STATE TRANSIT AUTHORITY

REMEDIATION ACTION PLAN (REVISED 2020) STATE TRANSIT BUS DEPOT, 58 DARLEY STREET MONA VALE, NEW SOUTH WALES

Question today Imagine tomorrow Create for the future

Remediation Action Plan (Revised 2020)

State Transit Bus Depot, 58 Darley Street Mona Vale, New South Wales

State Transit Authority

WSP Level 27, 680 George Street Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001

Tel: +61 2 9272 5100 Fax: +61 2 9272 5101 wsp.com

REV	DATE	DETAILS
А	20/07/2018	DRAFT for Client comment
В	7/08/2018	For Issue
С	29/07/2019	Reissue following Auditor Comments (IAA06)
D	06/12/2019	Reissue following Auditor Comments (IAA08) and to align with the updated VMP
Е	18/05/2020	Reissue following Auditor Comments (IAA09)

	NAME	DATE	SIGNATURE
Prepared by:	Sarah Klocke	18/05/2020	Sarah Klocke
Reviewed by:	Colin McKay	18/05/2020	Why What with a state of the st
Approved by:	Colin McKay	18/05/2020	What what will be a start of the start of th

This document may contain confidential and legally privileged information, neither of which are intended to be waived, and must be used only for its intended purpose. Any unauthorised copying, dissemination or use in any form or by any means other than by the addressee, is strictly prohibited. If you have received this document in error or by any means other than as authorised addressee, please notify us immediately and we will arrange for its return to us.

TABLE OF CONTENTS

ABBF	REVIATIONS	V
1		1
1.1	BACKGROUND	1
1.2	OBJECTIVE OF THE AMENDED RAP	2
2	SITE CHARACTERISTICS	3
2.1	SITE LOCATION AND DESCRIPTION	3
2.1.1	OPERATIONAL HISTORY	
2.1.2 2.1.3	CURRENT SITE LAYOUT HISTORICAL INFRASTRUCTURE	
2.2	SURROUNDING LANDUSE	
2.2.1		
2.2.2 2.2.3	NEARBY NOTIFIED AND REGULATED SITES SERVICES SURROUNDING THE SITE	
2.2.4	SENSITIVE ENVIRONMENTS	
2.3	ENVIRONMENTAL SETTING	5
2.3.1	TOPOGRAPHY	
2.3.2 2.3.3	SOIL & GEOLOGY HYDROGEOLOGY	
2.3.4	HYDROLOGY	
3	SUMMARY OF INVESTIGATION AND	
	REMEDAITION TO DATE	
3.1	OVERVIEW	8
3.2		
	INITIAL SOIL AND GROUNDWATER INVESTIGATIONS	10
3.3		
3.3 3.4	INVESTIGATIONS	11
	INVESTIGATIONS REMEDIATION ACTION PLANS REMEDIATION AND INFRASTRUCTURE WORKS GROUNDWATER MONITORING	11 12 14
3.4 3.5 3.5.1	INVESTIGATIONS	11 12 14 14
3.4 3.5 3.5.1 3.5.2	INVESTIGATIONS REMEDIATION ACTION PLANS REMEDIATION AND INFRASTRUCTURE WORKS GROUNDWATER MONITORING SUMMARY OF FINDINGS BY ENRS 2014-2018 SUMMARY OF WSP'S FINDINGS 2018-2019	11 12 14 14
3.4 3.5 3.5.1	INVESTIGATIONS	11 12 14 14 15
 3.4 3.5 3.5.1 3.5.2 3.6 3.6.1 	INVESTIGATIONS REMEDIATION ACTION PLANS REMEDIATION AND INFRASTRUCTURE WORKS GROUNDWATER MONITORING SUMMARY OF FINDINGS BY ENRS 2014-2018. SUMMARY OF WSP'S FINDINGS 2018-2019. HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT. HERA DEVELOPMENT.	11 12 14 14 15 16 16
 3.4 3.5 3.5.1 3.5.2 3.6 3.6.1 3.6.2 	INVESTIGATIONS REMEDIATION ACTION PLANS REMEDIATION AND INFRASTRUCTURE WORKS GROUNDWATER MONITORING SUMMARY OF FINDINGS BY ENRS 2014-2018. SUMMARY OF WSP'S FINDINGS 2018-2019. HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT. HERA DEVELOPMENT. VAPOUR ASSESSMENTS.	11 12 14 14 15 16 16 17
 3.4 3.5 3.5.1 3.5.2 3.6 3.6.1 3.6.2 3.7 	INVESTIGATIONS REMEDIATION ACTION PLANS REMEDIATION AND INFRASTRUCTURE WORKS GROUNDWATER MONITORING SUMMARY OF FINDINGS BY ENRS 2014-2018 SUMMARY OF WSP'S FINDINGS 2018-2019 HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT HERA DEVELOPMENT VAPOUR ASSESSMENTS GROUNDWATER REMEDIATION TRIAL WORKS	11 12 14 14 15 16 16 17 18
 3.4 3.5 3.5.1 3.5.2 3.6 3.6.1 3.6.2 	INVESTIGATIONS REMEDIATION ACTION PLANS REMEDIATION AND INFRASTRUCTURE WORKS GROUNDWATER MONITORING SUMMARY OF FINDINGS BY ENRS 2014-2018. SUMMARY OF WSP'S FINDINGS 2018-2019. HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT. HERA DEVELOPMENT. VAPOUR ASSESSMENTS.	11 12 14 14 14 15 16 16 17 18
 3.4 3.5 3.5.1 3.5.2 3.6 3.6.1 3.6.2 3.7 3.7.1 	INVESTIGATIONS	11 12 14 14 16 16 16 17 18 18

vsp

3.9	FURTHER ASSESSMENTS UNDER THE CURRENT VMP
4	SITE CHARACTERISATION22
4.1	EXTENT OF CONTAMINATION
4.1.1 4.1.2	SOIL AND SOIL VAPOUR CONTAMINATION
4.1.3 4.1.4	PRESENCE OF DISSOLVED CONTAMINANTS23 EVIDENCE OF NATURAL ATTENUATION
4.2	CONCEPTUAL SITE MODEL
4.2.1 4.2.2 4.2.3 4.2.4	SOURCES26POTENTIAL RECEPTORS27POTENTIAL PATHWAYS27SUMMARY OF RISK27
4.3	RISK CHARACTERISATION AND DATAGAP REVIEW
5	REMEDIATION STRATEGY35
5.1	REMEDIATION OBJECTIVES
5.2	SOIL REMEDIATION OPTIONS
5.3	GROUNDWATER REMEDIATION OPTIONS
5.3.1 5.3.2	DO NOTHING
5.3.3	MONITORED NATURAL ATTENUATION (MNA)
5.3.4	ENHANCED MNA
5.3.5	MULTI-PHASE VACUUM EXTRACTION (MPVE)
5.3.6 5.3.7	PSH REMOVAL BY PASSIVE SKIMMER SYSTEM
5.3.8	TOTAL FLUIDS REMOVAL BY ACTIVE PNEUMATIC PUMPS (PREFERRED OPTION)
5.4	REVISED REMEDIATION STRATEGY
5.5	CONTINGENCY
6	GROUNDWATER MONITORING PLAN3
6.1	DATA QUALITY OBJECTIVES (DQOS)
6.1.1	STEP 1 – DEFINING THE PROBLEM 3
6.1.2 6.1.3	STEP 2 – IDENTIFY THE DECISION
6.1.4	DECISION
6.1.5	STEP 5 – DEVELOPING DECISION RULES
6.1.6	STEP 6 – SPECIFY LIMITS ON DECISION ERRORS
6.1.7	STEP 7 – OPTIMISE DESIGN

wsp

6.2	GROUNDWATER MONITORING	5
6.2.1	GROUNDWATER SAMPLING NETWORK AND PROGRAM	5
6.3	SAMPLING AND ANALYSIS	6
6.3.1	GROUNDWATER SAMPLING	
6.3.2	SURFACE WATER SAMPLING	
6.3.3 6.3.4	SAMPLE STORAGE AND HANDLING LABORATORY ANALYSIS AND METHODS	
6.3.4 6.3.5	GROUNDWATER REMEDIATION CRITERIA	
6.4	QUALITY ASSURANCE / QUALITY CONTROL	8
6.5	REPORTING	9
7	REGULATORY APPROVALS / LICENSING	10
'		_
7.1	VOLUNTARY MANAGEMENT PROPOSAL	10
7.2	APPROVALS REQURIED TO FACILITATE	
	REMEDIATION	10
7.2.1	PLANNING APPROVALS	10
7.2.2	COUNCIL ROAD OPENING AND TRAFFIC MANAGEMENT	
7.2.3	APPROVALS WATER ACCESS LICENCE (WATER MANAGENT ACT	11
1.2.0	2000)	11
7.2.4	TRADE WASTE AGREEMENT	11
7.2.5	WASTE MANAGEMENT OF RECOVERED OIL	11
7.2.6	ENVIRONMENT PROTECTION LICENCE UNDER THE	
	POEO ACT 1997	11
8	ENVIRONMENTAL MANAGEMENT PLAN	12
8.1	HOURS OF OPERATION	12
8.2	SITE ACCESS	12
8.3	UNDERGROUND SERVICES	12
8.4	NOISE	12
8.5	SOIL WASTE CLASSIFICAITON AND DISPOSAL	13
8.6	GROUNDWATER DISCHARGES	13

wsp

9	WORK HEALTH AND SAFETY14					
10	LIMITATIONS15					
11	REFEREN	ICES17	7			
APPE	NDIX A	FIGURES				
APPE	NDIX B	SUMMARY RESULTS				
APPE	NDIX C	SURVEYS AND SERVICE PLANS				
APPE	NDIX D	BORELOGS				
APPE	NDIX E	BORESEARCH DATA				
APPE	NDIX F	NSW EPA CORRESPONDENCE				

ABBREVIATIONS

ANZECC	Australian and New Zealand Environment and Conservation Council
BTEX	Benzene, toluene, ethyl benzene and xylene
COC	Chain of custody
DO	Dissolved oxygen
DQI	Data quality indicators
DQO	Data quality objectives
EC	Electrical conductivity
EOH	End of hole
LDL	Laboratory detection limit
mg	Milligrams
mbgl	Metres below ground level
mbtoc	Metres below top of casing
MNA	Monitored natural attenuation
MW	Monitoring well
NA	Natural attenuation
NATA	National Association of Testing Authorities
NEPM	National Environment Protection (Assessment of Site Contamination) Measure (prepared by the NEPC, 2013)
NSW EPA	Over the past few years the environmental regulatory body has undergone a number of name changes, including: Department of Environment and Conservation (DEC); Department of Environment and Climate Change (DECC); Department of Environment, Climate Change and Water (DECCW); and, Office of Environment and Heritage (OEH). For the purpose of currency, the organisation is referred to as NSW EPA in this report.
ORP	Oxidation/reduction potential
PAH	Polycyclic aromatic hydrocarbons
PACM	Potential asbestos containing material
PB	Parsons Brinkerhoff Pty Limited
рН	Unit of measurement for acidity and alkalinity
PSH	Phase separated hydrocarbons
QA/QC	Quality assurance / quality control
RL	Relative level
SAC	Site assessment criteria
ToC	Top of case (of monitoring well)
TOC	Total organic carbon
TRH	Total recoverable hydrocarbons (C_{10} to C_{40})
UST	Underground storage tank
vTRH	Volatile total recoverable hydrocarbons (C_6 to C_{10})
WSP	WSP Australia Pty Limited
μg	Microgram

1 INTRODUCTION

1.1 BACKGROUND

WSP Australia Pty Limited (WSP) was commissioned by the State Transit Authority (STA) to update the Remediation Action Plan (RAP) for the Mona Vale Bus Depot located at 58 Darley Street, Mona Vale NSW (the Site). The Site location is presented in Figure 1, **Appendix A**.

WSP completed a Contaminated Site Assessment (CSA) for the site in 2012, which identified soil and groundwater impacted with Total Recoverable Hydrocarbons (TRH [formerly TPH]) and Polycyclic Aromatic Hydrocarbons (PAH) above adopted site criteria for commercial/industrial land-use. WSP concluded that the findings were indicative of the presence of phase separated hydrocarbons (PSH) potentially sourced from a diesel spill sump pit within the sites refuelling area. WSP also recommended that STA prepare and submit a Contaminated Land Notification Form in accordance with NSW EPA, 2009 *Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.* This notification was submitted to the NSW EPA on 7 February 2012.

Based on the findings of the CSA, WSP was then engaged by STA to conduct further on and off-site delineation of soil and groundwater impact at the site (two separate investigations). WSP concluded that hydrocarbon impact was located within the vicinity of the site's refuelling area, and in a northerly and westerly direction from this location, corresponding with the determined groundwater flow direction. In addition, WSP confirmed that identified impact was restricted to groundwater and sandy soils immediately above the groundwater table (1 to 2 m bgl), which indicates that soil impact is likely to be associated with a groundwater plume rather than spot sources of contamination across the Site (WSP, 2012).

A RAP, was prepared for the Site by WSP in May 2013, to address on-going liability and risk associated with the identified hazards and to render the site suitable for on-going commercial/industrial use.

Following preparation of the original RAP in 2013, STA engaged Australian Environmental Services (AES) to carry out targeted remedial works recommended in that document including removal of the Site's diesel spill sump pit, removal of the underground petroleum storage system (UPSS) and installation of an active onsite groundwater skimmer system at the site boundary. STA also engaged Environment and Natural Resource Solutions (ENRS) to implement an on-going groundwater monitoring program that has included eight rounds of testing to April 2018. Since then WSP have conducted a further two rounds of monitoring in October 2018 and May 2019.

The NSW EPA declared the site as significantly contaminated land on 11 November 2014. A Voluntary Management Proposal (VMP) and a VMP Communications Plan were prepared by STA and issued to the NSW EPA in January 2015. Since that time the site has been managed under the VMP, which under various revisions has consistently had the objective of assessment of the extent of impacts, assessment of the risk of the contamination and removal of the hydrocarbon impact to the extent practicable.

A revision to the first version of the RAP was prepared in 2015 (WSP, 2015), which updated the criteria to align with the NEPC, 2013 *National Environment Protection (Assessment of Site Contamination) Measure* 1999, summarised various remedial works carried out since 2013, and recommended trialling of various groundwater and PSH remedial technologies, along with ongoing monitoring works. As much of this investigation work has now been carried out, and STA have implemented a more permanent phase separated hydrocarbon (PSH) skimming system on the site and surrounds, this RAP has been prepared as an update to the previous RAPs.

The most recent version of the VMP is dated 8 May 2015, with amendments issued on 20 May 2016, 26 June 2017 and 16 January 2020 These documents are included in **Appendix F** for reference. This RAP is written to align with the current version of the VMP (December 2019).

1.2 OBJECTIVE OF THE AMENDED RAP

The overarching objectives of the remediation program, under the current VMP are to:

- Assess and monitor the extent of soil and groundwater contamination;
- Assess the risks posed by the identified contamination; and
- Remove phase separated hydrocarbon (PSH) from groundwater to the extent practicable.

This updated Remediation Action Plan (RAP) has been developed such that the remediation program complies, where practicable, with relevant guidelines, including:

- CRC Care, 2010 Technical Report No 18 Selecting and assessing strategies for remediating LNAPL in soils and aquifers
- CRC Care, 2013 Technical Report No 23 Petroleum hydrocarbon vapour intrusion assessment: Australian guidance.
- NEPC, 2013 National Environmental Protection (Assessment of Site Contamination) Measure 1999;
- NSW EPA 2004, Technical Note: Investigation of Service Station Sites;
- NSW EPA 2007, Contaminated Sites: Guidelines for the Assessment and Management of Groundwater Contamination
- NSW EPA 2011, Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites
- NSW EPA 2015, Technical Note: Light Non-Aqueous Phase Liquid Assessment and Remediation.
- NSW EPA 2017, Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd Edition;
- State Environmental Planning Policy No. 55 Remediation of Land (SEPP 55 1998).

2 SITE CHARACTERISTICS

2.1 SITE LOCATION AND DESCRIPTION

The subject site is located at 58 Darley Street, Mona Vale, NSW. The site is currently an active bus depot and comprises Lot 2 of DP 542640. Refer to Figure 1 and Figure 2, **Appendix A** for site location plans. A summary of site details are presented in Table 2.1 below.

PARAMETER	SITE DETAILS		
Street Address	58 Darley Street, Mona Vale, NSW		
Lot / DP	Lot 2 DP 542640		
Local Government Area	Pittwater Council		
Land Zoning	4(b1) Light Industrial B1		
Current Landuse	Bus Depot		
Site Area	17,100 m ² (approximately)		
Geographical Coordinates Lat/Long	33°40'28.02"S 151°18'25.70"E		

Table 2.1 Site Identification Details

2.1.1 OPERATIONAL HISTORY

KMH Environmental, (16 March 2002) prepared an Environmental Compliance Audit for the site. The report indicated the site was developed as a bus depot in 1970, prior to which it was reported to be vacant swamp land.

2.1.2 CURRENT SITE LAYOUT

The Site is accessed via an entry and exit driveway located on Darley Street and is used for bus maintenance, refuelling and parking. The north-western corner of the Site is used as a staff car parking area. The site comprises a depot facility centre, a garage/workshop area, a refuelling area, two bus chassis wash facilities, bus hardstand parking and staff car park.

Fuel is stored in a self-bunded diesel AST (88,560L), located adjacent to the refuelling area, south of the garage / workshop (refer Figure 3, **Appendix A**). The above ground tank and associated delivery system are understood to have been commissioned in July 2013.

A waste oil UST is located adjacent to the refuelling area and waste water treatment pits are located adjacent to each of the bus chassis wash facilities.

The general site layout is shown in Figure 3 with groundwater monitoring well locations shown in Figure 4 **Appendix A**. A survey of current site infrastructure is provided in **Appendix C**.

2.1.3 HISTORICAL INFRASTRUCTURE

A 35,000 litre diesel underground storage tank (UST) and one 35,000 L above ground diesel storage tank (AST) were previously located within and adjacent to the car park in the north-western corner of the site. Fuel lines are understood to have previously run along the north western boundary. In addition, a diesel spill sump was located adjacent to the refuelling area.

WSP understands that STA has decommissioned all underground storage tanks (UST) and associated underground fuel distribution infrastructure. These systems have been replaced with the above ground diesel storage tank adjacent to the site entrance in the south west of the site.

Various surveys of historical site layouts and infrastructure design are provided in **Appendix C**. Pertinent details have been transferred onto Figure 3, **Appendix A**.

2.2 SURROUNDING LANDUSE

2.2.1 NEIGHBOURING SITES

The Site and immediate surrounds are shown in Figure 2, **Appendix A**. The site is positioned in a commercial and industrial precinct of Mona Vale. It is accessed via a driveway on Darley Street, to the south west and opens to a battle axe layout surrounded on all sides by other commercial enterprises.

The north eastern boundary at the rear of the site adjoins properties that front Perak Street and appear to be engineering workshops. The south eastern boundary is topographically up gradient of the site. Properties adjoining that boundary have frontage to By The Sea Road and Polo Road. These include a number of vehicle maintenance and smash repairers.

Neighbouring sites on Darley Street in the south west include general commercial shops including pet supplies, hardware store and café.

The north west is downgradient of the site and includes commercial outlets and warehousing on Taronga Place. The adjoining sites include Pittwater Joinery and Reece Plumbing. Beyond Taronga Place further mixed commercial and warehousing enterprises are located.

The nearest residential properties to the site are located approximately 250 m to the west of the site and 70 m to the south of the site, beyond Darley Street.

2.2.2 NEARBY NOTIFIED AND REGULATED SITES

The NSW EPA's list of notified sites for the Mona Vale suburb are presented in Table 2.2. Of these only the first three (STA Bus Depot, and Caltex Mona Vale and surrounds) are shown on the NSW EPA's register of contaminated sites.

SITE	ADDRESS	USE	STATUS
Mona Vale Bus Depot	58 Darley Street	Other Petroleum	Contamination currently regulated under CLM Act
Former Caltex service station and adjacent properties	79 Barrenjoey Road, 2 Polo Avenue, 6 Polo Avenue, 45 Bassett Street	Service Station	Contamination formerly regulated under the CLM Act
Caltex Investigation Area	Polo Ave, Perak Street	Service Station	Regulation being finalised
7-Eleven (former Mobil) Service Station	24 Barrenjoey Road	Service Station	Regulation under CLM Act not required
BP Peninsula Express Service Station	Corner Barrenjoey Road and Darley Street East Street	Service Station	Regulation under CLM Act not required
BP Service Station Mona Vale	1721 Pittwater Road	Service Station	Regulation under CLM Act not required

Table 2.2	Sites Notified to the	NSW EPA

The former service station located at 79 Barrenjoey Road (and surrounds) was subject to a voluntary remediation notice (initially issued September 2000 and reissued September 2003). At its closest point the former service station is located approximately 125 m north-east of the Site, however, the plume appears to be migrating to the west as indicated by the other surrounding properties included on the notice (2 Polo Avenue, 6 Polo Avenue, 45 Bassett Street).

In 2012 the NSW EPA stated that it had reviewed the results of the remediation of the site at 79 Barrenjoey Road and was satisfied that the contamination was no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997. On this basis, it is considered unlikely that the contamination from 79 Barrenjoey Road would be affecting the Bus Depot.

2.2.3 SERVICES SURROUNDING THE SITE

Appendix C presents the results of a dial before you dig search and a drainage search. These have been collated, along with information provided in the historical site maps, to show the key service easements downgradient of the site.

Two services have the potential to be of particular interest to contaminant migration from the site. These include:

- A sewer line located along the eastern side of Taronga Place, which passes across the road and between the boundary of numbers 4 and 5 Taronga Place to the rear of those properties before connecting with another sewer line running towards the north. The approximate location is shown on Figure 8, Appendix A. This service is described in the marked up diagram in Appendix C (from ENRS, 2016) as having it's invert at 1.9 to 3.1 m (presumably below grade).
- A culverted stormwater easement the bisects the site and then flows to the north west discharging to an open culvert 300 m to the north west of the site. The inverts of the stormwater culverts was not provided in the most recent site survey (Appendix C), however by comparing RLs for various site features with the historical survey from 1984 (Appendix C), the invert appears to be between 1.51 m AHD at a manhole in the centre of the site dipping to 1.38 m AHD at a manhole near the north western boundary.

2.2.4 SENSITIVE ENVIRONMENTS

The nearest sensitive environments are as follows:

- The nearest residential premises are located approximately 250 m to the west of the site (possibly downgradient) and 70 m to the south of the site, beyond Darley Street (likely cross gradient);
- The closest downgradient water body is an open stormwater channel located approximately 300 m north-west of the site (down hydraulic gradient). The channel flows into the estuarine environment of Cahill Creek and then Winnererremy Bay (part of Pittwater) approximately 1 km northwest of the site; and
- Bongin Bongin Bay is located approximately 750 m to the east of the site, but groundwater and surface water do not appear to migrate in this direction.

2.3 ENVIRONMENTAL SETTING

2.3.1 TOPOGRAPHY

Based on the site survey and a review of available topographical maps for the region, the site is relatively flat with the ground surface sloping gently in a general north westerly direction. The site has an elevations of less than 10 mAHD.

2.3.2 SOIL & GEOLOGY

Soils information was obtained from the 1:100,000 Sydney Soil Landscape Series Sheet 9130. The site is situated within the Warriewood Grouping. The Warriewood Grouping is described as level to gently undulating swales, depressions and in-filled lagoons on Quaternary sands. Deep soils (>150 cm) of well sorted sandy Humus Podzols and dark mottled

Siliceous Sands overlie buried Acid Peats in depressions. Deep Podzols (>200 cm) and pail Siliceous Sands are typically found on sandy rises.

According to the 1:100,000 Sydney Geological Series Sheet 9130 (Edition 1), the area is underlain by Quaternary silty to peaty quartz sand, silt and clay. The lithology includes ferruginous and humic cementations in places and common shell layers. The Quaternary sediments are underlain by shale, sandstone and claystone of the Newport Formation.

WSP (2012) reported that observed subsurface conditions were in general accordance with regional soil and geology maps. Fill material was encountered to 1.4 m and was underlain by sand with variable quantities of clay and gravel. Available borelogs are provided in **Appendix D**.

2.3.3 HYDROGEOLOGY

To better understand the potential for local groundwater users to be impacted by the site, WSP have recently completed a groundwater bore search (Australian Government, Bureau of Meterology *Australian Groundwater Explorer* (accessed on 23/7/2019). The search results are presented in **Appendix E** with a summary provided in Table 2.3. In summary 24 licensed bores are located within 1 km radius of the site. Of these only one is located downgradient, on parkland at the mouth of Cahill Creek where it discharges to Winnererremy Bay, approximately 975 m from the site. This bores purpose is listed as "other" indicating it is unlikely for potable supply.

Most bores are located east of Barrenjoey Road, which occupies a low ridge to the east of the site. These bores are likely to be up gradient of the site, or beyond a groundwater divide expected between the site and the Tasman Sea to the east, or otherwise are intercepting regional groundwater within underlying sandstone.

The shallow groundwater that is the subject of this assessment is unlikely to flow towards the east, or south east, based on groundwater contours presented in Figure 5, **Attachment A**. The bores to the east and south east include a number of supply bores, most of which are installed to depth of greater than 50 m, likely in underlying sandstone. The nearest bore to the site is located approximately 60 m to the south south west of the Site entrance, and is listed as being 93 m deep. Its purpose is shown as "Supply". The groundwater flow direction of the regional aquifer in the sandstone is unknown as none of these wells are included in the monitoring program. It would be expected, based on regional topography that the regional groundwater flow system recharges west of the site and discharges to the Tasman Sea.

BORE ID	DATE DRILLED	APPROX DISTANCE	DEPTH (m)	PURPOSE	HYDRAULIC DIRECTION FROM SITE WELLS
GW113213	22/05/2012	275 m (E)	2.5	Monitoring	Up-gradient or separate groundwater catchment
GW018770	1/08/1960	280 m (SE)	40.2	Water Supply	Separate aquifer
GW108579	9/03/2007	690 m (ESE)	6.6	Water Supply	Up-gradient or separate groundwater catchment
GW108158	7/05/2006	500 m (ESE)	6.3	Water Supply	Up-gradient or separate groundwater catchment
GW111104	15/06/2010	180 m (SE)	4	Monitoring	Up-gradient or separate groundwater catchment
GW111427	25/02/2008	610 m (SSW)	103	Other	Separate aquifer
GW111444	25/02/2008	390 m (SSW)	103	Other	Separate aquifer
GW108682	23/03/2007	490 m (E)	3.5	Water Supply	Up-gradient or separate groundwater catchment
GW111105	15/06/2010	220 m (SE)	5	Monitoring	Up-gradient or separate groundwater catchment
GW108558	5/02/2007	500 m (E)	4.3	Water Supply	Up-gradient or separate groundwater catchment
GW018778	1/10/1960	400 m (SW)	124.9	Water Supply	Separate aquifer
GW035791	1/12/1960	470 m (SE)	59.4	Water Supply	Separate aquifer
GW105936	19/05/2005	510 m (ESE)	-	Unknown	Up-gradient or separate groundwater catchment

Table 2.3 Registered Groundwater Bores within 1 km

BORE ID	DATE DRILLED	APPROX DISTANCE	DEPTH (m)	PURPOSE	HYDRAULIC DIRECTION FROM SITE WELLS
GW113211	22/05/2012	280 m (E)	3	Monitoring	Up-gradient or separate groundwater catchment
GW113212	22/05/2012	280 m (E)	2.5	Monitoring	Up-gradient or separate groundwater catchment
GW108500	10/11/2006	515 m (ESE)	4	Water Supply	Up-gradient or separate groundwater catchment
GW026581	1/01/1967	60 m (SSW)	92.9	Water Supply	Cross-gradient, separate aquifer
GW018808	1/12/1960	550 m (E)	91.4	Water Supply	Separate aquifer
GW026026	1/11/1966	160 m (S)	51.8	Water Supply	Separate aquifer
GW026027	1/12/1966	190 m (S)	61.5	Water Supply	Separate aquifer
GW018771	1/11/1960	475 m (SE)	100.5	Water Supply	Separate aquifer
GW019104	1/02/1961	190 m (SE)	47.2	Water Supply	Separate aquifer
GW108853	6/10/2007	975 m (NW)	5	Other	Down-gradient
GW108888	2/06/2008	570 m (SSE)	73	Other	Separate aquifer

Based on information provided in the site Detailed Site Investigation (WSP, 2012) and ongoing groundwater monitoring reports (ENRS, 2018), the uppermost aquifer at the site is located within the underlying sand and is unconfined. Groundwater is generally encountered at approximately 1.6 mbgl and reported to flow generally west with a potential north-westerly flow component.

Hydraulic conductivity (K) testing (documented in ENRS, 2016a) indicated a K value of 2.9 m/day. In addition to this work WSP conducted hydraulic conductivity testing on three additional locations (MW07, MW12 and MW26) in November 2019. The AQTESOLV Pro outputs are provided in Appendix G. The K values ranged between wells from an average of 0.75 m/day to 6.1 m/day, with an overall average of 3.7 m/day, which is comparable to the ENRS results.

Based on the groundwater contour diagram in Figure 7, **Appendix A**, the groundwater gradient is approximately 0.003. If the porosity of the sand was assumed to be 0.3 the groundwater seepage velocity would therefore be between 0.029 m/day (10.6 m/year) using ENRS values and 0.037 m/day (13.6 m/year) if using the recent WSP data.

2.3.4 HYDROLOGY

Storm-water runoff generated on-site and shallow groundwater are anticipated to follow local topography and flow towards the open storm-water channel located approximately 300 m north-west of the site, which discharges to Winnererremy Bay (part of Pittwater).

3 SUMMARY OF INVESTIGATION AND REMEDAITION TO DATE

3.1 OVERVIEW

This chapter provides an overview of the investigation and remediation efforts to date.

A summary of chronology of activities is provided below with more detail in following subsections, arranged into broader categories of the works. These include the initial assessments, various RAP iterations, remediation and infrastructure works, overview of groundwater monitoring events, risk assessment works, groundwater remediation trials, and preparation of the environmental management plan.

The site's environmental assessment and remediation chronology, largely taken from ENRS, 2018 includes:

- 2012, February Stage 2 soil and groundwater investigation conducted by WSP. Soil bores SB01 to SB08 and groundwater wells MW01 to MW04 drilled and sampled. Soil and groundwater impacts discovered near the refuelling area.
- 2012, September Onsite soil and groundwater delineation works by WSP. Soil bores SB08 to SB14 and groundwater wells MW05 to MW07 drilled and sampled. Soil and groundwater impacts near the refuelling area assumed to extend beyond the boundary.
- 2013, May offsite soil and groundwater delineation works by WSP. Groundwater wells MW08 to MW12 installed and sampled. Soil and groundwater impacts exist offsite to the west. Without remedial works possible risk to receptors flagged recommendation to develop a remedial strategy.
- 2013, June Remediation action plan developed for the site. Focus of risk assessment, installation of skimming system on site boundary and removal of legacy infrastructure pits and tanks in the refuelling area, along with implementation of a monitoring program.
- 2013, October a 2,000 litre spill sump was pumped out of residual product and then backfilled with 25 mPa concrete. 6.74 tonnes of contaminated soils excavated adjacent the backfilled abandoned spill sump (AES)
- 2013, October Installation by ENSR of three additional groundwater wells; MW15 down-gradient of MW8; MW16 down-gradient of MW11; and MW17 downgradient from MW10 (on other side of buildings). This information was required to delineate Phase Separate Hydrocarbon (PSH) down-gradient of MW10 and delineate the dissolved phase plume down-gradient of MW8 and MW11. Onsite skimmer system installed in MW05, MW13 and MW14.
- 2013, November MW15, MW16 and MW17 installed for to assess extent of PSH. Aquifer tests by ENRS (falling head slug tests) to determine the hydraulic properties of the underlying aquifer and product thickness;
- 2013, November Re-sampling by ENRS of groundwater in new and selected existing monitoring wells for contaminants of concern and MNA parameters
- 2014, January -1^{st} Round GME for offsite MNA by ENRS;
- 2014, April Decommissioning by excavation and offsite removal of 1x 35 kL AST and 1x 35 kL UST (both diesel) located in the pump house area;
- 2014, June 2nd Round GME for offsite MNA by ENRS;
- 2014, October 3rd Round GME for offsite MNA by ENRS;

- 2014, June Comparison by ENSR of laboratory results against standard chromatograph charts to confirm the primary form of hydrocarbon contamination at the site is associated with diesel product;
- 2014, June Two monitoring wells (MW08 and MW12) were re-drilled by AES under ENRS (new wells MW08-B and MW12-B) after the original bores became blocked and were not accessible for sampling. The replacement wells were sampled during the June and October 2014 groundwater monitoring events (GME);
- 2014, October Door knock and field survey of nearby properties to assess the potential for offsite sources of contamination, conducted by STA and ENRS;
- 2015, February 4th Round GME for offsite MNA by ENRS;
- 2015, April 1st Round of Multi-Phase Vacuum Extraction (MPVE) using trailer mounted unit to remove product from accessible offsite wells by ENRS;
- 2015, April –Revised Remediation Action Plan (WSP) to acknowledge and capture the findings of works that had been completed and review the approach. The RAP recommended risk assessment and trialling of active PSH recovery technologies, along with ongoing monitoring.
- 2015, September Installation by AES under ENRS of two additional groundwater wells. MW19 was constructed between MW09 and MW10, whilst MW18 was positioned between MW10 and MW11. The aim of these wells (MW18 and MW19) was to further delineate the lateral extent of the plume downgradient of MW09 and provide additional points for PSH extraction from large diameter wells.
- 2015, November -2^{nd} Round of MPVE event for product recovery from offsite wells by ENRS;
- 2015, December 5th Round GME for offsite MNA including newly installed MW18 and MW19 by ENRS;
- 2015, December 3rd Round of MPE event for product recovery from offsite wells by ENRS;
- 2016, June Installation by AES under ENRS of five additional groundwater wells. MW20 and MW21 were installed within the road reserve adjacent private property where MW11 and MW18 were no longer accessible. MW22, MW25 and MW26 were installed down hydraulic gradient of the existing bore network;
- 2016, July Preliminary Risk Assessment report (ENRS) issued based on existing groundwater data with general findings the plume was relatively stable and modelled vapour intrusion rates did not exceed the threshold criteria for human health and ecological receptors. Recommendations were to continue monitoring and update the risk assessment with site specific soil vapour data;
- 2016, September -6^{th} Round GME for offsite MNA by ENRS;
- 2016, September GME to validate onsite UPSS decommission;
- 2016, October 4th Round of MPVE event for product recovery from offsite wells by ENRS;
- 2017, January Passive skimmer trial commenced by WSP.
- 2017, February Passive skimmer trial completed and soil vapour assessment conducted (WSP). The sub-slab
 vapour study found that vapour risks to commercial industrial users of the site and surrounds were acceptably low;
- 2017, February 7th Round GME for offsite MNA by ENRS;
- 2017, June Additional soil vapour monitoring event (WSP). The study corroborated the findings of the initial subslab vapour monitoring indicating acceptable risk to commercial/industrial users on the site and surrounds.
- 2017, August 1st MPVE event for product recovery from offsite wells by WSP;
- 2017, August 8th Round GME for offsite MNA by ENRS;
- 2017, November -2^{nd} MPVE event for product recovery from offsite wells by WSP;
- 2018, January 3rd MPVE event for product recovery from offsite wells by WSP;

- 2018, April 9th Round GME for offsite MNA by ENRS;
- 2018, April Commission semi-permanent PSH recovery system in selected monitoring wells adjoining Taronga Place.
- 2018, October 10th Round GME for offsite MNA by WSP;
- 2019, May 11th Round GME for offsite MNA by WSP
- 2019, Nov 12th Round GME for offsite MNA by WSP
- 2019, Dec Installation of additional groundwater monitoring wells to address data gaps listed within the VMP
- 2020, Feb Limited groundwater sampling of newly installed monitoring wells. Surface water sampling to address
 data gap within the VMP. Completion of a vapour assessment of two commercial buildings (Pittwater Joinery and
 Reece Plumbing) located directly west of the STA bus depot at 9 and 10 Taronga Place, Mona Vale, NSW,
 respectively, to address data gap within the VMP.

3.2 INITIAL SOIL AND GROUNDWATER INVESTIGATIONS

Investigation of the site commenced in 2012 with two phases of soil and groundwater assessment. These are documented in the following reports:

- WSP 2012a, Stage 2 Contaminated Site Investigation, Mona Vale Bus Depot, 58 Darley Street, Mona Vale NSW
- WSP 2012b, Soil and Groundwater Delineation Report, Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW

In summary, these investigations commenced with assessment of the Bus Depot with a total of 14 soil bores (SB01 to SB14) and 7 groundwater wells (MW01 to MW07). The groundwater well locations are presented on Figure 4, **Appendix A**. The sampling locations targeted potential contamination sources of hydrocarbons, including the former diesel tanks (1 x 35,000L UST and 1 x 35,000L AST), the refuelling area, fuel line, chassis wash, underground waste oil storage tank and a bus maintenance workshop. The investigation was also designed to establish a groundwater monitoring well network at the site to comply with the requirements of the *Protection of the Environment Operations (Underground Petroleum Storage Systems) (UPSS) Regulation (2008)*.

Groundwater flow was determined to be in a general westerly direction with a potential north-westerly or south-westerly flow component. WSP reported TRH and PAH contamination impacts in soils close to and above the water table (0.5m - 1.5 m bgl) in the vicinity of the site's refuelling area and fuel line. TRH and PAH impacts were also identified in the sand aquifer within the monitoring well (MW01) located south-west of the refuelling area. No soil or groundwater impact was identified in monitoring wells located close to the (former) diesel AST and UST located in the north west of the site, indicating these tanks were unlikely to be the source of the identified contamination.

A summary of soil results is reproduced in Table 1 **Appendix B**. At the time these were compared with criteria in the now rescinded NSW EPA, 1994 *Contaminated Sites Guidelines for Assessing Service Station Sites*. Table 1 in **Appendix B** compares the results to those provided in the NEPC, 2013 *National Environment Protection (Assessment of Site Contamination) Measure 1999*.

Groundwater results from these early investigations are summarised in Table 2a and 2b, **Appendix B**. At the time of the reports mentioned above the groundwater criteria were based on NSW EPA, 1994, which has since been superseded by criteria listed in NEPM 2013. Table 1 compares results (where possible) with criteria provided in NEPC 2013.

WSP concluded that hydrocarbon impact identified in soils were indicative of the presence of phase separated hydrocarbons (PSH) potentially sourced from a leaking fuel line and/or spills within and/or in close proximity to the refuelling area. This was confirmed by the presence of PSH in MW05 (0.26 m). WSP concluded that, based on the inferred direction of groundwater flow (generally west), that there was a potential for off-site migration of contamination.

In order to understand the risk of offsite impact WSP was engaged to conduct a limited assessment of soil and groundwater offsite to the west of the site. The findings were documented in:

 WSP 2013a, Offsite Soil and Groundwater Delineation Report, Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW

In summary, the assessment included soil sampling from five offsite boreholes, all of which were converted to groundwater monitoring wells (MW08, MW09, MW10, MW11 and MW12). These are shown on Figure 4, **Appendix A**. Borelogs are presented in **Appendix D**. Sampling locations were targeted to delineate the lateral and vertical extent of any offsite hydrocarbon contamination attributable to the STA Bus Depot.

Soil results from that assessment are available in Table 1, **Appendix B** and groundwater results are in Table 2b, **Appendix B**. In both cases the criteria adopted in the assessment have since been updated in NEPC, 2013.

PSH was reported within monitoring wells MW09 and MW10 with thicknesses of 0.30 m and 0.02 m, respectively. Based on these observations and the results of soil and groundwater testing in non PSH affected locations, WSP concluded that soil and groundwater impact attributable to the STA bus depot had migrated offsite. The lateral extent was estimated to at between 60 - 80 m north west from the sites refuelling area. Soil impacts in offsite bores was only detected at the water table depth, no shallow sources were found.

The results of the investigation surmised that the source of identified on and off-site contamination was likely to be the diesel spill sump pit and/or associated drainage located within the sites refuelling area. Note: current thinking (given the volume of PSH present on and offsite) is that the most likely source was a line or bowser where the product was released under some pressure rather than simply seepage from a sub surface drains – notwithstanding that these may have contributed to the hydrocarbons.

Based on the nature of the shallow groundwater system and identified offsite PSH, WSP considered that without implementation of appropriate mitigation measures, the migration of the groundwater plume could potentially impact on nearby sensitive environmental receptors. In addition, WSP recommended that excavations to the groundwater table in the vicinity of identified contamination be appropriately managed (e.g. EMP) to protect the health of workers from associated hydrocarbon exposure risks.

3.3 REMEDIATION ACTION PLANS

Based on the findings of on and offsite soil and groundwater investigations pertinent to the Site (refer Sections 3.1 - 3.3), WSP was engaged by STA to develop a Remediation Action Plan (RAP) for the site to enable the site to be suitable for continued commercial / industrial landuse and mitigate potential risks to human health and/or the environment posed by the identified hydrocarbon impact. The initial RAP was prepared in 2013 as:

- WSP 2013b, Remedial Action Plan, STA Mona Vale Bus Depot – 58 Darley St, Mona Vale NSW

The RAP was prepared based on the investigation findings and included a review of feasible remediation / management options, WSP recommended the following preferred remediation approach:

- Risk assessment to quantify human health and environmental risks posed by identified offsite hydrocarbon impact. The risk assessment was also required to determine the suitability of monitored natural attenuation (MNA) as a management strategy for offsite hydrocarbon impact
- Installation of active skimmers in existing (two additional monitoring wells are required to be drilled) onsite monitoring wells to remove onsite PSH within the refuelling area at the site and prevent any further offsite migration of contaminants;
- Excavation and removal of the diesel spill sump pit (source) within the refuelling area, including excavation and disposal of surrounding shallow (above the groundwater table) hydrocarbon impacted soils; and

 An on-going groundwater monitoring program to evaluate the effectiveness of remediation works and progress on MNA.

To complete the risk assessment for the site the following works were required to be undertaken:

- Installation of three additional groundwater wells one down-gradient of MW8, one down-gradient of MW11 and one down-gradient from MW10. This information was required to provide further understanding of the PSH downgradient of MW10 and associated dissolved phase plume. Analysis for organic carbon in soil and pertinent fate and transport calibration data is also required;
- Slug and bail down tests to determine the hydraulic properties of the underlying aquifer and true product thickness; and
- Resampling of groundwater in new and selected existing monitoring wells for contaminants of concern and MNA parameters.

By 2015 several of the items noted in the original RAP had been actioned including removal of the site's diesel spill sump pit (possible source), removal of the underground petroleum storage system (UPSS), installation of an active onsite groundwater skimmer system and implementation of an on-going groundwater monitoring program. It was concluded that an update to the remediation strategy was required to meet State Transit's obligations under a Voluntary Management Proposal (VMP) for the site. The updated RAP was updated was entitled:

 WSP, 2015 Remedial Action Plan (Revised 2015) State Transit Mona Vale Bus Depot – 58 Darley St, Mona Vale NSW

The updated RAP revised remediation strategy for the Site included:

- Expansion of the monitoring networks particularly offsite to the west and north west, but also including one location onsite in an up gradient (background) location. A total of three additional offsite groundwater wells and one onsite well was recommended;
- Risk assessment to quantify the human health and ecological risks associated with on- and off-site hydrocarbon contamination. The assessment would include contaminant fate and transport modelling, which would provide for a better appreciation of the potential migration of the groundwater plume, and assessment of human health risks by vapour intrusion modelling and assessment of risk to workers involved in future excavation works on the site and surrounds;
- Continued operation of the onsite free phase recovery system;
- Implementation of a pilot trial for the targeted in-situ remediation of PSH in offsite monitoring wells MW09 and MW10 using mechanical methods such as multi-phase extraction.

3.4 REMEDIATION AND INFRASTRUCTURE WORKS

The following table provides a summary of capital works and remediation strategies (excluding groundwater monitoring described in Section 3.5) implemented at the Site to date. The works were primarily based on the findings of the original RAP (WSP, 2013b). These works have been completed by others and as such, WSP has relied on information provided in the VMP and by STA's Environmental Manager David Gosling regarding the completion of these works.

Table 3.1 Remediation Works Summary

WORKS	STATUS	WORKS DETAIL	CONTRACTOR
Source abandonment (diesel spill sump pit), soil excavation and offsite disposal	Completed October, 2013	The 2,000 litre spill sump was pumped out of residual product and then backfilled with 25 mPa concrete.	Australian Environmental Services (AES)
		 6.74 tonnes of heaviest contaminated soils, in a 2m x 3m footprint, were excavated adjacent the backfilled abandoned spill sump, between sump and the western boundary of the Site. The excavation was backfilled with suitable certified soils and the concrete slab in the fuel area driveway was reinstated 	Worth Recycling (soil disposal)
Installation of two additional monitoring wells for enhanced free phase recovery within groundwater impacted zone	Completed October 2013	Additional wells (MW13 and MW14) were installed on the western boundary of the Site, adjacent to MW05. Refer Figure 4, Appendix A for well locations	AES subcontracted to ENRS
Operation of an onsite active free phase recovery system. The skimmer system utilised monitoring wells MW05, MW13 and MW14 between 2013 and 2017.	Commenced in October 2013 – continued till March 2018	Field observations indicate that approximately 1,600 – 1,700 litres of product have been recovered in the period since commissioning.	AES
In 2018 STA extended the scope of skimming works to also include offsite wells MW09, MW19 and MW21	Program extended to offsite in April 2018	Preliminary result pending.	
Decommissioning by excavation and offsite removal of 1x 35 kL AST and 1x 35 kL UST (both diesel) and the pump house area.	Completed April 2014 by Petrolink	UST and AST soil validation samples were reported below the validation criteria. Pump House area was only excavated to a depth of 0.5 m with validation samples showing elevated levels of TRH and PAHs remaining.	Petrolink

WORKS	STATUS	WORKS DETAIL	CONTRACTOR
Installation of additional wells to existing network of 5 wells for the	November 2013	MW15, MW16 and MW17 – installed for to assess extent of PSH.	ENRS
purpose of delineation and monitoring of natural attenuation. Various mobilisation.	June 2014	MW08-B and MW12-B – installed after the original bores became blocked and were not accessible for sampling	
	September 2015	MW18 and MW19 - further assess lateral extent of plume and provide additional points for PSH extraction from large diameter wells.	
	June 2016	MW20 and MW21 - within road reserve adjacent private property as MW11 and MW18 no longer accessible.	
		MW22, MW25 and MW26 - down gradient of existing bore network to further assess offsite migration.	
		Refer Figure 4, Appendix A for well locations	
Passive skimmer trial	Commenced January 2017 completed February 2017	Three fortnightly rounds of skimmer maintenance targeting offsite wells. Approximately 18 L recovered. Further details in Section 3.7.1.	WSP
Multi-Phase Vacuum Extraction (MPVE) trial works	Phase 1 Commenced April 2015, completed October 2016	Three rounds of MPVE targeting offsite wells. Approximately 70 L recovered. Further details in Section 3.7.2.	AES subcontracted to ENRS
	Phase 2 commenced August 2017 completed January 2018	Three rounds of MPVE targeting offsite wells. Approximately 360 L recovered. Further details in Section 3.7.2.	EPS subcontracted to WSP

3.5 GROUNDWATER MONITORING

Based on the outcomes of the original RAP (WSP, 2013), Environment and Natural Resource Solutions (ENRS) was commissioned by STA to undertake quarterly groundwater monitoring of conditions particularly down-gradient of the site, in the vicinity of the PSH and associated dissolved phase plume. In total 11 monitoring events have been undertaken to date. The monitoring was undertaken by ENRS from January 2014 until April 2018, with WSP continuing the program for October 2018 and May 2019.

3.5.1 SUMMARY OF FINDINGS BY ENRS 2014-2018

Though the primary objective of the monitoring has been to assess PSH presence, the concentrations of hydrocarbons in the dissolved phase and natural attenuation parameters, various associated works were conducted during the program including:

- Installation of 12 additional groundwater wells over the period of monitoring as described in Table 3.1.
- Analysis for organic carbon in soil to inform future fate and transport calibration as recommended in the RAP (WSP, 2013. The results were presented in ENRS, October 2013 (not provided to WSP);
- Aquifer slug tests to determine the hydraulic properties of the underlying aquifer. Falling head tests were carried out and analysed by ENRS in November 2013. In summary, hydraulic conductivity ranged from 1.5 to 4.7 m/day with an average of 2.9 m/day (ENRS, 2016a); and
- Comparison of laboratory results against standard chromatograph charts to confirm the primary form of hydrocarbon contamination at the site is associated with diesel product (ENRS, 2014).

With respect to the groundwater monitoring program itself, ENRS has, in various reports, concluded that:

- Groundwater flow direction is in a general north-westerly direction with a gradient of approximately 0.002.
- PSH had been measured in monitoring wells MW09, MW10, MW18, MW19, MW20, MW21 ranging from 0.05 m thick to 0.7 m thick (Average of 0.37 m thick), with a film being also recorded in MW25 by April 2018. Further analysis is provided in Section 4.1.
- In general, the results of the last GME conducted by ENRS (ENRS, 2018b) identified site conditions similar to
 previous monitoring events with a moderate increase in PSH. In ENRS's opinion the data indicated that whilst the
 plume had been relatively stable since 2013, it had reached MW10 on the west side of Taronga Place;
- The primary indicators for natural attenuation continue to suggest the potential for MNA is limited. ENRS concluded that the extent of PSH remains too great for MNA alone to provide a successful remediation outcome. PSH recovery should continue to be supported by active recovery methods to manage the risk of further plume migration and liability from cumulative offsite impacts;

At ENRSs most recent GME (ENRS, 2018b) they recommended that:

- Monitoring be reduced to annual sampling supplemented by quarterly field gauging (or in accordance with the VMP) and comprise low flow sampling with analysis at NATA accredited laboratories (though this is not supported by the Auditor (Enviroview, 2018b and Enviroview 2019);
- Monitoring be supported by quarterly or monthly field inspections to record VOC levels in well heads using a PID meter, measure the thickness of any PSH, and the depth to water within accessible wells;
- A regular program of product recovery to removed PSH at the site continue;
- Groundwater monitoring continues until concentrations of hydrocarbons fall below the relevant water quality assessment criteria;
- ENRS to proceed with previous commission to undertake a review of plume migration potential and volume utilising the latest GME data and previous aquifer test results, to be issued in a standalone report;
- Consider an investigation program to further assess the potential for migration of contaminants through preferential pathways, namely underground services intersecting Taronga Place and a former Sydney Water easement trending northwest from the Site;
- Continue site management and monitoring in accordance with the EPA approved VMP and RAP.

3.5.2 SUMMARY OF WSP'S FINDINGS 2018-2019

Based on the findings of WSP 2019a and WSP 2019b WSP have made the following conclusions and recommendations:

PSH is present in five offsite wells north west of the bus refuelling bay (MW10, MW18, MW19, MW20, MW21 and MW25), ranging in thickness from 145 mm to 468 mm. It is likely that PSH is also present in the inaccessible skimmer wells (MW05, MW09, MW13, MW14). Overall the PSH thickness in recent events remains within historical ranges. The exception is the result from MW25 that appears to be on an increasing trend. These findings

indicate that the ongoing skimming operation is currently having minimal impact on the PSH and it continues to be slowly spreading to the northwest. Recovery of product in the IBC on STAs land appeared minimal.

