Year	Description
0730/98	1998	Landfill, earthworks and water storage landfill, earthworks & water storage
IF2/0190/97	1997	Landfill / earthworks landfill, earthworks and additional water storage
0343/94	1994	Dredging and earthworks construction of an access track and dredging of existing water storage dam

3.3 NSW EPA and Department of Defence Records

A review of NSW EPA and Department of Defence records was completed for the PSI using the following databases:

- Records of public notices of contaminated land under Section 58 of the *Contaminated Land Management Act* 1997 (CLM Act).
- Records relating to contaminated land notified to NSW EPA under Section 60 of the CLM Act.
- Records relating to licensed activities, applications, notices, and audits under the *Protection of the Environment Operation Act 1997* (POEO Act).
- Records relating to sites listed under the NSW EPA per-and polyfluoroalkyl substances (PFAS) investigation program.
- Records relating to site being investigated and or managed by the Department of Defence for PFAS contamination.

Information obtained from these records is provided below in Table 5 and Appendix D.

Table 5: NSW EPA and Department of Defence Records

Records	Onsite	Offsite
Notices under Section 58 of the CLM Act 1997	No record	No record within 500 m
Duty to Report Contamination under Section 60 of the CLM Act 1997	No record	No record within 500 m
Records under the POEO Act 1997	No record	No record within 500 m
NSW EPA PFAS investigation program	No record	No record within 500 m.

Sourced from Spatial Service - NSW Department of Customer Service Historical Imagery Viewer.

Sourced from Nearmap (2023).

Records	Onsite	Offsite
Department of Defence PFAS management and investigation program	No record	No record within 500 m

3.4 External Potentially Contaminating Activities

Review of available online mapping and business services registers relating to potential contaminating businesses and activities (e.g., service stations, fire stations, mechanics, dry cleaners, airports, etc.) located within ≤500 m of the IA was conducted for the PSI. The review did not identify locations within 500 m of the IA.

4 Site Walkover Inspection

An inspection of the wider golf course Site along with the 12 greens forming the IA was conducted by a Senior MA Environmental Consultant on 8 August 2023. Observations made during the inspection of the Site are provided below in Table 6.

Table 6: Summary of Site inspection observations

Item	Comment	
Buildings and structures	Golf club and car park located at Lot 300 in DP 1139238 (south eastern portion of southern golf course).	
	Maintenance sheds were located at Lot 2 in DP 531960 (northern portion of southern golf course).	
Ground surfaces and pavements	Majority of the site was vegetated and developed for golf course purposes, with hardstand car park at the south eastern corner of the site.	
	The ground surface of the IA considered of grass and bunkers as part of each green complex.	
Fill material and soil stockpiles	Based on previous site wide investigations and site observations, the presence of fill material within the IA is considered likely.	
Historic structures	No evidence of former structures were observed across entire IA.	
Chemical storage	No evidence of oil storage (empty drum) was noted within the IA.	
UPSS, USTs and ASTs ¹	No evidence of UPSS, USTs, and ASTs were observed during the wider site inspection nor within the IA.	
Waste materials and storage	Sand and mulch stockpiles were observed near the maintenance sheds at Lot 2 in DP 531960.	
	No storage or waste material was observed within the IA.	
Odours and staining	No significant odours or staining were reported or observed during the inspection.	
Hazardous building materials	No surficial PACM fragments were observed during the site inspection.	
Electrical substation	No electrical substations observed within the wider site or IA.	
Vegetation and phytotoxicity Vegetation at the IA consisted mostly of manicured grass forming the green complex. All vegetation within the IA and across the wider site was observed to generally in good condition. Evidence of potential phytotoxicity effects to vegetation was not observed.		

Notes:

^{1.} Underground petroleum storage systems (UPSS), underground storage tanks (USTs), and aboveground storage tanks (ASTs).

5 Conceptual Site Model

5.1 Areas of Environmental Concern

Our assessment of potential contamination sources / AECs and associated COPC for the IA was made for the site based on available site history, aerial photograph interpretation and observation made during the site walkover. Table 7 presents potential contamination sources and contaminants of potential concern for the IA.

Table 7: Potential contamination sources and contaminants of potential concern.

AEC	Potential for Contamination	COPC
AEC	Application of pesticides, herbicides and heavy metals for pest control during use as a golf course.	HM, OCP / OPP, phenyl acid and
Golf Course Use	control during use as a gon course.	triazine.
AEC	Fill material may have been imported from unknown offsite sources. This is of particular significance if filling material was	HM, TRH, BTEXN, PAH, OCP / OPP,
Potential Fill Areas	sourced from locations of heavy industry, is a by-product of	PCBs and asbestos.
7.000	industrial processes, or includes demolition debris contaminated with asbestos containing materials (ACM).	

5.2 Potential Exposure Pathways and Receptors

A conceptual site model (CSM), based on the AEC and COPC identified in Table 7, and the associated exposure pathways to potential receptors are summarised in Table 8.

Table 8: Conceptual site model.

Item	Description
Affected Media and Mechanism of Contamination	Soil has been identified as potentially affected media. Potential mechanisms for contamination likely include 'top-down impacts' such as impacts to near surface soils from potential fill, site structures and former market garden use. Contamination from anthropogenic impacts (such as asbestos containing material or other building waste) may also be present within the site soil.
	Groundwater is not expected to be a media of interest requiring further investigation given that the proposed works are not resulting any substantial change to the current land use (i.e. a golf course) nor will there be any beneficial use of groundwater during or as a result of the proposed works.
Potential Exposure	Human-health
Pathways	• Ingestion
	Dermal absorption
	Inhalation (dust, vapours, ground gases)
	Ecological
	Biota uptake and intake
Potential Receptors	Human-health
	Future site users and visitors
	Commercial / industrial workers (offsite)
	Maintenance workers
	Construction workers
	Ecological
	Flora and fauna (onsite and offsite – hydraulically down-gradient)

5.3 CSM Discussion

Based on the source – exposure pathway – receptor linkage framework outlined above in Section 5.2, potential risks to receptors may exist at the site due to the potential AECs (sources of contamination) identified by the investigation. Based on the AECs identified by the PSI, potential areas of contamination and exposure pathways may exist at the site that present a potential risk to site receptors, and further intrusive site investigation for soil is required to quantify potential risks.

6 Sampling, Analysis and Quality Plan

6.1 Overview

A Sampling Analysis and Quality Plan (SAQP) has been developed to ensure that data collected for the DSI is representative of soil conditions, and provides a robust basis for assessment decisions. Preparation of the SAQP was completed in general accordance with NEPC (2013b) methodology and includes:

- Data quality objectives (DQO).
- Data quality indicators (DQI).
- Sampling methodologies and procedures.
- Field screening methods.
- Sample handling, preservation, and storage procedures.
- Analytical QA/QC.

The SAQP is summarised in the following sections.

6.2 Data Quality Objectives

DQO for the investigation are prepared as statements specifying the qualitative and quantitative data required to support project decisions. DQO have been prepared in general accordance with NEPC (2013b) and NSW EPA (2020) guidelines and are presented in Table 9.

Table 9: Data Quality Objectives

DQO Item	Commentary
1. State the Problem	The DSI is being conducted to characterise potential land contamination risks that may exist with the IA for the proposed greens works at Bayview Golf Course.
	The DSI will evaluate potential risks to future site receptors posed by COPCs associated with AECs that have been identified within the IA (see Section 5). A CSM has been developed for the investigation from information gathered by a desktop study, site inspection and laboratory analysis. The CSM outlines that potential source - exposure pathway – receptor linkages may exist at the Site which could result in potential exposure to receptors associated with the proposed land use.
	Given the potential risk to receptors posed by media that has been identified by the CSM, a program of soil sampling and laboratory analysis is required to characterise of the Site for CLM purposes.
	Any requirement for additional investigation or remediation will be discussed by this report.
2. Identifying the Decision(s) / Study Goals	The decisions required to be made for the DSI will be based on the following questions:
	 Is the environmental data collected for the project, suitable for assessing relevant land contamination exposure risks?
	 Are impacts from previous or current site use(s) present in IA soils that may pose a risk to human-health or the environment during residential (with access to soil) use of the IA?
	Does the IA require further investigation, remediation, or management before applicable media can be considered suitable for the proposed development and land use?

DQO Item	Commentary
3. Identification of	The inputs to the decisions include:
Inputs to the Decision	Proposed land use as present in the development plans.
	The CSM developed for the investigation.
	Sampling design employed to screen for potential risks posed by COPC.
	Soil samples collected from sampling points.
	Observations made during intrusive investigation and sample collection.
	The measured physical and/or chemical parameters of the site media sampled (including field data and laboratory analytical results, where relevant).
	Tier 1 assessment criteria adopted for the appraisal of potential contamination risks from Site media.
4. Study Boundary	The boundaries of the study are as follows:
Definitions	Lateral - defined by the IA boundary (present in Appendix A) and the sampling points used for sample collection to screen for potential contamination.
	Vertical – limited to the depth of soil samples collected at each sampling point.
	 Temporal – data collected during the investigation relates specifically to the date of sampling and access availability across the IA to undertake the field investigation. Constraints which may affect the completion of the field investigation include, access limitations for equipment and field personnel, the presence of above and below ground infrastructure / services, and hazards creating risks to health and safety.
5. Development of	The decision rules for this investigation are as follows:
Decision Rules	The maximum soil concentration for the respective COPCs will be the key statistical parameter of interest.
	 If the maximum concentration for a respective COPC exceeds the adopted SAC, outlined in Section 6.4, further investigation or remediation will be required.
6. Specification of	Specific limits for this project will be in accordance with National and NSW EPA guidance.
Limits on Decision Errors	The null hypothesis for the soil investigation is:
	The 95% Upper Confidence Limit (UCL) of the mean for chemicals of concern exceed land use criteria (presented in Section 6.4).
	The acceptance of the soil suitability will be based on the probability that:
	The 95% UCL of the mean will satisfy the given site criterion. Therefore, there is a limit on the decision error of 5% that a conclusive statement may be incorrect.
	The standard deviation of the results was less than 50% of the relevant Tier 1 investigation criterion.
	No single result exceeds the land use criteria by 250% or more.
	Soil concentrations for COPCs that are below investigation criteria, made or approved by the NSW EPA, are treated as acceptable and indicative of soil quality being suitable for the proposed land use.

DQO Item	Commentary
7. Optimisation of Sampling Design	For the purposes of this investigation, a sampling approach has been adopted to screen for COPCs in identified AECs at the Site. To achieve this, a systematic sampling programme of 12 locations (undertaken at the recommended minimum sampling densities for site characterisation - grid-based sampling requirements of NSW EPA (2022)), has been adopted for soil screening purposes. This will include:
	Soil investigation by the methods discussed in Section 6.5.
	Collection of soil profile samples (including fill and natural soils where encountered) at each sampling location.
	 A selection of samples for analytical testing will be based on the soil units encountered at sampling locations and field observations made (including visual and olfactory evidence). Typically, at least one sample per location will be tested.
	 Analysis of samples for COPC identified by the CSM (Section 5.1) to assess the environmental condition of soils associated with AECs.

6.3 Data Quality Indicators

In accordance with the requirements of NSW EPA (2017), the investigation data set has been compared with DQI outlined in Table 10 to ensure that collected data meets the project needs and that DQO has been met.

Table 10: Data Quality Indicators

Assessment Measure (DQI)	Comment		
Precision – a measure of the variability (or	Precision is assessed by calculating the relative percent difference (RPD) between field duplicates and primary samples.		
reproducibility) of data.	 Data precision is deemed acceptable where results are 0 - 10 x EQL or where RPDs <50% (10 - 30 x EQL) or <30% (>30 x EQL). 		
	 Exceedance of this range may still be considered acceptable where heterogeneous materials such as fill are sampled. 		
Accuracy – a measure of	Data accuracy is assessed by:		
the closeness of reported data to the "true value".	Field spikes and blanks.		
	Laboratory control samples.		
Representativeness – the confidence that data are	To ensure data representativeness the following field and laboratory procedures are followed:		
representative of each media present on the Site.	 Ensure that the design and implementation of the sampling program have been completed in accordance with MA standard operating procedures (SOP). 		
	 Trip blank and trip spike samples shall be used for volatiles during field sampling to ensure no cross contamination or laboratory artefacts. 		
	 Ensure that all laboratory hold times are met and that sample handling and transport are completed in accordance with the MA SOP. 		
Completeness – A measure	To ensure data set completeness, the following is required:		
of the amount of usable data from a data collection activity.	 Confirmation that all sampling methodology was completed in general accordance with the MA SOP. 		
	COC and receipt forms.		
	 Results from all laboratory QA / QC samples (lab blanks, trip blank, trip spike, lab duplicates). 		
	NATA accreditation stamp on all laboratory reports.		

Assessment Measure (DQI)	Comment	
Comparability - The confidence that data may be considered to be equivalent for each sampling and analytical event.	Data comparability is maintained by ensuring that: All Site sampling events are undertaken following methodologies outlined in MA SOP and published guidelines. NATA accredited laboratory methodologies shall be followed on all laboratory analysis.	

6.4 Site Assessment Criteria

The SAC adopted for the investigation are listed in Table 11. Where laboratory double compositing of primary soil samples has occurred, the contaminant SAC has modified to half of the SAC value for screening purposes.

Table 11: Site Assessment Criteria.

Media	Adopted Guidelines	Applicability
Soil	ASC NEPM (2013)	Health investigation levels (HIL)
		NEPC (2013a) HIL C – Public open space (i.e. parks, play grounds, playing fields, ovals, secondary schools and foot path)
		Health screening levels (HSL)
		Petroleum hydrocarbon HSLs
		NEPC (2013a) HSL C – Recreational / Open space (coarse soils).
		Asbestos HSLs
		Assessed on a visual and detect / non-detect basis.
		Ecological Investigation Levels (EIL)
		Urban residential and public open space land use
		EILs have been derived by using the methodology prescribed in Schedule B1 of NEPC (2013a). EILs are calculated by using the Added Contaminant Levels (ACL) for respective contaminants presented in Table 1B(1), Table 1B(2), Table 1B(3), Table 1B(4) and Table 1B(5) from Schedule B1 of NEPC (2013). Ambient Background Concentrations (ABC) are also used for the calculation of EILs and are based on ABC concentrations for NSW – old suburb / low traffic settings, as tabulated in Schedule B5c of NEPC (2013c) for respective contaminants.
		The following physiochemical properties and considerations were calculated from laboratory analysis of 3 natural samples across the Site limited site-specific data:
		• pH: pH 5.6.
		• CEC: 4.17 cmol/kg.
		Clay content: 5 %.
		Contamination is considered aged (>2 years).
		The site-specific EIL calculations are presented in Appendix F.
		Ecological Screening Levels (ESL)
		NEPC (2013a) ESLs for TRH, BTEX, and benzo(α)pyrene (coarse textured soils) in urban residential and public open space land use settings.
		Management Limits
		NEPC (2013a) Management Limits (coarse textured soils) are adopted for assessment of TRH in residential, parkland, and public open space settings

6.5 Soil Investigation Methodology

The soil investigation and sampling methodology provide in Table 12 was completed to meet the project DQO.

Table 12: Investigation and sampling methodology

Activity	Detail / Comments
Fieldworks	Subsurface soil investigations were completed on 15 August 2023 by an experienced MA environmental consultant and involved:
	 Excavation of 24 surface samples (SS01 – SS24) using a clean shovel up to a maximum investigation depth of 0.2 mBGL and collection of soil samples.
	 Excavation of 12 boreholes (BH201 – BH212) using an electric auger up to a maximum investigation depth of 1.0 mBGL and collection of soil samples.
	 12 x 500 mL asbestos fines (AF) / friable asbestos (FA) samples were collected in zip locked bags from the excavated boreholes for laboratory assessment for asbestos in soil in accordance with ASC NEPM (2013).
	 Laboratory double composting of 24 collected surface samples and laboratory analysis for 12 composites samples.
	Laboratory analysis of 12 discrete soil samples.
	Collection and laboratory analysis of 2 soil duplicate samples.
	Sampling locations are shown in Appendix A – Map 12.
Soil logging and field Observations	Soils were described in the field, with soil classifications and descriptions based on the Unified Soil Classification System (USCS) and Australian Standard AS 1726 – 2017 Geotechnical site investigations.
	Soils were also evaluated qualitatively for odour, visual evidence of contamination, and presence of anthropogenic inclusions.
	Soil descriptions and field observations are summarised in Section 7.1.
Soil sampling	Soil samples were collected by grab method, using unused, dedicated nitrile gloves. Samples were placed into laboratory supplied, acid washed, solvent rinsed, 250 mL glass jars, and filled with sufficient sample to minimise headspace to limit volatile loss, then sealed by a plastic lid.
	Blind field duplicates collected at a rate of 1 per 10 primary samples. Field duplicate samples were separated from respective primary samples and placed into glass jars.
	AF/FA soil samples were collected in zip locked bags.
Soil sample identification, storage, and handling	Sampling jars and zip locked bags were labelled with site specific nomenclature, including project number, sample location, sampling depth, date, and sampler initials.
	Sampling jars were stored in a refrigerated (ice-brick) cooler box and transported to Envirolab Services, a NATA accredited analytical laboratory, with an accompanying Chain of Custody (COC) document and laboratory supplied security seals.
	Laboratory analysis of 12 x 500 mL of soil samples collected in zip locked bags were dispatched to Australian Safer Environment and Technology for the analysis of AF/FA samples.
	Sample Receipt Advice (SRA) was provided by each laboratory, documenting sample conditions upon receipt at the laboratory.
	Copies of COC and SRA documents are presented in Appendix H.
Decontamination	The auger and shovel used for soil excavation purposes was decontaminated between sampling points by scrubbing with a solution of Decon 90, followed by rinsing with potable water.

6.6 Laboratory Analytical Suite

Laboratory analysis of soil samples was performed by Envirolab Services Pty Ltd, a NATA-accredited analytical laboratory. 24 surface samples were double composited by the laboratory prior to analysis (identified as CO1 to CO12).

A summary of the laboratory analyses conducted for the investigation is provided in Table 13.

Table 13: Summary of Soil Laboratory Analysis

COPC	Primary Samples Analysed	Composite Samples Analysed	QA/QC Samples Analysed
BTEXN	12	-	1 trip spike
TRH	12	-	1 trip blank
PAH	12	-	-
HM ¹	12	12	2 duplicates
OCP / OPP	12	12	-
Phenyl acid and triazine (Herbicides)	-	12	-
Asbestos in soil	12	-	-
AF/FA	12	-	-
pH and CEC	3	-	-

Notes

Laboratory chain of custody (COC) documentation relating to the proposed analysis of samples is provided in Appendix H.

 $^{^{\}rm 1}$ HM – arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc.

7 Investigation Results

7.1 Subsurface Conditions

Surface soil sampling was performed at each sampling location utilising manual hand tools. Soils observations from each sampling location indicated that fill material consisting of silty clayey sand to a maximum target depth of 0.2 mbgl.

Borehole soil sampling was performed at each sampling location utilising an electric auger. Soils observations from each sampling location indicated that fill consisting of silty and / or clayey sand was observed up to 1.0 mbgl, with alluvium and / or residual soil consisting of sandy and / or silty clay underlying fill material to a maximum target depth of 1.2 mbgl.

Groundwater or near surface intermittent water-bearing zones were not observed during intrusive investigation.

Sampling plan is provided in Appendix A (Map 12) and borehole logs are provided in Appendix E.

7.2 Field Observations

Field observations compiled during the intrusive investigation are summarised below:

- Olfactory evidence of contamination was not detected in soils during sampling at each test location.
- Visual evidence of contamination (i.e., slag, heavy staining, ash, charcoal, or coal wash rejects, etc.) in soil samples collected was not observed.
- Evidence of potential cement-fibre materials, potentially containing asbestos, were not observed in examined soils.

