

Hamptons by Rose Pty Ltd ATF Northern Beaches Trust 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report SYDGE271604AA

28 April 2020

Experience comes to life when it is powered by expertise This page has been left intentionally blank

15-23 Fisher Road, Dee Why - Geotechnical Investigation Report

Prepared for Hamptons by Rose Pty Ltd ATF Northern Beaches Trust

Prepared by Coffey Services Australia Pty Ltd Level 19, Tower B, Citadel Tower, 799 Pacific Highway Chatswood NSW 2067 Australia t: +61 2 9406 1000 f: +61 2 9415 1678 ABN 55 139 460 521

28 April 2020

SYDGE271604AA

Quality information

Revision history

Revision	Description	Date	Originator	Reviewer	Approver
Rev 1	Final	28/04/2020	AMcK	RR	RR

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Rev 1	1	PDF	Nick Jackman	28/04/2020

Table of contents

1.	Introc	luction1
2.	Propo	osed Development1
3.	Site D	Description2
4.	Availa	able Information2
	4.1.	Previous Investigations2
	4.2.	Geology2
	4.3.	Groundwater
5.	Metho	od of Investigation
	5.1.	Site Walkover
	5.2.	Subsurface Investigation
	5.3.	Laboratory Testing4
6.	Geote	echnical Model4
	6.1.	Geotechnical Soil and Rock Units4
	6.2.	Groundwater5
7.	Geote	echnical Laboratory Test Results5
	7.1.	Material Classification Results
	7.2.	Soil Aggressivity Test Results
	7.3.	Rock Strength Test Results6
8.	Discu	ssions and Recommendations7
	8.1.	Foundations7
		8.1.1. Aggressivity
	8.2.	Excavatability
	8.3.	Excavation Support Requirements
		8.3.1. Unsupported Excavations
		8.3.2. Design Parameters for Retaining Wall Design
		8.3.3. Excavation Induced Ground Movements10
		8.3.4. Protection of Adjacent Structures11
	8.4.	Earthworks11
		8.4.1. Use of Excavated Material as Fill11
		8.4.2. Compaction Requirements and Procedures12
	8.5.	Groundwater Considerations12
	8.6.	Earthquake Loadings12
9.	Limita	ations of this Report

Tables

Table 1 Geotechnical Model
Table 2 Summary of Groundwater Levels Observed on 14 April 2020
Table 3 Geotechnical Soil Classification Laboratory Results
Table 4 Soil Aggressivity Test Results
Table 5 Rock UCS Laboratory Results
Table 6 Geotechnical Foundation Design Parameters for Shale and Sandstone
Table 7 Excavatability Requirements
Table 8 Maximum Allowable Batter Slopes
Table 9 Recommended Parameters for Temporary Retaining Wall Design
Table 10 Recommended Bond Stresses for Ground Anchor Design
Table 11 Ground Vibration Limits for Various Types of Structures

Figures

Figure 1 Proposed Development Plan

Appendices

Appendix A – Design Plans

Appendix B – Figures

Appendix C - Borehole Logs, Core Photographs and Well Construction Details

Appendix D - Laboratory Test Results

1. Introduction

A geotechnical investigation for a proposed building development at 15-23 Fisher Road, Dee Why, was commissioned by Hamptons by Rose Pty Ltd ATF Northern Beaches Trust (Rose) in general accordance with Coffey proposal SYDGE217604, dated 19 February 2020. The purpose of the investigation is to gather information to inform design for a proposed mixed-use, multi-storey development at the site.

The geotechnical investigation, comprising a walkover inspection followed by four intrusive boreholes, was carried out in March 2020.

This report presents the results of the geotechnical investigation carried out at the site. It includes desk study information, site description, borehole logs and laboratory test results, a summary of the findings from the investigation as well a technical commentary with recommendations to aid the design of foundations, earthworks, retaining structures and groundwater observations.

2. Proposed Development

Based on the supplied plans by Rose attached in Appendix A, Coffey understands that the proposed development includes the demolition of existing residential structures and construction of three multistorey buildings with two levels of basement carparking. A historical building, the Pacific Lodge, located within the centre of site, will be retained as part of the development. Figure 1 is an extract from the DA approved architectural plans provided by Rose, illustrating the proposed development.

Figure 1 Proposed Development Plan

The three buildings, Buildings A, B and C comprise four to five storeys. A basement carpark will connect each of the three buildings, up to two levels below ground. The finished surface level (FSL)

beneath Building A is at 32.20 m AHD, Building B at 30.80 m AHD and Building C grading from 32.30 to 29.30 m AHD.

3. Site Description

The site is approximately 10,660 m² in area, bounded by Fisher Road to the west, St David Avenue to the south, and Civic Parade to the east. Apartment residences are located to the north of site, while a small, densely vegetated reserve is located along the northeast boundary.

The site resides on a sandstone knoll, rising above adjacent lands and properties. Elevation data obtained from the Intergovernmental Committee on Surveying and Mapping 1m LIDAR indicates ground levels vary substantially across the site. The south-east of site rises sharply from approximately 29 m AHD to approximately 36 m AHD in the south of site, then gently rising to a high of approximately 42 m AHD within the footprint of Building A.

As of this investigation, the site consists of several single-storey buildings and under-cover footpaths. The site is no longer operating. The buildings are becoming run-down with broken windows, downed canopies and weed growth. The Pacific Lodge heritage building within the centre of site is in cosmetically good condition.

Sandstone bedrock is seen to outcrop within the north-eastern and south-eastern portions of site. An area of potential filling is located near a few underground storage tanks in the central-northern portion of site.

4. Available Information

4.1. Previous Investigations

Coffey has previously completed several geotechnical and contamination assessments of the site, including:

- Geotechnical Study Proposed Residential Building Development 15 23 Fisher Road, Dee Why, NSW, dated 29 June 2011, REF: GEOTLCOV24292AA-AB
- Stage 1 Environmental Site Assessment Proposed Development 23 Fisher Road Dee Why NSW, dated 8 July 2011, REF: GEOTLCOV24292AA-AC;
- Phase 1 Environment Site Assessment Proposed Development 23 Fisher Road, Dee Why NSW, dated 8 March 2018, REF: SYDEN216171-R01;
- Preliminary geotechnical study for Development Application at Fisher Rd, Dee Why NSW, dated 13 March 2018, REF: SYDEN216171-R02; and
- DA/2018/1574 Development Application 23 Fisher Road, Dee Why Groundwater Opinion, dated 1 February 2019, REF: GEOTLCOV24292AA-ZA.

Coffey has in its database library information on several previous geotechnical and contamination investigations and groundwater reporting completed for the nearby Dee Why Town Centre from 2006 until 2015, approximately 100 to 200 m east of site.

4.2. Geology

The NSW Seamless Geology GIS dataset indicates the site is underlain by Hawkesbury Sandstone comprising medium to coarse-grained quartz sandstone with very minor shale and laminite lenses.

Rock outcrops observed during the site walkover were noted to consist of medium to coarse grained, moderately to highly weathered, low to medium strength pebbly sandstone. Extremely weathered

clayey sand seams up to 150mm thick were visible between beds of sandstone. Bedding was mapped dipping between $8 - 26^{\circ}$ towards the north. Prevalent joints were observed, dipping 80°to sub-vertical, towards north-west, typical of sandstone in the Sydney region.

4.3. Groundwater

A search of the Bureau of Meteorology's Australian Groundwater Explorer revealed one registered groundwater well within 500 m of the site used for monitoring purposes by WaterNSW, however no detail on water level was available.

Coffey's previous investigation at the nearby Dee Why Town Centre included a monitoring well in a council carpark, approximately 80 m east of site. The monitoring well was drilled from approximately 22 m AHD to 16.5 m AHD and did not encounter groundwater. Additional groundwater wells 200 m east of site, measured groundwater between 9.1 – 12.6 m AHD, with groundwater calculated in 2014 as flowing towards Dee Why Lagoon in the north-east.

5. Method of Investigation

5.1. Site Walkover

On 3 March 2020, Coffey attended site to complete a walkover of the proposed borehole locations. During this walkover, Coffey assessed the accessibility of the borehole locations, made notes on rock outcropping across the site and completed underground services locating by an accredited locator for each borehole location.

During the site visit, dimensions of the pedestrian walkways and roofs were measured to facilitate access of a drill rig for the borehole investigation. A number of potential borehole and backup locations were marked out onsite. Each borehole location was cross-referenced with 'Dial Before You Dig' (DBYD) plans and underground services located by an accredited utility locator.

Measurements of bedding and joint planes were taken from rock outcrops around the site.

During the walkover, it was noted that power and water had been cut to the site.

5.2. Subsurface Investigation

The field investigation consisted of four cored boreholes (BH1 to BH4) completed to depths between 10.03 metres below grade (mbg) and 13.07 mbg, or approximately between RL of 28.13 to 26.9 m AHD. These boreholes targeted a depth approximately 3 m below anticipated basement depths. Borehole locations were recorded in the field by hand-held GPS and are marked on the site plan in Appendix B – FIGURE 1. Drilling was undertaken over the 16th,17th, 27th and 30th of March 2020.

A track mounted drill rig with solid stem augers and tungsten-carbide (TC) drill bit was used to drill through concrete where present, surficial soils and extremely weathered bedrock. Standard Penetration Tests (SPTs) were undertaken during auger drilling at 1.5 m intervals to assess in-situ density/strength and obtain soil samples. Where TC-bit refusal was encountered within the proposed depth, the boreholes were advanced through rock using NMLC core drilling techniques (noted on borehole logs).

A Coffey geotechnical engineer was present during fieldwork to identify drilling locations, record test results, log the encountered ground conditions and box the rock core. The borehole logs and rock core photographs are attached as Appendix C, together with Coffey soil and rock description and explanation sheets.

Upon drilling the boreholes to target depth, standpipe piezometers were installed in boreholes BH1, BH3 and BH4, completed with metal gattic covers flush with the surface. Well construction details are included within Appendix C. Borehole BH02 was reinstated with sand and soil cuttings.

Following completion of fieldwork, selected soil and rock samples were sent to NATA accredited geotechnical laboratory for geotechnical testing.

One week from completion of the drilling programme, Coffey attended site to measure stabilised groundwater levels within the installed piezometers.

5.3. Laboratory Testing

Laboratory testing on selected samples comprised the following:

- Three moisture content of soils;
- Three particle size distribution (PSD);
- One Atterberg Limits;
- Four soil aggressivity;
- Two uniaxial compressive strength (UCS) of rock; and
- Point load I_{S(50)} testing approximately every 1 m of rock core.

6. Geotechnical Model

6.1. Geotechnical Soil and Rock Units

For the purpose of geotechnical characterisation of the subsurface conditions, the soil and rock profiles encountered during Coffey's investigations have been characterise into the following geotechnical units shown in Table 1. Indicative cross-sections across the site illustrating the inferred ground profile based on the identified soil and rock units below are included in Appendix B – FIGURES 2 & 3.

Unit	Geological Unit	Typical Material Description	Rock Mass Classification ¹	Unit Thickness (m) ²	Depth Range (m) ²
1	Fill/Topsoil	Sand with trace clay, fine to medium grained	NA	0.3 – 5.25 ³	0.3 – 5.25 ³
2a	Low Strength Hawkesbury Sandstone	Moderately to slightly weathered, low strength, distinctly bedded at 0°- 30°	V / IV	0.0 – 2.9	0.3 – 7.2
2b	Extremely Weathered and Low Strength Shale	Extremely weathered to Sandy CLAY or Fresh, very low to low strength SHALE, distinctly laminated at 0-10°	V / IV	0.4 – 0.6	7.2 – 9.75
2c	Medium to High Strength Hawkesbury Sandstone	Moderately weathered to fresh, medium strength, distinctly bedded at 0°-30°	III	0.0 -2.7	0.4 - 3.0, 7.7 - 11.0 ⁴
2d	High strength Hawkesbury Sandstone	Moderately weathered to fresh, high strength, distinctly bedded at 0°-30°	11 / 1	0.0 - 6.2	2.6 – 9.3, 9.3 – 13.07 ⁴

Table 1 Geotechnical Model

Notes

¹ Rock classified using the classification system by Pells, et al. (2019) "Classification of Sandstones and Shales in the Sydney Region: A Forty Year Review" Australian Geomechanics Journal, Vol 54, No. 2, June 2019.

² Only proven within boreholes.

³ Depth to bedrock in borehole BH02 was significantly deeper than other boreholes. The borehole was located close to an underground service which may account for the depth of fill.

⁴ Beds of this unit were encountered at two distinct depths.

Rock classification is based on the worst condition encountered within the unit. All units may contain zones of rock with greater strength and possessing fewer defects than the indicated rock mass classification. For specific borehole locations, reference should be made to the attached borehole logs.

Fill was generally surficial across the site, with sandstone very shallow or outcropping. Borehole BH02 encountered a deep fill profile of 5.25 m thick. This is potentially due to its proximity to an underground sewer/stormwater service which may have been trenched and filled around.

Rock quality generally improves with depth until encountering unit 2b shale, whereby the shale is significantly lower strength than the overlying sandstone. Underlying unit 2b, the sandstone quality is lower than the unit directly overlying the shale. However, with increasing depth, the quality of the sandstone is expected to increase as was seen in borehole BH03 which terminated in unit 2d, Class I sandstone. All other boreholes terminated in unit 2c, Class III sandstone.

6.2. Groundwater

Groundwater inflows were not encountered during auger drilling and due to the use of water as a drilling fluid, are unable to be observed during core drilling.

Groundwater levels were measured in the standpipes installed in boreholes BH1, BH3 and BH4 on 14 April 2020 between depths of 4.84 to 6.74 mbg, corresponding to elevations of approximately 30.86 to 32.91 m AHD.

A summary of the measured water levels in the piezometers is provided in Table 2.

Borehole ID	Approximate Surface Level (m AHD)	Groundwater Level (mbg)	Groundwater Elevation (m AHD) *	
		14 April 2020		
BH01	37.00	4.84	32.16	
BH03	39.30	6.39	32.91	
BH04	37.60	6.74	30.86	

Table 2 Summary of Groundwater Levels Observed on 14 April 2020

Notes:

* Elevation estimated from 2018 Survey plan of site held on record and NSW Spatial Services 1m LIDAR

7. Geotechnical Laboratory Test Results

7.1. Material Classification Results

The results of the particle size distribution and Atterberg Limit test results are summarised in Table 3 below with the laboratory report sheets attached in Appendix D.

Borehole	Depth	Material	Origin	Particle Size (%)		Moisture			Plasticity	
	(m)			Gravel	Sand	Fines	Content (%)	Limit (%)	Limit (%)	Index (%)
BH01	0.2 – 0.3	SAND	FILL	1	89	10	10.0w			
BH02	0.5 – 0.95	SAND	FILL	9	79	12	14.8			
BH02	1.5 – 1.95	SAND	FILL	5	85	10	18.7	NP	N/A	NP

Table 3 Geotechnical Soil Classification Laboratory Results

Notes::

NP denotes non-plastic

-- = test not conducted

7.2. Soil Aggressivity Test Results

The results of the soil aggressivity test results are summarised below in Table 4 with the laboratory report sheets attached in Appendix D.

Table 4 Soil Aggressivity Test Results

Unit	Hole IDBH	Depth (m)	Soil Type and (Groundwater Condition)	pH (1:5) ⁽¹⁾ for concrete pile	EC (µS/cm)	Resistivity (Ωcm) ⁽²⁾	Sulphate (mg/kg), Classification for concrete piles	Chloride (mg/kg), Classification for concrete piles
1	BH01	0.8- 0.9	Sand Fill above groundwater	7.2	28	35714	10	<10
1	BH02	0.2- 0.3	Sand Fill above groundwater	7.8	20	50000	<10	<10
1	BH03	0.2- 0.3	Sand Fill above groundwater	8.8	76	13158	23	<10
1	BH04	1.5- 1.95	Sand Fill above groundwater	8.7	17	58824	<10	<10

Notes:

a) Exposure classification for concrete piles based on pH, the exposure classification for steel piles are slightly different based on pH values and has been discussed in the respective section of this report

b) Aggressivity classification for Steel Piles based on resistivity

Scale of aggressivity obtained from AS2159 - 2009 (Australian Standard AS2159-2009, 2009) for concrete piles in soil

Non Aggressive Mildly Aggressive Moderately Aggressive Severely Aggressive Very Severely Aggressive – Not Tested/ Not Applicable

7.3. Rock Strength Test Results

Point load test results are presented on the borehole logs. Table 5 presents the uniaxial compressive strengths (UCS) results. The results obtained are typical of Hawkesbury Sandstone strengths and are generally in the medium to high strength range (as per AS 1726:2017). Laboratory data sheets are attached in Appendix D.

Coffey, A Tetra Tech Company SYDGE271604AA 28 April 2020

Table 5 Rock UCS Laboratory Results

Borehole	Depth (m)	Rock Description	UCS (MPa)	Dry Density (t/m³)	Inferred Rock Strength*
BH03	9.20 - 9.36	Sandstone	41.8	2.351	High
BH04	10.43 – 10.63	Sandstone	26.5	2.175	High

Notes:

* Based on AS1726:2017

8. Discussions and Recommendations

8.1. Foundations

It is understood that the foundations for the proposed development include both shallow and deep foundations.

It is expected that pad or pile footings into moderately weathered or better sandstone will be required for the foundations of the new buildings. Table 6 below presents the Limit State geotechnical design parameters that may be used for design of pad footings and bored piles into the different classes of rock encountered onsite. While parameters have been included for Unit 2b, the low to very low strength shale band, we recommend all foundations be founded on sandstone of the same rock class. Founding on similar strata helps to limit the effects of differential settlement.

Table 6 Geotechnical Foundation Design Parameters for Shale and Sandstone

Material	Ultimate End Bearing Value (MPa)	Ultimate Shaft Adhesion (kPa)	Vertical Elastic Modulus Ev (MPa)
Class V Shale	0.7	50	50
Class IV Shale	1	150	100
Class V Sandstone	0.8	150	80
Class IV Sandstone	1	400	400
Class III Sandstone	3.5	1000	750
Class II Sandstone	6	1500	1000
Class I Sandstone	12	3000	2000

Notes:

- a) Assumes a minimum embedment depth of at least 0.5 m into the relevant bearing stratum or one pile dimeter, whichever is deeper.
- b) Shaft adhesion assumes a rough socket (at least grooves of depth 1 mm to 4 mm and width greater than 5 mm at spacing of 50 mm to 200 mm)
- c) Foundation unit extends to a depth of at least 5 times of pile diameter below pile toe.

For the use of geotechnical design parameters for Class III or better sandstone, geotechnical proving of foundation conditions for individual footings will be required. Such proving would require geotechnical inspections during construction to check rock mass quality.

For pad footings, either a working stress or limit state design method could be adopted. For piles a limit state design method should be used if the design is to comply with AS2159-2009 "Piling – Design and installation".

Footings designed using the serviceability end bearing pressures given above should result in settlements of less than 1% of the least footing dimension. Coffey can provide detailed analysis and refinement of the foundation system to support detailed design if required.

In accordance with AS2159-2009, the geotechnical strength reduction factor, Φg , is dependent on assignment of an Average Risk Rating (ARR) which considers various geotechnical uncertainties, redundancy of the foundation system, construction supervision, and the quantity and type of pile testing. The assessment of Φg therefore depends on the structural design of the foundation system as well as the design and construction method, and testing (if any) to be employed by the designer and piling contractor.

To assist with preliminary design, we recommend Φg of 0.5 be adopted for pile/footings on sandstone. The final selection of Φg should be reviewed by the design geotechnical engineer for the project.

8.1.1. Aggressivity

Based on the summary of analytical results presented in Table 4, it was found the sandy fill encountered within the boreholes is non-aggressive towards buried concrete and steel elements.

8.2. Excavatability

Bulk excavations for the basements are interpreted from the concept design drawings to extend to elevations of 32.30 m AHD at Building A, 30.80 m AHD at Building B and 29.30 m AHD at Building C, with the excavation floor generally within Units 2c and 2d.

A summary of the excavatability of the encountered soil and rock is contained in Table 7 and is suggested as a guide only. Excavation contractors should inspect the rock core, engineering logs and core photographs to make their own judgement as to likely productivity and specific plant.

Material	Strength	Likely Minimum Plant Requirements
Units 1, 2a and 2b	Generally soil strength and very low rock strength	Bulldozer blade, excavator bucket. Localised hard zones may require ripping and rock breaking.
Unit 2c	Low to high strength rock	Bulldozer with ripper, excavator bucket. Higher strength zones may require a rock breaker.
Unit 2d	High strength rock	Cat D10 or equivalent. Rotary rock grinder or rock saw attachments may be required to avoid over break and excessive vibrations below shoring and near adjected vibration sensitive structures. Higher strength bands may require a rock breaker.

Table 7 Excavatability Requirements

The use of hydraulic impact hammers for bulk excavation, trimming the sides of excavations, and detailed excavation, will cause vibrations that could affect vibration sensitive structures and services. Assessment of the potential impacts of excavation induced vibrations should be considered as part of detailed design and excavation planning. Additional discussion of the vibration monitoring requirements is contained in Section 8.3.3.

8.3. Excavation Support Requirements

8.3.1. Unsupported Excavations

Batter slopes or bench excavation should be possible where excavations can be set back sufficiently from adjacent structures. The batter slopes or benches should be scaled following excavation to

remove all loose material which could slide or topple from the face during construction and hence pose a risk to construction personnel.

Table 8 below provides a summary of the recommended batter slopes for each geotechnical unit likely expected within the depth of excavation of up to 3 m in height and above the groundwater table. It should be noted that the proposed batters in rock are subject to assessment by a geotechnical engineer during construction. If adverse joints or other defects are present, flatter batters or slope stabilisation may be required. Temporary batters should not be in place for longer than three months, as a general guide.

Table 8 Maximum Allowable Batter Slopes

Geotechnical Unit	Temporary Batter	Permanent Batter
Unit 1 - Fill	2H:1V	3H:1V
Class V Sandstone / Shale	1H:1V	1.5H:1V
Class IV Sandstone / Shale	0.5H:1V	1H:1V
Class III Sandstone or better	Near Vertical	0.5H:1V

Notes:

a) Protection against erosion may be required/

b) Localised or pattern rock bolting may be required to stabilise rock wedges or blocks formed by unfavourably oriented defects. Significantly weaker bands in the shale may require shotcrete protection against degradation.

These recommended maximum batters are based on there being no structures or surcharge located at or near the crest of the cuts. Steeper slopes in the soil and weathered rock materials would require engineer designed retaining structures. Case-specific advice is required for unsupported cuts greater than 3 m in height. The above batter slopes assume that no groundwater seepage occurs along the battered face. Where seepage occurs or where adverse weather conditions extend for a period of time, advice should be obtained from a geotechnical consultant and slopes inspected. It is recommended to install diversion drains above the crests of all batters to direct runoff from the batter face to limit erosion.

8.3.2. Design Parameters for Retaining Wall Design

Where the recommended batter slopes are impractical to construct, steeper batters or vertical cuts can be achieved by employing a (temporary or permanent) shoring system installed during construction.