- The dissolved phase hydrocarbon plume surrounding the PSH impacted area appears relatively stable and, while not delineated, the concentrations appear to attenuate significantly with distance from the PSH affected area.
- There is clear evidence of biodegradation of hydrocarbons occurring within dissolved hydrocarbon plume. The
 range of redox conditions suggest a dynamic system but in places the redox conditions appear quite reducing and
 may indicate that the rate of degradation is limited by availability of electron acceptors.
- An arsenic plume is present beneath the site and surrounds. The source of the plume is uncertain but the distribution and concentrations appears relatively stable.
- The site is considered suitable for its continued use as an operational bus depot. Surrounding sites are also suitable for ongoing commercial/industrial use. Based on the current site orientation and activities, the risk posed by the identified contamination to human or ecological receptors is considered low. In the event of excavation or earthworks which expose impacted soils or groundwater, there is an increased risk to human health via ingestion and dermal contact with contaminated material which would require management through occupational exposure controls in accordance with health and safety legislation.

WSP recommended that:

- Maintenance of the on- and off-site skimmer system should be carried out to optimise its function.
- MW20 should be added to the skimming system.
- Groundwater monitoring should continue along with a program to close data gaps including installation of additional delineation bores (see Section 5.4).

3.6 HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT

3.6.1 HERA DEVELOPMENT

ENRS was engaged to prepare a health and ecological risk assessment. The report was entitled:

- ENRS, 2016 Human Health & Ecological Risk Assessment (HHERA) STA Bus Depot Monavale

The objectives of the risk assessment were to

- undertake a risk assessment methodology consistent with current industry guidelines for appraising and recording public health risks at contaminated sites;
- establish the baseline risks and determine appropriate site management actions for ongoing remediation and monitoring;
- determine tolerable levels of contaminants in soil and groundwater that are protective of public health and ecosystems; and
- enable the comparison of potential health benefits and impacts (where relevant) of various remedial technologies.

The risk assessment included tier 1 assessment of groundwater results against available generic criteria, supplemented by some site specific vapour intrusion modelling to assess risk via inhalation pathways. The risk assessment concluded that based on groundwater monitoring results available to the date of the report, and modelled vapour intrusion results, the risk to human health and ecological receptors was acceptably low.

The report provided recommendations regarding the need for ongoing monitoring including:

- Maintaining quarterly gauging events for PSH thickness;

- Reducing frequency of analytical monitoring to 6 monthly events, but maintaining the analytical suite adopted for these events;
- Consideration of obtaining sub slab vapour monitoring data over the PSH plume.
- Continue assessing the MNA conditions of the plume and surrounds

With respect to the remedial efforts the report recommended:

- Recommencing passive skimming and consideration of extending the onsite automated skimming network to include offsite wells.
- Six monthly review of PSH recovery and MNA conditions in conjunction with groundwater monitoring events.

3.6.2 VAPOUR ASSESSMENTS

WSP was commissioned by STA to undertake a soil vapour assessment on the Site to quantify the vapour intrusion risk for commercial workers on the site and, by inference, on the neighbouring properties occupied by Pittwater Joinery (Lot 2 DP701913) and Reece Plumbing (Lot 34 DP708050). Two rounds of vapour assessment have been undertaken to date.

The initial vapour risk assessment was prepared in February 2017 and entitled:

- WSP, 2017a Soil Vapour Assessment- Mona Vale Bus Depot 58 Darley Street, Mona Vale NSW

The scope of works comprised:

- Review of previous environmental investigations to assess the extent of the hydrocarbon plume and inform selection of appropriate locations to evaluate vapour intrusion risk;
- Installation of sub-slab vapour pins and measurement of sub-slab soil vapour concentrations of hydrocarbons, BTEXN and other volatile organic compounds (VOCs) along the site boundary; and
- Evaluation of vapour intrusion risk on site and likely risk on adjoining Pittwater Joinery and Reece Plumbing sites.

Sample locations were placed in close proximity to the western boundary and within the area where PSH had previously been identified in monitoring wells (MW05, MW13 and MW14). Four sub slab vapour pins were installed and then sampled and analysed in accordance with the US EPA TO-15 method.

The results indicate that sub-slab vapour concentrations were below health screening levels, therefore the risk to commercial workers occupying buildings onsite through vapour intrusion was low and acceptable. No soil vapour measurements were taken on adjoining properties due to access restrictions, however it is likely that the sub slab conditions captured in this investigation are similar to the sub-slab conditions in the adjoining properties. Therefore, the risk to commercial site workers in adjacent properties, currently occupied by Pittwater Joinery and Reece Plumbing was also considered likely to be acceptably low.

A second round of soil vapour sampling was commissioned by STA in June 2017:

- WSP, 2017d Soil Vapour Assessment - STA Bus Depot 58 Darley Street, Mona Vale NSW

The objective was to provide further soil vapour concentration data that could be used to assess whether there was any potential health risk to on-site and off-site commercial workers in buildings.

The scope replicated the initial testing and included retesting of sub-slab hydrocarbon vapour concentrations at the four existing test points on the western side of the bus depot, using the summa canister sampling technique (TO-15 technique)

Sub-slab vapour concentrations were low for all VOCs. No compound exceeded its screening criterion and all concentrations were well below the criterion. This result is consistent with the groundwater sampling data which indicate clearly that the predominant hydrocarbon impact is of diesel origin.

Benzene, toluene, ethylbenzene and xylene (BTEX), and trimethylbenzene were present at very low concentrations at all four sub-slab sampling locations on the bus depot. These results are not significant from a vapour intrusion risk perspective.

The two rounds of sub-slab vapour sampling showed substantial agreement. All results from both rounds fell into the very low to trace levels category. The second round of sampling confirmed the results of the first round, that being that concentrations of volatile hydrocarbons were at trace to very low levels and thus there was no indication from the vapour data of an unacceptable vapour intrusion risk for the buildings over the plume.

The second round showed essentially the same pattern of vapour impacts, and temporal and seasonal differences were small and considered to be insignificant.

A summary of vapour results from both rounds is provided as Table 3 in Appendix B.

3.7 GROUNDWATER REMEDIATION TRIAL WORKS

3.7.1 PASSIVE SKIMMER TRIAL

WSP was commissioned by STA to undertake a passive skimmer installation and maintenance trial as part of STA's commitments to an EPA approved voluntary management plan (VMP) and to assess the feasibility of a passive skimmer program as a remediation strategy for offsite groundwater contamination. The trial works were carried out in January to February 2017 and were documented in:

- WSP, 2017b Passive Skimmer Trial- Mona Vale Bus Depot, 58 Darley Street, Mona Vale NSW

Three STA provided skimmers were installed into selected wells within the PSH plume. These included MW19, MW20 and MW21. The locations of these wells are shown of Figure 5, **Appendix A**. The program included three fortnightly maintenance events to inspect the integrity of the skimmers, recover and dispose of product and record volumes of product recovered.

The PSH recovery at MW19 and MW21 was generally high and appeared to correspond with a slight reduction in PSH thickness, suggesting that the skimmers in these wells were effectively removing some product. Recovery was minimal at MW20, however the plume thickness was less significant at this location. The trial found that removal of 3 to 4 L of product from 100 mm wells was achievable when the skimmer installation was optimised. In total 18 L was recovered from three wells over three events during the 6 week trial.

The results of this skimmer trial suggested that the PSH recovery was high in the majority of the wells (2 of the 3 wells included in the trial), and particularly where the plume thickness is greater. It was concluded that passive skimmers may be a viable, low-impact remediation strategy, however, due to the area and thickness of the plume, the remediation timeframe is likely to be very long. WSP recommended that a passive skimmer program should only be considered as a remediation strategy if employed in conjunction with other more active remedial options.

Considering the significant area and thickness of the offsite PSH plume, WSP suggested that multi-phase vacuum extraction (MPVE) on selected wells in the centre of the PSH plume may be a more effective remediation strategy.

If MPVE was not a feasible option, WSP recommended the extension of the active skimming system, operating along the site boundary at MW05, MW13 and MW14, to accessible offsite PSH impacted wells

3.7.2 MPVE TRIAL

ENRS was engaged by STA to conduct three rounds of multi-phase vacuum extraction (MPVE) on four PSH affected offsite wells. The program included events in April 2015, November 2015, December 2015 and October 2016. These findings of these events are summarised in:

 ENRS, 2016 Summary of Multi-Phase Extraction (MPE) Results – 12th October 2016 STA Bus Depot, 58 Darley Street Mona Vale, NSW, 2103 AES was contracted to carry out the works using a mobile MPVE unit. The program was somewhat effective with recoveries of between 25 L and 13 L of product recovered each round. It was found that larger diameter wells resulted in a greater recovery (as expected).

ENRS recommended continuation of the program, where practicable, to expedite the remediation program.

In 2017, following the passive skimmer trial works (See section 3.7.1), WSP was engaged to supervise three additional rounds of multi-phase vacuum extraction (MPVE) on PSH affected offsite wells. The works were contracted to Enviropacific and occurred in August 2017, November 2017 and January 2018. Summary reports were provided following each event and included:

- WSP, 2017e Multiphase Vapour Extraction (MPVE) State Transit Authority Bus Depot, Mona Vale August 2017
- WSP, 2017f Multiphase Vapour Extraction (MPVE) State Transit Authority Bus depot, Mona Vale November 2017 (Second event)
- WSP, 2018 Multiphase Vapour Extraction (MPVE) State Transit Authority Bus Depot, Mona Vale January 2018 (Third Event)

The primary objectives of the MPVE trial program was to quantify the effectiveness of MPVE in removing hydrocarbon mass from the defined plume, and to continue removal of PSH. Hydrocarbon extraction rates – in vapour, liquid product and dissolve product forms were all to be quantified. These rates would be used as measures of the suitability and cost effectiveness of MPVE as a method of meeting the objective contained in the Voluntary Remediation Proposal (VMP) number 20164409.

The first of the MPVE events (August 2017) showed very effective recovery of PSH in liquid form with 197 L of PSH extracted over 6 hours of operation. The subsequent two events (November 2017 and January 2018) were less effective in terms of PSH extraction volume, but still relatively productive, with 90 L and 70 L extracted respectively. All three events showed essentially the same profile conditions in terms of average air flow rates from the profile, water volume extracted and vacuum at well heads. Given the similar conditions during each event, and the continued presence of considerable thicknesses of PSH, it was not obvious why the extracted volume of PSH has fallen over the three events.

The low level of volatiles recovered was noted to be further evidence of the low vapour content above the PSH, typical of diesel impacted groundwater.

The thicknesses of PSH remained substantial at completion of the trial and it was assumed that the volume of PSH (diesel) within the plume (impacted groundwater) remains considerable.

3.8 ENVIRONMENTAL MANAGEMENT PLAN

Based on the predominantly non-volatile nature of the identified PSH, vapours derived from concentrations in groundwater are unlikely to pose a significant risk to current site users. The soil vapour assessment (SVA) conducted by WSP in 2017 (see Section 3.6.2) found that sub slab vapour conditions within the PSH footprint in the refuelling area were acceptable for a commercial / industrial land use. Based on the current extent of identified petroleum hydrocarbon plumes, no unacceptable risks have been identified for onsite and offsite receptors considering the current commercial / industrial land use of the site and nearby properties.

However, hydrocarbon contamination in shallow soils and groundwater beneath the site could pose a potential risk to maintenance or construction workers undertaking excavation works within the plume footprint, and to manage this risk an environmental management plan (EMP) was developed for the site and immediate surrounds that are affected by PSH. This EMP is documented in:

- WSP 2017c Environmental Management Plan - Mona Vale Bus Depot, 58 Darley Street, Mona Vale NSW

The EMP provides:

- The regulatory framework in which this EMP has been prepared, the roles and responsibilities relating to environmental management on the site and surrounds and reporting, training and emergency response procedures relating to the residual impact;
- Analysis of the nature and extent of contamination at the site and surrounds, the likely risks this residual contamination poses to future site users, and key implementation strategies to control those risks; and
- A recommended program for auditing of compliance, corrective actions and routine EMP review so that the EMP remains relevant and up to date.

3.9 FURTHER ASSESSMENTS UNDER THE CURRENT VMP

The most recent revision of the VMP was approved by the EPA on 16 January 2020.

Within Part 3 of the VMP, there were four data gap areas (items T10 - T13) listed which included:

- Item T10: Preferential Pathways Investigations;
- Item T11: Surface Water Sampling;
- Item T12: Additional Monitoring wells; and
- Item T13: Indoor Air Vapour Risk.

WSP has completed additional site works between December 2019 to February 2020 in attempt to address these data gaps to the extent practicable. Separate factual letters have been prepared for each of the fieldworks associated with the above data gaps:

- WSP, 2020a Groundwater Monitoring Event Oct 2019 and Feb 2020, STA Mona Vale Bus Depot 58 Darley Street, Mona Vale NSW dated March 2020.
- WSP, 2020b Factual Record of Well Installation Works, Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW dated March 2020
- WSP, 2020c Offsite Vapour Intrusion Assessment, STA Mona Vale dated March 2020
- WSP, 2020d, Data Gap Assessment, STA Mona Vale Bus Depot, 58 Darley Street, Mona Vale NSW dated April 2020

In December 2019, WSP installed two shallow wells (MW36 and MW37) installed into the bedding sands surrounding adjacent the stormwater drainage culvert. Both wells were gauged on 7 February 2020 and determined to be dry. This provided a line of evidence that despite the nearby presence of phase separated hydrocarbons (PSH) to the south of the stormwater easement, bedding sands surrounding the stormwater culvert are not in connection with groundwater and are therefore not a preferential pathway for PSH to migrate laterally.

In February 2020, WSP collected three surface water samples; one from upstream, at the site's downgradient boundary, and downstream of the site along the stormwater channel. The results indicated that no detectable hydrocarbons were present in the stormwater upstream, at the site boundary or downstream of the site. This provides a further line of evidence that despite the proximity of the PSH to the stormwater easement, it is unlikely that the contamination is leaking into the system putting the ecology of the creek or downstream receptors at risk.

In December 2019, additional monitoring wells (MW28 – MW33 and MW35) were installed to further characterise the extent of the PSH plume. WSP are of the opinion that the well network now effectively defines the southern, eastern and northern extents of the PSH with a reasonable degree of confidence. The extent of the dissolved phase plume remains generally uncertain as low levels of hydrocarbons are detected in most wells that do not have PSH present. WSP is of the opinion that the additional well network has assisted in delineation of the PSH and dissolved phase plume, but that there remains some uncertainty in the extent of the PSH and dissolved phase plume, particularly west of the site. However, in our opinion, while a data gap remains, we do not consider the lack of information affects the remediation approach, nor

do we consider that the plume is likely to represent a significant health or ecological risk despite the lack of full delineation.

The 2020 vapour assessment was completed to assess whether contaminants in groundwater or PSH originating from the bus depot, and migrating beneath adjacent properties, were leading to the intrusion of contaminant vapours into the buildings on those adjacent properties; and if so, whether the vapours present a possible health risk to occupants of those buildings. Results indicated that that the diesel plume is not causing a vapour intrusion risk to the occupants of the two commercial buildings included in the assessment. The result corroborates the findings of the two rounds of sub slab vapour assessment conducted on the STA site (discussed in Section 3.6.2) which showed that all diesel constituents from both rounds were at very low to trace levels and that there was no indication from the soil vapour data of an unacceptable vapour intrusion risk for the buildings over the plume.

A more comprehensive summary of the results of the above assessments is provided in Section 4.3.

4 SITE CHARACTERISATION

4.1 EXTENT OF CONTAMINATION

4.1.1 SOIL AND SOIL VAPOUR CONTAMINATION

Concentrations of soil contaminants were assessed in WSP's investigations carried out in 2012 and 2013. Since that time the guidelines have changed with the introduction of the NEPC, 2013 *National Environment Protection (Assessment of Site Contamination) Measure 1999.* The data collected at that the time of the original site investigation work has been reproduced and compared (where possible) with the updated criteria in Table 1 of **Appendix B**.

In summary PAHs and heavy metal concentrations were all below health based investigation levels (HILs) for commercial/industrial sites. Similarly, the concentrations of BTEXN were all less than heath screening levels (HSLs) for vapour intrusion under commercial/industrial landuse scenarios. In general, BTEX was non-detect but on occasion naphthalene was present, consistent with the presence of phase separated diesel.

Total recoverable hydrocarbons were generally below the HSLs, except for samples in SB02, SB04 and SB12 which were inferred to marginally exceed the F1 criteria. These locations were all in close proximity to the now abandoned former waste oil UST. These, and other locations, particularly around refuelling bay and along the former fuel line on the western boundary, also exhibited elevated hydrocarbons across the C_{10} to C_{28} range.

It is noted that across all locations tested the most elevated TRHs were detected at a depth of around 1.8 to 2.0 m consistent with the water table level. On only a few occasions (SB01, SB02 and MW05 – in proximity to the refuelling bay) were elevated hydrocarbons found at depths of less than or equal to 1 m depth. This finding indicates that the hydrocarbons in soils are predominantly associated with the PSH plume beneath the site and not with widespread surface spillage.

In order to understand the actual risk posed to site (and offsite) personnel by the presence of residual hydrocarbons in the soil and groundwater two rounds of sub-slab vapour analysis have been conducted along the western boundary. The findings are outlined in Section 3.6.2 and the data has been reproduced in Table 3, **Appendix B**. In summary, the assessments showed that all results for BTEXN and F1 were less than HSLs for commercial industrial use. This result is consistent with diesel contamination.

4.1.2 PHASE SEPARATED HYDROCARBON PRESENCE AND TRENDS.

Phase separated hydrocarbons (PSH) have been detected beneath the site and surrounds since the investigation phases were undertaken in 2012 and 2013. The PSH exists as a light non-aqueous phase liquid (LNAPL) above the ground water. The groundwater monitoring program has assisted in understanding the extent and in assessing the stability of PSH.

Data on the PSH thickness is presented in Table 2a, **Appendix B.** The inferred areal extent of PSH is depicted on Figure 6 in **Appendix A**. Wells containing PSH include:

- Onsite wells MW05, MW13 and MW14 located downgradient of the refuelling bay, on the western site boundary;
- Offsite wells MW09, MW10, MW18, MW19, MW20, MW21, MW25, MW31, MW32 and MW33 located west (downgradient) of the site.
- The most downgradient point in which PSH has been detected in MW33 which was installed in December 2019 and gauged in February 2020 with approximately 0.123 m.
- The total inferred area of the PSH impact is approximately $4,500 \text{ m}^2$.

The temporal gauging data is presented in Figure 4.1 and generally shows that the PSH fluctuates between 0.1 m and 0.7 m thickness. Within this range there appears to be a relatively high degree of variability. In general, the PSH thicknesses

recorded follow parallel lines indicating the degree of partitioning of PSH may be affected by environmental conditions such as rainfall. In wetter seasons the PSH appears to generally be thicker compared to levels recorded after dryer periods.

A rudimentary estimate of the PSH volume, based on the inferred area multiplied by the average thickness over the monitoring period of 0.38 m, and assuming 15% effective porosity approximates to 256,500 L of product. WSP has assumed an effective porosity of 15% as the PSH is likely to be present in the large pore spaces as the PSHs spread is not under pressure and unlikely to flow into the smaller pore spaces. The PSH affected zone is likely to be a mix of PSH, water and air filling the total porosity (likely to be in to be order of 30% of the soil bulk volume).

Given the extent of PSH, the hydrocarbons clearly have migrated with the groundwater, however, the PSH does not appear at this time to have passed beyond MW22 on the north western side of Taronga Place. The PSH has been detected in MW33, indicating the lateral extent of the plume to the west is not yet known, though the absence of PSH in MW16 and MW22 indicate the extent to the north in defined.

It is assumed that the decommissioning of primary sources, including replacement of the fuel line on the boundary and abandonment of the spill sump (with surrounding soil removal), have successfully removed the primary source of fuel discharges. STA have also committed to implementing a much more aggressive method of PSH removal and this should reduce the head of PSH that is the primary driver for PSH migration. Thus, it is expected that the potential for PSH plume expansion will be reduced once the system has been installed.

4.1.3 PRESENCE OF DISSOLVED CONTAMINANTS

The laboratory results for the monitoring events conducted to date are provided in Table 2b, Appendix B.

These results have been compared with NEPC, 2013 criteria including HSLs for vapour intrusion risk and GILs for the protection of marine ecosystems.

A dissolved phase hydrocarbon plume is present in association with the PSH plume. In general, the hydrocarbon plume exhibits very low BTEX and low naphthalene. The F1 component of the hydrocarbons generally comprises less than 2% of the total TRH. The dominant fractions are the F2 and F3 fractions consistent with diesel impact.

No results exceeded the HSL criteria indicating the vapour intrusion risk is acceptably low. This result is consistent with the findings of the risk assessment (ENRS, 2016) and the sub slab vapour assessments (WSP, 2017a and WSP 2017d).

GILs for protection of marine ecosystems were exceeded on a number of occasions. While no BTEX results exceeded these criteria, the naphthalene concentrations in MW09, MW10, MW19, MW20 and MW21 all exceeded the criteria. However, these locations are all PSH affected and so the results may be subject to cross contamination from the product that the sampling equipment must pass through to obtain a water sample. Typically, groundwater samples are not collected from PSH impacted wells.

Results from downgradient locations with no measurable PSH, including MW22, and MW26, whilst on occasions having detectable naphthalene have not exceeded the criteria to date. This indicates that while the PSH may be extensive, and contains naphthalene at levels that would exceed the ecological criteria, the dissolved plume surrounding the PSH is likely to be relatively short with concentrations unlikely to exceed the site criteria.

These wells do also exhibit dissolved TRH for which there are no GILs. TRH trends have been presented in Figure 4.2. While concentrations of TRH in MW22 and MW26 appear relatively stable the concentrations in MW25 were observed between 2017 to 2018 to rise steeply and this well has since begun to exhibit PSH, also on a rising thickness trend as discussed in Section 4.1.2.

Figure 4.2 Dissolved TRH concentration over time, and rainfall (3 month moving average)

With respect to inorganic contaminants (see Tables 2b and 2c, **Appendix B**), nitrate is frequently detectable in the groundwater and in MW15 and MW17. The source is unlikely to relate to the site use as a bus depot. Within the dissolved plume, the lower redox conditions mean that the dominant nitrogen species is ammonium, which exceeds site criteria in MW07, MW12, MW16, MW22, MW23, MW24 and MW26.

Copper, nickel and zinc have been observed to fluctuate in wells MW15, MW16 and MW17 exceeding marine GILs on occasions. These compounds are also unlikely to relate to site activities and may be either of natural origin or result from dissolution from overlying fill into percolating water.

Arsenic has been observed to be unusually elevated across a number of wells, at levels exceeding GILs for marine ecosystems and also GILs for drinking water in MW02, MW09, MW10, MW11, MW16, MW18, MW19, MW20, MW21, MW22 and MW26. The historically most concentrated results were from the offsite (and now abandoned) MW11, approximately one order of magnitude higher than the criteria. The concentrations of arsenic appear relatively stable over time. The source of the arsenic is unknown, possibly dating from pre 1960s when the site and surrounds were vacant or agricultural land, possibly comprising turf farms. It is considered unlikely to directly relate to the bus depot operations.

Nevertheless, there does appear to be a spatial relationship between the arsenic and the hydrocarbon plume. It is possible that the redox conditions generated by the plume are resulting in greater dissolution of arsenic from the solid phase.

4.1.4 EVIDENCE OF NATURAL ATTENUATION

A common natural attenuation process involves petroleum hydrocarbons acting as electron donors in oxidation-reduction reactions resulting in biodegradation of hydrocarbon molecules. Monitoring the concentrations of certain electron acceptors, or by-products of respiration in the groundwater can indicate whether natural attenuation processes are taking place on a hydrocarbon plume (DEP, 2004).

Important chemical parameters which may indicate natural attenuation processes are occurring include:

- Decline in field redox potential as oxygen sources (electron acceptors) are depleted. This results in:
 - Decrease in dissolved oxygen the most readily available electron acceptor in the aquifer;
 - Nitrate reduction: decrease in nitrate concentrations and corresponding increase in ammonia (a reduced form of nitrogen);
 - Iron reduction: reduction of oxidised (ferric) iron off the solid phase minerals resulting in increase in dissolved (ferrous) iron.
 - Sulfate reduction: decrease in sulphate and corresponding increase in H₂S odours; and
 - Methanogenesis: If redox declines further, then consumption (decrease) in bicarbonate and increase in dissolved methane and a by-product.
- With the exception of methanogenesis, alkalinity (as bicarbonate) is expected to increase within the plume resulting from an increase in production of CO₂ (a by-product of microbial respiration);

Some of these indicators have been included in the monitoring program to date, including field measurements of redox and dissolved oxygen, and laboratory tests for nitrate, ferrous iron, sulfate and methane. The results are available in Tables 2a and 2c, **Appendix B**.

The following conclusions were presented in WSP 2019b with respect to the geochemistry at the site;

Recorded redox results were lower within and downgradient of the hydrocarbon plume (MW12, MW16, MW22) compared with background locations (MW03, MW17, and MW23 and MW24). This indicates microbial degradation processes are acting on the plume;

- Nitrogen species are relatively ubiquitous on the site and surrounds. Within and downgradient of the dissolved plume the dominant species is ammonium reflecting reducing conditions in the dissolved plume. Nitrate is detected well above ammonium concentrations on the plume periphery and downgradient (MW15 and MW17). This finding suggests active microbial degradation is occurring in the dissolved plume utilizing the nitrate as an electron acceptor.
- Sulfate was generally present across the site and surrounds at varying concentrations. The lowest sulfate results were within the dissolved plume, directly downgradient of the PSH (MW16 and MW22). In the dissolved phase plume periphery (MW01, MW02, MW07 and MW26 the sulfate remained relatively low compared with background wells (MW03, MW17, and MW23 and MW24). These results are further evidence for microbial degradation occurring, but given that the sulfate is low downgradient of the plume it may indicate that electron acceptors may be limited.
- Ferrous iron concentrations were reported within all sampled wells in proximity to the site with the highest concentrations within the dissolved phase plume and immediately downgradient of the PSH (MW07, MW16, MW22 and MW26). The only location where this analyte was non detect was MW17 located a block to the west, where no hydrocarbons are present. This location is considered a background location (albeit downgradient of the site). Ferrous iron is the by-product of iron reduction and is an indication of reducing conditions;
- Alkalinity (bicarbonate) concentrations continue to be most prevalent in groundwater from wells with dissolved hydrocarbons making up between 80% and 100% of the anions in that groundwater compared with approximately 75% of the anions in MW17, MW23 and MW24, where hydrocarbons were not detected. The results are a further line of evidence that microbial respiration is occurring.
- Dissolved methane was present in all wells within the dissolved plume but most elevated in MW01 and MW07 (up gradient of the PSH) and MW16, MW22 and MW26 (downgradient of the PSH). Methane was absent or very low in all background locations MW03, MW17, MW23 and MW24).

Overall, there is strong correlations between natural attenuation indicators and the plume footprint. The range of natural attenuation parameter concentrations indicates that the system is in a dynamic state. The natural groundwater provides various sources of electron acceptors as nitrate and sulfate, however, these are clearly insufficient to maintain optimised conditions for aerobic degradation as they are generally non-detect or at very low concentrations within and downgradient of the plume. It is likely that the rate of degradation is limited by the availability of electron acceptors.

4.2 CONCEPTUAL SITE MODEL

A Conceptual Site Model was prepared as an appendix to the Environmental Management Plan (WSP 2017c). This chapter reiterates and updates the findings of that model.

A key component of understanding the risks posed by potentially contaminated sites is the development of a contaminant Conceptual Site Model (CSM). For a risk to exist there must be a source of contamination, a potential receptor (e.g. a human or ecological community) and a plausible pathway that links the two. This is known as a source-pathway-receptor analysis. If any one of these components is absent there is no unacceptable risk.

Figure 10 in **Appendix A** has been included to assist in visualising the various identified potential relationships with discussion on the plausibility and qualitative risk of each of these provided in Section 4.2.4 and Table 4.1.

4.2.1 SOURCES

Based on review of available information, relevant identified sources of contamination include:

- Former diesel refuelling infrastructure, sump pit, and waste oil tank understood to have all been decommissioned;
- Likely localised residual soil impacts beyond the extent of remedial works;
- Phase separated hydrocarbons on the site's western boundary and extending to the north west.

- Associated dissolved phase hydrocarbons surrounding the PSH impacted area.
- Inorganic groundwater contamination including arsenic, copper, nickel and zinc unrelated to fuel storage on the site.

4.2.2 POTENTIAL RECEPTORS

Potential receptors on the site and surrounds include:

- STA site personnel;
- Construction workers and future site maintenance personnel working onsite or offsite within the contamination plume footprint;
- Future site occupants (under a commercial/industrial land use scenario);
- Down gradient residential occupants (approximately 250 m west of the site);
- Nearby ecological receptors including but not limited to onsite and offsite vegetation, trees and landscaped areas;
- An open stormwater channel located approximately 300 m northwest of the site which drains into Cahill Creek 950 m north west of the site, and ultimately Winnererremy Bay approximately 1 km northwest of the site. The drain itself is unlikely to represent a significant ecological receptor, the most relevant downgrading ecological receiving environment would he the estuarine environment of Cahill Creek and Winnererremy Bay.

4.2.3 POTENTIAL PATHWAYS

The following contaminant pathways applicable to the site and adjacent properties given the site's current and proposed future land use as an operational bus depot with surrounding light industrial land use:

- Ingestion or dermal contact with contaminated groundwater extracted via domestic bores or the use of downgradient surface water bodies for recreation (considered unlikely);
- Ingestion or dermal contact with contaminated water encountered during excavation / trenching;
- Inhalation or ingestion of dust or air borne contaminants during regular site operations or during excavations / trenching;
- Migration of contaminants with shallow groundwater in a sandy aquifer with an estimated water seepage velocity of approximately 10 m per year;
- Migration of contaminants through underlying soils or preferential pathways such as underground service trenches or former fuel lines; and
- Inhalation of hydrocarbon vapours derived from soil and groundwater contamination through soil pore spaces and intrusion into building spaces.

4.2.4 SUMMARY OF RISK

A summary of plausible pathways, and a qualitative assessment of the risk of those pathways resulting in an unacceptable exposure to a receptor is summarised in Table 4.1. In the site's present condition, the identified contaminants present a low risk to human receptors. In the event of excavation or earthworks which expose impacted soils or groundwater, there is a moderate risk to human health via ingestion or dermal contact with contaminated soils or groundwater which would require management under a Construction Environmental Management Plan (CEMP) and site specific safe work method statements (SWMS). An EMP has been prepared for the site and surrounds to assist in management of these risks.

For the off-site neighbouring buildings, vapour risk has been shown via vapour flux through building floor slabs and via direct indoor air measurements to be acceptably low. The contaminants present a low to moderate risk to on-site and offsite ecological receptors. Given the industrial nature of the site setting and using of surrounding properties the local

ecology is not considered to be of high value. Nevertheless, the plume may result in stunting of vegetation where dissolved oxygen is low due to the microbial activity.

Risks to more distant downgradient human and ecological receptors are unlikely given the low toxicity of the PSH constituents and the evidence for microbial degradation occurring, which, coupled with PSH removal, will limit the dissolved phase plume spread. It is possible that the hydrocarbons may migrate more rapidly via preferential pathways provided by local services however based on the discussion provided in the Data Gaps Assessment report (WSP, 2020d) the pathway to the stormwater system at present is incomplete, but the risk warrants ongoing monitoring. Inorganic contamination of the groundwater, primarily an arsenic plume, is present beneath the site and surrounds. This is unlikely to relate the Bus Depot activities and may be a more regional issue possibly related to historical agricultural or turf production, or possibly a geochemical effect releasing arsenic from the mineral phase due to redox conditions resulting from the plume.

Risks presented by the arsenic plume are unlikely to be significant to general commercial and industrial use of the site and surrounds but would be of concern during excavations works. However, the precautions required under the EMP (WSP, 2017c) for minimising dermal and ingestion risks presented by the hydrocarbons during construction works would assist in managing this risk as well.

Ecological risk associated with the arsenic is unknown as the extent of the plume is uncertain. Risk to residents some distance from the site is also uncertain, however, given the groundwater is unlikely to be used for potable supply the risk is likely to be of a recreational exposure scenario. Results from the groundwater in the vicinity of the site have generally been lower than health-based recreational criteria.

Table 4.1Source Pathway Receptor Analysis.

IDENTIFIED SOURCES	PLAUSIBLE PATHWAY	POTENTIAL RECEPTOR	QUALITATI VE RISK	COMMENTS / RATIONALE
the site and surrounds including: contact with known contaminated water or soils - Localised diesel impacts in soil onsite or soils - PSH located above the water table (~2 mbgl) on the western boundary and extending offsite, to the far side of Taronga Place, to the west. Migration of contaminants with groundwater resulting	Ingestion or dermal contact with known contaminated water or soils	Site and neighboring site workers and future occupants	Negligible	The onsite soil contamination is located beneath pavements, with the majority of known impacts at a depth of approximately 2 m bgl. Offsite soil impacts relate to the PSH that has spread from the site at the soil/water interface and is present at depths of approximately 2 mbgl. Therefore, directed contact with impacted soil or groundwater during typical onsite or offsite activities will not occur.
		Construction or maintenance workers	Low	Given the location of the contamination the only plausible linkage for direct contact is associated with excavation activities. The risk of encountering hydrocarbon contamination has been notified to Dial Before You Dig and notification is provided on various utility plans accessed by that service. Measures to minimize risk during excavation works are provided in the site EMP (WSP, 2017c). Control measures should be developed in project specific Safe Work Method Statements.
	contaminants with groundwater resulting in potential exposure to more distant	Down gradient residential occupants extracting groundwater from domestic bores	Low to Negligible	A search of the Bureau of Meteorology (BOM) Groundwater Explorer database revealed 14 groundwater bores for water supply use within a 1 km radius of the site. All these, however, were either located hydraulically up gradient of the site, or based on their construction depth are likely to be intercepting regional groundwater aquifers within the underlying sandstone. The nearest of these bores is GW026581, located 60 m to the south south west of the site installed to a depth of 93 m. One well (GW018803) is located in an hydraulically downgradient position, and is installed within the alluvium. However, this well is 975 m from the site, and has its purpose stated as "Other". As the dissolved phase plume is not known to have migrated further than 80 m offsite, it is unlikely that contamination derived from the identified hydrocarbon plume would reach this well. Furthermore it's location in parkland and stated purpose mean that it is unlikely this water would be used for potable supply.
		Recreational users and ecological receptors of Cahill Creek 950 m north west and Winnererremy Bay 1 km from the site.	Low to Negligible	Given the extent of the plume and evidence for active biodegradation, it is unlikely that the contamination could migrate through sediments to these receiving waters. Moreover, the hydrocarbons present in the PSH, which forms the source of dissolved phase impacts, contain negligible BTEX which is the most toxic component of fuel. Naphthalene exceeds ecological criteria only in bores that have PSH. Therefore, it is unlikely this contaminant would migrate in groundwater to the receptors.
IDENTIFIED SOURCES	PLAUSIBLE PATHWAY	POTENTIAL RECEPTOR	QUALITATI VE RISK	COMMENTS / RATIONALE
--	--	---	----------------------	---
 Hydrocarbon impacts to the site and surrounds including: Localised diesel impacts in soil onsite PSH located above the water table (~2 mbgl) on the western boundary and extending offsite, to 		Vegetation onsite and offsite within and downgradient of the contaminant plume	Moderate	Surface water samples were collected from upstream, at the site boundary or downstream along the stormwater channel. The results indicated that no detectable hydrocarbons were present in the stormwater drain upstream, at the site boundary or downstream of the site. Therefore, it is unlikely that the contamination is leaking into the system putting the ecology of the creek or downstream receptors at risk. There is minimal vegetation present on the site, the majority of which is located up gradient or cross gradient of the hydrocarbon plume. Most of the vegetation on the adjacent properties (Pittwater Joinery and Reece Plumbing) are mature trees which have been present since 2003 and have most likely adapted to any contamination that is present in the soil or groundwater. The low DO conditions may result in stunted growth of trees within and downgradient of the
 the far side of Taronga Place, to the west. Dissolved phase hydrocarbons in association with the PSH impacts. 	Accelerator migration of contaminants through preferential pathways.	Underlying groundwater and surface water receptors	Low to Negligible	plume. The PSH plume has migrated west of the site across areas where municipal services exist in Taronga Place. Whilst the majority of these services are likely to be well above the impact, two potential deeper services have been identified including the stormwater easement to the north west of the plume and a sewer line that crosses Taronga Place and follows the northern boundary of No. 4 Taronga Place (Lot 7, DP701913), it was considered possible that the sewer line could intercept the groundwater level. Two shallow wells (MW36 and MW37) installed adjacent the stormwater drainage culvert were gauged on 7 February 2020 and determined to be dry. Therefore, the backfill sands adjacent to the stormwater drain do not appear to be a complete pathway for PSH migration at this time. Moreover, surface water testing of the stormwater has corroborated this finding with no detectable hydrocarbons measured in the February 2020 GME (WSP, 2020a)
	Inhalation of vapours or ingestion of air borne contaminants during site operations or excavation / trenching	Site workers Occupants of adjacent properties General public accessing Taronga Place	Negligible	The sources of contamination are mainly diesel products which are inherently less volatile than petroleum-based products. The soil vapour assessments conducted by WSP in 2017 indicated that sub slab vapour concentrations were unlikely to pose a risk to site workers or occupants of the adjacent Reece Plumbing and Pittwater Joinery properties. In February 2020, a vapour assessment was completed using flux, indoor and ambient air testing methodologies on the two commercial properties adjacent to the site (9 Taronga Place [Lot 2 DP701913] and 10 Taronga Place [Lot 34 DP708050]) which overly the main PSH impact. Results indicated that that the diesel plume is not causing a vapour intrusion risk to the occupants of the two commercial buildings tested in this evaluation. Furthermore, there was no

IDENTIFIED SOURCES	PLAUSIBLE PATHWAY	POTENTIAL RECEPTOR	QUALITATI VE RISK	COMMENTS / RATIONALE
				evidence of any other compound that was presenting a significant vapour flux into either building.
				As the contamination is limited to shallow soils and groundwater that is predominantly covered by concrete slab, the risk of generating airborne contaminants such as dust are minimal unless the concrete slab is compromised and/or if unsealed landscaped areas are disturbed due to trenching or excavation works.
				The EMP (WSP, 2017c) provides measures to minimizing generation of dust during future works and these should be adopted in project specific work method statements.
Inorganic contaminants in groundwater (arsenic, lead, nickel and zinc) beneath the site and	Ingestion or dermal contact with known contaminated water	Site and neighboring site workers and future occupants	Negligible	The contamination has been identified in groundwater which is present at approximately 2 mbgl. Therefore, direct contact with impacted soil or groundwater during typical onsite or offsite activities will not occur.
surrounds Inorganic contaminants in groundwater (arsenic, lead, nickel and zinc) beneath the site and surrounds		Construction or maintenance workers	Low	Given the location of the contamination the only plausible linkage for direct contact is associated with excavation activities. Measures to minimize risk via dermal contact for hydrocarbons during excavation works are provided in the site EMP (WSP, 2017c), these should also be effective at mitigating risks associated with the inorganic contamination. Control measures should be developed in project specific Safe Work Method Statements. Of the contaminants identified the arsenic is of most concern.
	Migration of contaminants with groundwater resulting in potential exposure to more distant receptors	Down gradient residential occupants extracting groundwater from domestic bores Recreational users and ecological receptors of the storm water channel Cahill Creek and Winnererremy Bay.	Low to Moderate	The source of the arsenic plume, and its extent are unknown and it could potentially represent a regional issue. It is unlikely to relate to the Bus Depot operations. It is unlikely that local residents would use the groundwater for potable supply. It is possibly they use the groundwater for swimming pools or watering lawns. The results to date generally fall beneath recreational criteria (applying 10 × multiplier to convert drinking water guidelines to recreational criteria as per NHMRC, 2008 Guidelines for Managing Risks in Recreational water). If groundwater was to migrate to open waters the risk to recreational users would be similarly low. Risk to ecological receptors could be moderate given the concentrations in the groundwater are up to an order of magnitude above the criteria. It would, however, be expected that significant dilution would occur at the discharge point.
		Vegetation onsite and offsite within the contaminant plume	Moderate	There is minimal vegetation present on the site. Most of the vegetation on the adjacent properties (Pittwater Joinery and Reece Plumbing) are mature trees which have been present since 2003. The trees appear healthy and actively growing.

4.3 RISK CHARACTERISATION AND DATAGAP REVIEW

Contamination on the site and surrounds comprises:

- Hydrocarbons, and in particular a PSH plume on the western boundary in the vicinity of the refuelling bay and associated infrastructure, which extends to the far side of Taronga Place west of the site.
 - The PSH is consistent with diesel and as such is predominantly F2 and F3, with minor F1, and virtually no F4. BTEX is low to non-detect, though naphthalene is elevated within the PSH affected areas. The elevated concentrations of naphthalene are likely to be an artefact of droplets of PSH in the analysed samples taken from beneath the PSH. As such, the analysed concentrations should not be compared to HSLs as they do not represent true dissolved phase concentrations to which the HSLs apply.
 - A dissolved phase plume surrounds the PSH. Concentrations in the dissolved phase plume do not exceed available health or ecological criteria.
 - There is strong evidence for active biodegradation occurring with the plume and beneath the PSH. The rate of degradation is likely limited by availability of electron acceptors.
 - Primary sources are understood to have been removed or decommissioned.
- Inorganic dissolved heavy metals, and in particular arsenic as a widespread impact on the site and surrounds. The source is uncertain and unlikely to relate to the bus depot activities. There is an apparent spatial relationship between the locations with elevated arsenic and the presence of the hydrocarbon plume. It is possible the plume's influence on the groundwater redox may be mobilising more arsenic from the solid phase, primarily as the low redox results in dissolution of iron minerals, that in the sandy environment provide the bulk of exchange sites for arsenic sorption. This phenomenon is described by Nriagu *et al*, 2007 as follows:

The mobility of As is mainly determined by the adsorption capacity on the mineral surfaces, which is controlled by geochemical parameters such as pH, Eh, ionic composition, and mineral type. However, redox processes in the aquifers trigger the mobility through dissolution of the Fe oxides that transfer substantial amounts of As into the aqueous phases.

Identified risks relating to the contamination sources outlined above are generally acceptably low and manageable:

- The PSH is present at a depth that will not be intercepted during typical activities on the site and surrounds and there
 are no known nearby groundwater abstraction activities
- Direct contact could occur during construction works or maintenance, however these activities should be carried out in accordance with the EMP (WSP, 2017c) and in accordance with site specific SWMS. The presence of the hydrocarbons has been notified to Dial Before you Dig and is shown of various utility plans for the local area.
- Vapour risk is acceptably low in the context of the commercial/ industrial land use of the site and surrounds.
- The plume is unlikely to migrate through sediments to more distant sensitive receptors including residential dwellings, recreational users of Cahill Creek or Winnererremy Bay, and ecosystems of these surface waters.
- The risks related to the arsenic plume are uncertain as the extent of the plume is unknown. If the arsenic is present as a result of dissolution of iron minerals in the low redox groundwater associated with the dissolved hydrocarbon plume, it is likely that beyond the plume where redox conditions are more oxidised, the geochemistry of the water will be more favourable to iron precipitation providing additional arsenic absorption sites and controlling the extent of the arsenic plume. As the arsenic is likely to be unrelated to the site activities, and at most may be a secondary effect of the geochemistry within the hydrocarbon plume, it is not the subject of this RAP and will not be considered further, beyond the recommendation to continue monitoring it along with primary chemicals of concern and natural attenuation indicators.

Identified data gaps in the current VMP include:

- Potential for preferential migration through deep services on Taronga Place including the sewer line and the stormwater easement as discussed in Section 2.2.3. This data gap has since been partially addressed.
 - WSP installed two shallow wells (MW36 and MW37) into the bedding sands surrounding the stormwater culvert. Both wells were determined to be dry. Thus, providing a line of evidence that despite the proximity of the phase separated hydrocarbons (PSH) to the stormwater easement, bedding sands surrounding the stormwater culvert have not acted as a preferential pathway for PSH to migrate laterally.
 - Two locations were also proposed to be installed along an identified sewer line that runs along the northern boundary of 4 Taronga Place (Lot 7, DP701913). However, the two proposed locations adjacent to the sewer line were unable to be installed as access was not provided. There is uncertainty remaining as to the possibility that the sewer line identified west of the site could represent a preferential pathway. However, in WSPs opinion, the risk is relatively minor as the hydraulic conductivity of the bedding sands is likely to be similar to the aquifer sediments and therefore the rate of migration of contamination in the bedding sands in unlikely to be significantly greater than is observed elsewhere on the site.
- Potential for leakage of hydrocarbons into the stormwater channel that bisects the site, allowing it to discharge to the open stormwater drain west of the site. This data gap has been addressed and will continue to be monitored.
 - In February 2020, WSP collected three surface water samples; one from upstream, at the site's downgradient boundary, and downstream of the site along the stormwater channel. The results indicated that no detectable hydrocarbons were present in the stormwater drain upstream, at the site boundary or downstream of the site. This provides a line of evidence that despite the proximity of the PSH to the stormwater easement, it is unlikely that the contamination is leaking into the system putting the ecology of the creek or downstream receptors at risk. Surface water testing is now included in the bi-annual monitoring program.
- The PSH extent is not well defined to the south or south east (between MW08 and MW19, and onsite between MW01 and MW13, and within the workshop. This data gap has been partially addressed.
 - In December 2019, seven additional groundwater monitoring wells (MW28 MW33 and MW35) and two shallow wells (MW36 and MW37) were installed along Taronga Place, and on the STA site to further characterise the extents of the PSH plume. Three proposed wells (MW34, MW38, MW39) could not be installed due to permission constraints by the landowner/body corporate of the neighbouring land. WSP are of the opinion that the well network now effectively defines the southern, eastern and northern extents of the PSH with a reasonable degree of confidence. There remains uncertainty as to the extent of PSH directly west of the site, between MW32 and MW16. To be able to define the plume extent to the west, permission from owners of land on the western side of Taronga Place would be needed
 - The extent of the dissolved phase plume remains generally uncertain as low levels of hydrocarbons are detected in most wells that do not have PSH present, with the exception on MW2 and MW3 to the east and north east (likely upgradient or cross gradient), MW12 to the north (downgradient) and MW17, a considerable distance to the northwest (likely downgradient or cross gradient). WSP is of the opinion that the additional well network has assisted in delineation of the PSH and dissolved phase plume, but that there remains some uncertainty in the extent of the PSH and dissolved phase plume, particularly west of the site. However, in our opinion, while a data gap remains, we do not consider the lack of information affects the remediation approach, nor do we consider that the plume is likely to represent a significant health or ecological risk despite the lack of full delineation.
- Various bores have become lost or abandoned. This includes MW04, MW06, MW11 and MW27 as shown on Figure 4 Appendix A.
 - Groundwater in the vicinity of MW04 and MW27 has historically been shown to be free of hydrocarbons and can continue to be assessed by other wells in proximity to these (MW03, MW23 and MW24).

- MW06 was on the plume periphery in an up gradient position. Nearby well MW01 is likely to continue to be reasonably representative of water from this portion of the site. At this time it is not considered necessary to replace MW06.
- MW11 was abandoned at the neighbours request, however it was an important monitoring point between the PSH plume and the stormwater channel to the north. MW 35 was installed in December 2019 to provide a monitoring point in close proximity to MW11.

5 **REMEDIATION STRATEGY**

5.1 REMEDIATION OBJECTIVES

The main objectives of the remediation program, as described in the VMP, are to:

- Assess the extent of soil and groundwater contamination;
- Assess the risks posed by the contamination; and
- Remove phase separated hydrocarbon (PSH) from groundwater to the extent practicable.

5.2 SOIL REMEDIATION OPTIONS

Based on the identified source of onsite hydrocarbon impact and the nature and extent of soil contamination within the refuelling area, WSP recommended that the diesel spill sump pit and surrounding impacted soils be remediated (RAP, 2013).

Since that time there has been limited soil remediation activities carried out on the site as discussed in Section 3.4.

In the absence of any other known primary sources on the site, and given the site is an active bus depot, further soil remediation works are not considered practicable, nor necessary, at present.

During any future development works on the site, any soil excavation activities should be seen as an opportunity to assess the soil for hydrocarbons and if identified, targeted removal should occur. Hydrocarbon impacted soil could be either disposed of to landfill or bioremediated onsite in accordance with NSW EPA, 2014 Best Practice Note: Landfarming. Any waste removed from the site will need to be classified in accordance with the NSW EPA, 2014 Waste Classification Guidelines – Part 1: Classifying waste.

During the installation of the proposed remediation system, it is expected that a limited amount of soil will be excavated to account for the system infrastructure. The excavated soils will be assessed for hydrocarbons, heavy metals and polyaromatic hydrocarbons and classified in accordance with the NSW EPA, 2014 *Waste Classification Guidelines – Part 1: Classifying waste* to facilitate disposal of excess material to an appropriately licensed facility.

5.3 GROUNDWATER REMEDIATION OPTIONS

Based on the known extent and nature of identified hydrocarbon impact at the site, and based on the findings of the quarterly offsite groundwater monitoring program (ENRS, 2018), direct remediation and/or management of offsite groundwater impact (in particular identified PSH) is required.

Various available technologies are described and discussed in the following sections. The list is not comprehensive but focuses on those that are most applicable to the site in the context of its ongoing use as a bus depot.

A summary of the key aspects of each reviewed technology is also summarised in Table 5.1.

5.3.1 DO NOTHING

No remedial action is taken using this approach. The option has some merit in that there are no identified actual risks to users of the site or surrounds and microbial activity is clearly occurring in the dissolved plume which will limit its spread. Monitoring data indicate that the plume has reached it maximum extent. The advantages of this option are that no remedial costs are incurred.

However, the PSH has clearly migrated a significant distance from the site and, whilst biodegradation is occurring on the dissolved phase, it is unlikely be able to remove the contamination, and improve the environmental conditions in the foreseeable future without intervention to remove the PSH.

Moreover while the PSH remains it represents a liability to STA and may affect neighbouring property development options or value. Some form of PSH removal would assist in reducing the longevity of the hydrocarbon impacts to the site and surrounds.

Therefore this is an unacceptable option for STA and is not consistent with the VMP.

5.3.2 RISK ASSESSMENT FOR ON AND OFFSITE HYDROCARBON IMPACT

A detailed risk assessment would involve contaminant fate and transport modelling, providing STA and the EPA an appreciation of the potential migration extent of the groundwater plume. The risk assessment would also quantify of human health and environmental risks posed by identified on- and off-site hydrocarbon impact, which will enable targeted remediation efforts in the future.

Some risk assessment work has been carried out to date (ENRS, 2016) and has assisted in understanding that health and ecological risks presented by the plume are generally low. However, the presence of the PSH is an ongoing liability to STA and physical remedial efforts are recommended to reduce this risk and shorten the timeframe for the plume to be degraded.

5.3.3 MONITORED NATURAL ATTENUATION (MNA)

Monitored natural attenuation is the monitoring of naturally occurring physical, chemical and biological processes to demonstrate via multiple lines of evidence that one or a combination of these processes reduce the mass, concentration or toxicity of identified hydrocarbon impact in offsite groundwater; to an acceptable level within an acceptable timeframe.

The advantages of MNA are that it has very low energy and natural resource requirements. In terms of data assessment and on-going monitoring, the cost of MNA can be significant, particularly as the timeframe is generally relatively long.

Given the volume of PSH the approach would require monitoring for the foreseeable future.

