

Sydney Environmental Group

Detailed Site Investigation

43, 45, & 49 Warriewood Road, Warriewood NSW

Warriewood Developers (c/- Macpherson Kelley)

Report No: 2148-DSI-01-280723.v1f **Report Date:** 28 July 2023

 Sydney Environmental Group Pty Ltd PO Box A1420, Sydney South NSW
 Info@sydneyenvironmental.com.au

NOTICE: The information in this report is privileged and confidential, intended only for the use of the client above. This publication may not, therefore, be lent, copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form without the express written permission of Sydney Environmental Group.

DOCUMENT RECORD

Revision	Date	Author	Reviewer	
v1f	28 July 2023	Mitchell Kirby	Steven Wallace	

Author Signature	Ju / hickory	Reviewer Signature	Arom vallan
Name Mitchell Kirby		Name	Steven Wallace
Credentials	M.Env.Sc., B.Nat.Sc., Licensed Asbestos Assessor LAA002039		CEnvP, M.Sc.Envir.Sci, B.Sc. Meteorology, Licensed Asbestos Assessor LAA001096
Title	Environmental Scientist	Title	Managing Consultant

Document Title:	Stage 2 Detailed Site Investigation, 43, 45 & 49 Warriewood Road, Warriewood NSW	
Site Address:	43, 45 & 49 Warriewood Road, Warriewood NSW	
Client Name:	Warriewood Developers Pty Ltd (c/- Macpherson Kelley Pty Ltd)	
Site Size:	≈ 2.21 ha	
Area of Investigation	≈ 1.3 ha	
Reference Number: 2148-DSI-01-280723.v1f		
Project Type:	Detailed Site Investigation	
Project Type Abbreviation:	DSI	
Document Draft:	FINAL	
Document Revision No.	v1	

Prepared by Sydney Environmental Group Pty Ltd ABN: 14 631 026 214

EXECUTIVE SUMMARY

Sydney Environmental Group (SE) was engaged by Warriewood Developers Pty Ltd (c/- Macpherson Kelley Pty Ltd) (the client), to undertake a Detailed Site Investigation of the site located at 43, 45 & 49 Warriewood Road, Warriewood NSW (refer Figure 1 with the 'site' boundaries outlined in Figure 2).

SE has the following project appreciation:

- The entirety of the site covers an area of approximately 2.21 ha;
- The targeted intrusive assessment was undertaken within a 1.3 ha portion of the site;
- The site is proposed for demolition of existing structures and construction of two residential flat buildings and the associated residential subdivision of land;
- A Stage 1 Preliminary Site Investigation was undertaken for the site by NG Child & Associates in November 2021 (NG 2021);
- An updated Stage 1 Preliminary Site Assessment undertaken for the site by Sydney Environmental Group in July 2023 (SE 2023);
- A Detailed Site Investigation is required to characterise potential areas of environmental concern (PAECs) identified by SE (2023), identify any contamination that may be present, and provide advice on the suitability of the site for the proposed future land-use.

The objectives of this project were to:

- Assess the potential for contamination to be present on the site as a result of past and current land use activities;
- Target Potential Areas of Environmental Concern identified in previous contamination assessments undertaken;
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed future land use setting; and
- Provide recommendations for further investigation, management and/or remediation (if warranted).

SE undertook the following scope of works to achieve the project objective:

- Review of the previous contamination assessment prepared for the site;
- The preparation of a Sampling and Analysis Quality Plan (SAQP);
- Laboratory analysis of selected samples collected during the field investigation; and
- An assessment of the contamination status of the fill materials within the site and the recommendation of any further remedial requirements associated with the redevelopment of the site (if necessary).

Based on SE's assessment of the desktop review information, fieldwork data and laboratory analytical data, in the context of the proposed redevelopment scenario, SE makes the following conclusions:

- Non-friable Asbestos Containing Materials (ACM) were identified within surficial soils (AEC02 and AEC03);
- The detected concentrations of the remaining identified contaminants of potential concern in the soils assessed are considered unlikely to present:
 - An unacceptable direct contact human health exposure risk; or
 - An unacceptable inhalation risk, with the exception of localised asbestos impacts (AEC02 and AEC03) discussed above; and
 - A petroleum hydrocarbon management risk;
- The detected concentrations of identified contaminants of potential concern in the soils characterised by samples assessed are considered unlikely to present an unacceptable ecological contamination risk;
- Underlying soil materials within AEC01 could not be assessed due to the presence of existing structures;

Sydney

• Based on the assessments undertaken as part of this investigation, SE has concluded that the site is generally suitable for the proposed redevelopment subject to remediation of minor localised non-friable asbestos impacts (AECO2 and AECO3), and further characterisation of soils underlying existing on-site structures.

Based on the conclusions stated above and the background data gathered during the course of this investigation, SE recommends:

- Preparation of a Remedial Action Plan to outline the methodology to remediate minor localised shallow non-friable asbestos impacts and to further characterise previously inaccessible soils situated beneath the existing building footprints following demolition;
- Undertake a hazardous building materials survey of the structures present on-site prior to demolition;
- Following removal of hazardous building materials (if identified) and subsequent demolition of the onsite structures, a clearance inspection should be carried out by an appropriately qualified occupational hygienist / NSW LAA;
- A supplementary contamination assessment is to be undertaken beneath the building footprints following demolition by an appropriately experienced environmental scientist; and
- A waste classification assessment must be carried out on any soil materials proposed for disposal offsite as per the NSW EPA Waste Classification Guidelines (2014).

This report, including its conclusions and recommendations, must be read in conjunction with the limitations presented in **Section 15.**

TABLE OF CONTENTS

DO	DOCUMENT RECORD1			
EXE	CUT	IVE SUMMARY	2	
1.	INT	RODUCTION	8	
1.	.1.	Background	8	
1.	.2.	Proposed Development	8	
1.	.3.	Objectives	8	
1.	.4.	Scope of Work	8	
2.	SITE		9	
3.	GEC	DLOGY, ACID SULFATE SOILS, TOPOGRAPHY AND HYDROGEOLOGY	10	
4.	PRE	VIOUS ASSESSMENTS	11	
4.	.1.	NG (2021)	.11	
4.	.2.	SE (2023)		
4	DAI	TA INTEGRITY ASSESSMENT	14	
5.	CON	NCEPTUAL SITE MODEL DEVELOPMENT	15	
-	.1.	Potential Areas of Environmental Concern and Contaminants of Potential Concern	-	
5.	.2.	Land Use Setting		
5.	.3.	Drinking Water Use	.15	
5.	.4.	Recreational Water Use	.16	
5.	.5.	Aquatic Ecosystems	.16	
5.	.6.	Direct Contact – Human Health	.16	
5.	.7.	Inhalation / Vapour Intrusion – Human Health	.16	
5.	.8.	Aesthetics	.16	
5.	.9.	Ecological Health - Terrestrial Ecosystems	.16	
5.	.10.	Management Limits for Petroleum Hydrocarbon Compounds	.17	
6.	SITE	E ASSESSMENT CRITERIA	18	
7.	DAT	TA QUALITY OBJECTIVES	19	
7.	.1.	Step 1: State the problem	.19	
7.	.2.	Step 2: Identify the decision/goal of the study	.19	
7.	.3.	Step 3: Identify the information inputs	.19	
7.	7.4. Step 4: Define the boundaries of the study		.20	
7.	.5.	Step 5: Develop the analytical approach (or decision rule)	.20	
	7.5.1	1. Rinsate Blanks	.20	
7.5.2.		2. Trip Spikes and Trip Blank Samples	.20	
7.5.3.		3. Field Duplicates and Field Triplicates	.21	
	7.5.4			
	7.5.5			
	.6.	Step 6: Specify the performance or acceptance criteria		
7.	.7.	Step 7: Develop the plan for obtaining data	.22	

Page 4

	7.7.1	. Sampling Point Density and Locations	22			
7.7.2. Sampling Met		Sampling Methodology	23			
7.7.3. Identification, Storag		Identification, Storage and Handling of Samples	23			
	7.7.4	. Decontamination	24			
	7.7.5. Laboratory Selection		24			
	7.7.6	5. Laboratory Analytical Schedule	24			
	4.2.1	Laboratory Holding Times, Analytical Methods and Limits of Reporting	24			
8.	DET	AILED SITE INVESTIGATION METHODOLOGY 2	26			
8	8.1.	Scope of Fieldworks	26			
8	8.2.	Laboratory Analysis	26			
9.	FIEL	DWORK 2	27			
ç	9.1.	Soil Sampling	27			
ç).2.	Site Geology	27			
ç	9.3.	Odours	30			
ç	9.4.	Staining	30			
ç	9.5.	Potential Asbestos Containing Materials	30			
10.	LA	ABORATORY ANALYSIS	3			
11.	D	ATA QUALITY INDICATOR ASSESSMENT	4			
1		Completeness				
1		Comparability				
1	11.2. Comparability 11.3. Representativeness					
1	11.4. Precision					
1	1.5.	Accuracy	36			
12.	D	ISCUSSION	;7			
1	2.1.	Human Health (Residential A)	37			
	12.1.	1. Benzene, Toluene, Ethylbenzene, Xylenes, and Naphthalene (BTEXN)	37			
	12.1.	2. Heavy Metals	37			
	12.1.	3. Total Recoverable Hydrocarbons (TRH)	37			
	12.1.	4. Organochlorine Pesticides (OCP)	37			
	12.1.	5. Polycyclic Aromatic Hydrocarbons (PAH)	37			
	12.1.	6. Polychlorinated Biphenyls (PCB)	37			
	12.1.	7. Asbestos	37			
1	2.2.	Petroleum Hydrocarbon Management Limits (Residential A)	37			
1	.2.3.	Aesthetics	38			
1	2.4.	Terrestrial Ecosystems	38			
	12.4.	1. Ecological Screening Levels (ESLs)	38			
	12.4.	1. Ecological Investigation Levels (EILs)	38			
1	.2.5.	Groundwater and Surface Water	38			
13.	I3. REVISED CONCEPTUAL SITE MODEL 39					
14.	С	ONCLUSIONS AND RECOMMENDATIONS4	0			
15.	S1	TATEMENT OF LIMITATIONS4	1			

FIGURES

Figure 1	Site Locality
Figure 2	Site Layout
Figure 3	Sampling Locations
Figure 4	Areas of Environmental Concern

TABLES

Results Table (Chemical Characterisation) Results Table (Asbestos Characterisation) Results Table (RPD)

APPENDICES

- A Test Pit Logs
- B Laboratory Documentation
- C Site Plans

ABBREVIATIONS

AHD	Australian Height Datum		
ANZECC	Australian and New Zealand Environment and Conservation Council		
AST	Aboveground storage tank		
Bgs	Below ground surface		
BTEX	Benzene, Toluene, Ethylbenzene, Xylene		
Btoc	Below top of casing		
CoC	Chain of Custody		
CSM	Conceptual Site Model		
DSI	Detailed Site Investigation		
EC	Electrical conductivity		
EIL	Ecological Investigation Level		
ESL	Ecological Screening Level		
EPA	Environment Protection Authority		
GS	Geological Survey of NSW		
HIL	Health Investigation Levels		
HSL	Health Screening Levels		
IL	Investigation Levels		
LOR	[Laboratory] Limit of reporting		
ΝΑΤΑ	National Association of Testing Laboratories		
N/A	Not applicable		
ND	Not detected		
NEPC	National Environment Protection Council		
NEPM	National Environment Protection Measure		
NSW EPA	NSW Environment Protection Authority		
ОСР	Organochlorine Pesticide		
ОРР	Organophosphorus Pesticide		
РАН	Polycyclic aromatic hydrocarbon		
РСВ	Polychlorinated biphenyl		
PID	Photo-ionisation detector		
PSH	Phase separated hydrocarbon		
PSI	Preliminary Site Investigation		
QA/QC	Quality assurance/Quality control		
RPD	Relative percentage difference		
SAQP	Sampling Analysis and Quality Plan		
SE	Sydney Environmental Group Pty Ltd		
SVOC	Semi-volatile organic compound		
ТРН	Total petroleum hydrocarbon		
USCS	Unified Soil Classification System		
UST	Underground storage tank		
VOC	Volatile organic compound		

1. INTRODUCTION

1.1. Background

Sydney Environmental Group (SE) was engaged by Warriewood Developers Pty Ltd (c/- Macpherson Kelley Pty Ltd) (the client), to undertake a Detailed Site Investigation of the site located at 43, 45 & 49 Warriewood Road, Warriewood NSW (refer Figure 1 with the 'site' boundaries outlined in Figure 2).

SE has the following project appreciation:

- The entirety of the site covers an area of approximately 2.21 ha;
- The targeted intrusive assessment was undertaken within a 1.3 ha portion of the site;
- The site is proposed for demolition of existing structures and construction of two residential flat buildings and the associated residential subdivision of land;
- A Stage 1 Preliminary Site Investigation was undertaken for the site by NG Child & Associates in November 2021 (NG 2021);
- An updated Stage 1 Preliminary Site Assessment undertaken for the site by Sydney Environmental Group in July 2023 (SE 2023);
- A Detailed Site Investigation is required to characterise potential areas of environmental concern (PAECs) identified by SE (2023), identify any contamination that may be present, and provide advice on the suitability of the site for the proposed future land-use.

1.2. Proposed Development

The site is proposed for redevelopment comprising demolition of existing structures and construction of two residential flat buildings containing 34 apartments with basement parking and associated services, and the associated residential subdivision of land.

As the proposed future site use is proposed to include lots with accessible soil, SE considers it reasonable to adopt the 'HIL A' per NEPM ASC 2013, in order to conservatively assess the site for any future proposed land use as well as the current land use.

Currently under the *State Environmental Planning Policy (SEPP) (Resilience and Hazards)* - a consent authority must not consent to the carrying out of any redevelopment unless it has considered whether the land is contaminated. This report has been prepared to satisfy Clause 6 and 7 of SEPP and Council planning policies.

1.3. Objectives

The objectives of this project were to:

- Assess the potential for contamination to be present within the cleared portion of the site as a result of past and current land use activities;
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting; and
- Provide recommendations for further investigation, management and/or remediation (if warranted).

1.4. Scope of Work

SE undertook the following scope of works to achieve the project objective:

- Review of the previous contamination assessment prepared for the site;
- The preparation of a Sampling and Analysis Quality Plan (SAQP);
- Laboratory analysis of selected samples collected during the field investigation; and
- An assessment of the contamination status of the fill materials within the site and the recommendation of any further remedial requirements associated with the redevelopment of the site (if necessary).