For vertical excavation sidewalls, sheet pile walls are considered impractical at this site due to the shallow depth of rock level. Whilst soldier pile shoring walls can often be used in this geology, the development site is in the vicinity of a heritage structure and roads. A stiffer shoring wall system, such as secant piles, diaphragm walls or contiguous piles, may be required to limit excavation-induced ground movements. Where it is important to minimise adjacent ground movements due to the presence of sensitive structures or services, internal bracing and/or tie-back anchors may also be required during construction.

Based on our experience, a slope batter for soils steeper than 1V:1H during excavation is not recommended. As is recommended in Table 8 above, class V rock can be formed in a 1H:1V slope batter during construction. However, if adverse joints or other defects are present, flatter batters or slope stabilisation (such as shotcrete) may be required. Subject to the assessment of actual site conditions by an experienced geotechnical engineer or geologist during excavation, a near vertical cut in class IV rock can be achieved if additional geotechnical stabilisation measures are implemented.

Table 9 presents recommended design parameters for the design of temporary retaining walls where there is a level retained ground surface. The Ko values in Table 9 assume that some wall movement and relaxation of horizontal stress will occur due to the excavation. Actual in-situ Ko values may be higher, particularly in the rock units. Retaining wall analyses will need to consider surcharges, footing loads from adjacent structures and hydrostatic pressure.

Material	Bulk Density γ (kN/m3)	Effective Cohesion c' (kPa)	Effective Friction Angle Φ' (°)	Coefficient of Active Earth pressure, Ka	Coefficient of Earth pressure at rest, Ko	Coefficient of Passive Earth pressure, Kp	Elastic modulus Ен (MPa)
Fill	19	0	28	0.4	0.50	2.5	10
Class V Sandstone	22	10	30	0.3	0.50	3.5	40
Class IV Sandstone	23	50	35	0.27	0.50	3.7	100
Class III Sandstone	24	250	40	0.27	0.50	3.7	350

Table 9 Recommended Parameters for Temporary Retaining Wall Design

Notes:

a) K_0 of 0.5 assumes a small amount of wall movement (0.1 to 0.3% of wall height). In-situ K_0 may be significantly higher (approximately 2 to 3), particularly in soils derived from weathered rock and weathered, low strength rock units.

Ground anchor design should be based on allowing effective anchorage to be developed by locating the bond length behind an 'active zone', determined by drawing a line at 45° from the base of the wall to intersect the ground surface behind the excavated face. The following ultimate bond stresses presented in Table 10 below can be adopted for ground anchor design with the provision that bond lengths are between 3 m to 5 m and anchors are to be proof loaded to at least 1.5 times their design working load.

Table 10 Recommended Bond Stresses for Ground Anchor Design

Material Description	Ultimate Bond Stress (kPa)
Class V Sandstone	200
Class IV Sandstone	500
Class III Sandstone	800
Class II Sandstone	1500
Class I Sandstone	2000

8.3.3. Excavation Induced Ground Movements

Excavation will cause some ground movements adjacent to the excavation site. The magnitude of the movements that will be experienced by a retaining wall will depend on various factors including the earth pressures that exist, groundwater conditions and construction sequence. Documented data has shown that for well-designed and constructed shoring, vertical and lateral movements can be about 0.1% to 0.3% of the retained height at the excavation face. Lateral ground movements can occur at distances up to twice the basement depth from the edge of excavations.

It shall be noted that the assessment of excavation-induced ground movements involves detailed soil structure interaction analysis. The accuracy of the assessment results plays an important role in determining the impact of the excavation on the adjacent structures and roads as well as evaluating the effectiveness of the proposed retaining wall. If this assessment is required, Coffey can provide the assessment (by numerical analyses) during the detailed design when more design information becomes available.

It is recommended that dilapidation surveys be carried out prior to the commencement of the excavation to assess the condition of the buildings within the zone of influence of the excavation. Potential risk of damage to buildings from ground movements during excavation should be considered

during the development of the excavation methodology. Ground movements of the buildings should be monitored during excavation to reduce the risk of damage from excessive ground movements.

8.3.4. Protection of Adjacent Structures

For the protection of adjoining structures, the type of structure, location, layout, and depth should be determined at the commencement of excavation design works. This information could then be used in conjunction with available information on site ground conditions and the results of any subsequent investigations for geotechnical assessments to determine whether the excavations may affect existing structures. Depending on the complexity of the geotechnical problem, analytical methods would range from a simple empirical assessment, through to 3-dimensional finite element analyses and consultation with the project structural engineers will be required to assess possible load influences, resulting ground movements/stresses, and additional support requirements.

The use of excavation plant such as impact hammers will generate vibrations that may affect any surrounding sensitive structures and buried services. Measures to mitigate the risks associated with vibration such as the use of rock saws or rock grinders should be considered. The vibration limits in Table 11 below are commonly recommended to reduce the risk of vibration damage to sensitive receptors.

Type of Structure	Peak Particle Velocity (mm/s)
Historic buildings or monuments	3
Residential or low-rise buildings in good condition	10
Reinforced concrete commercial and industrial buildings in good condition	25

Table 11 Ground Vibration Limits for Various Types of Structures

It is recommended that a vibration limit is selected considering the structure of concern. It should be noted that limits set by the relevant authorities may override these recommendations.

Dilapidation surveys should be carried out on neighbouring structures or sensitive services prior to commencing excavation as a baseline record of their condition. Excavation trials with vibration monitoring should also be carried out to assess appropriate distances for various excavation plant to be used to limit generated vibrations and need for ongoing vibration monitoring during site works to confirm that the limits are not exceeded.

Where excavations may impact on existing foundations of nearby structures, underpinning may be required, depending on the founding level of the building foundations, lateral support provided and rock conditions. This should be determined prior to basement excavation and carried out on a design and construct basis.

8.4. Earthworks

8.4.1. Use of Excavated Material as Fill

Topsoil, asphalt, vegetation, and other potentially deleterious material should be stripped and should only be re-used as landscaping material only.

The existing sandy fill identified in this investigation can be re-used as general fill, provided it is properly compacted.

A Waste Classification of any materials to be disposed of offsite will be required before doing so.

8.4.2. Compaction Requirements and Procedures

For bulk earthworks using modern purpose-built earthmoving plant, fill material should be placed in layers not exceeding 300mm loose thickness and moisture conditioned to Standard Optimum Moisture Content (SOMC) \pm 2%.

All engineered fill should be compacted to achieve a minimum dry density ratio of 98% SMDD (Standard Maximum Dry Density) and moisture conditioned to SOMC \pm 2% at the time of compaction.

Earthworks construction should be constructed under Level 1 geotechnical inspection and testing as defined in AS3798-2007.

8.5. Groundwater Considerations

At the time of Coffey's groundwater monitoring on 14 April 2020, groundwater was measured between 30.86 to 32.91 m AHD. The supplied design plans indicate the lowest level of basement will be at an elevation of 29.30 m AHD, below the measured water table depth.

Seepage will typically be encountered at the soil/rock interface and in fractures within the bedrock. Seepage in the bedrock may be assumed as typically flowing downwards towards local drainage line or regional water table. Based on measured groundwater levels and general site topography, groundwater inflow may potentially be running towards the south-east, towards an unnamed water channel which flows northward into Dee Why Lagoon.

Groundwater inflows may be captured by strip drains installed behind any shoring system or retaining walls and diverted into the stormwater system. Where additional inflows are encountered, pump-andsump methods could be adopted to dewater the excavation for the inflow. The groundwater should be directed and stored in sedimentation tank/basins, analysed and potentially treated prior to release into the Council stormwater or sewerage system, depending on consultation with Council. Water quality testing should be undertaken in accordance with Council requirements prior to discharge.

8.6. Earthquake Loadings

The Australian Standard for Earthquake loads (AS 1170.4) provides guidance on the design of structures for earthquake loads. For Sydney, AS 1170.4 quotes an acceleration coefficient of a = 0.08. Based on the subsurface profile encountered during the investigations and with reference to Table 4.1 of AS1170.4, the site classification is considered Class B_e – Rock.

9. Limitations of this Report

Subsurface conditions can be complex and may vary over relatively short distances – and over time. The inferred geotechnical model and recommendations in this report are based on limited subsurface investigations at discrete locations. The engineering logs describe subsurface conditions only at the investigation locations. Further investigations may be required to support detailed design if there are scope limitations or changes to the nature of the project. We can assist with detailed design and/or to review designs and verify that the conditions exposed are consistent with design assumptions during construction.

The attached document entitled "Important information about your Coffey report" forms an integral part of this report and presents additional information about its uses and limitations.

Important information about your Coffey Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how gualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. lf another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

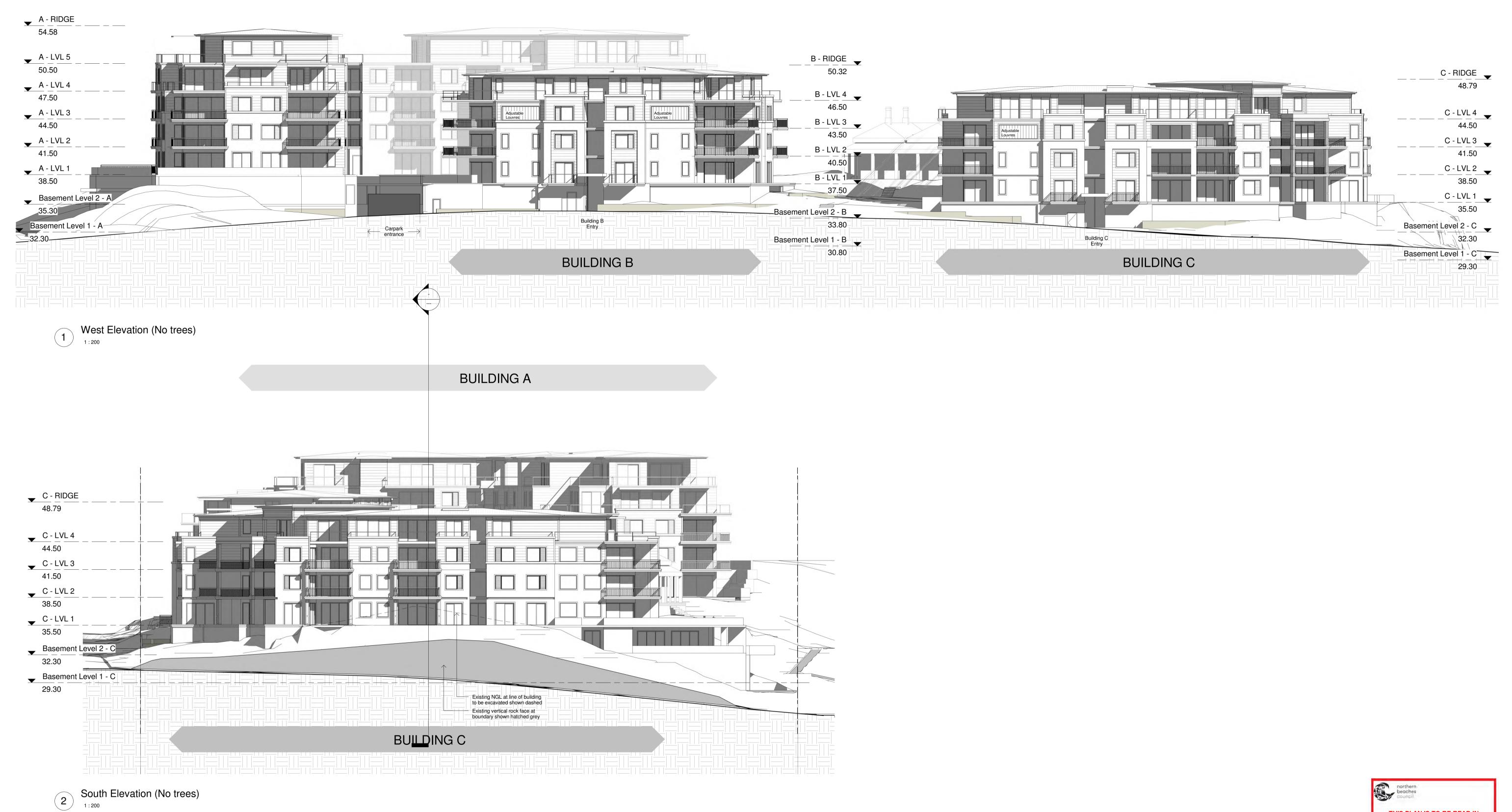
Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.

Rely on Coffey for additional assistance


Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have. Appendix A – Design Plans



BUILDING A

ⓒ **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

lssue	Description	Date	lssue
А	DEVELOPMENT APPLICATION	03.Sept.18	
В	REFER SCHEDULE	20.Feb.19	
С	REFER SCHEDULE	24.April.19	

PACIFIC LODGE

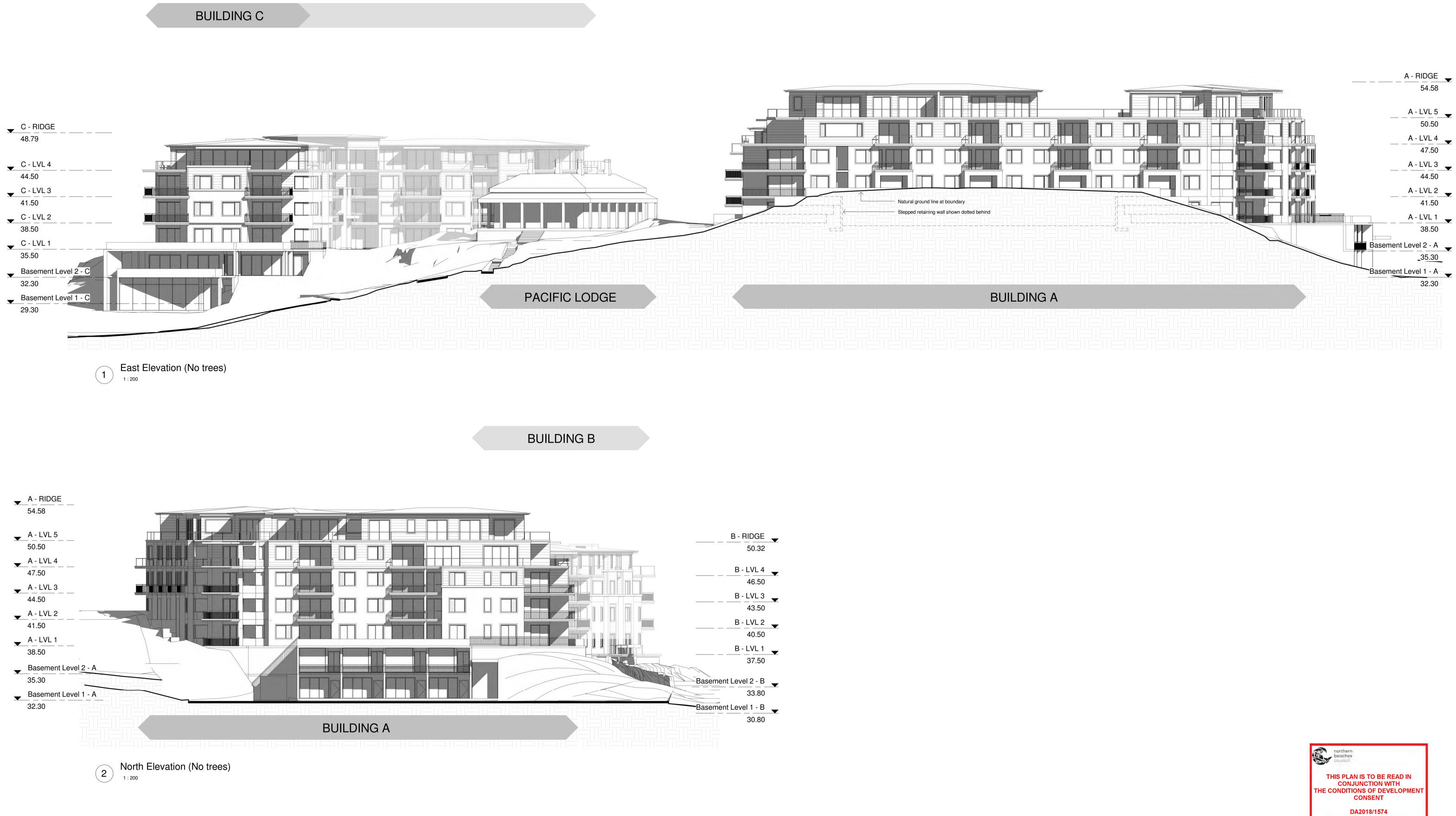
Description	Date

rose architectural design

51 Riley Street, Woolloomooloo, NSW, 2011
T / +61 2 8302 1400
E / admin@rosegroup.com.au www.rosegroup.com.au

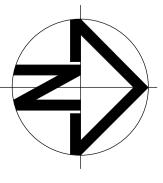
PROPOSED MIXED USE DEVELOPMENT

23 Fisher Road, Dee Why LOT 11 D.P.577062 Hamptons By Rose Pty Ltd


DA2018/1574

WENT WEST ELEVATION & SOUTH ELEVATION (no trees) Scale 1:200 Date: APRIL 2019 Drawn: Reviewed: RAD Reviewed: Checked:

DEVELOPMENT APPLICATION


^{Toject No:} 1607

A 3.02

C **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

lssue	Description	Date	lssue	Description	Date
А	DEVELOPMENT APPLICATION	03.Sept.18			
В	REFER SCHEDULE	20.Feb.19			
С	REFER SCHEDULE	24.April.19			

rose architectural design

51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au

PROPOSED MIXED USE DEVELOPMENT

23 Fisher Road, Dee Why LOT 11 D.P.577062 Hamptons By Rose Pty Ltd

EAST ELEVATION & NORTH ELEVATION (no trees)

1:200

RAD

DEVELOPMENT APPLICATION

APRIL 2019

AO

1607

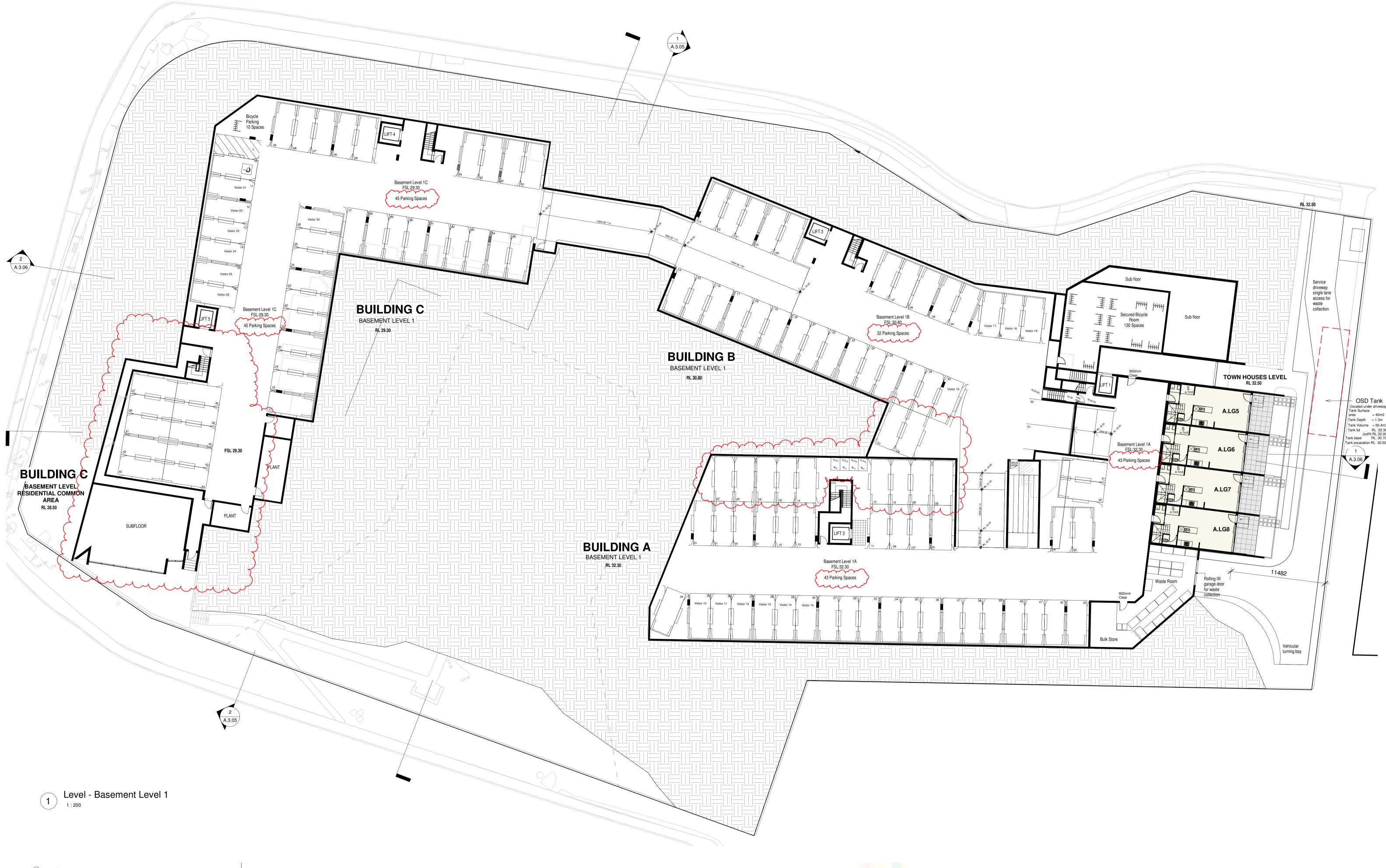
A 3.04 С

C **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

lssue	Description	Date	lssue
А	DEVELOPMENT APPLICATION	03.Sept.18	
В	REFER SCHEDULE	20.Feb.19	
С	REFER SCHEDULE	24.April.19	