Based on a review of results for the quarterly groundwater monitoring program (ENRS, 2018) against the primary indicators for natural attenuation it was concluded that natural attenuation of offsite hydrocarbons is occurring, however the extent of PSH is too great for MNA alone to provide a successful remediation outcome within a suitable timeframe.

5.3.4 ENHANCED MNA

Natural attenuation at the site is known to be occurring but it's rate is likely limited by the availability of electron acceptors.

This technology would involve injection of chemicals with slow release oxidant to stimulate the microbial degradation. The effective breakdown will be in the dissolved phase, however, as PSH presence is a result of partitioning due to the solubility in the dissolve phase being exceeded, as dissolved contamination is removed more of the PSH will dissolve into the groundwater thus resulting (with time) in a reduction in the PSH on the site.

Given the volume of PSH present on the site, this technology alone is unlikely to meet meaningful timeframes for the remediation, but it could be a very effective adjunct to more active PSH removal methods and will become more effective as the PSH thickness declines.

5.3.5 MULTI-PHASE VACUUM EXTRACTION (MPVE)

This approach involves in-situ removal of PSH and treatment of contaminated groundwater using mechanical methods such as Multi Phase Vacuum Extraction (MPE). MPE allows for the recovery of free phase, dissolved phase and vapour phase hydrocarbon contaminants by an applied vacuum and down-well pumping system, which utilises the existing

monitoring well network at the site. Under appropriate sub-surface conditions, MPE can also provide hydraulic control of the contaminant plume, aiding in the prevention of further contaminant migration.

The advantages of this option are that it is an effective short term response for the removal of PSH, utilising the existing monitoring well network. The technique is flexible for different sub-surface conditions and potentially suitable for removal of PSH and dissolved phase groundwater from both on and off-site monitoring wells.

The disadvantages of this option are that it is expensive, energy intensive and requires significant human resources and attention to maximise remediation effectiveness. Based on the underlying geology (high permeability sands and shallow groundwater), this strategy is also likely to generate and require significant disposal of hydrocarbon impacted groundwater from the site, which is expensive.

Two stages of MPVE trial work have been completed on the site today as described in Section 3.7.2. There has been mixed success. AES were able to extract between 13 L and 25 L of product each round while EPS were able to extract between 70 and 200 L per round.

Given the likely volume of PSH (estimated in Section 4.1.2 at approximately 264,000L) this extraction, while physically effective, will be cost prohibitive.

5.3.6 PSH REMOVAL BY PASSIVE SKIMMER SYSTEM

Passive skimming relies on physical gravity flow of PSH, through a hydrophobic barrier, into a passive skimming sump. The sump needs to be manually emptied and maintained on a regular basis to optimise the PSH collection.

A limited passive skimming trial was conducted at the site as discussed in Section 3.7.1. The trial found that removal of 3 to 4 L of product from 100 mm wells was achievable when the skimmer installation was optimised. In total 18 L was recovered from three wells over three events during the 6 week trial.

Given the volume of PSH on the site and surrounds, and the high labour costs of this method, the technology is not considered feasible for this site at this time.

5.3.7 PSH REMOVAL BY ACTIVE SKIMMER SYSTEM

This approach involves removal of PSH from existing PSH impacted wells both onsite and offsite using an active skinner system. A skimming system has been in operation on the western boundary of the site in MW05, MW13 and MW14 since 2013 resulting in removal of approximately 2,000 L of product as described in Section 3.4. The technique allows for removal of PSH only (hydrophobic skimmers), and the product is pumped and stored on site prior to appropriate disposal.

It is understood that since April 2018 the system has been extended to include skimming from three offsite wells (MW09, MW19, MW21).

The advantage of this option is that it can utilise the existing monitoring well network at the site, and existing infrastructure. The system requires a level of maintenance of the skimmer screens to ensure ongoing optimisation of the PSH removal.

This remediation strategy has been implemented at the Site, but to date has removed less product than expected. It is intended that this system be decommissioned and replaced by a total fluids removal system as described in Section 5.3.8.

5.3.8 TOTAL FLUIDS REMOVAL BY ACTIVE PNEUMATIC PUMPS (PREFERRED OPTION)

This approach is similar to the skimmer option above but is more aggressive as it involves removal of PSH and some groundwater using a series of pneumatically operated total fluids pumps. To optimise the recovery, it is intended to install new large diameter wells, with wide screen slots and an appropriately sized gravel pack in four arrays, three across the plume and one longitudinally within the plume.

The proposed setup is presented in Figure 11 and includes a total of 25 new groundwater extraction locations. The existing wells located in the PSH affected area will be retained as observation wells. A total fluids pump is to be manually installed in each new groundwater extraction well to a depth that marginally penetrates the underlying groundwater so that it extracts both water and all overlying product. A pipework system (air and returns fluids) from each pump will be installed and run to the water treatment plant which is proposed to be located on the STA depot.

Extracted fluids will be transferred to a water treatment plant on the STA depot where a process of separation and removal of PSH and treatment of dissolved hydrocarbon loads in the water, to allow the treated water to be discharged to trade waste (pending approval from Sydney Water) or disposed off-site to a licensed waste facility. The skimmed PSH product will be either disposed of as liquid waste or will be recycled.

The advantage of this option is that by removal of total fluids a slight hydraulic gradient will be maintained towards the extraction wells promoting PSH flow towards the wells and also reducing the further spread of the PSH in the wider environment. The system is also understood to be less prone to fouling and blockages than the previously used skimming system. Moreover, the expanded extraction network will provide a much larger coverage of the plume resulting in a larger volume of potential product removal.

Table 5.1 Evaluation of Remediation Options for Impacted Groundwater

REMEDIAL OPTION	BENEFITS	LIMITATIONS	ACCEPTABILITY	TIMELINESS	COST	ON-GOING LIABILITY
Do nothing	Nil cost	Liability for the PSH will remain for the foreseeable future.	Does not meet EPA requirements and does not meet the remedial objectives for the property	Decades	Nil cost outlay	Yes for foreseeable future
Risk assessment	Quantifies the human health and ecological risk associated with offsite hydrocarbon contamination. Provides a better understanding of the potential migration of the groundwater plume away from the site and the influence of tidal culverts on groundwater movements in the area	Does not address the actual presence of PSH or associated liability.	Required to be completed in conjunction with active remediation of identified offsite PSH	< 3 month	Low	NA
Natural attenuation	Low cost Minimal disturbance to future development	Slow process PSH not removed in the short term. On-going groundwater monitoring program required.	Natural attenuation of hydrocarbons is occurring; however, the extent of PSH is too great for MNA alone to provide a successful remediation outcome within a suitable timeframe. May be an appropriate strategy in conjunction with more active methods.	Decades	Low - Medium	Yes for foreseeable future
Enhanced MNA.	Minimal disturbance to the site or surrounds. Low labour input Stimulates and seeks to optimise natural breakdown processes.	Effective on the dissolved phase so will take time for the PSH to dissolve and then be treated. On-going groundwater monitoring program required.	Would assist in increasing the rate of natural attenuation. Infrastructure already in place. May be best used in conjunction with PSH removal technologies and certainly once the practical limit of PSH skimming has been reached.	Years to Decades	Medium	Yes – declining as the plume reduces in area and thickness.

REMEDIAL OPTION	BENEFITS	LIMITATIONS	ACCEPTABILITY	TIMELINESS	COST	ON-GOING LIABILITY
Multi-Phase Vacuum Extraction	Removes contamination Can be used to treat both on- and off-site PSH impact.	 High Cost. Requires on-going remediation program involving the physical presence of mechanical MPVE operators. Will have diminishing effectiveness as the PSH thickness declines. On-going groundwater monitoring program required. 	Meets EPA requirements for groundwater remediation. Ideal for the sandy geology beneath the site. While proven to be physically effective the number of events required to have a meaningful reduction in the PSH renders the technology cost prohibitive.	Years	Very High	Yes – declining as the plume reduces in area and thickness.
Passive skimmers.	Removes contamination. Prevents further migration of contaminants off-site.	High labour cost.Slow, limited by the number of accessible wells with skimmers installed.On-going groundwater monitoring program required.	Acceptable approach for shallow groundwater contamination. Acceptable approach for groundwater in medium – high permeability soils. Given the volume of PSH the technology will not meet the project objectives in a timely manner.	Decades	High	Yes – declining as the plume reduces in area and thickness.
Active skimmers.	Removes contamination. Reduces further migration of contaminants off-site.	On-going remediation program requiring access during and post development. On-going groundwater monitoring program required.	Acceptable approach for shallow groundwater contamination. Acceptable approach for groundwater in medium – high permeability soils. Infrastructure already in place. Limited success to date and current network is relatively minor.	Decades	High	Yes – declining as the plume reduces in area and thickness.

REMEDIAL OPTION	BENEFITS	LIMITATIONS	ACCEPTABILITY	TIMELINESS	COST	ON-GOING LIABILITY
Active total fluids removal	Removes contamination. Reduces further migration of contaminants off-site.	On-going remediation program requiring access during and post development. On-going groundwater monitoring program required.	Acceptable approach for shallow groundwater contamination. Acceptable approach for groundwater in medium – high permeability soils. Infrastructure already in place, however it is intended to install new arrays of purpose build wells. More aggressive than skimming alone and should result in improvements over a shorter timeframe. Preferred option.	Years	High	Yes – declining as the plume reduces in area and thickness.

5.4 REVISED REMEDIATION STRATEGY

Since the 2015 revision of the RAP (WSP, 2015) several recommended actions have been carried out including:

- Limited risk assessment to identify whether the plume represents a human health or ecological risks on- and off-site.
- Installation of additional offsite wells to further characterise the extent of the PSH and dissolved phase plume;
- Continued operation of the onsite free phase recovery system;
- Implementation of pilot trials for the targeted *in-situ* remediation of PSH using mechanical methods such as multiphase extraction and passive skimming.

Following the review of the investigations, site characterisation and updated conceptual site model Sections 3 and 4 WSP is of the opinion that the primary focus of the remediation works should be installation and operation of a total fluids recovery system to optimise PSH recovery, with limited monitoring to support ongoing understanding of the plume extent and thickness. In order to maximise the recovery of PSH, we recommend:

- STA to conduct stakeholder engagement with the neighbouring community (Taronga Place) advising them of the proposed installation of the systems;
- All necessary approvals to be sought and obtained (see section 7);
- Installation of a total fluids recovery system as detailed in Section 5.3.8;
- Monthly records of PSH removal should be collected by the technician and be provided to WSP for inclusion in routine groundwater monitoring reports. The monthly reporting by the contractor should include at a minimum:
 - Date of inspection, volume of recovered PSH, volume of treated water discharged under the trade waste agreement, results of any treatment testing, confirmation that all pumps and lines are operational, and summary of any maintenance works carried out.
- Records of any waste oil disposal including date of removal, volume removed and waste tracking documentation including details of the liquid waste removal contractor and the waste disposal location should be provided to WSP.
- Quarterly gauging of the monitoring wells should be conducted with results collated for inclusion in the six-monthly reports; and
- Ongoing six-monthly groundwater monitoring events to gauge and undertake chemical testing of the dissolved phase for 2 years (2020-2021).

WSP notes that the current system should be decommissioned post-successful installation and operations of the Total Fluids recovery system. Wells associated with the existing system will be retained for PSH monitoring purposes.

A number of data gaps remain as summarised in Section 4.3 and were addressed as part of additional assessment works which occurred in December 2019. Figure 8, **Appendix A** provides a summary of recommended additional testing points. Principally we recommend:

- Inclusion of surface water samples as part of the monitoring program including one location at the discharge point of the culverts, to the west of the site (downgradient). One location from an accessible point up gradient of the site, and one location from within the culverts assuming an access point can be provided on the site. These points will be added to the scope to assess if hydrocarbon loads in the stormwater are due to the site or other background sources. Recommended surface water testing locations are shown on Figure 9 Appendix A.
- Installation of shallow wells into the backfill sands of the sewer line along Taronga Place and the stormwater infrastructure to the north of the plume (recommended locations MW36 to MW39 are shown on Figure 8, Appendix A). Monitoring wells, MW36 and MW37, were installed into the bedding sand surrounding the stormwater culvert in

December 2019. Monitoring wells, MW38 and MW39, which were to assess the soil adjacent to the sewer line, were unable to be installed as access to the privately owned land was not provided.

- Installation of additional monitoring wells between MW08 and MW19, and MW15 and MW10 on Taronga Place, and onsite to the south of MW13 and to the east of MW14, within the workshop, to better define the extent of PSH and the up gradient extent of the plume. Monitoring wells MW28 to MW32 were installed in December 2019 and are shown on Figure 8, Appendix A.
- MW25 has recently become impacted by PSH. This indicates the lateral spread of the PSH to the west continues to grow and therefore additional monitoring wells should be installed to the north west, however this will require permission from the owners of that land. Recommended locations are shown as MW33 and MW34 on Figure 8
 Appendix A. These wells could not be installed during the December 2019 assessment works due to permission constraints by the owners of the neighbouring land.
- MW11 and MW12 are important locations for verifying that the risk of migration to the stormwater system is low. They should be reintroduced to the monitoring program. It is understood that MW11 has been abandoned. A replacement well (MW35 on Figure 8, Appendix A) has been installed in December 2019.

5.5 CONTINGENCY

Based on the findings of the quarterly groundwater monitoring program there is limited potential for the natural attenuation to reduce the extent of PSH in the foreseeable future and thus MNA alone is unlikely to be a sufficient remediation strategy.

However, MNA is an appropriate strategy for further polishing of the water quality once more active PSH removal has occurred. It is likely that the rate of natural attenuation is being constrained in the plume by reducing redox conditions and so STA may investigate the use of Oxygen Releasing Compounds to promote and accelerate the natural attenuation process.

STA have committed to implementing a much more aggressive method of PSH removal, and at the time of this report are in contract negotiations with the preferred contractor. Therefore, a more effective PSH removal method will soon be implemented and this should reduce the head of PSH that is the primary driver for PSH migration. Thus, it is expected that the potential for PSH plume expansion will be reduced once the system has been installed.

If the system as designed fails to extract sufficient quantities of contaminated groundwater and LNAPL product over a two year period to reduce LNAPL mass to an extent as reasonably practicable, then a contingency plan would be implemented.

The contingency plan should include a re-evaluation of the available remediation technologies by a nominated panel of stakeholders (i.e. STA, WSP, remediation contractor, auditor and EPA) to assess if a more suitable method of remediation may be available to achieve the remedial objectives. The re-evaluation should also take into account additional factors including but not limited to practical constraints due to infrastructure present both on- and off-site and the potential impacts to neighbouring properties.

6 GROUNDWATER MONITORING PLAN

6.1 DATA QUALITY OBJECTIVES (DQOS)

The data quality objectives (DQO) process is a systematic planning tool based on the scientific method for establishing criteria for data quality and for developing data collection designs. The data quality objectives define the experimental process required to test a hypothesis. The DQO process was developed to ensure that efforts relating to data collection are cost effective, by eliminating unnecessary, duplicative or overly precise data whilst at the same time, ensuring the data collected is of sufficient quality and quantity to support defensible decision making.

It is recognised that the most efficient way to accomplish these goals is to establish criteria for defensible decision making before the data collection begins, and then develop a data collection design based on these criteria. By using the DQO process to plan the investigation, the relevant parties can improve the effectiveness, efficiency and defensibility of a decision in a resource and cost effective manner.

The DQO process consists of seven steps, which are designed to clarify the study objectives, define the appropriate type of data and specify tolerable levels of potential decision errors. The seven-step DQO process that will be adopted for the soil remedial works will be as follows:

- Step 1 Defining the Problem. The first step in the DQO process is to 'define the problem' that has initiated remedial works;
- Step 2 Identify the Decision. The second step in the process is to define the decision statement that the works will attempt to resolve;
- Step 3 Identify Inputs to the Decision. In this step, the different types of information needed to resolve the decision statement are identified.
- Step 4 Define the Study Boundaries;
- Step 5 Develop a Decision Rule;
- Step 6 Specify Limits on Decision Errors; and
- Step 7 Optimise the Design for Obtaining the Data.

6.1.1 STEP 1 – DEFINING THE PROBLEM

The problem under consideration is that the site and surrounds contain PSH and TRH in groundwater. Though the concentrations in the dissolved plume surrounding the PSH do not exceed available health or ecological criteria, the extent of the plume, and the thickness and extent of the PSH should continue to be monitored to assess the efficacy of the active skimming and whether conditions on the site and surrounds are improving with time.

6.1.2 STEP 2 – IDENTIFY THE DECISION

The principle decision is 'is the condition of the site and surrounds improving with time and with implementation of the active skimming system'?

6.1.3 STEP 3 – IDENTIFICATION OF INPUTS INTO THE DECISION

The inputs to the decision are as follows:

- Ongoing assessment of PSH thickness and areal extent;
- Additional onsite and offsite test locations will further refine the understanding of the plume extent, the conceptual site model, and provide for monitoring data into the future;

- Records of the volumes of PSH extracted using the active skimming system;
- Ongoing information on the dissolved phase chemistry including primary contaminant concentrations, and natural attenuation parameters.

6.1.4 STEP 4 – DEFINING THE STUDY BOUNDARIES

The extent of the revised RAP includes both identified on and off-site impact. Previous soil and groundwater investigations delineated the extent of soil impact between 60 - 80 m north from the refuelling facility and approximately 50 m south-west, south, south-east and east from the refuelling area.

The investigations confirmed that soil impact is vertically confined to the soil profile immediately surrounding the groundwater table (1m - 2m bgl) and that soil impact is predominantly associated with a groundwater plume rather than widespread surface contamination across the Site.

Based on the outcomes of quarterly groundwater monitoring program undertaken by ENRS, the extent of offsite groundwater impact is reasonably well defined though some data gaps remain. As such, the installation of additional monitoring wells is recommended to further delineate the extent of offsite contamination (as discussed in Section 5.4).

Therefore, the study boundaries are the site boundaries and the surrounds to the west of the site.

6.1.5 STEP 5 – DEVELOPING DECISION RULES

Based on the available site assessment information, elements of the decision rule should be related to the remediation objectives and include:

- Has the program adequately delineated the extent of soil and groundwater contamination?
- Has the program adequately assessed the risk posed by the contamination? and
- Has the program removed PSH from the groundwater to the extent practicable?

Further practical decisions to be made during the works are as follows:

- Can the remedial works be conducted such that further contamination issues in the form of on or off-site impacts do not occur during remediation?
- Can the remediation be carried out in a safe and financially viable manner?
- Will the remedial works adequately reduce the overall risk of the site?
- Will the site remain suitable for the proposed use during the works and into the future?

Given that the PSH plume has not yet stabilised it is recommended that 6-monthly groundwater monitoring continues. This also aligns with the current VMP requirements. Sampling and analysis is required for BTEXN, TRH and key natural attenuation parameters.

The most relevant information on the spread of the plume is the extent and thickness of the PSH. As such quarterly gauging of wells within the PSH impacted areas, and those immediately surrounding these wells is recommended, in accordance with the VMP. The 6-monthly events, which include analytical testing, should also require gauging of all available wells on and offsite so that groundwater contour plots can be updated.

Where PSH is encountered, the thickness will be confirmed with a disposable bailer. No further sampling is required where PSH is identified.

For groundwater, there are no EPA endorsed criteria for TRH. The PSH is required to be removed to the extent practicable. It would be expected that prior to this being achieved the PSH would at least need to be demonstrated to be stable or declining both in extent and thickness.

The monitoring program should be reviewed annually and once the PSH is demonstrated to have stabilised or be found to be decreasing, then the frequently of monitoring could potentially be reduced in consultation with the Auditor and the NSW EPA.

6.1.6 STEP 6 – SPECIFY LIMITS ON DECISION ERRORS

Quality Assurance and Quality Control (QA/QC) protocols in accordance with NEPM 2013 (amended) guidelines will be applied to the groundwater monitoring works.

The acceptable limits for data QA will be the following:

- Accuracy is measured by percent recovery '%R'. Accuracy data is expected to vary within the range of 70-130 %R;
- Precision is measured using the standard deviation 'SD' or Relative Percent Difference '%RPD'. Replicate data is
 expected to be as follows:
 - RPD criteria of 30% or less, for concentrations > or = 10 times EQL;
 - RPD criteria of 75% or less, for concentrations between 5 and 10 times the EQL; and
 - RPD criteria of 100% or less, for concentrations < 5 times EQL.

6.1.7 STEP 7 – OPTIMISE DESIGN

The purpose of this step is to identify a resource-effective data collection design for generating data to meet the project objectives. This will be achieved by the proposed Sampling and Analysis program for groundwater monitoring; including the number of sample locations, media to be sampled, number of samples retained for analysis, analytical suite and method of sample collection.

6.2 GROUNDWATER MONITORING

6.2.1 GROUNDWATER SAMPLING NETWORK AND PROGRAM

Groundwater monitoring of the existing on and offsite monitoring well network should be undertaken on a 6-monthly basis for a period of 2 years and then reviewed. The program will include gauging and sampling of a variety of wells as summarised below:

MONITORING EVENT	WELLS INCLUDED	FIELD PARAMETERS	ANALYTICAL SCHEDULE
Quarterly Events	3		
PSH impacted locations and immediate surrounding bores.	MW01, MW05, MW07, MW09, MW10, MW12, MW13, MW14, MW16, MW18, MW19, MW20, MW21, MW22, MW25, MW26, MW28, MW29, MW30, MW31, MW32, MW33, MW35, MW36 and MW37	Gauge only. Where PSH present confirm with bailer. Note access to MW05, MW09, MW13 and MW14 may be restricted due to skimmer infrastructure.	Nil
6 Monthly Events	S		
PSH affected wells	MW05, MW06, MW09, MW10, MW12, MW13, MW14, MW18, MW19, MW20, MW21, MW25. (See Figure 8)	Gauge only. Where PSH present confirm with bailer. Note access to MW05, MW09, MW13 and MW14, may be restricted due to skimmer infrastructure.	Nil

Table 6.1 Summary of proposed monitoring program

MONITORING EVENT	WELLS INCLUDED	FIELD PARAMETERS	ANALYTICAL SCHEDULE
Dissolved phase wells	MW01, MW02, MW07, MW08, MW12, MW15, MW16, MW22, MW26, MW28, MW29, MW30, MW31, MW32, MW33, and MW35. (See Figure 8)	Standing Water Level, pH, Redox, Temperature, Electrical Conductivity, note odour colour and flow characteristics	TRH, BEXN, Ionic Balance (Ca, Mg, Na, K, NH4, Cl, SO4, HCO ₃ , F, PO ₄ , NO ₃ , NO ₂) dissolved Fe, Mn, As, Methane
Backfill Sands wells	MW36, MW37 (See Figure 8)	Standing Water Level, pH, Redox, Temperature, Electrical Conductivity, note odour colour and flow characteristics	TRH, BEXN
Surface water samples	SW1, SW2, SW3 (See Figure 9)	pH, Redox, Temperature, Electrical Conductivity, note odour colour and flow characteristics	TRH, BEXN

Note: if any wells scheduled for analysis show PSH then these should be placed into the "PSH affected wells" program.

6.3 SAMPLING AND ANALYSIS

6.3.1 GROUNDWATER SAMPLING

Prior to sampling, all wells will be gauged with an interface water level meter, where PSH is identified, the thickness will be confirmed with a bailer and no further sampling will be undertaken. Where no PSH is identified, monitoring wells will be purged. Wells will be purged until groundwater parameters stabilise to within individually specified limits of previous readings.

Water quality parameters including pH, redox potential (Eh), electrical conductivity, dissolved oxygen and temperature will be recorded. Purging equipment will be thoroughly decontaminated between purge events with a phosphate free detergent (Decon 90) and rinsed with potable water and de-ionised water.

Samples from monitoring wells will be collected using a low flow pump or HydraSleeve TM, with samples placed directly into water sampling containers.

6.3.2 SURFACE WATER SAMPLING

Surface water samples are to be collected from three locations along the stormwater channel; one from upstream (S01), at the site's downgradient boundary (S02), and downstream of the site (S03). Samples from S01 and S03 are collected as a grab sample from the flowing water in the drainage line directly into the laboratory provided sample bottles, with the exception of the samples for metals which are field filtered prior to placing into the nitric acid preserved bottle. Sample S02 to be collected by bailer through an access port in the top of the stormwater culvert.

Field parameters (pH, dissolved oxygen, reduction/oxidation (redox), electrical conductivity and temperature) were monitored using a water quality meter placed directly into the drainage line (S01 and S03) or culvert (S02).

6.3.3 SAMPLE STORAGE AND HANDLING

Groundwater samples will be immediately placed in a chilled cooler to assist with sample preservation. A chain of custody (COC) form will be filled out with the sample ID and required analyses, and dispatched to the laboratory for analysis

6.3.4 LABORATORY ANALYSIS AND METHODS

Sample analysis will be conducted by Envirolab Services (NATA No. 2901). Secondary quality assurance analysis (inter-laboratory duplicate analysis) will be conducted by ALS Group Services Pty Ltd (NATA No. 825). All analysis will be undertaken will be conducted accordance with NATA approved methods.

6.3.5 GROUNDWATER REMEDIATION CRITERIA

WSP has applied guidance from Schedule B1 of NEPM 2013 in selection of site criteria for health (via vapour intrusion and drinking water pathways) and ecological receptors. Guideline values are listed in Table 6.2. The NEPM ecological criteria are based on ANZECC 2000 criteria that have been updated in the ANZG, 2018 guidance.

It is noted that HSLs are only relevant to dissolved phase hydrocarbons. Where PSH is present HSLs should not be used. It must be assumed that HSLs for some contaminants, if present, may be exceeded. The only component of diesel likely to represent risk a vapour risk is the F2 fraction. Sub-slab vapour monitoring is helpful in assessing the actual risks presented by PSH.

Application of NEPM ecological criteria as "groundwater" investigation criteria is a conservative approach as the guidelines were derived for receiving waters. The closest downgradient ecological receptor is an open storm water channel located approximately 300 m north-west of the site (down hydraulic gradient). The channel flows into Cahill Creek and then Winnererremy Bay (part of Pittwater) approximately 1 km northwest of the site. As Cahill Creek and Winnererremy Bay are tidal, criteria for marine ecosystems have been adopted.

CONTAMINANT	NEPM, 2013 HSLS FOR VAPOUR INTRUSION COMERCIAL / INDUSTRIAL	NEPM, 2013 HILS FOR DRINKING WATER	NHMRC, 2008 RECREATIONAL CRITERIA (10 × HILS)	NEPM, 2013 GILS FOR MARINE WATER	ANZG, 2018 95% TRIGGER VALUES FOR MARINE WATER		
TRH	TRH						
F1 (C ₆ -C ₁₀ less BTEX)	6,000	-	-	-	-		
F2 (C10-C16 less naphthalene)	Non Limiting	-	-	-	-		
F3 (>C16-C34)	-	-	-	-	-		
F4 (>C34-C40)	-	-	-	-	-		
BTEX							
Benzene	5,000	1	10	500	700		
Ethylbenzene	Non Limiting	300	3,000	-	5		
Toluene	Non Limiting	800	8,000	-	180		
Xylene (o-xylene)	-	-	-	-	350		
Xylene (m-xylene)	-	-	-	-	75		
Xylene (p-xylene)	-	-	-	-	200		
Total Xylene	Non Limiting	600	6,000	-	-		
PAHs							
Naphthalene	Non Limiting	-	-	16	16		

Table 6.2 Summary of proposed criteria (µg/L)

CONTAMINANT	NEPM, 2013 HSLS FOR VAPOUR INTRUSION COMERCIAL / INDUSTRIAL	NEPM, 2013 HILS FOR DRINKING WATER	NHMRC, 2008 RECREATIONAL CRITERIA (10 × HILS)	NEPM, 2013 GILS FOR MARINE WATER	ANZG, 2018 95% TRIGGER VALUES FOR MARINE WATER
Heavy Metals					
Arsenic	-	10	100	-	-
Cadmium	-	2	20	0.7	5.5
Chromium	-	50	500	4.4	4.4
Copper	-	2,000	20,000	1.3	1.3
Lead	-	10	100	4.4	4.4
Mercury	-	1	10	0.1	0.4
Nickel	-	20	200	7	70
Zinc	-	-	-	15	15

Notes:

1. HSLs based on Sand texture and groundwater present between 2 and 4 m bgl.

Evaluation of the effectiveness of the remediation system, and whether PSH has been removed to the extent practicable is subjective. Metrics that will be considered for this evaluation include:

- That the thickness of PSH in both extraction wells and observation wells has reduced from current levels.
- The extent of wells affected by PSH is reducing (ideally recognising this may not be achievable due to residual PSH in the profiles around affected bores).
- That the recovery of PSH by the system has declined to a point where, in mass removal terms, it is no longer considered to be providing meaningful/practical volumes (cost/benefit).
- That the dissolved phase is ideally declining (recognising that this also may not be achievable due to residual PSH in the profile providing an ongoing source for dissolved phase).

6.4 QUALITY ASSURANCE / QUALITY CONTROL

The pre-determined Data Quality Indicators (DQIs) established for the project in relation to precision, accuracy, representativeness, comparability and completeness are presented in Table 6.3.

Table 0.5 Troposed QA/QO		
DATA QUALITY OBJECTIVE	FREQUENCY CONDUCTED	DATA QUALITY INDICATOR
Precision and Accuracy		
Blind duplicates (Concentrations > or = 10 times EQL)	1/20 samples	< 30% RPD ¹
Blind duplicates (Concentrations between 5 and 10 times EQL)	1/20 samples	< 75% RPD
Blind duplicates (Concentrations < 5 times EQL)	1/20 samples	< 100% RPD
Rinsate samples	If non-dedicated equipment used	\leq rinse water blank

Table 6.3 Proposed QA/QC

DATA QUALITY OBJECTIVE	FREQUENCY CONDUCTED	DATA QUALITY INDICATOR
Trip Blank	1 per GME	<lor< td=""></lor<>
Trip Spike	1 per GME	70% -110%
Representativeness		
Sampling appropriate for media and analytes	All Samples	-
Samples extracted and analysed within holding times	All Samples	Hold Time: 6 months
Comparability		
Standard operating procedures adopted	All Samples	-
NATA accredited analytical methods used for all analyses	All Samples	-
Consistent field conditions, sampling staff and laboratory analysis	All Samples	-
Limits of reporting appropriate and consistent	All Samples	-
Completeness		
Soil description and COCs completed and appropriate	All Samples	-
Appropriate documentation	All Samples	-
Satisfactory frequency and result for QC samples	All Samples	-

Notes: ¹ If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgment will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sampling error is occurring in the field.

6.5 REPORTING

At the completion of each bi-annual groundwater monitoring event, results will be documented in a Groundwater Monitoring Event (GME) report. GME reports will include analytical results for on and offsite groundwater monitoring wells reported in accordance NSW EPA, 2011 *Guidelines for Consultants Reporting of Contaminated Sites*. At the completion of the 2 year monitoring program, an assessment of all results will be conducted to determine the effectiveness of the remedial strategy and make recommendations for on-going monitoring and/or future remediation.

In addition, reporting of the effectiveness of the total fluids removal system will be required, including presentation of the volume of PSH recovered and treated water disposed, and trends in PSH extent and thickness over time.

7 REGULATORY APPROVALS / LICENSING

The remedial program will be undertaken with due regard to legislative requirements and any relevant environment planning instruments that apply to the site.

7.1 VOLUNTARY MANAGEMENT PROPOSAL

The site and surrounds were declared as "significantly contaminated land" (Declaration Number 20141101) by the Environment Protection Authority (EPA), and is the subject of an EPA-approved voluntary management proposal (Notice No. 20141707, and as amended through Notice Number 20164409 and 20174407). It is noted that the VMP is currently under review.

The current VMP states the following objectives, and these are expected to be reinforced in the new VMP:

- Assess the extent of soil and groundwater contamination;
- Assess the risks posed by the contamination; and
- Remove PSH from groundwater to the extent practicable.

The VMP and its amendments set out STAs commitments with respect to conducting targeted remediation, continuing to remove PSH, implementation of monitoring, conducting assessments to better define the extent of impact and associated risks and development and maintenance of an EMP.

The VMP amendment (20174407) also requires engagement of a NSW EPA accredited site auditor to review the works and, upon completion of the remediation, provide a site audit statement and site audit report as to the suitability of on and offsite lands for continued commercial/industrial land use and the enforceability of the EMPs.

The strategy of this RAP focuses on the requirements for optimising the ongoing PSH removal, and the ongoing monitoring of the plume.

7.2 APPROVALS REQURIED TO FACILITATE REMEDIATION

The following aspects will need to be discussed with the remediation contractor, and in cases where triggers for approvals are met, approvals will need to be sought prior to works commencing.

7.2.1 PLANNING APPROVALS

SEPP 55 provides the planning framework for the remediation of contaminated land within NSW.

A review of Clause 9 of SEPP 55 indicates that the proposed remediation works fall under Category 2 of SEPP 55. However, this is subject to review of Council Policy in relation to contaminated sites.

In accordance with the requirements of SEPP55 for Category 2 Remediation Works:

- Council will be notified in writing not less than 30 days prior to commencement of any site remediation works.
- Council will be notified of works completion within one month of completion of work.

The Environmental Planning and Assessment Act 1979 (the EP&A Act) provides for the environmental impact assessment of development in NSW. Part 5, Division 5.1 of the EP&A Act generally specifies the environmental impact assessment requirements for activities undertaken by public authorities, such as STA, which do not require development

consent under the EP&A Act. Even if Council do not require planning consent, it is likely that the works will still require STA to prepare a review of environmental factors (REF) under Part 5, Division 5.1 of the EP&A Act.

7.2.2 COUNCIL ROAD OPENING AND TRAFFIC MANAGEMENT APPROVALS

Prior to installation of the extraction wells and pipework Council (Northern Beaches Council) approvals must be obtained for construction works in roadways and nature reserves. This will include road opening permits and road closure requirements during the works;

7.2.3 WATER ACCESS LICENCE (WATER MANAGENT ACT 2000)

As STA is a government entity, the regulator for groundwater access licencing is the Natural Resources Access Regulator (NRAR). It is possible that the volumes of water to be extracted, and the location of the works, may mean the activity can be exempt, though an application would still be required.

A water access licence application will need to be made and the licence or exemption documentation provided prior to water being extracted for treatment.

7.2.4 TRADE WASTE AGREEMENT

A trade waste agreement must be obtained with Sydney Water which will allow the discharge of the treated water to sewer. The remediation contractor is expected to negotiate this approval in consultation with STA.

7.2.5 WASTE MANAGEMENT OF RECOVERED OIL

Groundwater to be removed from site will require classification in accordance with NSW EPA (2014) *Waste Classification Guidelines* prior to disposal.

Part 6 of the Regulations specify that if waste is transported from a premises the waste generator must ensure that the waste is transported:

- To a waste facility that is licensed under the Act; or
- To a person carrying on mobile waste processing that is licensed under the Act; or
- To a place that can otherwise lawfully be used as a waste facility for that waste.

All waste transported from the Site that is required by the POEO (Waste) Regulation, 2005 to be tracked, must be tracked using EPA's on-line tracking system or an alternative tracking system approved in writing by the EPA.

Diesel / oily water, which is recovered through the groundwater remediation system is required to be appropriately disposed of offsite at a licensed waste receiving facility. The waste is pre-classified as waste oil/water, hydrocarbons/water mixtures or emulsions waste (waste code J120) and will be required to be tracked in accordance with the Protection of the Environment Operations (Waste) Regulation 2005.

7.2.6 ENVIRONMENT PROTECTION LICENCE UNDER THE POEO ACT 1997

It is considered unlikely that the trade waste agreement negotiated with Sydney Water will allow for more than 100 ML per year to be discharged. Treatment of 100 ML per annum is the trigger for contaminated groundwater treatment becoming a scheduled activity under the Act. Therefore, it is unlikely that an EPL will be needed for this work.

However, the wording of the Act states that a system with the *capacity* to treat 100 ML per year must be licenced. Therefore, this should be considered in consultation with the remediation contractor and either the system be designed so that its capacity is less than this trigger, or an EPL be negotiated with the NSW EPA.

8 ENVIRONMENTAL MANAGEMENT PLAN

Any future excavation of soil (e.g. during maintenance or development works) will be undertaken with due regard to legislative requirements and any relevant environment planning instruments that apply to the site, including the following:

- Protection of the Environment Operations Act (1997);
- Contaminated Land Management Act (1997); and
- NSW State Environmental Planning Policy 55.

Works will also be subject to the recommendations of the site Environmental Management Plan (WSP, 2017c)

8.1 HOURS OF OPERATION

Remediation works shall only be permitted during the following hours:

- Monday to Friday: 7:00 am to 5:00 pm
- Saturday: Within Council permitted times
- Sunday and Public Holidays: No work permitted.

Emergency work is permitted to be completed outside of these hours.

8.2 SITE ACCESS

The site is currently operated by the STA as Bus Depot. The site currently operates with restricted access. All site access will be subject to STA approval and relevant site specific inductions. The timing of works will be conducted in consultation with STA site managers to minimise impact on site operations. The work area for drilling and excavations must be barricaded and appropriately signed to manage potential occupational health and safety hazards.

Access and permission from adjoining landholders for offsite works will be facilitated by STA.

8.3 UNDERGROUND SERVICES

The remediation contractor shall be responsible for the location and protection of underground services which have the potential to be impacted by the remedial works.

8.4 NOISE

The remediation works shall comply with AS2436-1981 Guide to Noise Control on Construction, Maintenance Demolition Sites and the NSW EPA (2009) *Interim Construction Noise Guideline* for the control of noise from construction sites.

Mechanical equipment used on site will be in good working order and will be fitted with appropriate silencers when necessary.

8.5 SOIL WASTE CLASSIFICAITON AND DISPOSAL

Soil arisings generated during future groundwater well installation works will be collected in sealable drums. Waste classification will be based on the chemical results from the soil tests collected during the drilling works, or if no soil tests are made, then a composite sample for every three drums will be collected from the drum contents for analysis of the chemicals of concern. A waste classification report should be prepared with reference to the NSW EPA, 2014 *Waste Classification Guidelines – Part 1: Classifying waste* and the soil disposed of by an appropriately licenced contractor to a facility lawfully able to receive the class of waste.

8.6 GROUNDWATER DISCHARGES

Contaminated groundwater removed as part of the groundwater monitoring program will be stored onsite prior to disposal at a facility licensed to receive the liquid waste. Alternatively, the small quantities of contaminated groundwater extracted during monitoring events could be disposed of to the workshops waste oil system. This would be disposed of by liquid waste disposal contractor.

Contaminated groundwater removed as part of the ongoing skimming program will be disposed of by liquid waste contractors to a facility licensed to receive the liquid waste. This will be in accordance with all applicable legislative requirements and will be the responsibility of the remediation contractor

9 WORK HEALTH AND SAFETY

A Site Specific Occupational Health & Safety Plan will be developed by the remediation contractor prior to the commencement of remedial works in order to protect the health and safety of contractor staff and the site occupants.

The plan will include:

- Emergency phone numbers;
- Definition of Roles and Responsibilities for remediation personnel;
- Hazard identification and control;
- Material Safety Data Sheets for known contaminants at the site;
- Handling procedures for contaminated material;
- Use of Personal Protective Equipment;
- Decontamination procedures; and
- Incident reporting.

All staff will be made aware of the Site Specific Occupational Health & Safety Plan and an on-site briefing will be carried out prior to the commencement of remediation activities.

Site specific hazards which require identification and control are likely to include:

- Slips, trips and falls;
- Contact with contaminated media (soil and/or groundwater);
- Noise
- Manual handling hazards; and
- Below ground services.

10 LIMITATIONS

The findings of this report are based on the scope of work outlined in this report. WSP performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession. No warranties, express or implied, are made.

Subject to the scope of work, WSP assessment was limited strictly to identifying environmental conditions within groundwater at the Site and does not include evaluation of any other issues. This report does not comment on any regulatory obligations based on the findings. This report relates only to the objectives stated and does not relate to any other work undertaken for the Client or site owner. It is a report based on the conditions and concentrations observed in groundwater at the time of the sample collection. These conditions may change with time and space.

All conclusions regarding the Site are the professional opinions of the WSP personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, WSP assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of WSP, or developments resulting from situations outside the scope of this project.

WSP is not engaged in environmental assessment and reporting for the purpose of advertising, sales promoting, or endorsement of any Client interests, including raising investment capital, recommending investment decisions, or other publicity purposes.

SCOPE OF SERVICES

This environmental site assessment report (the report) has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the client and WSP (scope of services). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

In preparing the report, WSP has relied upon data, surveys, analyses, designs, plans and other information provided by the client and other individuals and organisations, most of which are referred to in the report (the data). Except as otherwise stated in the report, WSP has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report (conclusions) are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. WSP will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to WSP.

ENVIRONMENTAL CONCLUSIONS

In accordance with the scope of services, WSP has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentration of contaminants, can change with time.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the client and no other party. WSP assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of WSP or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

WSP will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

The scope of services did not include any assessment of the title to or ownership of the properties, buildings and structures referred to in the report nor the application or interpretation of laws in the jurisdiction in which those properties, buildings and structures are located.

11 REFERENCES

- ANZECC/ARMCANZ, 2000 Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management
 Council of Australia and New Zealand, Paper No 4, Canberra
- ANZG, 2018 Australian & New Zealand Guidelines for Fresh & Marine Water Quality (www.waterquality.gov.au/anz-guidelines)
- AS/NZS 5667 (1998) Water Quality Sampling
- CRC Care, 2010 Technical Report No 18 Selecting and assessing strategies for remediating LNAPL in soils and aquifers
- CRC Care, 2013 Technical Report No 23 Petroleum hydrocarbon vapour intrusion assessment: Australian guidance.
- Dutch Ministry for Infrastructure and the Environment (2009) Soil Remediation Circular 2009
- ENRS, 2016a Human Health & Ecological Risk Assessment (HHERA) STA Bus Depot Monavale
- ENRS, 2016b Summary of Multi-Phase Extraction (MPE) Results 12th October 2016 STA Bus Depot, 58 Darley Street Mona Vale, NSW, 2103
- ENRS, 2018 Groundwater Monitoring Event (GME) Report April 2018 STA Bus Depot Monavale 58 Darley Street, Mona Vale, NSW, 2103
- ENRS, 2016c Draft: Groundwater Monitoring Event (GME) Report Round 6 September 2016 STA Bus Depot Monavale 58 Darley Street, Mona Vale, NSW, 2103
- ENRS, 2017a Groundwater Monitoring Event (GME) Report February 2017 STA Bus Depot Monavale 58 Darley Street, Mona Vale, NSW, 2103
- ENRS, 2017b Groundwater Monitoring Event (GME) Report August 2017 STA Bus Depot Monavale 58 Darley Street, Mona Vale, NSW, 2103
- Enviroview 2019 Interim Site Audit Advice 06 Revised Remediation Action Plan, STA Bus Depot Mona Vale, 58 Darley Street, Mona Value, NSW 2103
- Enviroview, 2017a Interim Site Audit Advice 01 Proposal to undertake Multi-phase Vacuum Extraction, STA Depot, 58 Darley Street, Mona Value, NSW 2103
- Enviroview, 2017b Interim Site Audit Advice 02 –Multi-phase Vacuum Extraction Event August 2017, STA Depot, 58 Darley Street, Mona Value, NSW 2103
- Enviroview, 2018a Interim Site Audit Advice 03 Groundwater Monitoring Event (GME) Report August 2017, STA Bus Depot Mona Vale, 58 Darley Street, Mona Value, NSW 2103.
- Enviroview, 2018b Interim Site Audit Advice 05 Groundwater Monitoring Event (GME) Report April 2018, STA Bus Depot Mona Vale, 58 Darley Street, Mona Value, NSW 2103
- National Environment Protection Council (2013) National Environment Protection Measure 2013 Assessment of Site Contamination. Schedule B(1): Guideline on the Investigation Levels for Soil and Groundwater;
- NEPC, 2013 National Environment Protection (Assessment of Site Contamination) Measure 1999
- NHMRC, 2008 Guidelines for Managing Risks in Recreational Water
- Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J,. Zevenhoven R, Loeppert RH. Arsenic in soil and groundwater: an overview. In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R and Loeppert RH, editors. Trace Metals and other Contaminants in the Environment, Elsevier; 2007; V.9, p. 3-60

- NSW EPA, 1994 Contaminated Sites Guidelines for Assessing service Station Sites
- NSW EPA, 2004 Technical Note: Investigation of Service Station Sites;
- NSW EPA, 2007 Contaminated Sites: *Guidelines for the Assessment and Management of Groundwater Contamination*
- NSW EPA, 2009 Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.
- NSW EPA, 2011 Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites
- NSW EPA, 2014a Best Practice Note: Landfarming
- NSW EPA, 2014b Waste Classification Guidelines Part 1: Classifying waste.
- NSW EPA, 2015 Technical Note: Light Non-Aqueous Phase Liquid Assessment and Remediation.
- NSW EPA, 2017 Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme, 3rd Edition;
- State Environmental Planning Policy No. 55 (1998) Remediation of Land (SEPP 55).
- WA Department of Environmental Planning, 2004 Contaminated Sites Management Series: Use of Monitored Natural Attenuation for Groundwater Remediation. WA DEP, Perth
- WSP, 2012a Stage 2 Contaminated Site Investigation, Mona Vale Bus Depot, 58 Darley Street, Mona Vale NSW
- WSP, 2012b Soil and Groundwater Delineation Report, Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW
- WSP, 2013a Offsite Soil and Groundwater Delineation Report, Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW
- WSP, 2013b Remedial Action Plan, STA Mona Vale Bus Depot 58 Darley St, Mona Vale NSW
- WSP, 2015 Remedial Action Plan (Revised 2015) State Transit Mona Vale Bus Depot 58 Darley St, Mona Vale NSW
- WSP, 2017a Soil Vapour Assessment- Mona Vale Bus Depot 58 Darley Street, Mona Vale NSW
- WSP, 2017b Passive Skimmer Trial- Mona Vale Bus Depot, 58 Darley Street, Mona Vale NSW
- WSP, 2017c Environmental Management Plan Mona Vale Bus Depot, 58 Darley Street, Mona Vale NSW
- WSP, 2017d Soil Vapour Assessment STA Bus Depot 58 Darley Street, Mona Vale NSW
- WSP, 2017e Multiphase Vapour Extraction (MPVE) State Transit Authority Bus Depot, Mona Vale August 2017
- WSP, 2017f Multiphase Vapour Extraction (MPVE) State Transit Authority Bus depot, Mona Vale November 2017 (Second event)
- WSP, 2018 Multiphase Vapour Extraction (MPVE) State Transit Authority Bus Depot, Mona Vale January 2018 (Third Event)
- WSP, 2019a Groundwater Monitoring Event October 2018 STA Mona Vale Bus Depot 58 Darley Street, Mona Vale, NSW (report dated January 2019)
- WSP, 2019b Groundwater Monitoring Event May 2019 STA Mona Vale Bus Depot 58 Darley Street, Mona Vale, NSW (report dated July 2019)
- WSP, 2020a Groundwater Monitoring Event Oct 2019 and Feb 2020, STA Mona Vale Bus Depot 58 Darley Street, Mona Vale NSW dated March 2020.
- WSP, 2020b Factual Record of Well Installation Works, Mona Vale Bus Depot, 58 Darley Street, Mona Vale, NSW dated March 2020

- WSP, 2020c Offsite Vapour Intrusion Assessment, STA Mona Vale dated March 2020
- WSP, 2020d, Data Gap Assessment, STA Mona Vale Bus Depot, 58 Darley Street, Mona Vale NSW dated April 2020

APPENDIX A FIGURES

State Transit Authority Groundwater Monitoring Event

0 0.25 0.5 km

Site Locality

Source: Bing Maps

Figure 1 Site Location PS111744 GME – Oct 2019 & Feb 2020 STA Bus Depot, 58 Darley Street Mona Vale

State Transit Authority Groundwater Monitoring Event

Basemap Source: NSW Government – Six Maps

Figure 2 Site and Surrounds PS111744 GME – Oct 2019 & Feb 2020 STA Bus Depot, 58 Darley Street Mona Vale

State Transit Authority Groundwater Monitoring Event

Basemao Source: NSW Government - Six Maps

Figure 3 Site Current and Historical Features PS111744 GME – Oct 2019 & Feb 2020 STA Bus Depot, 58 Darley Street Mona Vale

Basemap Source: NSW Government – Six Maps

Figure 4 Soil Boreholes and Groundwater Wells PS111744 - Remediation Action Plan STA Bus Depot, 58 Darley Street Mona Vale

Basemap Source: Google Earth

NSD

State Transit Authority Remediation Action Plan

Basemap Source: NSW Government - Six Maps

Figure 6 Hydrocarbon Results PS111744 GME – Oct 2019 & Feb 2020 STA Bus Depot, 58 Darley Street Mona Vale **NSD**

State Transit Authority Groundwater Monitoring Event

Basemap Source: NSW Government – Six Maps

Figure 7 Inferred Groundwater Flow PS111744 GME – Oct 2019 & Feb 2020 STA Bus Depot, 58 Darley Street Mona Vale wsp

Basemap Source: NSW Government – Six Maps

Figure 8 Surface Water Monitoring + Location of MW17 PS111744 GME – Oct 2019 & Feb 2020 STA Bus Depot, 58 Darley Street Mona Vale

Figure 9 Conceptual Site Model PS111744 GME Jan 20 STA Bus Depot, 58 Darley Street Mona Vale

NSD

Basemap Source: NearMaps

Figure 10 Conceptual Infrastructure (schematic only) PS111744 - Remediation Action Plan STA Bus Depot, 58 Darley Street Mona Vale