7.3 Soil Analytical Results

Samples collected from respective sampling locations were analysed for relevant COPC established by the CSM (Section 5) developed for the investigation. Laboratory analytical results obtained from the two sampling event completed at the Site were compared to SAC established for the investigation. A summary of these results is provided Table 14.

Table 14: Summary of Soil Analytical Results

Analyte	Results Compared to SAC
Heavy metals	ш
	Laboratory results from analysed soil samples were reported below HIL-C.
	<u>EIL</u>
	Laboratory results for metals were reported below the EIL.
OCP/OPP	HIL
	Laboratory results from analysed soil samples were reported below HIL-C.
	<u>EIL</u>
	Laboratory results from analysed soil samples were reported below EIL criteria.

Analyte	Results Compared to SAC
TRH, BTEXN, PAH	HIL and HSL
	Laboratory results from analysed soil samples were reported below HSL-C criteria.
	EIL and ESL
	Laboratory results from analysed soil samples were reported below respective EIL and ESL criteria.
AF/FA	AF / FA was not detected in soil samples analysed by the analytical laboratory.
Phenyl Acid	<u>HL</u>
	Laboratory results from analysed soil samples were reported below HIL-C.
Triazine (Herbicides)	<u>HL</u>
	Laboratory results from analysed soil samples were reported below HIL-C.

Tabulated results showing laboratory establish contaminant concentrations for both composite and individual samples, alongside SAC, are present in Appendix F, while laboratory analytical reports are provided in Appendix H.

7.4 QA/QC Data Review

Field QA/QC data was collected in accordance with the project SAQP, as presented in Section 5. A review of both field and laboratory QA/QC procedures has been completed for the project and is presented in the data validation report in Appendix G.

Based on the review of QA/QC data, the overall quality of the field and analytical data obtained is considered to be of acceptable standard for interpretation.

8 Discussion and Conclusion

For the purposes of the proposed renovation works to 12 greens, this combined PSI and DSI has been completed by MA to evaluate potential land contamination associated with historical and current land use that may pose a potential risk to on and off site receptors.

Available site history information indicated that the land was used as under construction as a golf course prior to 1941 and most of the existing greens were constructed prior to 1961. The IA has remained its use as Bayview Golf Course to present day.

IA walkover did not identify any surficial forms (i.e. soil staining or odour) of contamination. Council records indicate that Bayview Golf Course underwent earthworks during the 90s which are considered potential sources of contamination.

A conceptual site model was developed for the site following the completion of the MA PSI's desktop review and visual site inspection, which identified the following AECs:

- Existing golf course use.
- Potential filled areas for the entire golf course.

In consideration of the identified AECs, there is a potential for the exposure pathway between contaminant and receptor to be complete, indicating there to be a risk of contamination within the IA. A soil sampling programme was therefore undertaken to further investigate these AECs via intrusive methods (surface sampling and borehole excavation) for visual assessment of asbestos and soil laboratory analysis of identified COPCs.

24 surface soil samples were collected to a maximum depth of 0.2 mBGL within the areas of proposed renovation works for the 12 greens (24 surface samples double composited - forming 12 composite samples). 12 boreholes were excavated via an electric auger to a maximum target depth of 1.2 mBGL at areas of potential fill. Soils at sampling locations were described fill material consisting of clayey and / or silty sands up to 1.0 mbgl, and alluvium and or residual soil material consisting of sandy and / or silty clays up to 1.2 mBGL. No visual evidence of potential contamination (i.e., PACM, odours or staining) was observed within subsurface soils.

Laboratory results of primary and composite samples were compared to human health and ecological assessment criteria based on residential (with accessible soil) land use. Laboratory analytical results for asbestos and all other COPCs were found at concentrations less than adopted SAC, indicating that contamination risk to human health and ecological receptors are considered low from potential exposure pathways via soil.

In light of the above, MA consider the IA to be suitable for green redevelopment works and no further contamination investigations are required.

We recommend that the following works are completed so that contamination risks remain low and acceptable during, and post construction works:

 Preparation and implementation of a Construction Environmental Management Plan (CEMP) for the construction phase of the project. The CEMP is to include protocols to address any unexpected finds which may be encountered during targeted excavation works for footings and other potential targeted minor excavation as part of the proposed development.

If required, undertake a formal waste classification assessment to ensure that any spoil
generated during excavation work is classified and disposed of in accordance with NSW
EPA (2014) Waste Classification Guidelines.

9 Limitations

This combined PSI and DSI was undertaken in accordance with current industry standards.

It is important to note that no land contamination study can be considered to be a complete and exhaustive characterisation of a site nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land uses. This is particularly the case where onsite filling has occurred and site access was limited. Therefore, this report should not be read as a guarantee that only contamination identified shall be found on the site. Should material be exposed in future which appears to be contaminated, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of assessing potential site contamination. No reliance on this report should be made for any other investigation or proposal. Martens & Associates Pty Ltd accepts no responsibility, and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.

10 References

- ASC NEPM (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure, 2013.
- Chrisp Consulting (2023), Sediment and Erosion Control Management, Bayview Golf Club Job No. 23003, drawing No. C100, C110 to C122, Revision B, dated 22 February 2023 (CC, 2023).
- Martens & Associates (2023) Geotechnical Assessment: Green Renovation Works Bayview Golf Course, Bayview, NSW, Job No. P2209440JR01V01 (MA, 2023).
- Nearmap Aerial photographs (2010 2023).
- NSW Department of Environment & Heritage (eSPADE, NSW soil and land information), www.environment.nsw.gov.au.
- NSW DPE (2023) eSPADE 2.2 Spatial Viewer System. NSW Department of Planning and Environment. Available at: https://www.environment.nsw.gov.au/eSpade2Webapp/.
- NSW EPA (2014) Waste Classification Guidelines
- NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Land, 2nd Edition.
- NSW Spatial Service NSW Department of Customer Service Historical Imagery Viewer Aerial photographs (1940 2005).
- NSW SIX Spatial Information Exchange Land & Property Information Aerial photograph (2021). https://six.nsw.gov.au/wps/portal/
- SS DCS (2023) Historical Imagery Viewer. Spatial Service NSW Department of Customer Service. Available at: https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/.
- State Environmental Planning Policy (Resilience and Hazards) 2021.
- WaterNSW (2023) Real-Time Water Database. Department of Planning and Environment. Available at: https://realtimedata.waternsw.com.au/water.stm.

11 Attachment A: Maps

Map Title / Figure:
Overview

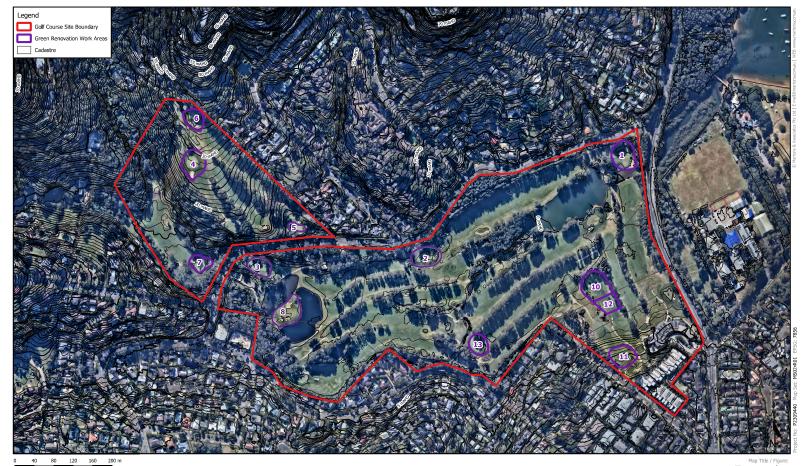
1:7500 @ A3

Viewport

Notes:
- Aerial from Nearmap (2023)
- Cadastre from NSW DFSI Clip and Ship (2023)

Map 01
Bayview Gdf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Gdf Club
01/09/2023

V Site
s Project
n Sub-Project
b Client
3 Date


1:4000 @ A3

Viewport A
Notes:
- Aerial from Nearmap (2023)
- Cadastre from NSW DFSI Clip and Ship (2023)

martens Environment | Water |

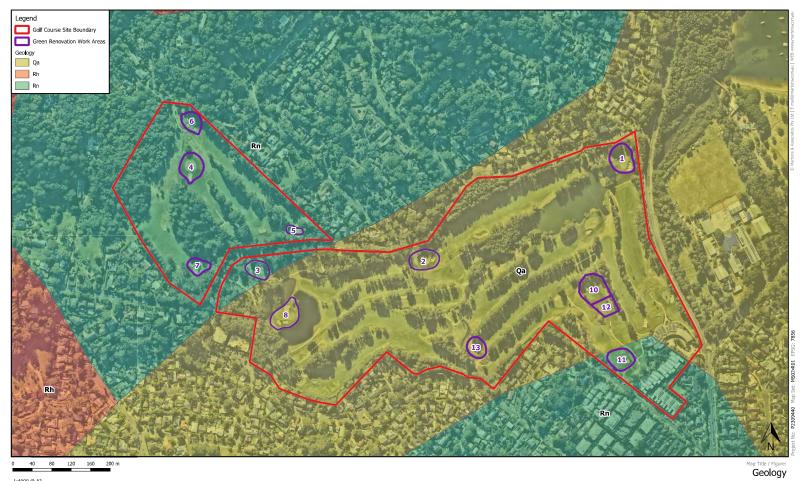
Proposed Green Renovation Work Area

Map 02
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Topography

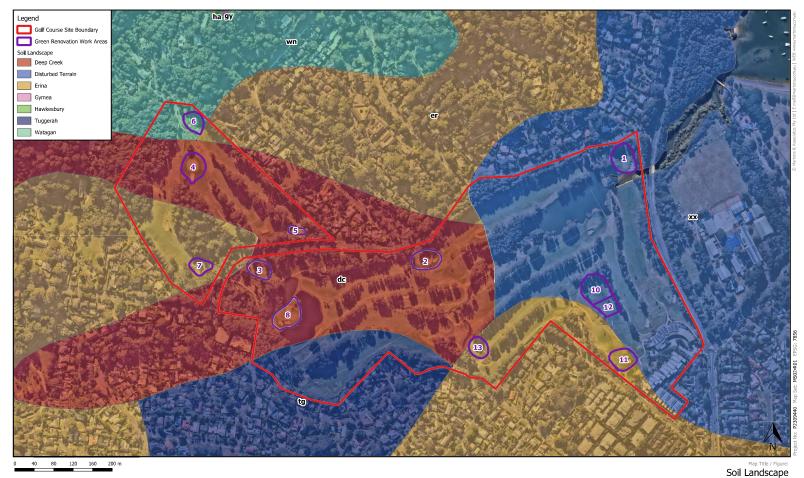
1:4000 @ A3

martens Environment | Water | Geotechnics | Civil | Projects


Map 03
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

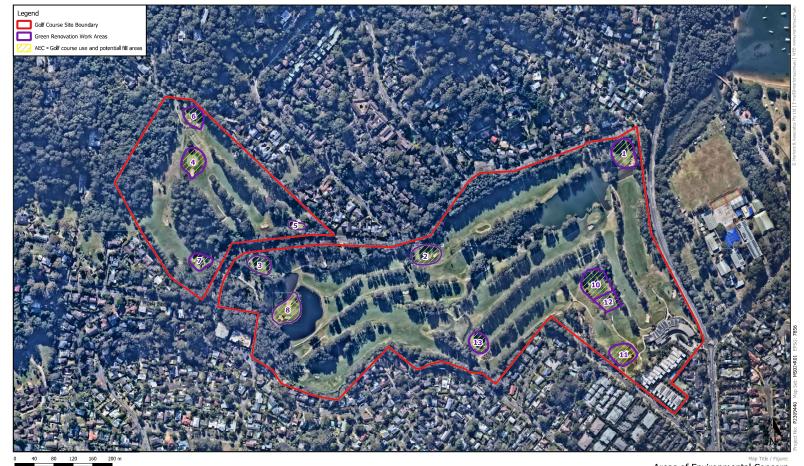
Viewport A
Notes:
- Aerial from Nearmap (2023)
- Groundwater bores from Bureau of Meteorology (2023)

Map 04
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023


martens Environment | Water | Geote

1:4000 @ A3

Map 05
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023


1:4000 @ A3

Viewport A

Notes:
- Aerial from Nearmap (2023)
- Soil Landscape from NSW SEED Portal (2023)

martens Environment | Water |

Map 06
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023


1:4000 @ A3

Viewport A Notes: - Aerial from Nearmap (2023)

Areas of Environmental Concern

Map 19
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Investigation Plan

Map 20
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

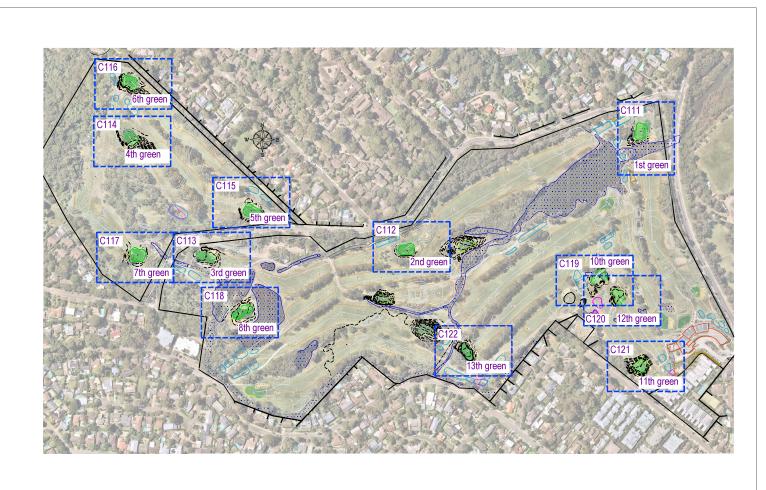
1:4000 @ A3 Viewport A Notes: - Aerial from Nearmap (2023)

12 Attachment B: Proposed Masterplan

SEDIMENT & EROSION CONTROL MANAGEMENT BAYVIEW GOLF CLUB

LOCALITY PLAN
1925 PITTWATER ROAD, MONA VALE NSW, 2103, AUSTRALIA

REV	DATE	REVISION DESCRIPTION		
A	27,92,2923	ISSUE FOR REVIEW AND COMMENT	TITLE	NAME
			DRAWN	D
_			DESIGNED	CP
\vdash			DRG CHECK	CP
\vdash				AL.
\vdash			DESIGN CHECK	
-			APPROVED	CP



ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL
MANAGEMENT
Light
BAYVIEW GOLF CLUB

TITLE PAGE & LOCALITY PLAN

To real-board the control process in present a state over the control process of the c

REV DATE REVISION DESCRIPTION
A 27.02.2023 ISSUE FOR REVIEW AND COMMENT



ISSUE FOR DEVELOPMENT APPLICATION

| SEDIMENT AND EROSION CONTROL MANAGEMENT BRYVIEW GOLF CLUB

ZONE MAP AREAS & GENERAL WORKS
THE DEVANDANT THE INFORMATION CONTINUES THE SECONDARY TO SOLELY FOR

SCALE @A1 SHEETING REV

Assessment Surfaces	Volumes						540	ole						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
٧ .	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION


SEDIMENT AND EROSION CONTROL
MANAGEMENT
LIGHT
BAYVIEW
COLF CLUB

2¹⁰
GREEN DETAIL PLAN
LIGHT STANKEN OF THE PLA

SCALE 1:250 @ A1 SCALE 1:500 @ A3	0 2	. 5	10	15	20	25 metres
--------------------------------------	-----	-----	----	----	----	-----------

REV	
DRAWN DI	
Draws	
CP CP	
DRG CHECK CP	
DESIGN CHECK AL	
APPROVED CP	
#1100G	

Assessment Surfaces	Volumes						Ho	ile						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
v	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

CHRISP CONSULTING

SEDIMENT AND EROSION CONTROL MANAGEMENT Laper BAYVIEW GOLF CLUB

3RD GREEN DETAIL PLAN
THE DEVIAND AND THE INFORMATION CONTINUE THEREON
PROCEETED BY DOPPHISH YOU MAY NOT REPRODUCE ANY OF THE PROPERTY OF TH

SSALE @ A1 SHEETING REV

Ă.	27,02,2023	ISSUE FOR REVIEW AND COMMENT	TITLE	NAME
			DRAWN	DĮ
_			DESIGNED	CP
_			DRG CHECK	CP
			DESIGN CHECK	AL.
			APPROVED	CP
_				

Assessment Surfaces	Volumes						Ho	ile						TOTAL
	m3	1st	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
٧ .	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL MANAGEMENT LABERT BAYVIEW GOLF CLUB

4TH GREEN DETAIL PLAN
THE DEVIAND AND THE INFORMATION CONTINUE THEREON
PROCEETED BY DOPPHILET YOU MAY NOT REPRODUCE ANY DEVIAND YOU DEVIAND YOU DEVIAND.

| SCALE @ A1 | SHEETNo | REV | C114 | A

SCALE 1:250 @ A1 SCALE 1:500 @ A3	0 25	5	10	15	20	25 metres

ſ	REV	DATE	REVISION DESCRIPTION	1	
[A	27.02.2023	ISSUE FOR REVIEW AND COMMENT	TITLE	NAME
- [DRAWN	DJ
ŀ	_	_		DESIGNED	CP
ŀ	_			DRG CHECK	CP
bes				DESIGN CHECK	AL.
ļ	_			APPROVED	CP
_					

Assessment Surfaces	Volumes						Ho	ile						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
v	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL MANAGEMENT LABERT BAYVIEW GOLF CLUB

5TH GREEN DETAIL PLAN
THIS DEVIAND AND THE INFORMATION CONTAINED THE PROPERTY AND ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY ADMINIS

SCALE 1:250 @ A1 0 2.5 SCALE 1:500 @ A3

1					
	REV	DATE	REVISION DESCRIPTION	TILE	NAME
	Α.	27.02.2023	ISSUE FOR REVIEW AND COMMENT	DRAWN	DI
				DESIGNED	CP
				DRG CHECK	CP
dres				DESIGN CHECK	AL
				APPROVED	CP

Assessment Surfaces	Volumes						Но	ile						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
v	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL MANAGEMENT LABERT BAYVIEW GOLF CLUB

6TH GREEN DETAIL PLAN
THE DEVIAND AND THE INFORMATION CONTINUE THEREON
PROCEETED BY DOPPHILET YOU MAY NOT REPRODUCE ANY DEVIAND YOU DEVIAND YOU THEREON TO ANY DEVIAND.

1					
	REV	DATE	REVISION DESCRIPTION		
	A	27,02,2023	ISSUE FOR REVIEW AND COMMENT	TITLE	NAME
				DRAWN	DJ
	_			DESIGNED	CP
				DRG CHECK	CP
dres				DESIGN CHECK	AL.
				APPROVED	CP
-	_		l .		