Description	Date


rose architectural design

51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au



PROPOSED MIXED USE DEVELOPM

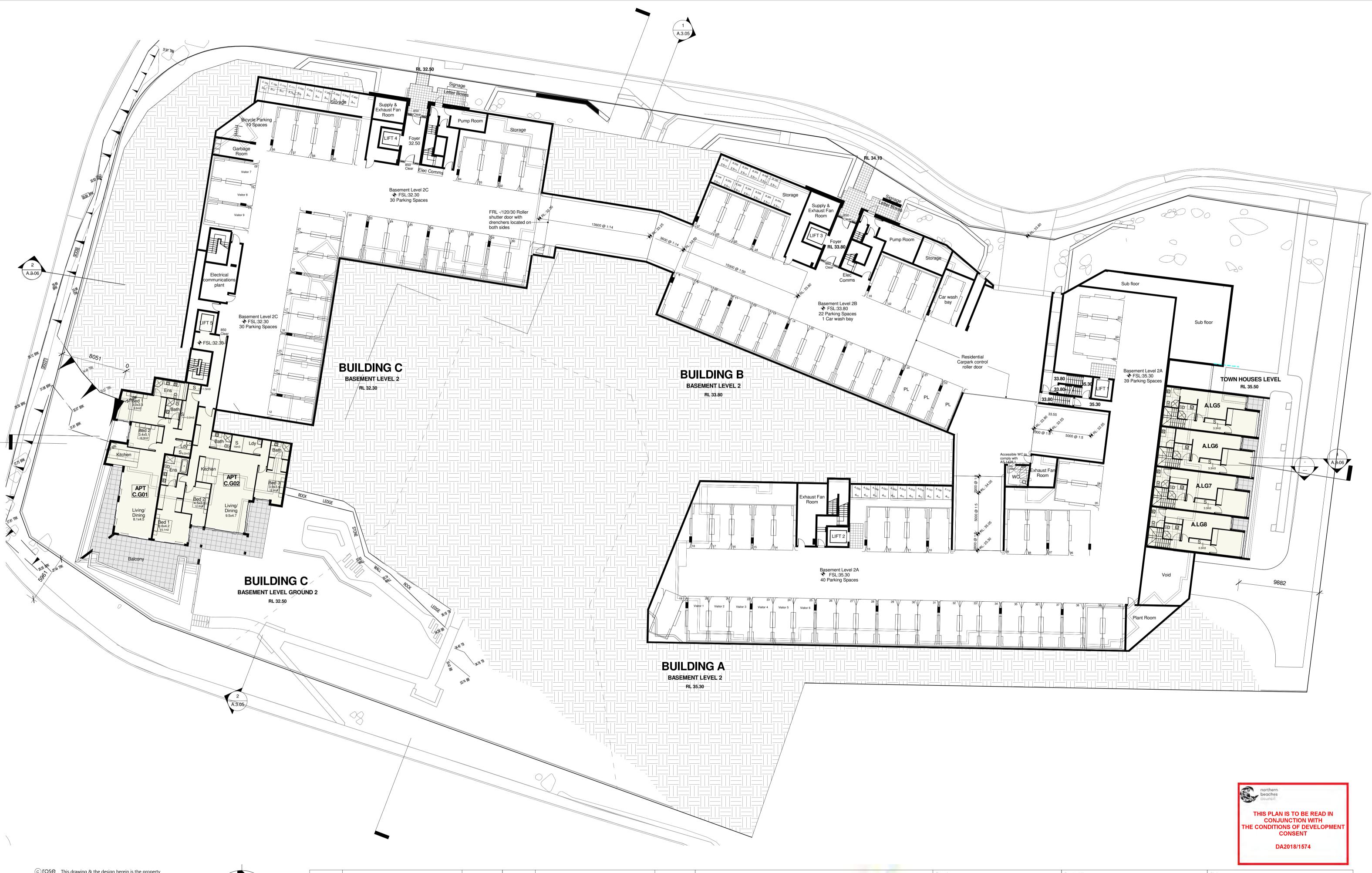
PMENT	BASEM	ENT PARI	KING PLAN 1			
	Scale: 1:200	Date:	PRIL 2019	Project No: 1607	Drawing No: A 2.01	
	Drawn: RAD	Reviewed:	Checked: AO		Revision: C	

© **FOSE**[:] This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Issue	Description	Date	lssue
А	DEVELOPMENT APPLICATION	03.Sept.18	
В	REFER SCHEDULE	20.Feb.19	
С	REFER SCHEDULE	24.April.19	
D	SECTION 4.55 APPLICATION	06.Feb.19	

Description	Date

rose architectural design


51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au ROSE Greating a quality way of tiving

PROPOSED MIXED USE DEVELOPI

Project:

Address: 23 Fisher Road, Dee Why LOT 11 D.P.577062

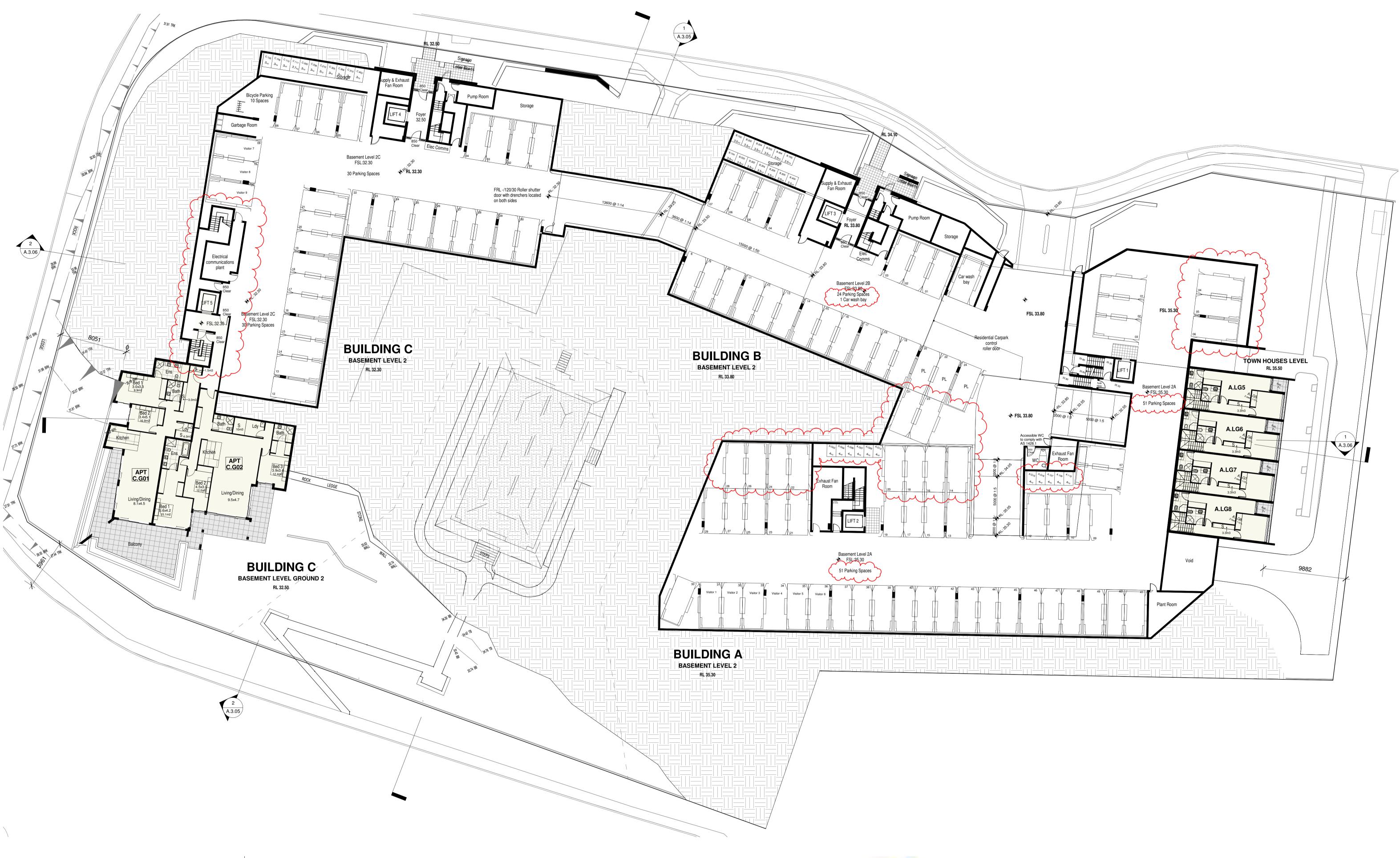
	Drawing title:					Status:			
PMENT	BASEMENT PARKING PLAN 1				5 PLAN 1	1 DEVELOPMENT APPLICATION			
	Scale:	1:200	Date:	APRIL	2019	Project No:	607	Drawing No:	A 2.01
	Drawn:	RAD	Reviewed:		Checked: AO			Revision:	D

© **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

lssue	Description	Date	lssue
А	DEVELOPMENT APPLICATION	03.Sept.18	
В	REFER SCHEDULE	20.Feb.19	
С	C REFER SCHEDULE		

Description	Date


rose architectural design

51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au

PROPOSED MIXED USE DEVELOPM

PMENT	BASEMENT PARKING PLAN 2			DEVELOPMENT APPLICATION		
	Scale: 1:200	Date: AF	PRIL 2019	Project No: 1607	Drawing No: A 2.02	
	Drawn: RAD	Reviewed:	Checked: AO		Revision:	

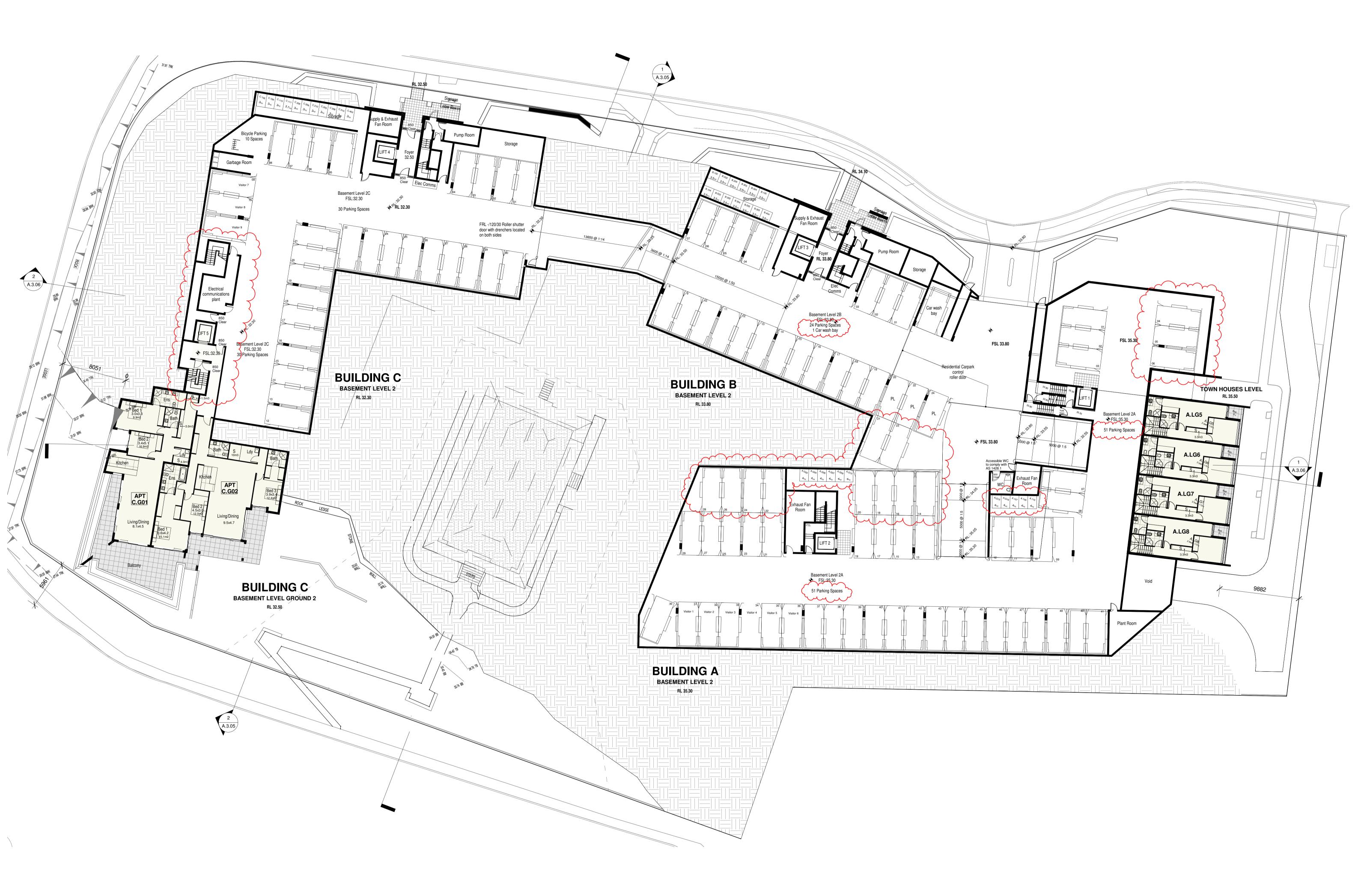
© **FOSE**[:] This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Issue	Description	Date	lssue
А	DEVELOPMENT APPLICATION	03 Sept.18	
В	REFER SCHEDULE	20 Feb.19	
С	REFER SCHEDULE	24 April.19	
D	SECTION 4.55 APPLICATION	06 Feb. 20	

Description	Date

rose architectural design

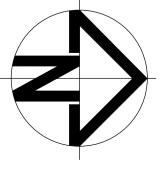
51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au


PROPOSED MIXED USE DEVELOPM

Project:

Address: 23 Fisher Road, Dee Why LOT 11 D.P.577062

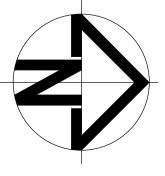
Hamptons By Rose Pty Ltd


	Drawing tit	le:			Status:		
PMENT	BA	SEMEN	T PARKING	G PLAN 2	DEVELOPMEN	T APPI	LICATION
	Scale: 1	:200	e: APRIL	2019	Project No: 1607	Drawing No:	A 2.02
	Drawn: R	Rev AD	viewed:	Checked: AO		Revision:	D

C **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

lssue	Description	Date	lssue
А	DEVELOPMENT APPLICATION	03.Sept.18	
В	REFER SCHEDULE	20.Feb.19	
С	REFER SCHEDULE	24.April.19	


e	Description	Date			Project:
			rose architectural design		PROPOSED MIXED USE DEVELOPM
			51 Riley Street, Woolloomooloo, NSW, 2011	DOCE	
			T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au	Creating a quality way of Living	Address: 23 Fisher Road, Dee Why LOT 11 D.P.577062
			-	Frequel adrawly way of round	Client: Hamptons By Rose Pty Ltd

	+EX33.4	+33.0 +32.0 +384 +32.47 +EX 34.83 +EX 33.82
34.02		+5330 +3109 +EX35.23 +EX 34 74
	+EX37.63 +TW 37/5	
	TW 34 80	+EX34.55 +EX 33.26
	Living/ Dining 6.4x7.5 A.G16 Bed 1 1.1m ² Living/ Dining A.G16 Living/ Dining	nd 16214
Be	1.5m3 ad 2 (x3.0) Bath Kitchen S Ens Ens C APT A.G15	+32.3
	→ s5bc S3.2m3 S2.8m3 C	+32.30
Courtyard	S.0m3 Liveable 850c Bed 1 3.1x4.7	
	Living/ Dining 3.9x6.5 A.G14 820c Kitchen	Courtyard
Bed 3.0x3.6 10.8m2	Bath Bath	+32.3 - 4 Courtyard - A.3.06
Bed 2 3.9x3.2 1.1.9m2	Bed 2 0x3.1 Bath F Bath F Bath F Bed 3.0x3.4 0.2m2 Bed 1 0.2m2 12.0m2 12.0m2	
7x3.5	S Bath C Kitchen APT A.G12 Living/ Dining	
S 8.2m3	Kitchen	Courtyard
Kitchen	APT A.G11 Kitchen Ldy Dining 5.6x4.2	16120
<u>s</u>	.0m3 APT A.G10 Living/ Dining 5.0x9.3	
	Courtyard	90°.
	(104) o (103)	
	0.000	(97) o
89	· .	
		northern beaches council
	(99) o	THIS PLAN IS TO BE READ IN CONJUNCTION WITH THE CONDITIONS OF DEVELOPMENT
		CONSENT DA2018/1574
LOPMENT	Drawing fitte: LEVEL 1 PLAN	Status- DEVELOPMENT APPLICATION
	Scale: 1:200 Date: APRIL 2019	Project No: 1607 Drawing No: A 2.03
	Drawn: Reviewed: Checked: AO	Revision:

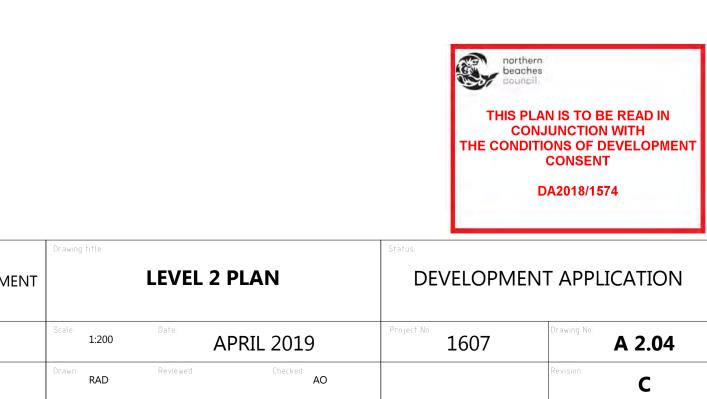
ⓒ **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

lssue	Description	Date	Issue	Description	Date
А	DEVELOPMENT APPLICATION	03.Sept.18			
В	REFER SCHEDULE	20.Feb.19			
с	REFER SCHEDULE	24.April.19			

rose architectural design

51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au



PROPOSED MIXED USE DEVELOPMENT

 Press:
 23 Fisher Road, Dee Why

 LOT 11 D.P.577062

 Int:
 Hamptons By Rose Pty Ltd

C **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

lssue	Description	Date	lssue	Description	Date
А	DEVELOPMENT APPLICATION	03.Sept.18			
В	REFER SCHEDULE	20.Feb.19			
С	REFER SCHEDULE	24.April.19			

rose architectural design

51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au

PROPOSED MIXED USE DEVELOPM

northern beaches council	
THIS PLAN IS TO BE READ IN CONJUNCTION WITH THE CONDITIONS OF DEVELOPMEN CONSENT	NT
DA2018/1574	

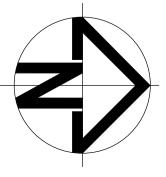
PMENT	Drawing title LEVEL 3 PLAN			Status DEVELOPMENT APPLICATION		
	Scale: 1:200	Date: A	PRIL 2019	Project No: 1607	Drawing No: A 2.05	
	Drawn: RAD	Reviewed:	Checked: AO		Revision: C	



Description	Date

Balc.	
Baic.	
Balc.	
Bed 3 Bed 2 3.8x3.6 3.4x3.1 1.0.5m2 1.0.5m2	
Bath S 2.5m3 Dining	
APT 6.7x6.1	
Kitchen	
Fins	
Batc. Living/ APT Dining 3.9x6.5	
Bed 3.0x3.6 10.8m2 Kitchen Ldy AP1 A.310 Living/ Dining 3.9x6.8 Balc-	
•	
	•
Ens Bed 1	
Bed 3 8.9x3.2 1.9m2 8.0m3 8.0m3 Bed 1 3.1x3.9 12.0m2 12.0m2	
S 8.0m3 Ldy Klitchén APT A.309 Living/ Dining 3.9x5.6 Balc.	
S S S S S S S S S S S S S S S S S S S	
Kitchen	
S 5.1m3 Kitchen APT A.308 Bed 3.9x3.4 12.9m2	
APT Kitchen A.308 Living/	16100
APT A.307	16120
Living/	X
Living/ Dining 6.1x3.8 Bed 3.4x3.9 12.9m2 Balc	
Balc.	

120	northern beaches council
Т	THIS PLAN IS TO BE READ IN CONJUNCTION WITH HE CONDITIONS OF DEVELOPMENT CONSENT
L	DA2018/1574


PMENT	Drawing title:	LEVEL 4	PLAN	Status: DEVELOPME	NT APPLICATION
	Scale: 1:200	Date:	PRIL 2019	Project No: 1607	Drawing No: A 2.06
	Drawn: RAD	Reviewed:	Checked: AO		Revision:

C **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

lssu	e	Description	Date	lssue	Description	Date
А		DEVELOPMENT APPLICATION	03.Sept.18			
В		REFER SCHEDULE	20.Feb.19			
C		REFER SCHEDULE	24.April.19			

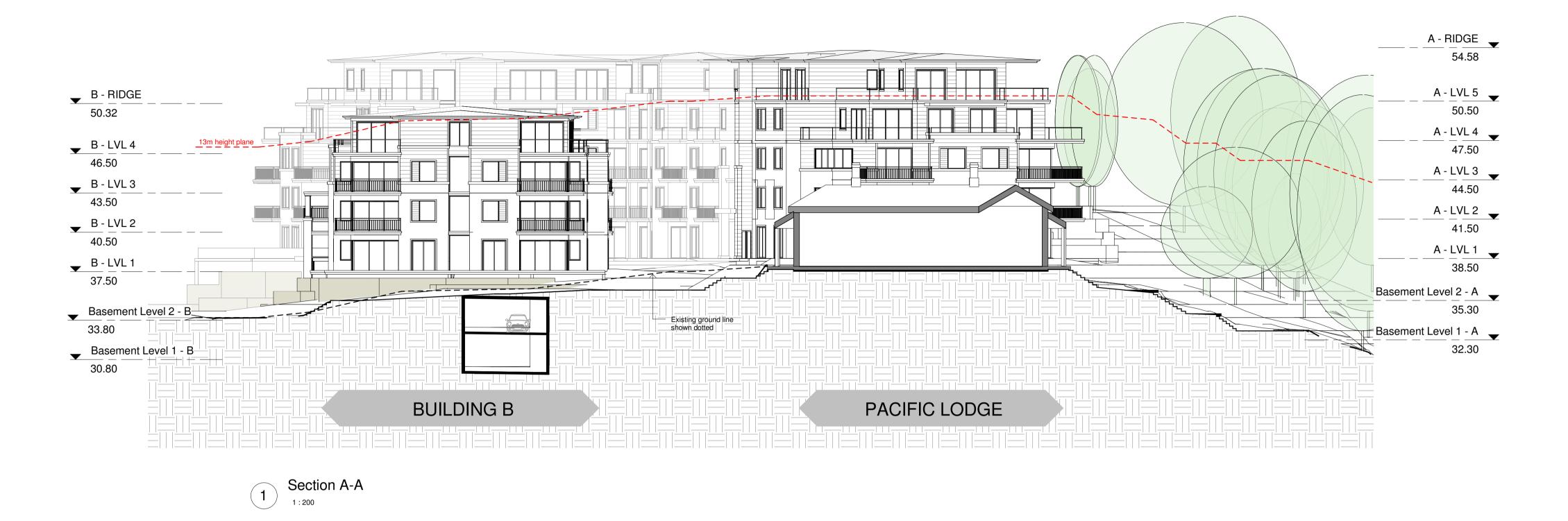
rose architectural design

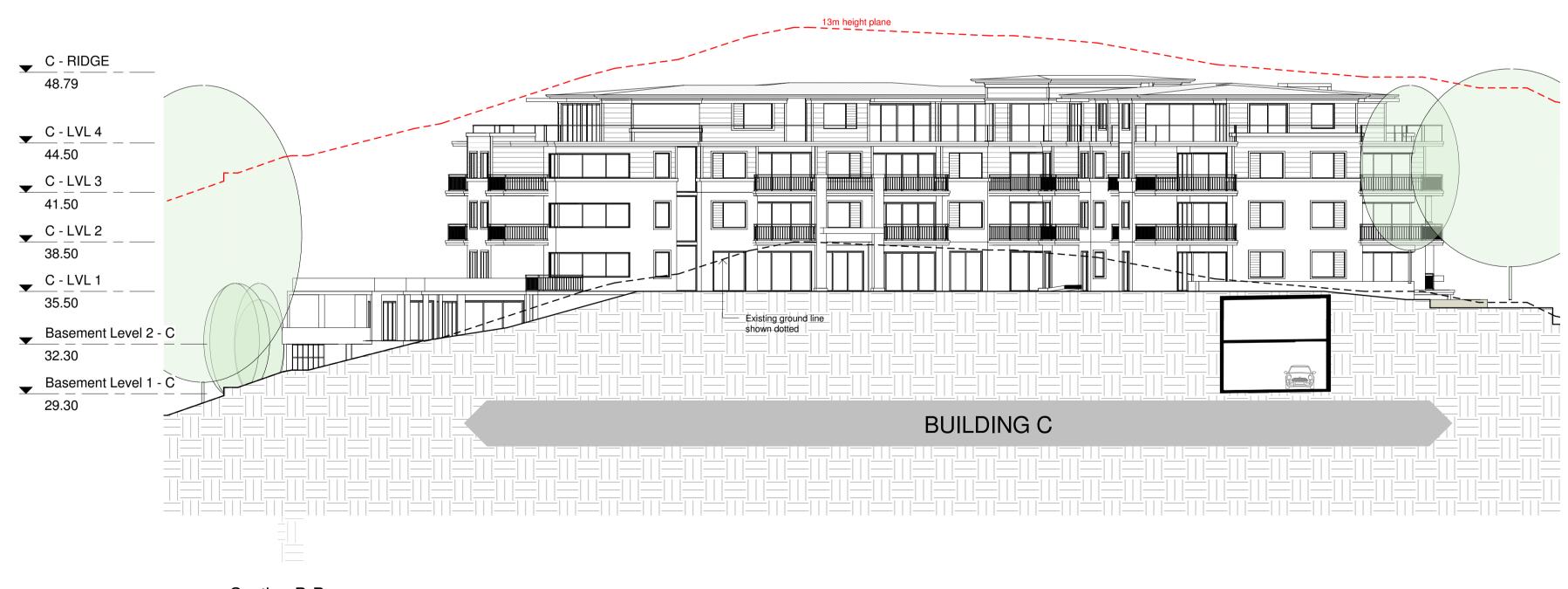
51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au