APPENDIX B SUMMARY RESULTS

Appendix B - Table 1 Soil Summary Results

						В	BTEX									Р	AH										TPH						Heavy	Metals	6		
								ts)																					ects								
								Detects)						ane										Detects)					f Dete								
								of D						ienzo(b)&(k)fluoranthene	e		ene			,2,3-c,d)pyrene				Dete					o E								
								E		e		ene	e	lora	enzo(g,h,i)perylene		Dibenz(a,h)anthracene			d(b				o					(Sum			ŝ					
						ne		I (S	ene	ylen		enz(a)anthrac	/ren	k)fl)per		ant	e		3-c,	e	ane		mns)		C14	C28	36	C36			(1/+111)					
					e	ezue		Total	hth	hth	cene	ant	a) pi)&(d	g,h,i	ne	(a,h)	the	e	(1,2,	aler	thre		PAH (- C3			C29-C36	-01		Ξ	Ē			~		
					Benzene	Ethylbenzene	[oluene	(ylene	cenaphthe	cenaphthyle	nthracene	uz(a)	senzo(a))ozi)ozi	Chrysene	enz	luoranthene	luorer	ndeno(1,	laphthale	henanthre	ene	otal P.	1 C6	1 C10	H C15	<u><u></u></u>	PH+C10	enic	admiun	Chromium	opper	g	ercur	ickel	ы
					Ber	Eth	P	X	Ace	Ace	Ant	Ber	Ber	8	В		_	Ē	ш	-	2		Pyr	Tot	ТРН	Н	трн	H	- F	Ars	c		0	Lead	Σ	z	Zin
FOI					mg/kc 0.2	0.5	_	/kg mg/kg 5 0.5	g mg/m	a ma/ka	a ma/ka 0.1	-	mg/kg 0.05	ma/ka 0.2	mg/kg 0.1	mg/kg 0.1		ma/ka 0.1	ma/ka 0.1		mg/kg 0.1	ma/ka 0.1	<u>ma/ka</u> 0.1	ma/ka 0.1	mg/kg 10	mg/kg 50	<u>ma/ka</u> 100	mg/kg 100	mg/kg 50	ma/ka 4	mg/kg 0.5	mg/kg	mg/kg 1	mg/kg	0.1	mg/kg 1	mg/kg 1
NEPC, 2)13 - HSL	Ls and	d HILs Industria	al, Sand, <1m			_			0.1	0.1	0.1	40	0.2	0.1	0.1	0.1	0.1	0.1	0.1	NL	0.1	0.1	4000	260*		100	100	50		900	3600	240,000	<u> </u>		6000	400,000
Field ID	Depth	h	Date	Matrix																																	
WSP, 20	12a (Ons	site)							-																									-	-		
MW01 MW01	0.5		19/12/2011 19/12/2011	soil soil	<0.2		_	.5 ND .5 ND	_	_	<0.1		<0.05 <0.05	<0.2 <0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 0.2	<0.1 4.5	<0.1 <0.1	<0.1 2.5	<0.1 7.4	<0.1	ND 18.8	<25 51	<50 2200	<100 5300	<100 <100	ND 7551	10 8	<0.5 <0.5	6 9	9 5	11 3	<0.1 <0.1	2	15 10
MW01	2.7		19/12/2011	soil	<0.2				_			<0.1	<0.05	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<25	<50	<100	<100	ND	7	<0.5	12	7	4	<0.1	4	14
MW03	0.5		19/12/2011	soil	<0.2	_	_	_	_	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND -	<25	<50	<100	<100	ND	27	< 0.5	11 11	6 6	28	<0.1	3	12 10
MW03 MW04	1.5 0.5		19/12/2011 19/12/2011	soil soil	<0.2		_	_	_	<0.1	<0.1	<0.1	- <0.05	< 0.2	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	- ND	<25 <25	<50 <50	<100 <100	<100 <100	ND ND	15 27	<0.5 <0.5	16	50	6 72	<0.1 <0.1	4	57
MW04	2.3		19/12/2011	soil	<0.2		_			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<25	<50	<100	<100	ND	31	<0.5	13	12	7	<0.1	6	15
SB01 SB01	0.5		19/12/2011 19/12/2011	soil soil	0.3		_	_	_	<1 4.1	1	<1 <1	1.2 1.2	<2 <2	<1 <1	1.6 1.9	<1 <1	2	11 35	<1 <1	11 52	9.3 55	5 8.6	48.2 187.8	110 250	7100 9400	17000 27000	<100 <100	24210 36650	5 <4	<0.5 <0.5	4 6	1 3	2	<0.1 <0.1	1	4
SB01	2.7	1	19/12/2011	soil	<0.2	<1	<0.	.5 ND	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.2	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.3	<0.1	0.4	<25	<50	<100	<100	ND	26	<0.5	18	20	7	<0.1	6	27
SB02 SB02	1		19/12/2011 19/12/2011	soil soil	0.2		_	_	_	<1 3.5	<1 4.2	<1 <1	<0.5 1	<2 <2	<1 <1	<1 1.9	<1 <1	<1 3.5	3.5 27	<1 <1	6.2 46	6.3 45	<1 6.5	18.2 155.6	260 200	7500 5200	23000 18000	<100 <100	30760 23400	10 13	<0.5 <0.5	8	3	3 5	<0.1 <0.1	3 2	7
SB03	1	1	19/12/2011	soil	<0.2	<1	<0.	.5 ND	0.6	0.3	0.2	<0.1	<0.05	<0.2	<0.1	<0.1	<0.1	0.2	2	<0.1	0.3	4.2	0.7	8.5	<25	300	1700	<100	2000	51	<0.5	14	5	11	<0.1	5	18
SB03 SB04	1.5 0.6		19/12/2011 19/12/2011	soil soil	<0.2		_	_		_		<0.1 <0.1	<0.05	<0.2 <0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	0.1	<0.1 <0.1	0.1	<25 <25	<50 <50	<100 <100	<100 <100	ND ND	10 49	<0.5 <0.5	14 13	11 21	6 89	<0.1 <0.1	5 3	18 40
SB04	2	1	19/12/2011	soil	<0.2	<1	<0.	.5 ND	31	6.8	10	<1	1.3	<1	<1	2.8	<1	5.3	48	<1	98	83	10	296.2	280	11000	32000	<100	43280	5	<0.5	6	3	2	<0.1	2	6
SB04 SB05	2.7		19/12/2011 19/12/2011	soil soil	<0.2 <0.2					_	<0.1	<0.1 <0.1	<0.05	<0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 0.6	<0.1 <0.1	<0.1	<0.1 1.2	<0.1 0.1	0 3.4	<25 <25	<50 140	<100 430	<100 <100	ND 570	<4 14	<0.5 <0.5	<1 11	<1 4	<1 3	<0.1 <0.1	<1 3	3 12
SB05	2.7		19/12/2011	soil	<0.2		_	_	_		-		< 0.05	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<25	<50	<100	<100	ND	8	< 0.5	6	2	2	<0.1	1	6
SB06	0.3		19/12/2011	soil	<0.2		_	_	_	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<25	<50	<100	<100	ND	4	<0.5	3	<1	1	<0.1	<1	3
SB06 SB07	0.3		19/12/2011 20/12/2011	soil soil	<0.2		_	_	_	< 0.1	<0.1	- <0.1	- <0.05	- <0.2	- <0.1	- <0.1	- <0.1	- <0.1	- <0.1	- <0.1	- <0.1	- 0.1	- <0.1	- 0.1	<25 <25	<50 <50	<100 <100	<100 <100	ND ND	5 11	<0.5 <0.5	3 48	2 25	2 16	<0.1 <0.1	1 45	4 38
SB07	1	2	20/12/2011	soil	<0.2							<0.1	< 0.05	< 0.2	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	ND	<25	<50	<100	<100	ND	<4	< 0.5	6	2	5	<0.1	<1	3
SB08 SB08	0.3		20/12/2011 20/12/2011	soil soil	<0.2		_			<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND -	<25 <25	<50 <50	<100 <100	<100 <100	ND ND	6 12	<0.5 <0.5	4 14	2	3 19	<0.1 <0.1	2	8 44
WSP, 20	12b (Ons	site)									- -					-												_						1	1		
MW05 MW05	2		13/08/2012 13/08/2012	Soil Soil	<0.2		_	_	_	_	<1 4.3	<1 <1	<0.5 <0.5	<2 <2	<1 <1	<1 <1	<1 <1	<1 1.2	5.8 25	<1 <1	8.4 38	11 53	<1 5.1	26.7 137.2	<25 210	1700 7100	6000 28,000	<100 <100	7750 35,150	-	-	-	-	-	-	-	-
MW06	1.5	1	13/08/2012	Soil	<0.2	<1	-	.5 ND	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<25	<50	<100	<100	ND	-	-	-	-	-	-	-	-
MW06 MW07	2 1.5		13/08/2012 13/08/2012	Soil Soil	<0.2		_	.5 ND .5 ND	-	<0.1		<0.1 <0.1	<0.05 <0.05	<0.2 <0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.6 <0.1	<0.1 <0.1	<0.1 <0.1	1.6 <0.1	0.2 <0.1	2.5 ND	<25 <25	500 <50	1900 <100	<100 <100	2450 ND	-	-	-	-	-	-	-	-
MW07	2		13/08/2012	Soil	<0.2		_		_	_	<1	<1	<0.5	<2	<1	<1	<1	<1	4.2	<1	10	8.7	<1	24.3	34	1800	4300	<100	6150	-	-	-		-	-	-	-
SB09 SB09	0.5		13/08/2012	Soil	< 0.2	_	_	_	_	_		<0.1	< 0.05	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1 3	ND 103.3	<25 190	<50 5500	<100 19,000	<100 <100	ND 24,550	-	-	-	-	-	-	-	-
SB09 SB10	1.5		13/08/2012 13/08/2012	Soil Soil	0.3 <0.2			_	_	2.8		<1 <0.1	<0.5 <0.05	<2 <0.2	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1	17 <0.1	<1 <0.1	36 <0.1	36 <0.1	<0.1	ND	<25	<50	<100	<100	24,550 ND	-	-	-	-	-	-	-	-
SB10	2		13/08/2012	Soil	<0.2	_	_		1.7	_	1.3	<1	< 0.5	<2	<1	<1	<1	<1	5.9	<1	6.7	13	1	30.6	33	2300	6300	<100	8650	-	-	-	-	-	-	-	-
SB11 SB11	1.9		13/08/2012 13/08/2012	Soil Soil	<0.2		_	_			<0.1	<0.1 <1	<0.05 <0.5	<0.2 <2	<0.1	<0.1 <1		<0.1 <1	<0.1 15	<0.1 <1	1.6 29	<0.1 30	<0.1 2.5	ND 89.3	<25 140	93 4800	<100 16,000	150 <100	93 20.850	-	-	-	-	-	-	-	-
SB12	0.5	1	13/08/2012	Soil	<0.2	<1	<0.	.5 ND	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<25	<50	<100	<100	ND	-	-	-	-	-	-	-	-
SB12 SB13	1.8 1.5		13/08/2012 13/08/2012	Soil Soil	0.2	<1 <1	_	_	_	_	7.9		<0.5	<2 <0.2		<1	<1 <0.1	1.3 <0.1	39 <0.1	<1 <0.1	100 <0.1	85 <0.1	6.7 <0.1	258.1 ND	330 <25	16,000 <50	43,000 <100	110 <100	59,110 ND	-	-	-	-	-	-	-	-
SB13	1.3		13/08/2012	Soil		<1	_	.5 ND	_		0.9			<0.2					3.6			7.9	0.7	19	<25	1300	3800	<100	5150	-	-	-	-	-	-	-	-
SB14 SB14	1 1.5		13/08/2012 13/08/2012	Soil Soil	<0.2 <0.2			.5 ND			<0.1 <0.1		<0.05 <0.05			<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 0.1	<0.1 0.3	<0.1 <0.1	ND ND	<25 <25	<50 <50	<100 <100	<100 <100	ND ND	-	-	-	-	-	-	-	-
WSP, 20			13/00/2012	3011	<0.2	< 1	<0.		<0.1	<0.1	<0.1	<0.1	<0.05	<u.z< th=""><th><v.1< th=""><th><u.1< th=""><th><u.1< th=""><th><v.1< th=""><th><v.1< th=""><th><u.1< th=""><th>U.1</th><th>0.3</th><th><u.1< th=""><th>UND</th><th><20</th><th><00</th><th><100</th><th><100</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th></u.1<></th></u.1<></th></v.1<></th></v.1<></th></u.1<></th></u.1<></th></v.1<></th></u.z<>	<v.1< th=""><th><u.1< th=""><th><u.1< th=""><th><v.1< th=""><th><v.1< th=""><th><u.1< th=""><th>U.1</th><th>0.3</th><th><u.1< th=""><th>UND</th><th><20</th><th><00</th><th><100</th><th><100</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th></u.1<></th></u.1<></th></v.1<></th></v.1<></th></u.1<></th></u.1<></th></v.1<>	<u.1< th=""><th><u.1< th=""><th><v.1< th=""><th><v.1< th=""><th><u.1< th=""><th>U.1</th><th>0.3</th><th><u.1< th=""><th>UND</th><th><20</th><th><00</th><th><100</th><th><100</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th></u.1<></th></u.1<></th></v.1<></th></v.1<></th></u.1<></th></u.1<>	<u.1< th=""><th><v.1< th=""><th><v.1< th=""><th><u.1< th=""><th>U.1</th><th>0.3</th><th><u.1< th=""><th>UND</th><th><20</th><th><00</th><th><100</th><th><100</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th></u.1<></th></u.1<></th></v.1<></th></v.1<></th></u.1<>	<v.1< th=""><th><v.1< th=""><th><u.1< th=""><th>U.1</th><th>0.3</th><th><u.1< th=""><th>UND</th><th><20</th><th><00</th><th><100</th><th><100</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th></u.1<></th></u.1<></th></v.1<></th></v.1<>	<v.1< th=""><th><u.1< th=""><th>U.1</th><th>0.3</th><th><u.1< th=""><th>UND</th><th><20</th><th><00</th><th><100</th><th><100</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th></u.1<></th></u.1<></th></v.1<>	<u.1< th=""><th>U.1</th><th>0.3</th><th><u.1< th=""><th>UND</th><th><20</th><th><00</th><th><100</th><th><100</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th></u.1<></th></u.1<>	U.1	0.3	<u.1< th=""><th>UND</th><th><20</th><th><00</th><th><100</th><th><100</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th></u.1<>	UND	<20	<00	<100	<100			-	-	-				
MW08	1		12/11/2012	Soil		<1	_	.5 ND		_	<0.1			<0.2					<0.1		<0.1	<0.1	<0.1	ND	<25	<50	<100	<100	ND 6580	-	-	-	-	-	-	-	-
MW08 MW09	2		12/11/2012 12/11/2012	Soil Soil	<0.2	<1 <1	_	.5 ND	_	_			<0.5 <0.05	<2 <0.2	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1	<1 <0.1	<1 0.5	<1 <0.1	<1 <0.1	ND 0.5	<25 <25		6300 <100	<100 <100	6580 ND	-	-	-	-	-	-	-	-
MW09	2	1	12/11/2012	Soil	<0.2	<1	<0.	.5 ND	8.9	7.7	12	0.4	< 0.05	<0.2	<0.1	0.4	<0.1	2.8	35	<0.1	61	79	8.5	215.7	180	9100	38,000	<100	47,150	-	-	-	•	-	-	-	-
MW10 MW10	0.2		22/03/2013 22/03/2013	Soil Soil	<0.2	<1 <1	_		_	_	<0.1 <0.1		<0.5 <0.5	<0.2 <0.2			<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1		<0.1 <0.1	<0.1 <0.1	ND ND	<25 <25	<50 <50	<100 <100	<100 <100	ND ND	-	-	-	-	-	-	-	-
MW10	1.2		22/03/2013	Soil	<0.2	<1	<0.	.5 ND	<0.1	<0.1	<0.1		<0.5	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	0.1	<0.1	0.1	<25	<50	<100	<100	ND	-	-	-	-	-	-	-	-
MW10	2		22/03/2013	Soil	<0.2		_		_	_		<1		<2	<1	<1		2.1	26	<1	41	42	3.7	97.7	120		27,000		36,250	-	-	-	-	-	-	-	-
MW10 MW11	4		22/03/2013 12/11/2012	Soil Soil	<0.2 <0.2	_	_		_	_	0.2		<0.5 <0.05		<0.1 <0.1	<0.1 <0.1		0.2 <0.1	2 <0.1	<0.1 <0.1	2.8 <0.1	3.4 <0.1	0.4 <0.1	7.8 ND	<25 <25	480 <50	1500 <100	<100 <100	2030 ND	-	-	-	-	-	-	-	-
MW11	1.5	1	12/11/2012	Soil	<0.2	<1	<0.	.5 ND	<0.1	<0.1	<0.1	<0.1	<0.05	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<25	<50	<100	<100	ND	-	-	-	-	-	-	-	-
MW12 MW12	1.5		12/11/2012 12/11/2012	Soil Soil	-	<1 <1	-	.5 ND .5 ND															<0.1 <0.1	ND ND	<25 <25	<50 <50	<100 <100	<100 <100	ND ND	-	-	-	-	-	-	-	-
* The crit	eria appli	ied to	these anlytes a																																is took p	olace.	
Statistic	al Summ of Results				56	56	56	6 56	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	56	EC I	56	56	50	EC	<u>٦</u> ٢	25	25	25	0F	0F	25	25
	of Detects				6			_				52 1	52 4	0	52 0	52		52 12	21	0	52 24	25	52 17	31	56 14		21	56 2	56 22	25 22	25	25 24	25	25 24	25 0	25 22	25
	Concent				< 0.2	_	_		<0.1	<0.1	<0.1		< 0.05			<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	0	<25	<50	<100	<100	0	<4	< 0.5	<1	<1	<1	<0.1	<1	3
Iviaximun	Concent				0.7	0.53	_	_	_	_		<1 0.18	1.3 0.17	<2 0.33	<1 0.17	2.8 0.3	<1 0.17	5.3 0.54	48 6	<1 0.17	100 11	85 11	10 1.3	296.2 34	330 52	16,000 1853	43,000 5844	150 53	59,110 7685	51 14	<0.5 0.25	48 11	50 8.5	89 12	<0.1 0.05	45 4.4	57 15
Average	COLLEN					0.00													~					~ ~	~-		2011						2.0				
Average Median C Standard	oncentra	ation			0.1	0.5					0.05		0.025		0.05		0.05	0.05	0.05	0.05	0.05	0.075 23	0.05	0.05	12.5 83	25 3558	50 10,947	50 15	0	10 14	0.25	9 9	5 11	5 22	0.05	3 8.6	10 15

State Transit Authority RAP Update 58 Darley Street, Mona Vale NSW

								Guaging Data				Field Pa	rameters			
							Standing Water Level (mBTOC)	PSH thickness (m)	Adjusted Standing Water Level (mAHD)	pH (Field)	Redox (Field)	Electrical Conductivity (Field)	Temperature (Field)	Dissolved Oxyven (Field)	Well headspace PID	omments
Units Laboratory F	2QL									pH units 0.01	mV 0.01	μS/cm 1	°C 0.1	 ppm 0.01	> ppm 0.1	
Well ID	Easting	Northing	Ground (mAHD)	TOC (mBGL)	TOC (mAHD)	Date		1	1	0.01	0.01	_	0.12	0.01	0.1	<u> </u>
MW01	-	-	2.85 2.85	0.063	2.787	10-01-12 24-08-12	-	0	-	7.21	29.8 -28.3	911 640	25.7 17.2	0.07	-	
MW01 MW01	-	-	2.85	0.063	2.787	19-10-18	- 1.70	0	1.08	6.8	-127.7	846	20.1	3.1	-	clear, no odour
MW01 MW01	-	-	2.85 2.85	0.058	2.792 2.792	23-05-19 31-10-19	1.81 1.75	0	0.99	6.11 6.91	-81.4 -127.8	824 839	23.2 23.2	0	35.6	Clear, colourless, slight HC odour Clear, colourless, odourless
MW01 MW02	-	-	2.85 2.73	0.058	2.792 2.659	06-02-20	1.81	0	0.99	- 7.03	- 367.7	- 909	- 25.7	- 0.16	-	Gauge only -
MW02 MW02	-	-	2.73 2.73	0.071 0.071	2.659 2.659	24-08-12 19-10-18	- 1.58	0	- 1.08	6.96 -	-24	737	- 18.9	0.12	-	- Guage only
MW02 MW02	-	-	2.73	0.051	2.679	23-05-19 31-10-19	1.66 1.60	0	1.02	7.15	-141.6	600	24.4	0	1.2	Clear, colourless, odourless
MW02	-	-	2.73 2.73	0.051	2.679 2.679	06-02-20	1.66	0	1.02	7.29	-156.9	- 546	- 24	0.3 -	-	Clear, colourless, odourless Gauge only
MW03 MW03	-	-	2.51 2.51	0.04	2.47 2.47	10-01-12 24-08-12	-	0	-	6.99 6.94	173.6 -22.6	1413 1349	25.4 19.2	- 0.32	-	-
MW03 MW03	-	-	2.51 2.51	0.04	2.47 2.459	19-10-18 23-05-19	1.68 1.77	0	0.80 0.69	7.04 5.33	-75.4 37.8	924 899	21.2 23.4	0.25	- 0.2	clear, no odour Clear, colourless, odourless
MW03 MW04	-	-	2.51 2.78	0.051	2.459	06-02-20	-	0	2.46	- 7.33	- 55.2	- 55.2	- 22.7	- 0.16	-	Inaccessible - Under new bus port
MW04	-	-	2.78	-	-	24-08-12	-	0	-	7.07	-28.9	784	17.4	0.15	-	
MW04 MW05		-	2.57	-	-	06-02-20 24-08-12	-	0.257	-	-	-	-	-	-	-	-
MW05 MW06	-	-	2.57 2.92	-	-	06-02-20 24-08-12	-	- 0	-	7.44	-50.1	456	16.8	1.67	-	-
MW07 MW07	-	-	3	0.142	2.858 2.858	24-08-12 19-10-18		0	2.86 1.01	6.81 6.97	-15.8 -158.1	738 757	18.5 18.9	0.19 0.11	-	- clear, slight HC odour
MW07 MW07	-	-	3.13 3.13	0.142	2.988 2.988	23-05-19 31-10-19		0	1.02 1.09	6.72 6.88	-127.3 -115.8	852 762	21.7 20.0	0 0.29	1.1	Clear, colourless, slight HC odour
MW07 MW08	-	-	3.13	0.142	2.988	06-02-20	1.873	0	1.12	-	-	-	-	-	-	Gauge only
MW08	- 342996	- 62772656	3.04 3.04	-	-	30-01-14	-	0	-	6.89 -	-129.6	-	- 21.2	0.67 -	-	 Dry
MW08-B MW08-B	342996.15 342996.15	6272656.64 6272656.64	3.22 3.22	-	-	21-06-14 13-10-14		0	-	7.14 7.21	-88 -114	1000 915	20.8 18.4	0.01 0.38	-	-
MW08-B MW08-B	342996.15 342996.15	6272656.64 6272656.64	3.22 3.22	-	-	11-02-15 09-12-15		0	-	7.08 7.19	-187 -182	1087 903	21.2 20.8	0.18	-	
MW08-B MW08-B	342996.15 342996.15	6272656.64 6272656.64	3.22 3.22	0.08	3.14	19-10-18 23-05-19		0-	1.07	-	-	-	-	-	- 1.1	Insufficient water for all samples Insufficient water for all samples
MW08 MW08	342996.15 342996.15	6272656.64 6272656.64	3.22 3.22	0.08	3.14 3.14	31-10-19 06-02-20	-	- 0	- 1.09	-	-	-	-	-	-	Dry at 2.04 m Gauge only, Dry
MW09	-	-	2.89	-	-	19-11-12	-	0.3	-	-	-	-	-	-	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	30-01-14 21-06-14	-	0.08	-	6.3 7.05	-81 -127	953 715	23.2 20	0.15	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	13-10-14 11-02-15	-	0.475	-	6.73 7.1	-128 -160	708 563	16.9 23	0.83 0.25	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	09-12-15 12-09-16		0.295	-	7.17 7.81	-251 -237	702 483	21.2 17.8	0.3 0.93	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	14-02-17 29-08-17	-	0.447	-	7.14 6.96	-136.5 -283	750.63 745	24.1 19.4	0.37	-	
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	10-04-18 19-10-18		0.622	-	7.09	-251	728	- 24.1	-	-	Inacessible
MW09 MW09	343030.91 343030.91	6272672.59 6272672.59	3.01 3.01	-	-	23-05-19 31-10-19	-	- 0.13	-	-	-	-	-	-	-	Inacessible PSH present so not sampled
MW09 MW10	343030.91	6272672.59	3.01	-	-	06-02-20	-	- 0.02	-	- 6.97	- -146	- 761	- 26.8	- 1.25	-	Inacessible
MW10	343009.73	6272696.86	2.81	-	-	30-01-14	-	0.55	-	6.66	-85	890	26.2	-	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	-	-	21-06-14 13-10-14	-	0.5 0.446	-	7.02	-135 -148	717 747	22.1 20	0.07 0.38	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	-	-	11-02-15 09-12-15	-	0.181	-	6.98 6.96	-171 -223	846 740	26.1 24.4	0.11 0.41	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	-	-	12-09-16 14-02-17	-	0.235	-	7.41 7.02	-232 -187.3	605 294.24	20.8 26	0.62	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	-	-	29-08-17 10-04-18	-	0.11 0.557	-	6.7 7.2	-289 -172	833 927	21.3 21.7	-	-	
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81 2.81	0.08	2.73 2.73	18-10-18 23-05-19	1.71 2.23	0.145	1.14 0.88	-	-	-	-	-	- 76.7	IP malfunction, PSH measured with bailer PSH present so not sampled
MW10 MW10	343009.73 343009.73	6272696.86 6272696.86	2.81	0.08	2.73	31-10-19 06-02-20		0.384	0.92	-	-	-	-	-	-	PSH present so not sampled Gauge only
MW10 MW11 MW11	- 343048.97	- 6272701.3	2.67	-	-	19-11-12 30-01-14	1	0.145	-	7.6	-170.3 -96	793 848	21.5	0.57	-	
MW11	343048.97	6272701.3	2.77 2.77 2.77	-	-	21-06-14	-	0	-	6.94 6.79	-96 -120 -157	730 668	20.5	- 0.23 0.14	-	-
MW11 MW11	343048.97 343048.97	6272701.3 6272701.3	2.77	-	-	13-10-14 11-02-15	-	0	-	6.9	-157	774	18.9 24.9	0.14	-	
MW11 MW12	343048.97	6272701.3	2.77 2.6	-	-	09-12-15		0	-	6.98 7.2	-214 169.3	637 115	23.3 19.6	0.32	-	Abandoned after this date
MW12 MW12-B	3403044 343044.64	6272732 6272731.85	2.71 2.68	-	-	30-01-14 21-06-14	-	0	-	- 7.55	- -76	- 1066	- 18.8	- 1.08	-	
MW12-B MW12-B	343044.64 343044.64	6272731.85 6272731.85	2.68 2.68	-	-	13-10-14 11-02-15	-	0	-	7.16 7.14	-195 -194	2300 1247	17.6 22.6	0.17 0.07	-	-
MW12-B MW12-B	343044.64 3403044	6272731.85 6272732	2.68 2.68	- 0.085	- 2.595	09-12-15 18-10-18	- 1.54	0	- 1.06	7.11 7.1	-201 -165.3	1300 3687	21.5 18.3	0.33 2.37	-	- Clear, faint H2S odour, free flowing
MW12-B MW12-B	3403044 3403044	6272732 6272732	2.68 2.68	0.085	2.595 2.595	23-05-19 31-10-19	1.74	0	0.85	7.17	-155.4 -117	2688 1688	20.9 19.9	0.13	1.4	Clear, colourless, odourless
MW12-B MW12-B MW15	3403044 342984.96	6272732 6272667.61	2.68 3.01	0.085	2.595	06-02-20	1.74	0	0.86	- 7.09	- 69	- 909	- 28.2	-	-	Gauge only
MW15	342984.96	6272667.61	3.01	-	-	21-06-14	-	0	-	6	-19	1025	22.2	0.2	-	-
MW15 MW15	342984.96 342984.96	6272667.61 6272667.61	3.01 3.01	-	-	13-10-14 11-02-15	-	0	-	6.96 6.84	6 -12	1012 962	20.6 27.5	0.2	-	
MW15 MW15	342984.96 342984.96	6272667.61 6272667.61	3.01 3.01	- 0.154	- 2.856	09-12-15 18-10-18	1.836	0	- 1.02	6.96 -	47	768 -	25 -	0.55 -	-	- Guage only
MW15 MW15	342984.96 342984.96	6272667.61 6272667.61	3.01 3.01	0.135 0.135	2.875 2.875	23-05-19 31-10-19		0	0.94 0.99	6.56 6.81	33.5 19.1	1261 1302	24.8 23.7	1.1 0	2.8	Clear, colourless, odourless
MW15 MW16	342984.96 343014.6	6272667.61 6272713.36	3.01 2.62	0.135	2.875	06-02-20 02-11-13		0	0.94	-	-	-	-	-	-	Gauge only -
MW16 MW16	343014.6 343014.6	6272713.36 6272713.36	2.62	-	-	30-01-14 21-06-14	-	0	-	6.7 6.82	-101 -95	835 822	28.8 21.9	- 1.6	-	-
MW16 MW16 MW16	343014.6 343014.6	6272713.36 6272713.36	2.62	-	-	13-10-14	-	0	-	6.28 6.94	-105 -149	938 850	21.5 21.5 28.3	0.32	-	
MW16	343014.6 343014.6	6272713.36 6272713.36	2.62	-	-	09-12-15	-	0	- 0.97	6.87	-149 -139 -149.1	801 759	26.2 22.8	0.23 1.14 0.11	-	
MW16 MW16	343014.6	6272713.36	2.62	0.139	2.481 2.54	23-05-19	1.603	0	0.94	6.89 6.51	-108.3	784	25	0	0.8	clear, faint sweet odour, free flowing Clear, colourless, odourless
MW16 MW16	343014.6 343014.6	6272713.36 6272713.36	- 2.62	0.139	- 2.481	31-10-19 06-02-20		0	-	6.99 -	-169.4	724	23.5	0.11	-	- Gauge only
					-											

		I						Guaging Data				Field Par	ameters			
							Standing Water Level (mBTOC)	PSH thickness (m)	Adjusted Standing Water Level (mAHD)	pH (Field)	Redox (Field)	Electrical Conductivity (Field)	Temperature (Field)	Dissolved Oxyven (Field)	Well headspace PID	Comments
Units Laboratory F	201									pH units 0.01	mV 0.01	μS/cm 1	°C 0.1	 ppm 0.01	ppm 0.1	
								1		0.01	0.01	-	0.1	0.01	0.1	
Well ID MW17	Easting 342916.14	Northing 6272773.34	2.656	TOC (mBGL) -		02-11-13	-	0	-	-	-	-	-	-	-	-
MW17 MW17	342916.14 342916.14	6272773.34 6272773.34	2.656 2.656	-	-	30-01-14 21-06-14	-	0	-	6.69 6.29	88 54	787 792	25.5 20.4	- 0.23	-	
MW17 MW17	342916.14 342916.14	6272773.34 6272773.34	2.656 2.656	-	-	13-10-14 11-02-15	-	0	-	6.77 6.14	42 30	691 674	20.2 25.1	0.33	-	-
MW17	342916.14	6272773.34	2.656	-	-	09-12-15	-	0	-	7.37	23	656	23.6	1.09	-	-
MW17 MW17	342916.14 342916.14	6272773.34 6272773.34	2.656 2.656	0.102	2.554 2.554	19-10-18 23-05-19	1.803 1.884	0	0.75	7.42	88.6 27.6	743 788	21.9 23.1	2.28	- 1.1	- Clear, colourless, odourless
MW17 MW17	342916.14 342916.14	6272773.34 6272773.34	2.656 2.656	0.102 0.102	2.554 2.554	31-10-19 06-02-20	1.848	0	0.71	7.2	23.8	940	21.7	0.08	-	-
MW18	343033.19	6272695.48	-	-	-	09-12-15	-	0.482	-	7.01	-220	785	22.1	0.56	-	-
MW18 MW18	343033.19 343033.19	6272695.48 6272695.48	-	0.074	-	19-10-18 23-05-19	1.738 2.248	0.156	-	-	-	-	-	-	- 68	IP malfunction, PSH measured with bailer PSH present so not sampled
MW18 MW18	343033.19 343033.19	6272695.48 6272695.48	-	0.06	-	31-10-19 06-02-20	2.054 2.251	0.284	-	-	-	-	-	-	-	PSH present so not sampled Gauge only
MW19	343017.09	6272682.25	3.08	-	-	09-12-15	-	0.265	-	7.12	-246	693	20.9	0.37	-	-
MW19 MW19	343017.09 343017.09	6272682.25 6272682.25	3.08 3.08	-	-	12-09-16 14-02-17	-	0.174 0.546	-	7.9 7.66	-286 -145	674 707.84	19.1 23.44	1.23 2.13	-	
MW19 MW19	343017.09 343017.09	6272682.25 6272682.25	3.08 3.08	-	-	29-08-17 10-04-18	-	0.412	-	6.94 7	-184 -200	750 698	20.8 20.1	-	-	-
MW19	343017.09	6272682.25	3.08	0.088	2.992	19-10-18	-	-	-	-	-200	-	-	-	-	Remediation system prevents sampling
MW19 MW19	343017.09 343017.09	6272682.25 6272682.25	3.08 3.08	0.08	3	23-05-19 31-10-19	2.23 2.07	0.165	0.91	-	-	-	-	-	49.2 -	PSH present so not sampled PSH present so not sampled
MW19 MW20	343017.09 342034.94	6272682.25 6272702.51	3.08 2.69	0.08	3	06-02-20	2.39	0.37 0.189	0.92	- 6.99	- -252	- 671	- 19.7	- 0.53	-	Gauge only
MW20	342034.94	6272702.51	2.69	-	-	14-02-17	-	0.165	-	6.94	-127.8	909.1	24	0.22	-	
MW20 MW20	342034.94 342034.94	6272702.51 6272702.51	2.69 2.69		-	29-08-17 10-04-18	-	0.267	-	6.86 7.25	-267 -257	776 794	20.5 24.6	-	-	
MW20 MW20	342034.94 342034.94	6272702.51 6272702.51	2.69 2.69	0.08	2.61 2.62	19-10-18 23-05-19	1.548 2.122	0.345	1.35 0.89	-	-	-	-	-	- 80.5	IP malfunction, PSH measured with bailer PSH present so not sampled
MW20	342034.94	6272702.51	2.69	0.07	2.62	31-10-19	2.053	0.458	0.95	-	-	-	-	-	-	PSH present so not sampled
MW20 MW21	342034.94 343029.12	6272702.51 6272699.84	2.69 2.79	0.07	2.62	06-02-20 12-09-16	2.245	0.64 0.342	0.91	- 7.13	- -227	- 705	- 20.9	- 0.79	-	Gauge only
MW21 MW21	343029.12 343029.12	6272699.84 6272699.84	2.79 2.79	-	-	14-02-17 29-08-17	-	0.593 0.205	-	7.12 6.91	-139.5 -187	887.49 796	24.8 21.7	0.2	-	-
MW21	343029.12	6272699.84	2.79	-	-	10-04-18	-	0.709	-	7.11	-164	712	25.6	-	-	-
MW21 MW21	343029.12 343029.12	6272699.84 6272699.84	2.79 2.79	0.092	2.698 2.71	19-10-18 23-05-19	1.68 1.774	- 0.354	- 1.23	-	-	-	-	-	- 51	Remediation system prevents sampling PSH present so not sampled
MW21 MW21	343029.12 343029.12	6272699.84 6272699.84	2.79 2.79	0.08	2.71 2.71	31-10-19 06-02-20	1.986 2.12	0.271	0.95 0.93	-	-	-	-	-	-	PSH present so not sampled Gauge only
MW22	343028.28	6272731.99	2.67	-	-	12-09-16	-	0	-	7.03	-170	748	20.7	0.82	-	-
MW22 MW22	343028.28 343028.28	6272731.99 6272731.99	2.67 2.67	-	-	14-02-17 29-08-17	-	0	-	6.89 7.01	-154.4 -208	901.83 794	27.7 21.1	- 0.1	-	
MW22 MW22	343028.28 343028.28	6272731.99 6272731.99	2.67 2.67	- 0.091	- 2.579	10-04-18 18-10-18	- 1.61	0	- 0.97	7.08 7.09	-185 -132.4	902 920	27.3 22.6	- 0.75	-	- Sweet odour. Sampled by hydrasleeve
MW22	343028.28	6272731.99	2.67	0.085	2.585	23-05-19	1.70	0	0.88	6.88	-78	950	23.3	0.98	3	Faint HC, slightly turbid
MW22 MW22	343028.28 343028.28	6272731.99 6272731.99	2.67 2.67	0.085	2.585 2.585	01-11-19 06-02-20	1.66 1.72	0	0.92 0.86	6.95 -	-141.4	920 -	- 22.6	0.06	-	Nil Turbidity, colourless, odourless Gauge only
MW23 MW23	343105.75 343105.75	6272731.99 6272731.99	2.5 2.5	-	-	29-08-17 10-04-18		0	-	7 6.99	-223 -177	817 976	19.4 15.1	-	-	
MW23	343105.75	6272731.99	2.5	0.073	2.427	19-10-18	1.339	0	1.09	-	-	-	-	-	-	Guage only
MW23 MW23	343105.75 343105.75	6272731.99 6272731.99	2.5 2.5	0.088	2.412 2.412	24-05-19 06-02-20	1.44 -	-	0.97	6.93 -	-73.3 -	911 -	- 21.1	-	0.3 -	Clear, colourless, odourless Inaccessible - Under new bus port
MW24 MW24	343094.78 343094.78	6272718.13 6272718.13	2.54 2.54	-	-	29-08-17 10-04-18	-	0	-	7.28	-191 -102	887 765	20.6 25.3	-	-	
MW24	343094.78	6272718.13	2.54	0.085	2.455	19-10-18	1.37	0	1.09	7.19	-101.1	829	20.5	0.11	-	clear, no odour
MW24 MW24	343094.78 343094.78	6272718.13 6272718.13	2.54 2.54	0.089 0.089	2.451 2.451	24-05-19 06-02-20	-	-	0.97	6.48 -	-51.3	818 -	- 23.1	0	0.2 -	Clear, colourless, odourless Inaccessible - Under new bus port
MW25 MW25	343007.79 343007.79	6272705.16 6272705.16	2.75 2.75		-	12-09-16 14-02-17	-	0	-	7.3 7.16	-196 -131.9	692 812.02	21 25.2	0.53	-	
MW25 MW25	343007.79 343007.79	6272705.16 6272705.16	2.75	-	-	29-08-17 10-04-18	-	0.005	-	7.13	-198 -197	804 786	21.5 26	-	-	- thin film
MW25	343007.79	6272705.16	2.75	0.116	2.634	19-10-18	1.654	0.06	1.03	-	-	-	-	-	-	IP malfunction, PSH measured with bailer
MW25 MW25	343007.79 343007.79	6272705.16 6272705.16	2.75 2.75	0.08	2.67 2.67	23-05-19 31-10-19	1.905 1.78	0.145 0.058	0.89 0.94	-	-	-	-	-	52.2 -	PSH present so not sampled PSH present so not sampled
MW25 MW26	343007.79 343025.25	6272705.16 6272733.38	2.75 2.58	0.08	2.67	06-02-20 12-09-16	1.904	0.099 0	0.85	- 7.05	- -192	- 711	- 19.7	- 0.75	-	Gauge only
MW26	343025.25	6272733.38	2.58	-	-	14-02-17	-	0	-	6.94	-139.2	868.81	26.5	0.07	-	-
MW26 MW26	343025.25 343025.25	6272733.38 6272733.38	2.58 2.58	-	-	29-08-17 10-04-18	-	0	-	7.02 7.01	-207 -110	825 895	20.5 26.8	-	-	-
MW26 MW26	343025.25 343025.25	6272733.38 6272733.38	2.58 2.58	0.088	2.492 2.502	19-10-18 23-05-19	1.564 1.654	0	0.93 0.85	7.04 6.98	-139.3 -142.2	908 965	21 24.5	0.1	- 1.1	clear, slight H2S odour light brown, slightly turbid, odourless
MW26	343025.25	6272733.38	2.58	0.078	2.502	31-10-19	1.623	0	0.88	6.97	-133.3	876	21.1	0.16	-	Clear, colourless, odourless
MW26 MW27	343025.25	6272733.38 -	2.58	0.078	2.502	06-02-20 06-02-20	1.671 -	-	0.83 -	-	-	-	-	-	-	Gauge only Inaccessible - Under new bus port
MW28 MW29	-	-	-	-	-	07-02-20	2.085 1.804	0.431	-	7.14 6.94	126.8 76.4	722 926	20.2 21.4	0.04 0	-	strong odour, turbid, brown very strong odour
MW30	-	-	-	-	-	07-02-20	1.995	0.291	-	6.19	-92.1	855	19.9	0	· ·	strong odour, turbid, brown
MW31 MW32	-	-	-	-	-	07-02-20 07-02-20	2.486 2.302	0.797	-	6.65 7.17	-132.1 -173.9	839 2665	20.9 20.2	0	-	strong odour, highly turbid, brown, sheen odour, highly turbid, brown
MW33	-	-	-	-	-	07-02-20	1.908 1.785	0.123	-	6.92	38.1	921	20.4	0.01	-	strong odour, highly turbid, brown
MW35 MW36 ¹	-	-	-	-	-	07-02-20		-	-	7.53	-151.8	658 -	- 20.9	-	-	- Dry
MW37 ¹	-	-	-	-	-	07-02-20		-	-	-	-	-	-	-	-	Dry Surface water complex, wastroom of site
\$01 \$02	-	-	-	-	-	07-02-20 07-02-20	-	-	-	7.81 7.81	124.9 138.2	2769 2941	18.0 17.9	3.22 3.50	-	Surface water samples - upstream of site Surface water samples - onsite
S03	-	-	-	-	-	07-02-20	-	-	-	7.97	137.1	2731	17.3	3.70	-	Surface water sample - downstream of site

TOC = Top of Casing mAHD = metres above the Australian Height Datum

mTOC = metres below Top of Casing

mBGL = metres below ground level 1. Wells installed adjacent to underground service trench

						Heavy	/ Metals					ТРН		T	RH				BI	TEX				PAHs	
				ed	ved			v																	
			olvec	issio	Dissol	olvec	ved	solve	lved	g				C16	C34	C40								a	
			Diss	Ē	- - -	Diss	lossi	- Dis	Disso	solv	_ გ	-C36	6-C1	C10-	C16-	C34-			zene	ene		ene	lene	a)pyre	
			nic -	aiu	miu	per -	0 · F	cury	el- D	- Dis	8	CIO	RHC	RH >	RH >	Ϋ́Α	zene	ene	lben	-xyle	lene	xh	htha	zo(a)	IPAI
			Arse	Cadr	Chrc	Copi	Leac	Mer	Nick	Zinc	TRH	ткн	E1 T	F2 T	F3 T	F4 T	Beni	Tolu	Ethy	d+u	o-xy	Tota	Nap	Benz	Tota
Units			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Laboratory PQL NEPM Groundwater H	ISLs for Vapour Intrusion (Sa	nd - 2m - <4m)	1	0.1	1	1	1	0.1	1	1	10	125	10 6000	50 NL	100	100	1 5000	1 NL	1 NL	2 NL	1 NL	3 NL	1 NL	1	0.1
NEPM GIL Drinking W			10	2	50	2000	10	1	20								1	800	300			600			
NEPM GIL Marine Wa			13*	0.7	4.4	1.3	4.4	0.1	7	15							500	400		200*	350*		50		
ANZECC 2018 - Mar	rine (95% species protection	511)	13*	5.5	4.4	1.3	4.4	0.4	70	15							700	180	5	200*	350*		70		
Lab Report.	Well ID	Date			1															1					
67411 77958	MW01 MW01	10-01-12 24-08-12	11	<0.1	<1	<1	<1	< 0.05	<1	<1	<10	4900 1280	-	-	-	-	<1 <1	<1 <1	<1 <1	<2	<1	<3	33	<1 <1	68 13
203543	MW01 MW01	19-10-18	44	<0.1	<1	<1	<1	<0.05	<1	5	<10	3600	29	1900	1600	<100	<1	<1	<1	<2	<1	-	16	~1	15
218279	MW01	23/05/2019	11	<0.1	<1	<1	<1	<0.05	<1	4	<10	680	25	440	220	<100	<1	<1	<1	<2	<1	<3	3		
229899	MW01	31-10-19	23	<0.1	<1	<1	<1	< 0.05	<1	4	<10	510	<10	310	190	<100	<1	<1	<1	<2	<1	<3	<1	-	-
67411 77958	MW02 MW02	10-01-12 24-08-12	41	<0.1	<1	<1	<1	<0.05	2	<1	<10 <10	<250 <250	-	-	-	-	<1 <1	<1 <1	<1 <1	<2	<1	<3	<1 <1	<1 <1	ND ND
218279	MW02	23/05/2019	18	<0.1	<1	<1	<1	<0.05	<1	3	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1		
229899	MW02	31-10-19	11	<0.1	<1	<1	<1	< 0.05	<1	3	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1		
67411 77958	MW03 MW03	10-01-12 24-08-12	5	<0.1	<1	<1	<1	<0.05	2	<1	<10 <10	<250 <250	-	-	-	-	<1 <1	<1 <1	<1 <1	<2	<1	<3	<1 <1	<1 <1	ND ND
203543	MW03	19-10-18	4	<0.1	<1	<1	<1	< 0.05	1	7	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	-	<1		
218279	MW03	23/05/2019	3	<0.1	<1	<1	<1	<0.05	1	4	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1		
67411 77958	MW04 MW04	10-01-12 24-08-12	4	<0.1	<1	<1	<1	< 0.05	<1	<1	<10 <10	<250 <250	-	-	-	-	<1 <1	<1 <1	<1	<2	<1	<3	<1 <1	<1 <1	ND ND
-	MW05	24-08-12		-	-	-	-	-	-	-	<10 -		-	-	-	-	-	-	-	-	-	-	-	-	- ND
77958	MW06	24-08-12	-	-	-	-	-	-	-	-	<10	<250	-	-	-	-	<1	<1	<1	<2	<1	<3	<1	<1	ND
77958	MW07	24-08-12	-	-	-	-	-	-	-	-	41	2110	-	-	-	-	4	<1	<1	<2	<1	<3	140	<1	156
203543 218279	MW07 MW07	19-10-18 23/05/2019	74 98	<0.1	<1 <1	<1	<1 <1	<0.05	<1 <1	5	16 <10	4800 1220	38 33	2700 720	2100 450	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1	<3	44 45	-	-
229899	MW07	31-10-19	65	<0.1	<1	<1	<1	< 0.05	<1	3	<10	1310	<10	700	570	<100	<1	<1	<1	<2	<1	<3	<1	-	-
81841	MW08	19-11-12	· ·	-	-	-	-	-	-	-	<10	1070	-	-	-	-	<1	<1	<1	<2	<1	<3	8	<1	16
112083 117589	MW08-B MW08-B	21-06-14 13-10-14	5	<0.1	2 <1	5 <1	3	<0.05	4	16	<10 <10	570 <125	12 <10	290 <50	220 <100	<100 <100	<1 <1	<1 <1	<1	<2	<1	<3	1 <1	-	-
123376	MW08-B	11-02-15	5	<0.1	<1	<1	<1	<0.05	1	2	<10	495	<10	<50	410	<100	<1	5	<1	<2	<1	<3	<1	-	-
138949	MW08-B	09-12-15	5	<0.1	<1	<1	<1	<0.05	<1	<1	<10	290	<10	150	200	<100	<1	<1	<1	<2	<1	<3	<1	-	-
104302 112083	MW09 MW09	30-01-14 21-06-14	6 42	<0.1	<1	<1	<1	<0.05	13 5	3	27	44600 19150	88 64	22000 9500	21000 9000	<100 <100	<1 <1	<1	<1	<2	<1	<3	600 78	-	-
117589	MW09	13-10-14	64	<0.1	<1	<1	<1	<0.05	4	7	27	48850	51	24000	24000	<100	1	<1	<1	<2	<1	<3	89	-	-
123376	MW09	11-02-15	53	<0.1	<1	<1	<1	< 0.05	4	1	38	174340	80	85000	81000	<100	<1	<1	<1	<2	<1	<3	180	-	-
138949 153522	MW09 MW09	09-12-15 12-09-16	67 57	<0.1	<1	<1 <1	<1	<0.05	1 <1	<1	22 19	6600 13400	55 66	4100 6100	2600 7200	<100 <100	<1 <1	<1 <1	<1	<2	<1	<3	150 190	-	-
161939	MW09	14-02-17	54	<0.1	<1	<1	<1	< 0.05	<1	3	25	56100	68	30000	26000	<100	<1	<1	<1	<2	<1	<3	120	-	-
174472	MW09	29-08-17	26	<0.1	<1	<1	<1	< 0.05	1	1	16	9200	39	4600	4600	<100	<1	<1	<1	<2	<1	<3	86	-	-
189182 81841	MW09 MW10	10-04-18 02-04-13	36	<0.1	<1	<1	<1	< 0.05	- 3	<1	33 <10	29400 5650	- 100	17000	- 13000	<100	<1	<1 <1	<1	<2	<1	<3	120 46	<1	92
104302	MW10	30-01-14	4	<0.1	<1	<1	<1	<0.05	6	4	22	17980	65	8000	9500	<100	2	<1	<1	<2	<1	<3	190	-	-
112083 117589	MW10 MW10	21-06-14 13-10-14	25 30	<0.1	<1 <1	<1 <1	<1	<0.05	1 2	5	23	36620 36550	41 43	19000 19000	17000 17000	<100 <100	<1	<1 <1	<1 <1	<2	<1	<3	86 83	-	
123376	MW10 MW10	11-02-15	38	<0.1	<1	<1	<1	<0.05	1	2	15	18950	43	8900	9500	<100	1	<1	<1	<2	<1	<3	120	-	-
138949	MW10	09-12-15	35	<0.1	<1	<1	<1	<0.05	1	2	11	12400	37	6900	5900	<100	<1	<1	<1	<2	<1	<3	68	-	-
153522 161939	MW10 MW10	12-09-16 14-02-17	31 51	<0.1	<1 <1	<1 <1	<1 <1	<0.05	1 <1	<1	15 <10	8500 28900	47 <10	3800 14000	4800 13000	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	120 140	-	-
174472	MW10	29-08-17	39	<0.1	<1	<1	<1	<0.05	1	1	28	9300	67	4600	4600	<100	<1	<1	<1	<2	<1	<3	140	-	-
189182	MW10	10-04-18	50	<0.1	<1	<1	<1	<0.05	1	1	10	76000	53	44000	35000	<100	<1	<1	<1	<2	<1	<3	94	-	-
229899 81841	MW10 MW11	31-10-19 19-11-12	32	<0.1	<1	<1	<1	<0.05	- 2	3	<10 <10	690 490	<10	360	300	<100	<1 <1	<1	<1	<2	<1	<3	<1 18	- <1	- 22
104302	MW11	30-01-14	10	<0.1	<1	<1	<1	<0.05	5	4	<10	1080	27	720	400	<100	<1	<1	<1	<2	<1	<3	<1	-	-
112083	MW11	21-06-14	100	<0.1	<1	<1	<1	< 0.05	1	7	10	1280 408	28	770	380	<100	<1	<1	<1	<2	<1	<3	13	-	-
117589 123376	MW11 MW11	13-10-14 11-02-15	120 220	<0.1	<1 <1	<1 <1	<1 <1	<0.05	5	2	29 <10	408	78 42	150 810	200 450	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	18 <1	-	-
138949	MW11	09-12-15	140	<0.1	<1	<1	<1	<0.05	1	<1	<10	1210	41	960	280	<100	<1	<1	<1	<2	<1	<3	5	-	-
81841 104302	MW12 MW12	19-11-12 30-01-14	· ·	-	-	-	-	-	-	-	<10	<250	-	-	-	-	<1	<1	<1	<2	<1	<3	<1	<1	ND
112083	MW12 MW12	21-06-14	11	<0.1	1	1	2	< 0.05	1	11	22	<125	25	<50	<100	<100	<1	2	<1	<2	<1	<3	<1	-	-
117589	MW12	13-10-14	6	<0.1	<1	<1	<1	< 0.05	<1	<1	<10	<125	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
123376 138949	MW12 MW12	11-02-15 09-12-15	6 5	<0.1	<1 <1	<1 <1	<1 <1	<0.05	2	2	<10 <10	<125 <100	<10 <10	<50 <50	<100 <100	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1	<3	<1 <1	-	-
203543	MW12 MW12	18-10-18	3	<0.1	<1	<1	<1	<0.05	<1	4	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
218279	MW12	23/05/2019	2	<0.1	<1	<1	<1	<0.05	<1	5	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
229899 100305	MW12 MW15	31-10-19 02-11-13	3	<0.1	<1 2	<1 8	<1 2	<0.05	<1 2	6	<10 <10	<250 680	<10 <10	<50 290	<100 380	<100 <100	<1 <1	<1	<1	<2	<1	<3	<1 <1	- <1	- 2.3
104302	MW15	30-01-14	<1	<0.1	<1	8 1	<1	<0.05	14	110	<10	470	<10	290	200	<100	<1	<1	<1	<2	<1	<3	16	-	-
112083	MW15	21-06-14	<1	<0.1	<1	1	<1	< 0.05	3	7	<10	245	<10	58	130	<100	<1	<1	<1	<2	<1	<3	<1	-	-
117589 123376	MW15 MW15	13-10-14 11-02-15	<1 <1	<0.1	<1 <1	<1	<1	<0.05	3	2	<10 <10	<125 <125	<10 <10	<50 <50	<100 120	<100 <100	<1 <1	<1 <1	<1	<2	<1	<3	<1 <1	-	-
138949	MW15	09-12-15	<1	<0.1	<1	1	<1	<0.05	<1	<1	<10	<100	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	· ·
218279	MW15	23/05/2019	<1	<0.1	<1	<1	<1	<0.05	<1	3	<10	1558	<10	170	1400	<100	<1	<1	<1	<2	<1	<3	<1	-	-