2. SITE IDENTIFICATION

The site identification details and associated information are presented in Table 2.1.

Table 2.1. Site Identification Information

Attribute	Description	
Street Address	43, 45, and 49 Warriewood Road, Warriewood NSW	
Lot and Deposited Plan (DP)	Lots 1 & 2 DP349085 and Lot 2 DP972209	
Geographical Coordinates	33°41'13.36"S 151°17'52.71"E (Centre of site)	
Site Area	≈ 2.21 ha	
Area of Investigation	≈ 1.3 ha	
Local Government Area (LGA) Northern Beaches Council		
Parish	Narrabeen	
County	Cumberland	
Zoning R3 – Medium Density Residential (Pittwater Local Environmental Plan 2014)		

The locality of the site is set out in Figure 1.

The general layout and boundary of the site is set out in Figure 2.

A copy of a detail and level survey is presented in **Appendix A**.

3. GEOLOGY, ACID SULFATE SOILS, TOPOGRAPHY AND HYDROGEOLOGY

Regional geology, topography, soil landscape and hydrogeological information are presented in **Table 3.1**.

Table 3.1. Regional S Attribute	Description		
Climate	A review of the closest weather station to the site (Norah Head AWS, Station Number: 061366) indicated that the climate is relatively mild with average maximum temperatures ranging from $17.5 - 26.3 \circ$ C and minimum temperatures ranging from $9.9 - 20.0 \circ$ C. Rainfall is relatively varied across the year, ranging from 5.9 days of rain per month in August, to 10.0 average days of rainfall per month in March. Average monthly rainfall varied from 63.4 mm in September up to 145.7 mm in June.		
Geology	A review of the Environment NSW 'eSpade V2.2' web application (environment.nsw.gov.au/eSpade2WebApp, accessed 4 July 2023), indicated that the western portion of the site is likely to be underlain by Terrigal Formation of the Narrabeen Group, comprising lithic and quartz sandstone and siltstone, minor sedimentary breccia, claystone and conglomerate. The eastern portion of the site is likely to be underlain by Narrabeen Group sediments, comprising interbedded laminate and shale with quartz to lithic quartz sandstone.		
Acid Sulfate Soils (ASS)	A review of the Environment NSW 'eSpade V2.2' web application (environment.nsw.gov.au/eSpade2WebApp, accessed 4 July 2023), indicates that the site lies in an area mapped as ' <i>No Known Occurrence</i> ' with respect to acid sulfate soils. This infers that land management activities are not likely to be affected by acid sulfate soil materials. Further assessment of acid sulfate soils in the context of this investigation is considered by SE as not warranted.		
Topography	Generally, the local landscape consists of rolling to steep hills on fine-grained Narrabeen Group sediments, with local relief 60 – 120 m and slopes >25%. The site topography slopes downward towards the south-west of site. SE understands that the site is located at an elevation approximately 6 m to 17 m Australian Height Datum (AHD).		
Hydrology and Hydrogeology	 Surface water courses proximal to the site include Narrabeen Creek, located immediately southwest of the site, Fern Creek, located 455 m west of the site and the South Pacific Ocean, located approximately 950 m east of the site. Based on distances to the nearest surface water course and the site topography, groundwater flow in the vicinity of the site is considered likely to be towards the west toward Narrabeen Creek. A review of the NSW Office of Water groundwater database undertaken on 4 July 2023 indicated there were four (4) registered groundwater features located within a 500m radius of the site: GW106698 – monitoring bore, Standing Water Level (SWL) not specified, located approximately 110 m north-west of the site; GW106697 – monitoring bore, SWL not specified, located approximately 75 m south-west of the site; GW106699 – monitoring bore, SWL not specified, located approximately 200 m south-west of the site; and 		
Adjacent Sensitive Receptors	A review of the Bureau of Meteorology Groundwater Dependent Ecosystem Map was undertaken to determine the closest sensitive ecological receptors. The closest ecological receptor is the South Pacific Ocean, located approximately 950 m east of the site identified to contain a low dependent ecosystem. South Creek, located approximately 1.65 km south of the site identified to contain a highly dependent ecosystem. The closest sensitive human receptors are the residential properties surrounding the site's boundary and any future onsite construction workers/ builders.		

Table 3.1. Regional Setting Information

4. PREVIOUS ASSESSMENTS

The following reports were reviewed during the project:

- NG Child & Associates (2021), 'Preliminary (Stage 1) Site Investigation, Proposed Residential Sub-Division, 45/49 Warriewood Road, Warriewood NSW', dated 16 November 2021, report ref: CA/20/126-2701.
- Sydney Environmental Group (SE 2023), 'Stage 1 Preliminary Site Investigation, 43, 45 & 49 Warriewood Road, Warriewood NSW', dated 7 July 2023, Ref: 2148-PSI-01-060723.v1f

A summary of the previous assessment is provided below.

4.1. NG (2021)

Creative Planning Solutions, on behalf of its client Mikara Developments Pty Ltd, was coordinating the planning and prospective delivery of a residential sub-division at 45/49 Warriewood Road, Warriewood NSW. The proposed development is subject to the regulatory control of the Northern Beaches Council, and relevant NSW Government departments and agencies. Northern Beaches Council were the consent authority for the proposed development. NG Child & Associates has undertaken a Stage 1 or Preliminary Site Investigation in relation to the proposed development. The findings are summarised below.

Preliminary Site Investigation

The site investigation and assessment were completed in accordance with all relevant guidelines and protocols, including those provided by in the NSW EPA document Guidelines for Consultants Reporting on Contaminated Sites (1997, reprinted 2000 & 2011), and included in particular:

- A detailed review and consideration of the history and past uses of the site, based on a search of available title and ownership records;
- A thorough physical inspection of the site and surrounding properties; and
- Sampling, physical examination and laboratory analysis of soil samples at varying depths from five soil bores drilled by mechanized hand augur at representative locations throughout the site area.

Site History

The site had in the past been used for market gardening, and a preliminary review of the physical appearance of representative soil samples from the site, together with appropriate supporting laboratory analysis, had been undertaken to ensure that chemical contamination form this past use of the land has not affected soil quality at the site, when assessed against the residential soil quality criteria relevant to the proposed development.

Site Inspection

Based on the site inspections undertaken the general environmental condition of the 45/49 Warriewood Road Warriewood site was considered to be sound, and a detailed physical inspection of the site had not indicated any significant environmental or contamination issues prejudicial to the residential land use proposed for the site. However, it is noted that materials containing asbestos are likely to be present within the existing buildings and structures at the site; and that it is possible that minor quantities of other potentially hazardous or dangerous materials may be identified during any future demolition or construction works at the site.

Soil Sampling & Analysis

Twenty-three (23) soil samples were collected from various depths at five soil bores installed by mechanized hand augur at representative locations throughout the site. These samples were carefully examined on-site for any indications of contamination. Fifteen of these samples, including one duplicate sample and three asbestos analysis samples, were forwarded to a NATA registered laboratory (Envirolab Services Pty Ltd) for detailed chemical analysis targeting a wide range of potential contaminants potentially relevant to land subject to prior market gardening use. The key findings of this assessment of soil quality are as follows.

Svdnev

- None of the 23 soil samples collected from and examined at the site provided any physical indication during the drilling and sampling process of contamination, either by discoloration, staining, odour or hydrocarbon residue response to examination by a photo-ionisation detector;
- No indication of any significant presence of contaminated fill was noted at the site;
- None of the 15 representative soil samples from the site sent to the NATA accredited laboratory of Envirolab Services for analysis indicated the presence of heavy metals, petroleum hydrocarbons, phenolic compounds and polyaromatic hydrocarbon species at levels of potential concern, or at levels in excess of relevant residential land use guidelines;
- Asbestos was not detected in any of the representative surface and near surface soil samples from the site;
- On this basis, the soils at the site are assessed as being free of contamination, and soil quality at the site is considered appropriate for the residential land use proposed; and
- The absence of volatile contaminants in the sub surface at the site indicates that vapour intrusion from sub surface soil strata through and into any future slab floor or basement areas that might be considered at the site will not present an environmental, indoor air quality or other contamination problem.

Overall Findings & Recommendations

The overall findings of this Preliminary or Stage 1 Site Investigation had established that the underlying soils at the site were free of contamination; that the site was suitable in general environmental and soil quality terms for the residential use proposed; and that no further or more detailed assessment was considered necessary to establish this finding. These findings are made subject to the following recommendations:

- 1. That appropriate handling and disposal practices, in accordance with relevant hazardous material handling and disposal guidelines, are observed in relation to any asbestos based materials encountered during future demolition and clearance works undertaken at the site;
- 2. That a Destructive Hazardous Material Survey per Australian Standard AS2601:2001 The Demolition of Structures and a supporting Demolition Management Plan should be prepared and implemented prior to the commencement of demolition and/or site clearance works;
- 3. That appropriate care is taken in respect of any other potentially hazardous or dangerous materials unexpectedly identified during any future demolition or clearance works involving the three existing dwellings at the site; and
- 4. That an appropriate "Unexpected Finds Protocol" is established and implemented during future site preparation and development works.

The original version of this report was completed in February 2020. The updated version included the final plans and drawings for the proposed development. The overall findings and recommendations of the February 2020 report have been reviewed and remain valid and applicable at the date of this revised report.

4.2. SE (2023)

Sydney Environmental Group Pty Ltd (SE) was engaged by Warriewood Developers Pty Ltd (c/- Macpherson Kelley Pty Ltd) (hereafter referred to as 'the client'), to undertake a Stage 1 Preliminary Site Investigation of the property located at 43, 45, and 49 Warriewood Road, Warriewood NSW (hereafter referred to as 'the site')

The primary objective of the investigation was to provide a qualitative assessment of the environmental condition of the site, by appraising the potential for site contamination on the basis of field observations, historical land uses and anecdotal and documentary evidence supplemented by targeted soil sampling.

The key findings of the PSI were as follows:

• The site comprises a triple allotment (Lot 1 and 2 in Deposited Plan 349085, and Lot 2 in Deposit Plan 972209), covering a total area of approximately 2.21 hectares;

- Based on the available historical information, the site had been used for market gardens and greenhouses, and residential and associated structures which were constructed in the 1950's. Several of these structures have been demolished over the years, including all of the greenhouses;
- The site and neighbouring properties were free of statutory notices and licensing agreements issued under the *Contaminated Land Management Act 1997* and *Protection of the Environment Operations Act 1997*. The site was not included on the *List of NSW Contaminated Sites Notified to the EPA*;
- There were four (4) registered bores within a 500 m radius of the site, three (3) of which were in use as monitoring bores and one (1) in use as a test bore;
- During the site walkover, SE observed all existing structures to be in various states of disrepair. Several of which were noted to be Potentially Asbestos Containing Materials (PACM).
- Fill materials were observed in large stockpiles, on the western and eastern boundaries of the site.
- Surficial PACM was observed within localised locations across the soil surface in close proximity to the on-site structures. SE attributes the PACM to likely weathered building materials and structure disrepair.
- Six (6) areas of potential environmental concern (PAECs) were identified for the site.

Based on the findings of the PSI and with due consideration of SE's Statement of Limitations, it was concluded there was potential for contamination to exist on the site which requires further intrusive investigation, to address identified data gaps.

4 DATA INTEGRITY ASSESSMENT

SE has relied on the following sources of data while undertaking this investigation:

- SE field observations during the site walkover;
- Council Resources;
- Department of Land and Water Conservations;
- Department of Minerals and Energy;
- Department of Primary Industries Water;
- Australian Soil Resource Information System;
- Google Earth;
- National Environment Protection Council;
- Nearmap;
- NSW Environment Protection Authority; and
- NSW Land and Property Information.

Based on SE's experience and professional judgement, the data obtained from the sources relied upon, is considered to be adequately precise, accurate, representative, complete and comparable within the objectives of this investigation and for the purpose of drawing conclusions regarding land contamination risks at the site.

5. CONCEPTUAL SITE MODEL DEVELOPMENT

5.1. Potential Areas of Environmental Concern and Contaminants of Potential Concern

The review of site history, previous contamination assessments and site walkover observations were assessed within the objectives of this investigation and in the context of the proposed development works. That assessment identified Potential Areas of Environmental Concern (PAEC) and Contaminants of Potential Concern (COPC) which have the potential to be present on site. The PAEC and associated COPC identified are presented in Table 5.1.1.

Table 5.1.1 PAEC and COPC

ID	Potential Area of Environmental Concern	Land Use Activity	Contaminants of Potential Concern
PAEC01	Fill Materials Across Former Market Gardens	Uncontrolled Filling, Pesticide Usage	Heavy metals, TRH, BTEX, PAH, OCP, OPP, PCB & Asbestos
PAEC02	On-site Structures	Hazardous Building Materials	Asbestos, Lead, SMF & PCB
PAEC03	Localised suspected ACM Impacts	Weathered Building Materials	Aesthetics & Asbestos
PAEC04	Fill material stockpiles along eastern and western boundaries of site	Uncontrolled Filling, Pesticide Usage	Heavy metals, TRH, BTEX, PAH, OCP, OPP, PCB & Asbestos
PAEC05	Former Chemical/Pesticide Storage within Sheds	Chemical/Pesticide Storage	Heavy metals, TRH, BTEX, PAH, OCP, OPP, PCB
PAEC06	Former Structure within 45 Warriewood Road	Uncontrolled Demolition	Heavy metals, TRH, BTEX, PAH, PCB & Asbestos

The potential contamination pathways are considered to be as follows:

- Inhalation/ingestion of contaminants released in dust during redevelopment; and
- Direct contact, ingestion or inhalation of soil.

Relevant potential receptors are considered to include:

- Onsite construction and maintenance workers;
- Third parties during construction (adjacent site users and adjacent residents);
- Onsite flora and fauna;
- Future residents/end users; and
- Neighbouring residential land users.

5.2. Land Use Setting

SE understands that the site is proposed for demolition of existing structures and construction of two residential flat buildings and the associated residential subdivision of land

As the proposed future site use is proposed to include lots with accessible soils, SE considers it reasonable to adopt the 'HIL A' per guidance provided in Section 2.2 of Schedule B (1) of the National Environment Protection Measure (Assessment of Site Contamination) 2013 (NEPM ASC 2013), in order to conservatively assess the site for any future proposed land use as well as the current land use.