Assessment Surfaces	Volumes						Ho	ile						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
v	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL MANAGEMENT LABERT BAYVIEW GOLF CLUB 7TH GREEN DETAIL PLAN
THIS DEVIANDA CONTROL PROPERTY OF THE PROPERTY OF THE

SCALE 1:250 @ A1 0 2.5 SCALE 1:500 @ A3

ENSION DESCRIPTION IL FOR REVIEW AND COMMENT	TITLE	NAME
E FOR REVIEW AND COMMENT	TITLE	
		NAME
	DRAWN	DJ
	DESIGNED	CP
	DRG CHECK	CP
	DESIGN CHECK	AL
	APPROVED	CP
		DESIGN CHECK

Assessment Surfaces	Volumes						Ho	ile						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
v	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL MANAGEMENT LABERT BAYVIEW GOLF CLUB

8TH GREEN DETAIL PLAN
THIS DEVIAND AND THE INFORMATION CONTAINED THE PROPERTY AND ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY ADMINISTRAT

90 MAY SE PROSECUTES.

90 ALE (9) A1 SHEET No REV
1:250 C118 A

SCALE 1:250 @ A1 0 2.5 SCALE 1:500 @ A3

Ă.	27,02,2023	ISSUE FOR REVIEW AND COMMENT	TITLE	NAME
			DRAWN	D
_			DESIGNED	CP
_			DRG CHECK	CP
			DESIGN CHECK	AL
			APPROVED	CP
_			ALTHOUGH	

Assessment Surfaces	Volumes						Ho	ile						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
v	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL
MANAGEMENT
GARRY
BAYVIEW GOLF CLUB

10⁷¹¹ GREEN DETAIL PLAN

Translation in Broad in Security Research (Security Research)

Translation in Broad in Security Research

Translation in Broad in Securit

SCALE 1:250 @ A1 0 2.5 5 SCALE 1:500 @ A3

1					
	REV	DATE	REVISION DESCRIPTION	TILE	NAME
	Α.	27.02.2023	ISSUE FOR REVIEW AND COMMENT	DRAWN	DI
				DESIGNED	CP
				DRG CHECK	CP
dres				DESIGN CHECK	AL
				APPROVED	CP

Assessment Surfaces	Volumes						Ho	ile						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
٧ .	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL
MANAGEMENT
GER
BAYVIEW GOLF CLUB
11⁷¹ GREEN DETAIL PLAN

SCALE 1250@ A1 0 2,5 5 10 15 20 25 meleo SCALE 1500@ A5

DATE	REVISION DESCRIPTION		
27,02,2023	ISSUE FOR REVIEW AND COMMENT	TILE	NAME
		DRAWN	Dj
		DESIGNED	CP
		DRG CHECK	CP
			AL.
			CP
			27,02,2023 ISSUE FOR REVIEW AND COMMENT THE

THE ENVIRONMENT THE ENVIRONMENT CONTINUES THE RESIDENCE BY BEING THE STATE OF THE BEING THE PROPERTY OF THE PR

Assessment Surfaces	Volumes						Ho	ile						TOTAL
	m3	ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
٧ .	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

CHRISP CONSULTING

SEDIMENT AND EROSION CONTROL
MANAGEMENT
GARRY
BAYVIEW GOLF CLUB

12⁷¹ GREEN DETAIL PLAN
This could be controlled to the control of the cont

SCALE © A1 SHEETING REV A

	SCALE 1:250 @ A1 SCALE 1:500 @ A3	<u>.</u>	2.5	5	10	15	20	25 metre
_		_						

REV	DATE	REVISION DESCRIPTION		
A	27.02.2023	ISSUE FOR REMEN AND COMMENT	TITLE	NAME
			DRAWN	DĮ
_	_		DESIGNED	CP
_			DRG CHECK	CP
			DESIGN CHECK	AL.
			APPROVED	CP
_				

Assessment Surfaces	Volumes m3	Hole										TOTAL		
		ist	2nd	3rd	4th	5th	6th	7th	8th	10th	11th	12th	13th	m3
Final Surface	Cut	0	-10	-10	-426	-2	-454	-8	-17	0	-517	0	0	-1444
v	FIII	291	72	87	0	105	0	87	21	233	3	290	188	1377
Existing Surface	Balance	291	62	77	-426	103	-454	79	4	233	-514	290	188	-67

ISSUE FOR DEVELOPMENT APPLICATION

SEDIMENT AND EROSION CONTROL
MANAGEMENT
GARRY
BAYVIEW GOLF CLUB

13⁷¹ GREEN DETAIL PLAN
This can be seen to experiment and or a control to the control to

SCALE 1:250 @ A1 0 2.5 SCALE 1:500 @ A3

	REV	DATE	REVISION DESCRIPTION		
	A	27.02.2023	ISSUE FOR REVIEW AND COMMENT	TITLE	NAME
				DRAWN	DJ
	_	_		DESIGNED	CP
				DRG CHECK	CP
tres				DESIGN CHECK	AL
				APPROVED	CP
				ALTHOUGH	

EROSION AND SEDIMENT CONTROL

GENERAL INSTRUCTIONS

- THIS PLAN IS TO BE READ IN CONJUNCTION WITH THE ENGINEERING PLANS, AND ANY OTHER PLANS OR WRITTEN INSTRUCTIONS THAT MAY BE ISSUED AND RELATING TO DEVELOPMENT AT THE SUBJECT SITE.
- THE SITE SUPERINTENDENT WILL ENSURE THAT ALL SOLLAND WATER
 MANAGEMENT WORKS ARE LOCATED AS INSTRUCTED IN THIS
 SPECIFICATION.
- ALL BULLORS AND SUB-CONTRACTORS WILL BE INFORMED OF THEIR
 RESPONSIBILITES IN MANASHOTHE POTENTIAL FOR SOLE BROGON AND
 POLLUTION TO DOWNSLOPE LANDS AND WATERWAYS.

 CONSTRUCTION SEQUENCE

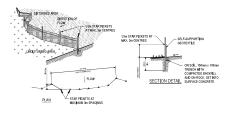
- THE SCIL EROSION POTENTIAL ON THIS SITE SHALL BE MINIMSED. HENCE WORKS SHALL BE UNDERTAKEN IN THE FOLLOWING SEQUENCE:
- A RISTALL SEMPLET FERES THE PROPOSEY OF STEEL STEEL STEEL STEEL SEMPLET SERVES THE PROPOSEY CONSTRUCTION EXIT AND SAMDARA FIRSH BALE SEMPLET THAN A SAMDARA FIRSH BALE SEMPLET THAN A UNDESTRUCTED STEEL SEMPLET SEMPLET SHOW THE SEMPLET SEMP

- DURING WINDY CONDITIONS, LARGE, UNPROTECTED AREAS WILL BE KEPT MOIST (NOT WET) BY SPRINKLING WITH WATER TO KEEP DUST UNDER CONTROL.
- FINAL STE LANDSCAPING WILL BE UNDERTRIEN AS SOON AS POSSIBLE AND WITHIN 20 WORKING DAYS FROM COMPLETION OF CONSTRUCTION ACTIVITIES.

- ANY SAND USED IN THE CONCRETE CURING PROCESS (SPIREAD OVER THE SURFACE) WILL BE REMOVED AS SOON AS POSSIBLE AND WITHIN 10 WORKING DAYS FROM PLACEMENT.
- TEMPORARY SOIL AND WATER MANAGEMENT STRUCTURES WILL BE REMOVED ONLY AFTER THE LANDS THEY ARE PROTECTING ARE REHABILITATED.

OTHER MATTERS

- 11. ACCEPTABLE RECEPTORS WILL BE PROVIDED FOR CONCRETE AND MORTAR SLURIDES, PINNTS, ACID WASHINGS, LIGHT-WEIGHT WASTE MATERIALS AND LITTER.
- LITTER
 RECEPTORS FOR CONCRETE AND MORTAR SLURRIES, PAINTS, ACID
 WASHINGS, LIGHT-WILGERT WASTE MATERIALS AND LITTER ARE TO BE
 EMPTED AS RECESSIVES OBPOSS, OF WASTE SHALL BE IN A MARKER
 APPROVED BY THE SITE SUPPRINCEDENT.


SITE INSPECTION & MAINTENANCE

- EROSJON AND SEQUENT CONTROL MEASURES SHALL BE INSPECTED AFTER RAINFALL EVENTS TO ENSURE THAT THEY OPERATE EFFECTIVELY. REPAIR AND OR MAINTENANCE SHALL BE UNDERTAKEN AS REQUIRED.

SEDIMENT & EROSION CONTROL LEGEND

8 8

SAND BAG SEDIMENT TRAP TO BE USED AT ALL CONSTRUCTED OR EXISTING PITS SAND BAG CAN BE USED FOR SUBSTITUTE SEQUENT FENCE WHERE INSTALLATION OF B NOT POSSIBLE SUCH AS DUJACENT TO ROCK OR AT INTERFACE WITH PATHWAYS

- CONSTRUCTION NOTES

 OWNERSHEET REGISTER OF GROUPS AS POSSIBLE TO PARALLE. TO THE CONTONS

 OWNERSHEET REGISTER OF GROUPS AS POSSIBLE TO PARALLE. TO THE CONTONS

 Office I Seek on the Profession and Construction Awards awar.

 I did not have get the profession and the Profession Awards are profession.

 I did not the control and control profession and the pr

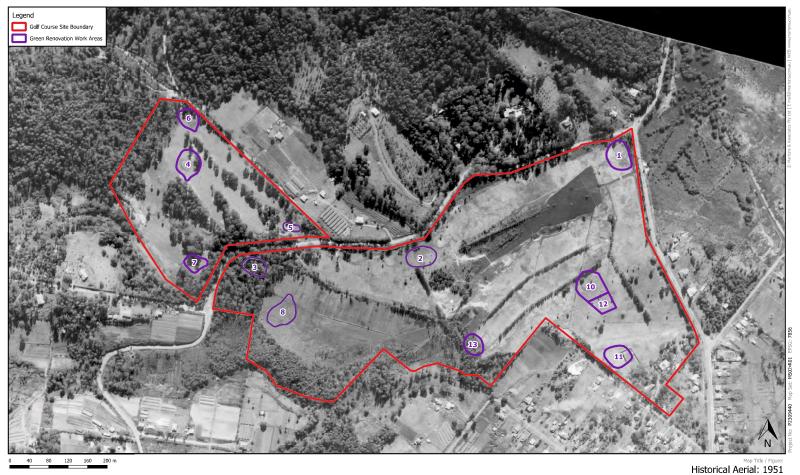
ISSUE FOR DEVELOPMENT APPLICATION SEDIMENT AND EROSION CONTROL

REV DATE REVISION DESCRIPTION
A 27.02.2023 ISSUE FOR REVIEW AND COMMENT

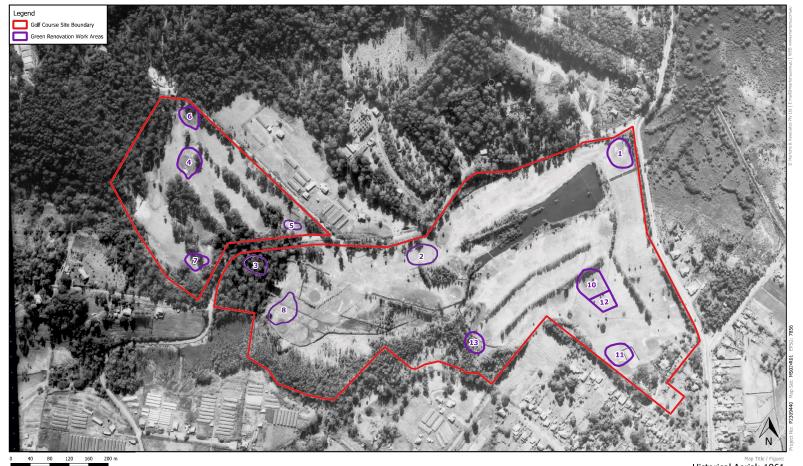


MANAGEMENT BAYVIEW GOLF CLUB

TYPICAL SEDIMENT & EROSION CONTROL DETAILS
THE SEMICANO THE IMPROVED ACCOUNTS THE REPORT OF THE AMERICAN THE IMPROVED ACCOUNTS THE AMERICAN THE IMPROVED ACCOUNTS THE AMERICAN SCALE @ A1 SHEET No C110 A


13 Attachment C: Aerial Photograph

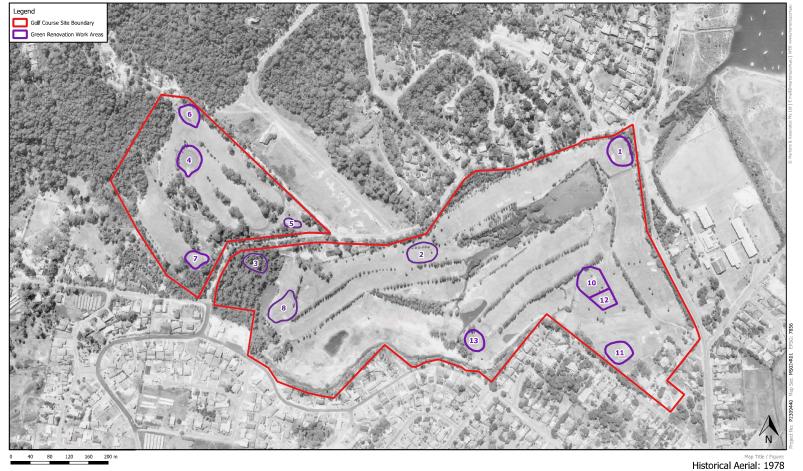
Map Title / Figure: Historical Aerial: 1940


Map 07
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Map 08
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Map Title / Figure: Historical Aerial: 1961

Map 09
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023



1:4000 @ A3

Map 10
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Map 11
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Map 12
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

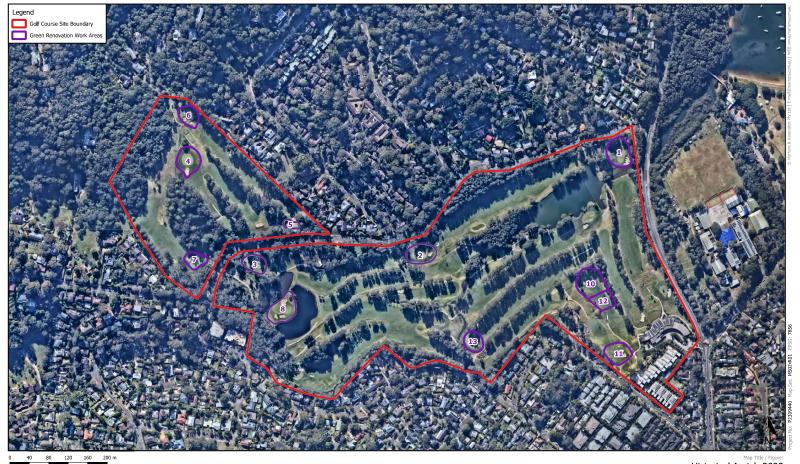
Map Title / Figure: Historical Aerial: 1994

Map 13
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Map 14
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Map 15
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

Map 16
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023



Map 17
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

1:4000 @ A3 Viewport A Notes: - Aerial from Nearmap (2016)

Map 18
Bayview Golf Course, NSW
Green Renovation Works
Combined Preliminary and Detailed Site Investigation
Bayview Golf Club
01/09/2023

1:4000 @ A3 Viewport A Notes: - Aerial from Nearmap (2023)

14 Attachment D: Desktop Contamination Searches

William Xu

From: Sue Davis <Sue.Davis@northernbeaches.nsw.gov.au>

Sent: Friday, 1 September 2023 2:13 PM

Subject: Informal information request - Xu - 1825 Pittwater Road Bayview

Dear William,

Thank you for your GIPA application and follow-ups.

My a pologies for the delay-we are currently working our way through a large backlog of information requests.

Please see below lists for the above property address in relation to your Informal GIPA Request lodged with Northern Beaches Council (NBC) – there are 4 lists, 2 of which are available online, via the below links (click on Applications tab).

List A - 1825 (& 1825A) Pittwater Road BAYVIEW (Past)

Remodelling and reconditioning

N0672/01 CC0744/99 replacement of existing barbeque kiosk at Bayview Golf Club N1218/99 replacement of existing barbeque kiosk at Bayview Golf Club 84409 carpark ADD CARPARK SURFACE Apprv NO: 1186/94 16/12/94 construction of fencing. Apprv NO: 981/94 24/10/94

72547

9120/92 CARPARKING AND LANDSCAPING FOR GOLF COURSE Auth No: DU Consent No: 94/111

ADD STORAGE SHED Apprv NO: 6053/92 18/ 5/92 19271 15533 ADD excavation Apprv NO: 1966/91 18/ 9/91

0161/90 GOLF COURSE ALTERATIONS Auth No: DU Consent No: 00000 (REFUSED)

11981 ADD deck Apprv NO: 1256/90 19/ 6/90

0137/90 GOLF CLUB HOUSE EXTENSIONS Deck & pergola Auth No: DU Consent No: 90/170

2510 Pump shed ADD Apprv NO: 440/88 16/ 2/88

0527/96 additions of garage and deck additions to the dwelling. HB 3875/1825A 1

List B - Bayview Golf Course 1825 Pittwater Road

DA2023/0573 Renovation of eleven (11) of the existing golf course greens, construction of one (1) new green and removal of trees. APPLICATION RETURNED

R0002/05 rezoning from zone Residential 2(a) and part zone Private Recreation 6(b) to Residential 2(a) under Pittwater Local Environmental Plan 1993, and include in the "Dual Occupancy Map" and the "multi-unit housing map"

R0003/02 rezoning unzoned land to 6(b) Private Recreation

R0003/04 Rezoning Application and Development Application for a multi-unit housing development consisting of 26 dwellings with basement carparking and site landscaping at Bayview Golf Club

N0134/03 Construction of new golf club house, pro shop, carparking, site landscaping and associated works

R0001/03 Rezoning of land to Multiunit housing

landfill, earthworks and water storage landfill, earthworks & water storage. brushwood fence erection of a brushwood fence.

0730/98 0472/98

IF2/0190/97 landfill/earthworks landfill, earthworks and additional water storage. Consent 98/70 0811/97 27m 1.8m high PVC fencing etc to Bayview Golf Club additional fencing to the Golf Club. skillion roof extension to store room skillion roof extension to exist store room. 0606/97

IF1/0077/96 Black plastic coated chain wire fence to Pittwater Rd bound black plastic coated chain wire fence.

JF1/0280/95 chain wire fencing a fence.

0343/94 Dredging and earthworks construction of an access track and dredging of existing water storage dam.

List C is available with dates, via link: https://eservices.northernbeaches.nsw.gov.au/ePlanning/live/Public/XC.Track/SearchProperty.aspx?id=424627 - Bayview Golf Course 1825 Pittwater Road (current)

List D is available @ https://eservices.northernbeaches.nsw.gov.au/ePlanning/live/Public/XC.Track/SearchProperty.aspx?id=408707 - 1825A Pittwater Road BAYVIEW (Past)

Kind Regards,

Sue Davis

Information Access Officer

Information Access & Privacy

t 02 8495 5407 / 1300 434 434

e council@northernbeaches.nsw.gov.au

w northernbeaches.nsw.gov.au

*Disclaimer – Privacy and Copyright

A Council complying with its obligation(s) under the Government Information (Public Access) Act 2009 (GIPA Act) does not breach copyright law.

However a person who through this process obtains a copy of a survey, plans or other document(s) subject to copyright would be in breach of copyright law if those documents were later used in a way adverse to the interest of the holder of the

If you do copy, reproduce, republish, upload to a third party, transmit or distribute in any way plans, building specifications or other documents subject to copyright, contrary to the provisions of the Copyright Act 1968 you will be taken to have indemnified Northern Beaches Council against any claim or action in respect to breach of copyright.

From: Website-NoReply <website-noreply@northernbeaches.nsw.gov.au> Sent: Tuesday, August 8, 2023 2:17 PM

 $\textbf{To:} \ Information \ Mgmt \ Duty \ Officer \ Mailbox < Records Duty Officer@northern beaches.nsw.gov.au > \\$

Subject: Webform submission from: Informal information request form > Content

Thank you for your enquiry.

Your e-mail has been received by Northern Beaches Council and will be responded to within 20 business days, which is Council's standard response time

Northern Beaches Council

This is an automatically generated email, please do not reply to this message.

Submitted on Tue, 08/08/2023 - 02:17 pm Submitted by user: Anonymous Submitted values are:

REQUEST INFORMATION DETAILS

Previous DA / CC / BA of Bayview Golf Course for the

Please provide access to the purpose of a contamination assessment. Email summary is fine with DA number, year of lodgment and description of following information:

DA.

PROPERTY INFORMATION

Address 1825 Pittwater Road

City Bayview Postal_code 2104

Are you the owner of this

property?