						Heavy	Metals					ТРН		Tf	RH				BT	EX				PAHs	
				ed	ved			g																	
			olvec	issio	Dissol	olvec	ved	solve	lved	g				C16	C34	C40								a	
			Diss	Ö	- - 2	Diss	issol	Dis	Disso	solv	6	-c36	6-C1	C10	C16-	C34-			Izene	ene		ene	lene	pyre	- I
			enic -	miu	min	ber -		cury	el- E	- Dis	99	CIÓ	ВНС	RH >	RH >	RH >	zene	lene	lben	-xyle	lene	al xyl	htha	izo(a)py	I PA
			Arse	Cad	- Ho	Cop	Lead	Mer	Nick	Zinc	TRH	ткн	11	F2 T	F3 T	F4 T	Ben	Tol	Ethy	Ě	6x-0	Tota	Nap	Ben	Tota
Units Laboratory PQL			μg/L 1	μg/L 0.1	μg/L 1	μg/L 1	μg/L 1	μg/L 0.1	μg/L 1	μg/L 1	μg/L 10	μg/L 125	μg/L 10	μg/L 50	μg/L 100	μg/L 100	μg/L 1	μg/L 1	μg/L 1	μg/L 2	μg/L 1	μg/L 3	μg/L 1	μg/L 1	μg/L 0.1
	SLs for Vapour Intrusion (Sa	and - 2m - <4m)	1	0.1	1	1	1	0.1	1	1	10	125	6000	NL	100	100	5000	NL	NL	NL	NL	NL	NL	-	0.1
NEPM GIL Drinking Wat			10	2	50	2000	10	1	20	15							1	800	300	200*	25.0*	600			
NEPM GIL Marine Wat ANZECC 2018 - Mari	ine (95% species protecti	on)	13* 13*	0.7	4.4	1.3 1.3	4.4	0.1	70	15 15							500 700	180	5	200* 200*	350* 350*		50 70		
		<u> </u>																							
Lab Report. 229899	Well ID MW15	Date 31-10-19	<1	<0.1	<1	<1	<1	<0.05	<1	4	<10	2400	<10	140	2,300	<100	<1	<1	<1	<2	<1	<3	<1	-	
100305	MW16	02-11-13	17	<0.1	<1	<1	1	<0.05	15	25	15	3890	17	1500	2300	<100	1	<1	<1	<2	<1	<3	<1	<1	1.4
104302 112083	MW16 MW16	30-01-14 21-06-14	8	<0.1	<1	<1 <1	<1 <1	<0.05	21 10	8	15 27	4640 3300	33 37	1700 1300	2900 1900	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	34 4	-	-
117589	MW16	13-10-14	33	<0.1	<1	<1	<1	<0.05	10	22	22	2740	39	810	1900	<100	<1	<1	<1	<2	<1	<3	3	-	-
123376 138949	MW16 MW16	11-02-15 09-12-15	46 42	<0.1	<1 2	<1 <1	<1 <1	<0.05 <0.05	14 9	2	19 12	2010	34 19	890 1200	990 1300	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	1 2	-	-
203543	MW16	18-10-18	41	<0.1	<1	<1	<1	<0.05	8	4	27	1340	41	570	870	<100	<1	<1	<1	<2	<1	<3	<1	-	-
218279 229899	MW16 MW16	23/05/2019 31-10-19	60 71	<0.1	<1 <1	<1 <1	<1 <1	<0.05	7	3	<10 23	2030	<10 34	950 990	1100 1,300	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	<1 <1	-	-
100305	MW18 MW17	02-11-13	3	<0.1	1	2	<1	<0.05	3	9	<10	<125	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	<1	-
104302 112083	MW17 MW17	30-01-14 21-06-14	2	<0.1 <0.1	<1	2	<1	<0.05 <0.05	9 7	8 43	<10 <10	<125 2540	<10 <10	<50 1200	<100 1300	<100 <100	<1 <1	<1 <1	<1 <1	<2 <2	<1 <1	<3	<1 5	-	-
117589	MW17	13-10-14	2	<0.1	<1	3	<1	< 0.05	2	16	<10	<125	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
123376 138949	MW17 MW17	11-02-15 09-12-15	2	<0.1	<1	3	<1 <1	<0.05 <0.05	9 <1	27	<10 <10	<125 <100	<10 <10	<50 <50	100 <100	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	<1 1	-	
203543	MW17	19-10-18	2	<0.1	<1	1	<1	< 0.05	<1	4	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	>1	-	-
218279	MW17	23/05/2019	2	<0.1	<1	<1	<1	< 0.05	<1	3	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	
229899 138949	MW17 MW18	31-10-19 09-12-15	2 27	<0.1	<1	1 <1	<1 <1	<0.05 <0.05	<1 3	4	<10 <10	<250 9000	<10 <10	<50 5400	<100 3900	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	<1 16	-	-
138949	MW19	09-12-15	36	<0.1	<1	<1	<1	< 0.05	<1	2	<10	4100	18	2700	1600	<100	<1	1	1	<2	1	<3	53	-	-
153522 161939	MW19 MW19	12-09-16 14-02-17	37 28	<0.1	<1	<1 <1	<1 <1	<0.05	<1 <1	<1 2	<10 20	1680 65000	27 63	500 35000	1200 30000	<100 <100	<1 <1	<1 <1	<1	<2	<1 <1	<3	44 100	-	-
174472	MW19	29-08-17	25	<0.1	<1	<1	<1	0.2	<1	1	18	10700	50	5300	5400	<100	<1	<1	<1	<2	<1	<3	74	-	-
189182 153522	MW19 MW20	10-04-18 12-09-16	26 36	<0.1	<1	<1	<1 <1	<0.05	<1	2	23 10	<u>11800</u> 43720	64 40	6900 22000	5200 22000	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	89 140	-	
161939	MW20	14-02-17	59	<0.1	<1	<1	<1	<0.05	3	1	23	7600	49	4100	3400	<100	<1	<1	<1	<2	<1	<3	82	-	-
174472 189182	MW20 MW20	29-08-17 10-04-18	35 45	<0.1	<1 <1	<1 <1	<1 <1	<0.05	2	1 <1	37 27	21400 46000	78 87	12000 27000	9800 20000	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	130 200	-	-
153522	MW21	12-09-16	17	<0.1	<1	<1	<1	<0.05	3	<1	<10	3440	25	1500	1900	<100	<1	<1	<1	<2	<1	<3	94	-	-
161939 174472	MW21 MW21	14-02-17 29-08-17	14 17	<0.1	<1 <1	<1 <1	<1 <1	<0.05 <0.05	3	3	<10 16	426840	22 33	230000 6300	200000 6500	280 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	130 47	-	-
189182	MW21	10-04-18	22	<0.1	<1	<1	<1	< 0.05	2	1	<10	43000	50	25000	20000	<100	<1	<1	<1	<2	<1	<3	94	-	-
153522 161939	MW22 MW22	12-09-16 14-02-17	40 66	<0.1	<1 <1	<1 <1	<1 <1	<0.05 <0.05	3	2	<10 11	680 690	<10 20	250 390	430 270	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	<1 8	-	-
174472	MW22	29-08-17	60	<0.1	<1	<1 <1	<1	<0.05	2	2	16	690	35	390	280	<100	<1	<1 <1	<1	<2	<1	<3	12	-	-
189182 203543	MW22 MW22	10-04-18 18-10-18	37 57	<0.1	<1 <1	<1 <1	<1 <1	<0.05 <0.05	2	1 16	<10 11	<u> </u>	<10 28	220 470	<100 710	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	2	-	-
218279	MW22	23/05/2019	49	<0.1	<1	<1	<1	<0.05	3	5	<10	870	26	510	360	<100	<1	<1	<1	<2	<1	<3	2	-	-
174472 189182	MW23 MW23	29-08-17 10-04-18	4	<0.1 <0.1	<1 <1	<1 <1	<1 <1	<0.05 <0.05	<1 <1	2	<10 <10	100 <100	<10 <10	<50 <50	<100 <100	<100 <100	<1 <1	<1 <1	<1 <1	<2 <2	<1 <1	<3	<1 <1	-	-
218279	MW23	23/05/2019	2	<0.1	<1	<1	<1	<0.05	<1	5	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
174472 189182	MW24 MW24	29-08-17 10-04-18	6	<0.1	<1	<1 <1	<1 <1	<0.05 <0.05	<1 <1	1 <1	<10 <10	100 <100	<10 <10	<50 <50	<100 <100	<100 <100	<1 <1	<1 <1	<1	<2 <2	<1	<3	<1	-	-
203543	MW24 MW24	10-04-18	<u>ь</u> 4	<0.1 <0.1	<1 <1	<1 <1	<1	<0.05	<1 <1	<⊥ 7	<10	<100	<10	<50	<100	<100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	<1 <1	-	-
218279	MW24	23/05/2019	4	<0.1	<1	<1	<1	< 0.05	<1	4	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1		
153522 161939	MW25 MW25	12-09-16 14-02-17	8	<0.1	<1 <1	<1 <1	<1 <1	<0.05	<1 <1	<1	<10 <10	380 450	<10 <10	97 150	320 290	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	1 <1	-	-
174472	MW25	29-08-17	8	<0.1	<1	<1	<1	< 0.05	<1	2	<10	1390	<10	690	710	<100	<1	<1	<1	<2	<1	<3	6	-	-
189182 153522	MW25 MW26	10-04-18 12-09-16	11 47	<0.1	<1	<1 <1	<1 <1	<0.05 <0.05	1	1 2	12 <10	4700 407	20 <10	2700	2100 270	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	30 <1	-	-
161939	MW26	14-02-17	41	<0.1	<1	<1	<1	< 0.05	1	1	<10	297	<10	170	110	<100	<1	<1	<1	<2	<1	<3	<1	-	-
174472 189182	MW26 MW26	29-08-17 10-04-18	48 46	<0.1	<1 <1	<1 <1	<1 <1	<0.05 <0.05	2	2 <1	12 10	500 300	23 15	290 220	210 <100	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3 <3	<1 1	-	-
203543	MW26	19-10-18	40	<0.1	<1	<1	<1	<0.05	2	3	12	560	28	260	260	240	<1	<1	<1	<2	<1	<3	<1	-	-
218279 229899	MW26 MW26	23/05/2019 31-10-19	46 42	<0.1	<1 <1	<1 <1	<1 <1	<0.05	2	3	<10 <10	460 370	<10 <10	280 290	180 250	<100 <100	<1 <1	<1 <1	<1 <1	<2	<1 <1	<3	<1 <1	-	-
236498	MW28	07-02-20	28	<0.1	<1	<1	<1	<0.05	2	3	<10	1830	<10	830	970	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236498 236498	MW29 MW30	07-02-20	8	<0.1	<1	<1	<1	<0.05	2	1 <1	<10 20	8100000 51110	<10 67	4000000 28000	3000000 22000	20000 110	<1 <1	<1	<1	<2	<1	<3	<1 4	-	-
236498	MW30 MW31	07-02-20	4	<0.1	<1	<1	<1	<0.05	<1	<1	<10	2600000	26	2000000	1000000		<1	<1	<1	<2	<1	<3	210	-	-
236498	MW32	07-02-20	1	<0.1	<1	2	<1	<0.05	<1	1	<10	11420	<10	5100	6200	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236498 236498	MW33 MW35	07-02-20	2 <1	<0.1	<1	1 9	<1 <1	<0.05 <0.05	<1 <1	2 29	<10 48	101110 263	<10 59	52000 53	47000 240	<100 150	<1 <1	<1 2	<1 <1	<2	<1 <1	<3	<1 <1	-	-
·		•																							

				Heavy	Metals				TI	PH		TR	RH				BT	ΈX				PAHs	
	Arsenic - Dissolved	Cadmium - Dissloved	Chromium - Dissolved	Copper - Dissolved	Lead - Dissolved	Mercury - Dissolved	Nickel - Dissolved	Zinc - Dissolved	TRH C6-C9	TRH C10-C36	F1 TRH C6-C10	F2 TRH >C10-C16	F3 TRH >C16-C34	F4 TRH >C34-C40	Benzene	Toluene	Ethylbenzene	m+p-xylene	o-xylene	Total xylene	Naphthalene	Benzo(a)pyrene	Total PAH
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Laboratory PQL	1	0.1	1	1	1	0.1	1	1	10	125	10	50	100	100	1	1	1	2	1	3	1	1	0.1
NEPM Groundwater HSLs for Vapour Intrusion (Sand - 2m - <4m)											6000	NL			5000	NL	NL	NL	NL	NL	NL		
NEPM GIL Drinking Water	10	2	50	2000	10	1	20								1	800	300			600			
NEPM GIL Marine Waters	13*	0.7	4.4	1.3	4.4	0.1	7	15							500			200*	350*		50		
ANZECC 2018 - Marine (95% species protection)	13*	5.5	4.4	1.3	4.4	0.4	70	15							700	180	5	200*	350*		70		
Lab Report. Well ID Date																							
236498 S01 07-02-20	3	<0.1	2	10	1	<0.5	<1	42	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236489 S02 07-02-20	3	<0.1	2	11	1	<0.5	<1	40	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-
236498 S03 07-02-20	2	<0.1	1	10	<1	<0.05	<1	40	<10	<250	<10	<50	<100	<100	<1	<1	<1	<2	<1	<3	<1	-	-

								Miscella	aneou	s											MNA In	dicator	s (mg/L)	1	
			Electrical Conductivity (Lab)	Electrical Conductivity (field)	Electrical Conductivity (lab : field) ratio	pH (Lab)	рН (Field)	pH (lab : field) ratio	Total Dissolved Solids	EC:TDS Ratio	Dissolved Iron	Disolved Manganese	Biochemical Oxygen Demand	Methane	Calcium (Filtered)	Magnesium (Filtered)	Potassium (Filtered)	Sodium (Filtered)	Ammonia	Bicarbonate Alkalinity as CaCO3	Carbonate alkalinity as CaCO3	Hydroxide	Chloride	Fluoride	Sulfate
Units			μS/cm	μS/cm	μS/cm	pH Units	pH Units		mg/L		mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Laboratory PQL			2	0.1		0.1	0.01	0.1	2		0.05	0.05	5	5	0.1	0.1	0.2	0.1	0.01	5	1	5	1	0.02	1
NEPM Groundwate	er HILs for Drinking Water		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	500
ANZG 2018 - Ma	rine (95% species protecti	ion)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.91	-	-	-	-	-	-
NEPM GIL Marine \	Waters		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.91	-	-	-	-	-	-
Lab Report.	Well ID	Date																							
229899	MW01	31-10-19	830	839	0.989273	7	6.87	1.018923	370	0.445783	9	110	<5	2200	120	7.5	5.4	41	0.55	360	<5	<5	46	0.2	13
229899	MW02	31-10-19	630	546	1.153846	7.3	7.3	1	370	0.587302	3.3	17	7	98	79	4.7	3.6	15	1.6	310	<5	<5	20	0.5	9
229899	MW07	31-10-19	810	762	1.062992	7	6.88	1.017442	400	0.493827	16	28	7	2000	140	6.9	3.9	20	1.9	410	<5	<5	21	0.3	16
229899	MW10	31-10-19	930	-	-	6.9	-		470	0.505376	14	47	6	1800	140	14	5	35	3.7	430	<5	<5	31	0.3	37
229899	MW12	31-10-19	1,900	1688	1.125592	7.3	7.06	1.033994	950	0.5	4.8	82	<5	56	150	40	10	180	1.1	460	<5	<5	270	0.5	42
229899	MW15	31-10-19	1,300	1302	0.998464	7.1	6.81	1.042584	750	0.576923	< 0.01	260	<5	21	160	24	6.1	82	0.29	440	<5	<5	120	<0.1	69
229899	MW16	31-10-19	710	724	0.980663	7.2	6.99	1.030043	400	0.56338	11	20	34	2700	110	12	3.7	19	6.6	360	<5	<5	20	0.3	<1
229899	MW17	31-10-19	980	940	1.042553	7.4	7.2	1.027778	600	0.612245	< 0.01	190	<5	<5	140	13	3.4	47	0.035	350	<5	<5	73	0.1	42
229899	MW26	31-10-19	910	876	1.038813	7.2	6.97	1.032999	490	0.538462	11	27	33	690	140	15	4.5	36	2.6	460	<5	<5	31	0.4	6
236498	MW28	07-02-20	830	722	1.149584	7.5	7.14	1.05042	490	0.590361	4400	43	9	29	130	12	3.5	21	0.89	420	<5	<5	34	2.2	20
236498	MW29	07-02-20	770	926	0.831533	7.3	6.95	1.05036	490	0.636364	400	81	810	2100	140	6.6	3.5	19	0.71	480	<5	<5	25	2	6
236498	MW30	07-02-20	850	855	0.994152	7.5	6.19	1.211632	470	0.552941	97	55	6	<5	110	16	5.1	47	<0.005	360	<5	<5	82	3.1	36
236498	MW31	07-02-20	810	839	0.965435	7.1	6.63	1.07089	450	0.555556	150	99	1,800	160	130	13	3.5	12	4	400	<5	<5	27	2.5	9
236498	MW32	07-02-20	960	2665	0.360225	7.4	7.17	1.032078	700	0.729167	31	190	28	21	150	18	2.8	42	0.47	450	<5	<5	70	2	50
236498	MW33	07-02-20	660	921	0.716612	7.4	6.92	1.069364	410	0.621212	17	140	31	960	110	11	1.9	15	2.7	340	<5	<5	24	1.7	2
236498	MW35	07-02-20	250	658	0.379939	7.1	7.53	0.942895	190	0.76	28	12	20	<5	22	4.1	5.8	12	<0.005	28	<5	<5	22	<0.1	23

Nitrate (as N)	Nitrite (as N)	Phosphate (as P)	Alkalinity (total)
mg/L	mg/L	mg/L	mg/L
mg/L 0.005	mg/L 0.005	mg/L 0.005	mg/L 5
-			
0.005	0.005		
0.005 11.3	0.005		
0.005 11.3	0.005		
0.005 11.3	0.005		
0.005 11.3 0.158 -	0.005 0.91 - -	0.005 - - -	5
0.005 11.3 0.158 - 0.04 <0.005 <0.005	0.005 0.91 - - 0.015 <0.005 <0.005	0.005 - - - - - - - - - - - - - - - - - -	5 - - - - - 360 310 410
0.005 11.3 0.158 - 0.04 <0.005	0.005 0.91 - - 0.015 <0.005	0.005 - - - - <0.005 <0.005	5 - - 360 310

<0.005	<0.005	430
< 0.005	<0.005	460
< 0.005	0.006	440
<0.005	<0.005	360
0.034	0.1	350
< 0.005	<0.005	460
< 0.005	0.012	420
< 0.005	<0.050	480
< 0.005	0.011	360
<0.005	<0.005	400
0.015	<0.005	450
< 0.005	<0.005	340
0.013	0.071	28
	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 0.006 <0.005 <0.005 0.034 0.1 <0.005 <0.005 <0.005 <0.005 <0.005 0.012 <0.005 <0.012 <0.005 <0.011 <0.005 <0.015 <0.005 <0.015 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

				Cations	(milliequ	ivalents)				Ani	ons (mill	iequivale	nts)						lor	ic Balanc	e and Rat	ti
			Calcium	Magnesium	Potassium	Sodium	Ammonia	Bicar bonate	Carbonate	Hydroxide	Chloride	Fluoride	Sulfate	Nitrate	Nitrite	Phosphate	Sum Cations	Sum Anions	lonic Balance	Alkalinity:Sum of Anions	NO3:Sum of Anions	
Units			meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	meq	%	%	%	Ļ
Laboratory PQL	r HILs for Drinking Water																					┢
	ine (95% species protection		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	┢
NEPM GIL Marine W	<u> </u>)11)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		┢
NET WIGHT WIGHT OF	Vaters		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
Lab Report.	Well ID	Date																				
229899	MW01	31-10-19	5.988	0.617	0.138	1.783	0.039	7.194	0.000	0.000	1.297	0.011	0.271	0.003	0.001	0.000	8.56625959	8.77635937	-1.2%	82.0%	0.0%	Г
229899	MW02	31-10-19	3.942	0.387	0.092	0.652	0.114	6.195	0.000	0.000	0.564	0.026	0.187	0.000	0.000	0.000	5.18783386	6.97244548	-14.7%	88.8%	0.0%	t
229899	MW07	31-10-19	6.986	0.568	0.100	0.870	0.136	8.193	0.000	0.000	0.592	0.016	0.333	0.000	0.000	0.000	8.65950964	9.13413016	-2.7%	89.7%	0.0%	t
229899	MW10	31-10-19	6.986	1.152	0.128	1.522	0.264	8.593	0.000	0.000	0.874	0.016	0.770	0.000	0.000	0.000	10.0528587	10.2530732	-1.0%	83.8%	0.0%	ſ
229899	MW12	31-10-19	7.485	3.292	0.256	7.830	0.079	9.192	0.000	0.000	7.616	0.026	0.874	0.000	0.000	0.000	18.9407657	17.7085008	3.4%	51.9%	0.0%	ſ
229899	MW15	31-10-19	7.984	1.975	0.156	3.567	0.021	8.792	0.000	0.000	3.385	0.000	1.437	0.012	0.000	0.001	13.7028532	13.6271466	0.3%	64.5%	0.1%	T
229899	MW16	31-10-19	5.489	0.987	0.095	0.826	0.471	7.194	0.000	0.000	0.564	0.016	0.000	0.000	0.000	0.000	7.86903578	7.77366692	0.6%	92.5%	0.0%	T
229899	MW17	31-10-19	6.986	1.070	0.087	2.044	0.002	6.994	0.000	0.000	2.059	0.005	0.874	0.065	0.002	0.021	10.1899593	10.0215182	0.8%	69.8%	0.6%	Γ
229899	MW26	31-10-19	6.986	1.234	0.115	1.566	0.186	9.192	0.000	0.000	0.874	0.021	0.125	0.000	0.000	0.000	10.0873219	10.212386	-0.6%	90.0%	0.0%	Γ
236498	MW28	07-02-20	6.487	0.987	0.090	0.913	0.064	8.393	0.000	0.000	0.959	0.116	0.416	0.000	0.000	0.003	8.54130822	9.88650117	-7.3%	84.9%	0.0%	Γ
236498	MW29	07-02-20	6.986	0.543	0.090	0.826	0.051	9.592	0.000	0.000	0.705	0.105	0.125	0.000	0.000	0.000	8.49613604	10.5270199	-10.7%	91.1%	0.0%	Γ
236498	MW30	07-02-20	5.489	1.317	0.130	2.044	0.000	7.194	0.000	0.000	2.313	0.163	0.750	0.000	0.000	0.002	8.98072275	10.4217326	-7.4%	69.0%	0.0%	Γ
236498	MW31	07-02-20	6.487	1.070	0.090	0.522	0.286	7.993	0.000	0.000	0.762	0.132	0.187	0.000	0.000	0.000	8.45415396	9.07360138	-3.5%	88.1%	0.0%	Γ
236498	MW32	07-02-20	7.485	1.481	0.072	1.827	0.034	8.992	0.000	0.000	1.974	0.105	1.041	0.001	0.001	0.000	10.898647	12.1154199	-5.3%	74.2%	0.0%	Γ
236498	MW33	07-02-20	5.489	0.905	0.049	0.652	0.193	6.794	0.000	0.000	0.677	0.089	0.042	0.000	0.000	0.000	7.28828261	7.60217226	-2.1%	89.4%	0.0%	
236498	MW35	07-02-20	1.098	0.337	0.148	0.522	0.000	0.560	0.000	0.000	0.621	0.000	0.479	0.471	0.001	0.015	2.10555297	2.14625923	-1.0%	26.1%	22.0%	

d Rat	ios		
	NH4:Sum of Cations	% SO4:Sum Anions	Leachate:Native cations (L:N)
6	%	%	%
	-	-	-
	-	-	-
	-	-	-
)%	0.5%	3.1%	2.2%
)%	2.2%	2.7%	4.1%
)%	1.6%	3.6%	2.8%
)%	2.6%	7.5%	4.1%
)%	0.4%	4.9%	1.8%
.%	0.2%	10.5%	1.4%
)%	6.0%	0.0%	7.7%
5%	0.0%	8.7%	1.8%
)%	1.8%	1.2%	3.1%
)%	0.7%	4.2%	1.9%
)%	0.6%	1.2%	1.7%
)%	0.0%	7.2%	1.5%
)%	3.4%	2.1%	4.6%
)%	0.3%	8.6%	1.0%
)%	2.6%	0.5%	3.4%
0%	0.0%	22.3%	32.5%

•	Tota	al Recoverable	Hydroca	rbons		BT	EX		PAHs
	C6-C10	F1 C6-C10 less BTEX	>C10-C12	>C10-C12 (less Naphthalene)	Benzene	Ethylbenzene	Toluene	Xylenes (Total)	Naphthalene
	µg/m3	μg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3	µg/m3
CRC CARE IMW(Shallow Trench), 0m to <2m, Sand		180000000			760000				880000
NEPM HSL-D, 0m to <1m, Sand, Vapour		680000		500000*	4000	1300000	4800000	840000	3000

Field_ID	Sampled Date	Report No.									
VP1	25/11/2016	M162253	760	740	2200	2200	3.8	<2.8	4.9	13	<10
VP1	28/06/2017	M170597	6000	5876	0.48	0.48	11	9	61	43	<9.7
VP2	25/11/2016	M162253	4000	4000	2500	2500	3.5	3.4	<2.8	25	<10
VP2	29/06/2017	M170597	950	940.4	370	370	<2.3	<2.8	9.6	ND	<9.8
VP3	25/11/2016	M162253	2400	2400	4400	4400	4.3	3.9	11	28.1	<10
VP3	30/06/2017	M170597	980	923.4	660	660	<2.1	4.5	30	22.1	<8.9
VP4	25/11/2016	M162253	2700	2600	5400	5400	10	4.9	18	31	<11
VP4	1/07/2017	M170597	8500	8490.9	350	350	<2.3	<2.7	9.1	ND	<9.6

* = NEPM HSL-D F2 criteria which comprises TRH >C10-C16 minus Naphthalene

Table A1 Ambient Indoor & Outdoor Air Concentrations Taronga Place, Mona Vale. February 2020 Radiello SD 130 tubes. Units $\mu g/m^3$

ANALYTE	Units	AA1 Joinery Lunchroom	AA1A Joinery Lunchroom	AA2 Joinery workshop	AA3 Joinery outdoor	AA1 Reece entrance	AA1 Reece entrance dup	AA2 Reece Warehouse	AA3 Reece Outdoor
1,1,1,2-tetrachloroethane	µg/m³	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	µg/m³	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-tetrachloroethane	µg/m³	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	µg/m³	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	µg/m³	3.9	3.1	5.3	1.1	1.9	2.1	1.3	1.4
1,1-dichloroethene	µg/m³	nd	nd	nd	nd	nd	nd	nd	nd
1,1-dichloropropene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,2,4-trimethyl benzene	µg/m³	7.8	15.7	8.6	0.5	0.1	0.1	0.1	0.2
1,2-Dibromoethane	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,2-dichlorobenzene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,2-dichloroethene (cis)	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloroethene (trans)	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,2-dichloropropane	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,3,5-trimethyl benzene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,3-dichlorobenzene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,3-dichloropropane	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1,4 dichloro benzene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
1-methyl naphthalene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
2,2,4-trimethyl pentane	μg/m ³	4.7	3.9	3.5	0.3	0.4	0.4	0.2	0.3
2,2-dimethyl butane	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
2,4-Dimethylpentane	μg/m ³	10.4	9.4	4.2	nd	0.2	0.3	nd	nd
2-chloro-1,3-butadiene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
2-Methyl naphthalene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
2-Methylbutane	$\mu g/m^3$	nd	nd	nd	nd	nd	nd	nd	nd
3-Methylhexane	μg/m ³	62.5	51.3	27.1	0.9	0.7	0.8	0.5	0.5
3-Methylpentane	μg/m ³	1.7	1.7	2.5	nd	0.6	0.6	0.5	nd
Benzene	$\mu g/m^3$	0.8	0.7	1.1	0.2	0.2	0.3	0.2	0.2
Carbon tetrachloride	μg/m ³	0.3	0.3	0.4	0.3	0.4	0.4	0.3	0.3
Chlorobenzene	$\mu g/m^3$	nd	nd	nd	nd	nd	0.0	nd	nd
Chloroform	$\mu g/m^3$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cyclohexane	$\mu g/m^3$	4.1	4.0	4.9	0.6	1.2	1.2	0.9	0.8
dimethyl cyclohexane	$\mu g/m^3$	nd	nd	nd	nd	nd	nd	nd	nd
Dimethylhexane	$\mu g/m^3$	nd	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene Ethylpude hevene	$\mu g/m^3$	40.4	32.6	65.3	0.6	0.8	0.8	0.5	0.4
Ethylcyclohexane	$\mu g/m^3$	0.4 nd	0.3	0.6	0.0	0.0	0.0	0.0	0.0
Ethylcyclopentane Hexachlorobutadiene	μg/m ³ μg/m ³		nd	nd	nd	nd	nd	nd	nd
Isopropyl benzene	μg/m μg/m ³	nd 0.9	nd 0.7	nd 1.5	nd nd	nd 0.0	nd 0.0	nd 0.0	nd nd
m&p-Xylene	μg/m ³	157.1	132.3	248.0	2.1	3.1	3.1	1.9	1.4
MEK	μg/m ³	57.1	73.3	102.6	nd	73.7	80.8	44.2	nd
Methylcyclohexane	μg/m ³	6.7	5.5	6.4	0.5	0.8	0.9	0.5	0.6
Napthalene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
n-Decane	$\mu g/m^3$	2.3	2.7	3.4	nd	1.2	1.3	0.9	nd
n-Dodecane	$\mu g/m^3$	9.7	7.5	7.3	4.2	7.4	8.0	5.8	4.2
n-Heptane	$\mu g/m^3$	8.3	6.7	7.9	0.5	0.8	0.8	0.5	0.5
n-hexane	$\mu g/m^3$	3.9	3.1	5.3	1.1	1.9	2.1	1.3	1.4
n-Nonane	$\mu g/m^3$	1.6	1.3	2.1	0.1	0.2	0.2	0.1	0.2
n-Octane	$\mu g/m^3$	2.4	2.0	3.5	0.1	0.5	0.5	0.3	0.1
n-Tetradecane	μg/m ³	4.3	3.7	10.4	5.2	4.4	5.1	4.6	3.2
n-Tridecane	μg/m ³	2.3	1.4	3.2	1.8	1.6	1.9	1.4	1.3
n-Undecane	μg/m ³	3.5	2.9	3.1	0.3	0.4	0.5	0.4	0.3
o-Xylene	μg/m ³	36.6	29.3	55.8	0.5	1.0	0.9	0.6	0.4
p-cymene	$\mu g/m^3$	0.1	0.2	0.2	0.0	0.1	0.1	0.1	0.0
n-pentane	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
Propyl benzene	$\mu g/m^3$	1.7	1.3	2.6	0.0	0.0	0.0	0.0	0.0
Propyl cyclohexane	$\mu g/m^3$	nd	nd	nd	nd	nd	nd	nd	nd
sec butyl benzene	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
Styrene	μg/m ³	3.2	2.1	3.1	nd	0.1	0.1	0.1	nd
Tetrachloroethylene	μg/m ³	0.0	0.0	0.0	nd	0.0	0.0	0.0	0.0
Toluene	μg/m ³	328.5	281.5	469.2	4.0	3.2	3.2	2.5	2.1
Trichloroethylene	μg/m ³	0.1	0.1	0.2	nd	nd	nd	nd	nd
Trimethyl benzene isomer	μg/m ³	nd	nd	nd	nd	nd	nd	nd	nd
C6-C10	µg/tube	720	580	1000	15	31	31	20	12
>C10-C14	µg/tube	7	8	24	nd	15	11	10	13

wsp

Table A2 Surface vapour flux in two commercial buildings

Taronga Place, Mona Vale. February 2020

Passive flux chamber method - Radiello SD 130 tubes. 12 day deployment

ANALYTE	Units	detection	Flux 1 Joinery	Flux 2 Joinery	Flux 2 dup joinery	Flux 1 Reece	Flux 2 Reece
ANALITE	Onits	limit	Lunchroom	workshop	workshop	entrance	Wearhouse
1,1,1,2-tetrachloroethane	µg/tube	0.02	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	µg/tube	0.02	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	µg/tube	0.02	nd	nd	nd	nd	nd
1,1-dichloroethene	µg/tube	0.02	nd	nd	nd	nd	nd
1,1,2,2-tetrachloroethane	µg/tube	0.02	nd	nd	nd	nd	nd
1,1-Dichloroethane	µg/tube	0.02	2.0	1.3	1.2	0.74	1.2
1,2-Dichloroethene (trans)	µg/tube	0.02	nd	nd	nd	nd	nd
1,1-Dichloropropene	µg/tube	0.02	nd	nd	nd	nd	nd
1,2-Dibromoethane	µg/tube	0.02	nd	nd	nd	nd	nd
1,2,4-trimethyl benzene	µg/tube	0.02	22	13	39	0.15	0.30
1,2-dichloroethene (cis)	µg/tube	0.02	nd	nd	nd	nd	nd
1,2-dichloropropane	µg/tube	0.02	nd	nd	nd	nd	nd
1,3-dichloropropane	µg/tube	0.02	nd	nd	nd	nd	nd
1,3,5-trimethyl benzene	µg/tube	0.02	nd	nd	nd	nd	nd
1,4 dichlorobenzene	µg/tube	0.02	nd	nd	nd	nd	nd
1,3-dichlorobenzene	µg/tube	0.02	nd	nd	nd	nd	nd
1,2-dichlorobenzene	µg/tube	0.02	nd	nd	nd	nd	nd
1-methyl naphthalene	µg/tube	0.02	nd	nd	nd	nd	nd
2,2,4-trimethyl pentane	µg/tube	0.02	0.92	0.31	0.28	0.05	0.11
2,2-dimethyl butane	µg/tube	0.02	nd	nd	nd	nd	nd
2,4-Dimethylpentane	µg/tube	0.02	1.3	0.22	0.21	nd	nd
2-Methyl naphthalene	µg/tube	0.02	nd	nd	nd	nd	nd
2-Methylbutane	µg/tube	0.02	nd	nd	nd	nd	nd
2-chloro-1,3-butadiene	µg/tube	0.02	nd	nd	nd	nd	nd
3-Methylhexane	µg/tube	0.02	12.3	1.2	1.1	0.07	0.09
3-Methylpentane	µg/tube	0.02	nd	nd	nd	nd	nd
Benzene	µg/tube	0.02	0.45	0.15	0.19	0.06	0.08
Carbon tetrachloride	µg/tube	0.02	0.05	nd	nd	nd	nd
Chlorobenzene	µg/tube	0.02	nd	nd	nd	nd	nd
Chloroform	µg/tube	0.02	0.04	nd	nd	nd	nd
Cyclohexane	µg/tube	0.02	0.50	0.42	0.34	0.03	nd
dimethyl cyclohexane	µg/tube	0.02	nd	nd	nd	nd	nd
Dimethylhexane	µg/tube	0.02	nd	nd	nd	nd	nd
Ethylbenzene	µg/tube	0.02	7.8	5.5	7.7	3.8	14
Ethylcyclohexane	μg/tube	0.02	0.35	0.13	0.53	nd	nd
Ethylcyclopentane	µg/tube	0.02	nd	nd	nd	nd	nd
Hexachlorobutadiene	µg/tube	0.02	nd	nd	nd	nd	nd
Isopropyl benzene	µg/tube	0.02	2.4	1.3	4.5	0.05	0.15
m&p-Xylene	μg/tube	0.02	39 rd	24	35	18	67 rd
MEK	μg/tube	0.02	nd	nd	nd	nd	nd
Methylcyclohexane Napthalene	μg/tube μg/tube	0.02	60 0.6	nd 0.4	nd 0.5	110 nd	nd nd
n-Decane	μg/tube μg/tube	0.02	55	47	115	1.3	1.6
n-Dodecane	μg/tube μg/tube	0.02	170	25	35	1.5	2.8
n-Heptane	μg/tube	0.02	2.3	1.2	1.5	0.12	0.20
n-hexane	μg/tube μg/tube	0.02	2.3	1.2	1.5	0.12	1.2
n-Nonane	μg/tube	0.02	8.0	6.3	31.3	0.10	0.14
n-Octane	μg/tube	0.02	2.4	1.3	3.4	0.10	0.14
n-Tetradecane	μg/tube	0.02	27	2.9	3.8	1.8	1.8
n-Tridecane	μg/tube	0.02	220	7.8	11	1.0	1.0
n-Undecane	μg/tube	0.02	180	90	180	2.9	3.1
o-Xylene	μg/tube	0.02	20	8.5	18	5.8	19
p-cymene	μg/tube	0.02	3.6	2.1	3.2	nd	nd
n-pentane	μg/tube	0.02	nd	nd	nd	nd	nd
Propyl benzene	μg/tube	0.02	4.8	2.6	6.7	0.05	0.13
Propyl cyclohexane	μg/tube	0.02	nd	nd	nd	nd	nd
sec butyl benzene	μg/tube	0.02	6.5	2.2	6.2	nd	nd
Styrene	μg/tube	0.02	0.90	0.39	0.2	nd	nd
Tetrachloroethylene	μg/tube	0.02	nd	nd	0.0	nd	nd
Toluene	μg/tube	0.02	52	32	35	1.1	1.8
Trichloroethylene	μg/tube μg/tube	0.02	0.02	nd	nd	nd	nd
Trimethyl benzene isomer	μg/tube μg/tube	0.02	nd	nd	nd	nd	nd
C6-C10	μg/tube	5	620	340	810	36	83
	μg/tube	5	27000	nd	48	nd	14

Table A3 Ambient Indoor & Outdoor Air ConcentrationsRelative Percent Differences (RPDs)Taronga Place, Mona Vale. February 2020Radiello SD 130 tubes. Units μg/m3

ANALYTE	Units	AA1 Joinery Lunchroom	AA1A Joinery Lunchroom	RPD
1,1,1,2-tetrachloroethane	µg/m³	nd	nd	-
1,1,1-Trichloroethane	µg/m³	nd	nd	-
1,1,2,2-tetrachloroethane	μg/m ³	nd	nd	-
1,1,2-Trichloroethane	μg/m ³	nd	nd	-
1,1-Dichloroethane	µg/m³	3.9	3.1	24%
1,1-dichloroethene 1,1-dichloropropene	μg/m ³ μg/m ³	nd	nd nd	-
1,2,4-trimethyl benzene	μg/m ³	nd 7.8	15.7	67%
1,2-Dibromoethane	$\mu g/m^3$	nd	nd	-
1,2-dichlorobenzene	$\mu g/m^3$	nd	nd	-
1,2-dichloroethene (cis)	$\mu g/m^3$	nd	nd	-
1,2-Dichloroethene (trans)	μg/m ³	nd	nd	-
1,2-dichloropropane	μg/m ³	nd	nd	-
1,3,5-trimethyl benzene	µg/m³	nd	nd	-
1,3-dichlorobenzene	µg/m³	nd	nd	-
1,3-dichloropropane	$\mu g/m^3$	nd	nd	-
1,4 dichloro benzene	µg/m³	nd	nd	-
1-methyl naphthalene	μg/m³	nd	nd	-
2,2,4-trimethyl pentane	µg/m³	4.7	3.9	20%
2,2-dimethyl butane	$\mu g/m^{3}$	nd	nd	-
2,4-Dimethylpentane	µg/m³	10.4	9.4	10%
2-chloro-1,3-butadiene	μg/m ³	nd	nd	-
2-Methyl naphthalene	μg/m ³	nd	nd	-
2-Methylbutane	μg/m ³	nd	nd	-
3-Methylhexane	μg/m ³	62.5	51.3	20%
3-Methylpentane	$\mu g/m^3$	1.7	1.7	0%
Benzene Carbon totus eblavida	μg/m³	0.8	0.7	23% 12%
Carbon tetrachloride Chlorobenzene	μg/m³ μg/m³	0.3	0.3	12%
Chloroform	μg/m ³	nd 0.0	nd 0.0	0%
Cyclohexane	μg/m ³	4.1	4.0	2%
dimethyl cyclohexane	$\mu g/m^3$	nd	nd	-
Dimethylhexane	μg/m ³	nd	nd	-
Ethylbenzene	μg/m ³	40.4	32.6	21%
Ethylcyclohexane	μg/m ³	0.4	0.3	24%
Ethylcyclopentane	µg/m³	nd	nd	-
Hexachlorobutadiene	µg/m³	nd	nd	-
Isopropyl benzene	µg/m³	0.9	0.7	23%
m&p-Xylene	µg/m³	157.1	132.3	17%
МЕК	µg/m³	57.1	73.3	25%
Methylcyclohexane	µg/m³	6.7	5.5	21%
Napthalene	μg/m ³	nd	nd	-
n-Decane	μg/m ³	2.3	2.7	13%
n-Dodecane	$\mu g/m^3$	9.7	7.5	26%
n-Heptane	μg/m ³	8.3	6.7	22%
n-hexane n-Nonane	μg/m³ μg/m³	3.9 1.6	3.1 1.3	24% 25%
n-Nonane n-Octane	μg/m μg/m³	2.4	2.0	25%
n-Octane n-Tetradecane	μg/m μg/m³	4.3	3.7	14%
n-Tridecane	μg/m ³	2.3	1.4	48%
n-Undecane	μg/m ³	3.5	2.9	19%
o-Xylene	μg/m ³	36.6	29.3	22%
p-cymene	μg/m ³	0.1	0.2	42%
n-pentane	µg/m³	nd	nd	-
Propyl benzene	µg/m³	1.7	1.3	22%
Propyl cyclohexane	µg/m³	nd	nd	-
sec butyl benzene	µg/m³	nd	nd	-
Styrene	µg/m³	3.2	2.1	39%
Tetrachloroethylene	µg/m³	0.04	0.03	44%
Toluene	µg/m³	328.5	281.5	15%
Trichloroethylene	µg/m³	0.1	0.1	28%
Trimethyl benzene isomer	μg/m³ μg/tube	nd 720	nd 580	- 22%
C6-C10				

Table A4 Surface vapour flux in two commercial buildingsRelative Percent Differences (RPDs)Taronga Place, Mona Vale. February 2020

Passive flux chamber method - Radiello SD 130 tubes. 12 day deployment

ANALYTE	Units	detection	Flux 2 Joinery workshop	Flux 2 dup joinery	RPD
	· · ·	limit	-	workshop	
1,1,1,2-tetrachloroethane	µg/tube	0.02	nd	nd	-
1,1,1-Trichloroethane	µg/tube	0.02	nd	nd	-
1,1,2-Trichloroethane	μg/tube	0.02	nd	nd	-
1,1-dichloroethene	µg/tube	0.02	nd	nd	-
1,1,2,2-tetrachloroethane	µg/tube	0.02	nd	nd	-
1,1-Dichloroethane	µg/tube	0.02	1.3	1.2	3%
1,2-Dichloroethene (trans)	μg/tube	0.02	nd	nd	-
1,1-Dichloropropene	µg/tube	0.02	nd	nd	-
1,2-Dibromoethane	μg/tube	0.02	nd	nd	-
1,2,4-trimethyl benzene 1,2-dichloroethene (cis)	μg/tube	0.02	13	39	102%
1,2-dichloropropane	μg/tube μg/tube	0.02	nd nd	nd nd	-
1,3-dichloropropane	μg/tube μg/tube	0.02	nd	nd	-
1,3,5-trimethyl benzene	μg/tube μg/tube	0.02	nd	nd	-
1,4 dichlorobenzene	μg/tube	0.02	nd	nd	-
1,3-dichlorobenzene	μg/tube	0.02	nd	nd	-
1,2-dichlorobenzene	μg/tube	0.02	nd	nd	-
1-methyl naphthalene	μg/tube μg/tube	0.02	nd	nd	-
2,2,4-trimethyl pentane	μg/tube μg/tube	0.02	0.31	0.28	- 9%
2,2-dimethyl butane	μg/tube	0.02	nd	nd	-
2,4-Dimethylpentane	μg/tube μg/tube	0.02	0.22	0.21	- 7%
2-Methyl naphthalene	μg/tube	0.02	nd	nd	-
2-Methylbutane	μg/tube	0.02	nd	nd	-
2-chloro-1,3-butadiene	μg/tube	0.02	nd	nd	_
3-Methylhexane	μg/tube	0.02	1.2	1.1	8%
3-Methylpentane	μg/tube	0.02	nd	nd	-
Benzene	μg/tube	0.02	0.15	0.19	23%
Carbon tetrachloride	μg/tube	0.02	nd	nd	-
Chlorobenzene	μg/tube	0.02	nd	nd	_
Chloroform	μg/tube	0.02	nd	nd	_
Cyclohexane	μg/tube	0.02	0.42	0.34	22%
dimethyl cyclohexane	μg/tube	0.02	nd	nd	-
Dimethylhexane	μg/tube	0.02	nd	nd	-
Ethylbenzene	μg/tube	0.02	5.5	7.7	34%
Ethylcyclohexane	μg/tube	0.02	0.13	0.53	121%
Ethylcyclopentane	μg/tube	0.02	nd	nd	-
Hexachlorobutadiene	µg/tube	0.02	nd	nd	-
Isopropyl benzene	µg/tube	0.02	1.3	4.5	111%
m&p-Xylene	µg/tube	0.02	24	35	36%
MEK	µg/tube	0.02	nd	nd	-
Methylcyclohexane	µg/tube	0.02	nd	nd	-
Napthalene	µg/tube	0.02	0.4	0.5	18%
n-Decane	µg/tube	0.02	47	115	83%
n-Dodecane	µg/tube	0.02	25	35	34%
n-Heptane	µg/tube	0.02	1.2	1.5	24%
n-hexane	µg/tube	0.02	1.3	1.2	3%
n-Nonane	µg/tube	0.02	6.3	31.3	133%
n-Octane	µg/tube	0.02	1.3	3.4	87%
n-Tetradecane	µg/tube	0.02	2.9	3.8	29%
n-Tridecane	µg/tube	0.02	7.8	11	37%
n-Undecane	µg/tube	0.02	90	180	66%
o-Xylene	µg/tube	0.02	8.5	18	72%
p-cymene	µg/tube	0.02	2.1	3.2	41%
n-pentane	µg/tube	0.02	nd	nd	-
Propyl benzene	µg/tube	0.02	2.6	6.7	87%
Propyl cyclohexane	µg/tube	0.02	nd	nd	-
sec butyl benzene	µg/tube	0.02	2.2	6.2	97%
Styrene	µg/tube	0.02	0.39	0.90	78%
Tetrachloroethylene	µg/tube	0.02	nd	0.0	-
Toluene	µg/tube	0.02	32	35	8%
Trichloroethylene	µg/tube	0.02	nd	nd	-
Trimethyl benzene isomer	µg/tube	0.02	nd	nd	-
C6-C10	µg/tube	5	340	810	82%
>C10-C14	µg/tube	5	nd	48	-

APPENDIX C SURVEYS AND SERVICE PLANS

SCALES	SURVEYOR		
	M.Mc.	I PLAN	
HURIZONTAL: 1:300	DRAWN		
VERTICAL: N/A	A.B.S.	SHOWING DETAIL & LEVELS OVER	
	CHECKED		
FIFI D SHFFTS.	M.Mc.	MONA VALE S.T.A. BUS DEPOT.	Degotardi Smith & Pa
Date of Survey 9/12/98	APPROVED	58 DARLEY STREET, MONA VALE	CONSULTING SURVEYORS ESTABLIS
	HORIZONTAL: 1:300 VERTICAL: N/A FIELD SHEETS:	HORIZONTAL: 1:300 VERTICAL: N/A FIELD SHEETS: M.Mc. M.Mc. M.Mc.	M.Mc. PLAN HORIZONTAL: 1:300 DRAWN VERTICAL: N/A A.B.S. FIELD SHEETS: M.Mc. APPROVED TO DATE STORE

n/a Darley Street Mona Vale NSW 2103

DBYD Job No: 7505744 DBYD Sequence No: 34407885 No warranty is given that the information shown is complete or accurate.

SYDNEY WATER CORPORATION Scale: 1:1000 Date of Production: 09/06/2014 Plan 1 of 1

APPENDIX D BORELOGS

Borehole Log			Hole ID.		SB1
USP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.spenvironmental.com	Project Name: Project Number: Location / Site: Client: Drilling Company:	STA - Contaminated Site Assessme 3075 58 Darley Street, Mona Vale NSW State Transit Authority Epoca Environmental Pty Ltd	ent - Mona Vale	Date Started: Date Completed: Hole Depth: Ground Level: Easting:	19/12/2011 19/12/2011 2.70 m
	Drill Method:	Hand Auger / Push Tube		Northing:	
A City and A S	Logged By:	Rod Gray		Sheet:	1 of 1

	svel	(1		Log	ymbol	Type	Material Description			Samples / Tests		Observations / Comments					
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Moisture	PID ppm	ID No.	DUP TRIP QC	Observations / Comments					
							Surface: Concrete										
S		 0.20		A P A A A A A A A A A A A A A A A A A A			CONCRETE.										
		-				Fil	FILL - Sand with Gravel, grey / brown, medium grained.	moist	1.3	SB1 / 0.3m		Hydrocarbon odour.					
ger		0.5							29.6	SB1 / 0.5m							
Hand Au	Image: Second									Hydrocarbon odour.							
46.1 S								SB1 / 1.0m									
									185.3	SB1 / 1.5m							
Push Tube		2.0			SP	Natural			191.2	SB1 / 2.0m	Dup1						
P		-					Grey below 2.0m.		101.2	00172.011	Trip1						
		2.5					Yellow / brown below 2.4m.										
		2.70					End of Hole at 2.70 m		2.6	SB1 / 2.7m							
		3.0															
	Dbs	erva	ition	s					•	Notes		1					
	Asbe Stain Odou	stos ing		N N C	lo vis)lfact	ual e ory (evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted d e.g. hydrocarbon odour) evidence of contamination noted du water encountered during drilling.										
	R	j (AA	P	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Che	cked By	Log Drawn By: Laurie White Checked By: Rod Gray Date: 30/01/2012							

Borehole Log			Hole ID.		SB2
WSP	Project Name: Project Number:	STA - Contaminated Site Assessm 3075	ent - Mona Vale	Date Started: Date Completed:	20/12/2011 20/12/2011
WSP Environment & Energy Level 1, 41 McLaren Street	Location / Site: Client:	58 Darley Street, Mona Vale NSW State Transit Authority		Hole Depth: Ground Level:	1.40 m
North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Drilling Company: Drill Method:	Epoca Environmental Pty Ltd Hand Auger		Easting: Northing:	
S. Calman A.M.	Logged By:	Rod Gray		Sheet:	1 of 1

	evel	(u		Log	ymbol	Type	Material Description			Samples / Tests		Observations / Comments
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type		Moisture	PID ppm ID No.		DUP TRIP QC	
							Surface: Concrete					
8		 0.20		A P P P P			CONCRETE.					
		_ 0.50				Fill	FILL - Sand, yellow / grey / orange, medium grained.	moist	0.1	SB2 / 0.3m		
	PEAT. Silty SAND - dark brown, medium moist grained. Hydrocarbon odour.											
Hand Auger	Big - SAND with Gravel inclusions - yellow / brown, moist Hydrocarbon odour. Medium grained. Hydrocarbon odour. Hydrocarbon odour.											
		1.0			SP	Natural			230.3	SB2 / 1.0m		
		_ 1.40					Increasing gravel component.		567	SB2 / 1.4m	Dup2 Trip2	
		2.0										
Description Notes Observations Notes Asbestos No visual evidence of asbestos noted during drilling. Staining No visual evidence of contamination (e.g. staining / precipitate) noted during drilling. Odour Olfactory (e.g. hydrocarbon odour) evidence of contamination noted during drilling. Groundwater No groundwater encountered during drilling.												