5.3. **Drinking Water Use**

There are no groundwater bores onsite or down-gradient of the site, registered for drinking water use. It is noted that a reticulated mains potable water supply is available in the area. Therefore, further assessment of this groundwater drinking water value is considered not warranted.

5.4. Recreational Water Use

Surface water courses proximal to the site included Narrabeen Creek, located immediately south-west of the site, Fern Creek, located 455 m west of the site and the South Pacific Ocean, located approximately 950 m east of the site.

There is a potential, albeit low, that the usage of these surface water courses within proximity to the site would include swimming, fishing for consumption and / or water sports, and as such consideration of this pathway is considered warranted.

5.5. Aquatic Ecosystems

Surface water courses proximal to the site included Narrabeen Creek, located immediately south-west of the site, Fern Creek, located 455 m west of the site and the South Pacific Ocean, located approximately 950 m east of the site.

Based on historical and ongoing land-use there is a potential, for surface / groundwater contamination. As a conservative measure, consideration of this value is deemed warranted.

5.6. Direct Contact – Human Health

SE notes that the proposed development includes building footprints and hardstand pavement areas across some of the site, which would act as a direct contact barrier between potential land contamination and onsite receptors during operation of the site. However, it is understood that majority of the site will remain as open space / landscaping areas. The open space turfed / landscaping areas would act as a direct contact barrier assuming intrusive disturbance of the physical barrier was not undertaken following installation.

During construction, the public and construction employees, may complete the direct contact exposure pathway between potential contamination and receptors. As such, further consideration of this value is considered warranted.

5.7. Inhalation / Vapour Intrusion – Human Health

In order for a potentially unacceptable inhalation / vapour intrusion human health exposure risk to exist, a primary vapour source (e.g. underground storage tank) or secondary vapour source (e.g. significantly contaminated soil or groundwater) must be present onsite. The historical evidence review by SE indicated a very low likelihood for a potential primary source to be present on the site.

Based on the site walkover and the potential for asbestos containing materials (ACM) to be present within the site footprint, SE consider the need for further inhalation human health risk assessment to be warranted.

5.8. Aesthetics

Section 3.6.3 of NEPM ASC 2013 advises that there are no specific numeric aesthetic guidelines, however site assessment requires a balanced consideration of the quantity, type and distribution of foreign material or odours in relation to the specific land use and its sensitivity.

SE notes that the proposed development includes building footprints and hardstand pavement areas across some of the site, which would act as a direct contact barrier. The open space turfed areas would act as a direct contact barrier assuming intrusive disturbance of the physical barrier was not undertaken following installation.

Based on observations made within SE 2023, further consideration of this value is warranted.

5.9. Ecological Health - Terrestrial Ecosystems

Section 3.4.2 of Schedule B1 NEPM ASC 2013, advises a pragmatic risk-based approach should be taken in applying ecological investigation levels and ecological screening levels in residential and commercial / industrial land use settings.

SE notes that the proposed development would include landscaped areas on site as it is understood majority of the site will remain undeveloped.

Due to the presence of these areas and the distance to surface water courses proximal to the site, consideration to onsite and adjacent ecological receptors should be undertaken.

5.10. Management Limits for Petroleum Hydrocarbon Compounds

NEPM ASC 2013 notes that there are a number of policy considerations which reflect the nature and properties of petroleum hydrocarbons:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure (e.g. penetration of or damage to, in-ground services by hydrocarbons).

Schedule B1 of NEPM ASC 2013 includes 'management limits' to avoid or minimise these potential effects. Application of the management limits requires consideration of site-specific factors such as the depth of building basements and services and depth to groundwater, to determine the maximum depth to which the limits should apply. NEPM ASC 2013 also notes that management limits may have less relevance at operating industrial sites which have no or limited sensitive receptors in the area of potential impact, and when management limits are exceeded, further site-specific assessment and management may enable any identified risk to be addressed.

6. SITE ASSESSMENT CRITERIA

Taking into consideration the objectives of this project, and the conceptual site model and land use setting presented in **Section 5** of this project, the following assessment criteria have been adopted for this project:

- Human health direct contact HILs in Table 1A (1) in NEPM ASC 2013 and HSLs in Table B4 of Friebel, E & Nadebaum, P (2011);
- Human health inhalation/vapour intrusion HSLs in Table 1 (A) in NEPM ASC 2013;
- Human health (asbestos) absence / presence for preliminary screening, and no visible ACM on surface;
- Petroleum hydrocarbon compounds (management limits) Table 1 B (7) of NEPM ASC 2013;
- Ecological Investigation and Screening Levels as calculated per NEPM ASC 2013 Table 1 (B) 1-6; and
- Aesthetics no highly malodorous site media (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in site media, organosulfur compounds), no hydrocarbon sheen on surface water, no discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature, no large monolithic deposits of otherwise low risk material (e.g. gypsum as powder or plasterboard, cement kiln dust), no presence of putrescible refuse including material that may generate hazardous levels of methane such as a deep-fill profile of green waste or large quantities of timber waste, and no soils containing residue from animal burial (e.g. former abattoir sites).

7. DATA QUALITY OBJECTIVES

NEPM ASC 2013 provides guidance on the development of data quality objectives (DQO) using a seven-step process.

The DQO for this project are set out in **Sections 7.1** to **7.7** of this report.

7.1. Step 1: State the problem

The first step involves summarising the contamination problem that requires new environmental data and identifying resources available to solve the problem.

The objectives of this project are to:

- Assess the potential for contamination to be present on the site as a result of past and current land use activities;
- Provide advice on whether the site would be suitable (in the context of land contamination) for the proposed land use setting; and
- Provide recommendations for further investigation, management and/or remediation (if warranted).

The project is being undertaken because:

- The site is proposed for demolition of existing structures and construction of two residential flat buildings and the associated residential subdivision of land; and
- A Detailed Site Investigation is required to investigate potential contamination within the identified areas of environmental concern (AEC) as outlined in SE 2023.

The project team identified for this project consists of suitably experienced environmental consultants from SE.

The regulatory authorities identified for this project include NSW EPA and Northern Beaches Council.

7.2. Step 2: Identify the decision/goal of the study

The second step involves identifying decisions that need to be made about the contamination problem and the new environmental data required to make them.

The decisions that need to be made during this project include:

- Is the environmental data collected for the project, suitable for assessing relevant land contamination exposure risks?
- Do the concentrations of identified contaminants of potential concern (COPC) present an unacceptable exposure risk to identified receptors, for the proposed land use setting?
- Is the site suitable for the proposed land use setting, in the context of land contamination?

7.3. Step 3: Identify the information inputs

The third step involves identifying the information needed to support decisions and whether new environmental data will be needed.

The inputs required to make the decisions set out in **Section 7.2** for this project, will include:

- Data obtained during searches of the site's history;
- The nature and extent of sampling at the site, including both density and distribution;
- Samples of relevant site media;
- The measured physical and/or chemical parameters of the site media samples (including field screening and laboratory analysis, where relevant); and
- Assessment criteria adopted for each of the media sampled.

Taking into consideration the objectives of this project, and the conceptual site model and land use setting presented in **Section 5** of this project, the following assessment criteria relevant to the proposed land use setting have been adopted for this project:

- Human health direct contact HILs in Table 1A (1) in NEPM ASC 2013 and HSLs in Table B4 of Friebel, E & Nadebaum, P (2011);
- Human health inhalation/vapour intrusion HSLs in Table 1 (A) in NEPM ASC 2013;
- Human health (asbestos) absence / presence for preliminary screening, and no visible ACM on surface;
- Petroleum hydrocarbon compounds (management limits) Table 1 B (7) of NEPM ASC 2013; and
- Aesthetics no highly malodorous site media (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in site media, organosulfur compounds), no hydrocarbon sheen on surface water, no discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature, no large monolithic deposits of otherwise low risk material (e.g. gypsum as powder or plasterboard, cement kiln dust), no presence of putrescible refuse including material that may generate hazardous levels of methane such as a deep-fill profile of green waste or large quantities of timber waste, and no soils containing residue from animal burial (e.g. former abattoir sites).

7.4. Step 4: Define the boundaries of the study

The fourth step involves specifying the spatial and temporal aspects of the environmental media that the data must represent to support decisions.

The spatial extent of the project will be limited to the subject investigation area as defined by its boundaries (refer **Figure 2**).

The temporal boundaries of the project include:

- The project timeframe presented in the SE proposal for this project;
- Unacceptable weather conditions at the time of undertaking fieldwork, including rainfall, cold and/or heat;
- Access availability of the site (to be defined by the site owner/representative); and
- Availability of SE field staff (typically normal daylight working hours, Monday to Friday).

The lateral extent that contamination is expected to be distributed across, based on the conceptual site model, is defined by the inferred boundaries of the areas of environmental concern (AEC).

The vertical extent that contamination is expected to be distributed across, based on the conceptual site model and the project scope, is likely to be limited to shallow soils and fill material.

The scale of the decisions required will be based on the entire site.

Constraints which may affect the carrying out of this project may include access limitations, presence of above and below ground infrastructure, and hazards creating health and safety risks.

7.5. Step 5: Develop the analytical approach (or decision rule)

The fifth step involves defining the parameter of interest, specifying the action level, and integrating information from Steps 1 to 4 into a single statement that gives a logical basis for choosing between alternative actions.

7.5.1. Rinsate Blanks

Only disposable sampling equipment will be used during the field works on the day. As such, no rinsate blank will be collected.

7.5.2. Trip Spikes and Trip Blank Samples

One trip spike and trip blank sample will be used and scheduled for analysis, if site samples being collected that day are being analysed for volatile contaminants of concern (typically BTEX and/or TRH).

7.5.3. Field Duplicates and Field Triplicates

Field duplicate and field triplicates will be collected at a rate of one per twenty (5%) site samples collected. The duplicates and triplicates collected will be analysed for at least one of the analytes that the parent sample of the duplicate/triplicate is being scheduled for analysis for (with the exception of asbestos).

The relative percent difference (RPD) of concentrations of relevant analytes, between the parent sample and the duplicate/triplicate will be calculated.

7.5.4. Laboratory Analysis Quality Assurance / Quality Control

The analytical laboratory QA/QC program will typically include laboratory method blank samples, matrix spike samples, surrogate spike samples, laboratory control samples, and laboratory duplicate samples.

7.5.5. If/Then Decision Rules

SE has adopted the following 'if/then' decision rules for this project:

- If the result of the assessment of field data and laboratory analytical data is considered acceptable, then that field data and laboratory analytical data is suitable for interpretation within the scope of this project; and
- If the field data and laboratory analytical data is within the constraints of the assessment criteria adopted for this project (refer **Section 7.3**), then the contamination exposure risks to identified receptors, are considered acceptable.

In the event the assessment of field data and/or laboratory analytical data results in the data being not suitable for interpretation, then SE will determine if additional data is required to allow interpretation to be undertaken.

In the event that field data and/or laboratory analytical data exceeds the assessment criteria adopted for this project (refer **Section 7.3**), SE will undertake an assessment of the exceedance in the context of the project objectives to determine if additional data is required and whether management and/or remediation is required.

7.6. Step 6: Specify the performance or acceptance criteria

The sixth step involves specifying the decision maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data. When assessing contaminated land, there are generally two types of errors in decision making:

- Contamination exposure risks for a specific land use setting are acceptable, when they are not; and
- Contamination exposure risks for a specific land use setting are not acceptable, when they are.

SE will mitigate the risk of decision error by:

- Calculation of the 95% upper confidence limit (UCL) statistic to assess the mean concentration of relevant contaminants of potential concern where applicable i.e. where the highest concentration is less than 2.5 times the site adopted criteria, the standard deviation of the data is less than 50 % of the site adopted criteria, and the contaminant is not asbestos;
- Assignment of fieldwork tasks to suitably experienced SE consulting staff, and suitably experienced contractors;
- Assignment of laboratory analytical tasks to reputable NATA accredited laboratories; and
- Assignment of data interpretation tasks to suitably experienced SE consulting staff and outsourcing to technical experts where required.

SE will also adopt a range of data quality indicators (DQI) to facilitate assessment of the completeness, comparability, representativeness, precision and accuracy (bias).

Table 7.6.1 Performance and Acceptance Criteria Summary

	Complete	eness			
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion		
Critical locations sampled	Refer Section 7.7.1	Critical samples analysed according to DQO	Refer Section 7.7.6		
Critical samples collected	Refer Section 7.7.1	Analytes analysed according to DQO	Refer Section 7.7.6		
SOPs appropriate and complied with	100%	Appropriate laboratory analytical methods and LORs	Refer Section 7.7.6		
Field documentation complete	All sampling point logs, calibration logs and chain of custody forms	Sample documentation complete	All sample receipt advices, all certificates of analysis		
		Sample extraction and holding times complied with	Refer Section 4.2.1		
	Compara	bility			
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion		
Same SOPs used on each occasion	100%	Same analytical methods used by primary laboratory	Refer Section 4.2.1		
Climatic conditions	Samples stored in insulated containers with ice, immediately after collection	Same LORs at primary laboratory	Refer Section 4.2.1		
Same types of samples All soil samples same size, all stored in collected, and insulated containers with ice handled/preserved in same manner		Same laboratory for primary sample analysis	All primary samples to Eurofin MGT		
		Same analytical measurement units	Refer Section 4.2.1		
	Representa	tiveness			
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion		
Appropriate media sampled according to DQO	Refer Section 7.7.6	Samples analysed according to DQO	Refer Section 7.7.6		
Media identified in DQO Refer Section 7.7.6 sampled					
	Precisi	ion			
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion		
Field duplicate / triplicate RPD Minimum 5% duplicates and triplicates No limit for analytical results <10 times LOR 50% for analytical results 10-20 times LOR 30% for analytical results >10 times LOR		Laboratory duplicates	No exceedances of laboratory acceptance criteria		
SOPs appropriate and complied with	100%				
Accuracy (bias)					
Field Considerations	Assessment Criterion	Laboratory Considerations	Assessment Criterion		
Field trip spikes	Recoveries between 60% and 140%	Matrix spike recovery	No exceedances of laboratory acceptance criteria		
Field trip blanks	Analyte concentration <lor< td=""><td>Surrogate spike recovery</td><td>No exceedances of laboratory</td></lor<>	Surrogate spike recovery	No exceedances of laboratory		

7.7. Step 7: Develop the plan for obtaining data

The seventh step involves identifying the most resource effective sampling and analysis design for generating the data that is required to satisfy the DQOs.