CONTACT DETAILS

Name William Xu

Company Xu

Email <u>wxu@martens.com.au</u>

No

Phone 0452316267

Same address as above? No

CONTACT ADDRESS DETAILS

Address Suite 201, 20 George Street

City Hornsby
Postal_code 2077

DECLARATION

I agree

Northern Beaches Council

Please consider the environment before printing this email. This email and any materials contained or attached to it ("Contents") may contain confidential information. If you are not the intended recipient contact the sender immediately, delete the communication from your system and destroy any copies. The contents may also be subject to copyright. Any unauthorised copyring, disclosure or distribution of the contents is strictly prohibited. Northern Beaches Council makes no implied or express warranty that the integrity of this communication has been maintained. The contents may contain errors, computer viruses or have been subject to interference in transmission. Northern Beaches Council. Northern Beaches Council

Home Public registers Contaminated land record of notices

Search results

Your search for:Suburb: BAYVIEW Notice Type: Preliminary Investigation Order Date from: 11 Nov 1950 Date to: 07 Aug 2023

did not find any records in our database.

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- Contamination at the site may be being managed under the planning process.

Search Again Refine Search

Search TIP

To search for a specific site, search by LGA (local government area) and carefully review all sites

.. more search tips

More information about particular sites may be available from:

- The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the Environmental Planning and Assessment Act</u>.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed. This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985, Your inquiry using the above search critteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register. POEO public register. □

For local government ^

For business and industry ^

Contact us

8 August 2023

131 555 (tel:131555)

Online (https://www.epa.nsw.gov.au/about-us/contact-us/feedback)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

(https://au.linkedin.com/c environmentprotection-

ƴ autl**⊡**rity-

Find us on

(https://duttpier//www.kN/SoVAtuEe

Home Public registers POEO Public Register Licences, applications and notices search

Search results

Your search for: General Search with the following criteria

Suburb - Bayview

returned 0 result

Search Again

For business and industry ^

For local government ^

Contact us

131 555 (tel:131555)

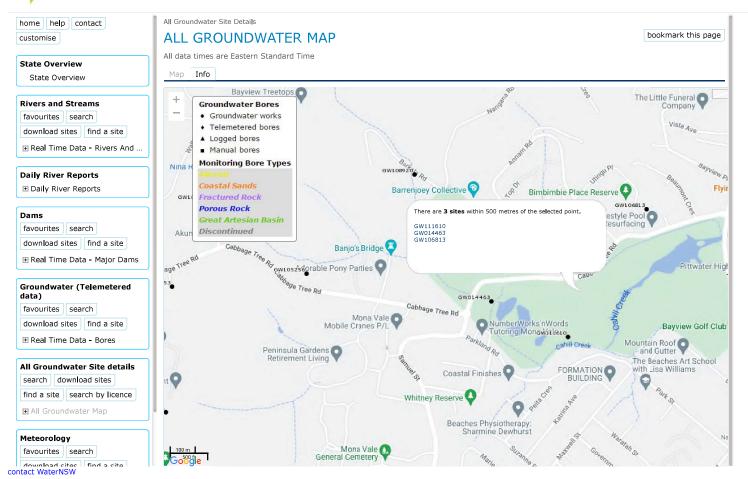
Online (https://www.epa.nsw.gov.au/about-us/contact-us/feedback)

info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au)

EPA Office Locations (https://www.epa.nsw.gov.au/about-us/contact-us/locations)

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

in (https://au.linkedin.com/c environmentprotection-


autl
 autl
 autl
 rity-

Find us on

(htt**p:**p:a**/th/ttp:**er/c/o/w//N/SoVM<u>u</u>E√E

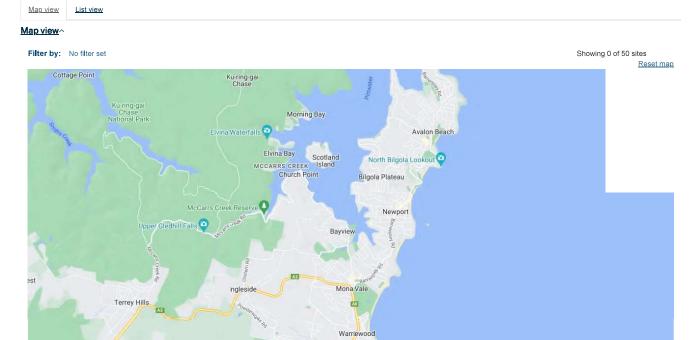
8/25/23, 9:15 AM Real-time water data

https://realtimedata.waternsw.com.au/water.stm 1/2

8/25/23, 9:15 AM Real-time water data

https://realtimedata.waternsw.com.au/water.stm

2/2


Home > Your environment > Contaminated land > PFAS investigation program

The NSW Government PFAS Investigation Program

View a map of the sites in NSW that may be contaminated with PFAS, learn how to reduce your exposure to these dangerous chemicals, and read about our investigation of the issue.

The EPA is leading an investigation program to assess the legacy of PFAS use across NSW. With the assistance of the NSW PFAS Technical Advisory Group, which includes NSW Health, Department of Primary Industries and the Office of Environment and Heritage, we provide impacted residents with tailored, precautionary dietary advice to help them reduce any exposure to PFAS.

Current investigations are focused on sites where it is likely that large quantities of PFAS have been used. The EPA is currently investigating PFAS at these sites:

Sampling and analysis

The EPA is collecting samples of soils and/or waters for analysis for PFAS. The EPA is also looking for exposure pathways that may increase people's contact with the chemicals, such as bore and surface water usage.

PFAS investigation site <

If significant levels are detected and human or ecological exposure is likely, a more detailed assessment will be undertaken.

The EPA will work with the occupiers and owners of these sites, or the responsible parties, to clean-up the site, where necessary.

Timeframes for the investigation

The initial investigations can take approximately six months, with further testing undertaken where required.

Test findings are made available throughout the investigations,

More information is available on the NSW EPA $\underline{\mathsf{PFAS}}$ investigation process page.

Release of draft PFAS National Environmental Management Plan version 3

The PFAS National Environmental Management Plan (PFAS NEMP) provides a practical basis for nationally consistent environmental guidelines and standards for investigating, assessing and managing PFAS waste and contamination,

The Commonwealth Department of Climate Change, Energy, the Environment and Water (DCCEEW) has now released the draft PFAS NEMP version 3.0 (NEMP 3.0).

NEMP 3.0 builds on previous versions and includes additional guidance on the following priority areas:

- Theme 1: PFAS family international approaches to grouping of PFASs.
- Theme 2: Environmental data and monitoring guidance on ambient monitoring data collection and land use classifications to enable comparability.
- Theme 3: Water-risk-based criteria and guidance for beneficial reuse of biosolids.
- Theme 4: Soil-guidance and standards around PFAS behaviour in soil, including leaching and associated ecological and human health guidance. It finalises and reviews two guideline values already in the NEMP and proposes two new guideline values for soil and one for wildlife diet.
- Theme 5: Resource recovery and waste-guidance on management of risks associated with PFAS in resource recovery products,
- Theme 6: Site specific guidance guidance on principles and approaches to remediation and management; guidance on construction water; and guidance on estuarine, coastal and marine sediment,

Have your say on NEMP 3.0

You can provide feedback on NEMP 3.0 by lodging a submission online, or by attending a public consultation session.

You feedback will help to ensure that NEMP 3.0 is fit for purpose in continuing to provide useful and nationally consistent guidance and standards on PFAS contamination.

All feedback received will be considered by the National Chemicals Working Group before NEMP 3.0 is finalised. An ancillary document summarising the feedback and the responses made is expected to be published by DCCEEW.

Online consultation

Online public consultation is currently underway and will be available until 4pm AEDT 20 December 2022.

You can find more information about submitting feedback online on the <u>DCCEEW page</u>.

NSW consultation session

We will publish more information about our public consultation session on this page when it becomes available,

Working with our stakeholders

The NSW Government is committed to working closely with all relevant government agencies, to closely monitor the progress of investigations, and to keep local communities informed. Government agencies include local councils, NSW Department of Primary Industries, NSW Health, NSW Food Authority, and where necessary the Commonwealth Department of Defence, and Commonwealth Department of Health.

In NSW the polluter pays for and manages any clean-up required. Although the NSW Government cannot regulate Defence sites, it has outlined expectations that Defence will carry out investigations in a timely manner that is consistent with the EPA's requirements and processes.

More information

- PFAS investigation program fact sheet (PDF 213KB)
- <u>PFAS investigation program FAQs</u> page
- NSW Department of Health
- For specific health inquiries call the NSW Department of Health on 1300 066 055
- If you have any questions about the EPA's PFAS investigation program, please call the Environment Line on 131 555 or emailinfo@environment.nsw.gov.au

Page last updated 23 September 2022

Please consider the environment before printing.

15 Attachment E: Borehole Logs

CL	ENT	E	Bayview	Golf Cl	ub				COMMENCED	15/08/2023	co	OMPLETED	15/08	3/202	23		REF	BH201
PR	OJEC	т	Detailed	Site Inv	estigation				LOGGED	wx	СН	HECKED					Ob 4	1.05.4
SIT	Έ	E	Bayview	Golf Cl	ub, Bayview, NSW.				GEOLOGY	Quartenary	VE	GETATION	Gras	s			Sheet PROJECT	1 OF 1 NO. P2309440
EQ	JIPME	NT			Hand Auger				LONGITUDE		RL	. SURFACE	m				DATUM	AHD
EX	CAVAT		DIMENSI	ONS	Ø80 mm x 1.20 m depth				LATITUDE			SPECT	South				SLOPE	<2%
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL I		Material De		_	CONSISTENCY a DENSITY		AD	CTURE AND DITIONAL ERVATIONS
HA META	PENI PENI PENI PENI PENI PENI PENI PENI	Not Encountered WATI	1.5 — 1.5 — 2.5 — 3.5 — 4.0 — 4.5 —	0.80 1.20	0.0-0.2/s/1 D 0.00-0.20 m 0.4-0.6/s/1 D 0.40-0.60 m 0.8-1.0/s/1 D 0.80-1.00 m			Si oci	ity Sandy CLAY; codour or anthropogue	alark brown and yell enic inclusions.	ow brown;	no soil, stainii	ng,	D		ALLUV	TUM — —	
	/) .		EXCAVATION LOG T	J J L 1			MARTENS &	ASSOCIATES PT	Y LTD							a Loa -

CL	ENT	E	Bayview	Golf Cl	ub				COMMENCED	15/08/2023		COMPLETED	15/0	08/202	23		REF	BH202
PR	OJEC	т	Detailed	Site Inv	vestigation				LOGGED	wx		CHECKED]	
SIT	E	E	Bayview	Golf Cl	ub, Bayview, NSW.				GEOLOGY	Quartenary		VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2309440
EQ	JIPME	NT			Hand Auger				LONGITUDE			RL SURFACE	m				DATUM	AHD
EXC	CAVAT		DIMENSIO	ONS	Ø80 mm x 1.20 m depth				LATITUDE			ASPECT	Sou				SLOPE	<2%
	_	Dri	lling		Sampling			z			Fi	ield Material D		· ·	1			
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL				MOISTURE	CONSISTENCY		AD	CTURE AND DITIONAL ERVATIONS
			_		0.0-0.2/S/1 D 0.00-0.20 m		\bigotimes	SM F	ILL: Silty SAND; da r anthropogenic inc	ark grey; with grave dusions.	els; no	soil, staining, odd	our			FILL		-
ΗΑ		Not Encountered	0.5 —	0.80	0.4-0.6/S/1 D 0.40-0.60 m									D				- - - - -
			1.0 —		0.8-1.0/S/1 D 0.80-1.00 m	X - X - X		S	Silty CLAY; yellow b inthropogenic indu	rown and pale gre sions.	y; no so	pil, staining, odou	ir or			ALLUV	īum — —	
				1.20			`=		lole Terminated at									
			2.0 — 2.5 — 3.0 — 4.0 — 4.5 — — 4.5 — — — — — — — — — — — — — — — — — — —						Target depth reach	ea)								
					EXCAVATION LOG T	D BE F	REAL	O IN C	ONJUCTION WI	TH ACCOMPAN	NYING	REPORT NOT	TES A	AND	ABB	REVIAT	TONS	
	/) .					Suito	MARTENS & A	ASSOCIATES PT	TY LTD) Δuetralia		1	Fn	ain	eerin	a Loa -

CL	ENT	E	Bayview G	olf Cl	ub				COMMENCED	15/08/2023	COMPLETED	15/0	08/202	23		REF	BH203
PR	OJEC	т [Detailed S	ite Inv	vestigation				LOGGED	WX	CHECKED						
SIT	Έ	E	Bayview G	olf Cl	ub, Bayview, NSW.				GEOLOGY	Quartenary	VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2309440
EQ	JIPME	NT			Hand Auger				LONGITUDE		RL SURFACE	m				DATUM	AHD
EXC	CAVAT		DIMENSION	NS	Ø80 mm x 0.80 m depth				LATITUDE		ASPECT	Sou				SLOPE	<2%
			lling		Sampling			z		F	Field Material D		_				
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>EPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		CK MATERIAL DES			MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
HA		Not Encountered		0.50	0.0-0.2/S/1 D 0.00-0.20 m			FI oc	LL: Silty Clayey S dour or anthropoge	AND; dark grey; with gra	avels; no soil, stain	ing,	D		FILL		- - -
		8 N	0.5	0.80	0.5-0.7/S/1 D 0.50-0.70 m		x - x - x - x - x - x - x - x - x - x -		ity CLAY; dark bro dusions.	wn; no soil, staining, od	our or anthropoge	nic			ALLUV		
			1.0					Ho	ole Terminated at	0.80 m					0.80: H	and auger r	efusal. - -
			- - -														- - -
			1.5 —														- - -
			-														-
			2.0														- - -
			- - -														- - -
			2.5 —														- - -
			3.0														- - -
			-														- -
			3.5—														- - -
																	- - -
			4.0														- -
																	- -
			4.5 —														- - -
																	-
_					EVCANATION LOCATION				NI II IOTIONI V		O DEDORT MA	FE 0 :	\ NIP	A D D	DE\#43	FIONC	
\vdash					EXCAVATION LOG TO	א ר	= KEA	או ע CO		ASSOCIATES PTYLT		1E8 A	-IND	ARR	KEVIA	- 6/1011	

CLI	ENT	E	Bayview	Golf Clu	qr				COMMENCED	15/08/2023	COMPLETED	15/0	8/202	23		REF	BH204
PR	OJEC	т	Detailed	Site Inv	estigation				LOGGED	wx	CHECKED					Sheet	1 OF 1
SIT	E	E	Bayview	Golf Clu	ub, Bayview, NSW.				GEOLOGY	Quartenary	VEGETATION	Gras	ss				NO. P2309440
EQI	JIPME	NT			Hand Auger				LONGITUDE		RL SURFACE	m				DATUM	AHD
EXC	AVAT		DIMENSI	ONS	Ø80 mm x 1.10 m depth				LATITUDE		ASPECT	Sou				SLOPE	<2%
	_		ling		Sampling			z		Fi	ield Material D						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DESC			MOISTURE	CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS
HA		Not Encountered		0.60	0.0-0.2/S/Dupe02 D 0.00-0.20 m 0.7-0.9/S/1 D 0.70-0.90 m			F		ND; dark grey; with grav			D		RESIDU	ĴĀĪ SOIL -	
				1.10			x -	Н	ole Terminated at	1.10 m					1,10: Ha	and auger re	efusal.
			-														
																	- - - -
				F	 EXCAVATION LOG TO	L BF	REA	D IN CC	NJUCTION WIT	TH ACCOMPANYING	REPORT NOT	TES A	ND	ABR	L REVIAT	IONS	
		_ ;								ASSOCIATES BTV LTD		_3/					

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (20) 9476 9999 Fax: (22) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	E	Bayview Go	lf CI	lub				COMMENCED	15/08/2023		COMPLETED	15/0	08/20	23		REF	BH205
PR	OJEC	т	Detailed Sit	e Inv	vestigation				LOGGED	wx		CHECKED					<u>.</u>	
SIT	E	E	Bayview Go	lf CI	lub, Bayview, NSW.				GEOLOGY	Quartenary		VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2309440
EQI	JIPME	NT			Hand Auger				LONGITUDE			RL SURFACE	m				DATUM	AHD
EXC	CAVAT		DIMENSION	6	Ø80 mm x 1.00 m depth		1		LATITUDE			ASPECT	Nor				SLOPE	<2%
МЕТНОБ	PENETRATION RESISTANCE		DEPTH (metres)	PTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DE		ield Material D		· ·	CONSISTENCY U		AD	CTURE AND DITIONAL ERVATIONS
HA META	PENE RESI	Not Encountered WATE	0.5	PTH-L	0.6-0.8/S/1 D 0.6-0.8/S/1 D 0.60-0.80 m				Silly CLAY; dark grendusions.	ay; no soil, staining, oc	dour	or anthropogeni	ing,	D		ALLUV	IUM — —	
	_)							ASSOCIATES PTY I			,					a I oa

CLI	ENT	E	Bayview Go	f CI	ub				COMMENCED	15/08/2023	COMPLETED	15/0	08/20	23		REF	BH206
PR	OJEC	т	Detailed Site	Inv	vestigation				LOGGED	wx	CHECKED					Chart	1.05.4
SIT	E	E	Bayview Go	f CI	ub, Bayview, NSW.				GEOLOGY	Quartenary	VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2309440
EQI	JIPME	NT			Hand Auger				LONGITUDE		RL SURFACE	m				DATUM	AHD
EXC	TAVA		DIMENSIONS	3	Ø80 mm x 0.85 m depth				LATITUDE		ASPECT	Sou				SLOPE	<2%
	_	Dri	lling		Sampling		 	Z			Field Material D		· ·				
МЕТНОВ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	P <i>TH</i>	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DES			MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
НА		Not Encountered	0.5	<u>50</u>	0.00-0.20 m 0.5-0.7/S/1 D 0.50-0.70 m			s s	oil, staining, odour	AY; dark grey and brov or anthropogenic inclus	sions.		D		RESIDU	JAL SOIL	- - -
			-				<u>x </u>										-
			1.5— 2.0— 3.5— 4.0— 4.5— 4.5—	85				H	ole Terminated at	0.85 m					0,85: Ha	and auger re	efusal
					EXCAVATION LOG TO	ן פי	F DE^	DINCC			C PEPOPT NO	LES.	7 VID		DEV//AT	IONS	
		_ ,			LACAVATION LOG TO	וט כ	L KEA	אוו ער		ASSOCIATES PTYLT		150/	-יואר	~BB	revia i	- 0110	_

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT	Ba	yview Go	olf Clu	ub				COMMENCED	15/08/2023	COMPLETED	15/0	08/202	23		REF	BH207
ROJECT	De	tailed Sit	e Inv	estigation				LOGGED	wx	CHECKED						
SITE	Ba	yview Go	olf Clu	ub, Bayview, NSW.				GEOLOGY	Quartenary	VEGETATION	Gra	ıss			Sheet PROJECT	1 OF 1 NO. P2309440
QUIPMEN	IT		-	Hand Auger				LONGITUDE		RL SURFACE	m				DATUM	AHD
XCAVATIO			s ,	Ø80 mm x 1.00 m depth				LATITUDE		ASPECT	Sou				SLOPE	<2%
	Drilli	ng		Sampling			-			Field Material C		_				
METHOD PENETRATION RESISTANCE	WATER	(metres)	E <i>PTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL [MOISTURE CONDITION	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
	Not Encountered	0.5	0.50	0.0-0.2/S/1 D 0.00-0.20 m		X		ILL: Silty Clayey S, oil, staining, odour silty Sandy CLAY; of the Terminated at Target depth reach	or anthropogenic in	l brown; with gravels; n		- D		FILL	JAL SÕIL	
		2.0														
		3.0 —														
		4.0														
		1														
				 			D IN C	NULIOTION ::	ELL 4.0000145711	/INO DEPOST LICE		A N	A D.S.	DE\ # 4 =	IONIC	
	EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS															