Checked By:

Rod Gray

Date: 30/01/2012

REUMAD

Log Drawn By: Laurie White

Contact: laurie.white@reumad.com.au

Borehole Log		Нс	ole ID.		SB3
WSP	Project Name: Project Number:	STA - Contaminated Site Assessment 3075	t - Mona Vale	Date Started: Date Completed:	20/12/2011 20/12/2011
WSP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Location / Site: Client: Drilling Company: Drill Method: Logged By:	58 Darley Street, Mona Vale NSW State Transit Authority Epoca Environmental Pty Ltd Hand Auger Rod Gray		Hole Depth: Ground Level: Easting: Northing: Sheet:	1.50 m 1 of 1

	evel	m)		: Log	Symbol	I Type	Material Description	υ		Sa	mples / Tests	Observations / Comments
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type		Material Description				
							Surface: Concrete					
cc		 0.20					CONCRETE.					
		-				Fill	FILL - Sand, yellow, medium grained.	mo		1.3	SB3 / 0.3m	No olfactory evidence of contamination present in soil.
Auger		<u>0.50</u> 			CL		PEAT. Silty CLAY - dark brown, soft.	mo	st	6.3	SB3 / 0.6m	
Hand Auger	012	<u>0.90</u> _1.0			CL	Natural	PEAT. Sandy CLAY - orange / brown, soft.	mo		27.2	SB3 / 1.0m	
	h 1.4m 20/12/20	1.30 1.50			sc		Clayey SAND - yellow / brown, medium grained.	mo	_	4.7	SB3 / 1.5m	
		-					End of Hole at 1.50 m					
		2.0										
		-										
		2.5										
		erva	tion							N	otes	
S	Stain Odou		iter	N N	lo vis lo olf	ual e acto	evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted du ry (e.g. hydrocarbon odour) evidence of contamination noted o ter encountered during drilling.					
Observations Notes Asbestos No visual evidence of asbestos noted during drilling. Staining No visual evidence of contamination (e.g. staining / precipitate) noted during drilling. Odour No olfactory (e.g. hydrocarbon odour) evidence of contamination noted during drilling. Groundwater Groundwater encountered during drilling. Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au												

Borehole Log			Hole ID.		SB4
WSP	Project Name: Project Number:	STA - Contaminated Site Assessme 3075	ent - Mona Vale	Date Started: Date Completed:	19/12/2011 19/12/2011
WSP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Location / Site: Client: Drilling Company:	58 Darley Street, Mona Vale NSW State Transit Authority Epoca Environmental Pty Ltd			2.70 m
www.wspenvironmental.com	Drill Method: Logged By:	Hand Auger / Push Tube Rod Gray		Northing: Sheet:	 1 of 1

	evel	(u		Log	ymbol	Type	Material Description		Sa	amples / Tests	Observations / Comments
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type		Moisture	PID ppm	ID No.	
							Surface: Concrete				
СС		-					CONCRETE.				
		<u>0.20</u>				Fill	FILL - Sand, yellow / grey, medium grained.	moist	0.9	SB4 / 0.3m	
		<u>0.50</u> - 0.70			CL		PEAT. Sandy CLAY - dark brown, soft.	moist	1.2	SB4 / 0.6m	
Hand Auger		_					SAND with Gravel - yellow, medium grained.	moist			
-		1.0							1.1	SB4 / 1.0m	
	1.6m 19/12/2011	- 1.5									Hydrocarbon odour.
	Ā				SP	Natural		wet	225	SB4 / 1.5m	
		2.0							469.3	SB4 / 2.0m	
Push Tube									409.0	50472.000	
		2.5									
		_ 2.70					End of Hole at 2.70 m		2.3	SB4 / 2.7m	
) Dbs	3.0 erva	ition	s	ļ				N	otes	l
S	Stair Odoi	estos ning ur indwa	ater	N C	lo vis Olfact	ual (ory (evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted duri e.g. hydrocarbon odour) evidence of contamination noted durin ter encountered during drilling.				
-	R			AA	D		g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checked B	y: R	od Gray	Date: 30/01/2012

Borehole Log		H	Hole ID.		SB5
WSP	Project Name: Project Number:	STA - Contaminated Site Assessmer 3075	nt - Mona Vale	Date Started: Date Completed:	19/12/2011 19/12/2011
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	2.70 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	Epoca Environmental Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Push Tube		Northing:	
S. Calman A.S.	Logged By:	Rod Gray		Sheet:	1 of 1

	-evel	m)		: Log	USCS Symbol	l Type	Material Description	۵	Si	amples / Tests	Observations / Comments
Method	Water Level	Depth (m)	RL (m)	Graphic Log	nscs	Material Type		Moisture	PID ppm	ID No.	
							Surface: Concrete				
S		_		A P P A P			CONCRETE.				
		<u>0.20</u>				Fil	FILL - Sand, yellow, medium grained.	moist	0.1	SB5 / 0.3m	
		0.50 0.60		\bigotimes			FILL - Clay, grey / orange / red mottled, stiff.	moist			Dark staining. H/carbon odour.
ger		_					SAND with Gravel - yellow, medium grained.	moist	0.5	SB5 / 0.6m	
Hand Auger									0.7	SB5 / 1.0m	
	.4m 9/12/2011	-					Grey below 1.2m.				Hydrocarbon odour.
	Ā					_		wet	77.1	SB5 / 1.5m	
		-			SP	Natural					
Push Tube		2.0							132.5	SB5 / 2.0m	
Ā		-									
		2.5							1.3	SB5 / 2.7m	
_		2.70		1999			End of Hole at 2.70 m		1.5	30372.711	
		3.0									
	Dbs	erva	tion	s					N	lotes	
s	Stain Odou	ır			lo vis Olfact	iual (iory (evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted dur e.g. hydrocarbon odour) evidence of contamination noted durin				
0 	erou	ndwa			Frour	_	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checked B	v: R	od Gray	Date: 30/01/2012

Borehole Log		н	lole ID.		SB6
WSP	Project Name: Project Number:	STA - Contaminated Site Assessmen 3075	it - Mona Vale	Date Started: Date Completed:	19/12/2011 19/12/2011
WSP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Location / Site: Client: Drilling Company: Drill Method: Logged By:	58 Darley Street, Mona Vale NSW State Transit Authority Epoca Environmental Pty Ltd Hand Auger Rod Gray		Hole Depth: Ground Level: Easting: Northing: Sheet:	1.60 m 1 of 1

	evel	(u		Waterial Description Waterial Type		Sa	amples / Tests	Observations / Comments			
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS S	Material		Moisture	PID ppm	ID No.	
							Surface: Concrete				
cc		0.20					CONCRETE.				
		-				Ē	FILL - Sand, yellow, medium grained.	moist	0.2	SB6 / 0.3m	No olfactory evidence of contamination present in soil.
		0.5		\bigotimes					0.1	SB6 / 0.5m	
		- 0.70		\bigotimes	CL		PEAT. Sandy CLAY - brown / orange, soft.	moist			
Hand Auger		0.80 0.90		- -	SP		Gravelly SAND - brown, medium grained, ironstone gravel.	moist moist			
На	2/2011					Natural	SAND - orange / yellow, medium grained, with minor clay.		0.2	SB6 / 1.0m	
	<u>Т</u>	_			SP	Nat		wet			
		1.5							0.1	SB6 / 1.6m	
		1.60		2422			End of Hole at 1.60 m		0.1	3607 1.011	
		_ 2.0									
		_									
		-									
(Obs	serva	tion	s					N	otes	
		estos					evidence of asbestos noted during drilling.				
	Stair Odo						evidence of contamination (e.g. staining / precipitate) noted during drill y (e.g. hydrocarbon odour) evidence of contamination noted during dr	-			
		undwa	iter				ter encountered during drilling.	-			
1	R			AA	ſD.	Lo	g Drawn By: Laurie White	hecked By		od Gray	Date: 30/01/2012

Borehole Log		Нс	ole ID.		SB7
WSP	Project Name: Project Number:	STA - Contaminated Site Assessment 3075	t - Mona Vale	Date Started: Date Completed:	20/12/2011 20/12/2011
WSP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Location / Site: Client: Drilling Company: Drill Method: Logged By:	58 Darley Street, Mona Vale NSW State Transit Authority Epoca Environmental Pty Ltd Hand Auger Rod Gray		Hole Depth: Ground Level: Easting: Northing: Sheet:	1.50 m 1 of 1

	evel	u)		Log	iymbol	Type	Material Description		s	amples / Tests	Observations / Comments
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type		Moisture	PID ppm	ID No.	
							Surface: Concrete				
8		0.20					CONCRETE.				
		_					FILL - Gravelly Sand, orange / brown, medium grained.	mois	0.0	SB7 / 0.3m	No olfactory evidence of contamination present in soil.
		0.5									
		_				Fil			0.0	SB7 / 0.6m	
Hand Auger		0.90									
Т		1.0		\bigotimes			FILL - Sand, yellow, medium grained.	mois	0.0	SB7 / 1.0m	
		1.30									
		1.50			CL	Natural	PEAT. Sandy CLAY - dark brown, soft, medium grained.	moist	0.0	SB7 / 1.5m	
		_					End of Hole at 1.50 m				
		_									
		2.0									
		_									
		-									
		2.5									
		_									
		3.0									
		erva	ition						N	lotes	
S	Asbe Stair Odou	•		N	lo vis	ual e	evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted dur y (e.g. hydrocarbon odour) evidence of contamination noted d				
(Grou	Indwa	ater			ound	water encountered during drilling.	-			
-	R			AA	þ		g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checked I	By: F	lod Gray	Date: 30/01/2012

Borehole Log		H	Hole ID.		SB8
WSP	Project Name: Project Number:	STA - Contaminated Site Assessmer 3075	nt - Mona Vale	Date Started: Date Completed:	20/12/2011 20/12/2011
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	0.90 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060	Drilling Company:	Epoca Environmental Pty Ltd		Easting:	
Office: +61 (0)2 8925 6700	Drill Method:	Hand Auger		Northing:	
www.wspenvironmental.com	Logged By:	Rod Gray		Sheet:	1 of 1

	evel	u)		Log	ymbol	Type	Material Description			Sa	mples / Tests	Observations / Comments
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type		Moisture		PID opm	ID No.	
							Surface: Concrete					
cc		0.20		A A A A A A A A A A A A A A A A A A A			CONCRETE.					
		_					FILL - Sand with Gravel inclusions, light brown, medium grained.	moi	st O	0.3	SB8 / 0.3m	No olfactory evidence of contamination present in soil.
Hand Auger		0.5				Fill			0	0.7	SB8 / 0.6m	
		0.70					FILL - Clay, grey / orange / brown, stiff, wood fragments.	moi	st			
		1.0					Hole Terminated at 0.90 m due to refusal on unknown object.					
		-										
		1.5										
		-										
		2.0										
		_										
		2.5										
		_										
		_										
	Dbs	3.0 Serva	ition	s							otes	
S	Asbe Stair Odou			N	lo vis	sual e	evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted c ry (e.g. hydrocarbon odour) evidence of contamination noted					
		undwa	ater			ound	water encountered during drilling.	g or mining.				
-	R	<u></u>	JN	AA	P	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checked	By:	R	od Gray	Date: 30/01/2012

Monitoring Well Log	g		Hole ID.		SB09
WSP	Project Name: Project Number:	Mona Vale STA - Delineation 31801		Date Started: Date Completed:	13/08/2012 13/08/2012
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	2.00 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Flight Auger		Northing:	
S. Callman al .	Logged By:	Joshua Byrne		Sheet:	1 of 1

Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type	Material Description	Moisture	Sa PID	amples / Tests	Observations / Comments
Met	Wai	Dep	RL	Gra	NS(Mat		Moi	ppm	ID No.	
							Quiferen Quinerate				
_				P 4			Surface: Concrete CONCRETE.				
ខ		-		A A A A A A A A A A A A A A A A A A A			CONCRETE.				
	FILL - Silty Sand, orange / brown.						FILL - Silty Sand, orange / brown.	dry to			
								moist			
uger									3.3	SB09_0.5m	No visual or olfactory signs of contamination.
and A											
т											
							Silty SAND - orange brown / grey blue.	moist t	D		
		1.0						wet		0000	Hydrocarbon odour.
					SM				174.5	SB09_1.0m	Staining.
		1.20									
	2012						Gravelly CLAY - grey / white.	very			
Iger	1.5m 13/08/20					Natural		moist			
ght Au	Ā	1.5				Nat			243.1	SB09_1.5m	Hydrocarbon odour.
Solid Flight Auger	-	_			CL				240.1	0009_1.011	Staining.
Sol		_									
		_									
		_									Hydrocarbon odour.
		2.00		///X					210.5	SB09_2.0m	Staining.
		_					End of Hole at 2.00 m				
		-									
		_									
		_									
		2.5									
		-									
	Observations								Notes	;	
	Asbe Stain	estos iina					evidence of asbestos noted during drilling. dence of contamination (e.g. staining / precipitate) noted duri	ina drillina			
)dou	•					(e.g. hydrocarbon odour) evidence of contamination noted du				
Ģ	Grou	ndwa	ater				ter encountered during drilling.				
R	Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au							Checked E	By: Jo	oshua Byrne	Date: 30/08/2012
Monitoring Well Log	g		Hole ID.		SB10						
---	----------------------------------	--------------------------------------	----------	----------------------------------	--------------------------						
WSP	Project Name: Project Number:	Mona Vale STA - Delineation 31801		Date Started: Date Completed:	13/08/2012 13/08/2012						
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	2.00 m						
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:							
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Easting:							
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Flight Auger		Northing:							
S. Galand A.	Logged By:	Joshua Byrne		Sheet:	1 of 1						

	evel.	(m	(DH)	: Log	Symbol	l Type	Material Description	σ	Sa	mples / Tests	Observations / Comments
Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type		Moisture	PID ppm	ID No.	
							Surface: Concrete				
ប្ល		 0.18		A A A A A A A A A A A A A A A A A A A			CONCRETE.				
		_					FILL - Silty Sand, dark orange / brown, with organi matter inclusions.	c moist			
		0.5				Fill					No visual or olfactory signs of
Hand Auger		_							0.0	SB10_0.5m	contamination.
Ha		0.80									
		-					Silty SAND - orange / brown.	moist			
					SM				0.6	SB10_1.0m	Hydrocarbon odour.
		1.20					Gravelly SAND - grey / white.	very moist			
t Auger		_		ູ		Natural		moist			
Solid Flight Auger		1.5		。。 。。。	SP				120.9	SB10_1.5m	Hydrocarbon odour.
Ň		-		°. °.							
		_		。 。 。			With red clay & gravel inclusions.		151.7	SB10_2.0m	Hydrocarbon odour.
		2.00		<u>o</u> ju			End of Hole at 2.00 m		101.7	0010_2.011	
		-									
		-									
		2.5									
		-									
		-									
	Dbs	3.0 erva	tion	s					Notes		
A		stos		I N			evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted durin	na drillina			
С	Odou	-	iter	0	Olfact	tory (e.g. hydrocarbon odour) evidence of contamination noted during water encountered during drilling.				
R			M	A	- 9/		g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checked B	v [.] .lr	oshua Byrne	Date: 30/08/2012

Monitoring Well Log	g		Hole ID.		SB11
WSP	Project Name:	Mona Vale STA - Delineation		Date Started:	13/08/2012
	Project Number:	31801		Date Completed:	13/08/2012
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	1.90 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Flight Auger		Northing:	
S. Galand A.S.	Logged By:	Joshua Byrne		Sheet:	1 of 1

	evel	n)	(DH	Log	iymbol	Type	Material Description		Sa	amples / Tests	Observations / Comments	
Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type		Moisture	PID ppm	ID No.		
							Surface: Concrete					
ပ္ပ		 0.18		A A A A A			CONCRETE.					
		-				lii	FILL - Silty Sand, brown / grey.	damp				
Hand Auger		0.5				ш			1.4	SB11_0.5m	No visual or olfactory signs of contamination.	
Ĭ		0.70 0.80			CL		Silty CLAY - dark brown / red.	damp				
		-			SM		Silty SAND - dark brown.	damp				
		1.00					Silty SAND - light orange / brown.	moist	8.1	SB11_1.0m	No visual or olfactory signs of contamination.	
Solid Flight Auger	2	-			SM	Natural	With gravel inclusions at 1.4m.					
Solid FI	1.7m 13/08/	1.50			SM		Silty SAND - orange brown / grey.	moist	92.4	SB11_1.5m	Hydrocarbon odour.	
	¥	<u>1.70</u> 		°. °.	SP		Gravelly SAND - grey / white, blue / grey staining.	moist to wet	147.3	SB11_1.9m	Hydrocarbon odour. Staining.	
		 					End of Hole at 1.90 m					
)hs	 3.0	tion						Notes			
A S C	sbe tain dou	estos ning		N V C	'isua Olfact	l evid	evidence of asbestos noted during drilling. lence of contamination (e.g. staining / precipitate) noted during e.g. hydrocarbon odour) evidence of contamination noted during ter encountered during drilling.		TNOLES			
R	l	U	M	A	0	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checked B	y: Jo	oshua Byrne	Date: 30/08/2012	

Monitoring Well Log	g		Hole ID.		SB12
WSP	Project Name: Project Number:	Mona Vale STA - Delineation 31801		Date Started: Date Completed:	13/08/2012 13/08/2012
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	1.80 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Flight Auger		Northing:	
	Logged By:	Joshua Byrne		Sheet:	1 of 1

	evel	m)	(DH	: Log	Symbol	l Type	Material Description	a		Sa	mples / Tests	Observations / Comments
Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type		Moisture		PID ppm	ID No.	
							Surface: Concrete					
СС		-				Fill	CONCRETE.					
Hand Auger		<u>0.30</u> 0.5 			SM		Silty SAND - orange / brown.	mo	ist	2.0	SB12_0.5m	No visual or olfactory signs of contamination.
		1.0				Natural				182.6	SB12_1.0m	Hydrocarbon odour.
Solid Flight Auger	H 1.5m 13/08/2012	1.20			SM		Silty SAND - brown orange / grey.	mo		207.5	SB12_1.5m	Hydrocarbon odour. Minor staining.
		<u>1.60</u> 1.80			SM		Silty SAND - white / grey.	ve mo	ist	260.8	SB12_1.8m	Hydrocarbon odour.
		2.0 2.5 					End of Hole at 1.80 m					
() 	Asbe Stain Odou	-		 \ (/isual Olfact	l evi tory	evidence of asbestos noted during drilling. dence of contamination (e.g. staining / precipitate) noted durir (e.g. hydrocarbon odour) evidence of contamination noted dur ter encountered during drilling.			Notes		
ſ	ł	U	M	A	Þ	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checke	d By	/: Jo	shua Byrne	Date: 30/08/2012

Monitoring Well Log	g		Hole ID.		SB13
WSP	Project Name: Project Number:	Mona Vale STA - Delineation 31801		Date Started: Date Completed:	13/08/2012 13/08/2012
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	1.80 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Flight Auger		Northing:	
	Logged By:	Joshua Byrne		Sheet:	1 of 1

	evel	n)	(Q	Log	ymbol	Type	Material Description		s	amples / Tests	Observations / Comments
Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type		Moisture	PID ppm	ID No.	
							Surface: Concrete				
СС		-		A A A A A A A A A A A A A A A A A A A			CONCRETE.				
		0.28				Fill	FILL - Sandy Gravel.	mois	0.0	SB13_0.5m	No visual or olfactory signs of
Hand Auger		<u>0.60</u>			SP		SAND - orange / brown, with marine deposit inclusions.			3613_0.011	contamination.
		1.00			SP	al	Silty SAND - dark brown.	mois	0.0	SB13_1.0m	No visual or olfactory signs of contamination.
Solid Flight Auger	2012	<u>1.20</u>			SP	Natural	Silty SAND - orange / brown.	mois	:		
Solid FI	i∆ ^{1.6m} 13/08/	1.5 1.60							0.0	SB13_1.5m	No visual or olfactory signs of contamination.
		_ 1.80			SP		Silty SAND - grey / white.	very mois	16.8	SB13_1.8m	Hydrocarbon odour.
		2.0 					End of Hole at 1.80 m				
A S	Nsbe Stain Odou	erva estos iing		N N C	No vis Difact	sual tory	evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted du je.g. hydrocarbon odour) evidence of contamination noted dur ter encountered during drilling.		Note	5	
F		U	M	A)	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checked	By: J	oshua Byrne	Date: 30/08/2012

Monitoring Well Log	g		Hole ID.		SB14
WSP	Project Name: Project Number: Location / Site:	Mona Vale STA - Delineation 31801 58 Darley Street, Mona Vale NSW		Date Started: Date Completed: Hole Depth:	13/08/2012 13/08/2012 2.00 m
WSP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Client:	State Transit Authority HartGeo Pty Ltd Hand Auger / Solid Flight Auger		Ground Level: Easting: Northing:	
	Logged By:	Joshua Byrne		Sheet:	1 of 1

	Ê	<u></u>	Log	ymbol	Type	Material Description			Sa	amples / Tests	Observations / Comments
Method Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type			Moisture	PID ppm	ID No.	
			10 A			Surface: Concrete					
8	0.18		A A A A A		Fill	CONCRETE.					
	-					Silty CLAY - dark brown.		dry to moist			
Hand Auger	 			CL					4.3	SB14_0.5m	No visual or olfactory signs of contamination.
	1.0			SM	Natural	Silty SAND - orange / brown.		moist	5.8	SB14_1.0m	No visual or olfactory signs of contamination.
Solid Flight Auger	7 1.5			SM		Silty SAND - light orange / brown.	n	very noist to wet	1.1	SB14_1.5m	Hydrocarbon odour.
So			<u>000</u>	SP		Silty Gravelly SAND - orange / red / brown.		wet	1.7	SB14_2.0m	Hydrocarbon odour.
	2.5					End of Hole at 2.00 m					
	3.0										
Ast Sta	Observations Asbestos No visual evidence of asbestos noted during drilling. Staining No visual evidence of contamination (e.g. staining / precipitate							g.	Notes		
Observations Asbestos No visual evidence of asbestos noted during drilling. Staining No visual evidence of contamination (e.g. staining / precipitate) noted during d Odour Olfactory (e.g. hydrocarbon odour) evidence of contamination noted during d Groundwater Groundwater encountered during drilling. Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au							uring drilling.				
Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au							Che	ecked By	: Jo	oshua Byrne	Date: 30/08/2012

Monitoring Well Log	9		Hole ID.		MW01
WSP	Project Name: Project Number:	STA - Contaminated Site Assessm 3075	nent - Mona Vale	Date Started: Date Completed:	19/12/2011 19/12/2011
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	3.50 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	Epoca Environmental Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	HA / PT / SFA		Northing:	
S. C. Alexandre	Logged By:	Rod Gray		Sheet:	1 of 1

	evel	(F		Log	symbol	I Type	Material Description	0	Si	amples / Tests	Observations / Comments	tails	Well Construction
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	·	Moisture	PID ppm	ID No.		Well Details	Well Co
							Surface: Concrete						
ខ		0.20					CONCRETE.						
		-		\bigotimes			FILL - Sand, brown / orange, medium grained.	moist	0.1	MW01 / 0.3m		и.	
		0.5		\bigotimes					0.1	MW01 / 0.5m	0.50		
uger		F		\bigotimes					0.1	10100170.5111	0.00		
Hand Auger		F		\bigotimes		Fill							
		1.0		\bigotimes					0.1	MW01 / 1.0m	1.00		
		F		\bigotimes					0.1		1.00		
	11	F		\bigotimes									
	1.6m 19/12/20	1.40 1.5 1.55			CL		PEAT. Sandy CLAY - light brown / dark grey,	moist	3.8	MW01 / 1.5m	Hydrocarbon odour.		
	Ā	1.55		• 0.			medium grained. Gravelly SAND - brown / grey, coarse grained, fine	wet	0.0	100017 1.011	Sheen on water.		
a		F		0			gravel.						
Push Tube		2.0		۰ <i>۵</i> ،	SP				126.9	MW01 / 2.0m			
Pu		2.20		°0°					120.0	1000172.000			
		_					SAND - yellow / grey / brown, medium.	wet					Ċ
		2.5				Natural							
		F										目	
		F			SP				0.3	MW01 / 2.7m			
Auger		3.0			0						3.00		To
Solid Flight Auger		╞											
Solid		F											
		 3.50											
		F					End of Hole at 3.50 m						
		╞											
		4.0											
		erva estos	ation		Jo vis		evidence of asbestos noted during drilling.		N	lotes			
S	stain	ning		N	lo vis	sual (evidence of contamination (e.g. staining / precipitate) noted during dril						
)dou Grou	ur Indwa	ater	•			e.g. hydrocarbon odour) evidence of contamination noted during drilli ter encountered during drilling.	ng.					
ſ	2.	<u>]</u> =_[(i)		n Drawn By: Laurie White	Checked B		od Gray	Date: 30/01/201	2	
U	1	551			5		Contact: laurie.white@reumad.com.au		у. К	ou Gray	Dale. 30/01/201	£	

Monitoring Well Log	g		Hole ID.		MW02
WSP	Project Name: Project Number:	STA - Contaminated Site Assessm 3075	ent - Mona Vale	Date Started: Date Completed:	19/12/2011 19/12/2011
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	3.50 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	Epoca Environmental Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	HA / PT / SFA		Northing:	
S. Calman and	Logged By:	Rod Gray		Sheet:	1 of 1

	evel	(u		Log	ymbol	Type	Material Description			Si	amples / Tests	Observations / Comments		Well Construction
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description		Moisture	PID ppm	ID No.		Well Details	Well Cor
							Surface: Concrete							6
S		0.20					CONCRETE.							F o
		0.5				ΠĽ	FILL - Sand, minor Clay, white / brown, medium grained.	n	moist	1.1	MW02 / 0.3m	No olfactory evidence of contamination present in soil.	° []	nite 📕 Gattic
ger				***						1.0	MW02 / 0.5m			Bentonite
Hand Auger		0.70			CL		PEAT. Sandy CLAY - dark brown, soft, mediun grained.	n	moist			0.7		•
		1.0 1.10			02					1.0	MW02 / 1.0m			•
	2011	-		° ° °	CL		Sandy CLAY - orange / yellow, medium graine	d.	moist					Gravel Pack
	.6m 9/12/20	1.50		。 。 。										Grav
	Ā	_					SAND - yellow / white, medium grained, minor present 1.5 to 2.0m.	clay	wet	0.3	MW02 / 1.6m			
Push Tube														Screen -
Pus		2.5				Natural				0.3	MW02 / 2.0m			
					SP		Increasing grey colour with depth.			0.2	MW02 / 2.7m	2.7		
:22:24 PM Solid Flight Auger		3.0												Cave-in -
(J)		 3.50												
0T 1/30/12							End of Hole at 3.50 m							
GPJ WSP.GDT		4.0												
45.GP) Dha	erva	tion			I			1		otes	1		
		estos		N			evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted	durina drillir	na		0.00			
NOM (Ddou	-	ater	N	lo olf	acto	ry (e.g. hydrocarbon odour) evidence of contamination note ter encountered during drilling.	-	-					
MSP LOG	R			AA	Þ	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Cł	necked By	/: R	od Gray	Date: 30/01/20	12	

Monitoring Well Log	g		Hole ID.		MW03
WSP	Project Name: Project Number:	STA - Contaminated Site Assessm 3075	ent - Mona Vale	Date Started: Date Completed:	19/12/2011 19/12/2011
WSP Environment & Energy	Location / Site: Client:	58 Darley Street, Mona Vale NSW State Transit Authority		Hole Depth: Ground Level:	3.50 m
Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Drilling Company: Drill Method:	Epoca Environmental Pty Ltd HA / PT / SFA		Easting: Northing:	
S	Logged By:	Rod Gray		Sheet:	1 of 1

	evel	n)		Log	symbol	I Type	Material Description		0	s	amples / Tests	Observations / Comments	tails	Well Construction
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type			Moisture	PID ppm	ID No.		Well Details	Well Co
							Surface: Concrete						5	6
8		0.20		A Q Q A			CONCRETE.							
		_				Fill	FILL - Clayey Sand, yellow / orange, medium grained.		moist	0.1	MW03 / 0.3m	No olfactory evidence of contamination present in soil.		e_ Gattic
_		0.5 - 0.70								0.3	MW03 / 0.5m			Bentonite
ΗA		_					PEAT. Sandy CLAY - dark brown, soft, medium grained.	1	moist					
		1.0			CL		granted.			0.9	MW03 / 1.0m	0.90		Gravel Pack
	1.6m 19/12/2011	1.30			0.5		SAND, minor Clay - yellow / orange, medium grained.		moist	0.4	MW03 / 1.5m			Grav
Lube	⊻	 1.80			SP			-	wet					•
Push Tube		2.0				Natural	SAND - white / brown / grey, medium grained.		wet					Screen
Solid Flight Auger		2.5 - - 3.0			SP					0.3	MW03 / 2.5m	2.90		
Sol		_ _ _ 												Cave-in-
		-					End of Hole at 3.50 m							
		4.0								L				
A S C	Asbe Stain Odou	stos ing	ation	N N N	lo vis lo olf	ual e acto	evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted c ry (e.g. hydrocarbon odour) evidence of contamination noted ter encountered during drilling.			N	lotes			
ſ	2			AA	P	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Che	ecked By	/: R	od Gray	Date: 30/01/201	2	

Monitoring Well Log	g		Hole ID.		MW04
WSP Environment & Energy	Project Name: Project Number: Location / Site:	STA - Contaminated Site Assessm 3075 58 Darley Street, Mona Vale NSW	ent - Mona Vale	Date Started: Date Completed: Hole Depth:	19/12/2011 19/12/2011 3.50 m
Level 1, 41 McLaren Street North Sydney NSW 2060 Office +61 (0)2 8925 6700 www.wspenvironmental.com	Client: Drilling Company: Drill Method: Logged By:	State Transit Authority Epoca Environmental Pty Ltd HA / PT / SFA Rod Gray		Ground Level: Easting: Northing: Sheet:	 1 of 1

g	Level	(m)		Graphic Log	USCS Symbol	Material Type	Material Description	ē	5	Samples / Tests	Observations / Comments	letails	Well Construction
Method	Water Level	Depth (m)	RL (m)	Graph	nscs	Materi		Moisture	PID ppm	ID No.		Well Details	Well C
				<i>p</i> 4 (Surface: Concrete					9	
8		0.20				_	CONCRETE						1
		0.40					FILL - Sand, with Gravel, orange / yellow, medi grained.		0.2	MW04 / 0.3m	No olfactory evidence of contamination present in soil.		Gattic
Hand Auger		0.5			CL		PEAT. Sandy CLAY - dark brown, medium grai	ned. moist	0.1	MW04 / 0.5m	0.50		Bentonite-
	1.6m 19/12/2011						SAND - yellow / white, medium grained.	moist	0.1	MW04 / 1.0m	1.00		
Push Tube	₽	 			SP	Natural	With ironstone gravel inclusions 1.9 to 2.3m.	wet					Screen Gravel Pack
		2.5					Dark grey band 2.2 to 2.4m.		0.0	MW04 / 2.3m			
Solid Flight Auger		 3.50							0.1	MW04 / 3.0m	3.00		Cave-in
		 4.0					End of Hole at 3.50 m						
	Obs	erva	ation	s					1	Notes			
	Stair Odou	-	ater	N N	lo vis lo olf	acto	evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted o ry (e.g. hydrocarbon odour) evidence of contamination noted ter encountered during drilling.						
WSP LUG	R			AA	P	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Checked E	By: I	Rod Gray	Date: 30/01/201	2	

WSP Environment & Energy Project Number: 31801 Date Com Location / Site: 58 Darley Street, Mona Vale NSW Hole Dept		MW05			
	Project Name:	Mona Vale STA - Delineation		Date Started:	13/08/2012
	Project Number:	31801		Date Completed:	13/08/2012
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	4.00 m
	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Flight Auger		Northing:	
S. Galand A.S.	Logged By:	Joshua Byrne		Sheet:	1 of 1

pc	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type	Material Description	ure		Samples / Tests	DUP	Observations / Comments	Well Details	Well Construction
Method	Wate	Dept	RL (r	Grap	nsc	Mate		Moisture	PID ppm	ID No.	TRIP QC		Well	Well
							Surface: Concrete							
S							CONCRETE.							Gattic
Hand Auger		0.18 0.5 0.80				Fill	FILL - Silty Sand, orange / brown.	dry to moist	126.7	MW05_0.5m		No visual or olfactory signs of 0.50 contamination.	679 679	∆ Bentonite G
	^{1.3m} ^{1308/2012}	1.0 1.30			SM		Silty SAND - orange / yellow / brown, blue / grey staining.	dry to moist	118.5	MW05_1.0m	Dup1 Trip1	Hydrocarbon odour. 1.00 Staining.		Gravel Pack
	¥	1.5		0,000		Silty Gravelly SAND - orange brown / v grey.		moist to wet		MW05_1.5m		Hydrocarbon odour. Staining.		Grav
ght Auger		2.0 		• · · · · · · · · · · · · · · · · · · ·	SP	Natural			178.9	MW05_2.0m		Hydrocarbon odour. Staining.		Screen
	Silty SAND - orange / grey.						Silty SAND - orange / grey.	wet				3.50		Cave-in
	End of Hole at 4.00 m						End of Hole at 4.00 m							
	Obs	erva	ation	s						Notes				
4 8 0	Asbe Stain Odou	estos ning		N V C	'isual Olfact	evio ory (evidence of asbestos noted during drilling. dence of contamination (e.g. staining / precipitate) noted duri (e.g. hydrocarbon odour) evidence of contamination noted du ater encountered during drilling.							
Observations Notes Asbestos No visual evidence of asbestos noted during drilling. Staining Visual evidence of contamination (e.g. staining / precipitate) noted during drilling. Odour Olfactory (e.g. hydrocarbon odour) evidence of contamination noted during drilling. Groundwater Groundwater encountered during drilling. Image: Staining Contact: Log Drawn By: Laurie White Contact: Checked By: Joshua Byrne Date: 30/08/2012									2					

Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com Client: State Transit Authority Drilling Company: HartGeo Pty Ltd Drill Method: Hand Auger / Solid Flight Auger	Hole ID.		MW06		
	Project Name:			Date Started:	13/08/2012
	r toject Nulliber.	31801 58 Darley Street, Mona Vale NSW		Date Completed: Hole Depth:	13/08/2012 4.00 m
Level 1, 41 McLaren Street	Client:	•		Ground Level:	
Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Flight Auger		Northing:	
S. Callera A.	Logged By:	Joshua Byrne		Sheet:	1 of 1

	evel	(۲	HD)	Log	ymbol	Type	Material Description			Sa	amples / Tests	Observations / Comments	ails	Well Construction
Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type			Moisture	PID ppm	ID No.		Well Details	Well Cor
		0.10					TOPSOIL . FILL - Gravelly Sandy, brown.	/	dry				4 × 4	∆ Gattic
Hand Auger		0.5				Fill				9.0	MW06_0.5m	No visual or olfactory signs of 0.50 contamination.		∆ Bentonite
	/2012	1.0					Silty SAND - orange / brown.		dry to moist	2.8	MW06_1.0m	No visual or olfactory signs of 1.00 contamination.		
	Å ^{1.5m} 13/08	1.5			SM					0.0	MW06_1.5m	No visual or olfactory signs of contamination.		Gravel Pack
		2.0 2.20			SM		Silty SAND - blue / grey, blue / grey staining.		very moist	23.8	MW06_2.0m	Hydrocarbon odour. Staining.		u
Solid Flight Auger		2.5 				Natural	SAND - orange / brown, with shell inclusions.		very moist					Screen
					SP							3.50		Cave-in
9:55:39 AM		4.00					End of Hole at 4.00 m						6653	
	5.0													
31801.	Obs	erva	ition	s						Notes	;			
	Stain Odou	-	ater		'isual)Ifact	evio ory (evidence of asbestos noted during drilling. dence of contamination (e.g. staining / precipitate) noted duri (e.g. hydrocarbon odour) evidence of contamination noted du ter encountered during drilling.].					
MSP LUG	Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au									y: Jo	oshua Byrne	Date: 30/08/201	2	

Monitoring Well Log	g		Hole ID.		MW07
WSP	Project Name:	Mona Vale STA - Delineation		Date Started:	13/08/2012
	Project Number:	31801		Date Completed:	13/08/2012
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	4.50 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Easting:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Flight Auger		Northing:	
S. Galance and	Logged By:	Joshua Byrne		Sheet:	1 of 1

Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type	Material Description		Moisture	Sa	amples / Tests	Observations / Comments	Well Details	Well Construction
Met	Wai	Dep	RL	Gra	nSu	Mat			Moi	ppm	ID No.		We	Me
2 C							Surface: Concrete CONCRETE.						2	tio
0	F	0.17					FILL - Silty Clay / Sand, dark orange / brown.		moist					∆ Gattic
Hand Auger	E	0.5				Fill				9.8	MW07_0.5m	No visual or olfactory signs of 0.50 contamination.	R a	∆ Bentonite
		0.80					Silty CLAY / SAND - orange / brown.		moist	10.2	MW07_1.0m	No visual or olfactory signs of 1.00 contamination.		
1 789	130	 			CL					5.1	MW07_1.5m	Slight hydrocarbon odour.		
-	-	1.90			SM		Silty SAND - orange / brown.		moist					
		2.0		。 。 。	SP		Gravelly SAND - white / grey.		very moist	142.6	MW07_2.0m	Hydrocarbon odour. Staining.		*
Solid Flight Auger		2.50 - - - - - - - - - - - - -			SM	Natural	Silty SAND - orange / grey.		very moist			4.00		
		 					End of Hole at 4.50 m							
	ŀ	_ 												
	bse	erva	ntion	s					I	Notes				
As St O	sbes aini dou	stos ing		N V C	'isual Olfact	evic ory (evidence of asbestos noted during drilling. dence of contamination (e.g. staining / precipitate) noted duri (e.g. hydrocarbon odour) evidence of contamination noted du tter encountered during drilling.			140163	·			
Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au							- · · · · · · · · · · · · · · · · · · ·	Ch	ecked By	/: Jo	oshua Byrne	Date: 30/08/201	2	

Monitoring Well Log)		Hole ID.		MW08
USP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Project Name: Project Number: Location / Site: Client: Drilling Company: Drill Method:	Mona Vale STA - Offsite Delineatio 34820 58 Darley Street, Mona Vale NSW State Transit Authority HartGeo Pty Ltd Hand Auger / Solid Stem Auger	on	Date Started: Date Completed: Hole Depth: Ground Level: Top of Casing: Easting:	12/11/2012 12/11/2012 4.00 m
S. C. A. S.	Logged By:	Adeline Menet		Northing:	

	evel	Ê	(DH	Log	symbol	I Type	Material Description	Ø	Sa	amples / Tests	Observations / Comments	tails	Well Construction
Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type		Moisture	PID ppm	ID No.		Well Details	Well Co
		0.10		<u>NI</u>			Silty TOPSOIL - brown.		0.5	MW08_0.1	No odour.		Å atic
Hand Auger		0.5			SM		Silty SAND - dark brown, loose, very fine grained. Colour change to darker brown at 0.5m.	dry				3	A Bentonite G
		1.00		0.5 MW08_0.7									
		_					Clayey SAND - light brown / orange, loose, fine grained.	moist	0.2	MVV08_1.0	1.000		Gravel Pack
	012	1.5			sc		Becoming reddish orange in colour.		0.3	MW08_1.5			Gr
er	12.1m	2.00				Natural	SAND - loose, coarse grained. Becomes wet at 2.1m, some dark colouration.	moist wet	1.1	MW08_2.0	Slight hydrocarbon odour.		
Solid Stem Auger		2.5			SP				19.2	MW08_3.0			Screen
		4.00					End of Hole at 4.000 m						<u>.</u>
		erva	ation						Notes	i			
	Stain Odou	-	ater	N C	lo vis Olfact	ual e ory (evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted during drill e.g. odour) evidence of contamination noted during drilling. ter encountered during drilling.	ing.					
-		U	M	A	9	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	checked B	/: A	deline Menet	Date: 28/03/201	3	

BORE NUMBER: MW8B

PROJE	CT No:	ENRS0212			DATE DF	RILLED:	10/06/2	2014
LOCAT		Rd rsv adj Plan Sl	P31257		LOGGED		Rohan	
CLIENT		AES on behalf of			DRILLED			gs Drilling (Neal Stapleton)
	CE RL:	3.22			DRILL M		-	Flight Auger
EASTIN		342996.15				AMETER:		÷ ÷
NORTH		6272656.64			FINAL DI		4.25m	
Depth Metres		Vell Log	Construction	Sample ID	DIA	SPT	Graphic Log	Description
								Ground Surface
0.0			8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal					0-0.05 Asphalt 0.05-0.35 gravel sub-base
0.4			0.2-0.4m Bentonite sanitary seal					0.35-0.85 Silty sand, dark brown
0.6			0.0-1.88m 50mm PVC casing					0.85-2.0 Silty sand, pale brown
1.0			0.4-4.25m Gravel Pack graded					
1.4			1.88-4.25m Slotted PVC Screen					
1.8								
2.0 2.2 2.4 2.6			SWL 1.75mbgl 10/6/2014					2.0-3.8 Silty sand, grey
2.8								
3.4								
3.8								3.8-4.5 Sandy clay, grey
4.0 4.2			TOTAL DEPTH 4.25mBGL					
4.4	()						())	
4.6								
			and hand testing of grab samples. less otherwise stated	<u> </u>	<u> </u>	<u> </u>	<u>I</u>	Page 1 of 1

Monitoring Well Log	J		Hole ID.		MW09
WSP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Project Name: Project Number: Location / Site: Client: Drilling Company: Drill Method:	Mona Vale STA - Offsite Delineatio 34820 58 Darley Street, Mona Vale NSW State Transit Authority HartGeo Pty Ltd Hand Auger / Solid Stem Auger	on	Date Started: Date Completed: Hole Depth: Ground Level: Top of Casing: Easting:	12/11/2012 12/11/2012 4.00 m
T. Galance A.	Logged By:	Adeline Menet		Northing:	

Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type	Material Description		Moisture	Sa PID ppm	amples / Tests ID No.	Observations / Comments	Well Details	Well Construction
	-						Concrete on surface.							
S		0.20					CONCRETE.					No odour.		∆ Gatic
		0.50			CL		Silty Sandy CLAY - light brown, with blue / oran dark grey colouration, soft.	ge /	moist	0.5	MW09_0.3		a_, _	nite
Hand Auger		-			CL		Silty Sandy CLAY - dark brown, soft, fine graine sand, organic matter present.	y Sandy CLAY - dark brown, soft, fine grained moist 28.8 MW09_0.5 d, organic matter present.						∆ Bentonite
		<u>0.90</u> 1.0					Silty SAND - light brown / orange, loose, mediur grained.							ack
Solid Stem Auger	Very wet at 2.0m.					Very wet at 2.0m.		very wet	270.6	MW09_2.0	Hydrocarbon odour.		Screen Gravel Pack	
		4.00					End of Hole at 4.000 m							1
)he	erva	tion	s						Notes		1		
	Asbe Stain Odou	stos ing		N N C	lo vis Olfact	ual e ory (evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted d (e.g. odour) evidence of contamination noted during drilling. ter encountered during drilling.	uring drillir	ng.					
		U	M	A	9	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Ch	necked By	/: A	deline Menet	Date: 28/03/201	3	

Monitoring Well Log	9		Hole ID.		MW10
WSP	Project Name: Project Number:	Mona Vale STA - Offsite Delineatio 34820	on	Date Started: Date Completed:	22/03/2013 22/03/2013
WSP Environment & Energy	Location / Site:	58 Darley Street, Mona Vale NSW		Hole Depth:	4.00 m
Level 1, 41 McLaren Street	Client:	State Transit Authority		Ground Level:	
North Sydney NSW 2060 Office: +61 (0)2 8925 6700	Drilling Company:	HartGeo Pty Ltd		Top of Casing:	
www.wspenvironmental.com	Drill Method:	Hand Auger / Solid Stem Auger		Easting:	332702
F. Galand A.S.	Logged By:	Adeline Menet		Northing:	6240318

Я	Level	Water Level Depth (m) RL (mAHD) RL (mAHD) USCS Symbol Material Type				Material Description	e	Sa	amples / Tests	Observations / Comments	etails	Well Construction	
Method	Water Level	Depth (m)	RL (m/	Graphi	nscs	Materia		Moisture	PID ppm	ID No.		Well Details	Well C
СС		0.15					ASPHALT.						Gatic Satic
		_					Clayey SAND - pink, coarse grained.	moist	1.3	MW10_0.2			L .
Hand Auger		0.5			sc		Crushed ironstone from 0.4 to 0.6mbgl.				Black shiny		A Control
На		<u>0.70</u>			sc		Clayey SAND - black, very fine grained, minor gravel inclusions (<2mm Ø).	moist	26.6	MW10_0.7	appearance. Slight hydrocarbon ^{0.700} odour.		
		1.0 1.20			SC				14.3	MW10_1.2	1.000		Dack
		1.5					SAND - light grey, fine grained, gravel inclusions (<2mm Ø).	moist					Gravel Dack
	013	_											
	iN 22/03/2	2.0				Natural		very	345	MW10_2.0	Hydrocarbon odour.		
Auger						z		moist wet					
Solid Stem Auger		2.5			SP								
S													
		3.0											
		_											
		3.5					Shell fragments at 3.4mbgl.						
		_											
		4.00					SAND - light grey, fine grained, shell inclusions.	wet	93.2	MW10_4.0	Hydrocarbon odour.		
		_					End of Hole at 4.000 m						
	Dbs	erva	ition	s				-	Notes	;			_
		estos					evidence of asbestos noted during drilling.						
	Stain Odou	-					evidence of contamination (e.g. staining / precipitate) noted during drilli (e.g. odour) evidence of contamination noted during drilling.	ng.					
0	Grou	ndwa	ater	(Grour		ater encountered during drilling.						
Ŗ	ł	Ų	M	A	P	LO	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	hecked By	y: A	deline Menet	Date: 28/03/201	3	

Monitoring Well Log	9		Hole ID.		MW11
WSP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.wspenvironmental.com	Location / Site: Client:	Mona Vale STA - Offsite Delineatio 34820 58 Darley Street, Mona Vale NSW State Transit Authority HartGeo Pty Ltd Hand Auger / Solid Stem Auger	on	Date Started: Date Completed: Hole Depth: Ground Level: Top of Casing: Easting:	12/11/2012 12/11/2012 4.50 m
	Logged By:	Adeline Menet		Northing:	

	evel	n)	HD)	Log	symbol	Type	Material Description		0	Sa	amples / Tests	Observations / Comments	tails	Well Construction
Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type			Moisture	PID ppm	ID No.		Well Details	Well Co
		0.20		**			FILL - GRAVEL / SAND.					No odour.		Å Gatic
Auger		0.50		\bigotimes		Fill	FILL - Clayey SAND, dark brown / grey, loose, medium grained.		dry to moist	10.4	MW11_0.3			∆ Bentonite
Hand Auger							FILL - Silty SAND, dark grey, very dark coloura loose, with plastic bags.	tion,	moist	24.2	MW11_0.7	Hydrocarbon odour. 0.700		Ber
		<u>0.90</u> 1.0					Clayey SAND - yellow / light brown, loose, coar grained.	rse	moist	5.3	MW11_1.0	1.000		Pack
		1.5			SC					2.5	MW11_1.5			Gravel Pack
	A 2.2m 12/11/2012	2.0								1.0	MW11_2.0			
	¥	_ _ 					Wet at 2.2m.		wet					eu
Solid Stem Auger		_				Natural	SAND - grey / blue, coarse grained.		wet			No odour.		Screen
Solid Si		1 3.0 1 1 1 1 3 .5			SP	2				0.4	MW11_3.0			· · · · · · · · · · · · · · · · · · ·
0.000 L LIM		4.00								-		4.000		
					CL		CLAY - grey / blue, stiff.		wet					
		4.50					End of Hole at 4.500 m							-
	Obs	erva	ation	s						Notes	i			
	Stair Odoi	-	ater		lo vis)lfact	ual e ory (evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted d ie.g. odour) evidence of contamination noted during drilling. ter encountered during drilling.	during drillin	ıg.					
	ł	U	M	A	0	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Ch	ecked B	y: A	deline Menet	Date: 28/03/201	3	

Monitoring Well Log	J		Hole ID.		MW12
USP Environment & Energy Level 1, 41 McLaren Street North Sydney NSW 2060 Office: +61 (0)2 8925 6700 www.spenvironmental.com	Project Name: Project Number: Location / Site: Client: Drilling Company:	Mona Vale STA - Offsite Delineatio 34820 58 Darley Street, Mona Vale NSW State Transit Authority HartGeo Pty Ltd	on	Date Started: Date Completed: Hole Depth: Ground Level: Top of Casing:	12/11/2012 12/11/2012 4.00 m
	Drill Method: Logged By:	Hand Auger / Solid Stem Auger Adeline Menet		Easting: Northing:	

	vel		(Q	Fog	/mbol	Type	Material Description	Samples / Tests				Observations / Comments	ails	Well Construction
Method	Water Level	Depth (m)	RL (mAHD)	Graphic Log	USCS Symbol	Material Type		Moisture	PID ppm	ID No.	DUP TRIP QC		Well Details	Well Cor
cc		0.10					ASPHALT.						8	2 <u>0</u>
		_			SM		Silty SAND - light brown, loose, coarse grained.	moist to wet	0.3	MW12_0.2		No odour.		ite Gatic
Hand Auger		<u>0.50</u>					Silty Sandy CLAY - dark brown, soft.	ilty Sandy CLAY - dark brown, soft. moist 0.5 MW12_0.5						∆ Bentonite
		1.0			CL				0.4	MW12_1.0		0.700		Gravel Pack
	2012	1.30 			CL		Silty Sandy CLAY - dark brown, soft to stiff.	moist	0.4	MW12_1.5	Dup01 Trip01			Grave
	Δ ^{2m} 12/1/	<u>1.90</u> 2.0				Natural	Sandy content increasing with depth. SAND - grey, some dark colouration, loose. Wet from 2.0m.	moist wet	0.5	MW12_2.0		Slight hydrocarbon odour.		
Solid Stem Auger		2.5 			SP		Some shell fragments present below 3.0m.		0.6	MW12_3.0		No odour.		
		_					End of Hole at 4.000 m							
A S	Asbe Stair Odou	-		1 1 0	No vis Difact	sual (evidence of asbestos noted during drilling. evidence of contamination (e.g. staining / precipitate) noted d (e.g. odour) evidence of contamination noted during drilling. ter encountered during drilling.	uring drilling		Notes				
6		l	M	A	Þ	Lo	g Drawn By: Laurie White Contact: laurie.white@reumad.com.au	Che	cked By	/: Adeline Me	enet	Date: 28/03/201	3	