PROPOSED MIXED USE DEVELOPM

						DA2018/15		
	Drawing title:			Status:				
PMENT	T LEVEL 5 PLAN			DEVI	DEVELOPMENT APPLICATION			
	Scale: 1:200	Date: A	PRIL 2019	Project No:	.607	Drawing No:	A 2.07	
	Drawn: RAD	Reviewed:	Checked: AO			Revision:	С	

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD


lssue	Description	Date	lssue
А	DEVELOPMENT APPLICATION	03.Sept.18	
В	REFER SCHEDULE	20.Feb.19	
С	REFER SCHEDULE	24.April.19	


Dare	
	rose architectural desig
	51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au

PROPOSED MIXED USE DEVELOPM

	Drawing	title:			Status:	
MENT			ROOF	PLAN	DEVELOPMEN	T APPLICATION
	Scale:	1:200	Date:	APRIL 2019	Project No: 1607	Drawing No: DA.2.08
	Drawn:	RAD	Reviewed:	Checked: AO		Revision: C

2 Section B-B

Description	Date	lssue
DEVELOPMENT APPLICATION	03.Sept.18	
REFER SCHEDULE	20.Feb.19	
	DEVELOPMENT APPLICATION	DEVELOPMENT APPLICATION 03.Sept.18

© **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

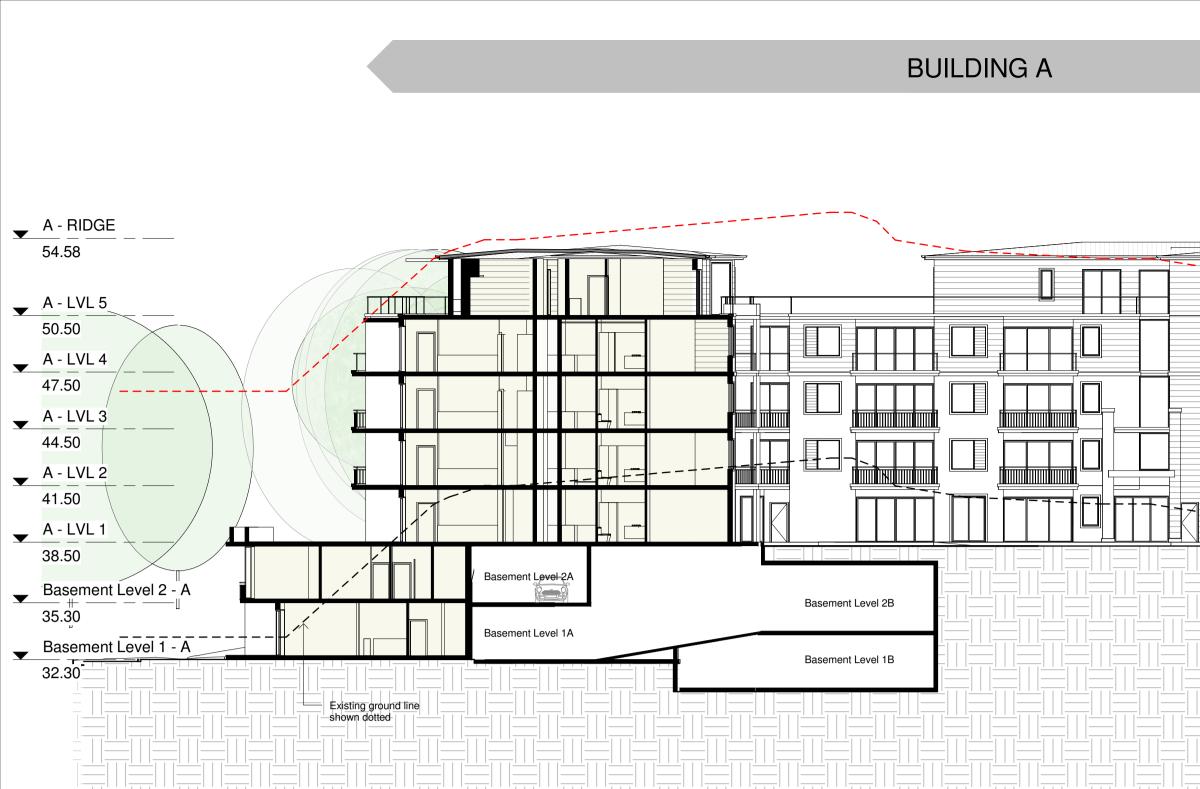
Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD **BUILDING A**

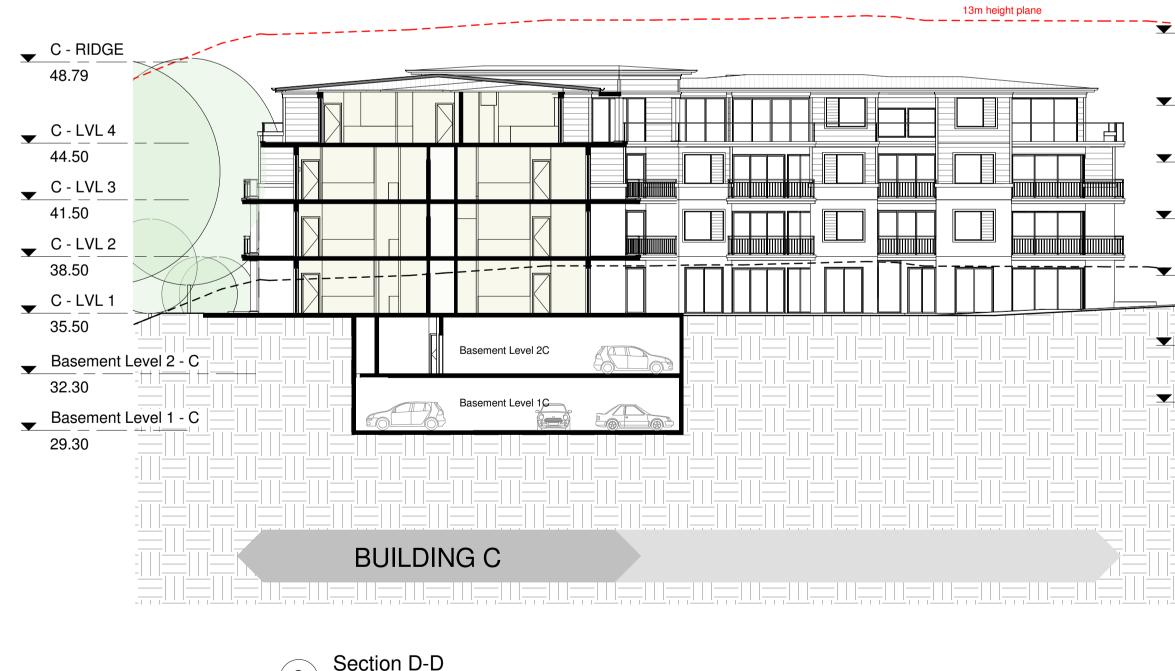
Description	Date

rose architectural design

51 Riley Street, Woolloomooloo, NSW, 2011 T / +61 2 8302 1400 E / admin@rosegroup.com.au www.rosegroup.com.au

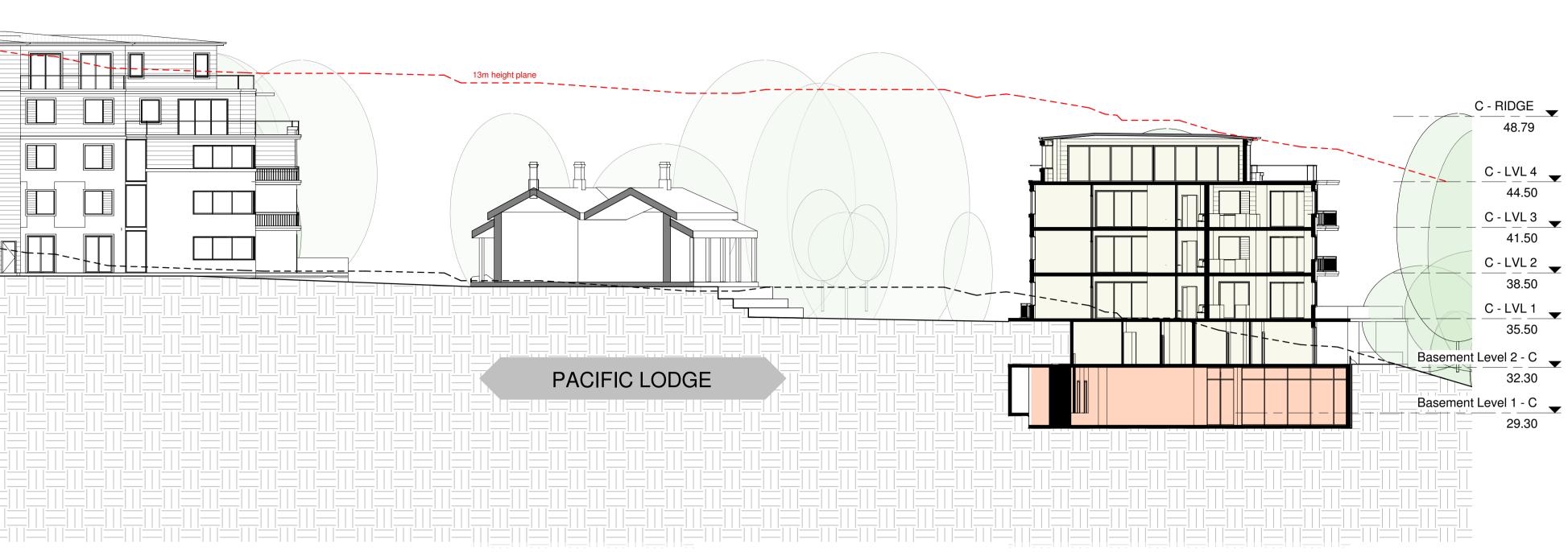
PROPOSED MIXED USE DEVELOPM


Iness23 Fisher Road, Dee Why
LOT 11 D.P.577062Int:Hamptons By Rose Pty Ltd


northern beaches council

DA2018/1574

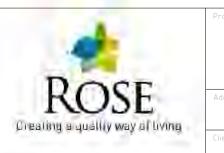
PMENT	Drawing fitte: SECTION A-A & B-B							N	
	Scale: 1:200	Date:	Feb 2019		Project No: 160		Drawing No:	A 3.05	5
	Drawn: RAD	Reviewed:	Checked:	AO			Revision:	В	



ⓒ **FOSE** This drawing & the design herein is the property of rose architectural design and shall not be copied nor reproduced in part or in whole without written permission.

Verify all dimensions on site prior to commencement of work. Refer all discrepancies to the Architect for determination. Use figured dimensions in preference to scaling. DATUM : AHD

Issue	Description	Date	lssue
А	DEVELOPMENT APPLICATION	03.Sept.18	
В	REFER SCHEDULE	20.Feb.19	


BUILDING B

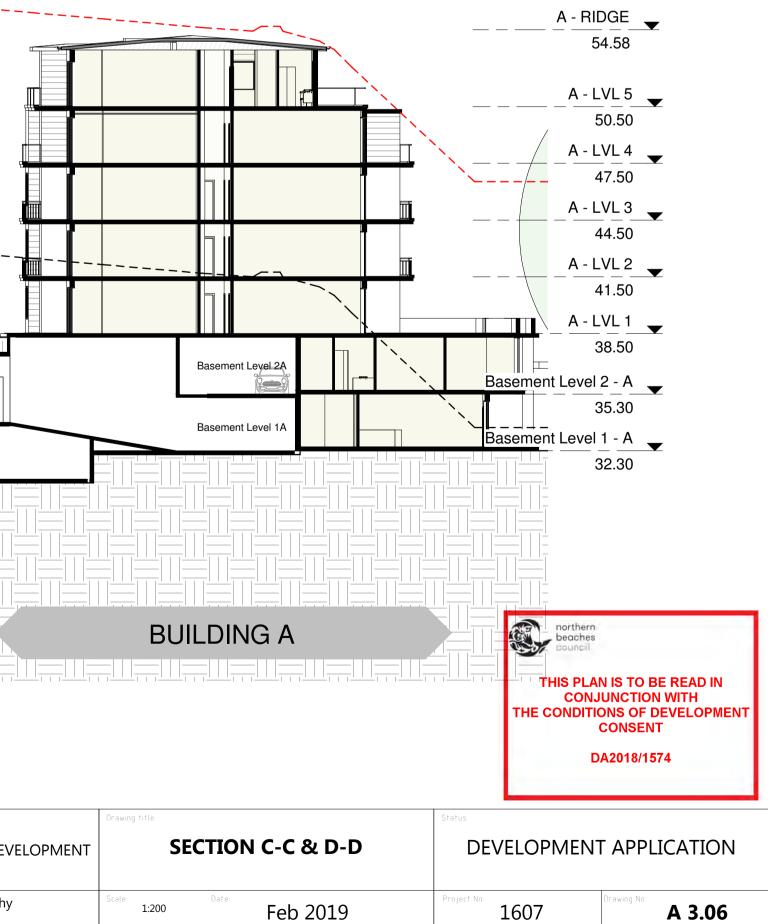
		m -
B - RIDGE		
50.32		
B - LVL 4		
46.50		
B - LVL 3		
43.50		
B - LVL 2		
40.50		
	╶╼╌┥┝╶┥╾┝╼┤┽╺╢╾┾╶╢╦╫╢┽╶╢╾┝╴╫╶┼┏╾┱╼┍╴╸┓║║╹╽╹╽╷║║╹╽╹┟╌┙	
37.50		
Basement Level 2 - B		Basement Level 2B
	Existing ground line	
		Basement Level 1B
Basement Level 1 - B		
┍╽╽╽┯┯┯┥╽╽╽┯┯┯┥╽╽╎┯┯┯┥╽╽╎┯┯┯┥╽╎╎┯┯┯╽╎		╤╽╎╎╒╤╤╎╎╎╒╤╤╎╎╎╒╤╤╎╎╎╒╤╤╎╎╎╒╤╤╎╎╎╒╤╤╎╎╎╎╤╤╤╎╎╎╎╤╤╤╎╎╎

Description	Date

rose architectural design

51 Riley Street, Woolloomooloo, NSW, 2011
T / +61 2 8302 1400
E / admin@rosegroup.com.au www.rosegroup.com.au

PROPOSED MIXED USE DEVELOPMENT

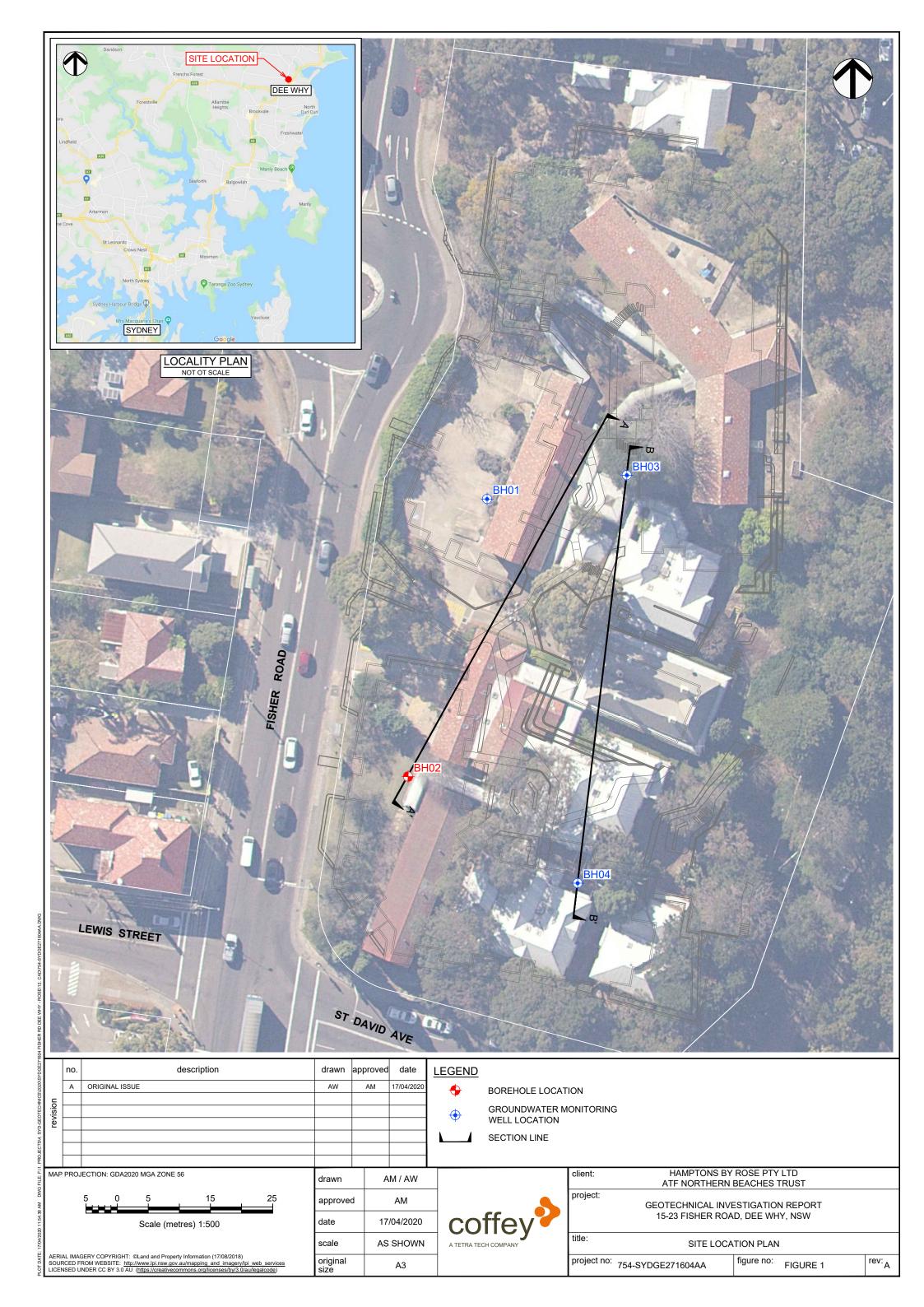


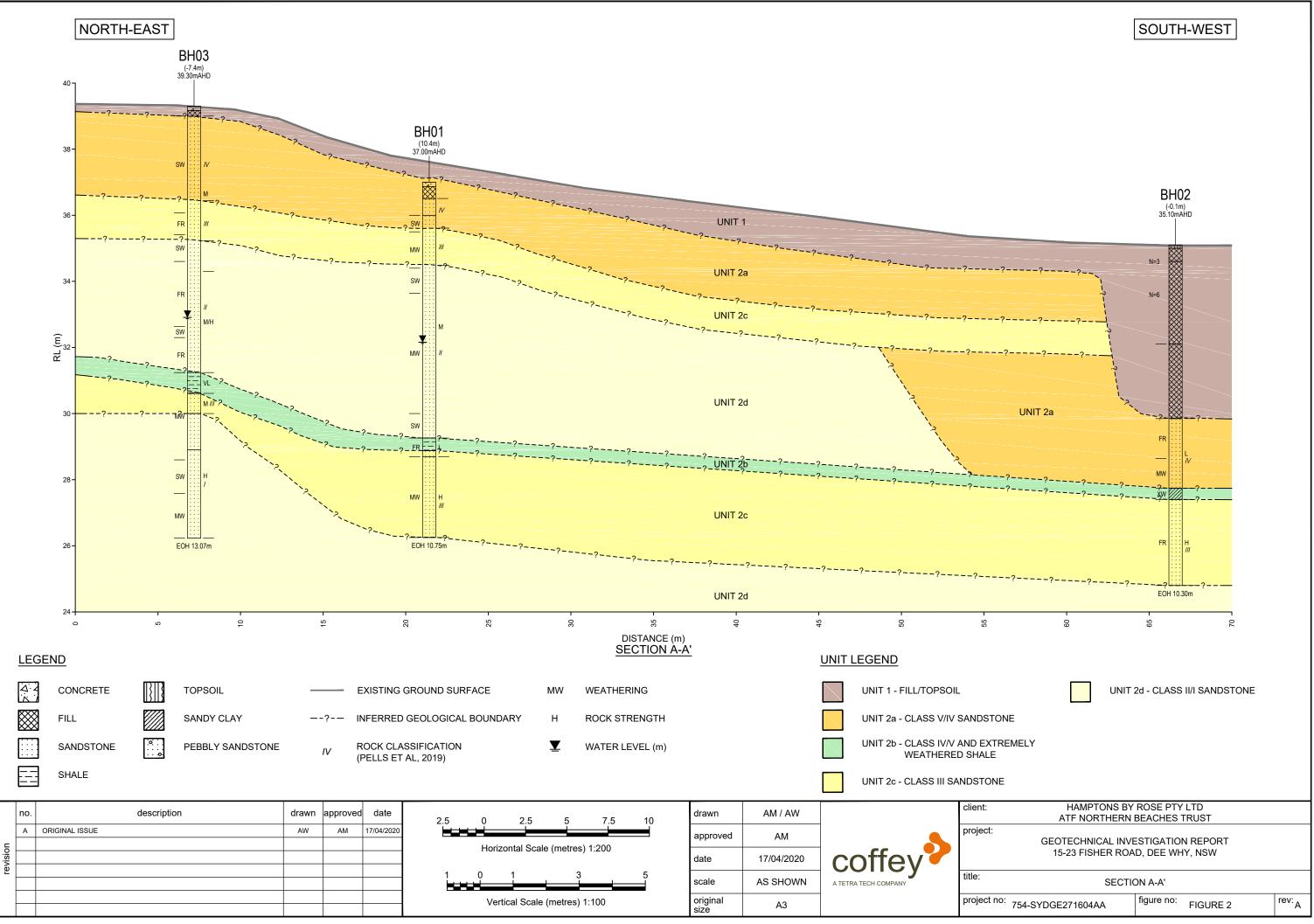
dress: 23 Fisher Road, Dee Why LOT 11 D.P.577062