CLI	ENT	E	Bayview (Golf CI	ub				COMMENCED	15/08/2023		COMPLETED	15/0	08/20	23		REF	BH208
PR	OJEC	т	Detailed S	Site Inv	estigation				LOGGED	wx		CHECKED						
SIT	Έ	E	Bayview (Golf Cl	ub, Bayview, NSW.				GEOLOGY	Quartenary		VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2309440
EQI	JIPME	NT			Hand Auger				LONGITUDE			RL SURFACE	m				DATUM	AHD
EXC	CAVAT		DIMENSIC	NS	Ø80 mm x 0.80 m depth				LATITUDE			ASPECT	Sou				SLOPE	<2%
	L		lling		Sampling	Π		z			Fie	eld Material D		i -	1			
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	D <i>EPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DE	ESC	RIPTION		MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
		þ			0.0-0.2/S/Dup01 D 0.00-0.20 m		\bowtie	SM F	ILL: Silty SAND; da dour.	ark grey; tiles observe	ed; no	o soil staining or				FILL		-
HA		Not Encountered	0.5	0.50	0.5-0.7/S/1 D 0.50-0.70 m			S	ilty Sandy CLAY; onthropogenic inclu	dark grey; no soil, stair sions.	ning,			D		ALLUV	īum — —	- -
				0.80			×											-
			1.0 — 1.5 — 2.0 — 3.5 — 4.0 — 4.5 —					H	lole Terminated at								and auger r	efusal.
Ĺ					EXCAVATION LOG TO) BI	REA	D IN CC	NJUCTION WI	TH ACCOMPANYI	NG	REPORT NOT	ES A	AND	ABB	REVIA	TIONS	
		_							MADTENCO	ASSOCIATES PTV I	ı TD				_	_	_	_

CL	ENT	E	Bayview (Golf CI	ub				COMMENCED	15/08/2023	COMPLETED	15/0	08/202	23		REF	BH209
PR	OJEC	т	Detailed S	Site Inv	vestigation				LOGGED	wx	CHECKED						
SIT	E	Е	Bayview 0	Golf CI	ub, Bayview, NSW.				GEOLOGY	Quartenary	VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2309440
EQI	JIPME	NT			Hand Auger				LONGITUDE		RL SURFACE	m				DATUM	AHD
EXC	CAVAT		DIMENSIO	NS	Ø80 mm x 1.00 m depth				LATITUDE		ASPECT	Eas				SLOPE	<2%
			lling		Sampling	Γ		z			Field Material D						
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	D <i>EPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DE			MOISTURE CONDITION	CONSISTENCY		AD	CTURE AND DITIONAL ERVATIONS
HA METHO	PENET PESIS RESIS.	Not Encountered WATEF	1.5 — 1.5 —	1.00		RECO	GRAPH	SM F		ark grey; no soi l , stainii sions.			NOIST D D D D D D D D D D D D D D D D D D D	CONSI	FILL	and auger n	
	/) .		EXCAVATION LOG TO) BI	= REA	וע CC ט IN CC		ASSOCIATES PTY L		IES A					a Loa -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (22) 9476 8999 Fax: (22) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	ENT	E	Bayview	Golf C	lub				COMMENCED	15/08/2023		COMPLETED	15/0	8/20	23		REF	BH210
PR	OJEC	т	Detailed	Site In	vestigation				LOGGED	wx		CHECKED					1	
SIT	Έ	E	Bayview	Golf C	lub, Bayview, NSW.				GEOLOGY	Quartenary		VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2309440
EQI	JIPME	NT			Hand Auger				LONGITUDE			RL SURFACE	m				DATUM	AHD
EXC	CAVAT		DIMENSIO	ONS	Ø80 mm x 1.10 m depth				LATITUDE			ASPECT	Nort				SLOPE	<2%
	_		lling		Sampling			z			Fi	ield Material D		· ·	1			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED		USCS / ASCS CLASSIFICATION		OCK MATERIAL I				MOISTURE	CONSISTENCY		AD	CTURE AND DITIONAL ERVATIONS
METHO	PENETF RESIST	Not Encountered WATER	1.5 — 1.5 —	0.50 0.80		RECOVI		SM Fa		ark grey; no soil, sta sions.				DISTON D CONTRACTOR D CONTRACTO	CONSIGNO DENSITY OF THE PROPERTY OF THE PROPER	ALLUV	OBS	ERVATIONS
																		- -
		EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS																
	/) ,		li .			Surit-	MARTENS & A	ASSOCIATES PT	Y LTD) Australia			Fn	ain	eerin	a Loa -

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (20) 9476 9999 Fax: (22) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT		Bayview 0	Golf Cli	ub				COMMENCED	15/08/2023	COMPLET	ED .	15/08/20)23		REF	BH211
PROJE	СТ	Detailed S	Site Inv	restigation				LOGGED	wx	CHECKED						
SITE		Bayview 0	Golf Cli	ub, Bayview, NSW.				GEOLOGY	Quartenary	VEGETATI	ОИ	Grass			Sheet PROJECT	1 OF 1 NO. P2309440
EQUIPMI	ENT			Hand Auger				LONGITUDE		RL SURFA	CE	m			DATUM	AHD
EXCAVA [*]		DIMENSIO	NS .	Ø80 mm x 1.00 m depth				LATITUDE		ASPECT		East			SLOPE	<2%
	$\overline{}$	rilling		Sampling	\perp		z			Field Materi	al De		1	1		
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	D <i>EPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL	DESCRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
HA METI PENE	Not Encountered WATE		0.60 1.00	0.00-0.27s/1 D 0.00-0.20 m	RECO	GRAI GRAI	NO. (NO. (NO. (NO. (NO. (NO. (NO. (NO. (FILL: Silty SAND; da anthropogenic indu Yellow brown. Hole Terminated at	sions.	aining, odour or		SIOM D	DENK	FILL	and auger r	- - - - - - - -
				L EXCAVATION LOG T) BE	REA	D IN (CONJUCTION WI	TH ACCOMPAN	YING REPORT	NOTE	S AND	ABB	REVIA ⁻	TIONS	
/) .					e	MARTENS & A	ASSOCIATES PT	Y LTD			Fn	ain	eerin	a Loa -

CLIENT	Ва	ayview Go	f CI	ub				COMMENCED	15/08/2023	COMPLETED	15/0	08/202	23		REF	BH212
PROJECT	Г Де	etailed Site	: Inv	restigation				LOGGED	wx	CHECKED						
SITE	Ва	ayview Go	f CI	ub, Bayview, NSW.				GEOLOGY	Quartenary	VEGETATION	Gra	ss			Sheet PROJECT	1 OF 1 NO. P2309440
EQUIPMEN	1T			Hand Auger				LONGITUDE		RL SURFACE	m				DATUM	AHD
EXCAVATIO			;	Ø80 mm x 1.00 m depth				LATITUDE		ASPECT	Sou				SLOPE	<2%
	Drilli	ing		Sampling	Г		Z			Field Material D		Ė				
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>⊃TH</i> 'L	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DES			MOISTURE CONDITION	CONSISTENCY		AD	CTURE AND DITIONAL ERVATIONS
	Not Encountered WA'	0.5 —	000	0.8-1.0/S/1 D 0.80-1.00 m			H	odour.			ng			1.00: Ha	ind auger n	efusal.
	-)			EXCAVATION LOG TO	ال ر				ASSOCIATES PTY LT							a l oa -

16 Attachment F: Summary Tables

	Preliminary and Detailed Site Investigation	P2309440
martens	Rayview Golf Course, NSW	
/ martens		

				BTEX							TRH													PAH									
	Naphthalene (FOC)	at assign	e Grand	Chybera ene	Alphane (in 8,0)	Alyene (b)	ma/ker	Co-CLOFradion (FI)	CG-CLO (F.1 minus SPIEX)	CIO CIG Paction (92)	CLO-CLG Faction (PZ Primus Naphthalene)	Contraction (PR)	S-Clé-Cl0 Faction (2)(14)	Clockofaction	Beno (b++)/fluorant Pere	Keniphben	A coupled years	Andracene	Benzo (danthracene	Beras (i) p yene	Benzo (g.h. (penylene	Only Chrysters	d benefit fün frauen	R uoranthene	Maryer maryer	Intero(1,2,3-	Naphtbakme	Peninthrene	ne/ha	Berso (Apyrene TEQ (at c (4a8))	Benzo (Apyrene TEQ 2) (LOFE)	Benso (Apyrene TEQ (2) cate (Leno)	PANE (Sum of positives)
EQ.	1	0.2	0.5	1 1	2	1	-	25	25	50	50	100	100	50	0.2	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.05
NEPM 2013 Table 18(7) Management Limits in Res / Parkland, Coarse Soil								700		1,000		2,500	10,000																				
NEPM 2013 Table 1A(3) Rec C Soil HSL for Vapour Intrusion, Sand																																	$\overline{}$
NEPM 2013 Table 18(5) Generic ElL - Urban Res & Public Open Space	170																										170						
NEPM 2013 Table 18(6) ESLs for Urban Res, Coarse Soil		50	85	70			205		190	120	120	300	2,900							0.7													
NEPM 2013 Table 1A(1) HILL Rec C Soil																														- 1	- 2	3	200
Field ID Date							_			_																							_
9H201/0-0.2 15 Aug 2023	<1	40.2			- 2	d	-ct	-05	-05	<50		<100	<100		0.2	<0.1		-0.1	0.2	0.2	0.1	0.1	40.1	0.3	<0.1	<0.1	<0.1	<0.1	0.3	<0.5	<0.5	<0.5	1.3
8H202/0-0.2 15 Aug 2023	<1	<0.2	<0.5	<1	- 2	<1	- 4	- 625	<25	<50	<50	<100	<100		<0.2	<0.1		<0.1	40.1	<0.05	40.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.5		<0.05
8H203/0-0.2 15 Aug 2023	<1	<0.2	<0.5	<1	- 2	<1	-ci	- 25	<25	<50	<50	<100	<100	<50	<0.2	<0.1	<0.1	<0.1	40.1	<0.05	40.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05
BH204/0-0.2 15 Aug 2023	<1	40.2	40.5		- 2	d	- 4	- 25	<25	<50		<100	<100	<50	<0.2	<0.1		<0.1	40.1	<0.05	40.1	49.1	40.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05
BH205/0-0.2 15 Aug 2023	<1	<0.2	<0.5	<1	- 2	<1	- 4	<25	<25	<50	<50	<100	<100	<\$0	<0.2	<0.1	<0.1	<0.1	40.1	<0.05	40.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05
BH206/0-0.2 15 Aug 2023	<1	40.2	40.5	<1	- 2	d	- 4	- 25	<25	<50	<50	<100	<100	<50	<0.2	<0.1		40.1	40.1	<0.05	40.1	49.1	40.1		<0.1	<0.1	<0.1	<0.1	<0.1		<0.5	<0.5	<0.05
BH207/0-0.2 15 Aug 2023	<1	<0.2	40.5	<1	- 2	<1	<1	- 625	<25	<50	<50	<100	<100	<\$0	<0.2	<0.1	<0.1	<0.1	40.1	40.05	40.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05
8H208/0-0.2 15 Aug 2023	<1	<0.2	40.5	<1	- 0	-d	d	(25	-25	<50	<50	<100	<100	<50	<0.2 c0.2	<0.1	40.1	49.1	40.1	<0.05	40.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5 c0.5	<0.5	<0.5	<0.05
8H209/0-0.2 15 Aug 2023 8H210/0-0.2 15 Aug 2023	<1	40.2		<1										<50		<0.1				<0.05	40.1	49.1	40.1			<0.1		<0.1				<0.5	<0.05
	<1	<0.2	40.5	<1	- 2	d	<1	<25	<25	<50	<50	<100	<100	<\$0	<0.2	<0.1	<0.1	<0.1	40.1	<0.05	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	
BH211/0-0.2 15 Aug 2023	<1	40.2	40.5	<1	- 2	d	- 4	-05	<25	<50	<50	<100	<100	<50	<0.2	<0.1	40.1	40.1	40.1	<0.05	40.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05
8H212/0-0.2 15 Aug 2023	<1	40.2	-0.5	<1	- 2	- 4	<1	- CS	<25	<50	<50	<100	<100	<50	<0.2	<0.1	40.1	-0.1	40.1	<0.05	40.1	40.1	40.1	40.1	<0.1	<0.1	<0.1	-0.1	-0.1	<0.5	<0.5	<0.5	<0.05
Statistics																																	
Number of Results	12	12	12	12	12	12	12	10	12	12	12	12	12	12	10	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Number of Retects	17	- 12	0	1 0	0	0	0	- "	12	- 12	12	12	12	12		- 12	- 12	0	1/	- 12	12	12	0	12	- 12	0	- 12	12	1 1	0	- 12	- 12	-12
Minimum Congentration	d	40.2	40.5	- 0	0	d	4	- 45	<25	<50	-50	c100	<100	(50	0.2	40.1	40.1	63.1	40.1	10.05	0.1	0.1	40.1	40.1	49.1	40.1	<0.1	-0.1	<0.1	2.00	<0.5	<0.5	<0.05
Minimum Detect	NO.	40.2 MO	ND	ND ND	NO.	ND ND	NO.	NO.	ND ND	NO.	ND ND	ALDO ND	<200 NO	ND ND	0.2	ND ND	ND ND	ND.	0.2	0.2	0.1	0.1	ND ND	0.1	ND.	ND ND	ND.	ND ND	0.3	ND ND	AU.S	ND ND	1.3
Maximum Concentration	4	10.2	40.5	4	- 12	d	4	425	<25	<50	<50	<100	<100	<50	0.2	49.1		49.1	0.2	0.2	0.1	0.1	49.1		d) 1	10.1	<0.1	-0.1	0.3	10.5	e0.5	<0.5	1.3
Maximum Concentration	NO.	49.2 MO	ND	ND ND	NO.	ND ND	ND ND	NO.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.2	ND ND	ND ND	ND ND	0.2	0.2	0.1	0.1	ND ND	0.2	ND ND	ND ND	ND ND	ND ND	0.2		ND ND	ND ND	1.3
Augrana Conventration *	0.5	0.1	0.25	0.5	4	0.5	0.5	12	12	25	25	50	Sn.	25	0.11	0.05	0.05	0.05	0.063	0.04	0.054	0.054	0.05	0.071	0.05	0.05	0.05	0.05	0.071	0.25	0.25	0.25	0.13
Median Concentration *	0.5	0.1	0.25	0.5	- i	0.5	0.5	12.5	12.5	25		50	50		0.1	0.05				0.025	0.05	0.05	0.05			0.05	0.05			0.25			0.25
Standard Deviation *	0	0.1	0	0.5	1 :		0	0	0	0	0		0		0.029	0	0.00	0	0.043	0.051	0.014	0.014	0	0.072	0.00	0.03	0.03	0.00	0.072	0.23	0.23	0.23	0.27
S of Detects	-			1 6			0	-	-		-		0		0.025	0		0	6	4	6.014	0.024	0	9	4	0	-	-	6	0		0	0.27
N of Non-Detects	100	100	100	100	100	100	220		100	100	100	100		100	92	100			92		92	92		92	100	100	100	100			100		92
* A Non Detect Multiplier of 0.5 has been applied.	00		,	, 100						.74						-20																4	

Environmental Standards
NEPM, NEPM 2011 Table 18(7) Management Limits in Res. / Fundand, Coarse Soil
2013, NEPM 2013 Table 18(7) Rec. Soil Not. for Vapour Intrusion, Sand
2012, NEPM 2013 Table 18(1) San Follows Res., Coarse Soil
2012, NEPM 2013 Table 18(1) San Follows Res., Coarse Soil
2012, NEPM 2013 Table 18(1) Has Rec. C Soil

martens h Australias 191 (10)	Professionary and handed the trea originals Reprint difficured, siller
-------------------------------	---

	_																																																	
	1	1	Description (a)	l motor	1	1	4	j.	I	g redu	andre mobile	I make	a)angarai a	Directions (sees)	I .				1	- Table	Samueles sapare	and to the other	1	100	a make	Martin strange	market and the second	-	-	***************************************	1	II III	II.	1	1	1	-		my Area and	Name of Parties of]	-	-	200	Off capper and	mile mile	make a	-		
I the second section of the second second section is the plantage of the second section of the second section of the second second section sec			12	95		25	29																2																			Ï	Ė							2
March Marc		104 104 105 104 104 104 104 104 104 104 104	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 12 14 14 14 14 14 14 14	A 2		0 8 8 9 9 9 9 9 0 0	201 201 201 201 201 201 201 201 201 201	201 201 201 201 201 201 201 201 201 201	100 100 100 100 100 100 100 100 100 100	## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ##	64	64 - 1 64 - 1 64 - 1 64 - 1 64 - 1 64 - 1 64 - 1		84 - 1 84 - 1 84 - 1 84 - 1 84 - 1 84 - 1 84 - 1	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	41 41 41 41 41 41 41 41 41 41 41 41 41 4	40 40 40 40 40 40 40 40 40 40 40 40 40 4	#4 #1 #1 #1 #1 #1 #1 #1 #1			41 41 41 41 41 41 41 41 41 41 41	# # # # # # # # # # # # # # # # # # #	01 01 01 01 01 01 01 01 01 01 01			H		98 98 98 98 98 98 98 98 98 98	#4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4	41 41 41 41 41 41 41 41 41 41 41	## ## ## ## ## ## ## ## ## ## ## ## ##		20 20 20 20 20 20 20 20 20 20 20 20 20 2	# # # # # # # # # # # # # # # # # # #	#				41 41 41 41 41 41 41 41 41	21 21 21 21 21 21 21 21 21 21		24 24 24 24 24 24 24 24 24 24 24 24 24 2	2 2 2 2 2 2 2 2 2 3 4 3 4 4 4 4 4 4 4 4	#		
Author of book Souther of book			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	0 1 0 1 1 1 10 1 10 1	-	1 0 0	10 10 10 11 11 12 13 14	161 105 105	10 10 10 10 10 10	10		1.0		100	61 ·	81 1 80 1 81 1 80 1		15	- 41	-11 -10	10 10 10				12	10.1 10.5			0 40 0 10 0 10	10 10 10 10 10 10 10	10	10 10 10 10	-11 -2 15	0 1 0 1 0 1 0 1	 10 10 10 10 10 10 10	100		10	0 1 0 1 0 1 0 1	1 10 10 10 10 10 10 10 10 10 10 10	- 44	11	10 101 101 101 101 101 101	15	0 10 10 10 10 10 10 10	1.5	10 10 10 10 10 10 10 10 10 10	161 161 161 165	

Enginement desided:
NIPs, NIPs (init of the INIT) Management intrins her/Perions, Grane (all init, NIPs (init of the INIT) Management intrins her/Perions, Grane (all init, NIPs and INIT) Management (init of the INIT)

martens	Report Bill Stone 600
SCOOL Took 1800 Several St Order Sex & Public Services	4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A STATE CONTROL OF THE PARTY OF	
CALL SEPTEMBER SEC. SEC.	
CR CHAIN	
rate 1 11.6sg 2021	7 44 5 7 78 41 7 18 41 41 41 41 41 41 41 41 41 41 41 41 41
make 2 15. Aug 2021	
str 3 11.6sg 2023	4 18 7 8 18 41 1 18 41 41 41 41 41 41 41 41 41 41 41 41 41
rate 6 11.hug 2021	4 1 7 6 33 33 3 1 1 1 41 43 43 43 43 43 43 43 43 43 43 43 43 43
mate 5 15.0mg 2023	4 41 1 1 1 1 1 1 41 41 41 41 41 41 41 41
peste 6 11.6sg 2023	
make 7 18 Aug 2023	1
andr I SLing 2021	
make 9 11 Aug 2023 make 30 11 Aug 2023	
male ii. 11 Are 201	1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
gents ii 11 kg 201	
STATE STATES	
and fetate	
ure Consentration	
num Enterel	
sum Consentration	
um Drind	
or Conscription *	1 CH
an Committee from 1	1 12 11 1 1 1 1 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1
ford Deviation *	22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
Detects	