7.7.1. Sampling Point Density and Locations

Table A in NSW EPA *Sampling Design Guidelines* (2022) provides guidance on minimum sampling point densities required for site characterisation, based on detecting circular hot spots by using a systematic sampling pattern. This guidance assumes the investigator has little knowledge about the probable locations of the contamination, the distribution of the contamination is expected to be random (e.g. land fill sites) or the distribution of the contamination of the contamination.

As this project has included gathering data which provides a reasonable understanding of site history (in the context of potential areas of environmental concern on the site), accessibility constraints, and taking into consideration Table 1 in WA DOH (2009) and previous sampling by NG (2021), it is considered reasonable to adopt a systematic sampling pattern, with up to twenty-three (23) sampling points for the investigation area.

The locations of the sampling points are set out in **Figure 3**.

7.7.2. Sampling Methodology

The sampling point methodology presented in **Table 7.7.2** will be used for this project. The methodology is based on a range of factors considered relevant to this project, including:

- The identified contaminants of potential concern;
- The suspected laydown mechanisms for those contaminants of concern;
- The suspected likely depth of contamination; and
- Site specific constraints which affect the type of sampling techniques suited to the site.

Table 7.7.2 Proposed Sampling Methodology

AEC	Area	Sampling Point ID	Method	Target Depth of Sampling Point (m bgl)
PAEC01	Fill Materials Across Former Market Gardens	TP01-TP23	5 t excavator	1.0 m bgl, practical refusal or 0.3 m into inferred natural material, whichever occurs first.
PAEC02	On-site Structures		Hazardous Building Materials Survey to be undertaken	
PAEC03	Localised suspected ACM Impacts	TP01-TP23	5 t excavator	1.0 m bgl, practical refusal or 0.3 m into inferred natural material, whichever occurs first.
PAEC04	Fill material stockpiles along eastern and western boundaries of site	TP01-TP23	5 t excavator	1.0 m bgl, practical refusal or 0.3 m into inferred natural material, whichever occurs first.
PAEC05	Former Chemical/Pesticide Storage within Sheds	TP01-TP23	5 t excavator	1.0 m bgl, practical refusal or 0.3 m into inferred natural material, whichever occurs first.
PAEC06	Former Structure within 45 Warriewood Road	TP01-TP23	5 t excavator	1.0 m bgl, practical refusal or 0.3 m into inferred natural material, whichever occurs first.

Reference will also be made to Table 5 in WA DOH (2009) for the sampling and screening of fill soils for the presence of asbestos, where practical. The application of asbestos screening criteria published in NEPM ASC 2013 may be limited.

7.7.3. Identification, Storage and Handling of Samples

Sample identifiers will be used for each sample collected, based on the sampling point number and the depth/interval the sample was collected from, e.g. a sample collected from TP03 at a depth of 0.2m below ground level, would be identified as TP03-0.2.

Project samples will be stored in laboratory prepared glass and plastic containers (and zip lock bags if collected for asbestos or acid sulfate soil assessment).

Soil samples analysed for organic contaminants of concern (and acid sulfate soil samples) will be placed in insulated container/s with ice.

Samples will be transported to the relevant analytical laboratory, with chain of custody (COC) documentation that includes the following information:

- SE project identification number;
- Each sample identifier;
- Date each sample was collected;
- Sample type (e.g. soil or water);
- Container type/s for each sample collected;
- Preservation method used for each sample (e.g. ice);
- Analytical requirements for each sample and turnaround times; and
- Date and time of dispatch and receipt of samples (including signatures).

7.7.4. Decontamination

All sampling equipment used during the soil investigation consisted of location specific nitrile gloves, as such decontamination was deemed unnecessary. To avoid cross contamination via the excavator bucket, samples were collected from the centre of the soil formation, ensuring to avoid sampling materials which had come into contact with the excavator bucket.

Non-disposable equipment (if required) used during the investigation will be decontaminated before and in between sampling events, to mitigate potential for cross contamination between samples collected. The decontamination methodology to be adopted for this project will include:

- Washing relevant sampling equipment using potable water with a phosphate free detergent (i.e. Decon 90 or similar) mixed into water;
- Rinsing the washed non-disposable sampling equipment with distilled or de-ionised water; and
- Air drying as required.

7.7.5. Laboratory Selection

The analytical laboratories used for this project will be National Association of Testing Australia (NATA) accredited for the analysis undertaken.

7.7.6. Laboratory Analytical Schedule

Project samples will be scheduled for NATA accredited laboratory analysis, using a combination of:

- Observations made in the field of the media sampled; and
- The contaminants of potential concern (COPC) identified for the area of environmental concern that the sample was collected from.

4.2.1 Laboratory Holding Times, Analytical Methods and Limits of Reporting

The laboratory holding times, analytical methods and limits of reporting (LOR) being used for this project, are presented in **Table 7.7.1** and **Table 7.7.2** overleaf.

Table 7.7.1 Laboratory Holding Times, Analytical Methods, and Limit of Reporting (Primary Laboratory - Eurofins)

Analyte	Holding Time	Analytical Method	Limit of Reporting (mg/kg)
BTEX and TRH C ₆ -C ₁₀	14 days	USEPA 5030, 8260B and 8020	0.2-0.5
TRH >C ₁₀ -C ₄₀	14 days	USEPA 8015B & C	20-100
VOC	14 days	USEPA 8260	0.1-0.5
РАН	14 days	USEPA 8270	0.1-0.5
ОСР	14 days	USEPA 8081	0.2
Nitrate	28 days	APHA 4500	5.0
Metals	6 months	USEPA 8015B & C	0.05 – 2
Asbestos	No limit	AS4964:2004	0.01 % w/w (qualitative)
Asbestos	No limit	Inhouse Method	0.001% w/w

Table 7.7.2 Laboratory Holding Times, Analytical Methods, and Limit of Reporting (Secondary Laboratory - ALS)

Analyte	Holding Time	Analytical Method	Limit of Reporting (mg/kg)
Metals	6 months	USEPA 200.8/3050/6010B	0.1-3
РАН	14 days	USEPA 8270	0.1

8. DETAILED SITE INVESTIGATION METHODOLOGY

Soil sampling and analysis were undertaken with reference to the following documents:

- NSW EPA 2022. *Contaminated Sites Sampling Design Guidelines,* NSW Environment Protection Authority.
- NEPM ASC 2013 'National Environment Protection (Assessment of Site Contamination) Measure. Schedule B (2) Guideline on Data Collection, Sample Design and Reporting.' National Environmental Protection Council, Adelaide.

8.1. Scope of Fieldworks

To clarify and quantify the existence of the potential contaminants, an indicative sampling analysis and quality plan (SAQP) was developed. The site works were performed on 19 July 2023 in accordance with the SAQP and supervised by SE environmental scientist at all times.

The scope of the investigation was developed based upon the findings of a Preliminary Site Investigation performed by SE and the SAQP subsequently developed. Based upon this approach the following scope of works was performed:

- Completion of a site-specific Safe Work Method Statement in accordance with SE health and safety policy;
- Completion of twenty-three (23) soil sampling locations within the cleared subject area (via 5 tonne excavator);
- Collection of discrete soil samples every 1.0 m recovered or change of strata from the soil test pits; and
- Analysis of twenty-three (23) primary soil samples and two (2) quality assurance / quality control (QA/QC) sample.

8.2. Laboratory Analysis

All soil samples will be forwarded to a NATA accredited laboratory for analysis of the analytes listed below. Eurofins | MGT Laboratory shall be used for the analysis of primary samples. ALS will be used for secondary / inter-laboratory QA/QC analysis.

9. FIELDWORK

9.1. Soil Sampling

Soil sampling was undertaken by SE on 19 July 2023. A total of twenty-three (23) test pits (TP01-TP23), were advanced across the accessible areas within the site using a 5-tonne excavator to a depth of 1.0 m bgs. Samples for potential analysis were collected from the near surface, at 1.0 m intervals within the soil profile or with change of strata, and in areas of observed contamination. Each soil sample was collected using a new clean pair of nitrile gloves and placed in the appropriate acid rinsed sample containers and plastic zip-lock bags provided by the laboratory.

Upon completion of the sampling, each borehole was backfilled with excavated soils at the completion of the sampling task at each sampling point. Soil borehole logs were maintained in the field by an SE environmental scientist for all exploratory locations. Field observations such as lithology, odours, staining, depth of water etc. were noted on the logs. The logs are presented in **Appendix B**.

Each sampling point established was marked on a site plan. The locations of these sampling points are presented in **Figure 3**.

9.2. Site Geology

Observations were made of soils encountered during sampling field work. These observations were recorded on environmental test pit logs. A copy of these logs is presented in **Appendix B**.

General soil materials encountered during the investigation included:

- 0 0.05 m bgs GRASS: Silty CLAY, high plasticity, dark grey-brown, dry; with high organic material;
- 0.05 0.3 m bgs TOPSOIL: Silty CLAY, high plasticity, dark grey-brown, dry; and
- 0.3 m+ m bgs INFERRED NATURAL: CLAY, medium plasticity, orange with red and grey mottle, dry to moist.

Fill materials encountered in TP02, TP05, TP13 and TP15 were generally found to comprise of the following stratigraphic units:

- 0 0.05 m bgs FILL: Silty CLAY, medium plasticity, dark grey-brown, dry, with high organic materials and foreign materials including glass;
- 0.05 0.4 m bgs FILL: Silty CLAY, medium plasticity, dark grey-brown, dry, with foreign materials including glass and some terra cotta;
- *TP04 and TP09:* 0 0.4 m bgs FILL: Silty SAND with gravel, coarse, well graded, medium grey-brown, dry-moist; and
- 0.4 m+ bgs: INFERRED NATURAL: CLAY, medium plasticity, grey / grey with orange and pale brown mottle, dry-moist.

Fill materials were encountered stockpiled materials in TP03, TP06, TP07, TP11, TP14, TP16, TP21 and TP23 consisting of:

- 0 0.05 m bgs FILL: Silty CLAY, medium plasticity, dark grey-brown, dry, with high organic materials and foreign materials including glass;
- 0.05 1.5 m bgs FILL: Silty CLAY, low plasticity, dark brown, dry to moist, with foreign materials including glass, some brick and terra cotta and plastics.

Refusal / bedrock was not encountered in any test pits extended across the site.

Photograph 9.2.1 Typical natural stratigraphy encountered within the site as observed in 'TP15'. As observed 19 July 2023.

Photograph 9.2.2 Natural clay materials identified through the site, as observed within 'TP12'. As observed 19 July 2023.

Group

Photograph 9.2.3 FILL materials identified through portions of the site encountered within 'TP02', 'TP05', 'TP10', 'TP13' and 'TP15'. As observed 18 July 2023.

Photograph 9.2.4 FILL materials encountered within stockpiles across the site, encountered within 'TP03', 'TP06', 'TP07', 'TP11', 'TP14', 'TP16', 'TP21' and 'TP23'. As observed 18 July 2023.

Photograph 9.2.5 FILL materials identified through portions of the site encountered within 'TP04' and 'TP09'. As observed 18 July 2023.

9.3. Odours

Olfactory evidence of contamination was not observed across the remainder of the site or within any of the soil samples collected.

9.4. Staining

Visual evidence of staining was not observed across the site or within any of the soil samples collected.

9.5. Potential Asbestos Containing Materials

Suspected asbestos containing materials were identified in shallow soil materials at test pit locations 'TP08' and 'TP17', as well as on the residual soil surface within the vicinity of structures in the northern portion of the site. SE notes that due to vegetation overgrowth in the northern portion of the site visual assessment was generally limited to sampling point locations.

Due to the age on-site structures, there is a high potential for asbestos containing materials to be present within the building fabric. A hazardous building materials survey is required prior to any demolition works being undertaken.

Site Photograph 9.5.1 Potential Asbestos Containing Material observed within shallow fill materials encountered within TP17, as observed 18 July 2023.

Site Photograph 9.5.2 Stockpiled Potential Asbestos Containing Materials observed within the vicinity of TP17, as observed 18 July 2023.

Site Photograph 9.5.3 Overgrown vegetation encountered within the northern portion of the site, limiting visual assessment of surficial soils within the area, as observed 18 July 2023, facing east.

10. LABORATORY ANALYSIS

All samples collected were transported to the analytical laboratory, using chain of custody (COC) protocols. A selection of these samples was scheduled for analysis, with reference to the relevant COPC identified for the AEC that the samples were collected from.

All soil samples were forwarded to the NATA accredited laboratory for analysis of the analytes listed below. Eurofins Environment were used for the analysis of primary samples and SGS for the analysis of interlaboratory samples (if any).

 Table 10.1 details the analysis undertaken for samples collected during the investigation.

Table 10.1	Sample Analy	vtical Schedule
TADIC TO'T	Jample Anal	ylical Scheudle

Sample ID		Analytical Suite								
		втех	РАН	Heavy Metals ¹	Asbestos Bulk ID ²	OCP	PCBs	Ηd	CEC	Clay Content
TP02-0.2-0.3, TP04-0.2-0.3, TP06-0.2-0.3, TP08-0.2-0.3- TP10-0.2-0.3, TP12-0.2-0.3, TP14-0.2-0.3, TP16-0.2-0.3, TP18-0.2-0.3, TP20-0.2-0.3, TP22-0.2-0.3	х	х	x	x						
TP01-0.2-0.3, TP03-0.2-0.3, TP05-0.2-0.3, TP07-0.1-0.2, TP09-0.1-0.2 TP11-0.1-0.2, TP13- 0.1-0.2, TP15-0.1-0.2	х	х	x	x		x	х			
EIL				Х				х	х	x
TRIP BLANK / TRIP SPIKE		Х								
DUP01, DUP01A, DUP02, DUP02A			х	х						

¹ 8 Metals: As, Cd, Cr, Cu, Hg, Ni, Pb, Zn; ² Semi-quantitative asbestos identified per AS4986:2004

A copy of the analytical laboratory certificates of analysis, is presented in **Appendix C**.

The sample analytical results were tabulated and presented in the attached **Results Tables**.

11. DATA QUALITY INDICATOR ASSESSMENT

11.1. Completeness

An assessment of the completeness of data collected was undertaken, and the results presented in **Table 11.1**.