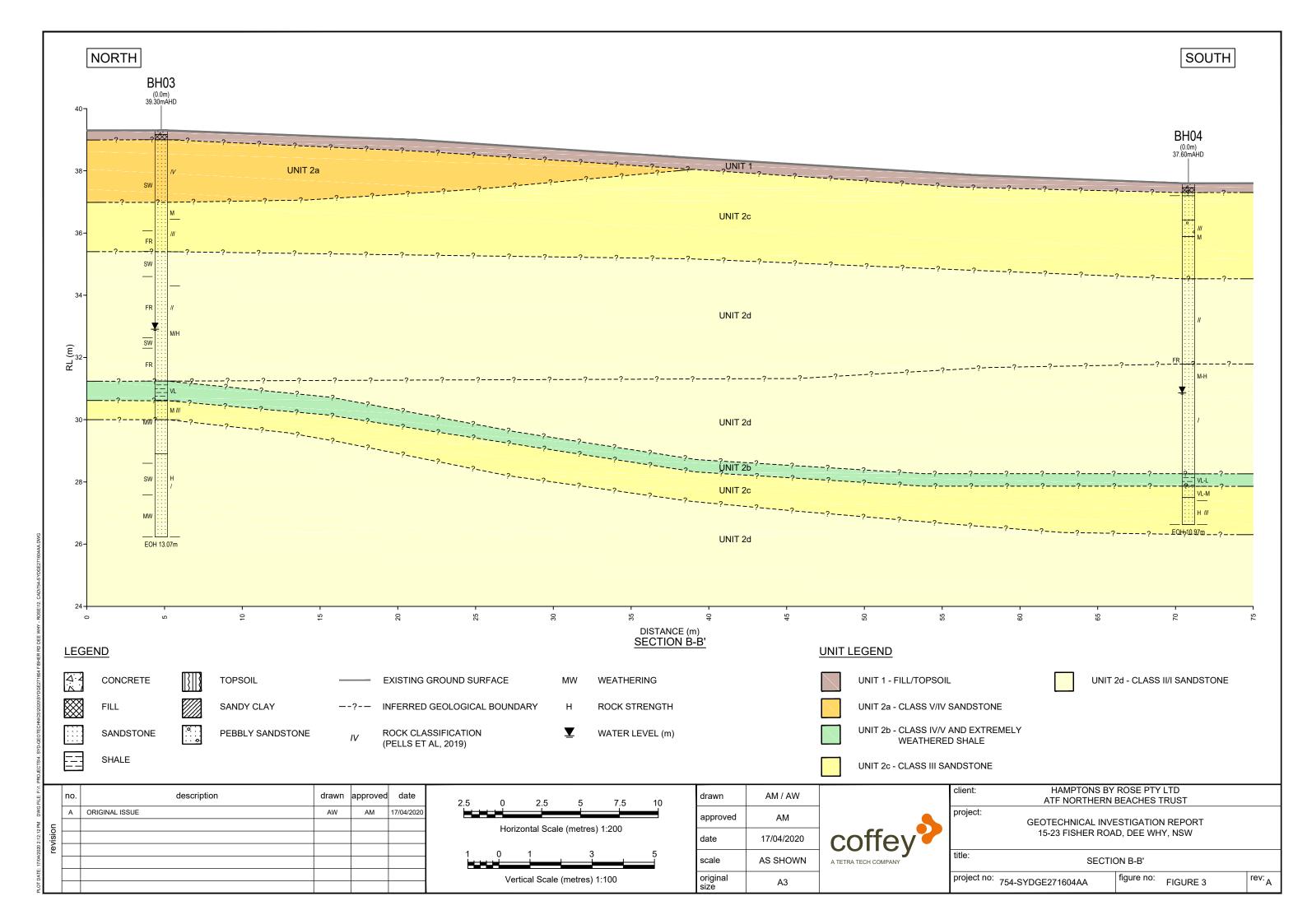
Hamptons By Rose Pty Ltd

RAD

BUILDING C


AO


В


This page has been left intentionally blank

Appendix B – Figures

- FIGURE 1 SITE LOCATION PLAN
- FIGURE 2 SECTION A-A'
 FIGURE 3 SECTION B-B'

This page has been left intentionally blank

Appendix C – Borehole Logs, Core Photographs and Well Construction Details

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disaggregated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with AS 1726:2017 as shown in the table on Sheet 2.

PARTICLE SIZE DEFINITIONS

Components	Subdivision	Size (mm)
Boulders Cobbles		>200 63 - 200
Gravel	Coarse Medium Fine	19 - 63 6.7 - 19 2.36 - 6.7
Sand	Coarse Medium Fine	0.6 - 2.36 0.210 - 0.6 0.075 - 0.21
Silt Clay		0.002 - 0.075 < 0.002

MOISTURE CONDITION

Coarse Grained Soil

Dry (D)	Non-cohesive and free-running
Moist (M)	Soil feels cool, darked in colour. Soil tends to stick together.
Wet (W)	As for moist, with free water forming when handled.

Fine Grained Soil

Moist, dry of plastic limit (<i>w</i> <w<sub>P)</w<sub>	Hard and friable or powdery
Moist, near plastic limit (w≈W _P)	Can be moulded at a moisture content approximately equal to the plastic limit.
Moist, wet of plastic limit (<i>w</i> >W _P)	Soils usually weakened and free water forms on hands when handling.
Wet, near liquid limit (w≈W∟)	Near liquid limit.
Wet, wet of liquid limit (w>W∟)	Wet of liquid limit.

CONSISTENCY OF COHESIVE SOILS

Term (Abbreviation)	Indicative undrained shear strength s _u (kPa)	Field guide
Very Soft (VS)	<12	Soil exudes between fingers when squeezed in hand.
Soft (S)	12 – 25	Soil can be moulded by light finger pressure.
Firm (F)	25 – 50	Soil can be moulded by strong finger pressure.
Stiff (St)	50 – 100	Soil cannot be moulded by fingers.
Very Stiff (VSt)	100 – 200	Soil can be indented by thumb nail.
Hard (H)	>200	Soil can be indented with difficulty by thumb nail.
Friable (Fb)	-	Soil can be easily crumbled or broken into small pieces by hand.

RELATIVE DENSITY OF NON-COHESIVE SOILS

Term (Abbreviation)	Density index (%)			
Very Loose (VL)	Less than 15			
Loose (L)	15 – 35			
Medium Dense (MD)	35 – 65			
Dense (D)	65 – 85			
Very Dense (VD)	Greater than 85			

MINOR COMPONENTS

Term	Assessment Guide	Proportion of minor component in:
Trace	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: Fines - <5%, Accessory coarse fraction - <15% Fine grained soils: sand/gravel <15%
With	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: Fines - 5 to 12%, Accessory coarse fraction – 15 to 30% Fine grained soils: sand/gravel 15 to 30%

SOIL STRUCTURE AND CEMENTATION

	Zoning	Cementation		
Layer	Zone is continuous across exposure or sample.	Weakly cemented	Easily disaggregated by hand in air or water.	
Lense	Discontinuous layer of different material, with lenticular shape.	Moderately cemented	Effort is required to disaggregate the soil by hand in air or water.	
Pocket	Irregular inclusion of different material.			

GEOLOGICAL ORIGIN

Residual soil	Structure and fabric of parent rock not visible.
Extremely weathered material	Structure and/or fabric of parent rock is visible.
Alluvial soil	Deposited by streams and rivers.
Estuarine soil	Deposited in coastal estuaries, including sediments carried by inflowing rivers and streams, or tidal currents.
Marine soil	Deposited in a marine environment
Lacustrine soil	Deposited in freshwater lakes
Aeolian soil	Carried and deposited by wind
Colluvial soil	Deposited on slopes (transported downslope by gravity, with or without assistance of water).
Topsoil	Mantle of surface or near surface material, often defined by high levels of organic material.
Fill	Any material which has been placed by anthropogenic processes. Fill may be significantly more variable between tested locations than naturally occurring soils.

20.02.2018

Soil Description Explanation Sheet (2 of 2)

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

		(Excluding p			TON PROCEDURES and basing fractions on estimate	ed mass)	GROUP SYMBOL	SOIL NAME
Ĕ		ction is	CLEAN SRAVEL ^{⊐ines less} than 5%)	intermedi	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength.			GRAVEL
COARSE GRAIINED SOIL More than 65% of materials less than 63 mm is larger than 0.075 mm		GRAVEL More than half of coarse fraction is larger than 2.36 mm	CLEAN GRAVEL (Fines less than 5%)		nantly one size or a range of siz sing, not enough fines to bind o		GP	GRAVEL
SOIL is larger t	iked eye)	GRAVE nan half of coar larger than 2.3	GRAVEL with FINES (Fines greater than 12%)		terials with excess of non-plast es see ML below).	ic fines (for identification	GM	Silty GRAVEL
AIINED an 63 mm	to the na	More th	GRAVEL with FINE: (Fines great than 12%)		terials with excess of plastic fin es see CL below).	es (for identification	GC	Clayey GRAVEL
COARSE GRAIINED SOIL naterials less than 63 mm is lar	e visible t	ction is	CLEAN SAND (Fines less than 5%)		ge in grain sizes and substantia ate sizes, not enough fines to b		SW	SAND
c of materia	about the smallest particle visible to the naked eye)	SAND More than half of coarse fraction is smaller than 2.36 mm	n 2.36 mm n 2.36 mm CLEAN SAND (Fines les: than 5%)		Predominantly one size or a range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength.			SAND
e than 65%	e smalle	SA lan half of smaller tha	SAND with FINES Fines greater than 12%r)	'Dirty' materials with excess of non-plastic fines (for identification procedures see ML below).			SM	Silty SAND
More	about th	More th s	SAND with FINES (Fines greater than 12%r)	'Dirty' materials with excess of plastic fines (for identification procedures see CL below).		SC	Clayey SAND	
63	(A 0.075 mm particle is		IDEN	TIFICATIO	ON PROCEDURES ON FRACT	10NS <0.2 mm		
u than	par	ø	DRY STREN	IGTH	DILATANCY	TOUGHNESS		
SOI 075	mm	iit les 0%	None to le	wo	Slow to rapid	Low	ML	SILT
JED ateria	075	SILT & CLAY Liquid limit less than 50%	Medium to	high	None to slow	Medium	CL, CI	CLAY
FINE GRAINED SOIL nan 35% of material less the is smaller than 0.075 m	(A C	Liqu	Low to mee	dium	Slow	Low	OL	Organic SILT
NE G 35% s sma		au ii	Low to med	dium	ium None to slow Low to medium		MH	SILT
FINE GRAINED SOIL More than 35% of material less than 63 mm is smaller than 0.075 mm	E	SILT & CLAY Liquid limit greater than 50%	High to very	high	None	High	СН	CLAY
Ŵ		Bread C S	Medium to	high	None to very slow Low to medium		ОН	Organic CLAY
	RGA	NIC SOILS	Readily identifi	ed by colo	ur, odour, spongy feel and freg	uently by fibrous texture.	PT	Peat

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM	TERM	DEFINITION	DIAGRAM
Parting	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (e g. bedding). May be open or closed.		Softened Zone	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere	ALCOPERCONNEL
Fissure	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. May include desiccation cracks.		Tube	Tubular cavity. May occur singly or as one of a large number of separate or interconnected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter. Origins include root holes, animal burrows, tunnel erosion.	
Sheared Seam	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		Tube cast	An infilled tube. The infill may be uncemented or weakly cemented soil or have rock properties.	
Sheared Surface	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect		Infilled Seam	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open defects.	

Rock Description Explanation Sheet (1 of 2)

DEFINITIONS	Rock m	aterial, defect, structure and rock mass are define	d as follows:			
Rock material Defect Structure Rock mass	disaggr which c Discont Nature It is the	eering terms rock material is any naturally occurri egated by hand in air or water without prior soakin an be disaggregated or remoulded should be des inuity, fracture, break or void in the material or ma and configuration of the different defects within the entirety of the system formed by all of the rock ma ctively homogeneous.	g. Rock material is ir cribed as a soil. terials across which t a rock mass and their	tact rock that is b here is little or no relationship with	oounded by defects. Materia o tensile strength. each other.	
MATERIAL DE	SCRIPT	IVE TERMS:	ROCK MATERI	AL STRENGT	H TERMS	
Rock name		rock names are used rather than precise cal classification.	Term (Abbreviation)	Guide to Strength Point Load Field Assessment		
Particle size	Grain si	ze terms for sandstone are:	, , , , , , , , , , , , , , , , , , ,	Strength Index, I _{s(50)}	ngth	
Coarse grained	Mainly (0.6mm to 2mm		(MPa)		
Medium grained	Mainly	0.2mm to 0.6mm	Very Low	0.03 - 0.1	Material crumbles under	
Fine grained	Mainly (0.06mm (just visible) to 0.2mm	(VL)		firm blows with sharp end of pick; can be peeled wi	
Fabric Massive	orientat for sedi metamo	rains show an alignment, a preferred ion or a layering (e.g. bedding or lamination mentary rocks, and foliation or cleavage for prphic rocks) the terms used are: ring or penetrative fabric.			a knife; too hard to cut a triaxial sample by hand; pieces up to 30mm thick can be broken by finger pressure.	
Indistinct	Layerin	g or fabric just visible. Little effect on a properties.	Low (L)	0.1 - 0.3	Easily scored with a knife indentations 1mm to 3mr	
Distinct	Layerin	g or fabric is easily visible. Rock may break asily parallel to the fabric.	(Ľ)		show with firm bows of a pick point; has a dull sound under hammer. A	
		MATERIAL WEATHERING			piece of core 150mm lon by 50mm diameter may l	
Term Abl		Definition			broken by hand. Sharp edges of core may be	
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible. Soil has not been significantly transported.	Medium (M)	0.3 to 1.0	friable and break during handling. Readily scored with a knife; a piece of core	
Extremely Weathered	XW	Material is weathered to such an extent that it has soil properties, i.e. it either disaggregates or can be remoulded in water. Mass structure and material texture and fabric of original rock	High	1 to 3	150mm long by 50mm diameter can be broken hand with difficulty. A piece of core 150mm	
Highly Weathered ¹	нw	are still visible. The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary	(H)		long by 50mm diameter cannot be broken by han but can be broken by a pick with a single firm blow; rock rings under hammer.	
		minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to the deposition of weathering products in pores.	Very High (VH)	3 to 10	Hand specimen breaks after more than one blow rock rings under hamme	
Moderately Weathered ¹	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is no longer recognisable. Little or no change of strength from fresh rock.	Extremely High (EH)	More than 10	Specimen requires man blows with geological pi- to break through intact material; rock rings under hammer.	
Slightly Weathered	SW	Rock is partially discoloured with staining or bleaching adjacent to defects, but shows little or no change of strength from fresh rock.	Notes on Rock Material Strength: 1. Material with strength less than 'Very Low' should be			
Fresh	FR	Rock shows no sign of decomposition of individual minerals or colour changes.	 Material with strength less than 'Very Low described using soil characteristics. The method of measuring the I_{S(50)} should accordance with AS 4133.4.2. 			
Notes on Weath	ering:		3. The rock stre	ength should be d	letermined perpendicular to	
practicable a distinction 'Moderately 'Rock stren highly disco increased b weathering 2. Where phys	(or it is juc b) to disting Weathered gth usually loured, us y leaching products i sical and c not gases	hemical changes of the rock material are or liquids at depth (process called alteration) the	any anisotro may readily 4. Although AS terms based the ratio beth 10 to over 30 strength. Th determined f 5. The rock stre be considered	py in the rock. Hi break parallel to t 1726:2017 provic on Unconfined C ween UCS and I _S 0 depending on the UCS/I _S (50) stren for each rock mate ength classificatio ed indicative only.	igh strength anisotropic roc he planar anisotropy. des a basis for rock strength compressive Strength (UCS (50) may vary from less than he rock type and overall light ratio should be	

Rock Description Explanation Sheet (2 of 2)

COMMON R	OCK DEFECT TYPES			
Term	Definition	Diagram	Map Symbol	Graphic Log (Note 1)
Parting	A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering (e.g. bedding) or a planar anisotropy in the rock material (e.g. cleavage). May be open or closed.		20 Bedding 20 Cleavage	(Note 2)
Joint	A surface or crack with no apparent shear displacement and across which the rock has little or no tensile strength, but which is not parallel or sub-parallel to layering or to planar anisotropy in the rock material. May be open or closed.		60	(Note 2)
Sheared Zone/Seam (Note 3)	Zone of rock material with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge shaped blocks.		35	
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.		40	19 1 9
Crushed Seam (Note 3)	Seam of soil material with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock material which may be more weathered than the host rock. The seam has soil properties.	(8) (8) (8)	50 	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Infilled Seam	Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams up to 1mm thick may be described as veneer or coating on a joint surface.		65 1	12 Martin
Extremely Weathered Seam	Seam of soil material, often with gradational boundaries. Formed by weathering of the rock material in place.	Seam	32 EUTOTE	

DEFECT SHAPE TERMS

Planar		e defect does not vary orientation
Curved		e defect has a gradual ange in orientation
Undulatin	•	e defect has a wavy rface
Stepped		e defect has one or ore well defined steps
Irregular	sh	e defect has many arp changes of entation
	enced b	ment of defect shape is y the scale of the
DEFECT	ROUG	HNESS TERMS
Very Rou	- !	Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than very coarse sand paper.
Rough	1	Many small surface irregularities (amplitude generally less than 1mm). Feels like fine to coarse sand paper.
Smooth		Smooth to touch. Few or no surface irregularities.
Polished		Shiny smooth surface.
Slickensi		Grooved or striated surface, usually polished.
DEFECT	COAT	ING TERMS
Clean	No visil	ble coating.
Stained		ble coating but surfaces coloured.
Veneer	minera	e coating of soil or l, too thin to measure; e patchy.
Coating	thick. T should approp infilled strengt	e coating up to 1mm hicker soil material be described using riate defect terms (e g. seam). Thicker rock h material should be red as a vein.
DIMENS	ION OF	DEFECTS
Spacing, thickness		openness and

Notes on Defects:

- 1. Usually borehole logs show the true dip of defects, and face sketches and sections show the apparent dip.
- 2. Partings and joints are not usually shown on the graphic log unless considered significant.
- Sheared zones/seams, sheared surfaces and crushed seams are generally faults in geological terms.

Block Shape Where it is considered significant, block shape (e.g. tabular, prismatic, columnar) should be described using the terms in Table 23 of AS 1726:2017.

The spacing, length, aperture (openness), and seam thickness should

millimetres or metres.

generally be described directly in

thickness

20.02.2018

TETRA TECH								Boret	nole ID.		BUO1
	COMPACT.										BH01
Fnai	neerin	αI	0	- r	R٥	rehole		sheet	:		1 of 3
Liigi								proje	ct no.		754-SYDGE271604
client:	Hamptons	s by	Rose	e Pty	Ltd	ATF Northern Beaches Trust		date	started:		16 Mar 2020
principal:								date	complet	ed:	17 Mar 2020
project:	15-23 Fisl	her F	Road	, Dee	e Why	 Geotechnical Investigation Repo 	rt	logge	ed by:		RN
ocation:	Fisher Ro	ad, I	Dee I	Why,	NSN	/		check	ked by:		RR
oosition: E:	341,203.08; N: 6	6,264,0	91.39 ((MGA94	4)	surface elevation: 37.00 m (AHD)	angle	from ho	orizontal:	90°	
Irill model: C	Geoprobe 205, T	rack m	nounted	d T		drilling fluid: water	hole d	liamete	r : 125 mi	m	
drilling info	ormation			mate	rial sub	stance			1		
method & support 1 2 penetration 3	samples & field tests	²RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa) 8 8 8 8		structure and additional observations
- 1			_			CONCRETE	— <u>—</u> —			$\sim -$	
	D	-	-			FILL: SAND: fine to coarse grained, orange-red-brown, dark grey.				FILL	
CASING	D		-			SANDSTONE: recovered as Sandy CLAY, orange-brown, sand is fine to coarse grained.					ATHERED SANDSTONE no recovery
		-36	1.0			Borehole BH01 continued as cored hole					
		-35		-							
		-									
		-34	- 3.0 <i>-</i> -	-							
		-	-								
		-33	4.0	-							
		-32	- 5.0 — -	-							
		-	-								
		-31	6.0								
		-30	- 7.0-								

CDF_0_9_07_LIBRARY		-30 7.0 - -			
	method AD auger drilling* AS auger screwing* HA hand auger W washbore	support M mud N nil C casing penetration	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample	soil group symbol & soil description based on AS 1726:2017	consistency / relative density VS very soft S soft F firm St stiff
	DT diatube * bit shown by suffix e.g. AD/T B blank bit T TC bit V V bit	no resistance ranging to refusal water 10-Oct-12 water level on date shown water inflow water outflow	U## undisturbed sample #mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing HB hammer bouncing	moisture condition D dry M moist W wet Wp plastic limit WI liquid limit	VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

principal:

Engi	neering Log - Cored Borehole
client:	Hamptons by Rose Pty Ltd ATF Northern Beaches Trust

project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report

Fisher Road, Dee Why, NSW location:

checked by:

Borehole ID.

project no.

date started:

logged by:

date completed:

sheet:

BH01

754-SYDGE271604

16 Mar 2020

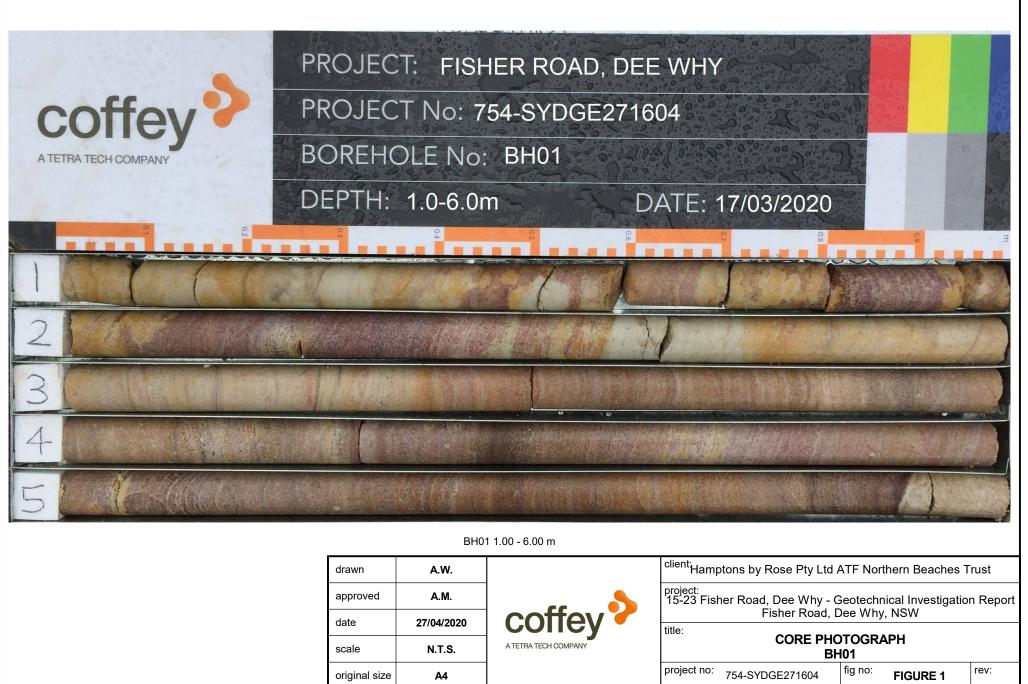
17 Mar 2020

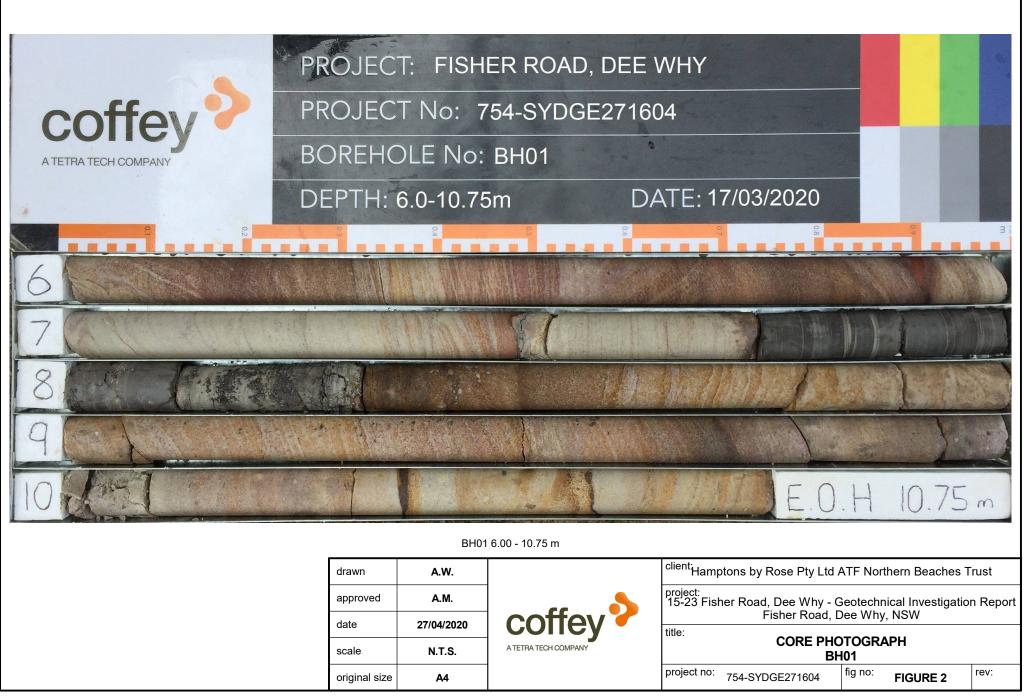
2 of 3

RN

RR

drill m	node	el: Geo	probe	205, T	rack mounted drilling fluid: water				hole	diameter : [/]	125 mm	
drilli	ng i	nform	ation	mate	rial substance				rock	mass defe	cts	
support	water	йRL (m)	depth (m)	graphic log	material description ROCK TYPE: grain characterisics, colour, structure, minor components	weathering & alteration	estimated strength & Is50 X = axial; O = diametral ≓ _ ≍ ∓ ∓ ∓	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	defect de (type, inclination, plana	servations and escriptions rity, roughness, coatir ss, other) gene
•			- - - - 1.0 -		started coring at 1.00m SANDSTONE : fine to coarse grained, orange, pale grey, red-brown, distinctly bedded at 0°-30°.	SW					_ SANDSTONE	- -
		- -35	- - 2.0— -			MW	_ 	a=0.95 d=0.39	100%		- - - -	
		-34	- - 3.0 —			SW		a=0.83 d=0.65		 	_	
		- -33	- - 4.0-			MW		a=0.98 d=0.86			_	ci Co Co Co
- NMLC	14/04/20 ⊲	-32	- - - 5.0 —					a=0.80 d=0.76	100%		-	Defects are: PT. 0 - 30°, PL. RO. CN.
	14	- -31	- - - 6.0-					a=0.85 d=0.84				Defe
			- - - 7.0-					a=0.89 d=0.92	98%		-	
		_	-			SW		a=0.86 d=0.67 a=0.24			= SM, Clay, 10 mm 	
AS AD CB W RR NML NQ	au cla wa roo _CNM wii	ashbore ck rolle MLC co reline c	rewing lling lade bit e r re (51.9 ore (47.	6mm)		ecovered symbols indicate	e material)	d=0.13 weathering RS residu XW extren HW highly MW mode SW slighth FR fresh W replaced w strength	al soil nely wea weathe rately we y weathe rith A for a	athered red eathered ered	defect type PT parting JT joint SS shear surface SZ shear zone CO contact CS crushed seam SM seam	planarity PL planar CU curved UN undulating ST stepped IR Irregular
HQ PQ DT	wii wii	reline c	ore (63. ore (85.	5mm)	partial drilling fluid loss	withdrawn		VL very lov L low M mediun H high VH very hig EH extrem	w n gh		roughness VR very rough RO rough SO smooth POL polished SL slickensided	coating CN clean SN stained VN veneer CO coating




A TETRA TECH	ICOMPANY		Borehole ID.	BH01
Engi	neering Leg Cor	ad Barahala	sheet:	3 of 3
Engi	neering Log - Cor	ed Borenole	project no.	754-SYDGE271604
client:	Hamptons by Rose Pty Ltd A	TF Northern Beaches Trust	date started:	16 Mar 2020
principal:			date completed:	17 Mar 2020
project:	15-23 Fisher Road, Dee Why	- Geotechnical Investigation Repo	ort logged by:	RN
location:	Fisher Road, Dee Why, NSW		checked by:	RR
position: E:	341,203.08; N: 6,264,091.39 (MGA94)	surface elevation: 37.00 m (AHD)	angle from horizontal: 90°	
drill model:	Geoprobe 205, Track mounted	drilling fluid: water	hole diameter : 125 mm	

drill	mode	el: Geo	probe	205, T	rack mounted dri	lling fluid: water						hole	diameter : ′	125 mm	
dri	lling i	nform	ation	mate	erial substance							rock	mass defe	cts	
method &	ter	RL (m)	depth (m)	graphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	terisics,	weathering & alteration	5	stima strenç & Is5 X = axi D = diam	ith 0 al:	samples, field tests & Is(50) (MPa)	core run & RQD	defect spacing (mm)	additional obs defect de (type, inclination, planaı thicknes	scriptions rity, roughness, coating,
an a	water	8 RL	dep	gra			alte		J∑I		a = axial; d = diametral	cor & I	30 300 3000	particular	general
		-	-		SHALE: dark grey, distinctly lami 0°-20°. (<i>continued</i>) SANDSTONE: fine to medium gr distinctly bedded at 0°-20°.	/	FR MW							SANDSTONE	
		-28	- - 9.0 —		SANDSTONE: fine to medium gr pale grey, red-brown, distinctly be	ained, orange, edded at 0°-30°.					a=1.78 d=1.80			-	-
		-	-								a=1.39 d=1.12	98%			-
		-27	- 10.0 — -								a=2.79				-
5		-	-	· · · · ·					- I P		d=1.47				
2 //04/2020 15: 		-26	- 11.0 — -		Borehole BH01 terminated at 10 Target depth	75 m									
GLB FeVAU LOG CUF BUREHOLE: CURED 7:54-SYUGEZ /1604.GFJ < <uranigfie>> Z/104/ZUZU 15:21</uranigfie>		-25	- - 12.0 — -												- - - -
IOLE: CORED 754-SYDGE		-24	- - 13.0 — - -												- - - -
AU LOG CUF BUREF		-23	- - 14.0 — -												- - - -
		-22	- - 15.0 — - -												- - - - - -
m AS AI CI W RI	Dau Bcla Wa Rrow MLCNM QWi QWi QWi QWi	iger sc iger dri aw or b ashbor ck rolle MLC co reline o reline o	rewing lling lade bit e	6mm) 5mm)	support C casing M mud N none water ↓ 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss ↓ uater pressure test result (interval shown		overed hbols indicate recovere ithdrawn	rry • mate	rial)		HW highly MW moder	al soil nely wea weather ately we v weather whith A for a w n gh	ation* attened red sathered ered literation	defect type PT parting JT joint SS shear surface SZ shear zone CO contact CS crushed seam SM seam roughness VR very rough RO rough SO smooth POL polished SL slickensided	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stained VN veneer CO coating

ATE	FRA TE	ECH CON	MPANY				Hole ID.	BH01
П	:			4 - 14	Installation Log	-	sheet:	1 of 1
P	Ie.	ZOI	ne	ter	Installation Log		project no.	754-SYDGE271604
clie	ent:	Н	amp	tons l	by Rose Pty Ltd ATF Nort	hern Beaches Trust	date started:	16 Mar 2020
pri	ncipa	al:					date completed:	17 Mar 2020
pro	ject:	1	5-23	Fishe	er Road, Dee Why - Geoteo	chnical Investigation Report	logged by:	RN
loc	ation	: F	ishei	^r Road	d, Dee Why, NSW		checked by:	RR
pos	ition:	E: 341	,203.08	3; N: 6,2	64,091.39 (MGA94) surface ele	evation: 37.00 m (AHD) a	ingle from horizontal: 90°	
				obe 205	, Track mounted drilling fluid	Î	ole diameter : 125 mm	
dril	ing ir	format	tion	materia	al substance	piezometer construction details	have construction li	
method &	support water	RL (m)	depth (m)	graphic log	material name	BH01	bore construction lic drilling company: driller: driller's permit no.:	ænse:
	A .		-				Δ	
- AD	▲ CASING →		-		FILL		Concrete	-
	¥	-36	1				· · · · · · · · · · · · · · · · · · ·	_
۱î			-	::::	SANDSTONE	1.20 m	Bentonite	
			-			1.50 m		-
		-	2-	· · · · ·		1.75 m		-
			-					_
			-					
< <drawingfile>> 27/04/2020 15:21</drawingfile>		-34	3	· · · · ·				-
4/2020			-	· · · · ·				-
- 27/0		L	4	· · · · ·				
File>>			4 -					
rawing			-	· · · · ·				-
	14/04/20 1	-32	5-	· · · · · · · · · ·				-
04.GP	14/04		-					
E2716 LC —			-					-
754-SYDGE271604.GPJ NMLC		-	6-	· · · · ·			Sand	-
			-	· · · · ·				-
MARY								
ESUN		-30	7	· · · · ·				-
PAG			-	· · · · · · · · · ·				-
R ON		F	8-	· · · · · · · · · · · · · · · · · · ·	SHALE			-
METE			-	· · · · · · · · · · · · · · · · · · ·	SANDSTONE			
PIEZC			-					-
COF		-28	9—					-
U Log			-	· · · · ·				-
rev:A			-	· · · · ·				
Y.GLE			10-					_
BRAF			-	· · · · · · · · ·		10.75 m		-
		-26	- 11				<u> </u>	
0-10-5			-					
ы С			-					-
me	thod a	& suppo	ort		graphic log / core recovery ID	type installation	stickup tip depth water level	Relative Levels
	see en i ter	gineerin	g log for	details		date	(m) (m) (m)	(AHD) stickup tip water level
	1	0-Oct-12 vel on d		wn	core recovered (graphic symbols indicate material)	standpipe piezo.	10.75 m	26.25
		ater inflo		luid loss	no core recovered			
		artial dri						
		er press		result				
25		eons) fo rval sho						

Engineering Log - Borehole

Hamptons by Rose Pty Ltd ATF Northern Beaches Trust client:

principal:

754-SVDGF2

NON CORED

COF BOREHOLE:

rev:AU Log

GLBr

-IBRARY.

6 60

Ę

DT

e.g. B AD/T

washbore

bit shown by suffix

diatube

blank bit

TC bit

V bi

penetration

wate

T

no resistance ranging to
 refusal

10-Oct-12 water

vater inflow

water outflow

evel on date shown

SS

HP N

N*

Nc

VS

R

HB

U##

split spoon sample

undisturbed sample ##mm diameter

hand penetrometer (kPa) standard penetration test (SPT)

vane shear; peak/remouded (kPa)

SPT - sample recovered

SPT with solid cone

hammer bouncing

refusal

15-23 Fisher Road, Dee Why - Geotechnical Investigation Report project:

Fisher Road, Dee Why, NSW location:

checked by: RR position: E: 341,190.39; N: 6,264,046.77 (MGA94) surface elevation: 35.10 m (AHD) angle from horizontal: 90° drill model: Geoprobe 205, Track mounted drilling fluid: water hole diameter : 125 mm drilling information material substance consistency / relative density material description hand structure and penetro meter vations samples & additional obser soil group symbol Ê penetrat moisture condition field tests SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components method a graphic £ depth (water (kPa) Ч 0 2 0 0 0 -35 TOPSOIL: SILTY SAND Μ TOPSOIL D FILL: SAND: fine to coarse grained, brown. FILL |||||||FILL: SAND: fine to medium grained, non plastic, SPT 1, 1, 2 N*=3 11 | | | |dark brown, with rootlets. | | | |11 | | |11 1.0 11 Not Observable -34 ||11 | | | |CASING 11 AD/T SPT 3, 3, 3 N*=6 |||||2.0 -33 |||||||||||WEATHERED BEDROCK 2.8 m: sandstone cobbles 3.0 11 -32 Borehole BH02 continued as cored hole |||||||||||||||4.0 -31 111 |||||||||||||||||||||||||| | | |||||| | | |111 |||||50 |||||||||-30 111 |||||||||||111 6.0 -29 111 |||||||||||||||||| | | |||||| | | ||||||111 |||||7.0 ||||-28 |||||||||11 ||||||method AD auger drilling* support consistency / relative density samples & field tests soil group symbol & N nil bulk disturbed sample VS Μ mud В soil description verv soft AS auger screwing' C casing D disturbed sample based on AS 1726:2017 S F soft HA W hand auger Е environmental sample firm

Borehole ID.

project no.

logged by:

date started:

date completed:

sheet:

BH02 1 of 3

RN

. St VSt

H Fb

VL

MD

VD

D

L

moisture condition

dry moist wet plastic limit liquid limit

D M W

Wp WI

stiff

hard

friable

loose

dense

very stiff

very loose

very dense

medium dense

754-SYDGE271604

16 Mar 2020

16 Mar 2020

Engineering Log - Cored Borehole

client: Hamptons by Rose Pty Ltd ATF Northern Beaches Trust

principal:

project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report

location: Fisher Road, Dee Why, NSW

· ·					,264,046.77 (MGA94) surface elevation rack mounted drilling fluid: wa		(AHD)		•	e from horiz diameter : 1		
		nform		· · ·	, , , , , , , , , , , , , , , , , , ,	a. .				mass defe		
method & support	water	RL (m)	depth (m)	graphic log	rial substance material description ROCK TYPE: grain characterisics, colour, structure, minor components	weathering & alteration	estimated strength & Is50 ×= axial; O= diametral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	& RQD	defect spacing (mm)	additional ob defect de (type, inclination, plana	servations and escriptions urity, roughness, coating, ss, other) genera
		-35 - -34 -										
			30		started coring at 3.00m							
	srvable	-32 - -31 -	- 3.0 4.0 5.0 		FILL: SAND: fine to coarse grained, orange-brown.				0%		_	
- NMLC	Not Observable	- -29	- - 6.0 —		SANDSTONE: fine to coarse grained, white, grey, indistinctly bedded at 0°-20°.	FR		a=0.23 d=0.08	52%	K_1 		L, RO, CN,
		-28	- - 7.0 — -		7.22 m: healed iron joints Sandy CLAY (CI): medium plasticity, dark gr	ey, XW		a=0.31 d=0.15	71%			Defects are: PT, 0 - 30°, PL, RO, CN, unless otherwise described
			-	//////////////////////////////////////	with medium grained sand, derived from \extremely weathered shale.	/ FR		a=1.45	92%	<u> +++</u> 	_	
AS AD CB W RR	au cla va ro _CNI wi wi wi	reline o reline o	ewing ling ade bit	6mm) 5mm)	C casing M mud N none water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss	pg / core recovered core recovered graphic symbols indice no core recove & RQD baarrel withdraw	rery ate material)	d=1.12 weathering RS residu XW extret HW highly MW mode SW slight FR fresh *Wreplaced strength VL very lo L low M mediul H high	g & alter ual soil mely wea weathe rately w ly weath with A for a	athered red eathered ered	- defect type PT parting JT joint SS shear surface SZ shear zone CO contact CS crushed seam SM seam roughness VR very rough RO rough	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stained

 Borehole ID.
 BH02

 sheet:
 2 of 3

 project no.
 754-SYDGE271604

 date started:
 16 Mar 2020

 date completed:
 16 Mar 2020

 logged by:
 RN

 checked by:
 RR

Engineering Log - Cored Borehole

client: Hamptons by Rose Pty Ltd ATF Northern Beaches Trust

principal:

project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report

location: Fisher Road, Dee Why, NSW

	posit	ion:	E: 34	1,190.3	89; N: 6	,264,046.77 (MGA94) su	rface elevation: 38	5.10 m	(AHD)		angl	e from horiz	ontal: 90°	
	drill n	node	el: Geo	probe	205, T	rack mounted dri	illing fluid: water					hole	diameter : ′	125 mm	
	drilli	ing i	nform	ation	mate	rial substance						rock	mass defe	1	
	method & support	water	RL (m)	depth (m)	graphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor cor	cterisics,	weathering & alteration	st 8 ×	imated rength Is50 = axial; diametral ≅ ≖ ≚ ⊞	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm) ଛ <u>ହ ଛ ହ</u> ଛୁ		
	■NMLC	Not Observable	-27 -26 -	9.0		SANDSTONE: fine to medium gr distinctly bedded at 0°-30°. (cont	ained, grey, tinued)	FR			a=1.42 d=1.28 a=1.36 d=1.07	92%		- - - - - - -	- - - - - - - - - - - - - - - - - - -
CDF_0_9_07_LIBRARY.GLB rev.AU_Log_COF BOREHOLE: CORED_754-SYDGE271604.GPJ_ <cdrawingfile>> 27/04/2020 15:21</cdrawingfile>			- -24 - -23 - -22 -21 - -20			Borehole BH02 terminated at 10 Target depth	.30 m								
	AS AD CB W RR	au cla va ro LCNI wi wi wi	ashbore ck rolle VLC cc reline c reline c	rewing Iling Iade bit e	6mm) 5mm)	support C casing M mud N none water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss partial drilling fluid loss	graphic log / cor core rec (graphic syr no core core run & RQD barrel w RQD = Rock Qu	covered nbols indicate recovere	e materia ed		weathering RS residu XW extren HW highly MW modeu SW slighth FR fresh *Wreplaced Xt very lou L low M mediur H high VH very hig EH extrem	al soil nely wea weathe rately we weathe weathe n n gh	athered red eathered ered Ilteration	defect type PT parting JT joint SS shear surface SZ shear zone CO contact CS crushed seam SM seam roughness VR very rough RO rough SO smooth POL polished SL slickensided	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stained VN veneer CO coating

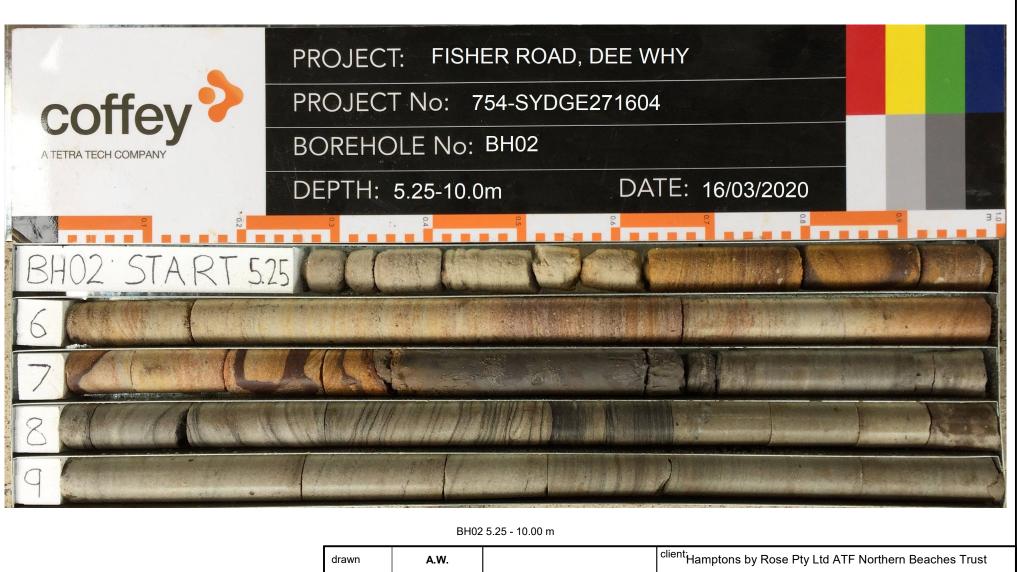
 date started:
 16 Mar 2020

 date completed:
 16 Mar 2020

 logged by:
 RN

BH02 3 of 3

RR


754-SYDGE271604

Borehole ID.

project no.

checked by:

sheet:

original size	A4		project no: 754-SYDGE271604 fig no: FIGURE 3 rev:
scale	N.T.S.	A TETRA TECH COMPANY	CORE PHOTOGRAPH BH02
date	27/04/2020	coffey	Fisher Road, Dee Why, NSW
approved	A.M.	a a	project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report
drawn	A.W.		Client Hamptons by Rose Pty Ltd ATF Northern Beaches Trust

	PROJECT: FISHER RO	AD, DEE WHY	
coffey	PROJECT No: 754-SYD	GE271604	
A TETRA TECH COMPANY	BOREHOLE No: BH02		
	DEPTH: 10.0-10.3m	DATE: 16/03/2020	
	E.O.H A	T 10.30 m	

drawn	A.W.		^{client} Hamptons by Rose Pty Ltd ATF Northern Beaches Trust							
approved	A.M.	<i>cc</i> b	project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report							
date	27/04/2020	coffey 7	Fisher Road, Dee Why, NSW							
scale	N.T.S.	A TETRA TECH COMPANY	CORE PHOTOGRAPH BH02							
original size	A4		project no: 754-SYDGE271604 fig no: FIGURE 4 rev:							