Emilyamental Standards 2013, NEPH 2013 Table 14(5) His a Res Cital

mart & Associat																		Prelin	ninary and De Bayeles	etailed Site Inv v Golf Course	estigation																
			NA.	Phi	enols	T 0	ther	$\overline{}$														Herbicides											$\overline{}$	$\overline{}$		$\overline{}$	Organic
		DON (Chorbs)	Inpard	2,60	Mcdor am	N.S. Dichlanderson k acid	Acri (toyni)	Metribusin	2,4,5- Trich brophen oxy Acetic Acid	2.4.5-P (Silves)	Heedo mal	2,4 ОКМоргор	2,4,6- Trich brophen oxy- aceticacid	6 (2,4- Dichlorophenow) but yric Acid (2,4-04)	2. O lar ophe manyacetic acid	4 Chiar ophe many aced cacid	Arnebyn	Acilharten	Azarine	B enface ne	Bromosywil	Ohoramban	Dia yqob,	ma/ka	Dicarriba	Dinos do	Plaroxypyr	Hexalione	2-Methyl-4- chlorophenoxyacetic acid	2-Methyl-4- Ohiorophenoxy Butanoic Add	Mecoprop	у ру синевум	au produce me/les	Sirra an e	Terbushyn	Tridopyr	Tebuylaine
		me/ke	500	me/ke	me/ke	ma/ka	ma/ka	me/ke	mg/kg	me/ke	ma/ka	mg/kg	me/ke	me/ke	mg/kg	me/ke	me/ke	me/ke	ma/ka	ms/ks	me/ke	me/ke	mr/kr	mr/kr	mg/kg	me/ke	me/ke	me/ke	me/ke	me/ke	me/ke	ma/ka	mg/kg	me/ke	me/ke		mg/kg
NEPM 2013 Table 1A(1)	Mile Bee C feet	0.5	500	0.5	2850	0.5	· ·	0.5	400	0.5	650	0.5	0.5	0.5	0.5	0.5	0.5	- A	200	_	0.5	1	0.5	0.5	0.5	-		0.5	400	400	400	0.5	0.5	0.5	0.5	- 05	0.5
participate (also and a)		_	_		2000	_			460		0,00								200										400	400	400	_		$\overline{}$	_	_	
Field ID	Date																																				
Composite 1	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	40.5	<0.5	<0.5	40.5	<0.5	<0.5	40.5	40.5	40.5	<0.5	- 2	40.5	<1	<0.5	<1	<0.5	40.5	40.5	<1	<1	40.5	40.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	40.5	40.5
Composite 2	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	- (2	40.5	<1	<0.5	<1	<0.5	<0.5	40.5	<1	<1	40.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	40.5	<0.5
Composite 3	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	< 0.5	-2	40.5	<1	<0.5	<1	<0.5	<0.5	<0.5	<1	<1	40.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	40.5	<0.5
Composite 4	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	< 0.5	-2	40.5	<1	<0.5	<1	<0.5	<0.5	<0.5	<1	<1	40.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	40.5	<0.5
Composite S	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	-2	40.5	<1	<0.5	<1	<0.5	<0.5	<0.5	<1	<1	<0.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5
Composite 6	15 Aug 2023	40.5	<500	<0.5	<1	<0.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0.5	40.5	<0.5	-2	40.5	<1	<0.5	<1	<0.5	<0.5	<0.5	<1	<1	<0.5	<0.5	<0.5	<0.5	40.5	49.5	<0.5	<0.5	<0.5	<0.5

Composite 7	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	40.5	<0.5	<0.5	<0.5	-2	40.5	<1	<0.5	<1	<0.5	40.5	<0.5	<1	<1	40.5	40.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5
Composite \$	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	40.5	40.5	40.5	<0.5	-2	40.5	<1	<0.5	<1	<0.5	40.5	40.5	<1	<1	40.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5
Composite 9	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	40.5	<0.5	<0.5	<0.5	-2	40.5	<1	<0.5	<1	<0.5	40.5	<0.5	<1	<1	40.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5
Composite 10	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	<0.5	-2	40.5	<1	<0.5	<1	<0.5	40.5	<0.5	<1	<1	40.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5
Composite 11	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	-2	40.5	<1	<0.5	<1	<0.5	40.5	40.5	<1	<1	40.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5
Composite 12	15 Aug 2023	40.5	<500	<0.5	<1	40.5	<1	40.5	<0.5	<0.5	-0.5	<0.5	<0.5	40.5	40.5	-0.5	<0.5	- 2	40.5	<1	40.5	<1	<0.5	40.5	40.5	<1	<1	+0.5	40.5	<0.5	<0.5	40.5	49.5	<0.5	<0.5	<0.5	40.5
Statistics																																					
Number of Results		12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12 7	12
Number of Detects		0		۰	0		0		0	0		0	0	0	0		0	0	0		0	0	0	0		0	0	0		0	0	0		0		0	
Minimum Concentration		40.5	<\$00	<0.5	<1	40.5	<1	40.5	<0.5	<0.5	40.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	-2	40.5	<1	40.5	<1	40.5	10.5	40.5	<1	<1	40.5	40.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5
Ønlmum Detect		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND	ND	ND	ND	ND ND	ND ND
Maximum Concentration		40.5	<\$00	<0.5	<1	10.5	- 41	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	40.5	<0.5	<0.5	<0.5	-2	40.5	<1	<0.5	<1	40.5	10.5	<0.5	<1	<1	<0.5	<0.5	<0.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	<0.5
Maximum Detect		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Average Concentration *		0.25	250	0.25	0.5	0.25	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	0.25	0.5	0.25	0.5	0.25	0.25	0.25	0.5	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Median Concentration *		0.25	250	0.25	0.5	0.25	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	0.25	0.5	0.25	0.5	0.25	0.25	0.25	0.5	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Standard Deviation *			٥	0	0		0		0	0			0	0	0	0	0	0	0			0	0	0	0	٥	0	0		0	0	0				- 1	
95% UCL (Student's-t) *		0.25	250	0.25	0.5	0.25	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	0.25	0.5	0.25	0.5	0.25	0.25	0.25	0.5	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
% of Detects		0		۰	0		0		0	0			0	0	0		٥	0	0			٥	0	0		0	0	0		0	0	0				0	
% of Non-Daterts																																					

Environmental Standards 2013, NEPM 2013 Table 1A(1) HILs Rec C Soil

Inputs
Select contaminant from list below
Cr_III
Below needed to calculate fresh and aged
ACLs
Enter % clay (values from 0 to 100%)
5
Below needed to calculate fresh and aged
ABCs
Measured background concentration
(mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration 7
ı
or for aged ABCs only
Enter State (or closest State)
Liner State (or closest State)
NSW
Enter traffic volume (high or low)
low

Out	puts	
Land use	Cr III soil-s	pecific EILs
	(mg contaminant	/kg dry soil)
	Fresh	Aged
National parks and areas of high conservation value	120	110
Urban residential and open public spaces	200	320
Commercial and industrial	290	530

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
4.17
Enter soil pH (calcium chloride method) (values from 1 to 14)
5.6
Enter organic carbon content (%OC) (values from 0 to 50%)
1
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
7
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
low

Out	puts	
Land use	Cu soil-sp	ecific EILs
	(mg contaminant	/kg dry soil)
	Fresh	Aged
National parks and areas of high conservation value	40	45
Urban residential and open public spaces	60	95
Commercial and industrial	80	130

Inputs
Select contaminant from list below
Ni
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100
cmolc/kg dwt)
omorong unity
4.17
Below needed to calculate fresh and aged
ABCs
Measured background concentration
(mg/kg). Leave blank if no measured value
, 5 5/
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration
7
•
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
low

Outputs					
Land use	Ni soil-specific EILs				
	(mg contaminant/kg dry soil)				
	Fresh	Aged			
National parks and areas of high conservation value	30	9			
Urban residential and open public spaces	35	25			
Commercial and industrial	40	40			

Inputs
Select contaminant from list below
Zn
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
4.17
Enter soil pH (calcium chloride method) (values from 1 to 14)
5.6
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
low

Outputs				
Land use	Zn soil-specific EILs (mg contaminant/kg dry soil)			
	Fresh	Aged		
National parks and areas of high conservation value	50	110		
Urban residential and open public spaces	100	250		
Commercial and industrial	140	340		

17 Attachment G: Data Quality Assessment

Sample Handling

Lab Report	Sample Chain of Custody (COC) Procedures	Sample Preservation	Sample Receipt Notification Matches COC	Samples Analysed Within Holding Time
330569 – S	Pass	Pass	Pass	Pass

Precision / Accuracy

Lab Report	Analysed by NATA Laboratory	, , , , , , , , , , , , , , , , , , , ,		Field Rinsate Analysed	
330569 – S	Pass	Pass	Pass	NA	

Trip spike and blank were reported within the acceptable recovery range.

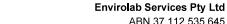
Trip blank reported less than LOR for volatile analysis.

As dedicated sampling equipment were used during the investigation, no rinsate was required.

Duplicates and Laboratory QA / QC

Lab Report	Field RPD	Laboratory Surrogate Recovery	Laboratory Duplicate RPD	Lab Blank and Matrix Spike Recovery	Laboratory Control Sample
330569 – S	Pass	Pass	Pass	Pass	Pass

RPD control limits between primary sample BH208/0-0.2 and duplicate sample DUP01, and between primary samples BH210/0-0.2 and duplicate sample DUP02, both met acceptable RPD values for all heavy metals apart for copper and zinc, and chromium, respectively. Considering these high RPD values are likely attributed to the heterogeneous nature of fill material and that the exceeded concentrations are below the adopted SAC, the data is useable for this report.


		Te.	330569					
	Lab Report Number			330569	J	330569	330569	
		Field ID	BH208/0-0.2	DUP01		BH210/0-0.2	DUP03]
		Date	15 Aug 2023	15 Aug 2023		15 Aug 2023	15 Aug 2023]
	Matrix Type			Soil	RPD	Soil	Soil	RPD
	Unit	EQL						
Metals								
Arsenic	mg/kg	4	5	6	18	5	<4	22
Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0
Chromium (III+VI)	mg/kg	1	18	22	20	17	8	72
Copper	mg/kg	1	14	25	56	3	2	40
Lead	mg/kg	1	17	14	19	14	11	24
Mercury	mg/kg	0.1	<0.1	0.1	0	0.9	0.7	25
Nickel	mg/kg	1	3	3	0	2	1	67
Zinc	mg/kg	1	37	16	79	17	13	27

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

18 Attachment H: Laboratory Analytical Results, COC and Sample Receipt

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 330569

Client Details	
Client	Martens & Associates Pty Ltd
Attention	William Xu
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2209440 - Bayview Golf Club NSW
Number of Samples	55 Soil
Date samples received	15/08/2023
Date completed instructions received	15/08/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	22/08/2023			
Date of Issue	22/08/2023			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO	IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Stuart Chen
Authorised by Asbestos Approved Signatory: Matt Mansfield

Results Approved By

Diana Korniewicz, Chemist Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Matt Mansfield, QHSE manager Tim Toll, Chemist

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		330569-37	330569-38	330569-39	330569-40	330569-41
Your Reference	UNITS	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2	BH204/0-0.2	BH205/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	92	90	95	91	88

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		330569-42	330569-43	330569-44	330569-45	330569-46
Your Reference	UNITS	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2	BH209/0-0.2	BH210/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xy l ene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	86	92	84	83	92

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		330569-47	330569-48	330569-54	330569-55
Your Reference	UNITS	BH211/0-0.2	BH212/0-0.2	Trip Spike	Trip Blank
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023
TRH C6 - C9	mg/kg	<25	<25	[NA]	<25
TRH C6 - C10	mg/kg	<25	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	[NA]	<25
Benzene	mg/kg	<0.2	<0.2	106%	[NA]
Toluene	mg/kg	<0.5	<0.5	107%	[NA]
Ethylbenzene	mg/kg	<1	<1	108%	[NA]
m+p-xylene	mg/kg	<2	<2	108%	[NA]
o-Xylene	mg/kg	<1	<1	108%	[NA]
Naphthalene	mg/kg	<1	<1	[NA]	[NA]
Total +ve Xylenes	mg/kg	<1	<1	[NA]	[NA]
Surrogate aaa-Trifluorotoluene	%	92	96	90	88

svTRH (C10-C40) in Soil						
Our Reference		330569-37	330569-38	330569-39	330569-40	330569-41
Your Reference	UNITS	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2	BH204/0-0.2	BH205/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	76	76	75	78	77

svTRH (C10-C40) in Soil						
Our Reference		330569-42	330569-43	330569-44	330569-45	330569-46
Your Reference	UNITS	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2	BH209/0-0.2	BH210/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	76	75	75	72	69

svTRH (C10-C40) in Soil			
Our Reference		330569-47	330569-48
Your Reference	UNITS	BH211/0-0.2	BH212/0-0.2
Date Sampled		15/08/2023	15/08/2023
Type of sample		Soil	Soil
Composite Reference		-	-
Date extracted	-	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	66	76

PAHs in Soil						
Our Reference		330569-37	330569-38	330569-39	330569-40	330569-41
Your Reference	UNITS	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2	BH204/0-0.2	BH205/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.3	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	114	117	116	122	115

PAHs in Soil						
Our Reference		330569-42	330569-43	330569-44	330569-45	330569-46
Your Reference	UNITS	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2	BH209/0-0.2	BH210/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthy l ene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	116	111	116	113	110

PAHs in Soil			
Our Reference		330569-47	330569-48
Your Reference	UNITS	BH211/0-0.2	BH212/0-0.2
Date Sampled		15/08/2023	15/08/2023
Type of sample		Soil	Soil
Composite Reference		-	-
Date extracted	-	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023
Naphtha l ene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	113	111

Organochlorine Pesticides in soil						
Our Reference		330569-25	330569-26	330569-27	330569-28	330569-29
Your Reference	UNITS	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		1+2	3+4	5+6	7+8	9+10
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
a l pha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	0.2	<0.1	0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	118	119	119	126	119

Organochlorine Pesticides in soil						
Our Reference		330569-30	330569-31	330569-32	330569-33	330569-34
Your Reference	UNITS	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		11+12	13+14	15+16	17+18	19+20
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
a l pha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxych l or	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	120	119	122	121	118

Organochlorine Pesticides in soil						
Our Reference		330569-35	330569-36	330569-37	330569-38	330569-39
Your Reference	UNITS	Composite 11	Composite 12	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		21+22	23+24	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
a l pha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	124	122	118	120	119

Organochlorine Pesticides in soil						
Our Reference		330569-40	330569-41	330569-42	330569-43	330569-44
Your Reference	UNITS	BH204/0-0.2	BH205/0-0.2	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	0.6	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	0.1	0.7	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Dieldrin	mg/kg	<0.1	<0.1	0.2	0.6	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Surrogate TCMX	%	126	118	120	117	119

Organochlorine Pesticides in soil					
Our Reference		330569-45	330569-46	330569-47	330569-48
Your Reference	UNITS	BH209/0-0.2	BH210/0-0.2	BH211/0-0.2	BH212/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	0.2
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	2.4
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	4.0
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	0.3
Dieldrin	mg/kg	<0.1	<0.1	<0.1	1.0
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	0.3
Surrogate TCMX	%	117	116	119	116

Organophosphorus Pesticides in Soil						
Our Reference		330569-25	330569-26	330569-27	330569-28	330569-29
Your Reference	UNITS	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		1+2	3+4	5+6	7+8	9+10
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	118	119	119	126	119

Organophosphorus Pesticides in Soil						
Our Reference		330569-30	330569-31	330569-32	330569-33	330569-34
Your Reference	UNITS	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		11+12	13+14	15+16	17+18	19+20
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethy l	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	120	119	122	121	118

Organophosphorus Pesticides in Soil						
Our Reference		330569-35	330569-36	330569-37	330569-38	330569-39
Your Reference	UNITS	Composite 11	Composite 12	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		21+22	23+24	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	124	122	118	120	119

Organophosphorus Pesticides in Soil						
Our Reference		330569-40	330569-41	330569-42	330569-43	330569-44
Your Reference	UNITS	BH204/0-0.2	BH205/0-0.2	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	126	118	120	117	119

Organophosphorus Pesticides in Soil					
Our Reference		330569-45	330569-46	330569-47	330569-48
Your Reference	UNITS	BH209/0-0.2	BH210/0-0.2	BH211/0-0.2	BH212/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	117	116	119	116

PCBs in Soil						
Our Reference		330569-37	330569-38	330569-39	330569-40	330569-41
Your Reference	UNITS	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2	BH204/0-0.2	BH205/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	118	120	119	126	118

PCBs in Soil						
Our Reference		330569-42	330569-43	330569-44	330569-45	330569-46
Your Reference	UNITS	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2	BH209/0-0.2	BH210/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date extracted	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	120	117	119	117	116

PCBs in Soil			
Our Reference		330569-47	330569-48
Your Reference	UNITS	BH211/0-0.2	BH212/0-0.2
Date Sampled		15/08/2023	15/08/2023
Type of sample		Soil	Soil
Composite Reference		-	-
Date extracted	-	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	119	116

Acid Extractable metals in soil						
Our Reference		330569-25	330569-26	330569-27	330569-28	330569-29
Your Reference	UNITS	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		1+2	3+4	5+6	7+8	9+10
Date prepared	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
Arsenic	mg/kg	7	8	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	0.8	1	<0.4
Chromium	mg/kg	4	6	7	7	4
Copper	mg/kg	7	5	9	6	4
Lead	mg/kg	29	6	19	20	8
Mercury	mg/kg	<0.1	0.3	<0.1	2.3	1.5
Nickel	mg/kg	2	3	3	2	1
Zinc	mg/kg	45	18	36	51	19

Acid Extractable metals in soil						
Our Reference		330569-30	330569-31	330569-32	330569-33	330569-34
Your Reference	UNITS	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		11+12	13+14	15+16	17+18	19+20
Date prepared	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
Arsenic	mg/kg	<4	<4	5	<4	4
Cadmium	mg/kg	<0.4	0.6	<0.4	<0.4	<0.4
Chromium	mg/kg	4	6	7	6	9
Copper	mg/kg	4	5	5	6	8
Lead	mg/kg	7	7	15	9	18
Mercury	mg/kg	0.4	2.5	<0.1	0.3	0.4
Nickel	mg/kg	2	2	2	2	5
Zinc	mg/kg	18	19	29	25	32

Acid Extractable metals in soil						
Our Reference		330569-35	330569-36	330569-37	330569-38	330569-39
Your Reference	UNITS	Composite 11	Composite 12	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		21+22	23+24	-	-	-
Date prepared	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
Arsenic	mg/kg	6	10	6	9	8
Cadmium	mg/kg	0.5	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	11	4	7	22
Copper	mg/kg	12	6	7	15	12
Lead	mg/kg	19	11	160	14	22
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	3	2	4	11
Zinc	mg/kg	32	29	57	29	36

Acid Extractable metals in soil						
Our Reference		330569-40	330569-41	330569-42	330569-43	330569-44
Your Reference	UNITS	BH204/0-0.2	BH205/0-0.2	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date prepared	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
Arsenic	mg/kg	<4	<4	8	6	5
Cadmium	mg/kg	0.6	<0.4	0.4	0,6	<0.4
Chromium	mg/kg	9	15	10	9	18
Copper	mg/kg	14	2	4	10	14
Lead	mg/kg	11	4	25	10	17
Mercury	mg/kg	2.1	<0.1	2,1	2.0	<0.1
Nickel	mg/kg	19	<1	2	3	3
Zinc	mg/kg	32	9	30	22	37