Table	11.1	Com	pleteness	DOI

Field Considerations	Target	Actual	Comment
Critical locations sampled	23	23	Performance against indicator considered acceptable.
Critical samples collected	23	23	Performance against indicator considered acceptable.
SOPs appropriate and complied with	100%	100%	Performance against indicator considered acceptable.
Field documentation complete	All sampling point logs, calibration logs and chain of custody forms	All sampling point logs, calibration logs and chain of custody forms	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Critical samples analysed according to DQO	Refer Section 7.7.6	100%	Performance against indicator considered acceptable.
Analytes analysed according to DQO	Refer Section 7.7.6	100%	Performance against indicator considered acceptable.
Appropriate laboratory analytical methods and LORs	Refer Section 4.2.1	100%	Performance against indicator considered acceptable.
Sample documentation complete	All sample receipt advices, all certificates of analysis	100%	Performance against indicator considered acceptable.

The data collected is considered to be adequately complete within the objectives and constraints of the project.

11.2. Comparability

An assessment of the comparability of data collected was undertaken, and the results presented in Table 11.2.

Table 11.2 Comparability DQI

Field Considerations	Target	Actual	Comment
Same SOPs used on each occasion	100%	100%	Performance against indicator considered acceptable.
Climatic conditions	Samples stored in insulated containers with ice, immediately after collection	100%	Performance against indicator considered acceptable.
Same types of samples collected, and handled/preserved in same manner	All soil samples same size, all stored in insulated containers with ice	100%	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Same analytical methods used by primary laboratory	Refer Section 4.2.1	100%	Performance against indicator considered acceptable.
Same LORs at primary laboratory	Refer Section 4.2.1	100%	Performance against indicator considered acceptable.
Same laboratory for primary sample analysis	All primary samples to Eurofins MGT	100%	Performance against indicator considered acceptable.
Same analytical measurement units	Refer Section 4.2.1	100%	Performance against indicator considered acceptable.

The data collected is considered to be adequately comparable within the objectives and constraints of the project.

11.3. Representativeness

An assessment of the representativeness of data collected was undertaken, and the results presented in **Table 11.3**.

Table 11.3. Representativeness DQI

Field Considerations	Target	Actual	Comment
Appropriate media sampled according to DQO	Refer Section 7.7.2	100%	Performance against indicator considered acceptable.
Media identified in DQO sampled	Refer Section 7.7.2	100%	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Samples analysed according to DQO	Refer Section 7.7.6	Refer comments	Performance against indicator considered acceptable.

The data collected is considered to be adequately complete within the objectives and constraints of the project.

11.4. Precision

An assessment of the precision of data collected was undertaken, and the results presented in Table 11.4

Table 11.4. Precision DQI

Field Considerations	Target	Actual	Comment
Field duplicate / triplicate RPD	Minimum 5% duplicates and triplicates	8.7%	Parent duplicate/triplicate relationships are as follows:
	No limit for analytical results <10 times LOR	Nil	DUP01 – TP01-0.2-0.3; and
	50% for analytical results 10- 20 times LOR	Nil	DUP02 – TP19-0.2-0.3
	30% for analytical results >20 times LOR	Nil	Performance against indicator considered acceptable.
SOPs appropriate and complied with	100%	100%	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Laboratory duplicates	No exceedances of laboratory acceptance criteria	Nil	Performance against indicator considered acceptable.

The data collected is considered to be adequately precise within the objectives and constraints of the project.

11.5. Accuracy

An assessment of the precision of data collected was undertaken, and the results presented in Table 11.5.

Field Considerations	Target	Actual	Comment
Field trip blanks	Analyte concentration <lor< td=""><td>Analyte concentrations were < LOR</td><td>Performance against indicator considered acceptable.</td></lor<>	Analyte concentrations were < LOR	Performance against indicator considered acceptable.
Field trip spike	Field trip spikes	Recoveries between 60% and 140%	Performance against indicator considered acceptable.
Laboratory Considerations	Target	Actual	Comment
Laboratory method blank	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Matrix spike recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Surrogate spike recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.
Laboratory control sample recovery	No exceedances of laboratory acceptance criteria	No exceedances of laboratory acceptance criteria	Performance against indicator considered acceptable.

Table 11.5. Accuracy DQI

The data collected is considered to be adequately accurate within the objectives and constraints of the project.

12. DISCUSSION

A discussion on comparison of laboratory analytical results and field observations, in the context of the assessment criteria adopted for this project, is presented in Sections 12.1 to 12.6.

Human Health (Residential A) 12.1.

12.1.1. Benzene, Toluene, Ethylbenzene, Xylenes, and Naphthalene (BTEXN)

The concentration of benzene, toluene, ethyl benzene, xylenes, and naphthalene in the soil samples analysed was less than the site adopted criteria (HSL-A) for human health risk via the vapour intrusion exposure pathway.

12.1.2. Heavy Metals

The concentration of heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury) in the soil samples analysed was less than the laboratory limit of reporting or site adopted criteria (HIL-A) for human health risk via the direct contact exposure pathway.

12.1.3. Total Recoverable Hydrocarbons (TRH)

The concentration of total recoverable hydrocarbons ($C_6-C_{10}>C_{10}-C_{16}$, $>C_{16}-C_{34}$ and $>C_{34}-C_{40}$) in the soil samples analysed, was less than the laboratory limit of reporting or site adopted criteria (HSL-A) for vapour intrusion exposure.

12.1.4. Organochlorine Pesticides (OCP)

The concentration of organochlorine pesticide (OCP) compounds detected in the soil samples analysed was less than the laboratory limit of reporting or site adopted criteria (HIL-A) for human health risk via the direct contact exposure pathway.

12.1.5. Polycyclic Aromatic Hydrocarbons (PAH)

The concentration of polycyclic aromatic hydrocarbons (PAH) (Total PAH, and PAHs as Benzo(a)pyrene Toxicity Equivalence (B(a)P TEQ) in the soil samples analysed was less than the laboratory limit of reporting or site adopted criteria (HIL-A) for human health risk via the direct contact exposure pathway.

12.1.6. Polychlorinated Biphenyls (PCB)

The concentration of PCBs detected in the soil samples analysed was less than the laboratory limit of reporting or site adopted criteria (HIL-A) for human health risk via the direct contact exposure pathway.

12.1.7. Asbestos

Non-Friable Asbestos was not detected in the soil samples above the laboratory limit of reporting or adopted health screening level (0.01 % w/w).

Asbestos was detected within the two (2) fibre cement fragment submitted for analysis. Sample 'FC01' measured 40 x 35 x 3 mm, and was detected to contain Chrysotile and Amosite Asbestos, while sample 'TP08-FC' measured 60 x 55 x 5 mm, and was detected to contain Chrysotile and Amosite Asbestos. As the fibre cement fragments analysed were greater than 7 mm in two or more dimensions, could not be crushed by hand and were in good condition, the asbestos materials were classified as Non-Friable.

Friable Asbestos (FA) / Asbestos Fines (AF) was not detected in the soil samples above the laboratory limit of reporting or adopted health screening level (0.001 % w/w).

12.2. Petroleum Hydrocarbon Management Limits (Residential A)

The concentrations of TRH C₆-C₁₀, >C₁₀-C₁₆ and >C₃₄-C₄₀ detected within the soil samples analysed, were less than the applicable adopted management limits or less than laboratory limits of reporting.

12.3. Aesthetics

There was evidence of minor levels of scattered wastes encountered across the site surface within the vicinity of the site structure, minor levels of glass were encountered within surficial soils within the central and southeastern portion of the site and minor levels of brick, plastics and glass were encountered within stockpiled soil materials. It is assumed that the waste will be removed as part of the redevelopment works in due course. As such, the aesthetics assessment criteria adopted for this project, indicate that no further assessment/management of these wastes would be required.

12.4. Terrestrial Ecosystems

EILs apply principally to contaminants in the top 2 m of soil at the finished surface/ground level which corresponds to the root zone and habitation zone of many species.

12.4.1. Ecological Screening Levels (ESLs)

The concentrations of Naphthalene, TRH C₆-C₁₀, >C₁₀-C₁₆, >C₁₆-C₃₄, and >C₃₄-C₄₀, Benzene, Toluene, Ethylbenzene, and Xylenes were less than the site adopted Ecological Screening Level (ESL) criteria for the site.

12.4.1. Ecological Investigation Levels (EILs)

The concentrations of relevant contaminants of concern detected in the soil samples analysed were less than the applicable adopted site-specific ecological investigation levels (EIL), with the exception of soils identified within 'TP06-0.2-0.3' which were found to exceed the applicable site criteria for Zinc (440 mg/kg *c.f.* 260 mg/kg). As the Zinc exceedance (440 mg/kg) was less than 250% of the EIL (260 mg/kg) and the standard deviation was less than 50% of the EIL (SD: 98 mg/kg), a 95% Upper Confidence Level (UCL) calculation was undertaken. The 95% UCL calculation for site Zinc (120 mg/kg) was less than the EIL.

12.5. Groundwater and Surface Water

Based on the historical and ongoing site use, visual assessment of the surface and fill materials within the site, and CoPC present within the soil samples collected, the contamination risk to surface and groundwater receptors was considered to be low.

13. REVISED CONCEPTUAL SITE MODEL

Following a review of site history and subsequent intrusive field analysis, areas of environmental concern (AEC) and contaminants of concern (COC) have been identified. The AECs identified and associated COC are presented in **Table 13.1** and **Figure 4**.

Table 13.1. Revised AEC and COPC

ID	Area of Environmental Concern	Source	Contaminants of Concern	Affected mediums	Exposure risk
AEC01	On Site Structures	Hazardous Building Materials	Asbestos, Lead, SMF, PCB	Building Materials	Human Health
AEC02	Site Footprints / Hardstand	Uncontrolled Filling and Demolition	Heavy metals, TRH, BTEX, PAH, OCP, OPP, PCB & Asbestos	Soil	Human Health, Ecological Health and Aesthetics
AEC03	Shallow Asbestos Impacted Fill Materials	Uncontrolled Filling and Demolition	Asbestos	Soil	Human Health
AEC04	Surficial Asbestos Materials	Uncontrolled Demolition	Asbestos	Soil	Human Health

The potential contamination pathways are considered to be as follows:

- Inhalation/ingestion of contaminants released in dust during redevelopment; and
- Direct contact, ingestion or inhalation of soil.

Relevant potential receptors are considered to include:

- Onsite construction and maintenance workers;
- Third parties during construction (adjacent site users and adjacent residents);
- Onsite flora and fauna;
- Future residents/end users; and
- Neighbouring residential land users.

14. CONCLUSIONS AND RECOMMENDATIONS

Based on SE's assessment of the desktop review information, fieldwork data and laboratory analytical data, in the context of the proposed redevelopment scenario, SE makes the following conclusions:

- Non-friable Asbestos Containing Materials (ACM) were identified within surficial soils (AEC02 and AEC03);
- The detected concentrations of the remaining identified contaminants of potential concern in the soils assessed are considered unlikely to present:
 - An unacceptable direct contact human health exposure risk; or
 - An unacceptable inhalation risk, with the exception of localised asbestos impacts (AEC02 and AEC03) discussed above; and
 - A petroleum hydrocarbon management risk;
- The detected concentrations of identified contaminants of potential concern in the soils characterised by samples assessed are considered unlikely to present an unacceptable ecological contamination risk;
- Underlying soil materials within AEC01 could not be assessed due to the presence of existing structures;
- Based on the assessments undertaken as part of this investigation, SE has concluded that the site is generally suitable for the proposed redevelopment subject to remediation of minor localised non-friable asbestos impacts (AEC02 and AEC03), and further characterisation of soils underlying existing on-site structures.

Based on the conclusions stated above and the background data gathered during the course of this investigation, SE recommends:

- Preparation of a Remedial Action Plan to outline the methodology to remediate minor localised shallow non-friable asbestos impacts and to further characterise previously inaccessible soils situated beneath the existing building footprints following demolition;
- Undertake a hazardous building materials survey of the structures present on-site prior to demolition;
- Following removal of hazardous building materials (if identified) and subsequent demolition of the onsite structures, a clearance inspection should be carried out by an appropriately qualified occupational hygienist / NSW LAA;
- A supplementary contamination assessment is to be undertaken beneath the building footprints following demolition by an appropriately experienced environmental scientist; and

A waste classification assessment must be carried out on any soil materials proposed for disposal off-site as per the NSW EPA Waste Classification Guidelines (2014). This report, including its conclusions and recommendations, must be read in conjunction with the limitations presented in **Section 15**.

15. STATEMENT OF LIMITATIONS

The findings presented in this report are based on specific searches of relevant, government historical databases and anecdotal information that were made available during the course of this investigation. To the best of our knowledge, these observations represent a reasonable interpretation of the general condition of the site at the time of report completion.

This report has been prepared solely for the use of the client to whom it is addressed and no other party is entitled to rely on its findings.

No warranties are made as to the information provided in this report. All conclusions and recommendations made in this report are of the professional opinions of personnel involved with the project and while normal checking of the accuracy of data has been conducted, any circumstances outside the scope of this report or which are not made known to personnel and which may impact on those opinions is not the responsibility of Sydney Environmental Group Pty Ltd. Should information become available regarding conditions at the site including previously unknown sources of contamination, SE reserves the right to review the report in the context of the additional information.

This report must be reviewed in its entirety and in conjunction with the objectives, scope and terms applicable to SE's engagement. The report must not be used for any purpose other than the purpose specified at the time SE was engaged to prepare the report.

Logs, figures, and drawings are generated for this report based on individual SE consultant interpretations of nominated data, as well as observations made at the time site walkover/s were completed.

Data and/or information presented in this report must not be redrawn for its inclusion in other reports, plans or documents, nor should that data and/or information be separated from this report in any way.

Should additional information that may impact on the findings of this report be encountered or site conditions change, SE reserves the right to review and amend this report.

16. REFERENCES

Sydney Environmental Group (SE 2023), 'Stage 1 Preliminary Site Investigation, 43, 45 & 49 Warriewood Road, Warriewood NSW', dated 7 July 2023, report ref: 2148-PSI-01-060723.v1f

NG Child & Associates (2021), 'Preliminary (Stage 1) Site Investigation, Proposed Residential Sub-Division, 45/49 Warriewood Road, Warriewood NSW', dated 16 November, report ref: CA/20/126-2701

NEPM ASC 2013, 'National Environmental Protection (Assessment of Site Contamination) Measure'.

NSW EPA 2017, 'Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (3rd edition)'.

NSW EPA 2012, 'Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases'

NSW EPA 2020, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites'.

NSW EPA 2022, 'Contaminated Sites: Sampling Design Guidelines'.

WA DOH 2009, 'Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia' dated May 2009.