MW12B

PRO.IF	ECT No:	ENRS0212			DATE DF		10/06/2	2014
LOCAT		Rd rsv adj Lot 34	DP708050		LOGGED		Rohan	
CLIEN		AES on behalf of			DRILLED			gs Drilling (Neal Stapleton)
	ACE RL:	2.68	017.		DRILL M			Flight Auger
EASTI		343044.64				AMETER:		
NORTH		6272731.85			FINAL D		5.88m	I
NORT		0212131.05	T	0				
Depth Metres	v	Vell Log	Construction	Sample ID	QIA	SPT	Graphic Log	Description
0.0	800000	2000000	8mm Hex Key Gatic Cover					Ground Surface 0-1.2 Silty sand, dark brown
	8.88		0.0-0.2m Cement sanitary seal				8 8	
0.2	8 88						88	
0.4	8 8 ·		0.2-0.4m Bentonite sanitary seal				88	
	8 88 F						8 8	
0.6			0.0-1.88m 50mm PVC casing					
_	8 88 F							
0.8	8 28 - 3		0.4.5.00m Oracial Deals and deal				8 8	
1.0			0.4-5.88m Gravel Pack graded				8 8	
							8 8	
1.2								1.2-2.4 Silty sand, yellow, med fine
1.4	: ·: ·		1.88-5.88m Slotted PVC Screen					
1.4								
1.6								
_								
1.8							÷ ÷:	
2.0			SWL 2.18mbgl 10/6/2014					
	-		0112 2. Tomby: 10.0.2014					
2.2								
2.4							÷ .	2.4-6.0 Silty sand, grey, some
2.6	1 11 11						÷ ÷:	shells and partially cemented sand
_							: ::	
2.8								
3.0	김 영 전						÷ ;:	
	1 1 1						÷ ::	
3.2								
_							÷ ÷:	
3.4	1 11 1						1	
3.6							: ::	
-							÷ ÷:	
3.8							÷ ;:	
4.0							: ::	
							: :	
4.2							8	
-								
4.4								
4.6							÷ ;;	
_ `							: ::	
4.8							÷ ÷:	
5.0	1 11 1						1	
5.0								
5.2								
_								
5.4							÷ ÷:	
5.6								
5.8			TOTAL DEPTH 5.88mBGL				: ::	
6.0 Notes:					1			
	ions are base	d on observations	and hand testing of grab sample	S.				
			nless otherwise stated					Page 1 of 1
			-					L

BORE NUMBER: MW13

SHOALH/ t/f: 02 903	AVEN HEADS 1 37 4708 m: 040	NSW 2535 1 518 443							
PROJE	CT No:	ENRS0212			DATE DF	RILLED:	25/10/	2013	
LOCAT	ION:	Lot 2 DP542640 (I	Bore License 10BL605455)		LOGGED) BY:	Rohan	Last	
CLIEN	Г:	AES on behalf of S	STA.		DRILLED) BY:	Highla	nd Drilling (Brett Delamont)	
SURFA	CE RL:	-			DRILL M	ETHOD:	Solid F	Solid Flight Auger	
EASTI	NG:	343033.13 (mga 5	6)		HOLE DI	AMETER:	100mn	100mm	
NORTH	IING:	6272645.45			DEPTH:				
Depth Metres	۷	Vell Log	Construction	Sample ID	OIA	SPT	Graphic Log	Description	
								Ground Surface	
0.0			8mm Hex Key Gatic Cover					0-0.2 Concrete	
0.2			0.0-0.2m Cement sanitary seal 0.2-0.4m Bentonite sanitary seal					0.2-0.5 Silty sand, dark brown	
0.4				0.5				0.5-1.0 Silty sand, pale brown	
0.6			0.0-0.75m 50mm PVC casing						
1.0			0.4-2.25m Gravel Pack graded	1.0				1.0-2.0 Silty sand, dark brown	
1.2			0.75-2.25m Slotted PVC Screen						
1.6									
1.8			SWL 2.085mbgl 2/11/2013	2.0				2.0-3.0 Silty sand, pale brown	
2.2				2.0				2.0-3.0 Sitty Salid, pale blown	
-			TOTAL DEPTH 2.25m				8 8		
2.4	**Constru collapsing	ucted to maximum de sands.	pth limited by						
2.8									
3.0				3.0			///	3.0-3.1 Clay, red/brown	
3.2									
3.4									
3.6									
3.8									
4.0									
F									
F									
╞									
F									
			and hand testing of grab sample less otherwise stated	es.	-	-	•	Page 1 of 1	
		•							

BORE NUMBER: MW14

25 RIVER ROAD	
SHOALHAVEN HEADS	NSW 2535
t/f: 02 9037 4708 m: 0	401 518 443

t/f: 02 903	37 4708 m: 04	01 518 443						
PROJE	CT No:	ENRS0212			DATE DF	RILLED:	25/10/	2013
LOCAT	ION:	Lot 2 DP542640 (Bore License 10BL605455)		LOGGED) BY:	Rohan	Last
CLIEN	T:	AES on behalf of	STA.		DRILLED	BY:		nd Drilling (Brett Delamont)
SURFA	ACE RL:	-			DRILL M	ETHOD:	Casing	advance, wireline with water.
EASTIN	NG:	343048.84 (mga 5	56)		HOLE DI	AMETER:	120mn	1
NORTH	HING:	6272666.07			DEPTH:		2.77m	
Depth Metres	١	Well Log	Construction	Sample ID	OIA	SPT	Graphic Log	Description
			Construction 8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal 0.2-0.4m Bentonite sanitary seal 0.0-1.27m 50mm PVC casing 0.4-2.77m Gravel Pack graded 1.27-2.77m Slotted PVC Screen SWL 1.99mbgl 2/11/2013 TOTAL DEPTH 2.77m	Image: Constraint of the second state of the second sta	G	SPT		Ground Surface 0-0.2 Concrete 0.2-3.0 Silty sand, pale brown 3.0-3.1 Clay, red/brown
3.8								
4.0								
-								
			and hand testing of grab sample less otherwise stated	es.	1	1	1	Page 1 of 1

BORE NUMBER: **MW15**

www.enrs.com.au		ABN 5
25 RIVER ROAD		
SHOALHAVEN HEADS	NSW	2535

PROJECT No. ENRS 2012 DATE CRILLED: 25/10/013 COGED W. Arta val, Lob OP/70/113 (Bore Lionna 10EL60/44) DOGED W. Rohan Lat CLENT: AES on bohalf of STA. DRILLED WT. Rohan Lat SUPFACE RL - DRILLED WT. Rohan Lat EASTING: 14/205 02 (rugs 56) DRILL WT. 23 fm NORTHING: 02/206 05.0 DEPTH: 23 fm Port Main Structure 03 failed whene, wireline with water. 02 Bohalf of Structure 23 fm 03 Depth 23 fm 04 Depth 23 fm 04 Depth 24 fm Grave Robating of Structure 04 Depth Depth 05 Depth 24 fm Grave Robating of Structure 04 Depth Depth 05 Depth 24 fm Grave Robating of Structure 04 Depth Depth 05 Depth 24 fm Grave Robating of Structure 10 Depth Depth 10 Depth 1		AVEN HEADS 1 37 4708 m: 040									
CLIENT: AES Definition BURFACE RL: - OPILLED BY: Highland Delining (Part Beamont). EASTING: 3428926.502 (rpga 56) HOLE DUMETER: 120mm NORTHINC: 0272888.30 OEFTH: 2.91m Depth Metrics Weil Log Construction §	PROJE	ECT No:	ENRS0212			DATE DF	RILLED:	25/10/	2013		
SURFACE RL:	LOCAT	FION:	Rd rsv adj. Lot 6 I	0P701913 (Bore License 10BL	605456)	LOGGED) BY:	Rohan Last			
EAST Mod: 34/2005 62 (rugs 16) HOLE FUNKTER: [20mm] NORTHING: 6/272688.50 Description DEPTH: 21mm Depth Metres Well Log Construction Image 2 Image 2 <thimage 2<="" th=""> <thimage 2<="" th=""> Image 2<th>CLIEN</th><th>T:</th><th>AES on behalf of</th><th>STA.</th><th></th><th>DRILLED</th><th>BY:</th><th>Highlar</th><th>nd Drilling (Brett Delamont)</th></thimage></thimage>	CLIEN	T:	AES on behalf of	STA.		DRILLED	BY:	Highlar	nd Drilling (Brett Delamont)		
NORTHING: 0272068.50 Depth. 2.9 m Depth Metres Well Log Construction 0 g g g e 0 g g e 0 g g e 0 g g e 0 g g e 0 g g e 0 g e 0 g g e 0 g e 0 g e<	SURFA	ACE RL:	-			DRILL M	ETHOD:	Casing	advance, wireline with water.		
Depth Metros Weil Log Construction g g o g g o g d m Nex Key Gala Cover 02.2 m Comment antiny seal Other Statutes 01 0.1 Bitmann 0.1 0.2 Gravel fraid base 0.1 Bitmann 0.1 0.2 Gravel fraid base 0.1 Bitmann 0.1 0.2 Gravel fraid base 02 0.2 Arth Bertonic santary seal 0.2 1 At m Shum PVC casing 1.0 0.1 Bitmann 03 0.2 1 At m Shum PVC casing 0.4 2 Mm Gravel Pick gravel 1.0 1.0.3.0 Sand, trachtrown 13 0.4 2 Mm Gravel Pick gravel 1.0 1.0.3.0 Sand, brown 1.0.3.0 Sand, brown 14 0.5 Mm Stated PVC Soren 2.0 3.0.3.1 City, red/brown 13 0 0.5 LIDEPP1 2.9 Im 3.0.3.1 City, red/brown	EASTIN	NG:	342985.62 (mga 5	i6)		HOLE DI	AMETER:	120mm	1		
00 Immedia Kay Gata Cover 00-1 Bitmen 02 Immedia Kay Gata Cover 00-2 Oracle Irad Base 04 02-2 Oracle Irad Base 02-2 Oracle Irad Base 04 02-4 Bennet santary seal 02-4 Memory VC cases 04 02-4 Demony VC cases 02-4 Demony VC cases 14 02-4 Demony VC cases 1.0 12 02-4 Demony VC cases 1.0 14 02-4 Demony VC cases 1.0 15 02-4 Demony PVC Sceen 1.0 16 VIII 2 Demony PVC Sceen 1.0 22 VIII 2 Demony PVC Sceen 2.0 24 VIII 2 Demony PVC Sceen 2.0 24 VIII 2 Demony PVC Sceen 3.0.3.1 Clay, red/brown 32 VIII 2 Demony PVC Sceen 3.0.3.1 Clay, red/brown 34 VIII 2 DEPTH 2.9 Im 3.0.3.1 Clay, red/brown 34 VIII 2 DEPTH 2.9 Im 3.0.3.1 Clay, red/brown 34 VIII 2 DEPTH 2.9 Im VIII 2 DEPTH 2.9 Im 34 VIII 2 DEPTH 2.9 Im VIII 2 DEPTH 2.9 Im 35 VIII 2 DEPTH 2.9 Im VIII 2 DEPTH 2.9 Im 36 VIII 2 DEPTH 2.9 Im <th>NORTH</th> <th>HING:</th> <th>6272668.50</th> <th></th> <th></th> <th>DEPTH:</th> <th></th> <th></th> <th colspan="3"></th>	NORTH	HING:	6272668.50			DEPTH:					
00 Inter Hex Key data: Cover 0-0-1 Bitmen 0.0 0.0.0.2m. Cemere sentary seal 0.0.1.0.2 Gravel road base 0.4 0.0.1.1.0.2 Gravel road base 0.2.1.0 Sity sand, red/brown 0.4 0.0.1.111 Some PVC cases 0.2.1.0 Sity sand, red/brown 0.4 0.0.1.111 Some PVC cases 1.0 1.4 0.4.2.21m Gravel Road graded 1.0 2.0 WK 2.1mgl 211/0213 2.0 3.0 TOTAL DEPTH 2.21m 3.0-3.1 Clay, red/brown 3.2 0 TOTAL DEPTH 2.21m 3.4 0 0 0.0.3.1 Clay, red/brown 3.4 0 0.0.3.1 Clay, red/brown 3.4 0 0.0.3.1 Clay, red/brown 3.6 0 0.0.3.1 Clay, red/brown 3.6 0 0.0.3.1 Clay, red/brown	Depth Metres	v	Vell Log	Construction	Sample ID	DID	SPT	Graphic Log	Description		
02 0.0.0.7m Comment sentity yead 0.1.0.2 Gravel road base 0.2.1.0 Sity send, red/brown 04 0.0.1.4m Gom PVC cang 0.4.2 situ Gravel Pack graded 1.0 1.0.3.0 Sand, brown 12 0.4.2 situ Gravel Pack graded 1.0 1.0.3.0 Sand, brown 1.0.3.0 Sand, brown 14 0.4.2 situ Gravel Pack graded 1.0 1.0.3.0 Sand, brown 1.0.3.0 Sand, brown 12 0.4.2 situ Gravel Pack graded 1.0 1.0.3.0 Sand, brown 1.0.3.0 Sand, brown 14 0.4.2 situ Gravel Pack graded 1.0 1.0.3.0 Sand, brown 3.0.3.1 Clay, red/brown 14 0 0.4.2 situ Gravel Pack graded 1.0 0.0.1.4 model 0.0.1.4 model 20 0.4.2 situ Gravel Pack graded 1.0 0.0.1.4 model 0.0.1.4 model 0.0.1.4 model 21 0.4.2 situ Gravel Pack graded 1.0 0.0.1.4 model 0.0.1.4 model 0.0.1.4 model 22 0.4.2 situ Gravel Pack graded 1.0 0.0.1.4 model 0.0.1.4 model 0.0.1.4 model 3.0.3.1 Clay, red/brown 0.0.1.4 model 0.0.1.4 model 0.0.1.4 model 0.0.1.4 model 3.0.1 Clay, red/brown 0.0.1.4 model 0.0.1.4											
a2 a3 a2 a3 a2 a3 a2 a3 a2 a3 a3 <td< td=""><td>0.0</td><td></td><td>===</td><td></td><td></td><td></td><td></td><td>===</td><td></td></td<>	0.0		===					===			
0.4 0.2-0.4m Bentolite santary used 0.0-1.4m Stem PVC casing 0.4 0.0-1.4m Stem PVC casing 0.4-2.3m Gravel Pack graded 1.0 1.4 0.4.2.3m Blond PVC Screen 1.0 1.0-3.0 Sand, brown 1.4 0.4.2.3m Blond PVC Screen 1.0 1.0-3.0 Sand, brown 2.0 0.4.2.3m Blond PVC Screen 2.0 0.0-1.4m Steme JVC Screen 1.4 0.4.2.3m Blond PVC Screen 2.0 0.0-1.4m Steme JVC Screen 2.4 0.4.2.3m Blond PVC Screen 2.0 0.0-1.4m Steme JVC Screen 3.0 3.0-3.1 Clay, red/brown 3.0-3.1 Clay, red/brown 3.2 TOTAL DEPTH 2.5m 1.0 0.0-1.4m Steme JVC Screen 3.0 1.0 0.0-1.4m Steme JVC Screen 0.0-1.4m Steme JVC Screen 3.0 1.0 0.0-1.4m Steme JVC Screen 0.0-1.4m Steme JVC Screen 3.0 1.0 0.0-1.4m Steme JVC Screen 0.0-1.4m Steme JVC Screen 3.0 1.0 0.0-1.4m Steme JVC Screen 0.0-1.4m Steme JVC Screen 3.0 1.0 0.0-1.4m Steme JVC Screen 0.0-1.4m Steme JVC Screen 3.0 1.0 0.0-1.4m Steme JVC Scren 0.0-1.4m Steme JVC Scren			500950	0.0-0.2m Cement sanitary seal							
0.4 0.0-1.4tm 60mm PVC casing 1.0 1.0-3.0 Send, brown 10 0.4-2.3tm Gravel Pack graded 1.0 1.0-3.0 Send, brown 14 1.41-2.9tm Stoned PVC Screen 1.0 1.0-3.0 Send, brown 14 1.41-2.9tm Stoned PVC Screen 2.0 1.0-3.0 Send, brown 14 1.0 1.0-3.0 Send, brown 1.0-3.0 Send, brown 12 1.0 1.0 1.0 1.0 13 1.0 1.0 1.0 1.0 1.0 14 1.0 1.0 1.0 1.0 1.0 1.0 14 1.0 1.0 1.0 1.0 1.0 1.0 1.0 15 1.0				0.2-0.4m Bentonite sanitary seal				8.8	0.2-1.0 Slity sand, red/brown		
0.8 0.4 0	0.4	8 8 v		0.2-0.4m Bentonite Sanitary Sea				8 8			
0.8 0.4 0	┝							8 8			
0.8 0.4291m Greet Pack gaad 1.0 1.0-3.0 Sand, brown 12 1.41-291m Stoted PVC Screen 1.0 1.0-3.0 Sand, brown 14 1.41-291m Stoted PVC Screen 2.0 2.0 3.0-3.1 Clay, red/brown 22 TOTAL DEPTH 291m 1.0 3.0-3.1 Clay, red/brown 3.0-3.1 Clay, red/brown 32 TOTAL DEPTH 291m 1.0 1.0 1.0 1.0 1.0 34 1.0 1.0 1.0 1.0 1.0 1.0 1.0 32 TOTAL DEPTH 291m 1.0 <t< td=""><td>0.6</td><td></td><td></td><td>0.0-1.41m 50mm PVC casing</td><td></td><td></td><td></td><td></td><td></td></t<>	0.6			0.0-1.41m 50mm PVC casing							
1.0 0.4-2.91m Greeel Pack graded 1.0 1.0-3.0 Sand, brown 1.2 1.4 1.4 1.4 1.0 1.0-3.0 Sand, brown 1.4 1.4 1.4 2.0 2.0 1.0-3.0 Sand, brown 2.0 SWL 2.1mbgl 27172013 2.0 2.0 3.0-3.1 Clay, red/brown 3.2 TOTAL DEPTH 2.91m 3.0-3.1 Clay, red/brown 3.0-3.1 Clay, red/brown 3.2 TOTAL DEPTH 2.91m 1.0 1.0 1.0 3.2 TOTAL DEPTH 2.91m 1.0 1.0 1.0 3.4 1.0 1.0 1.0 1.0 1.0 3.4 1.0 1.0 1.0 1.0 1.0 1.0 3.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.4 1.0 <td< td=""><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	F										
10 1.0 1.0.3.0 Sand, brown 12 1.41-291m Slotted PVC Screen 2.0 14 SWL 2.1mbgl 2011/2013 2.0 22 SWL 2.1mbgl 2011/2013 3.0.3.1 Clay, red/brown 30 TOTAL DEPTH 2.91m 34 Indiana Indiana 36 Indiana Indiana 38 Indiana Indiana 40 Indiana Indiana 20 Indiana Indiana 38 Indiana Indiana 30 Indiana Indiana 31 Indiana Indiana 30 Indiana Indiana 31 Indiana Indiana 32 Indiana Indiana 34 Indiana Indiana 40 Indiana Indiana 50 Indiana Indina	0.8							8 Q.			
1.2 1.41-29 Im Stoted PVC Sorien 2.0 14 1.41-29 Im Stoted PVC Sorien 2.0 18 2.0 3.0.3.1 Clay, red/brown 22 3.0.3.1 Clay, red/brown 3.0.3.1 Clay, red/brown 32 3.0.3.1 Clay, red/brown 3.0.3.1 Clay, red/brown 34 4.0 1.0 1.0 38 4.0 1.0 1.0 38 4.0 1.0 1.0 39 1.0 1.0 1.0 30 1.0 1.0 1.0 31.0 1.0 1.0 1.0 32 1.0 1.0 1.0 1.0 34 1.0 1.0 1.0 1.0 38 1.0 1.0 1.0 1.0 1.0 40 1.0 1.0 1.0 1.0 1.0 1.0 Stote 1.0 1.0 1.0 1.0 1.0 1.0 1.0 30.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	E			0.4-2.91m Gravel Pack graded				8 8			
1.41-2.91m 1.41-2.91m 2.0 2.2 SWL 2.1mbgl 211/2013 2.0 2.4 SWL 2.1mbgl 211/2013 3.0-3.1 Clay, red/brown 3.0 TOTAL DEPTH 2.91m 3.0-3.1 Clay, red/brown 3.2 Jake Jake Jake 3.4 Jake Jake Jake 3.6 Jake Jake Jake 4.0 Jake Jake Jake 2.0 Jake Jake Jake 3.0 TOTAL DEPTH 2.91m Jake Jake 3.4 Jake Jake Jake 3.4 Jake Jake Jake Jake 3.4 Jake Jake Jake Jake Jake 3.4 Jake Jake Jake Jake Jake Jake 4.0 Jake <	1.0				1.0				1.0-3.0 Sand, brown		
1.41-2.91m 1.41-2.91m 2.0 2.2 SWL 2.1mbgl 211/2013 2.0 2.4 SWL 2.1mbgl 211/2013 3.0-3.1 Clay, red/brown 3.0 TOTAL DEPTH 2.91m 3.0-3.1 Clay, red/brown 3.2 Jake Jake Jake 3.4 Jake Jake Jake 3.6 Jake Jake Jake 4.0 Jake Jake Jake 2.0 Jake Jake Jake 3.0 TOTAL DEPTH 2.91m Jake Jake 3.4 Jake Jake Jake 3.4 Jake Jake Jake Jake 3.4 Jake Jake Jake Jake Jake 3.4 Jake Jake Jake Jake Jake Jake 4.0 Jake <	L							8 X			
14 20 20 22 30 SWL 2.1mbgl 2/11/2013 24 20 30.3.1 Clay, red/brown 30 TOTAL DEPTH 2.91m 30 TOTAL DEPTH 2.91m 30 3.0-3.1 Clay, red/brown 32 1 34 1 36 1 38 1 40 1 25 1 26 1 27 1 30 0.3.1 Clay, red/brown 31 1 34 1 36 1 38 1 40 1 20 1 21 1 38 1 40 1 39 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30	1.2							8 8			
1.6	L.			1.41-2.91m Slotted PVC Screen							
2.0 2.1 2.1 2.2 2.2 2.4 2.2 2.4 3.0 3.0 3.0 3.1 Clay, red/brown 3.2 3.4 3.6 3.1 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1.4							8 (S			
2.0 2.1 2.1 2.2 2.2 2.4 2.2 2.4 3.0 3.0 3.0 3.1 Clay, red/brown 3.2 3.4 3.6 3.1 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	L ₁₆							8 X			
20 22 24 26 28 TOTAL DEPTH 2 SIM 3.0-3.1 Clay, red/brown 3.0-3.1 Clay, red/brown 40 40 40 40 40 40 40 40 40 40	- 1.0										
20 22 24 26 28 TOTAL DEPTH 2 SIM 3.0-3.1 Clay, red/brown 3.0-3.1 Clay, red/brown 40 40 40 40 40 40 40 40 40 40	1.8										
22 24 SWL 2.1mbgl 2/11/2013 3.0-3.1 Clay, red/brown 2.8 TOTAL DEPTH 2.91m 3.0-3.1 Clay, red/brown 3.0 TOTAL DEPTH 2.91m 3.0-3.1 Clay, red/brown 3.4 3.6 3.8 3.6 3.8 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.8 5.9 5.9 5.9 5.0 5.9 5.9 5.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	F										
22 24 SWL 2.1mbgl 2/11/2013 3.0-3.1 Clay, red/brown 2.8 TOTAL DEPTH 2.91m 3.0-3.1 Clay, red/brown 3.0 TOTAL DEPTH 2.91m 3.0-3.1 Clay, red/brown 3.4 3.6 3.8 3.6 3.8 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.8 5.9 5.9 5.9 5.0 5.9 5.9 5.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	2.0				20			8 Ø			
22 Image: Constraint of the strength of the strengt of the strength of the strength of the stren	\vdash	8 % ·		SWL 2.1mbgl 2/11/2013	2.0						
2.6	2.2			, _, _,							
2.6	F										
2.8 TOTAL DEPTH 2.91m 10 3.0-3.1 Clay, red/brown 3.2 3.4 3.6 3.8 4.0 Notes: Descriptions are based on observations and hand testing of grab samples. Descriptions are based on observations and hand testing of grab samples.	2.4							8. 8.			
2.8 TOTAL DEPTH 2.91m 10 3.0-3.1 Clay, red/brown 3.2 3.4 3.6 3.8 4.0 Notes: Descriptions are based on observations and hand testing of grab samples. Descriptions are based on observations and hand testing of grab samples.	F							8 8			
TOTAL DEPTH 2.91m TOTAL DEPTH	2.6							8 (S			
TOTAL DEPTH 2.91m TOTAL DEPTH	L										
3.0 3.0-3.1 Clay, red/brown 3.2 3.4 3.6 3.8 4.0 4.0 Security in the security of grab samples. Descriptions are based on observations and hand testing of grab samples.	2.8										
3.2 3.4 3.6 3.8 4.0 Second of 1				TOTAL DEPTH 2.91m							
3.4 3.6 3.8 4.0 Section observations and hand testing of grab samples.	3.0							111	3.0-3.1 Clay, red/brown		
3.4 3.6 3.8 4.0 Section observations and hand testing of grab samples.	-32										
3.6 3.8 4.0 Solution 4.0 Solution Provide Descriptions are based on observations and hand testing of grab samples.	<u>ا</u>										
3.6 3.8 4.0 Solution 4.0 Solution Provide Descriptions are based on observations and hand testing of grab samples.	3.4										
3.8 4.0 4.0 Notes: Descriptions are based on observations and hand testing of grab samples.	F										
A.0	3.6										
A.0	F										
Notes: Descriptions are based on observations and hand testing of grab samples.	3.8										
Notes: Descriptions are based on observations and hand testing of grab samples.	Ľ										
Descriptions are based on observations and hand testing of grab samples.	4.0										
Descriptions are based on observations and hand testing of grab samples.	F										
Descriptions are based on observations and hand testing of grab samples.	┝										
Descriptions are based on observations and hand testing of grab samples.	┝										
Descriptions are based on observations and hand testing of grab samples.	┝										
Descriptions are based on observations and hand testing of grab samples.	Notes:										
		ons are base	d on observations a	and hand testing of grab samp	les.						
									Page 1 of 1		
	L										

BORE NUMBER: MW16

t/f: 02 903	37 4708 m: 04	-							
PROJE	CT No:	ENRS0212			DATE DF	RILLED:	25/10/2	2013	
LOCAT	ION:	Rd rsv adj. Lot 8 I	DP701913 (Bore License 10BL6	05456)	LOGGED	BY:	Rohan	Last	
CLIEN	Г:	AES on behalf of	STA.		DRILLED) BY:	Highlar	hland Drilling (Brett Delamont)	
SURFA	CE RL:	-			DRILL M	ETHOD:		advance, wireline with water.	
EASTIN		343014.12 (mga §	56)			AMETER:	-		
NORTH		6272712.66	-,				2.36m		
Depth Metres		Vell Log	Construction	Sample ID	E	SPT	Graphic Log	Description	
								Ground Surface	
0.0			8mm Hex Key Gatic Cover					0-0.1 Bitumen	
_		5 5 5	0.0-0.2m Cement sanitary seal					0.1-0.2 Gravel road base	
0.2								0.2-1.0 Silty sand, pale brown	
-			0.2-0.4m Bentonite sanitary seal						
0.4									
_									
0.6	8 8 .		0.0-0.86m 50mm PVC casing				8 8		
-									
0.8							8 8		
_			0.4-2.36m Gravel Pack graded				÷ ÷		
1.0			U.T 2.0011 Ulaver I duk yldubu					1.0-2.0 Silty sand, dark brown	
	8 88 1							1.0-2.0 Sitty Sand, dark brown	
1.2							8 S.		
1.2									
	8 88 in		0.86-2.36m Slotted PVC Screen				8 8		
1.4									
_							8 8		
1.6									
_	82 (B) 👎		SWL 1.755mbgl 2/11/2013				8.8		
1.8		· · · · · · · · · · · · · · · · · · ·							
2.0	: :: :			2.0			: :	2.0-2.5 Sand, brown	
_									
2.2									
_			TOTAL DEPTH 2.36m						
2.4							: ::		
_							iii	2.5-3.0 Claystone, red	
2.6							111	(Bald Hill Claystone)	
_							\sim		
2.8							11		
2.0							111		
3.0							11		
3.0							111		
3.2									
3.4									
_									
3.6									
_									
3.8									
-									
4.0									
_									
_									
_									
_									
Notes					l		L		
Notes:	one aro has	ad on observations	and hand testing of grap comple	e					
			and hand testing of grab sample less otherwise stated	5.				Page 1 of 1	

BORE NUMBER: **MW17**

www.enrs.com.au		ABN 58	8 0
25 RIVER ROAD			
SHOALHAVEN HEADS	NSW	2535	

	AVEN HEADS 37 4708 m: 04								
PROJE	ECT No:	ENRS0212			DATE DF	RILLED:	25/10/	2013	
LOCAT	TION:	Rd rsv adj. Lot13	DP708044 (Bore License 10BL	_605456)	LOGGE	BY:	Rohan	Last	
CLIEN	T:	AES on behalf of	STA.		DRILLED	DBY:	Highland Drilling (Brett Delamont)		
SURFA	ACE RL:	-			DRILL M	ETHOD:	Casing advance, wireline with water.		
EASTI	NG:	342917.65 (mga §	56)		HOLE D	AMETER:	120mm		
NORTH	HING:	6272774.65			DEPTH:		2.83m		
Depth Metres		Well Log	Construction	Sample ID	DIA	SPT	Graphic Log	Description	
								Ground Surface	
0.0			8mm Hex Key Gatic Cover					0-0.1 Bitumen	
		888	0.0-0.2m Cement sanitary seal					0.1-0.2 Gravel road base	
0.2	8-88						8.8	0.2-1.0 Silty sand, pale brown	
_			0.2-0.4m Bentonite sanitary seal				9 Q		
0.4	8 88 ·								
_									
0.6	8 99 ·		0.0-1.33m 50mm PVC casing				8 8		
							8 8		
0.8	S. 33 .						8 8		
L			0.4-2.83m Gravel Pack graded				8 8		
1.0							8 8	1.0-2.0 Silty sand, red/brown	
L							8 8		
1.2	8 88 .								
			1.33-2.83m Slotted PVC Screen						
1.4	8. KS i						8 8		
							88		
1.6									
	8 88 ·								
1.8	8 80 i						8 8		
_									
2.0			SWL2.04mbgl 2/11/2013	2.0				2.0-2.85 Sand, brown	
2.2									
							÷ ;;		
2.4	: :: :	· 💳 : · · · · · ·					÷ .:		
							: ::		
2.6		. 💳					: ::		
2.0									
2.8			TOTAL DEPTH 2.83m						
3.0							11	2.85-3.0 Claystone, red	
3.0							111	(Bald Hill Claystone)	
3.2									
-									
3.4									
┝┈									
3.6									
\vdash									
3.8									
┝									
4.0									
-									
 									
┝									
 									
									
Notes:					I		1		
	ions are bas	sed on observations	and hand testing of grab sample	s.					
			less otherwise stated	-				Page 1 of 1	
		•							

CLIENT: AE SURFACE RL: - EASTING: 34 NORTHING: 62 Depth Metres Well	43033.19 not sur i272695.48 II Log		Sample ID	DATE DF LOGGEL DRILLEL DRILL M HOLE DI DEPTH:) BY:) BY:		Last nd Drilling (Brett Delamont) advance - Air
CLIENT: AE SURFACE RL: - EASTING: 34 NORTHING: 62 epth etres Well 10	ES on behalf of 1 43033.19 not sur 272695.48 II Log	Construction Construction 8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal	Sample ID	DRILL M HOLE DI DEPTH:	ETHOD: AMETER:	Casing 160mm 4.0m	advance - Air n
SURFACE RL: - EASTING: 34 NORTHING: 62 epth etres Well	43033.19 not sur 1272695.48 II Log	Construction Construction 8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal	Sample ID	DRILL M HOLE DI DEPTH:	ETHOD: AMETER:	Casing 160mm 4.0m	advance - Air n
EASTING: 34 NORTHING: 62 epth etres Well	272695.48	Construction 8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal	Sample ID	HOLE DI DEPTH:	AMETER:	160mm 4.0m	1
NORTHING: 62 repth Well 0.0 0.1 0.2 0.4 0.6 0.8	272695.48	Construction 8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal	Sample ID	DEPTH:		4.0m	
Depth letres Well 0.0 0.2 0.4 0.6 0.8 0.4	ll Log	8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal	Sample ID		SPT		Description
Depth Actres Well 0.0 0.2 0.4 0.6 0.8 0.4		8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal	Sampi	G	SPT	Graph Log	Description
0.2		0.0-0.2m Cement sanitary seal					l
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8		0.0-1.0m 100mm PVC casing 0.8-4.0m Gravel Pack 2mm graded 1.0-4.0m Slotted 100mm PVC Screen SWL 1.92mbgl 2/11/2013	0.5				Ground Surface 0-0.5 Sitly soil and fill 0.5-4.0 Medium white sands 4.0 Target Depth Reached

LOCATION: CLIENT: SURFACE RL: EASTING: NORTHING:	Rd Rsv adj Lot 34 AES on behalf of 3.08 top of plate	STA.		LOGGED		Rohan Highlai	Last nd Drilling (Brett Delamont)	
CLIENT: SURFACE RL: ASTING:	AES on behalf of 3.08 top of plate	STA.				Highla	nd Drilling (Brett Delamont)	
SURFACE RL: EASTING:	3.08 top of plate						a Brinnig (Brott Bolamont)	
EASTING:		3.01 top of PVC		DRILL M		Casing advance - Air		
NORTHING:	343017.09			HOLE DI		160mn		
	6272682.25					3.71 m		
Depth Netres	Well Log	Construction	Sample ID	DIA	SPT	Graphic Log	Description	
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6		Smm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal 0.2-0.6m Bentonite sanitary seal 0.0-71m 100mm PVC casing 0.6-4.0m Gravel Pack 2mm graded 0.71-3.71m Slotted PVC Screen SWL 2.026mbgl 8/9/2016	ਯ 0.5 1.0 2.0 3.0		5		Ground Surface 0-0.5 Sitly soil and fill 0.5-4.0 Medium white sands 3.71 Target Depth Reached	

	AVEN HEADS 37 4708 m: 04							
PROJE	ECT No:	ENRS0212			DATE DF	RILLED:	21-06-	16
LOCAT	TION:	Rd Reserve adj Lo	ot 2 DP 701913		LOGGED) BY:	Rohan	Last
CLIEN	T:	AES on behalf of S	STA.		DRILLED) BY:	Highlar	nd Drilling (Brett Delamont)
	ACE RL:		o of plate, 2.63mAHD top of PVC		DRILL M		Casing advance - Air	
EASTIN		343034.29					160mm	
NORTH		6272700.83			DEPTH:		3.72 m	
Depth Metres		Well Log	Construction	Sample ID	OIA	SPT	Graphic Log	Description
							•	Ground Surface
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6			8mm Hex Key Gatic Cover 0.0-0.2m Cernent sanitary seal 0.2-0.5m Bentonite sanitary seal 0.0-0.72m 100mm PVC casing 0.5-3.72m Gravel Pack 2mm graded 0.72-3.72m Slotted 100mm PVC Screen SWL 1.856 mbgl 8/09/2016					Ground Surface 0-0.5 Sitty soil and fill 0.5-4.0 Medium white sands
3.8	2-0-2-00		TOTAL DEPTH 3.72m					
4.0								4.0 Target Depth Reached
			and hand testing of grab samples. less otherwise stated	<u> </u>	1	<u> </u>	L	Page 1 of 1

LOCATION: CLIENT: SURFACE RL: EASTING:	Rd Reserve adj L AES on behalf of					Rohan		
SURFACE RL:		STA.			NDV.	المام الم		
						Highlar	land Drilling (Brett Delamont)	
EASTING:	2.79mAHD top to	p of plate, 2.72mAHD top of PVC		DRILL M	ETHOD:		advance - Air	
	343022.72			HOLE DI	AMETER:	160mm		
NORTHING:	6272695.72			DEPTH:		3.91 m		
Depth Netres	Well Log	Construction	Sample ID	DIA	SPT	Graphic Log	Description	
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8		8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal 0.2-0.6m Bentonite sanitary seal 0.0-0.91m 100mm PVC casing 0.6-3.91m Gravel Pack 2mm graded 0.91-3.91m Slotted 100mm PVC Screen SWL 2.07 mbgl 8/09/2016					Ground Surface 0-0.5 Sitly soil and fill 0.5-4.0 Medium white sands 4.0 Target Depth Reached	

BORE NUMBER:

	37 4708 m: 04				1							
PROJE		ENRS0212			DATE DF		21/06/2					
LOCAT	ION:	Taronga Place Ro			LOGGED	BY:	Rohan					
CLIENT	Г:	AES on behalf of	STA.		DRILLED	BY:	Highlar	nd Drilling (Brett Delamont)				
SURFA	CE RL:	2.67mAHD top of	plate, 2.6mAHD top of PVC		DRILL M	ETHOD:	Casing	advance - Air & water				
EASTIN	NG:	343028.28			HOLE DI	AMETER:	100 mr					
NORTH		6272716.98			FINAL D	EPTH:	3.31 m					
Depth Metres	,	Well Log	Construction	Sample ID	DIA	SPT	Graphic Log	Description				
								Ground Surface				
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0			8mm Hex Key Gatic Cover 0.0-0.15m Cement sanitary seal 0.15-0.3m Bentonite sanitary seal 0.0-0.31m 50mm PVC casing 0.3-3.31m Gravel Pack graded SWL 1.68 mbgl 8/09/2016 0.31-3.31m Slotted PVC Screen TOTAL DEPTH 3.31mBGL	No Soil samples collected during drilling Sa				Ground Surface 0-0.1 Asphalt 0.1-0.3 gravel sub-base 0.3-1.0 Silty sand, dark brown 1.0-2.0 Silty sand, pale brown 2.0-3.5 Silty sand, grey TDR 3.5 m				
4.2 4.4 4.6 4.8												
			and hand testing of grab samples. less otherwise stated					Page 1 of 1				

BORE NUMBER:

	37 4708 m: 04	1											
PROJE		ENRS0212			DATE DF		21/06/2						
LOCAT		Taronga Place Ro			LOGGED			an Last nland Drilling (Brett Delamont)					
CLIENT		AES on behalf of	STA.		DRILLED		-						
SURFA		Pending Survey			DRILL M			advance - Air & water					
EASTIN	NG:	343105.00				AMETER:	100 mr						
NORTH	IING:	6272731.00			FINAL D	EPTH:	3.08 m						
Depth Metres	١	Well Log	Construction	Sample ID	OIA	SPT	Graphic Log	Description					
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.2 3.4 3.6 3.8 4.0 4.4 4.6 4.8 5.0 Notes:			8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal 0.2-0.5m Bentonite sanitary seal 0.0-0.08m 50mm PVC casing 0.5-3.08m Gravel Pack graded SWL 1.41 mbgl 12/09/2016 0.08-3.08m Slotted PVC Screen TOTAL DEPTH 3.08mBGL	No Soil samples collected during drilling Sa				Ground Surface 0-0.1 Asphalt 0.1-0.3 gravel sub-base 0.3-1.0 Silty sand, dark brown 1.0-2.0 Silty sand, pale brown 2.0-3.08 Silty sand, grey TDR 3.08 m					
Descriptio			and hand testing of grab samples. less otherwise stated					Page 1 of 1					

BORE NUMBER:

		1 518 596					01/00/	2016				
	CT No:	ENRS0212	hrow Mone)/		DATE DF		21/06/2					
LOCAT		Taronga Place Ro			LOGGED		Rohan					
CLIEN		AES on behalf of	51A.		DRILLED			nd Drilling (Brett Delamont)				
	CE RL:	Pending Survey			DRILL M		-	advance - Air & water				
EASTIN		343094.00				AMETER:	100 mr					
NORTH	IING:	6272718.00			FINAL D	EPTH:	3.99 m					
Depth Metres		Vell Log	Construction	Sample ID	DIA	SPT	Graphic Log	Description				
			_	Ground Surface								
0.0 0.2 0.4			8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal 0.2-0.89m Bentonite sanitary seal	No Soil samples collected during drilling				0-0.1 Asphalt 0.1-0.3 gravel sub-base 0.3-1.0 Silty sand, dark brown				
0.6			0.0-0.99m 50mm PVC casing	s collecte								
0.8			0.89-3.99m Gravel Pack graded	il sample:				1.0-2.0 Silty sand, pale brown				
1.2 1.4 1.6 1.8 2.0 2.2			SWL 1.47 mbgl 12/09/2016	No So				2.0-3.99 Silty sand, grey				
2.4 2.6 2.8 3.0 3.2 3.4			0.99-3.99m Slotted PVC Screen									
3.6 3.8 4.0 4.2			TOTAL DEPTH 3.99mBGL					TDR 3.99 m				
4.4 4.6 4.8												
5.0												
					-							
otes:			and hand testing of grab samples.									

BORE NUMBER:

t/1: 02 903	37 4708 m: 040	I									
	CT No:	ENRS0212			DATE DR		23/06/2				
LOCAT	ION:	Taronga Place Rd			LOGGED	BY:	Rohan				
CLIENT	Г:	AES on behalf of S	STA.		DRILLED		Highlar	nd Drilling (Brett Delamont)			
SURFA	CE RL:	2.75mAHD top of	plate, 2.67mAHD top of PVC		DRILL M	ETHOD:	Casing	advance - Air & water			
EASTIN	NG:	343007.79			HOLE DI	AMETER:	100 mr	n			
NORTH	IING:	6272705.16			FINAL DE	EPTH:	3.77 m				
Depth Metres	v	Vell Log	Construction	Sample ID	DIA	SPT	Graphic Log	Description			
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 Notes:			8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal 0.2-0.5m Bentonite sanitary seal 0.0-0.77m 50mm PVC casing 0.77-3.77m Gravel Pack graded SWL 1.76 mbgl 8/09/2016 0.77-3.77m Slotted PVC Screen 0.77-3.77m Slotted PVC Screen	No Soil samples collected during drilling				Ground Surface 0-0.1 Asphalt 0.1-0.3 gravel sub-base 0.3-1.0 Silty sand, dark brown 1.0-2.0 Silty sand, pale brown 2.0-3.5 Silty sand, grey TDR 3.8 m			
			and hand testing of grab samples. less otherwise stated					Page 1 of 1			

BORE NUMBER:

-	37 4708 m: 040											
	CT No:	ENRS0212			DATE DR		23/06/2	2016				
LOCAT	ION:	Taronga Place Rd	rsv, Mona Vale		LOGGED	BY:	Rohan					
CLIEN	Г:	AES on behalf of S	STA.		DRILLED	BY:	Highlar	nd Drilling (Brett Delamont)				
SURFA	CE RL:	2.58mAHD top of	plate, 2.51mAHD top of PVC		DRILL M	ETHOD:	Casing	advance - Air & water				
EASTIN	NG:	343025.25			HOLE DI	AMETER:	100 mr	n				
NORTH	IING:	6272733.38			FINAL DE	EPTH:	3.64 m					
Depth Metres	w	/ell Log	Construction	Sample ID	PID	SPT	Graphic Log	Description				
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 Notes:			8mm Hex Key Gatic Cover 0.0-0.2m Cement sanitary seal 0.2-0.5m Bentonite sanitary seal 0.0-0.64m 50mm PVC casing 0.5-3.64m Gravel Pack graded SWL 1.64 mbgl 8/09/2016 0.64-3.64m Slotted PVC Screen TOTAL DEPTH 3.64mBGL	No Soil samples collected during drilling Sa				Ground Surface 0-0.1 Asphalt 0.1-0.3 gravel sub-base 0.3-1.0 Silty sand, dark brown 1.0-2.0 Silty sand, pale brown 2.0-3.5 Silty sand, grey TDR 3.7 m				
			and hand testing of grab samples. less otherwise stated					Page 1 of 1				

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

Client: State Transit Authority of Project: Project: PS111744 Borehole Location: STA Mona Vale Bus Dep Project Number: PS111744 Drill Model/Mounting: Comacchio GEO 205										SW			C F	Date Commenced: Date Completed: Recorded By: Log Checked By:	12/18/19 12/18/19 James Robinse JR
							GEO	205		Drill		Surface RI	L:		
Bor	eno	DIE L		er: 198 rehole l						Driii	er Lic No:	Co-ords:		E 33.674291 N -1	51.307002
	2	3	DU	4	mon		5	6	7	8	9 10	ield Material		11 12	13
METHOD	SUPPORT	WATER	CON	WELL STRUCTIO	N	RL(m)	DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DES		Lieia pri		RUCTURE AND NAL OBSERVATIONS
сс 				180mm flushmount - 50mm cla PVC casing grout to su	t gatic ass 18 g rface		0.20 -	1.6	B&J		Silty SAND	7.0	.0	M	
JET				Bentonite p seal (plug)	pellet		-				light brown / yellow fine to medium grained sand				
				2mm sand filterpack			-	6.2	B&J			7.0	.0		
				50mm mac slotted clas PVC scree	ss 18		1-	7.2	B&J			7.(.0		
HFA							1.30	1	B&J		SAND yellow / light brown fine grained		.0		
							-2-	1.9	B&J			7.0	.0	W	
							-	7.9	B&J			7.(.0		
							- 3.00 -3 -	10	B&J		SAND with Clay yellow / light brown fine grained sand	7.0	.0		
							-	5.9	B&J			7.(.0		
							- 4.00 4	6.1	B&J		TARGET DEPTH REACHEI END OF BOREHOLE AT 4.		.0		
						[his b	- orehol	e loa she	ould F	be read	l in conjunction with WSP's ac	companying sta	and	dard notes.	

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

Bor	ject eho	le L	ocation mber:	PS111	ona Vale E			SW		Da Re	te Comme te Comple corded By g Checked	eted: :	12/18/19 12/18/19 James Robinso JR		
				ing: Comac r: 195 mi		205		Drill	er: Stratacore er Lic No:	Surface I Co-ords:			~4.6 E 33 6746	14 N	151.306988
	eno			ehole Info						ield Materia				14 11 -	131.300300
	2	3		4	5	6	7	8	9 10			11	12		13
METHOD	SUPPORT	WATER	CONS		RL(m) DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPH	SOIL/ROCK MATERIAL FIELD DES	CRIPTION	Field pH	MOISTURE	RELATIVE DENSITY /CONSISTENCY BL S S S L S H	ST ADDITIC	IRUCTURE AND DNAL OBSERVATIONS
СС				180mm flushmount gatic - 50mm class 18				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CONCRETE grey with riverstones						
JET	_			PVC casing grout to surface Bentonite pellet seal (plug)	0.20	43.2	B&J		Sandy CLAY with Silt Yellow w/grey/light brown me trace fine to medium sandsto (white)	ottles one gravel	7	м			
				2mm sand filterpack	-	18.6	B&J		becoming yellow		7				
				50mm machine slotted class 18 PVC screen		36.2	B&J		Silty SAND with Clay grey, with common yellow/br mottles fine to medium grained sand		7				
HFA					-	39.1	B&J		becoming Silty SAND trace	Clay	7				
					2-	37.0	B&J				7	w	-		
					-		B&J		becoming Silty SAND		7				
					3-	37.8	B&J				7				
					-		B&J				7				
					4.00 4	22.	B&J		TARGET DEPTH REACHED END OF BOREHOLE AT 4.0		7				
					This based of				in conjunction with WSP's ac		- 4 - 1	d			

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

M	W	3	0
IVI	VV	3	U

Client: State Transit Authority of Project: PS111744 Borehole Location: STA Mona Vale Bus Depo Project Number: PS111744 Drill Model/Mounting: Comacchio GEO 205								SW				Dat Re	te Comm te Compl corded B g Checke	eted: y:	12/18/19 12/18/19 James Robinso JR
				ng: Comac r: 195 mr		205		Drill	er: Stratacore er Lic No:	Surface R Co-ords:	RL:		~4.4 E 33 674	614 N	-151.306699
				ehole Infor						Field Material					
	2	3		4	5	6 (udd	7	8 90		0		11	12 RELATIVE DENSITY /CONSISTENC		13
METHOD	SUPPORT	WATER	CONS		RL(m) DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPHI	SOIL/ROCK MATERIAL FIELD DE	SCRIPTION	Field pH	MOISTURE	VS ST PD VST DD VST DS VST DD VST DS VST DD VST DS VST DST	ADDITI	STRUCTURE AND ONAL OBSERVATIONS
CC				180mm flushmount gatic - 50mm class 18 PVC casing grout to surface	0.20				CONCRETE grey with riverstones						
JET				Bentonite pellet seal (plug)	-	26.5	B&J		Clayey SAND with silt yellow sands, grey/light bro particles trace fine to medium sands	wn fine	7	м			
					_	34.6	B&J			-	7				
				2mm sand filterpack	-										
					0.90				, Silty SAND Yellow/Red light brown		_				
				50mm machine slotted class 18 PVC screen	-	32.1	B&J		trace fine to medium gravel/shells/carbonates		7				
					-										
HFA					-	37.9	B&J			;	7				
				:	-						-	w			
					2-	31.1					7				
					-	31.1	B&J				1				
					-										
					-		B&J			;	7				
					-	-									
					3-	34.0	B&J				7				
					-										
					-	-									
					-		B&J				7				
					-	-									
					4.00 4 -	36.6	B&J		TARGET DEPTH REACHE END OF BOREHOLE AT 4	D	7				
					-										
					-	-									

BOREHOLE NO.

MW31

Pro Boi	Client: State Transit Authority of Project: PS111744 Borehole Location: Adjacent to Taronga Plac Project Number: PS111744										Da Re	SHEET 1 te Commenced: 12/17/19 te Completed: 12/17/19 corded By: James g Checked By: JR	9			
Dri	ll Mo	odel/		ng: Comac	chio GEO	205		Drill Drill	er: Stratacore er Lic No:	Surface R Co-ords:	L:					
	Borehole Information							Field Material D				cription				
	2	3	_ •••	4	5	6	7	8	9 10		11	12 13				
METHOD	SUPPORT	WATER	V CONS	WELL TRUCTION	RL(m) DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DES		MOISTURE	Soutost				
JET				180mm fluchmount gatic - 50mm class 18 PVC casing grout to surface Bentonite pellet seal (plug) 2mm sand filterpack	0.15	45.9	B&J B&J		TOPSOIL - Silty LOAM brown fine to medium grained Silty SAND brown fine grained subrounded to r sands becoming dark brown	7	, D					
				50mm machine slotted class 18 PVC screen	1.00 - 1 -	33.2	B&J		Clayey SAND yellow brown fine grained sand	7	M					
HFA						28.4	B&J		becoming yellow red	7						
		\succ				29.8	B&J		SAND yellow red, yellow brown, mo fine to coarse grained sub an subrounded sands	7 pttled ngular to 7	W					
						44.8	B&J B&J			7						
					-	33.2	B&J			7	,					
	_				- 4.00 4 -	24.3	B&J		TARGET DEPTH REACHED END OF BOREHOLE AT 4.0							
					This borehole	e log sho	uld b	be read	I in conjunction with WSP's ac	companying sta	andar	d notes.				

BOREHOLE NO.