Acid Extractable metals in soil						
Our Reference		330569-45	330569-46	330569-47	330569-48	330569-52
Your Reference	UNITS	BH209/0-0.2	BH210/0-0.2	BH211/0-0.2	BH212/0-0.2	DUP01
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date prepared	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
Arsenic	mg/kg	<4	5	<4	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	2	<0.4
Chromium	mg/kg	10	17	7	10	22
Copper	mg/kg	4	3	7	4	25
Lead	mg/kg	8	14	8	16	14
Mercury	mg/kg	1.4	0.9	<0.1	18	0.1
Nickel	mg/kg	3	2	2	2	3
Zinc	mg/kg	20	17	17	22	16

Acid Extractable metals in soil				
Our Reference		330569-53	330569-56	330569-57
Your Reference	UNITS	DUP03	BH201/0-0.2 - [TRIPLICATE]	BH206/0-0.2 - [TRIPLICATE]
Date Sampled		15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil
Composite Reference		-	-	-
Date prepared	-	17/08/2023	17/08/2023	17/08/2023
Date analysed	-	21/08/2023	21/08/2023	21/08/2023
Arsenic	mg/kg	<4	6	7
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	8	5	13
Copper	mg/kg	2	7	4
Lead	mg/kg	11	46	21
Mercury	mg/kg	0.7	<0.1	2.0
Nickel	mg/kg	1	2	2
Zinc	mg/kg	13	81	26

Misc Inorg - Soil				
Our Reference		330569-49	330569-50	330569-51
Your Reference	UNITS	BH202/0.8-1.0	BH204/0.7-0.9	BH210/0.8-1.0
Date Sampled		15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil
Composite Reference		-	-	-
Date prepared	-	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	16/08/2023	16/08/2023	16/08/2023
pH 1:5 soil:water	pH Units	7.2	5.6	8.6

Envirolab Reference: 330569 R00

Revision No:

CEC				
Our Reference		330569-49	330569-50	330569-51
Your Reference	UNITS	BH202/0.8-1.0	BH204/0.7-0.9	BH210/0.8-1.0
Date Sampled		15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil
Composite Reference		-	-	-
Date prepared	-	22/08/2023	22/08/2023	22/08/2023
Date analysed	-	22/08/2023	22/08/2023	22/08/2023
Exchangeable Ca	meq/100g	2.9	2.9	1.6
Exchangeable K	meq/100g	0.2	0.2	<0.1
Exchangeable Mg	meq/100g	0.6	2.8	0.3
Exchangeable Na	meq/100g	<0.1	0.7	<0.1
Cation Exchange Capacity	meq/100g	3.8	6.7	2.0

Envirolab Reference: 330569

Revision No: R00

Moisture						
Our Reference		330569-25	330569-26	330569-27	330569-28	330569-29
Your Reference	UNITS	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		1+2	3+4	5+6	7+8	9+10
Date prepared	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Moisture	%	12	21	17	29	3.0
Moisture						
Our Reference		330569-30	330569-31	330569-32	330569-33	330569-34
Your Reference	UNITS	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		11+12	13+14	15+16	17+18	19+20
Date prepared	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Moisture	%	22	16	24	32	18
Moisture						
Our Reference		330569-35	330569-36	330569-37	330569-38	330569-39
Your Reference	UNITS	Composite 11	Composite 12	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		21+22	23+24	-	-	-
Date prepared	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Moisture	%	38	39	14	16	20
Moisture						
Our Reference		330569-40	330569-41	330569-42	330569-43	330569-44
Your Reference	UNITS	BH204/0-0.2	BH205/0-0.2	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date prepared	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Moisture	%	30	23	24	17	20

Moisture						
Our Reference		330569-45	330569-46	330569-47	330569-48	330569-52
Your Reference	UNITS	BH209/0-0.2	BH210/0-0.2	BH211/0-0.2	BH212/0-0.2	DUP01
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date prepared	-	16/08/2023	16/08/2023	16/08/2023	16/08/2023	16/08/2023
Date analysed	-	17/08/2023	17/08/2023	17/08/2023	17/08/2023	17/08/2023
Moisture	%	17	20	32	15	18

Moisture		
Our Reference		330569-53
Your Reference	UNITS	DUP03
Date Sampled		15/08/2023
Type of sample		Soil
Composite Reference		-
Date prepared	-	16/08/2023
Date analysed	-	17/08/2023
Moisture	%	5.3

Envirolab Reference: 330569 Page | 27 of 48

			-			
Asbestos ID - soils						
Our Reference		330569-37	330569-38	330569-39	330569-40	330569-41
Your Reference	UNITS	BH201/0-0.2	BH202/0-0.2	BH203/0-0.2	BH204/0-0.2	BH205/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 35g	Approx. 30g	Approx. 30g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Asbestos ID - soils						
Our Reference		330569-42	330569-43	330569-44	330569-45	330569-46

Asbestos ID - soils						
Our Reference		330569-42	330569-43	330569-44	330569-45	330569-46
Your Reference	UNITS	BH206/0-0.2	BH207/0-0.2	BH208/0-0.2	BH209/0-0.2	BH210/0-0.2
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Composite Reference		-	-	-	-	-
Date analysed	-	21/08/2023	21/08/2023	21/08/2023	21/08/2023	21/08/2023
Sample mass tested	g	Approx. 35g	Approx. 30g	Approx. 35g	Approx. 30g	Approx. 30g
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	<u>-</u>	No asbestos detected				

Asbestos ID - soils			
Our Reference		330569-47	330569-48
Your Reference	UNITS	BH211/0-0.2	BH212/0-0.2
Date Sampled		15/08/2023	15/08/2023
Type of sample		Soil	Soil
Composite Reference		-	-
Date analysed	-	21/08/2023	21/08/2023
Sample mass tested	g	Approx. 25g	Approx. 30g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results f water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1/(3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1/(3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Envirolab Reference: 330569

Revision No: R00

QUAL I TY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soi l		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	330569-38
Date extracted	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Date analysed	-			21/08/2023	37	21/08/2023	21/08/2023		21/08/2023	21/08/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	37	<25	<25	0	127	109
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	37	<25	<25	0	127	109
Benzene	mg/kg	0.2	Org-023	<0.2	37	<0.2	<0.2	0	124	108
Toluene	mg/kg	0.5	Org-023	<0.5	37	<0.5	<0.5	0	125	107
Ethylbenzene	mg/kg	1	Org-023	<1	37	<1	<1	0	121	103
m+p-xylene	mg/kg	2	Org-023	<2	37	<2	<2	0	133	114
o-Xylene	mg/kg	1	Org-023	<1	37	<1	<1	0	131	112
Naphthalene	mg/kg	1	Org-023	<1	37	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	89	37	92	97	5	98	86

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	47	16/08/2023	16/08/2023			[NT]	
Date analysed	-			[NT]	47	21/08/2023	21/08/2023			[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	47	<25	<25	0		[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	47	<25	<25	0		[NT]	
Benzene	mg/kg	0.2	Org-023	[NT]	47	<0.2	<0.2	0		[NT]	
Toluene	mg/kg	0.5	Org-023	[NT]	47	<0.5	<0.5	0		[NT]	
Ethylbenzene	mg/kg	1	Org-023	[NT]	47	<1	<1	0		[NT]	
m+p-xylene	mg/kg	2	Org-023	[NT]	47	<2	<2	0		[NT]	
o-Xylene	mg/kg	1	Org-023	[NT]	47	<1	<1	0		[NT]	
Naphthalene	mg/kg	1	Org-023	[NT]	47	<1	<1	0		[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	47	92	100	8		[NT]	

QUAL I TY CO	NTROL: svT	RH (C10-	-C40) in Soi l			Du	olicate		Spike Recovery %	
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-9	330569-38
Date extracted	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Date analysed	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	37	<50	<50	0	110	99
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	37	<100	<100	0	94	87
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	37	<100	<100	0	100	70
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	37	<50	<50	0	110	99
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	37	<100	<100	0	94	87
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	37	<100	<100	0	100	70
Surrogate o-Terphenyl	%		Org-020	75	37	76	76	0	84	83

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	47	16/08/2023	16/08/2023			[NT]	
Date analysed	-			[NT]	47	16/08/2023	16/08/2023			[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	47	<50	<50	0		[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	47	<100	<100	0		[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	47	<100	<100	0		[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	47	<50	<50	0		[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	47	<100	<100	0		[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	47	<100	<100	0		[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	47	66	79	18		[NT]	

QUALIT	TY CONTRO	L: PAHs i	in Soi l			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-9	330569-38	
Date extracted	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023	
Date analysed	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	101	97	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	107	105	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	95	93	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	0.2	67	104	100	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	37	0.3	0.5	50	118	110	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	37	0.3	0.5	50	121	119	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	37	0.2	0.2	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	37	0.1	0.2	67	97	93	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	37	0.2	0.4	67	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	37	0.2	0.05	120	86	96	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	37	0.1	0.2	67	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	94	37	114	115	1	103	98	

QUA	LITY CONTRO	L: PAHs	in Soi l			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	330569-41	
Date extracted	-			[NT]	42	16/08/2023	16/08/2023		16/08/2023	16/08/2023	
Date analysed	-			[NT]	42	16/08/2023	16/08/2023		16/08/2023	16/08/2023	
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	99	99	
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	107	105	
Fluorene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	95	95	
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	102	102	
Anthracene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	112	112	
Pyrene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	117	121	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	95	95	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	42	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	42	<0.05	<0.05	0	90	100	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	42	116	115	1	99	100	

QUALI	TY CONTRO	L: PAHs	in Soi l			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	47	16/08/2023	16/08/2023			[NT]	
Date analysed	-			[NT]	47	16/08/2023	16/08/2023			[NT]	
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Fluorene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Anthracene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Pyrene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Chrysene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	47	<0.2	<0.2	0		[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	47	<0.05	<0.05	0		[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	47	<0.1	<0.1	0		[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	47	113	118	4		[NT]	

QUAL I TY CONT	ROL: Organo	ch l orine F	Pesticides in soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-9	330569-38
Date extracted	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Date analysed	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	102	100
нсв	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	102	110
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	121	133
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	99	101
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	92	96
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	111	113
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	110	112
Endrin	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	98	115
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	94	102
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	93	97
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	108	37	118	119	1	114	110

QUALITY CONT	ROL: Organo	ch l orine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	330569-41
Date extracted	-				42	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Date analysed	-				42	16/08/2023	16/08/2023		16/08/2023	16/08/2023
alpha-BHC	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	100	102
нсв	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	106	104
gamma-BHC	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	127	133
delta-BHC	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	99	103
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	92	100
gamma-Chlordane	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		42	0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	109	115
Dieldrin	mg/kg	0.1	Org-022/025		42	0.2	0.1	67	108	116
Endrin	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	102	121
Endosulfan II	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	98	106
Endrin Aldehyde	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	87	101
Methoxychlor	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		42	120	117	3	113	111

QUALITY CONT	ROL: Organo	ch l orine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				47	16/08/2023	16/08/2023			[NT]
Date analysed	-				47	16/08/2023	16/08/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
нсв	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		47	119	122	2		[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-9	330569-38
Date extracted	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Date analysed	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	107	113
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Phorate	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	97	101
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	91	128
Malathion	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	97	130
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	102	110
Fenthion	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Parathion	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	89	138
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Methidathion	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	72	106
Phosalone	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	37	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	108	37	118	119	1	114	110

QUALITY CONTR	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-10	330569-41
Date extracted	-				42	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Date analysed	-				42	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Dichlorvos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	111	113
Mevinphos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	99	102
Fenitrothion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	117	138
Malathion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	114	134
Chlorpyriphos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	104	112
Fenthion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	124	127
Bromophos-ethyl	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	86	108
Phosalone	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		42	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		42	120	117	3	113	111

QUAL I TY CONT	ROL: Organopl	nosphorus	s Pesticides in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				47	16/08/2023	16/08/2023			[NT]
Date analysed	-				47	16/08/2023	16/08/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		47	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		47	119	122	2		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-9	330569-38
Date extracted	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Date analysed	-			16/08/2023	37	16/08/2023	16/08/2023		16/08/2023	16/08/2023
Arodor 1016	mg/kg	0.1	Org-021	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Arodor 1221	mg/kg	0.1	Org-021	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Arodor 1232	mg/kg	0.1	Org-021	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Arodor 1242	mg/kg	0.1	Org-021	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Arodor 1248	mg/kg	0.1	Org-021	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Arodor 1254	mg/kg	0.1	Org-021	<0.1	37	<0.1	<0.1	0	105	100
Arodor 1260	mg/kg	0.1	Org-021	<0.1	37	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	108	37	118	119	1	114	110

QUALIT	Y CONTRO	L: PCBs	in Soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	330569-41	
Date extracted	-			[NT]	42	16/08/2023	16/08/2023		16/08/2023	16/08/2023	
Date analysed	-			[NT]	42	16/08/2023	16/08/2023		16/08/2023	16/08/2023	
Arodor 1016	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Arodor 1221	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Arodor 1232	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Arodor 1242	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Arodor 1248	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Arodor 1254	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	103	100	
Arodor 1260	mg/kg	0.1	Org-021	[NT]	42	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-021	[NT]	42	120	117	3	113	111	

QUALIT	Y CONTRO	L: PCBs	in Soi l			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	47	16/08/2023	16/08/2023		[NT]		
Date analysed	-			[NT]	47	16/08/2023	16/08/2023		[NT]		
Arodor 1016	mg/kg	0.1	Org-021	[NT]	47	<0.1	<0.1	0	[NT]		
Arodor 1221	mg/kg	0.1	Org-021	[NT]	47	<0.1	<0.1	0	[NT]		
Arodor 1232	mg/kg	0.1	Org-021	[NT]	47	<0.1	<0.1	0	[NT]		
Arodor 1242	mg/kg	0.1	Org-021	[NT]	47	<0.1	<0.1	0	[NT]		
Arodor 1248	mg/kg	0.1	Org-021	[NT]	47	<0.1	<0.1	0	[NT]		
Arodor 1254	mg/kg	0.1	Org-021	[NT]	47	<0.1	<0.1	0	[NT]		
Arodor 1260	mg/kg	0.1	Org-021	[NT]	47	<0.1	<0.1	0	[NT]		
Surrogate TCMX	%		Org-021	[NT]	47	119	122	2	[NT]	[NT]	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Duj		Spike Recovery %		
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-9	330569-38
Date prepared	-			17/08/2023	37	17/08/2023	17/08/2023		17/08/2023	17/08/2023
Date analysed	-			21/08/2023	37	21/08/2023	21/08/2023		21/08/2023	21/08/2023
Arsenic	mg/kg	4	Metals-020	<4	37	6	7	15	121	123
Cadmium	mg/kg	0.4	Metals-020	<0.4	37	<0.4	<0.4	0	113	115
Chromium	mg/kg	1	Metals-020	<1	37	4	4	0	120	122
Copper	mg/kg	1	Metals-020	<1	37	7	6	15	117	119
Lead	mg/kg	1	Metals-020	<1	37	160	42	117	117	120
Mercury	mg/kg	0.1	Metals-021	<0.1	37	<0.1	<0.1	0	93	94
Nickel	mg/kg	1	Metals-020	<1	37	2	2	0	116	120
Zinc	mg/kg	1	Metals-020	<1	37	57	52	9	116	108

QUALITY CONT	ROL: Acid E	xtractabl	e meta l s in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-10	330569-41
Date prepared	-			[NT]	42	17/08/2023	17/08/2023		17/08/2023	17/08/2023
Date analysed	-			[NT]	42	21/08/2023	21/08/2023		21/08/2023	21/08/2023
Arsenic	mg/kg	4	Metals-020	[NT]	42	8	9	12	122	123
Cadmium	mg/kg	0.4	Metals-020	[NT]	42	0.4	0.7	55	116	116
Chromium	mg/kg	1	Metals-020	[NT]	42	10	17	52	130	112
Copper	mg/kg	1	Metals-020	[NT]	42	4	4	0	118	122
Lead	mg/kg	1	Metals-020	[NT]	42	25	25	0	128	120
Mercury	mg/kg	0.1	Metals-021	[NT]	42	2.1	2.3	9	88	89
Nickel	mg/kg	1	Metals-020	[NT]	42	2	2	0	118	119
Zinc	mg/kg	1	Metals-020	[NT]	42	30	28	7	116	110

QUALITY CONT	ROL: Acid E	xtractab l	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	47	17/08/2023	17/08/2023		[NT]		
Date analysed	-			[NT]	47	21/08/2023	21/08/2023		[NT]		
Arsenic	mg/kg	4	Metals-020	[NT]	47	<4	<4	0	[NT]		
Cadmium	mg/kg	0.4	Metals-020	[NT]	47	<0.4	<0.4	0	[NT]		
Chromium	mg/kg	1	Metals-020	[NT]	47	7	7	0	[NT]		
Copper	mg/kg	1	Metals-020	[NT]	47	7	7	0	[NT]		
Lead	mg/kg	1	Metals-020	[NT]	47	8	9	12	[NT]		
Mercury	mg/kg	0.1	Metals-021	[NT]	47	<0.1	<0.1	0	[NT]		
Nickel	mg/kg	1	Metals-020	[NT]	47	2	2	0	[NT]		
Zinc	mg/kg	1	Metals-020	[NT]	47	17	22	26	[NT]	[NT]	

Envirolab Reference: 330569

QUAL I TY	QUALITY CONTROL: Misc Inorg - Soil								Spike Recovery %		
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-9	[NT]	
Date prepared	-			16/08/2023	[NT]		[NT]	[NT]	16/08/2023		
Date analysed	-			16/08/2023	[NT]		[NT]	[NT]	16/08/2023		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	100		

Envirolab Reference: 330569 Page | 44 of 48

QU	ALITY CONT	ROL: CE	EC .		Dup l icate Spi					covery %
Test Description	Units	PQL	Method	B l ank	#	Base	Dup.	RPD	LCS-W1	330569-50
Date prepared	-			22/08/2023	49	22/08/2023	22/08/2023		22/08/2023	22/08/2023
Date analysed	-			22/08/2023	49	22/08/2023	22/08/2023		22/08/2023	22/08/2023
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	49	2.9	2.5	15	97	123
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	49	0.2	0.2	0	115	114
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	49	0.6	0.6	0	95	109
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	49	<0.1	<0.1	0	118	109

Envirolab Reference: 330569
Revision No: R00
Page | 45 of 48

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 330569 Page | 46 of 48

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 330569 Page | 47 of 48 Revision No: R00

Report Comments

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 330569-37 for Pb. Therefore a triplicate result has been issued as laboratory sample number 330569-56.
- The laboratory RPD acceptance criteria has been exceeded for 330569-42 for Cr. Therefore a triplicate result has been issued as laboratory sample number 330569-57.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to ASB-001 asbestos subsampling procedure. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab/MPL recommends supplying 40-60g or 500ml of sample in its own container.

Note: Samples requested for asbestos testing were sub-sampled from jars provided by the client.