FIGURES

Carlana	Scale:	100 m Site Locality	
Sydney	Client Name:	Universal Property Group (c/- Macpherson Kelley)	
Environmental Group	Project Name:	Stage 2 Detailed Site Investigation	
Стоф	Project Location:	43, 45 & 49 Warriewood Road, Warriewood NSW	<u> </u>

1
24 July 2023
2148-DSI-01-280723.v1f

Caller	Scale:	25 m	Site Layout	
Sydney	Client Name:	Universal Property	Group (c/- Macpherson Kelley)	
Environmental	Project Name:	Stage 2 Detailed Sit	e Investigation	2
Group	Project Location:	43, 45 & 49 Warriev	vood Road, Warriewood NSW	

Figure Number:	2
Figure Date:	24 July 2023
Report Number:	2148-DSI-01-280723.v1f

	Carlana	Scale:	25 m	Sampling Locations	
	Sydney	Client Name:	Universal Property G	roup (c/- Macpherson Kelley)	
		Project Name:	Stage 2 Detailed Site	Investigation	2
, ,	Group	Project Location:	43, 45 & 49 Warriew	ood Road, Warriewood NSW	•

Figure Number:	3
Figure Date:	24 July 2023
Report Number:	2148-DSI-01-280723.v1f

ydney nviro

	Scale:	25 m Potential Areas of Environmental Concern			
ey	Client Name:	Universal Property Group (c/- Macpherson Kelley)	1	Figure Number:	4
	Project Name:	Stage 2 Detailed Site Investigation	2	Figure Date:	24 July 2023
Group	Project Location:	43, 45 & 49 Warriewood Road, Warriewood NSW		Report Number:	2148-DSI-01-280723.v1f

TABLES

								Sample	D		7801.02.0	13 02.03 02 02 02 02 02 02 02 02 02 02 02 02 02	0 ²³ 0 ² 0 ³	9.2.9.3 TP06.9.2.9	13 11.1.1.2 1901 - 1908 0.2	1 ²³ 0 ² 0 ³ 0 ³ 1 ²⁰ 0 ³	2,03 7812,02,03 7812,02,03	0.2.0.3 TP12.0.7	10.3 1914 0.2 0.3 1914 0.2 1915	12.0.3 TP16.0	103 1910,000	3 0.3 1918 0.2 191	19.0 ² ,0 ³ 19 ⁰ ,0 ³	93 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192 - 192	,0.3 ,193,02,	J.3 DUPO1	DUPO2	EIL DUPOLS
					ite Adopted Criter Residential A 0 m to <1 m CLA)			Referen Sample I	-		S23-JI0041444 19/07/23 S23-JI0041445 19/07/23	S23-JI0041446 19/07/23 S23-JI0041447 19/07/23	523-JI0041448 19/07/23	19/07/23 523-JI0041450 19/07/23	523-JI0041451 19/07/23 523-JI0041452 19/07/23	523-JI0041453 19/07/23 523-JI0041454	19/07/23 S23-JI0041455 19/07/23	19/07/23 19/07/23 523-J10041457	19/07/23 523-JI0041458 19/07/23 523-JI0041459	19/07/23 523-JI0041460	19/07/23 S23-JI0041461 19/07/23	523-JI0041462 19/07/23	S23-JI0041463 19/07/23 523-JI0041464 19/07/23	523-JI0041465 19/07/23 523-JI0041466	19/07/23 523-J10041467 19/07/23	S23-JI0041468 19/07/23	S23-JI0041469 19/07/23	ES2324402001 19/07/23 ES2324402002 19/07/23
Group	Analyte	Units	PQL	Health Investigation / Screening Level (HIL / HSL)	Environmental Investigation / Screening Level (EIL / ESL)	Petroleum Hydrocarbon Management Level (PHML)	# Samples	Minimum Average	Standard Deviation 95% UCL	Maximum																		
	Arsenic Cadmium	mg/kg mg/kg	2 0.4	100 20	100	-	28 2 28 4	4 ND 4	3 - 0 -	15 0.6	3.7 4.6 < 0.4 0.6	5.6 3 < 0.4 < 0.4		15 4.7 0.4 < 0.4	3.1 4.7 0.4 0.5	<pre><2 5.</pre> <pre></pre>		5.8 2.7 0.5 < 0.		.1 3 0.4 < 0	4.1	+ +	5.9 5.6 <0.4 <0.4			3.5	< 2 < 0.4	6 < 5 < 1 < 1
	Chromium (Total) ¹	mg/kg	5	100	400	-	28 2	5 ND 16		81	11 45	18 13		8.6 11	13 23	12 27		81 5.7		.3 8.		< 5	11 22	6.4 15	10	6		28 5
Metals	Copper Lead	mg/kg mg/kg	5	6000 300	130 1100	-	28 2 28 2	1 ND 10 8 9 26	7 - 9 -	33 47	9 26 41 21	14 14 24 28	5.9 29	16 16 29 28	22 33 22 33	7.3 14 23 25	10 5 18	19 < 5 35 18		.2 < .	5 5.5 4 30	< 5 19	<5 15 47 33	10 22 37 23	_	< 5 21	< 5 11	6 < 5 30 9
	Mercury (Inorganic)	mg/kg	0.1	40	-	-	28 5	ND 0	1 -	2	< 0.1 0.1	< 0.1 < 0.1		0.1 < 0.1	< 0.1 < 0.1			0.2 0.1		0.1 < 0	_		< 0.1 < 0.1			< 0.1	< 0.1	2 < 2
	Nickel Zinc	mg/kg mg/kg	5	400 7400	220 260	-	28 4 28 2		0 - 95 120	8.8 0 440	<5 <5 42 210	<5 8.2 85 62	< 5 39	< 5 < 5 40 71	<5 <5 210 250	< 5 < 9.7 9.		< 5 < 5 120 29		.8 < 0 4	5 < 5 4 35	< 5 19	<5 8.7 14 49	< 5 8.3 63 67	_	< 5 8.5	< 5 < 5	<0.1 <0.1 36 6
	Acenaphthene	mg/kg	0.5	-	-	-	27 (ND ND	< 0.5 < 0.5	< 0.5 < 0.5		0.5 < 0.5				 < 0.5 < 0.5 < 0.5 			.5 < 0.5		< 0.5 < 0.5		_			< 0.5 < 0.5
	Acenaphthylene Anthracene	mg/kg mg/kg	0.5 0.5	-	-	-	27 (27 (ND NC	NC -	ND	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5		0.5 < 0.5 0.5 < 0.5				 0.5 < 0. 0.5 < 0. 			.5 < 0.5 .5 < 0.5	+ +	<0.5 <0.5 <0.5 <0.5		5 < 0.5 5 < 0.5	< 0.5 < 0.5		< 0.5 < 0.5 < 0.5 < 0.5
	Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.5	-	- 0.7	-	27 (27 (ND ND	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5		0.5 < 0.5 0.5 < 0.5		<0.5 <0					.5 < 0.5 .5 < 0.5		<0.5 <0.5 <0.5 <0.5		5 < 0.5 5 < 0.5			< 0.5 < 0.5 < 0.5 < 0.5
	BaP TEQ - Low ²	mg/kg	0.5	3	-	-	27 (ND NC	NC 1.6	5 ND	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0	.5 < 0.5	0.5 < 0.	.5 < 0.5 <	0.5 < 0	.5 < 0.5		< 0.5 < 0.5	< 0.5 < 0	5 < 0.5	+ +	- •	< 0.5 < 0.5
	BaP TEQ - Medium ² BaP TEQ - High ²	mg/kg mg/kg	0.6	3	-	-	27 2 27 2	7 0.6 0.6 7 1.2 1.2		_	0.6 0.6 1.2 1.2	0.6 0.6 1.2 1.2		0.6 0.6 1.2 1.2	0.6 0.6 1.2 1.2	0.6 0. 1.2 1.		0.6 0.6 1.2 1.2		.6 0. .2 1.	_	0.6	0.6 0.6 1.2 1.2	0.6 0.0 1.2 1.1	_	0.6		0.6 0.6 1.2 1.2
	Benzo(b&j)fluoranthene	mg/kg	0.5	-	-	-	27 (ND NC	NC -	ND	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0	.5 < 0.5	0.5 < 0.	.5 < 0.5 <	0.5 < 0	.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0	5 < 0.5	_	- •	< 0.5 < 0.5
РАН	Benzo(ghi)perylene Benzo(k)fluoranthene	mg/kg mg/kg	0.5	-	-	-		ND NC ND NC				<u> </u>	+		<0.5 <0.5 <0.5 <0.5	+ + + - +								+				< 0.5 < 0.5 < 0.5 < 0.5
	Chrysene	mg/kg	0.5	-	-	-	27 (ND NC	NC -	ND	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0	.5 < 0.5	:0.5 < 0.	.5 < 0.5 <	0.5 < 0	.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0	5 < 0.5	< 0.5	- •	< 0.5 < 0.5
	Dibenzo(ah)anthracene Fluoranthene	mg/kg mg/kg	0.5	•	-	-		ND NC ND NC			<0.5 <0.5 <0.5 <0.5	 	+ +		<0.5 <0.5 <0.5 <0.5						_	+ +				+ +		< 0.5 < 0.5 < 0.5 < 0.5
	Fluorene	mg/kg	0.5	-	-	-	27 (ND NC	NC -	ND	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0	.5 < 0.5	: 0.5 < 0.	.5 < 0.5 <	0.5 < 0	.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0	5 < 0.5	< 0.5	- •	< 0.5 < 0.5
	Indeno(1,2,3-cd)pyrene Naphthalene	mg/kg mg/kg		-	- 170	-		ND NC ND NC		+ +			+ +		<0.5 <0.5 <0.5 <0.5							+ +			-	+ +		<0.5 <0.5 <0.5 <0.5
	Phenanthrene	mg/kg	0.5	-	-	-	27 (ND NC	NC -	ND	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0	.5 < 0.5	0.5 < 0.	.5 < 0.5 <	0.5 < 0	.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0	5 < 0.5	< 0.5		< 0.5 < 0.5
	Pyrene Total PAH (18)	mg/kg mg/kg		- 300	-	-		ND NC		_		<u> </u>			<0.5 <0.5 <0.5 <0.5									< 0.5 < 0				< 0.5 < 0.5 < 0.5 < 0.5
	TRH C10-C36 Total	mg/kg		-	-	-	23 (ND NC	NC -	ND	< 50 < 50	< 50 < 50	< 50	50 < 50	< 50 < 50	< 50 < 5	0 < 50	< 50 < 5	0 < 50 <	50 < 5	50 < 50	< 50			_	-	-	
	TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 50	-	-	-		ND NC		_	< 20 < 20 < 50 < 50			20 < 20 50 < 50		< 20 < 2			0 < 20 < 0 < 50 <		20 < 20 50 < 50		<20 <20 <50 <50	-		-	-	· ·
	TRH C29-C36	mg/kg	50	-	-	-	23 (ND NC	NC -	ND	< 50 < 50	< 50 < 50	< 50	50 < 50	< 50 < 50	< 50 < 5	0 < 50	< 50 < 5	0 < 50 <	50 < 5		+ +				-	-	
	TRH C6-C9 Naphthalene	mg/kg mg/kg		-	- 170	-		ND NC		_	<20 <20 <0.5 <0.5		-	20 < 20 0.5 < 0.5	<20 <20 <0.5 <0.5	< 20 < 2	-	-	0 < 20 <	-	20 < 20 .5 < 0.5		<20 <20 <0.5 <0.5		-	-	-	
TRH	TRH >C10-C16 (F2)	mg/kg	50	-	120	1000		ND NC		ND	< 50 < 50	< 50 < 50	< 50	50 < 50	< 50 < 50	< 50 < 5	0 < 50	< 50 < 5	0 < 50 <	50 < 5	50 < 50	< 50	< 50 < 50	< 50 < 5	0 -	-	-	
	TRH >C10-C16 (F2) - Naphthalene TRH C10-C40 Total (F bands)	mg/kg mg/kg	50 100	- 280	-	-		ND NC			<50 <50 <100 <100			50 < 50 100 < 100	<50 <50 <100 <100				0 < 50 < 00 < 100 < 2		50 < 50 00 < 100		<50 <50 <100 <100		-	-	-	· ·
	TRH >C16-C34 (F3)	mg/kg	100	-	1300	3500		ND NC							< 100 < 100							+ +				-	-	
	TRH >C34-C40 (F4) TRH C6-C10	mg/kg mg/kg	100 20	-	5600 180	10000 800		ND NC ND NC			<100 <100 <20 <20	<u> </u>		100 < 100 20 < 20	<100 <100 <20 <20				00 < 100 < 1 0 < 20 <		00 < 100 20 < 20	+ +		<pre>< 100 < 10 < 20 < 2</pre>	_	-	-	· ·
	TRH C6-C10 minus BTEX (F1)	mg/kg	20	50	-	-		ND NC		_	< 20 < 20			20 < 20		< 20 < 2			0 < 20 <		20 < 20	++	< 20 < 20			-	-	
	Benzene Ethylbenzene	mg/kg mg/kg	0.1	0.7 NL	65 125	-		ND NC ND NC	-				+ +		<0.1 <0.1 <0.1 <0.1						_	+ +			_	-	-	· ·
втех	m/p-xylene	mg/kg		-	-	-		ND NC			< 0.2 < 0.2				< 0.2 < 0.2											-	-	
	o-xylene Toluene	mg/kg mg/kg	0.1	- 480	- 105	-		ND NC ND NC							<0.1 <0.1 <0.1 <0.1 <0.1							+ +				-	-	
	Total Xylenes	mg/kg	0.3	110	45	-		ND NC		_					< 0.3 < 0.3						_				3 -	-	-	
	4.4 - DDD 4.4 - DDE	mg/kg mg/kg		-	-	-		0.0 NC 0.1 0.0		ND 0.06	- < 0.05 - 0.06	<u> </u>	+ +	0.05 - 0.05 -	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -		- < 0.0		.05 -	< 0.05 < 0.05	+ +	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	-	-	-	
	4.4 - DDT a-HCH	mg/kg mg/kg	0.5 0.5	-	-	-		0.0 NC 0.0 NC		ND ND	- < 0.05 - < 0.05	- < 0.0		0.05 - 0.05 -	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	< 0.05	- <0.0		.05 -	< 0.05		< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	-	-	-	
	Aldrin	mg/kg	0.5	-	-	-	11 (0.0 NC	NC -	ND	- < 0.05			0.05 -	< 0.05 -	< 0.05 -	< 0.05	- < 0.0	05 - <0	.05 -	< 0.05	-	< 0.05 -	< 0.05 -	-	-	-	
	Aldrin + Dieldrin (total) b-HCH	mg/kg mg/kg	0.5	6	-	-		0.00 NC		ND ND	- < 0.05 - < 0.05	- < 0.0		0.05 - 0.05 -	< 0.05 - < 0.05 -	< 0.05 -	< 0.05	- < 0.0		.05 -	< 0.05		< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	-	-	-	
	Chlordanes (total)	mg/kg	0.1	50	-	-	11 (ND NC	NC -	ND	- < 0.1	- < 0.1	- <	0.1 -	< 0.1 -	< 0.1 -	< 0.1	- <0.	.1 - <	0.1 -	< 0.1	-	< 0.1 -	< 0.1 -	-	-	-	
	d-HCH DDT + DDE + DDD (total)	mg/kg mg/kg	0.1	- 240	-	-		ND NC ND 0.0		ND 0.06	- < 0.05 - 0.06	- < 0.0		0.05 - 0.05 -	< 0.05 - < 0.05 -	< 0.05 -	< 0.05	- < 0.0		.05 -	< 0.05		< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	-	-	-	
	Dieldrin	mg/kg	0.1	-	-	-	11 (ND NC	NC -	ND	- < 0.05	- < 0.0	5 - <	0.05 -	< 0.05 -	< 0.05 -	< 0.05	- < 0.0	05 - <0	.05 -	< 0.05	-	< 0.05 -	< 0.05 -	-	-	-	
ОСР	Endosulfan 1 Endosulfan 2	mg/kg mg/kg	0.1	-	-	-		ND NC ND NC		ND ND	- < 0.05 - < 0.05			0.05 - 0.05 -	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	< 0.05	- <0.0		.05 -	< 0.05		< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	-	-	-	
	Endosulfan sulphate	mg/kg	0.1	-	-	-	11 (ND NC	NC -	ND	- < 0.05	- < 0.0	5 - <	0.05 -	< 0.05 -	< 0.05 -	< 0.05	- < 0.0	05 - <0	.05 -	< 0.05	-	< 0.05 -	< 0.05 -	-	-	-	
	Endosulfan (Total) Endrin	mg/kg mg/kg	0.1	270 10	-	-		ND NC ND NC		ND ND	- < 0.05 - < 0.05	- < 0.0	+ +	0.05 - 0.05 -	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	< 0.05	- <0.0		.05 -	< 0.05	+ +	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	-	-	-	
	Endrin Aldehyde	mg/kg	0.1	-	-	-	11 (ND NC	NC -	ND	- < 0.05	- < 0.0	5 - <	0.05 -	< 0.05 -	< 0.05 -	< 0.05	- < 0.0	05 - <0	.05 -	< 0.05	-	< 0.05 -	< 0.05 -	-	-	-	
	Endrin Ketone g-HCH (Lindane)	mg/kg mg/kg	0.1	-	-	-		ND NC ND NC		ND ND	- < 0.05 - < 0.05			0.05 - 0.05 -	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	< 0.05	- < 0.0		.05 -	< 0.05		< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	-	-	-	
	Heptachlor	mg/kg	0.1	6	-	-	11 (ND NC	NC -	ND	- < 0.05	- < 0.0	5 - <	0.05 -	< 0.05 -	< 0.05 -	< 0.05	- < 0.0	05 - <0	.05 -	< 0.05	-	< 0.05 -	< 0.05 -	-	-	-	
	Heptachlor epoxide Hexachlorobenzene	mg/kg mg/kg	0.1	- 10	-	-		ND NC ND NC		ND ND	- < 0.05 - < 0.05		+ +	0.05 - 0.05 -	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	< 0.05 < 0.05	- < 0.0		.05 -	< 0.05	+ +	< 0.05 - < 0.05 -	< 0.05 - < 0.05 -	-	-	-	
	Methoxychlor	mg/kg	0.2	300	-	-	11 (0.0 NC	NC -	ND	- < 0.05	- < 0.0	5 - <	0.05 -	< 0.05 -	< 0.05 -	< 0.05	- < 0.0	05 - <0	.05 -	< 0.05	-	< 0.05 -	< 0.05 -	-	-	-	
	Vic EPA IWRG 621 OCP (total) Vic EPA IWRG 621 Other OCP (total)	mg/kg mg/kg	0.1	-	-	-		ND NC 0.0 NC		ND ND	- <0.1 - <0.1	- <0.1 - <0.1		0.1 - 0.1 -	<0.1 - <0.1 -	< 0.1 - < 0.1 -	< 0.1	- <0. - <0.		0.1 - 0.1 -	< 0.1	<u> </u>	< 0.1 - < 0.1 -	< 0.1 - < 0.1 -		-	-	
PCBs	Total PCBs	mg/kg		1				0.0 NC		ND	- < 0.1	- < 0.1		0.1 -	< 0.1 -	< 0.1 -	< 0.1	- < 0.		0.1 -	< 0.1		< 0.1 -	< 0.1 -	-	-		