M	W	32
---	---	----

Proj Bor	Client:State Transit Authority ofProject:PS111744Borehole Location:Adjacent to Taronga PlaceProject Number:PS111744								SW				Dai Re	te Commence te Completed corded By: g Checked By	: 12/17/19 James Robinso		
				ng: Com r: 195 r		GEO	205			Driller: Stratacore Surface RL: Driller Lic No: Co-ords:				~4.7 E 33.674206 N -151.306279			
			Bor	ehole Inf	ormati						eld Materia	l D					
МЕТНОD	SUPPORT 5	WATER	CONS	4 WELL STRUCTION	RL(m)	2 DEPTH(m)	Field PID (ppm)	2 SAMPLE 2	GRAPH	9 10 SOIL/ROCK MATERIAL FIELD DES	CRIPTION	Field pH	MOISTURE 11		13 STRUCTURE AND DDITIONAL OBSERVATIONS		
JET R				180mm flushmount ga - 50mm class PVC casing grout to surfac Bentonite pelle seal (plug) 2mm sand	2	0.18	5.9	B&J B&J		CONCRETE grey with riverstones Clayey SAND with Silt Red brown with grey mottles fine grained sands trace very fine gravel		7 7	М				
				50mm machin slotted class 1 PVC screen		- 1 1.20	19.7	B&J		becoming black		7					
HFA						-	16.2	B&J		yellow red/ lightbrown fine to medium grained sand trace clay		7					
						2	18.2	B&J B&J				7 7	W				
						- 3- -	21.1	B&J				7					
						- - 4.00 4	0.5	B&J		TARGET DEPTH REACHED END OF BOREHOLE AT 4.0)	7					

BOREHOLE NO.

MW33

Pro Bor	Client:State Transit Authority ofProject:PS111744Borehole Location:Adjacent to Taronga PlaceProject Number:PS111744													ommer omplet ed By: ecked	12/17/19 12/17/19 James Robins JR	
				ng: Comac		205		Drill		Surface			~4.8		0 L	
Bor	enc	ble D		r: 195 mn				Drille	er Lic No:	Co-ords					53 N-1	151.306382
	2	3	Bor	ehole Infor	mation 5	6	7	8	9 10	ield Materia	ai L	11		10 n		13
METHOD	SUPPORT	WATER	\ CONS	WELL TRUCTION	RL(m) DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DES	SCRIPTION	Field pH	MOISTURE			ST ADDITIO	RUCTURE AND NAL OBSERVATIONS
JET				180mm flushmount gatic - 50mm class 18		6.2	B&J	\mathcal{W}	TOPSOIL: Silty LOAM brown		7	D				
				- summ class 18 PVC casing grout to surface Bentonite pellet seal (plug)	0.15	5.1	B&J		Clayey SAND yellow with pink mottles medium to coarse angular to rounded sand	o sub	7	M				
				2mm sand filterpack	-	0.1	BaJ		Becoming black/very dark br gradual transitioin to fine to o gravel	rown coarse						
				50mm machine slotted class 18 PVC screen	1-	7.9	B&J				7.5					
HFA						8.9	B&J		containing fine gravel SAND Light grey/ yellow fine grained sands trace gravels and shell fragn Ø<2mm	nents						
					2-	9.8	B&J				8	w				
						7	B&J B&J		shell fragments increasing		8					
					-	6.6	B&J									
					- 4.00 4	5.6	B&J		TARGET DEPTH REACHED END OF BOREHOLE AT 4.0	<u>с</u>	7.5					
					- This borehole	e log sho	buld b	be read	l in conjunction with WSP's ac	companying	stan	daro		 		

BOREHOLE NO.

MW3	35
-----	----

Client: State Transit Authority of Project: PS111744 Borehole Location: Adjacent to Taronga Place Project Number: PS111744									SW				Dat Rec	e Com e Com corded I Check	pleted By:	l:	12/17/19 12/17/19 James Robi JR	nsc
					Comac 195 mn	chio GE n	O 205		Driller: Stratacore Surface RL: Driller Lic No: Co-ords:				.: ~4.9 E 33.673843 N -151.306927					
			Bor		le Infor						Field Materi	al D			1			
МЕТНОD	SUPPORT 2	WATER	CONS	4 WELL		5 RL(m)	Field PID (ppm) 9	2 SAMPLE	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD D	10 ESCRIPTION	Field pH				STRI DDITION	13 UCTURE AND AL OBSERVATIONS	3
JET				180n flush	mount gatic		14.6	B&J	$\overline{\mathcal{M}}$	TOPSOIL : Silty LOAM		7	D					┫
ſ				- 50n PVC grout Bent seal	nm class 18 casing t to surface onite pellet (plug)	0.15	- 14.0	B&J		Silty SAND brown medium to coarse grained Silty CLAYEY SAND	l sands	7	M					
				slotte	m machine ed class 18 screen	1	17.3	B&J		dark brown		7						
HFA	-					1 80	11.8	B&J		becoming sandier		7						
		>				1.80 —	14.7	B&J		SAND grey with black mottles		8.5	W					
							16.2	B&J		shell fragments		8.5						
						3	9.5	B&J				8.5						
							10	B&J				8.5						
						4.00 4	12.6	B&J		TARGET DEPTH REACH END OF BOREHOLE AT		7.5						_
						This boreh	_ ble log sho	buld b	be read	d in conjunction with WSP's	accompanying	stan	dard	notes.				

BOREHOLE NO.

SHEET 1 OF 1

Client: State Transit Authority of Project: PS111744 Borehole Location: STA Monavale Bus Depot Project Number: PS111744 Drill Model/Mounting: Hand Auger											E F L	Dat Rec Log	e Commence e Completed corded By: g Checked By	: 06/01/20 James Robinse
				ng: Hand A r: 195 mm					Drill	er: Stratacore Surface R er Lic No: Co-ords:	RL:		~4.6 = 33 674024	N -151.307271
	cho			ehole Infor						Field Material				N-131.307271
	2	3	BUN		mation 5	•	6	7	8	9 10		11	12	13
METHOD	SUPPORT	WATER	\ CONS	VELL TRUCTION	RL(m)	DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	0,		STRUCTURE AND DDITIONAL OBSERVATIONS
ĊĊ		N F		180mm flushmount gatic - 50mm class 18 PVC casing - grout to surface						CONCRETE	-			
HA		G W E		grout to surface Bentonite pellet seal (plug) 2mm sand filterpack 50mm machine slotted class 18	0.20	- 0	0.7	B&J		FILL : gravelly SAND trace Clay yellow brown Fine to coarse sands well graded with fine to medium grained Sub-angular to sub-rounded		М		
				PVC screen		_	0.9	B&J		Unweathered sandstone				
					1.20	1-	1.0	B&J						
					1.20	,				SAND dark brown				
					1.40	, _	0.2	B&J		fine to medium grained TARGET DEPTH REACHED				
						- 2- - - 3-								
						- - 4 - -								

BOREHOLE NO.

M	W:	37
---	----	----

	ect: hol	le L	ocation: nber:	PS1117	nga Place,						Da Re	te Commeno te Complete corded By: g Checked B	d: 12/17/19 James Robinso
			Mounting	-	chio GEO	205		Drille	er: Stratacore Surfacer Er Lic No: Co-or			~4.9 E 33 673764	N -151.307061
Dore				nole Infor					Field Mate				
	2	3		4	5	6	7	8	9 10		11		13
	SUPPORT	WATER	CONST	ELL RUCTION B0mm	RL(m) DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	MOISTURE	DENSITY /CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
JET				Sofinin Sofimun class 18 Somm class 18 How C casing - rout to surface entonite pellet eal (plug) mm sand terpack Omm machine otted class 18 VC screen	0.05	0.2	B&J B&J		Degraded Black ASPHALT FILL: Sandy GRAVEL (DGB) Black, fine to medium grained angular to sub angular gravels Brown/Yellow, fine to coarse well graded, angular to sub-rounded sands FILL: Clayey SAND LightBrown to yellow fine to coarse angular to subrounded well grained sands fine to medium angular to subrounded sandstone gravels becoming loose yellow to lightbrown	7	M		
					- 1	0.2	B&J			7			
					1.65	0.3	B&J		layer of crushed sandstone	7			
		>			1.80				Clayey SAND Light brown	_	W		
					2.00 2-	0.9			fine to medium grained sands TARGET DEPTH REACHED	- 7			
							B&J		END OF BOREHOLE AT 2.00 m				

APPENDIX E BORESEARCH DATA

****\]) **State Transit Authority** Groundwater Monitoring Event The Ave GW108853 0 200 400 COL Rd m Cres Ra Site Boundary GW113211 GW019104 ,GW108682 GW113213 GW108558 GW026581 Ra GW018808 GW113212 ,GW108158 ,GW108579 Mona Vale GW105936 Buony Pt GW111104 GW018778 GW026026 GW018770 GW026027 GW111105 GW111444 GW108500 na Vale Rd GW018771 Brinawa St GW111427 GW108888 Elimatta Rd.

Basemap Source: www.bom.gov.au

Table E1Summary of Registered Bores

BORE ID	LATITUDE	LONGITUDE	DRILLED DATE	BORE DEPTH (M)	PURPOSE	STATUS	HYDRAULIC DIRECTION FROM SITE WELLS
GW113213	-33.674575	151.310606	22/05/2012	2.5	Monitoring	Functional	Up-gradient or separate groundwater catchment
GW018770	-33.676968	151.309292	1/08/1960	40.2	Water Supply	Unknown	Separate aquifer
GW108579	-33.676603	151.314472	9/03/2007	6.6	Water Supply	Functioning	Up-gradient or separate groundwater catchment
GW108158	-33.676434	151.312609	7/05/2006	6.3	Water Supply	Functioning	Up-gradient or separate groundwater catchment
GW111104	-33.676867	151.307964	15/06/2010	4	Monitoring	Functional	Up-gradient or separate groundwater catchment
GW111427	-33.680312	151.304088	25/02/2008	103	Other	Functioning	Separate aquifer
GW111444	-33.678578	151.305275	25/02/2008	103	Other	Functioning	Separate aquifer
GW108682	-33.673988	151.31311	23/03/2007	3.5	Water Supply	Functioning	Up-gradient or separate groundwater catchment
GW111105	-33.676922	151.308156	15/06/2010	5	Monitoring	Functional	Up-gradient or separate groundwater catchment
GW108558	-33.674909	151.313243	5/02/2007	4.3	Water Supply	Functioning	Up-gradient or separate groundwater catchment
GW018778	-33.67672	151.302393	1/10/1960	124.9	Water Supply	Unknown	Separate aquifer
GW035791	-33.677903	151.311053	1/12/1960	59.4	Water Supply	Functioning	Separate aquifer
GW105936	-33.676328	151.312399	19/05/2005	-	Unknown	Unknown	Up-gradient or separate groundwater catchment
GW113211	-33.67423	151.310911	22/05/2012	3	Monitoring	Functional	Up-gradient or separate groundwater catchment
GW113212	-33.674329	151.310791	22/05/2012	2.5	Monitoring	Functional	Up-gradient or separate groundwater catchment
GW108500	-33.677364	151.312053	10/11/2006	4	Water Supply	Functioning	Up-gradient or separate groundwater catchment
GW026581	-33.675645	151.306243	1/01/1967	92.9	Water Supply	Unknown	Cross-gradient, separate aquifer
GW018808	-33.674893	151.313884	1/12/1960	91.4	Water Supply	Unknown	Separate aquifer
GW026026	-33.67673	151.306438	1/11/1966	51.8	Water Supply	Unknown	Separate aquifer
GW026027	-33.67686	151.306004	1/12/1966	61.5	Water Supply	Unknown	Separate aquifer
GW018771	-33.677903	151.311053	1/11/1960	100.5	Water Supply	Functioning	Separate aquifer
GW019104	-33.67426	151.317056	1/02/1961	47.2	Water Supply	Unknown	Separate aquifer
GW108853	-33.665883	151.303422	6/10/2007	5	Other	Functioning	Down-gradient
GW108888	-33.680253	151.306989	2/06/2008	73	Other	Functioning	Separate aquifer

APPENDIX F NSW EPA CORRESPONDENCE

Environment Protection Authority (EPA)

NOTICE OF APPROVAL OF VOLUNTARY MANAGEMENT PROPOSAL

(Section 17 of the Contaminated Land Management Act 1997)

Approval No.:	20141707
Approval Date:	8 May 2015
Area No.:	3378

The approved proposal consists of this approval document and the attached proposal, which comprises three Parts: Part 1 – Preliminary Details; Part 2 – Undertakings; and Part 3 – Performance Schedule.

Proponent: State Transit Authority

Site: NSW State Transport Authority Mona Vale Depot at 58 Darley Street, Mona Vale NSW 2103

Proposal Date: 27 April 2015

BACKGROUND

The EPA is satisfied that the terms of the proposal, as modified by the conditions of this approval, are appropriate.

For the purposes of section 17(4) of the *Contaminated Land Management Act 1997* (CLM Act), the EPA is not satisfied that the proponent has taken all reasonable steps to identify and find every owner and notional owner of the land and every person responsible for significant contamination of the land and given those parties identified an opportunity to participate in the formulation and carrying out of the proposal on reasonable terms.

The contents of Part 1, Part 2 and Part 3 of the attached proposal form part of the terms of the approved proposal.

For the purposes of section 9(1) of the CLM Act, the EPA has had regard to the principles of ecologically sustainable development in assessing and approving this Voluntary Management Proposal and has also sought the implementation of those principles in the management of the site under this approved proposal.

APPROVAL AND CONDITIONS

The EPA approves the proposal subject to the following conditions. These conditions form part of the terms of the approved proposal.

- Each feature and milestone of the proposal is to be completed by the date specified in the proposal. Failure to satisfactorily complete any component by the due date for that feature or milestone may be taken as a failure to carry out the terms of the proposal for the purposes of section 17(6) of the CLM Act.
- 2. The proponent cannot recover contributions under Part 3 Division 6 of the CLM Act.

- 3. Make available for inspection by any person, free of charge, and provide a copy to any person for a reasonable fee, any document required to be prepared and submitted to the EPA under this voluntary management proposal. It is not necessary to disclose:
 - any information contained in those documents that relates to any manufacturing or other industrial or commercial secrets or working processes; or
 - (ii) any personal information, within the meaning of the *Privacy and Personal Information Protection Act 1998* or *Privacy Act 1988* (Cth), contained in those documents.
- 4. Where this proposal requires the proponent or any other person to give a document to the EPA, that document may be given to the EPA:
 - By delivering the document by hand to: Manager Contaminated Sites, NSW Environment Protection Authority, Level 14, 59-61 Goulburn Street, Sydney, NSW, 2000
 - (ii) By posting the document to: Manager Contaminated Sites, NSW Environment Protection Authority. PO Box A290, Sydney South, NSW, 1232.
 - (iii) By faxing the document to Manager Contaminated Sites on (02) 9995 6603
 - (iv) By emailing the document to contaminated.sites@epa.nsw.gov.au

ADDITIONAL INFORMATION

- 5. The EPA may still exercise any powers it has under the CLM Act, or any other legislation, in relation to the site.
- 6. The EPA may require the proponent to pay all or any costs incurred by the EPA in connection with any one or more of the following:
 - a. Assessing and settling the terms of the approved voluntary management proposal;
 - b. Monitoring action under the approved voluntary management proposal;
 - c. Seeking the compliance of the proponent with the approved voluntary management proposal;
 - d. Any other matter associated with, or incidental to, the matters set out in paragraphs a. to c. above.

Signed:

8 May 2015 NIALL JOHNSTON Manager Contaminated Sites

Environment Protection Authority

(by delegation)

VOLUNTARY MANAGEMENT PROPOSAL UNDER THE CONTAMINATED LAND MANAGEMENT ACT 1997

Part 1

Preliminary Details

1. Proponent's Details

(a) Name and contact details

If a registered company, company name: Trading as: ACN:

If not a registered company, your full name(s): Trading as: State Transit Authority ABN: 51750635629 Phone: 02 9245 5700 Fax: Email: Postal address: Level 4, 15 Bourke Road, Mascot NSW Postcode: 2020 EPA licence number (if applicable): n/a

(b) Who the EPA should contact with technical enquiries about the proposal

Name: Employer/Company: Position title: Type of business: Phone (business): Phone (after hours): Fax: Email: David Gosling State Transit Authority Environment Manager Public Transport

Proponent: State Transit Authority Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale Proposal Date: 20/04/2015

2. Site to which proposal applies

The site to which the proposal applies ("the site") is:

Site Identification Details Address Lot / DP Local Government Area Land Zoning Current Landuse Site Area Lat/Long Site Map

58 Darley Street, Mona Vale, NSW Lot 2 DP 542640 Pittwater Council 4(b1) Light Industrial B1 Bus Depot 17,100 m2 (approximately) 33°40'28.02"S 151°18'25.70"E Attachment A.

3. The contamination

Soil and/or groundwater and/or surface water at the site are contaminated with substances and the contamination is significant enough to warrant regulation under the *Contaminated Land Management Act 1997*. The substances of concern ("the contaminants") are:

Total Petroleum Hydrocarbons (C10-C36) Polycyclic Aromatic Hydrocarbons including Naphthalene

4. The management proposal

The management proposal ("the proposal") comprises:

- a) the information set out above;
- b) the actions, works and other components set out in the following documents: WSP Group Remediation Action Plan 31 May 2013 and WSP Group Amended Remediation Action Plan (to be developed)

Australian Environmental Services Various Remediation Works – Mona Vale 6 September, 2013

State Transit Authority Quotation Professional Services Form 217 Australian Environmental Services Submission 10/9/2013;

ENRS Offsite Groundwater Monitored Natural Attenuation Reports, Rounds 1 Baseline, January 2014, Round 2, June 2014, Round 3 October 2014 & Round 4, February 2015.

- c) the undertakings set out in Part 2 of this document; and
- d) the performance schedule set out in Part 3 of this document.

Proponent: State Transit Authority

Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale

Undertakings Included in Voluntary Management Proposal

Explanatory Note:

Before the EPA can approve a voluntary management proposal under section 17 of the Contaminated Land Management Act 1997, it has a statutory obligation to satisfy itself that the terms of the proposal (as modified by any conditions to be imposed by the EPA) submitted to it under section 17 are appropriate. In addition to including an appropriate investigation plan, remedial action plan or other plan of management, to be acceptable to the EPA a proposal would usually include the undertakings set out below. These undertakings are important and will form part of the terms of the proposal. If the proposal is approved, they must be complied with in order for the EPA to be satisfied that the terms of the proposal have been carried out.

THE PROPOSAL INCLUDES THE FOLLOWING UNDERTAKINGS:

General

- 1. All works or activities carried out in connection with the proposal, including sampling and preparation of associated reports ("the activities"), will be carried out in accordance with applicable provisions of *State Environmental Planning Policy 55 Remediation of Land* and any requirements imposed under it in relation to the activities.
- 2. All matters listed as relevant to a remediation action plan by the EPA's *Guidelines for Consultants Reporting on Contaminated Sites* (1997) will be taken into account in the carrying out of the activities.
- All the activities will be carried out consistently with guidelines made or approved under section 105 of the CLM Act. (See <u>www.epa.nsw.gov.au/clm/guidelines.htm</u>)
- 4. All the activities will be carried out in compliance with applicable NSW environmental legislation, and in particular:
 - i) All the activities, including:
 - (1) the processing, handling, movement and storage of materials and substances used to carry out the activities; and
 - (2) the treatment, storage, processing, reprocessing, transport and disposal of waste generated by the activities

will be carried out in a competent manner;

- ii) All plant and equipment installed at the site or used in connection with the activities:
 - (1) will be maintained in a proper and efficient condition; and
 - (2) will be operated in a proper and efficient manner.
- 5. All the activities at the site will be carried out in a manner that prevents or minimises the emission of dust, odour and noise from the site.
- 6. Waste generated or stored at the Site will be assessed and classified in accordance with the EPA's *Waste Classification Guidelines Part 1: Classifying Waste*.

(See www.epa.nsw.gov.au/waste/envguidIns/index.htm)

Proponent: State Transit Authority

Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale

7. All waste transported from the Site that is required by the *Protection of the Environment (Waste) Regulation 2005* to be tracked must be tracked using the EPA's on-line tracking system or an alternative tracking system approved in writing by the EPA.

(See <u>www.epa.nsw.gov.au/owt/aboutowt.htm</u>)

- 8. The proponent will make this voluntary management proposal available to the public free of charge and consents to the EPA placing this proposal on its public website.
- 9. The proponent will make all documents referred to in, and required to be prepared under, this voluntary management proposal available to the public free of charge, unless the proponent identifies commercial-in-confidence or private/personal information (including information relating to a third party) within those documents. In these cases, the proponent will remove such information from the documents to make the documents suitable for public release.
- 10. The proponent will:
 - i) prior to the implementation of the proposal provide for the EPA's approval a strategy for communicating about that implementation, particularly the actual management works, with members of the public who are likely to have a real interest in or be affected by that implementation; and
 - ii) implement the strategy as approved in writing by the EPA.

Monitoring, Record Keeping & Reporting

11. At least until the EPA has notified the proponent that the EPA no longer considers that the contamination is significant enough to warrant regulation under the *Contaminated Land Management Act 1997*, record and retain all monitoring data and information and provide this record to the EPA at any reasonable time if so requested by the EPA and as specifically provided under the proposal.

[Note: Specific details of monitoring and data reporting requirements, requirements for progress reports, etc are to be set out in the performance schedule in Part 3 of this document.]

- 12. The EPA will be informed in writing within 7 days of the proponent becoming aware of information or data indicating a material change:
 - a) in conditions at the site, or
 - b) in its surrounding environment,

which could adversely affect the prospects of successful management of the site or result in harm to the environment.

- 13. The EPA will be informed in writing within 7 days of the proponent becoming aware of any failure, either by the proponent or any other person, to comply with any term of the proposal.
- 14. The EPA will be informed in writing as soon as practicable of any notification by the proponent, its employees or its agents to an appropriate regulatory authority other than the EPA of any pollution incident at the site within the meaning of the *Protection of the Environment Operations Act 1997.*

(See http://www.epa.nsw.gov.au/licensing/dutytonotify.htm)

Performance Schedule

15. The performance schedule which is in Part 3 of this document will be adhered to.

Proponent: State Transit Authority

Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale

Performance Schedule

Explanatory Notes:

The performance schedule required must provide a clear and concise list of:

- key milestones and dates by which they are to be achieved and
- the objectives and principal features of the investigation or remedial action plan.

The performance schedule is very important because it provides a concise set of performance indicators which will be used, along with an evaluation of compliance with the terms in Part 2 of this document, to assess whether or not the terms of the proposal have been carried out.

To be acceptable to the EPA, the performance schedule **must** include precise, measurable and timebounded performance indicators. Where it is appropriate for the investigation or other management to be done in stages, performance measures for each stage must be provided. EPA approval of later stages will be dependent on the completion and/or performance of earlier stages being demonstrated to the EPA's satisfaction.

The performance schedule should adhere to the structure set out in the following table.

	PART 3 - PERFORMANCE SCHEDULE
The se	chedule should concisely set out:
	Objectives of the proposal
2.	Principal features of the proposal a. <u>Capital works</u> b. <u>Investigation and/or Remediation</u> c. <u>Monitoring</u>
3.	Reporting requirements and timeframes for submission of reports
4.	Key milestones and deadlines for investigation or remediation activities

An example of a performance schedule is set out on the next page.

Proponent: State Transit Authority

Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale Proposal Date: 20/04/2015

PERFORMANCE SCHEDULE

1. Objectives of the proposal

The main objectives of the remediation program are to:

- Assess extent of soil and groundwater contamination,
- Assess the risks posed by the contamination, and
- Remove phase separated hydrocarbon (PSH) from groundwater to the extent practicable.

The proposed remediation strategy aims to ensure that the site is rendered suitable for unrestricted commercial/industrial land use, and that potential contamination risks to future site occupiers and the surrounding natural environment are minimised.

The Remediation Action Plan (RAP) is proposed to be implemented such that the site complies, where practicable, with relevant guidelines, including:

- National Environmental Protection (Assessment of Site Contamination) Measure 1999, (April 2013)
- NEPM HIL: F (1999) Soil Investigation Levels for Commercial/Industrial land use;
- NSW EPA (2004) Technical Note: Investigation of Service Station Sites;
- NSW EPA (2001) Guidelines for Consultants Reporting on Contaminated Sites
- NSW EPA (2007) Guidelines for the Assessment and Management of Groundwater Contamination
- NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme; and
- State Environmental Planning Policy No. 55 (1998) Remediation of Land (SEPP 55).

2. Principal features of the proposal

The principal features of the Remediation Action Proposal include, but are not limited to:

- a. Capital works
- P1. Source Abandonment, Soil Excavation and Offsite Disposal Backfilling and compaction of spill capture pit with clean sand. Excavation of heaviest contaminated soils adjacent pit within impacted zone. Classification and disposal of contaminated soils to licensed waste facility.
- P2. Installation of additional 2 onsite monitoring wells on the Mona Vale site to provide for enhanced free phase recovery from groundwater.
- P3. Installation of additional 3 offsite monitoring wells to the existing 5 offsite wells to further delineate the extent of contamination and provide for monitoring of natural attenuation in offsite wells.
- P4. Installation of additional offsite monitoring well(s) between MW10 and MW17 to further delineate extent of offsite contamination.
- P5. Installation of additional onsite monitoring well(s), at strategic upstream location to detect for potential onsite migration of contaminants and to act as a GW quality control.

Proponent: State Transit Authority

Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale

- P6. Installation of additional offsite monitoring well downgradient of former pump shed in North Western corner of bus depot to monitor and characterise any offsite contamination from former above and below ground fuelling system.
- P7. MPE Pilot Trial utilising two existing offsite wells (MW9 & MW10) to determine efficiency of remedial process in existing hydro-geologies.
- P8. Upon results of trial implement multiple full MPE events, extracting product and impacted groundwater from existing offsite well and newly installed wells (5 to 8) within the contaminant plume to accelerate free phase recovery.

b. Remediation

P9. Carry out passive skimming of phase separated hydrocarbons at:

- (i) Onsite monitoring well MW1, 2 & 3 along the western boundary of the refuel area,
- (ii) Including monthly maintenance of free phase recovery system to adjust/modify the compressed air pumping mechanism to maximise the recovery of separated phase hydrocarbon, minimise any migration of impacted groundwater off the source site, and draw back on the offsite hydrocarbon plume.
- P10. Upon completion of successful pilot implement multiple MPE events, utilising new and existing wells, to remove free phase in existing hydro-geologies.

c. Monitoring

P11. Quarterly monitoring of 8 offsite wells (4 quarterly rounds) as installed to establish baseline and subsequent data sets for monitored natural attenuation and to provide source data for the conduct of a Human Health and Environmental Risk Assessment.

P12. Conduct of a Human Health and Environmental Risk Assessment

P13. Depending upon outcomes of P9 and P10 continued 6 monthly GW Monitoring for 2 years and yearly thereafter, to monitor wells for proof of natural attenuation, until levels are at or below guideline levels.

d. Additional Considerations beyond the Remediation Action Plan

P14. Based upon the findings of the Human Health and Environmental Risk Assessment State Transit will commission the development of a site specific Environmental Management Plan to manage under a slab capping and EMP the risk of residual contamination to staff and contractor resulting from civil works that could potentially expose contaminated soils or groundwater.

P15. Where Monitored Natural Attenuation is occurring but not at a rate considered to be acceptable in terms of minimising offsite risk, State Transit would investigate the use of Oxygen Releasing Compounds with existing offsite monitoring wells to promote and accelerate the natural attenuation process.

P16. The original WSPGroup Remediation Action Plan (17/6/2013) is to be revised and updated to reflect the remedial strategies outlined in this Voluntary Management Proposal.

P17. Implement agreed Voluntary Management Proposal Community Communications Action Plan as attached and review plan every 12 months, or more frequently as required.

Proponent: State Transit Authority

Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale

3. Key milestones for investigation, remediation and other actions

All works set out in the proposal must be completed by the deadlines specified below:

Works	Deadline
P1. Source Abandonment, Soil Excavation and Offsite Disposal	Completed
P2. Installation of two additional monitoring wells for enhanced free phase recovery within groundwater impacted zone	Completed
P3. Installation of additional 3 offsite wells to existing network of 5 wells for the purpose of delineation and monitoring of natural attenuation.	Completed
P9. Passive skimming of onsite MW 1, 2 & 3 with monthly maintenance of compressed air operated system increased to monthly to ensure recovery system efficiency	Ongoing, continued operation of free phase recovery system to be reviewed in June 2015.
P4, P5 & P6 Installation of additional offsite wells to delineate contaminate plume between existing MW10 and MW17 and well down-gradient of former pump shed and installation of additional onsite wells to detect potential onsite migration and/or act as GW monitoring quality control.	June 2015
P7. Pilot MPE event for (MW9 + MW10) to enhance offsite free-phase LNAPL recovery and draw back on dissolved phase contamination plume for zone of influence.	MPE Pilot to commence in May 2015
P8. Upon results of trial implement multiple full MPE events, extracting product and impacted groundwater from existing offsite well and newly installed wells (5 to 8) within the contaminant plume to accelerate free phase recovery.	Dependant upon outcome of P7 full MPE event to commence in July 2015
P11. Quarterly monitoring of 8 offsite wells (4 quarterly rounds) as installed to establish baseline and subsequent data sets for monitored natural attenuation and to provide source data for the conduct of a Human Health and Environmental Risk Assessment.	All four rounds completed
P12. Conduct of a human health and environmental risk assessment	October 2015
P13. Depending upon outcomes of P9 and P10 continued 6 monthly GW Monitoring for 2 years, to monitor wells for proof of natural attenuation, until levels at or below adopted guideline levels.	March 2017
P14. Development of a site specific Environmental Management Plan, for ongoing monitoring and management of residual onsite contamination, under a concrete slab capping.	Feb 2016 if required.
P15. Where Monitored Natural Attenuation is occurring but not at a rate considered to be acceptable in terms of minimising offsite risk, State Transit would investigate the use of Oxygen Releasing Compounds with existing offsite monitoring wells to promote and accelerate the natural attenuation process.	Dependant upon outcome of P6 & P7.

Proponent: State Transit Authority

Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale

4. Reporting requirements and timeframe for submission of reports

The EPA must be provided with the following reports by the deadlines specified below:

Report	Deadline
P11. First Round Offsite Groundwater Monitoring Report.	March 2014 (completed)
P11. Second Round Offsite Groundwater Monitoring.	October 2014 (completed)
P11. Third Round Offsite Groundwater Monitoring	January 2015 (completed)
P11. Fourth Round Offsite Groundwater Monitoring	March 2015 (completed)
P7. Results of MPE Pilot (MW9 & MW10)	June 2015
P8. Results of multiple MPE Events	October 2015
P12. Human Health and Environmental Risk Assessment	December 2015
P13. Subsequent 6 monthly rounds of offsite groundwater	Sept 2015 (1 st 6 monthly round)
monitoring for MNA.	Mar 2016 (2 nd round)
	Sept 2016 (3 rd round)
	Mar 2017 (4 th round)
P14. Site Environmental Management Plan	Feb 2016 if required
P16 Revision of WSPGroup Remediation Action Plan	Jun 2015.
P17. Annual revision of Mona Vale VMP Communication	Jan 2016
Plan	

Proponent: State Transit Authority Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale Proposal Date: 20/04/2015

Signature of proponent

This application for approval of this voluntary management proposal may only be signed by a person(s) with the legal authority to sign it. The various ways in which the application may be signed, and the people who may sign the application, are set out in the categories below.

Please tick (\checkmark) the box next to the category that describes how this application is being signed.

If the proponent is:		The application must be signed and certified by one of the following:
an individual		the individual.
a company		, , , , , , , , , , , , , , , , , , ,
·		two directors, or
		a director and a company secretary, or
		if a proprietary company that has a sole director who is also the sole company secretary – by that director.
a public authority	X	the chief executive officer of the public authority, or
accordance with its legislation (Please note: a copy of the second secon		by a person delegated to sign on the public authority's behalf in accordance with its legislation (Please note: a copy of the relevant instrument of delegation must be attached to this application).
a local council		the general manager in accordance with s.377 of the <i>Local Government Act 1993</i> ('LG Act'), or
		the seal of the council being affixed in a manner authorised under the LG Act.

We (the proponent):

- apply for approval of the voluntary management proposal set out in this proposal and in any documents referred to in Part 1.4 of this proposal
- declare that the information in this proposal form (including any attachment or document referred to in Part 1.4 of this proposal) is not false or misleading.

Signature	[Signed]	Signature	[Signed]	
Name (printed)	David Gosling	Name (printed)	Peter Rowley	
Position	Environment Manager	Position	Chief Executive	
Date	20 April, 2015	Date	2014/15	

Seal (if signing under seal):

Proponent: State Transit Authority

Site: Mona Vale Bus Depot, 58 Darley Road, Mona Vale Proposal Date: 20/04/2015

Environment Protection Authority

Notice to amend approved voluntary management proposal

(Section 44 of the Contaminated Land Management Act 1997)

Notice Number 20164409; Area Number 3378

Background

The land to which this notice applies was declared as "significantly contaminated land" (declaration No. <u>20141101</u>) by the Environment Protection Authority (EPA), and has been the subject of an EPA-approved voluntary management proposal (approval No. <u>20141707</u>).

Land to which this notice applies

Description	Address
Lot 2 in DP542640	58 Darley Street, Mona Vale NSW 2103

Amendment of approved VMP

An amendment to the voluntary management proposal (the VMP) is required due to delays in several works and reporting milestones arising from matters associated with seeking permits for site access, and subcontractor delays. In addition, a reappraisal of the proposal strategy is required to ensure more effective remediation beyond what was prescribed in the Remedial Action Plan (RAP):

- WSP (2015) Remedial Action Plan (Revised, 2015), State Transit Mona Vale Bus Depot – 58 Darley Street, Mona Vale NSW, 18 May 2015.

All works set out in the amended proposal must be completed by the deadlines specified below:

Works	Deadline
 T1. Undertake remediation in accordance with the RAP (WSP, 2015), as updated in this notice, and the following additional guidelines: NSW EPA (2015) <i>Technical Note: Light Non-Aqueous Phase Liquid Assessment and Remediation.</i> CRC Care Technical Report No 6. <i>Technical impracticability of further remediation for LNAPL – impacted soils and aquifers</i> CRC Care Technical Report No 18. <i>Selecting and assessing strategies for remediating LNAPL in soils and aquifers</i> CRC Care Technical Report No 23 <i>Petroleum hydrocarbon vapour intrusion assessment: Australian guidance.</i> 	Ongoing , for duration of VMP.
 T2. Active skimming of onsite of wells MW13, MW5 & MW14 within fuelling area with bi-monthly maintenance of compressed air operated system increased to monthly to ensure recovery system efficiency T3. Installation of additional off-site wells to delineate the groundwater contamination located between existing MW10 and MW17. 	Ongoing, continued operation of free phase recovery system until Phase Separate Hydrocarbon removed from these wells to the extent practicable. July 2016
Installation of additional off-site well down-gradient of former pump shed. Installation of additional on-site wells to detect potential onsite migration and/or act as groundwater monitoring quality control.	
 T4. Conduct of a human health and environmental risk assessment (HHERA) in accordance with: Schedule B4 and B5a of National Environmental Protection (Assessment of Site Contamination) Measure 1999 and CRC CARE Technical Report 23: Petroleum hydrocarbon vapour intrusion assessment: Australian guidance 	June 2016
T5. Installation of two additional 100 mm Recovery Wells in Taronga Place to aid in recovery of Phase Separate Hydrocarbons (PSH) from hydrocarbon plume.	Works are to be undertaken if the HHERA determines that light non-aqueous phase liquid (LNAPL) in groundwater poses a significant risk, requiring its removal. August 2016
T6. Continued 6 monthly GW Monitoring for 2 years, of all offsite wells, and those onsite wells demonstrating evidence of contamination, for proof of natural attenuation, or until levels at or below adopted guideline levels.	6th Round July 2016 7th Round February 2017 8th Round August 2017
 T7. Development of a site specific Environmental Management Plan, for ongoing monitoring and management of residual onsite contamination, under a concrete slab capping. T8. Where Monitored Natural Attenuation is occurring but not at a rate considered to be acceptable in terms of minimising offsite risk, State Transit would investigate the use of Oxygen Releasing Compounds with existing offsite monitoring wells to promote and accelerate the natural attenuation process. 	February 2017 if there is an ongoing risk identified by the HHERA, arising from the groundwater contamination. Dependent upon outcome of HHERA (T4) and successive rounds of Groundwater Monitoring (T6) .
T9. Establishment of continuous PSH extraction and storage system located off-site to extract PSH from selected productive recovery wells with periodic recordings of volumes collected for disposal. Review effectiveness of system every three months. Clean	October 2016 (if HHERA warrants further PSH extraction, and given landowner permission to locate

Notice to amend approved voluntary management proposal

pumps every two months, adjust timing and suction pressures according to well production and recharge rates.	extraction and storage system on their site)
T10. Review of remedial and monitoring work, closure of the VMP.	STA is to meet with the EPA to review the effectiveness of remedial works under the VMP, and/or submit request for extension to VMP if required by December 2016 and closure of VMP by December 2017

The EPA must be provided with the following reports by the deadlines specified below:

Report	Deadline
R1. Human Health and Environmental Risk Assessment Report (report to be peer reviewed by technical advisor before issued to the EPA)	August 2016
R2. Subsequent 6 monthly rounds of offsite groundwater monitoring for MNA.	September 2016 (6 th round) April 2017 (7 th round) October 2017 (8 th round)
R3. Report upon volumes collected from recovery wells using the continuous extraction system over 3 monthly intervals, including results of periodic SWL and PSH gauging.	October 2016 (if HHRA warrants further PSH extraction)
R4. Site Environmental Management Plan for Bus Depot and offsite Industrial Premises.	February 2017 To be developed and submitted only if there is an ongoing risk arising from the groundwater contamination (refer to R1)
R5. Annual revision of Mona Vale VMP Communication Plan	March annually for duration of VMP.
R6. Annual Remediation System Performance Review Reports - reports detailing the findings of the remediation works, risk assessments, recommendations for further remedial works, and/or ongoing groundwater monitoring (if required).	June 2016, June 2017, and/or annually for duration of VMP.

[Signed]

NIALL JOHNSTON Manager Contaminated Sites Environment Protection Authority

Date: 20 May 2016

NOTE:

Information recorded by the EPA

Section 58 of the CLM Act requires the EPA to maintain a public record. A copy of this notice will be included in the public record.

Information recorded by councils

Section 59 of the CLM Act requires the EPA to give a copy of this notice to the relevant local council. The council may then make appropriate consequential modifications to the planning certificate issued in relation to the land to which this notice applies pursuant to s149 of the *Environmental Planning and Assessment Act* 1979.

Relationship to other regulatory instrument

This repeal notice does not affect the provisions of any relevant environmental planning instruments which apply to the land or provisions of any other environmental protection legislation administered by the EPA.

Previous regulatory instrument

As of 1 July 2009, all current declarations of investigation area and declarations of remediation site are taken to be declarations of significantly contaminated land, all current investigation orders and remediation orders are taken to be management orders and all current agreed voluntary investigation proposals and agreed voluntary remediation proposals are taken to be approved voluntary management proposals.

Environment Protection Authority

Notice to amend approved voluntary management proposal

(Section 44 of the Contaminated Land Management Act 1997)

Notice Number 20174407, Area Number 3378

Background

The land to which this notice applies was declared as "significantly contaminated land" (declaration No. <u>20141101</u>) by the Environment Protection Authority (EPA), and has been the subject of an EPA-approved voluntary management proposal (Notice No. <u>20141707</u>, and as amended through (Notice No. <u>20164409</u>).

Land to which this notice applies

Description	Address
Lot 2 in DP542640	58 Darley Street, Mona Vale NSW 2103

Amendment of approved VMP

An amendment to the voluntary management proposal (the VMP) is required to reflect agreed changes to the remedial strategy as follows:

Amendment	Detail
Soil vapour gas assessments	There is a need to conduct soil vapour gas studies as required by the EPA, additional to the existing Human Health and Ecological Risk Assessment (VMP reporting item R1 , completed) and to further assess potential human health risk within adjacent neighbouring industrial/commercial properties, for which site access has been denied. Additional soil vapour monitoring is also required to account for seasonal and temporal changes. This amends the VMP by inclusion of new items T11 (complete), T12, R7 (complete) and R8 .
Revised remedial strategy	A reappraisal of the existing offsite active Phase Separated Hydrocarbon (PSH) extraction strategy using suction spear indicates that it was not cost effective or efficient enough in recovering PSH, whereas a strategy of regularly maintained 100 mm and 50 mm Geotech passive skimmers from selected monitoring wells with measurable product will result in slow but regular extraction of PSH at low cost in response to changing hydrogeological conditions with an enhanced reporting proposal to the EPA.
	Subsequent appraisal of the off site passive skimming strategy in February 2017 indicated that it is a suitable remedial option only if employed with other more active options, including extending onsite active PSH recovery system to offsite PSH impacted wells, or via the implementation of a series of Multi- phase vacuum extraction (MPVE) events.
	If technically feasible and access is granted, the existing onsite PC controlled compressed air driven PSH system is to be extended to PSH impacted wells MW19, MW20 and MW21. If not technically feasible State Transit will commission multiple separate MPVE with reporting after each three successive events. This amends the VMP items T9 and R3 .
Environment Management Plan for on site and off site properties	There is a requirement for development of an Environmental Management Plan (EMP), for ongoing monitoring and management of residual onsite contamination, under a concrete slab capping, and also to address offsite risks associated with the contamination. This amends the VMP item T7 and R4 .
	It is expected the EMP would be revised at the completion of the remediation and once a Site Audit Statement is issued for the on site and off site areas.
Indoor Air Quality assessments	Where additional soil gas vapour measures assessing temporal and seasonal variations indicate a potential indoor air quality risk, undertake direct Indoor Air Quality assessments or modelling of indoor air quality for commercial/industrial premises affected by the plume where landowner permission is granted (new item T13).
Engagement of an EPA Accredited Site Auditor	Engage an EPA Accredited Auditor to review and audit remediation with a view of providing a Site Audit Statement and Report as to the suitability of on and offsite lands for continued commercial/industrial land use and the enforceability of the EMPs (new items T14 and R10)
Community consultation	STA is to meet with the EPA and stakeholders to discuss the remediation progress annually (new item T15).

The above changes are proposed to ensure more effective remediation beyond what was prescribed in the Remedial Action Plan (RAP):

- WSP (2015) Remedial Action Plan (Revised, 2015), State Transit Mona Vale Bus Depot – 58 Darley Street, Mona Vale NSW, 18 May 2015.

All works set out in the amended proposal must be completed by the deadlines specified below:

Works	Deadline
 T1. Undertake remediation in accordance with the RAP (WSP, 2015), as updated in this notice, and the following additional guidelines: NSW EPA (2015) <i>Technical Note: Light Non-Aqueous Phase Liquid Assessment</i> 	Ongoing , for duration of VMP.

0/2018	Notice to amend approved voluntary n
 and Remediation. CRC Care Technical Report No 6. Technical impracticability of further remediation for LNAPL – impacted soils and aquifers CRC Care Technical Report No 18. Selecting and assessing strategies for remediating LNAPL in soils and aquifers CRC Care Technical Report No 23 Petroleum hydrocarbon vapour intrusion assessment: Australian guidance. 	
T2. Active skimming of onsite of wells MW13, MW5 & MW14 within fuelling area with bi-monthly maintenance of compressed air operated system increased to monthly to ensure recovery system efficiency	Ongoing , continued operation of free phase recovery system until Phase Separate Hydrocarbon removed from these wells to the extent practicable.
T6. Continued 6 monthly GW Monitoring, of all offsite wells, and those onsite wells demonstrating evidence of contamination, for proof of natural attenuation, or until levels at or below adopted guideline levels.	7th Round 24 February 2017 (completed) 8th Round 25 August 2017
 T7. Development of a site specific and enforceable Environmental Management Plan, for On site: ongoing monitoring and management of residual onsite contamination, under a concrete slab capping and Off site: covering commercial properties, council owned land and service easements within Taronga Place affected by the groundwater plume to manage the risk of contact with contaminated water, exposure to vapours and ongoing groundwater remediation and/or monitoring. 	7 April 2017 (completed)
T8. Where Monitored Natural Attenuation is occurring but not at a rate considered to be acceptable in terms of minimising offsite risk, State Transit would investigate the use of Oxygen Releasing Compounds with existing offsite monitoring wells to promote and accelerate the natural attenuation process.	Dependent upon outcome of HHERA (T4) and successive rounds of Groundwater Monitoring (T6) .
T9. Establishment of 100 mm and 50 mm Geotech passive skimmers with regular maintenance to recover PSH from MW9, 19, 20 and 21, with well gauging and recordings of volumes collected for disposal. Review effectiveness of passive recovery system in reducing LNAPL thickness after three months. If effective continue with passive PSH recovery until LNAPL reduced to the extent practicable. If ineffective consider extension of onsite PSH extraction system to offsite PSH impacted wells (refer to item T16).	27 January 2017 (completed)
T10. Review of remedial and monitoring work, closure of the VMP.	STA is to meet with the EPA to review the effectiveness of remedial works under the VMP, and/or submit request for extension to VMP if required by December 2016 (completed) and closure of VMP by December 2018 .
T11. Active onsite Soil Vapour Gas Studies to quantify risk, supplement existing HHERA and to assist in inferring Human Health Risk in adjacent properties.	30 January 2017 (completed)
T12. Conduct additional (greater than 1) onsite or offsite Soil Vapour Assessments to account for seasonal and temporal variables in vapour risk and providing multiple lines of evidence for certainty in vapour risk conclusions.	31 July 2017
T13. Conduct direct Indoor Air Quality assessments or modelling of indoor air quality for commercial/industrial premises within or in close proximity to the north and south boundaries of the delineated contaminant plume to quantify vapour risk, where landowner permission is granted.	30 September 2017
T14. Engage an EPA Accredited Contaminated Sites Auditor to audit remediation with view of issuing a Site Audit Statement once remediation is complete, as to the suitability of on and offsite lands for continued commercial/industrial land use.	31 October 2017
 T15. STA is to meet with the EPA and stakeholders to discuss the remediation progress. T16. Transition to active groundwater extraction system off site to target Phase Separate Hydrocarbon (PSH) impacted wells and undertake monthly reporting of recovered volumes. 	before 31 December annually, and for the duration of the VMP, 11 August 2017
If the active system is not able to be installed due to land access permissions or technical issues, recommence Multiphase Vacuum Extraction Events (multiple per annum) with three monthly	
os://apps.epa.nsw.gov.au/resources/clm/docs/html/n20174407.htm	

The EPA must be provided with the following reports by the deadlines specified below:

	Desellines
Report	Deadline
R1. Human Health and Environmental Risk	August 2016 (submitted)
Assessment Report (report to be peer reviewed by	
technical advisor before issued to the EPA)	
, , ,	
R2. Subsequent 6 monthly rounds of offsite	Sontombor 2016 (6th round)
groundwater monitoring with assessment of	September 2016 (6 th round)
	(submitted)
chemicals of concern and monitored natural	21 April 2017 (7 th round)
attenuation parameters.	(submitted)
	27 October 2017 (8 th round)
R3. Report upon volumes collected from recovery	28 February 2017
wells using the extraction system at 3 monthly	(submitted),
intervals, including results of periodic SWL and	31 March 2017 (submitted),
PSH gauging.	then every three months
F Si i gauging.	
	thereafter.
R4. Health Safety and Environment Management	7 April 2017 (submitted)
Plan for Bus Depot and offsite Industrial Premises.	
Development and application of an appropriate	
health and safety and environment management	
plan for both on site and off site land affected by	
the plume.	
R5. Annual revision of Mona Vale VMP and	30 April 2017 and annually for
Communications Plan	duration of VMP.
R6. Annual Remediation System Performance	30 June 2017 , and/or annually
Review Reports - reports detailing the findings of	for duration of VMP.
the remediation works, risk assessments,	
recommendations for further remedial works,	
•	
and/or ongoing groundwater monitoring (if	
required).	
R7. Soil Vapour Assessment Report at the STA	16 January 2017 (complete)
site immediately up hydraulic gradient of the	
Taronga Place businesses, in order to assess the	
risk to human health from vapour intrusion in this	
area.	
R8. Additional Soil Vapour Assessment Reports,	30 November 2017
highlighting access and temporal variation in soil	So November 2017
highlighting season and temporal variation in soil	
vapour monitoring and providing multiple lines of	
evidence for soil vapour risk conclusions.	
R9. Indoor Air Quality Assessments or Modelling	29 December 2017
Reports, if warranted under T12 and if access is	
granted, to quantify Vapour risk for specific	
businesses within or at the boundaries of	
contaminant plume to the North and South of	
Pittwater Joinery.	1
R10.	31 March 2018
	31 March 2018
R10. A Site Audit Statement and Site Audit Report	31 March 2018
R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for	31 March 2018
R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and	31 March 2018
R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works.	31 March 2018
R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an	31 March 2018
R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for:	31 March 2018
R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an	31 March 2018
R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: - The current site.	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, sidewalks and nature strips) certifying 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, sidewalks and nature strips) certifying suitability for ongoing use as a road, 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, sidewalks and nature strips) certifying suitability for ongoing use as a road, sidewalk and nature strip subject to a 	31 March 2018
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, sidewalks and nature strips) certifying suitability for ongoing use as a road, sidewalk and nature strip subject to a compliance with an EMP 	
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, sidewalks and nature strips) certifying suitability for ongoing use as a road, sidewalk and nature strip subject to a compliance with an EMP 	31 August 2017, and three
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, sidewalks and nature strips) certifying suitability for ongoing use as a road, sidewalk and nature strip subject to a compliance with an EMP 	
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, sidewalks and nature strips) certifying suitability for ongoing use as a road, sidewalk and nature strip subject to a compliance with an EMP 	31 August 2017, and three
 R10. A Site Audit Statement and Site Audit Report certifying suitability of on and offsite lands for continued commercial/industrial land use, and upon satisfactory completion of remediation works. The SAS and SAR is to be accompanied by an Environmental Management Plan (EMP) for: The current site. all affected off-site industrial properties (with all Lots and DPs listed) certifying suitability for ongoing use as "commercial/industrial" subject to a compliance with an EMP; and council-owned public land (i.e., roads, sidewalks and nature strips) certifying suitability for ongoing use as a road, sidewalk and nature strip subject to a compliance with an EMP 	31 August 2017, and three

[Signed]

26 June 2017

SARAH GARDNER Executive Director, Hazardous Incidents and Environmental Health Environment Protection Authority

NOTE:

Information recorded by the EPA

Section 58 of the CLM Act requires the EPA to maintain a public record. A copy of this notice will be included in the public record.

Information recorded by councils

Section 59 of the CLM Act requires the EPA to give a copy of this notice to the relevant local council. The council may then make appropriate consequential modifications to the planning certificate issued in relation to the land to which this notice applies pursuant to s149 of the *Environmental Planning and Assessment Act 1979*.

Relationship to other regulatory instrument

7/20/2018

Notice to amend approved voluntary management proposal

This repeal notice does not affect the provisions of any relevant environmental planning instruments which apply to the land or provisions of any other environmental protection legislation administered by the EPA.

Previous regulatory instrument

As of 1 July 2009, all current declarations of investigation area and declarations of remediation site are taken to be declarations of significantly contaminated land, all current investigation orders and remediation orders are taken to be management orders and all current agreed voluntary investigation proposals and agreed voluntary remediation proposals are taken to be approved voluntary management proposals.