Envirolab Reference: 330569 Page | 48 of 48

SOIL ANALYSIS CHAIN OF CUSTODY FORM

						Lai	boratorý '	Testin	g							
Name	P220944	0 – Bayvie	w Golf C	lub, N	SW											
Martens Contact Officer	William >	(υ							Contact	Email	WXU	@martens.co	m.au			
	Sample Date 15 August				1 2023		Dispatch I	Date	15 Augus	st 2023	Turr	Turnaround Time			standard	
Sampling and Shipping	Our Refe	P22	P2209440COC02V01					Shipping (X)	Method	ı	Hand		Post		Courier	
	On Ice (X) X				No Ice (X) Other			Olher	r (X)							<u> </u>
							Laborate	ory	_						,	
Name	EnviroLo	db														<u> </u>
Sample Delivery Address	12 Ashle	ey Street,	Chatsw	vood					,							
Delivery Contact	Name				Phone	9	910 6200		Fax		Email	sampler	eceipt	@e <u>nvirol</u>	abservi	ices.com.a
Please Send Report By (X)	Post	:	Fax		Email	x	Repo	rling En	nall Address	wxu@martens.com.au bmcgiffin@martens.com.au gtaylor@martens.com.au						

\$ample	Composite	Sample	Composite	Sample	Composite
sso1 J	25	\$509	29	SS17 17	33
\$\$02 と	Composite 1	SS10 (U	Composite 5	81822	Composite 9
SS03 3	20 Composite 2	ss11 }{		SS19 [9	34
SS04 LI	Composite 2	5512 12	Composite 6	SS20 70	Composite 10
SS05 ځ	Composite 3	SS13 13	り Composite 7	SS21 21	Composite 11
\$ 8082	Composite 3	SS14 JU	Composite /	SS22 ZZ	Composite 11
SS07 7	K Composite 4	ss15 [5	32	SS23 27	36
S808 &	Composite 4	5516 [6	Composite 8	SS24 2W	Composite 12

Envirolab Services
12 Ashley St
Chatswood NSW 2067
Pth: (02) 9910 6200

Job No: 330 56 9

Date Received: 1518/23
Time Received: 1540
Received By: DC
Temp: (07) Ambient
Cooling: Icell Enack
Security: (mac/JBroken/None

Head Office Suite 201, Level 2, 20 George Street Hornsby NSW 2077, Australia Ph 02 9476 9999 Fax 02 9476 8767

> mail@martens.com.au > www.martens.com.au MARTENS & ASSOCIATES P/L ABN 85 070 240 890 ACN 070 240 890

SOIL ANALYSIS CHAIN OF CUSTODY

Page 2 of 3

	ltem	Soil Sample ID	Combo 6a	pH and CEC	внм	OC/OP Pesticides	TRH	BTEXN	Combo 3	HOLD
37	1	BH201/0-0.2	x		-					
28	2	BH202/0-0.2	x							
29	3	BH203/0-0.2	х							
40	4	BH204/0-0.2	x							
41	5	BH205/0-0.2	x							
42	6	BH206/0-0.2	х			-				
YZ.	7	BH207/0-0.2	х							
цų	8	BH208/0-0.2	x							
4\$	9	BH209/0-0.2	×					1		
ij) 10	BH210/0-0.2	x							
4	711	BH211/0-0.2	x							
Ц	5 12	BH212/0-0.2	х					_		
ij.	7 19	BH202/0.8-1.0		x						-
4	20	BH204/0.7-0.9		x	-					
5	21	BH210/0.8-1.0		х х	-				-	
	22	95 Comp 1			х	X				
ŀ		W Comp 2			x	x				
ŀ		27 Comp 3			x	x		·		
ŀ		28 Comp 4			x	x				
ŀ		29 Comp 5			x	x		-		
ŀ		30 Comp 6			x	x		-	-	
ŀ		7) Comp 7	•	-	x	X	_		1220510	
-		77 Comp 8			<u>x</u>	X			#330569 15/8/23	
ŀ		ርዕጠው የ ይን Comp የ			x	x			PL	<u>.</u>
-	31 1	기 Comp 10			x	x			-	
ŀ	32 1	Comp 11			x	x				
}	33 7				x	x				

SOIL ANALYSIS CHAIN OF CUSTODY

Page 3 of 3

	ltem	Soil Sample ID	Combo 6a	pH and CEC	8НМ	OC/OP Pesticides	TRH	BTEXN	Combo 3	HOID
				_						
52	34	DUP01			x					
53	35	DUP03			х					
94	36	Trip Spike						x		
55	37	Trip Blank					x			

#330569 198123 PL

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Martens & Associates Pty Ltd
Attention	William Xu

Sample Login Details	
Your reference	P2209440 - Bayview Golf Club NSW
Envirolab Reference	330569
Date Sample Received	15/08/2023
Date Instructions Received	15/08/2023
Date Results Expected to be Reported	22/08/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	55 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileer	ı Hie	Jacinta Hurst
Phone	02 9910 6200	Phone: 02 9910 6200
Fax:	02 9910 6201	Fax: 02 9910 6201
Email:	ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Inorg - Soil	CEC	Asbestos ID - soils	On Hold
SS01											✓
SS02											✓
SS03											✓
SS04											✓
SS05											✓
SS06											✓
SS07											✓
SS08											✓
SS09											✓
SS10											✓
SS11											✓
SS12											✓
SS13											✓
SS14											✓
SS15											✓
SS16											✓
SS17											✓
SS18											✓
SS19											✓
SS20											✓
SS21											✓
SS22											✓
SS23											✓
SS24											✓
Composite 1				✓	✓		✓				
Composite 2				✓	✓		✓				
Composite 3				✓	✓		✓				
Composite 4				✓	✓		✓				
Composite 5				✓	✓		✓				
Composite 6				✓	✓		✓				
Composite 7				✓	✓		✓				
Composite 8				✓	1		✓				

www.envirolab.com.au

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Inorg - Soil	CEC	Asbestos ID - soils	On Hold
Composite 9				✓	✓		✓				
Composite 10				✓	✓		✓				
Composite 11				✓	✓		✓				
Composite 12				✓	✓		✓				
BH201/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH202/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH203/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH204/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH205/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH206/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH207/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH208/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH209/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH210/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH211/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH212/0-0.2	✓	✓	✓	✓	✓	✓	✓			✓	
BH202/0.8-1.0								✓	✓		
BH204/0.7-0.9								✓	✓		
BH210/0.8-1.0								✓	✓		
DUP01							✓				
DUP03							✓				
Trip Spike	✓										
Trip Blank	✓										

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 330569-A

Client Details	
Client	Martens & Associates Pty Ltd
Attention	William Xu
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details					
Your Reference	P2209440 - Bayview Golf Club NSW				
Number of Samples	55 Soil				
Date samples received	15/08/2023				
Date completed instructions received	23/08/2023				

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	29/08/2023			
Date of Issue	29/08/2023			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Dragana Tomas, Senior Chemist Greta Petzold, Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

Phenoxy Acid Herbicides in Soil						
Our Reference		330569-A-25	330569-A-26	330569-A-27	330569-A-28	330569-A-29
Your Reference	UNITS	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/08/2023	26/08/2023	26/08/2023	26/08/2023	26/08/2023
Date analysed	-	28/08/2023	28/08/2023	28/08/2023	28/08/2023	28/08/2023
Clopyralid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
o-chlorophenoxy acetic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-CPA	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dicamba	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРР	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРА	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorprop	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoxynil	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Triclopyr	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-TP	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРВ	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dinoseb	mg/kg	<1	<1	<1	<1	<1
2,4-DB	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
loxynil	mg/kg	<1	<1	<1	<1	<1
Picloram	mg/kg	<1	<1	<1	<1	<1
DCPA (Chlorthal) Diacid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acifluorfen	mg/kg	<2	<2	<2	<2	<2
2,4,6-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bentazon	mg/kg	<1	<1	<1	<1	<1
Chloramben	mg/kg	<1	<1	<1	<1	<1
Fluroxypyr	mg/kg	<1	<1	<1	<1	<1
Surrogate 2.4- DCPA	%	120	120	120	120	120

Phenoxy Acid Herbicides in Soil						
Our Reference		330569-A-30	330569-A-31	330569-A-32	330569-A-33	330569-A-34
Your Reference	UNITS	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/08/2023	26/08/2023	26/08/2023	26/08/2023	26/08/2023
Date analysed	-	28/08/2023	28/08/2023	28/08/2023	28/08/2023	28/08/2023
Clopyralid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
o-chlorophenoxy acetic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-CPA	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dicamba	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРР	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРА	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorprop	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoxynil	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Triclopyr	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-TP	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРВ	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dinoseb	mg/kg	<1	<1	<1	<1	<1
2,4-DB	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
loxynil	mg/kg	<1	<1	<1	<1	<1
Picloram	mg/kg	<1	<1	<1	<1	<1
DCPA (Chlorthal) Diacid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acifluorfen	mg/kg	<2	<2	<2	<2	<2
2,4,6-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bentazon	mg/kg	<1	<1	<1	<1	<1
Chloramben	mg/kg	<1	<1	<1	<1	<1
Fluroxypyr	mg/kg	<1	<1	<1	<1	<1
Surrogate 2.4- DCPA	%	92	94	94	96	94

Phenoxy Acid Herbicides in Soil			
Our Reference		330569-A-35	330569-A-36
Your Reference	UNITS	Composite 11	Composite 12
Date Sampled		15/08/2023	15/08/2023
Type of sample		Soil	Soil
Date extracted	-	26/08/2023	26/08/2023
Date analysed	-	28/08/2023	28/08/2023
Clopyralid	mg/kg	<0.5	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5	<0.5
o-chlorophenoxy acetic acid	mg/kg	<0.5	<0.5
4-CPA	mg/kg	<0.5	<0.5
Dicamba	mg/kg	<0.5	<0.5
MCPP	mg/kg	<0.5	<0.5
МСРА	mg/kg	<0.5	<0.5
Dichlorprop	mg/kg	<0.5	<0.5
2, 4- D	mg/kg	<0.5	<0.5
Bromoxynil	mg/kg	<0.5	<0.5
Triclopyr	mg/kg	<0.5	<0.5
2,4,5-TP	mg/kg	<0.5	<0.5
2,4,5-T	mg/kg	<0.5	<0.5
МСРВ	mg/kg	<0.5	<0.5
Dinoseb	mg/kg	<1	<1
2,4-DB	mg/kg	<0.5	<0.5
loxynil	mg/kg	<1	<1
Picloram	mg/kg	<1	<1
DCPA (Chlorthal) Diacid	mg/kg	<0.5	<0.5
Acifluorfen	mg/kg	<2	<2
2,4,6-T	mg/kg	<0.5	<0.5
2,6-D	mg/kg	<0.5	<0.5
Bentazon	mg/kg	<1	<1
Chloramben	mg/kg	<1	<1
Fluroxypyr	mg/kg	<1	<1
Surrogate 2.4- DCPA	%	92	120

Triazine Herbicides in Soil						
Our Reference		330569-A-25	330569-A-26	330569-A-27	330569-A-28	330569-A-29
Your Reference	UNITS	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	24/08/2023	24/08/2023	24/08/2023	24/08/2023	24/08/2023
Date analysed	-	28/08/2023	28/08/2023	28/08/2023	28/08/2023	28/08/2023
Simazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Atrazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Propazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Terbuthylazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Metribuzin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ametryn	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Prometryn	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Terbutryn	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cyanazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Irgarol	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Hexazinone	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	97	99	104	96

Triazine Herbicides in Soil						
Our Reference		330569-A-30	330569-A-31	330569-A-32	330569-A-33	330569-A-34
Your Reference	UNITS	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
Date Sampled		15/08/2023	15/08/2023	15/08/2023	15/08/2023	15/08/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	24/08/2023	24/08/2023	24/08/2023	24/08/2023	24/08/2023
Date analysed	-	28/08/2023	28/08/2023	28/08/2023	28/08/2023	28/08/2023
Simazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Atrazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Propazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Terbuthylazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Metribuzin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ametryn	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Prometryn	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Terbutryn	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cyanazine	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Irgarol	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Hexazinone	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	96	101	101	98

Triazine Herbicides in Soil			
Our Reference		330569-A-35	330569-A-36
Your Reference	UNITS	Composite 11	Composite 12
Date Sampled		15/08/2023	15/08/2023
Type of sample		Soil	Soil
Date extracted	-	24/08/2023	24/08/2023
Date analysed	-	28/08/2023	28/08/2023
Simazine	mg/kg	<0.5	<0.5
Atrazine	mg/kg	<0.5	<0.5
Propazine	mg/kg	<0.5	<0.5
Terbuthylazine	mg/kg	<0.5	<0.5
Metribuzin	mg/kg	<0.5	<0.5
Ametryn	mg/kg	<0.5	<0.5
Prometryn	mg/kg	<0.5	<0.5
Terbutryn	mg/kg	<0.5	<0.5
Cyanazine	mg/kg	<0.5	<0.5
Irgarol	mg/kg	<0.5	<0.5
Hexazinone	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	101

Envirolab Reference: 330569-A

Method ID	Methodology Summary
Ext-061	Analysed by Envirolab Melbourne
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Envirolab Reference: 330569-A Page | 7 of 12

QUALITY CON	TROL: Pheno:	ky Acid H	erbicides in Soi l			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	330569-A- 26
Date extracted	-			26/08/2023	25	26/08/2023	26/08/2023		26/08/2023	26/08/2023
Date analysed	-			28/08/2023	25	28/08/2023	28/08/2023		28/08/2023	28/08/2023
Clopyralid	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	106	101
3,5-Dichlorobenzoic acid	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
o-chlorophenoxy acetic acid	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
4-CPA	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Dicamba	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
MCPP	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
МСРА	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Dichlorprop	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
2,4-D	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	92	89
Bromoxynil	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Triclopyr	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
2,4,5-TP	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
2,4,5-T	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	110	105
МСРВ	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Dinoseb	mg/kg	1	Ext-061	<1	25	<1	<1	0	[NT]	[NT]
2,4-DB	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
loxynil	mg/kg	1	Ext-061	<1	25	<1	<1	0	[NT]	[NT]
Picloram	mg/kg	1	Ext-061	<1	25	<1	<1	0	[NT]	[NT]
DCPA (Chlorthal) Diacid	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Acifluorfen	mg/kg	2	Ext-061	<2	25	<2	<2	0	[NT]	[NT]
2,4,6-T	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
2,6-D	mg/kg	0.5	Ext-061	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Bentazon	mg/kg	1	Ext-061	<1	25	<1	<1	0	[NT]	[NT]
Chloramben	mg/kg	1	Ext-061	<1	25	<1	<1	0	[NT]	[NT]
Fluroxypyr	mg/kg	1	Ext-061	<1	25	<1	<1	0	[NT]	[NT]
Surrogate 2.4- DCPA	%		Ext-061	120	25	120	120	0	124	118

QUALITY CONTROL: Triazine Herbicides in Soil					Dup l icate Spi			Spike Re	covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	330569-A- 26
Date extracted	-			24/08/2023	25	24/08/2023	24/08/2023		24/08/2023	24/08/2023
Date analysed	-			28/08/2023	25	28/08/2023	28/08/2023		28/08/2023	28/08/2023
Simazine	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Atrazine	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	98	94
Propazine	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	90	88
Terbuthylazine	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Metribuzin	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Ametryn	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Prometryn	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	82	82
Terbutryn	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Cyanazine	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Irgarol	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Hexazinone	mg/kg	0.5	Org-022/025	<0.5	25	<0.5	<0.5	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	95	25	96	97	1	93	98

Envirolab Reference: 330569-A

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 330569-A Page | 10 of 12

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Page | 11 of 12

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Phenoy Acid Herbicides analysed by Envirolab Services Melbourne. Report No. 39291

Envirolab Reference: 330569-A Page | 12 of 12

Geoff Weir

From:William Xu <wxu@martens.com.au>Sent:Wednesday, 23 August 2023 7:46 AMTo:Nancy Zhang; Ben McGiffin; Gray Taylor

Cc: Samplereceipt; Login; Customer Service

Subject: RE: Results for Registration 330569 P2209440 - Bayview Golf Club NSW

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Nancy,

Can we get CO1 to CO12 tested for phenyl acid and triazine (herbicides) as well please, standard TAT?

Will

From: Nancy Zhang [mailto:NZhang@envirolab.com.au]

Sent: Tuesday, 22 August 2023 4:56 PM

To: martens@esdat.com.au; Ben McGiffin

bmcgiffin@martens.com.au>; Gray Taylor <gtaylor@martens.com.au>; William Xu <wxu@martens.com.au>; Accounts

<accounts@martens.com.au>

Subject: Results for Registration 330569 P2209440 - Bayview Golf Club NSW

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csts file containing the results a copy of the Invoice

Please note that a hard copy will not be posted.

Enquiries should be made directly to: customerservice@envirolab.com.au

How did we do? Send Feedback

Kind Regards,

Nancy Zhang | Laboratory Manager, Sydney | Envirolab Services

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 E NZhang@envirolab.com.au | W www.envirolab.com.au

Contaminated Land ● Trade Waste ● OHS ● Drinking Water ● Air Quality ● Asbestos ● PFAS ● Soil Vapours ● Microbiology Methamphetamines & Other Drug Residue ● Acid Sulphate Soils (ASS) & Acid Mine Drainage (AMD)

Emerging Contaminants ● Forensic Toxicology ● Product Development

Related Parties Empl & LADIES

AU: 1300 424 344 Sydney | Perth | Melbourne | Adelaide | Brisbane | Darwin

NZ: + 64 (9) 526 5216 Auckland

Follow us on: LinkedIn | Facebook | Twitter

Reminder: We have recently updated our prices on 1 August 2023. Please reach out to our Business Development team for more information.

Please consider the environment before printing this email.

Samples will be analysed per our T&C's.

The content of this email and any attachments are intended solely for the addressee(s), may contain confidential and/or privileged information and may be legally protected from disclosure. Any unauthorised use is expressly prohibited. If you have received this email in error please promptly notify the sender, disregard and then delete the email. Any views expressed in this communication are those of the individual sender. This email may have been corrupted or interfered with. Envirolab Group Pty Ltd cannot guarantee that the message you receive is the same as the message sent. Envirolab Group does not represent, warrant or guarantee that the communication is free from errors, virus or interference. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedent. Envirolab Group accepts no liability for any damage caused by this email or its attachments due to viruses, interference, interception, corruption or unauthorised access. Envirolab Group's entire liability is limited to resending this email.

This e-mail message has been scanned for Viruses

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Martens & Associates Pty Ltd
Attention	William Xu

Sample Login Details	
Your reference	P2209440 - Bayview Golf Club NSW
Envirolab Reference	330569-A
Date Sample Received	15/08/2023
Date Instructions Received	23/08/2023
Date Results Expected to be Reported	30/08/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	55 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileer	ı Hie	Jacinta Hurst
Phone	02 9910 6200	Phone: 02 9910 6200
Fax:	02 9910 6201	Fax: 02 9910 6201
Email:	ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

www.envirolab.com.au

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au

Sample ID	Phenoxy Acid Herbicidesin Soil	Triazine Herbicides in Soil	On Hold
SS01			✓
SS02			✓
SS03			✓
SS04			✓
SS05			✓
SS06			✓
SS07			✓
SS08			✓
SS09			✓
SS10			✓
SS11			✓
SS12			✓
SS13			✓
SS14			✓
SS15			✓
SS16			✓
SS17			✓
SS18			✓
SS19			✓
SS20			✓
SS21			✓
SS22			✓
SS23			✓
SS24			✓
Composite 1	✓	✓	
Composite 2	✓	✓	
Composite 3	✓	✓	
Composite 4	✓	✓	
Composite 5	✓	✓	
Composite 6	✓	✓	
Composite 7	✓	✓	
Composite 8	✓	✓	

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Phenoxy Acid Herbicidesin Soil	Triazine Herbicides in Soil	On Hold
Composite 9	✓	✓	
Composite 10	✓	✓	
Composite 11	✓	✓	
Composite 12	✓	✓	
BH201/0-0.2			✓
BH202/0-0.2			✓
BH203/0-0.2			✓
BH204/0-0.2			✓
BH205/0-0.2			✓ ✓ ✓
BH206/0-0.2			✓
BH207/0-0.2			✓
BH208/0-0.2			✓
BH209/0-0.2			✓
BH210/0-0.2			✓ ✓ ✓
BH211/0-0.2			✓
BH212/0-0.2			
BH202/0.8-1.0			✓
BH204/0.7-0.9			✓
BH210/0.8-1.0			✓
DUP01			✓ ✓ ✓ ✓
DUP03			✓
Trip Spike			√
Trip Blank			
BH201/0-0.2 - [TRIPLICATE]			✓
BH206/0-0.2 - [TRIPLICATE]			✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.