General Notes to Table: | - = Not Analysed | BTEX = Benzene, Toluene, Ethylbenzene, and Xylene | OCP = Organochlorine Pesticides | NC = Not Calculated | ND = Non-Detect | NL = Not Limiting | PAH = Polyaromatic Hydrocarbon | | PCBs = Polychlorinated Biphenyls | PQL = Practical Quantification Limit | TRH = Total Recoverable Hydrocarbons | TEQ = Toxicity Equivalence Quotient | UCL = Upper Confidence Limit | Notes to Statistical Calculations: The average and Standard Deviation are calculated with non-detects replaced with a null (0) proxy value. Where all values are non-detect, a "NC" value is ouputted.

ValueHighlighted concentration exceeds the site adopted criteria (HIL/HSL)ValueHighlighted concentration exceeds the site adopted criteria (EIL/ESL)

Value Highlight concentration exceeds the site adopted criteria (Petroleum Management Limit) Value Highlighted concentration exceeds multiple site adopted criterion

Additional Notes: ¹ HIL limits are for Chromuium (VI) only, and EIL limits are for Chromium (III) only, total Chromium measured for initial screening ² Non-detect values are replaced with a proxy value with the proxy value being, Low: 0, Medium: 1/2 PQL, and High: PQL

Stage 2 Detailed Site Investigation - 43-49 Warriewood Road, Warriewood NSW 2148-DSI-01-280723.v1f

		Ground	Group Asbestos						
		Group	Asbestos Sample	Asbestos Sample					
		Analyte	Mass/Dimensions	Description	ACM				
		Units	-	-	% w/w				
		PQL	-	•	0.01				
		Health Sceening Level (HSL)	-	-	0.01				
	Site Adopted Criteria Residential A								
				# Samples	25				
				# Detects	0				
Sample ID	Reference / Sample Date			Minimum	ND				
	Sample Date			Average Standard Deviation	NC NC				
				Maximum	ND				
TP01_0.2_0.3	S23-Jl0041444 19/07/23		101g	Brown coarse-grained sandy soil, sand stone, glass and rocks	< 0.01				
TP02_0.2_0.3	S23-Jl0041445 19/07/23		47g	Brown fine-grained clayey soil, organic debris and rocks	< 0.01				
TP03_0.2_0.3	S23-Jl0041446 19/07/23		62g	Brown fine-grained clayey soil, glass, plastic, organic debris and rocks	< 0.01				
TP04_0.2_0.3	S23-Jl0041447 19/07/23		64g	Brown fine-grained clayey soil, cement and rocks	< 0.01				
TP05_0.2_0.3	S23-Jl0041448 19/07/23		60g	Brown fine-grained clayey soil, organic debris and rocks	< 0.01				
TP06_0.2_0.3	S23-Jl0041449 19/07/23		76g	Brown fine-grained clayey soil, organic debris and rocks Brown fine-grained clayey soil,	< 0.01				
TP07_1.1_1.2	S23-Jl0041450 19/07/23		72g	organic debris, brick, cement and rocks	< 0.01				
TP08_0.2_0.3	S23-Jl0041451 19/07/23		37g	Brown fine-grained clayey soil, organic debris and rocks	< 0.01				
TP09_0.2_0.3	S23-Jl0041452 19/07/23		36g	Brown fine-grained clayey soil, organic debris, cement and rocks	< 0.01				
TP10_0.2_0.3	S23-Jl0041453 19/07/23		55g	Brown fine-grained clayey soil, organic debris and rocks	< 0.01				
TP11_0.2_0.3	\$23-Jl0041454 19/07/23		87g	Brown fine-grained clayey soil, organic debris and rocks	< 0.01				
TP12_0.2_0.3	\$23-Jl0041455 19/07/23		127g	Brown fine-grained clayey soil, organic debris and rocks	< 0.01				
TP13_0.2_0.3	S23-JI0041456 19/07/23 S23-JI0041457		67g	Brown fine-grained clayey soil, organic debris and rocks Brown fine-grained clayey soil,	< 0.01				
TP14_0.2_0.3	19/07/23		110g	organic debris and rocks	< 0.01				
TP15_0.2_0.3	S23-JI0041458 19/07/23 S23-JI0041459		75g	Brown coarse-grained sandy soil, organic debris and rocks Brown coarse-grained sandy soil,	< 0.01				
TP16_0.2_0.3	19/07/23 523-JI0041460		102g	organic debris and rocks Brown coarse-grained sandy soil,	< 0.01				
TP17_0.2_0.3	19/07/23 \$23-JI0041461		68g	organic debris and rocks Brown coarse-grained sandy soil,	< 0.01				
TP18_0.2_0.3	19/07/23 \$23-Jl0041462		53g	organic debris and rocks Brown coarse-grained sandy soil,	< 0.01				
TP19_0.2_0.3	19/07/23 S23-Jl0041463		29g	organic debris and rocks Brown coarse-grained sandy soil,	< 0.01				
TP20_0.2_0.3	19/07/23 S23-Jl0041464		46g	organic debris and rocks Brown coarse-grained sandy soil,	< 0.01				
TP21_0.2_0.3	19/07/23 S23-Jl0041465		83g	organic debris and rocks Brown coarse-grained sandy soil,	< 0.01				
TP22_0.2_0.3	19/07/23 S23-Jl0041466		87g	organic debris, cement and rocks Brown coarse-grained sandy soil,	< 0.01				
TP23_0.2_0.3	19/07/23 523-Jl0041478		41g	organic debris, bitumen and rocks Grey fibre cement fragment (40 x	< 0.01 Chrysotile and				
FC-01	19/07/23 S23-Jl0041479		10 g	35 x 3 mm) Grey fibre cement fragment (60 x	Amosite Asbestos Chrysotile and				
TP08-FC	19/07/23		40 g	55 x 5 mm)	Amosite Asbestos				

General Notes to Table: | - = Not Analysed | ACM = Asbestos Containing Material | AF = Asbestos Fines | FA = Fibrous Asbestos | NC = Not Calculated | ND = Non-Detect |

| NL = Not Limiting |PQL = Practical Quantification Limit

Notes to Statistical Calculations: The Average and Standard Deviation are calculated with non-detects replaced with a null (0) proxy value. Where all values are non-detect, a "NC" value is ouputted.

 Value
 Highlighted concentration exceeds the site adopted criteria (HIL)

		Sa	mple ID		/	DUPO	1 1901.)?	,0.3 PPD IF	nit RPD	DUPO	a gupor	a BROLINI	RP	DUPO	1919.0.2	93 BPD LIMI	RPD	DUPO	DUPOT	a BRO LINK
		Reference	/Sample [Date	S23-JI0041467 19/07/23	523-J10041444 19/07/23			S23-JI0041467 19/07/23	00/01/00			523-JI0041468 19/07/23	S23-JI0041462 19/07/23			523-JI0041468 19/07/23	ES2324402002 19/07/23		
Group	Analyte	Units	Eurofins PQL	SGS PQL																
	Arsenic	mg/kg	2	1	3.6	3.7	NL	3	3.6	6	NL	50	3.5	< 2	NL	NC	3.5	< 5	NL	NC
	Cadmium	mg/kg	0.4	0.3	< 0.4	< 0.4	NL	NC	< 0.4	< 1	NL	NC	< 0.4	< 0.4	NL	NC	< 0.4	< 1	NL	NC
	Chromium (Total)	mg/kg	5	1	10	11	NL	10	10	28	NL	95	6	< 5	NL	NC	6	5	NL	18
Metals	Copper	mg/kg	5	1	8.2	9	NL	9	8.2	6	NL	31	< 5	< 5	NL	NC	< 5	< 5	NL	NC
	Lead	mg/kg	5	1	30	41	NL	31	30	30	NL	0	21	19	NL	10	21	9	NL	80
	Mercury (Inorganic)	mg/kg	0.1	0.05	< 0.1	< 0.1	NL	NC	< 0.1	2	NL	NC	< 0.1	< 0.1	NL	NC	< 0.1	< 2	NL	NC
	Nickel	mg/kg	5	1	< 5	< 5	NL	NC	< 5	< 0.1	NL	NC	< 5	< 5	NL	NC	< 5	<0.1	NL	NC
	Zinc	mg/kg	5	2	42	42	NL	0	42	36	NL	15	8.5	19	NL	76	8.5	6	NL	34
	Acenaphthene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	Acenaphthylene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	Anthracene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	Benzo(a)anthracene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	Benzo(a)pyrene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	BaP TEQ - Low ²	mg/kg	0.5	0.2	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	BaP TEQ - Medium ²	mg/kg	0.6	0.3	0.6	0.6	NL	0	0.6	0.6	NL	0	0.6	0.6	NL	0	0.6	0.6	NL	0
	BaP TEQ - High ²	mg/kg	1.2	0.2	1.2	1.2	NL	0	1.2	1.2	NL	0	1.2	1.2	NL	0	1.2	1.2	NL	0
	Benzo(b&j)fluoranthene	mg/kg	0.5	0.1	< 0.5	< 0.5 < 0.5	NL	NC NC	< 0.5	< 0.5	NL	NC NC	< 0.5	< 0.5 < 0.5	NL NL	NC NC	< 0.5 < 0.5	< 0.5	NL NL	NC NC
РАН	Benzo(ghi)perylene Benzo(k)fluoranthene	mg/kg mg/kg	0.5 0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NI	NC	< 0.5	< 0.5	NI	NC
	Chrysene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	Dibenzo(ah)anthracene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5		NL	NC	< 0.5	< 0.5	NL	NC
	Fluoranthene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5		NL	NC	< 0.5	< 0.5	NL	NC
	Fluorene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	Indeno(1,2,3-cd)pyrene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5		NL	NC	< 0.5	< 0.5	NL	NC
	Naphthalene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5		NL	NC	< 0.5	< 0.5	NL	NC
	Phenanthrene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5		NL	NC	< 0.5	< 0.5	NL	NC
	Pyrene	mg/kg	0.5	0.1	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC
	Total PAH (18)	mg/kg	0.5	0.8	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC	< 0.5	< 0.5	NL	NC

General Notes to Table: | - = Not Analysed | NC = Not Calculated | ND = Non-Detect | PAH = Polyaromatic Hydrocarbon |

| PQL = Practical Quantification Limit | RPD = Relative Percentage Difference | TEQ = Toxicity Equivalence Quotient |

Notes to RPD limits: Limits vary according based on a comparison of the parent sample concentration and the PQL for each analyte.