Engineering Log - Borehole

Hamptons by Rose Pty Ltd ATF Northern Beaches Trust client:

principal:

project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report

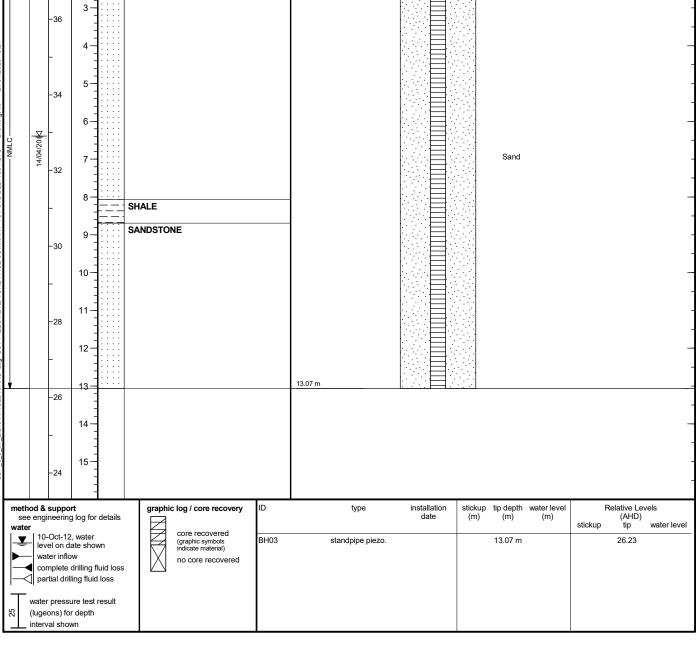
Fisher Road, Dee Why, NSW location:

100	cat	on:	ris	her Roa	au, 1		wiiy,	1434	V		checke	ed by:	RR			
ро	position: E: 341,225.54; N: 6,264,095.21 (MGA94) surface elevation: 39.30 m (AHD)											angle from horizontal: 90°				
dri	il m	odel: X	C Rig	, Track mo	unted				drilling fluid: water	hole di	iameter	: 125 mm				
d	rilli	ng info	rmati	on			mate	rial sub	ostance							
method &	support	1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa) § 8 8 8	structure and additional observations			
	dasing supp		wate	D	 		Gapt	soul g	colour, secondary and minor components CONCRETE: 130mm thick. FILL: SAND: fine to coarse grained, brown. Borehole BH03 continued as cored hole	M	consis	100	CONCRETE FILL - - - - - - - - - - - - - - - - - - -			
	S A / T	l 	orewin uger ore vn by	ng*	pen wat	etration		l ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	soil grou soil de based on A moisture con D dry M moist W wet Wp plastic lin WI liquid lim	scription S 1726:2 dition		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose D dense VD very dense			

Borehole ID. **BH03** 1 of 3 sheet: 754-SYDGE271604 project no. date started: 27 Mar 2020 27 Mar 2020 date completed: logged by: RN RR checked by:

A TETRA TECH	H COMPANY	Borehole ID.	BH03	
Enai	incoving Log Co	sheet:	2 of 3	
Eng	ineering Log - Co	project no.	754-SYDGE271604	
client:	Hamptons by Rose Pty Ltd	ATF Northern Beaches Trust	date started:	27 Mar 2020
principal:			date completed:	27 Mar 2020
project:	15-23 Fisher Road, Dee Why	- Geotechnical Investigation Repo	ort logged by:	RN
location:	Fisher Road, Dee Why, NSM	/	checked by:	RR
position: E	: 341,225.54; N: 6,264,095.21 (MGA94)	surface elevation: 39.30 m (AHD)	angle from horizontal: 90°	
drill model:	XC Rig, Track mounted	hole diameter : 125 mm		

	rill model: XC Rig, Track mounted drilling fluid: water									hole diameter : 125 mm				
drilling information material substance									aamelee	rock	mass defe	1	onvotiono and	
method & support water RL (m) depth (m)		graphic log	material description ROCK TYPE: grain characterisics, colour, structure, minor components	weathering & alteration	stre & l: X = O = di	nated ngth s50 ^{axial;} ametral ⊥ [⊥] [⊥]	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm) ଛ <u>ହ ଛୁ ଛୁ ଛୁ</u>	defect de (type, inclination, planar	servations and escriptions rity, roughness, coatii es, other) gen			
							111	ПТ						
		-39	-		started coring at 0.30m	SW			a=0.31			- SANDSTONE		
			_		SANDSTONE : medium to coarse grained, yellow-brown, indistinctly bedded at 0°-20°.	500	i 📓	l i i	d=0.30		╽┿┹┱┪┆┆┆	= SANDSTONE		
			-	· · · · ·								-		
			1.0 -						0 50	92%	; ; [; ; ; ;	_		
			1.0	· · · · ·			11	l i i	a=0.52 d=0.47					
		-38	-									-		
			-	· · · · ·			i 🕅	l i i				=		
		-	-									🖵 SM, Sandy clay, 100 mm	mm	
			2.0 —				l e	ii	a=0.75		lidiii	_		
		-37							d=0.53	64%		-		
				· · · · ·								=		
			-	· · · · ·								-		
		Γ	-	· · · · ·								-		
			3.0	· · · · ·			i		a=1.26 d=1.16					
		-36	-	· · · · ·		FR						_	Ň	
			-	· · · · ·			i 🛛	l i i			liiii.		Ő.	
		-	-	· · · · ·						100%				
 0			4.0	· · · · ·		SW		ii	a=0.71		liiii.		20°,	
- NMLC		-35		· · · · ·					d=0.55				Defects are: PT, 0 - 20°, PL, RO, CN,	
			-	· · · · ·				l i i						
			-	· · · · ·									ar XS	
		Γ	5.0-	· · · · · · · · · ·		FR							Defec	
			5.0 -	· · · · ·					a=0.73 d=0.87				_	
		-34	-	· · · · ·						100%		=		
			-	· · · · ·	5.50 m: minor carbonaceous flecks									
		-	-	· · · · ·										
			6.0 —	· · · · ·					a=1.16					
	-	-33	-	· · · · ·					d=1.04			_		
	120			· · · · · · · · · ·										
	14/04/20	_				SW				100%				
			7.0 —	· · · · ·			_ ! []		a=0.99					
			-	· · · · ·		FR			d=0.86					
		-32	-	· · · · ·										
			-	· · · · ·								_		
		-	-	· · · · · · · · · ·				8 I		93%				
		& supp				g / core recov	ery	¥.a	weathering RS residu	& alter	ation*	defect type PT parting	planarity PL planar	
W washbore					ore recovered			XW extrem HW highly	nely wea		JT joint SS shear surface	CU curved UN undulating		
					graphic symbols indica	te material)		MW moder SW slightly	ratelv we	eathered	SZ shear zone CO contact	ST stepped IR Irregular		
RR NML	WMLC NMLC core (51.9 mm) water inflow				▶ water inflow	o core recove	ed		FR fresh *W replaced w strength			CS crushed seam SM seam		
NQ wireline core (47.6mm) HQ wireline core (63.5mm) Core run & F				& RQD			VL very lov	w			contin-			
PQ		wireline core (85.0mm)					L low M mediur	n		roughness VR very rough	coating CN clean			
DT	(lugeons) for depth RQD = Rock Quality Designation (H high RO rough SN stain ion (%) VH very high SO smooth VN vene			VN veneer						
					interval shown				EH extrem	ely high		POL polished SL slickensided	CO coating	


A TETRA TECH	H COMPANY	Borehole ID.	BH03	
		sheet:	3 of 3	
Eng	ineering Log - Coi	project no.	754-SYDGE271604	
client:	Hamptons by Rose Pty Ltd A	TF Northern Beaches Trust	date started:	27 Mar 2020
principal:			date completed:	27 Mar 2020
project:	15-23 Fisher Road, Dee Why	- Geotechnical Investigation Repor	t logged by:	RN
location:	Fisher Road, Dee Why, NSW	,	checked by:	RR
position: E	: 341,225.54; N: 6,264,095.21 (MGA94)	surface elevation: 39.30 m (AHD)	angle from horizontal: 90°	
drill model:	XC Rig, Track mounted	hole diameter : 125 mm		

				-	ounted dri	lling fluid: water						hole diameter : 125 mm					
drill	ing i	inforr	nation	mate	erial substance							rock mass defects					
method & support	water	RL (m)	depth (m)	graphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	terisics,	weathering & alteration	s c	stima stren & Is X = av = dian	gth 50 dal; netral	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defec spacin (mm)	g	additional obs defect de (type, inclination, planar thicknes particular	scriptions ity, roughness, coating s, other)	
5 2	Ś	Ľ	ð	ъ 			ਡ ≷	≓.	⊥ ≥ ⊐ E	:5⊞ ¤∎	d = diametral	8∞	9 8 9 8 9 1 1 1 1	8	particular	gene	
		-31			SHALE: dark grey, distinctly lami 0°-10°.	nated at	MW				d=0.61 a=0.09 d=0.06				SHALE		
												93%					
		– – SA 9.0 – gre			SANDSTONE: fine to medium gr grey, red, brown, indistinctly bed	ained, pale ded at 0°-20°.		[a=0.44				SANDSTONE		
		-30			9.20 to 9.36 m: UCS Sample: 41	.8 MPa	-				d=0.38				_		
					SANDSTONE: coarse grained, re massive, with few pebble inclusion	ed-brown,											
		-										100%				C	
			10.0 -								a=1.46 d=1.84					cribeo cribeo	
		-29						1								20°, P e des	
NMLC					SANDSTONE: fine to medium gra grey, red-brown, indistinctly to dis	ained, pale stinctly bedded							Ì		- 0 - 2 erwis		
		-			at 0°-20°.		SW	1				Ì	-	Defects are: PT, 0 - 20°, PL, RO, CN, unless otherwise described			
			11.0 -					a=1.35 d=1.89						-	icts al unles		
		-28										100%				Defe	
								ļį	İ					į.	_		
		+															
			12.0 -							6 	a=1.85 d=2.20						
		-27						li						į			
												100%					
		+							1 1								
*		Borehole BH03 terminated at 13.07 m		Borehole BH03 terminated at 13.07 m			Borehole BH03 terminated at 13.07 m		4	a=1.67 d=1.05			÷				
		-26		- Target depth													
		-						ļį	ļļ	İİ.				Ì.			
			14.0-]				li						i			
		-25		-													
				1					ij					į.			
		F	15.0 -					li		İİ.							
			15.0 -														
		-24		-				Ì	ii II	Ϊİ.				Ì			
				1				Ì	11	Ϊİ.				Ì			
me	support support graphic log / core recovery AS auger screwing C casing M mud N none graphic log / core recovery							li			weathering	& altera	1 ation*		defect type	planarity	
AS AD											RS residua XW extrem HW highly	al soil nely wea weathei	thered		PT parting JT joint SS shear surface	PL planar CU curved UN undulating	
CB W	b claw of blade bit √ washbore R rock roller MLCNMLC core (51.9 mm) MLCNMLC core (51.9 mm) Muter inflow						rial)		MW moder SW slightly	ately we	eathered		SZ shear zone CO contact	ST stepped IR Irregular			
RR NM NQ									FR fresh *W replaced w strength				CS crushed seam SM seam				
HQ PQ	wireline core (63.5mm) wireline core (85.0mm) matrial drilling fluid loss core run & RQD						VL very lov	N			roughness	coating					
DT	T diatube							M mediun H high				VR very rough RO rough	CN clean SN stained				
Water pressure test result RQD = Rock Quality Designation (* 0 interval shown						(%)	VH very hig EH extreme				SO smooth POL polished SL slickensided	VN veneer CO coating					

-	_										
A TEC	CON	IPANY						Hole ID.	BH03		
~-			4~ "	Installatio				sheet:	1 of 1		
ez	10.	ne	ter	Installatio	n Log			project no.	754-SYDGE271604		
t:	Ha	amp	tons	by Rose Pty Ltd A	ATF North	ern Beaches Trus	st	date started:	27 Mar 2020		
ipal:	:							date completed:	27 Mar 2020		
ect:	15	5-23	Fish	er Road, Dee Why	- Geotec	hnical Investigation	on Report	logged by:	RN		
ion:	Fi	sher	r Roa	ad, Dee Why, NSW	/			checked by:	RR		
on: E	E: 341	225.54	4; N: 6,	264,095.21 (MGA94)	surface ele	vation: 39.30 m (AHD)	ang	le from horizontal: 90°			
ment	type:	XC Rię	g, Trac	ck mounted	drilling fluid	water	hole	e diameter : 125 mm			
g infe	ormat	ion	mate	rial substance		piezometer construction	details				
water	RL (m)	depth (m)	graphic log	material name			BH03	bore construction li drilling company: driller: driller's permit no.:	cense:		
	-	-	××××	CONCRETE		<u>0.50 m</u>					
	-38	- 1		SANDSTONE		0.80 m					
		2-				1.30 m			_		
	_	- - - 3-									
	ect: tion: E ment	ezor t: Ha sipal: ect: 1t tion: Fi on: E: 341, ment type: g informat unter type: g informat	t: Hamp cipal: ect: 15-23 tion: Fisher on: E: 341,225.5- ment type: XC Rig information E. E. G. C. C. C. C. C. C. C. C. C. C. C. C. C.	ezometer t: Hamptons sipal:	Ezometer Installatio t: Hamptons by Rose Pty Ltd A tipal: Extension of the system of the	ezometer Installation Log t: Hamptons by Rose Pty Ltd ATF North tipal:	ezometer Installation Log t: Hamptons by Rose Pty Ltd ATF Northern Beaches Truster tipa: Image: State Provide the state of th	ezometer Installation Log It: Hamptons by Rose Pty Ltd ATF Northern Beaches Trust Editation Editation Editation 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report Ettation Fisher Road, Dee Why - Geotechnical Investigation Report Ettation Fisher Road, Dee Why - Geotechnical Investigation Report Ettation Fisher Road, Dee Why - Geotechnical Investigation Report Ettation Fisher Road, Dee Why - Geotechnical Investigation Report Ettation Fisher Road, Dee Why - Geotechnical Investigation Report Ettation State Report Report Intervention Report Ettation Fisher Road, Dee Why - Geotechnical Investigation Report Intervention Report Ettation Fisher Road, Dee Why - Geotechnical Investigation Report Intervention Report Ettation Fisher Road, Dee Why - Geotechnical Investigation Report Intervention Report Interview State Report Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Interview Inter	sheet: project no. t: Hamptons by Rose Pty Ltd ATF Northern Beaches Trust date started: date started: cipal: date completed: cit: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report logged by: tion: Fisher Road, Dee Why, NSW checked by: on: E: 341,225.54; N: 6,264,095.21 (MGA94) surface elevation: 39.30 m (AHD) angle from horizontal: 90° ment type: XC Rig, Track mounted drilling fluid: water hole diameter: 125 mm ginformation material name ginformation concrete Bentonite and ging ginformation Concrete Bentonite and ging Concrete Bentonite and ging Concrete Bentonite		

A TETRA TECH COMPANY

project no:

scale

original size

N.T.S.

A4

CORE PHOTOGRAPH

BH03

754-SYDGE271604

fig no:

FIGURE 5

rev:

original size

A4

project no:

754-SYDGE271604

fig no:

FIGURE 6

rev:

Engineering Log - Borehole

Hamptons by Rose Pty Ltd ATF Northern Beaches Trust client:

principal:

1604.GP,

754-SYDGE27

NON CORED

COF BOREHOLE:

GLB rev:AU Log

-IBRARY.

6 60

Ę

e.g. B

т

AD/T

blank bit

TC bit

Vbi

15-23 Fisher Road, Dee Why - Geotechnical Investigation Report project:

Fisher Road, Dee Why, NSW location:

position: E: 341,217.64; N: 6,264,029.64 (MGA94) surface elevation: 37.60 m (AHD) angle from horizontal: 90° drill model: XC Rig, Track mounted drilling fluid: water hole diameter : 125 mm drilling information material substance consistency / relative density material description hand structure and penetro meter samples & additional observations method & support soil group symbol Ê penetrat moisture condition field tests SOIL NAME: plasticity or particle characteristic, graphic ŝ depth (water colour, secondary and minor components (kPa) Ч 0 2 0 0 0 DT CONCRETE CONCRETE CASING M ||||||AD/T D FILL: SAND: fine to coarse grained, brown. FILL SANDSTONE: recovered as Sandy CLAY, pale WEATHERED SANDSTONE | | | |grey, sand is fine to coarse grained. -37 1 Borehole BH04 continued as cored hole | | | |11 | | | |1.0 111 ||||||||||| | | ||||||-36 2.0 111 111 ||||||111 |||||-35 ||||| | | |I I I İ ||||| | | |3.0 |||||||||| | || | | |111 |||||34 4.0 ||||||||||||||||||||-33 ||||| | | || | | ||||||||| | | |50 ||||||||||||| | | ||||||-32 111 6.0 111 |||||||||||||||||||||-31 | | | ||||||111 |||||7.0 |||||||||| | | |-30 111 |||||method AD auger drilling* support consistency / relative density samples & field tests soil group symbol & N nil bulk disturbed sample VS Μ mud В soil description verv soft AS auger screwing' C casing D disturbed sample based on AS 1726:2017 S F soft HA W hand auger Е environmental sample firm penetration . St VSt washbore SS split spoon sample stiff no resistance ranging to
 refusal DT diatube undisturbed sample ##mm diameter very stiff U## moisture condition HP N hand penetrometer (kPa) standard penetration test (SPT) dry moist wet plastic limit liquid limit H Fb hard D M W friable wate N* SPT - sample recovered VL very loose bit shown by suffix 10-Oct-12 water Wp WI **T**

SPT with solid cone

hammer bouncing

refusal

vane shear; peak/remouded (kPa)

Nc

VS

R

HB

evel on date shown

vater inflow

water outflow

Borehole ID. **BH04** sheet: 1 of 3 754-SYDGE271604 project no. 30 Mar 2020 date started: 30 Mar 2020 date completed: logged by: RN checked by: RR

loose

dense

very dense

medium dense

L

MD

VD

D

A TETRA TECH	ICOMPANY		Borehole ID.	BH04	
Enai	nooring Log Cou		sheet:	2 of 3	
Engi	neering Log - Coi		project no.	754-SYDGE271604	
client:	Hamptons by Rose Pty Ltd A	ATF Northern Beaches Trust		date started:	30 Mar 2020
principal:				date completed:	30 Mar 2020
project:	15-23 Fisher Road, Dee Why	- Geotechnical Investigation Re	port	logged by:	RN
location:	Fisher Road, Dee Why, NSW	,		checked by:	RR
position: E:	341,217.64; N: 6,264,029.64 (MGA94)	surface elevation: 37.60 m (AHD)	angle	from horizontal: 90°	
drill model:)	XC Rig, Track mounted	hole d	liameter : 125 mm		

				rack mo	ounted drilling fluid: water				hole	diameter :	125 mm		
drilli	ng i	nform	ation	mate	rial substance			rock	ock mass defects				
metnoa & support	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain characterisics, colour, structure, minor components	weathering & alteration	estimated strength & Is50 X = axial; O = diametral	samples, field tests & Is(50) (MPa)	core run & RQD	defect spacing (mm)	defect de (type, inclination, plana	servations and scriptions rity, roughness, coating ss, other)	
ans	wa	RL	del	gra		alte	루 ㄱ 호 ㅍ 루 븝	a = axial; d = diametral	Ş≪	30 100 300 3000 3000	particular	gene	
		-	-									-	
					started coring at 0.40m			a=0.52			0.00000000		
Ĩ		-37	-	· · · · ·	SANDSTONE : fine to coarse grained, pale grey, massive, with carbonaceous flecks.	FR		d=0.40			SANDSTONE		
			-	· · · · ·						<u>iiii</u>			
		L	1.0	· · · · · · · · · ·				a=0.31 d=0.37	88%				
			-	.o	LITHIC SANDSTONE: medium to coarse		i ii	u 0.01		┟┟┿┿┛╽	=		
		-36		· · · ·0· · · · ·	grained, orange-brown, massive. 1.18 m: becoming orange, brown, pale grey					╞╃┪╎╎	=		
			-	· · · · ·	SANDSTONE: fine to medium grained, pale						_		
			2.0 —		yellow-brown, massive. 2.00 to 2.61 m: rootlets of tree within rock core,				77%				
		[-	· · · · ·	recovered the core, the rest of the roots washed					[-		
			-		away					┿╅╝╎╎ ╵┡┿╅┧╎╎	JT, 75°, PL, RO, Fe \$	SN, root jacking	
		-35	-		2.50 m: becoming fine to medium grained								
			3.0					a=0.70 d=0.74					
		-	-	· · · · ·	SANDSTONE: medium to coarse grained,			a=0.98	100%		_		
			-	· · · · ·	red-brown, massive to indistinctly bedded at 0°-20°.			d=1.18		iiii			
		-34	-	· · · · ·									
			-							iiiii		Š	
 [-	4.0	· · · · ·	4.00 m: becoming red-brown			a=0.91 d=0.98				RO	
- NMLC		-					li Mi			iiii		PL, lescri	
		-33	_	· · · · ·					100%			- 20° lise c	
		-33	-				li 🛛 i			<u>iiii</u> i		⊐T, 0	
			5.0					a=1.37 d=1.18			_	are: F ess o	
			-				i i	d=1.18		i i i i i		Defects are: PT, 0 - 20°, PL, RO, CN, unless otherwise described	
			-32	-	· · · · ·								Det
		-32											
			6.0	· · · · ·	SANDSTONE: fine to medium grained, red-brown to pale grey, distinctly bedded at			a=0.73					
		-	-	· · · · ·	0°-20°.			d=0.94	100%				
			-										
	<u>_</u>	-31	-										
	14/04/20		- 7.0										
	14/(-	7.0-					a=0.85					
			-					d=0.65	100%	1111			
		-30	-	· · · · ·					100 /0				
			-							İİİİ			
method & support support graphic log / c					ore recov	ery	weathering RS residu		ation*	defect type PT parting	planarity PL planar		
W washbore ▼ 10/10/12, water					recovered		XW extrem HW highly	nely wea		JT joint SS shear surface	CU curved UN undulating		
					10/10/12, water	symbols indica	te material)	MW moder SW slightly	rately we	athered	SZ shear zone CO contact	ST stepped IR Irregular	
	CN	MLC co	re (51.9		▶ water inflow	ore recover	red	FR fresh *W replaced w strength			CS crushed seam SM seam	-	
HQ wireline core (63.5mm) PQ wireline core (85.0mm) DT diatube						סג		VL very lov	w		roughness	coating	
						l withdraw	n	M mediur H high	n		VR very rough RO rough	CN clean SN stained	
	고 water pressure test result RQD = Rock Quality Designation (%)					VH very high			SO smooth POL polished	VN veneer CO coating			
					interval shown			EH extrem	ely high		POL polished SL slickensided	CO coating	

client: Hamptons by Rose Pty Ltd ATF Northern Beaches Trust

principal:

project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report

location: Fisher Road, Dee Why, NSW

Borehole ID.

project no.

logged by:

checked by:

date started:

date completed:

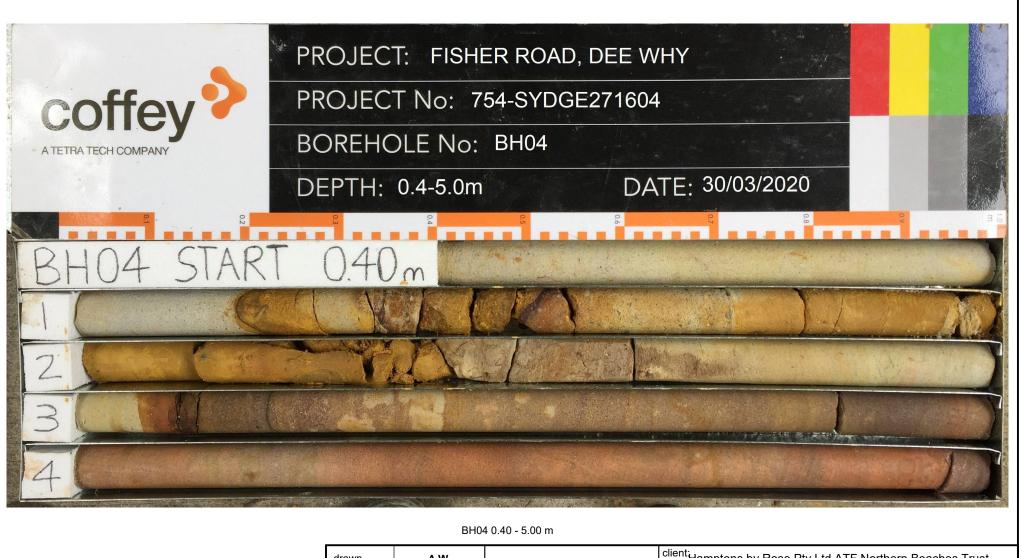
sheet:

BH04 3 of 3

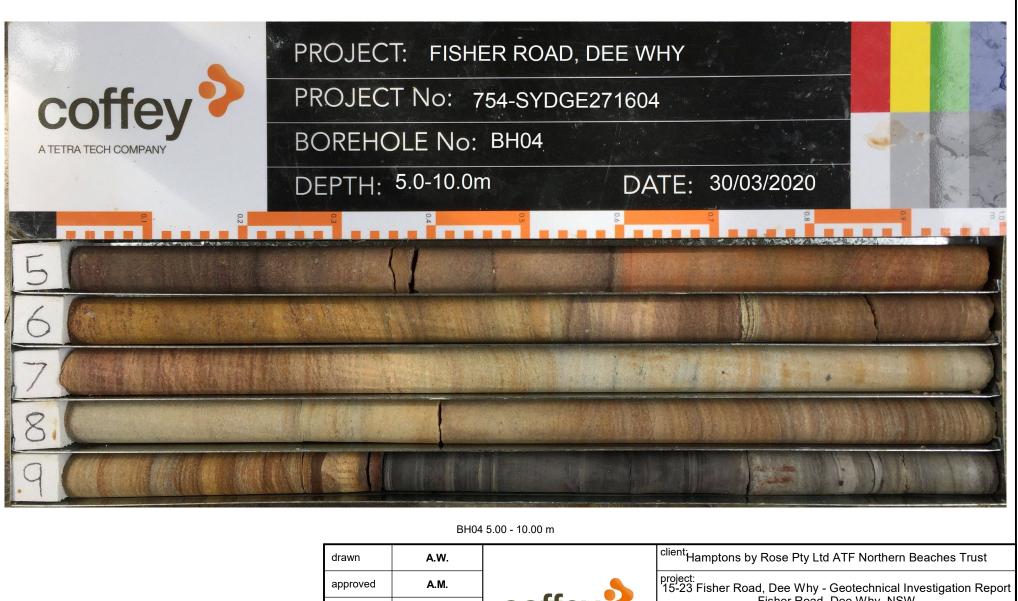
RN

RR

754-SYDGE271604


30 Mar 2020

30 Mar 2020


ļ	position: E: 341,217.64; N: 6,264,029.64 (MGA94) surface elevation: 37.60 m (AHD) drill model: XC Rig, Track mounted drilling fluid: water											angle from horizontal: 90°				
	drill n	node	I: XC	Rig, T	rack mo	bunted dri	lling fluid: water				hole diameter : 125 mm					
]	drilli	ing iı	nform	ation	mate	rial substance					rock	mass defe	ects			
	method & support	water	RL (m)	depth (m)	graphic log	material descriptio ROCK TYPE: grain charac colour, structure, minor con	terisics,	weathering & alteration	estimated strength & Is50 X = axial; O = diametral J _ ∑ ⊥ 5 H	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	defect de (type, inclination, plana	servations and scriptions rity, roughness, coating, is, other) general		
			- -29 -	- - - 9.0 —		SANDSTONE : fine to medium gr red-brown to pale grey, distinctly 0°-20°. (continued)		FR		a=1.02 d=1.23 a=1.11 d=1.15	95%		SANDSTONE			
	- NMLC -		-28	-		SHALE: dark grey, distinctly lami	nated at 0°-5°.			a=0.09 d=0.18			SHALE			
20 15:22			- -27	- 10.0 — - - -		SANDSTONE: medium grained, distinct carbonaceous laminae a SANDSTONE: fine to medium gr red-brown to pale grey, distinctly 0°-20°, with lithic rich bands. 10.43 to 10.63 m: UCS Sample:	t 0°-20°. ained, bedded at			a=1.12 d=0.34 a=0.08 d=0.05 a=0.31 d=0.22	100%		SANDSTONE - -			
CDF_09_07_LIBRARY.GLB rev.AU_Log_COF BOREHOLE: CORED_754-SYDGE271604.GPJ_< <drawingfile>> 27/04/2020_15:22</drawingfile>	<u>+</u>		-26 -25 -22 -24 -23 -23	11.0 - - - - - - - - - - - - - - - - - - -		Borehole BH04 terminated at 10 Target depth	97 m			a=1.45 d=1.36						
	-22 method & support AS auger screwing AD auger drilling CB claw or blade bit W washbore RR rock roller NMLCNMLC core (51.9 mm) NQ wireline core (47.6 mm) HQ wireline core (85.0 mm) PQ wireline core (85.0 mm) DT diatube					support C casing M mud N none water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss partial drilling fluid loss partial drilling fluid loss	graphic log / com core rec (graphic syn no core core run & RQD barrel w RQD = Rock Qu	overed hols indicate recovere ithdrawn	e material) ed	weathering RS residu XW extren HW highly KR fresh Wreplaced w strength VL very loy L low M medium H high VH very hig EH extrem	al soil nely wea weather rately we / weather ith A for a w n n	thered ed athered ered	defect type PT parting JT joint SS shear surface SZ shear zone CO contact CS crushed seam SM seam roughness VR VR very rough SO smooth POL polished SL slickensided	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stained VN veneer CO coating		

		_	-							
A TETR	ATEC	CON	IPANY						Hole ID.	BH04
Di	~7	- ~ +	~~~	4ar	Installation		-		sheet:	1 of 1
P I	ez	<u>'0</u>	ne	ter	[·] Installatior		J		project no.	754-SYDGE271604
clien	ıt:	Н	amp	tons	by Rose Pty Ltd A	TF North	hern Beaches Tru	st	date started:	30 Mar 2020
princ	cipal	:							date completed:	30 Mar 2020
proje			5-23	Fish	er Road, Dee Why	Geotec	hnical Investigat	ion Report	logged by:	RN
					ad, Dee Why, NSW	000.00		on noper.		RR
locat					,264,029.64 (MGA94)	fooo olo	······································		checked by:	KΛ
1° -					,264,029.64 (MGA94) ck mounted	drilling fluid	evation: 37.60 m (AHD) I: water	-	le from horizontal: 90° e diameter : 125 mm	
<u> </u>		format		1	rial substance		piezometer construction			
od & ort		(c	(m)	graphic log	material name				bore construction li drilling company: driller:	cense:
method	water	RL (m)	depth (m)	grapł				BH04	driller's permit no.:	
► AD/TDT CASING			-	Ś					Concrete	
1 3		F	-			'	<u>0.60 m</u>		Bentonite	-
			1-		SANDSTONE		0.90 m		Dentorite	-
			-	.o	1		1.40 m			-
		-36	-	· · · · ·	-					
			2							-
		-	-							-
			3-						·]	-
			-						:	-
		-34	-						· -	
			4							-
5		-	-							-
			5-							-
			-							
NMLC		-32	-							-
			6-						Sand	-
		Ļ	-						.]	-
	14/04/20		7-						.]	-
	14/0		-							_
		-30	-							
			8							-
		Ļ	-							-
			9-							-
2			-	<u></u>	SHALE					
		-28	-		SANDSTONE					-
			10-		SANDSTONE					-
		L	-							-
		<u> </u>	- 11-				10.97 m			
			-							
		-26	-							-
meth	10d &	suppo	rt		graphic log / core recover	y ID	type	installation stic	kup tip depth water level	
	e engi		g log for	details				date (r	m) (m) (m)	(AHD) stickup tip water level
-₹			2, water ate sho		core recovered (graphic symbols indicate material)	BH04	standpipe piezo.		10.97 m	26.63
		ter inflo mplete	ow drilling f	luid los	s no core recovered					
] par	tial dril	lling fluid	lloss						
25	(luged	•	ure test r depth							

	scale original size	N.T.S. A4	A TETRA TECH COMPANY	BH04 project no: 754-SYDGE271604 fig no: FIGURE 8 rev:
	date	27/04/2020	coffey 🗸	title: CORE PHOTOGRAPH
	approved date	A.M.		project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report Fisher Road, Dee Why, NSW
	drawn	A.W.		client: Hamptons by Rose Pty Ltd ATF Northern Beaches Trust

date

scale

original size

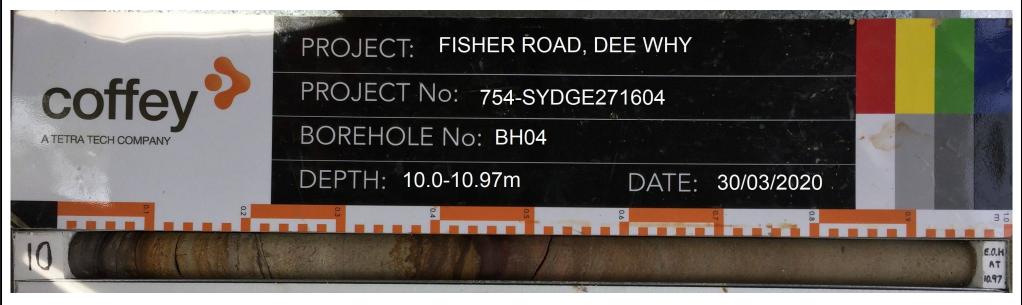
27/04/2020

N.T.S.

A4

 Project:
 15-23 Fisher Road, Dee Why - Geotechnical Investigation

 TETRA TECH COMPANY
 Fisher Road, Dee Why, NSW


 title:
 CORE PHOTOGRAPH

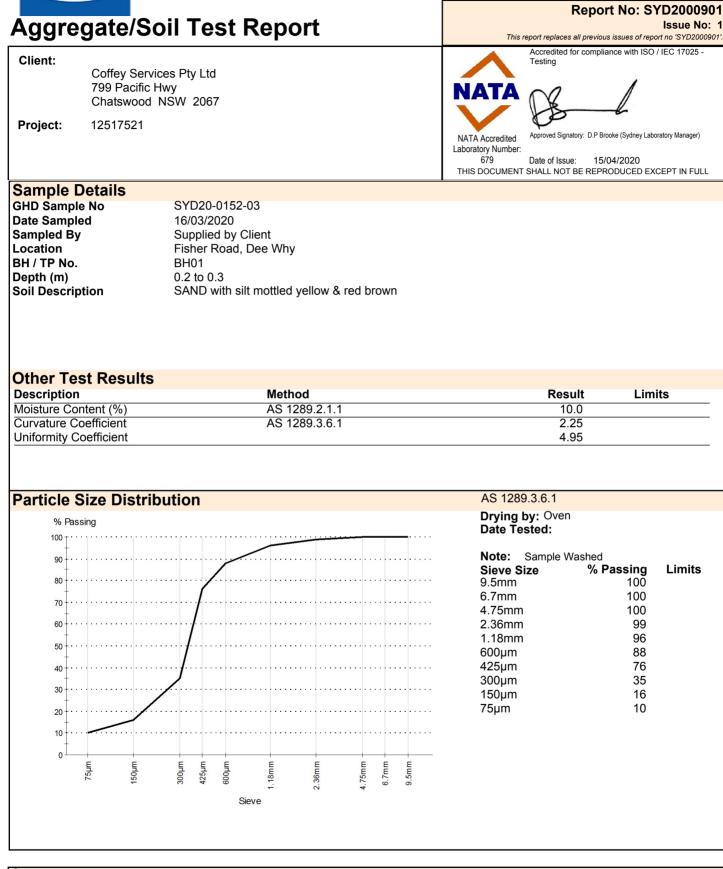
 BH04
 Project no:

 754-SYDGE271604
 fig no:

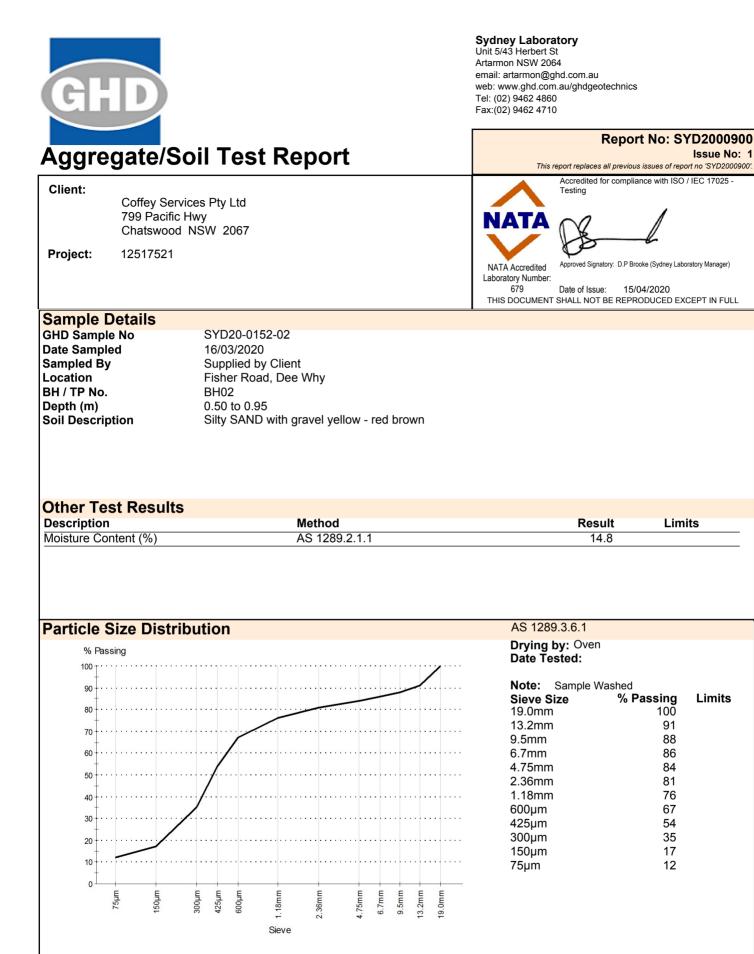
 Figure 9

rev:

BH04 10.00 - 10.97 m


	drawn	A.W.		client Hamptons by Rose Pty Ltd ATF Northern Beaches Trust		
	approved	A.M.		project: 15-23 Fisher Road, Dee Why - Geotechnical Investigation Report Fisher Road, Dee Why, NSW		
	date	27/04/2020		title:		
	scale	N.T.S.		CORE PHOTOGRAPH BH04		
	original size	A4		project no: 754-SYDGE271604 fig no: FIGURE 10 rev:		

This page has been left intentionally blank


Appendix D – Laboratory Test Results

Sydney Laboratory Unit 5/43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: www.ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax:(02) 9462 4710

Comments

Comments

Sydney Laboratory Unit 5/43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: www.ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax:(02) 9462 4710

Aggroge	ato/Soil Tost Report		Report No: SYD2000899
Aggrega	ate/Soil Test Report	This	report replaces all previous issues of report no 'SYD2000899'.
79	offey Services Pty Ltd 99 Pacific Hwy hatswood NSW 2067	NATA	Accredited for compliance with ISO / IEC 17025 - Testing
Project: 12	2517521	NATA Accredited Laboratory Number: 679 THIS DOCUMENT	Approved Signatory: D.P Brooke (Sydney Laboratory Manager) Date of Issue: 15/04/2020 F SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample Deta	ails	Particle Si	ze Distribution
GHD Sample N		Method:	AS 1289.3.6.1
Date Sampled Sampled By	16/03/2020 Supplied by Client	Date Tested:	
Location BH / TP No. Depth (m)	Fisher Road, Dee Why BH02 1.50 to 1.95	Note:	Sample Washed
Soil Description		Sieve Size 13.2mm 9.5mm 6.7mm 4.75mm 2.36mm	% Passing Limits 100 100 98 97 95
Other Test F	Results	1.18mm 600µm	89 78
Description	Method Result Limits	425µm	62
Moisture Conten		300µm	38
Sample History Preparation Linear Shrinkage Mould Length (m Crumbling Curling Cracking Liquid Limit (%) Method Plastic Limit (%) Plasticity Index (nm) 0 No No AS 1289.3.1.1 N/A Four Point AS 1289.3.2.1 NP	150μm 75μm	16 10
		Chart	
		% Passing 100 00 00 00 00 00 00 00 00 00 00 00 00	with the second se

Comments

NP = Non Plastic

CLIENTS | PEOPLE | PERFORMANCE

GHD GEOTECHNICS

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnica Tel: (02) 9462 4860 Fax: (02) 9462 4710

Uniaxial Compre	Report No: SYD2001004 Issue No: 1						
Client:	Coffey Services Australia Pty Ltd.			Accredited for compliance with ISO / IEC 17025 - Testing			
Project:	Fisher Road	t		NATA	Laboratory Accre	editation No. 679	
Location:	Dee Why						
Job No.:	12519071	12519071			Authorised signatory: D. Brooke Date of Issue: THIS DOCUMENT SHALL NOT BE REPRODUCED I		
Sample Details							
Test Method:		AS4133.4.2.2 - l	JCS less than 5	0 Mpa			
Storage History:		Tested as receiv	ved	·			
Sample ID:		SYD20-0152-07	SYD20-0152-08				
Client Sample ID:		-	-				
Borehole No.:		BH03	BH04				
Depth (m):		9.20 to 9.36	7.00 to 7.16				
Date Sampled:		27/03/2020	30/03/2020				
Date Tested:		6/04/2020	6/04/2020				
Sample Description:		Sandstone	Sandstone				
Test Results		•	· ·	•			
Sample Height (mm):	150.7	151.2				
Sample Diameter (m	•	51.6	51.7				
Sample Height/Diam	•	2.9	2.9				
Sample Dry Density (t/m3):		2.351	2.175				
Sample Dry Density							
Sample Dry Density Moisture Content (%	b):	4.1	8.1				
Moisture Content (%	,	4.1 7.5	8.1 7.4				
Moisture Content (% Time of Failure (min):						
Moisture Content (%):	7.5	7.4				
Moisture Content (% Time of Failure (min Uniaxial compressiv Mode of Failure:): e strength (MPa):	7.5 41.8	7.4 26.5				
Moisture Content (% Time of Failure (min Uniaxial compressiv Mode of Failure: Specimen Comment Where rock strength is like): e strength (MPa): ts: ely to exceed	7.5 41.8	7.4 26.5				
Moisture Content (% Time of Failure (min Uniaxial compressiv Mode of Failure: Specimen Comment Where rock strength is like): e strength (MPa): ts: ely to exceed	7.5 41.8	7.4 26.5				
Moisture Content (% Time of Failure (min Uniaxial compressiv Mode of Failure: Specimen Comment Where rock strength is like 50 Mpa, ends are ground): e strength (MPa): ts: ely to exceed flat to 0.02mm	7.5 41.8	7.4 26.5				
Moisture Content (% Time of Failure (min Uniaxial compressiv): e strength (MPa): ts: ely to exceed flat to 0.02mm oplicable): The length to c	7.5 41.8 Double Shear	7.4 26.5 Double Shear de the test method I	imits of 2.5:1 to 3:1.			
Moisture Content (% Time of Failure (min Uniaxial compressiv Mode of Failure: Specimen Comment Where rock strength is like 50 Mpa, ends are ground Comments (if ap Note 1 Note 2): e strength (MPa): ts: ely to exceed flat to 0.02mm oplicable): The length to c Specimen side	7.5 41.8 Double Shear liameter ratio falls outsi s not straight to within to	7.4 26.5 Double Shear de the test method I	imits of 2.5:1 to 3:1.			
Moisture Content (% Time of Failure (min Uniaxial compressiv Mode of Failure: Specimen Comment Where rock strength is like 50 Mpa, ends are ground Comments (if ap Note 1): e strength (MPa): ts: ely to exceed flat to 0.02mm Oplicable): The length to c Specimen side Specimen end:	7.5 41.8 Double Shear	7.4 26.5 Double Shear de the test method I 0.3mm angles		to 2 5:1		

Sydney Laboratory Unit 5 / 43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax: (02) 9462 4710

Uniaxial Compressive Strength - Report

Report No: SYD2001004

Issue No: 1

Client: Coffey Ser	vices Australia Pty Ltd.	
Project: Fisher Roa	Id NATA	Accredited for compliance with ISO / IEC 17025
Location: Dee Why		Laboratory Accreditation No. 679
Job No.: 12519071	THIS DOCUMENT	SHALL NOT BE REPRODUCED EXCEPT IN FULL.

Photographs

BH03 9.20 to 9.36

BH04 7.00 to 7.16

CERTIFICATE OF ANALYSIS 240767

Client Details	
Client	GHD Pty Ltd
Attention	David Brooke
Address	57-63 Herbert Street, Artarmon, NSW, 2064

Sample Details	
Your Reference	<u>12519071</u>
Number of Samples	4 soil
Date samples received	14/04/2020
Date completed instructions received	14/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	15/04/2020			
Date of Issue	15/04/2020			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Diego Bigolin, Team Leader, Inorganics Authorised By

Nancy Zhang, Laboratory Manager

Soil Aggressivity					
Our Reference		240767-1	240767-2	240767-3	240767-4
Your Reference	UNITS	BH02	BH01	BH03	BH04
Depth		1.5-1.95	0.8-0.9	0.2-0.3	0.2-0.3
Type of sample		soil	soil	soil	soil
pH 1:5 soil:water	pH Units	7.8	7.2	8.8	8.7
Electrical Conductivity 1:5 soil:water	µS/cm	20	28	76	17
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	<10	10	23	<10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

QUALITY CONTROL: Soil Aggressivity					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	1	7.8	7.9	1	101	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	1	20	20	0	99	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	<10	<10	0	95	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	<10	<10	0	98	[NT]

Result Definiti	Result Definitions			
NT	Not tested			
NA	Test not required			
INS	Insufficient sample for this test			
PQL	Practical Quantitation Limit			
<	Less than			
>	Greater than			
RPD	Relative Percent Difference			
LCS	Laboratory Control Sample			
NS	Not specified			
NEPM	National Environmental Protection Measure			
NR	Not Reported			

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

END OF REPORT