The following RPD limits apply: analyte concentration < 10x PQL: No RPD limit; > 10x < 20x PQL, 50% RPD limit; > 20x PQL, 30% RPD limit.

Highlighted value exceeds the site adopted RPD criteria Value

	TRIP SPIKE	TRIP BLANK
	TRIP SPIKE	TRIP BLANK
	Soil	Soil
	Recovery (%)	Concentration
Analyte	%	mg/kg
Benzene	110	< 0.1
Ethylbenzene	98	< 0.1
m/p-Xylene	97	< 0.2
o-Xylene	96	< 0.1
		< 0.1
Toluene	98	< 0.1

Value Value outside assessment criteria

APPENDIX A

TEST PIT LOGS

ADDRESS 43-49 Warriewood Road, Warriewood NSW

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 1.5 m

LOGGED BY TB CHECKED BY MK

СОММ		-			-
Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
		$\times\!\!\times\!\!\times$	CL	FILL: Silty CLAY with sands, pale brown, low plasticity, dry, high organic matter.	Foreign materials
- 0.1			CL	FILL: Silty CLAY with sands, pale brown, low plasticity, dry.	including bricks, timber and concrete observed.
0.2	TP01-0.2-0.3				
- 0.3					
- 0.4					
- 0.7					
- 0.8			CL	TOPSOIL: Silty CLAY, medium plasticity, dark brown, moist.	No contamination indicators observed.
- 0.9 - - - 1					
- 1.1					
- 1.2			CL		-
- - - 1.3			UL	INFERRED NATURAL: CLAY, medium plasticity, grey, moist.	
- 1.4					
- - <u>1.5</u>				Termination Depth: 1.5 m	
- 1.6					
- - 1.7					
 1.8					
- 1.9					
_				nmental not geotechnical nurnoses	

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.7m LOGGED BY TB CHECKED BY MK

COMM	ENTS				
Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
-			CL	FILL: Silty CLAY, dark grey, medium plasticity, dry-moist, high organic matter.	Foreign materials such as glass observed.
- 0.1			CL	FILL: Silty CLAY, dark grey, medium plasticity, dry-moist.	as glass observed.
- 0.2	TP02-0.2-0.3	\bigotimes			
- 0.3					
- 0.4			CL	INFERRED NATURAL: CLAY, medium plasticity, medium grey, dry-moist.	No contamination indicators observed.
- 0.5 - 0.6					
0.0					
0.7				Termination Depth: 0.7m	
- 0.8					
0.9					
- 1					
- - 1.1					
- 1.2					
- 1.3					
- 1.4					
- 1.5					
- 1.6					
- 1.7					
- - 1.8					
- 1.9					

Disclaimer This log is intended for environmental not geotechnical purposes.

PROJECT NUMBER 2148 LOGGED BY TB WORKS DATE 18/07/2023 PROJECT NAME DSI **EXCAVATION METHOD** Excavator CHECKED BY MK CLIENT Macpherson Kelly EXCAVATOR CO. Smart Scan ADDRESS 43-49 Warriewood Road, **OPERATOR** Paris Warriewood TOTAL DEPTH 1.8 m COMMENTS **Graphic Log** Depth (m) Material Description Additional Observations Samples uscs , Normalization CL FILL: Silty CLAY, pale-medium brown, low plasticity, dry, high organic matter. Foreign materials such as glass and terracotta CL FILL: Silty CLAY, pale-medium brown, low plasticity, dry. observed. 0.1 - 0.2 TP03-0.2-0.3 0.3 - 0.4 0.5 - 0.6

0.7		\$		
		₹		
0.8		8		
- 0.9		8		
		3		
1		}		
- 1.1)		
		3		
- 1.2		8		
- 1.3		8		
		8		
1.4		X		
- 1.5		<u>}</u>		
		CL	INFERRED NATURAL: CLAY, medium plasticity, medium grey, dry-moist.	No contamination indicators observed.
- 1.6				
- 1.7				
1.8		2	Termination Depth: 1.8 m	
- 1.9				
E	innen This lass is is t			
Discla	imer This log is intende	ed for enviro	nmental not geotechnical purposes.	

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.9 m LOGGED BY TB CHECKED BY MK

СОММ	IENTS				
Depth (m)	Samples	Graphic Log	nscs	Material Description	Additional Observations
0.1	ю́ ТР04-0.2-0.3	•	CL	FILL: Silty CLAY with course gravel, grey-brown, low plasticity, dry.	Foreign materials such as glass observed.
0.4			CL	FILL: Silty CLAY, dark grey, medium plasticity, dry-moist.	
0.6			CL	INFERRED NATURAL: CLAY, medium plasticity, medium grey, dry-moist.	No contamination indicators observed.
- - - - - - - - - - - - - -				Termination Depth: 0.9 m	
- 1.1 - 1.2 					
- 1.4 					
- - - - - - - - - - - - - - - - - - -					
- - - - - - - - - - - - - - - - - - -					
E					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.9 m

LOGGED BY TB CHECKED BY MK

0.1 0.2 TP05-0.2-0.3 0.3 0.4 0.5	Material Description Additional Observ rk grey, medium plasticity, dry-moist, high organic matter. Foreign materials s as glass observed. rk grey, medium plasticity, dry-moist. Foreign materials s as glass observed. AL: CLAY, medium plasticity, medium grey, dry-moist. No contamination	such
0.2 0.2 0.4 0.5 CL FILL: Silty CLAY, dat CL FILL: SILL: S	rk grey, medium plasticity, dry-moist.	such I.
0.1 0.2 TP05-0.2-0.3 0.3 0.4 0.5	rk grey, medium plasuoly, dry-moist.	ι.
0.3 0.4 0.5	AL: CLAY, medium plasticity, medium grey, dry-moist.	
-0.4	AL: CLAY, medium plasticity, medium grey, dry-moist.	
0.5	AL: CLAY, medium plasticity, medium grey, dry-moist.	
	AL: CLAY, medium plasticity, medium grey, dry-moist.	
	AL: CLAY, medium plasticity, medium grev, drv-moist. No contamination	
	indicators observed	
- 0.7		
0.8		
0.9 Termination Depth: C	0.9 m	
-1.1		
-1.2		
-1.3		
- 1.4		
1.5		
1.6		
1.7		
-1.8		
-1.9		

Disclaimer This log is intended for environmental not geotechnical purposes.

- 0.9

PROJECT NUMBER 2148 LOGGED BY TB WORKS DATE 18/07/2023 PROJECT NAME DSI **EXCAVATION METHOD** Excavator CHECKED BY MK CLIENT Macpherson Kelly EXCAVATOR CO. Smart Scan ADDRESS 43-49 Warriewood Road, **OPERATOR** Paris Warriewood TOTAL DEPTH 1.8 m COMMENTS **Graphic Log** Depth (m) Material Description Additional Observations Samples uscs Ž CL FILL: Silty CLAY, pale-medium brown, low plasticity, dry, high organic matter. Foreign materials such as glass and terracotta CL FILL: Silty CLAY, pale-medium brown, low plasticity, dry. observed. 0.1 - 0.2 TP06-0.2-0.3 0.3 - 0.4 0.5 - 0.6 0.7 - 0.8

- 1	*		
- 1.1			
- 1.2	>		
- 1.3	*		
- 1.4	>		
- 1.5	CL	INFERRED NATURAL: CLAY, medium plasticity, medium grey, dry-moist.	No contamination
- 1.6			indicators observed.
- 1.7			
- 1.8		Termination Depth: 1.8 m	
- 1.9			
		nmental not geotechnical purposes.	

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 27 Jul 2023

PROJECT NUMBER 2148 LOGGED BY TB WORKS DATE 18/07/2023 PROJECT NAME DSI **EXCAVATION METHOD** Excavator CHECKED BY MK CLIENT Macpherson Kelly EXCAVATOR CO. Smart Scan ADDRESS 43-49 Warriewood Road, **OPERATOR** Paris Warriewood TOTAL DEPTH 1.8 m COMMENTS **Graphic Log** Depth (m) Additional Observations **Material Description** Samples uscs CL FILL: Silty CLAY, pale-medium brown, low plasticity, dry, high organic matter. Foreign materials such as glass and terracotta observed. CL FILL: Silty CLAY, pale-medium brown, low plasticity, dry.

- 0.1		\bigotimes		FILL: Sity CLAY, pale-medium brown, low plasticity, dry.	observed.
-		\otimes	*		
- 0.2	TP07-0.2-0.3	\bigotimes			
-		\bigotimes			
- 0.3		\boxtimes			
-		\otimes			
_ 0.4		\bigotimes			
-		\bigotimes			
0.5		\bigotimes			
-		\bigotimes			
- 0.6		\boxtimes			
- 07		\bigotimes	*		
- 0.7		\bigotimes			
 0.8		\bigotimes			
-		\boxtimes			
- 0.9		\bigotimes	*		
-		\bigotimes			
- 1		\bigotimes			
-		\bigotimes			
- 1.1	TD07 0 0 0 0	\bigotimes			
-	TP07-0.2-0.3	\bigotimes			
- 1.2		\boxtimes			
-		\otimes	*		
- 1.3		\bigotimes			
-		\bigotimes			
- 1.4		\boxtimes			
- -		\bigotimes	*		
_ 1.5		XXX	CL	INFERRED NATURAL: CLAY, medium plasticity, medium grey, dry-moist.	No contamination
-					indicators observed.
- 1.6					
- 1.7					
-					
<u>1.8</u>				Termination Depth: 1.8 m	
- 1.9					
- -					
-					

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 27 Jul 2023

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.6 m

LOGGED BY TB CHECKED BY MK

СОММ	IENTS				
Depth (m)	Samples	Graphic Log	nscs	Material Description	Additional Observations
_		\boxtimes	CL	FILL: Silty CLAY, pale-medium brown, low plasticity, dry, high organic matter.	No contamination
	TP08-0.2-0.3		CL	FILL: Silty CLAY, dark brown, medium plasticity, moist.	indicators observed. Foreign materials such as asbestos, glass and concrete observed.
		\bigotimes			
- 0.3			CL	INFERRED NATURAL: CLAY, medium plasticity, medium grey, dry-moist.	No contamination indicators observed.
0.5					
0.6				Termination Depth: 0.6 m	
- 0.7					
- 0.8					
- 0.9					
- 1 - - - - 1.1					
- 1.2					
- 1.3					
- 1.4					
- 1.5					
- 1.6					
- 1.7 - 1.8					
- 1.9					
-					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.8 m LOGGED BY TB CHECKED BY MK

сомм	IENTS				
Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
0.1	TP09-0.2-0.3		CL	FILL: Silty CLAY, grey-brown, low plasticity, dry.	No contamination indicators observed.
0.4					
0.6			CL	INFERRED NATURAL: CLAY, high plasticity, medium brown, dry-moist.	
- 0.7 					
- - - - - - -				Termination Depth: 0.8 m	
- 1 					
- - - - - - -					
- 1.3 - 1.4					
- - - - - - - - - - - - - - - - - - -					
- - 1.6 - - - 1.7					
- 1.7 - - - - 1.8					
- - 1.9 					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.6 m

LOGGED BY TB CHECKED BY MK

COMM	IENTS				
Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
_		\otimes	CL	FILL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	Foreign materials such
- 0.1			CL	FILL: Silty CLAY, grey-brown, low plasticity, dry.	as glass and concrete observed.
-	TP10-0.2-0.3	\bigotimes			
- 0.3 - 0.4			CL	INFERRED NATURAL: CLAY, high plasticity, medium brown, dry-moist.	No contamination indicators observed.
- 0.5					
<u>0.6</u>				Termination Depth: 0.6 m	
0.7					
- 0.8 - 0.9					
1					
 1.1					
- 1.2					
- 1.3 					
- 1.4					
1.5 					
- 1.6					
- 1.9					
-					

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 27 Jul 2023

PROJECT NUMBER 2148

WORKS DATE 18/07/2023

LOGGED BY TB

PROJECT NAME DSI CHECKED BY MK **EXCAVATION METHOD** Excavator **CLIENT** Macpherson Kelly EXCAVATOR CO. Smart Scan ADDRESS 43-49 Warriewood Road, **OPERATOR** Paris Warriewood TOTAL DEPTH 1.1 m COMMENTS Graphic Log Additional Observations Depth (m) **Material Description** Samples uscs \Diamond CL FILL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter. Foreign materials such Ŝ as glass observed. CL FILL: Silty CLAY, grey-brown, low plasticity, dry. 0.1 0.2 TP11-0.2-0.3 0.3 0.4 0.5 - 0.6 0.7 - 0.8 CL INFERRED NATURAL: CLAY, low plasticity, grey, dry. No contamination indicators observed. 0.9 1 Termination Depth: 1.1 m - 1.2 1.3 1.4 - 1.5 - 1.6 - 1.7 - 1.8

Disclaimer This log is intended for environmental not geotechnical purposes.

produced by ESlog.ESdat.net on 27 Jul 2023

1.9

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.7 m

LOGGED BY TB CHECKED BY MK

сомм	IENTS				
Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
			CL	TOPSOIL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
- 0.1	TP12-0.2-0.3		CL	TOPSOIL: Silty CLAY, dark grey-brown, high plasticity, dry.	indicators observed.
- 0.3			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	
0.5					
- 0.7 - - - - - - - 0.8 - -				Termination Depth: 0.7 m	
- 0.9 1					
- 1.1 					
- 1.2 - 1.3					
 1.4					
- 1.5					
- 1.6 - 1.7					
 1.8 					
- 1.9 					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.8 m LOGGED BY TB CHECKED BY MK

СОММ	IENTS				
				1	1
Depth (m)	Samples	Graphic Log	nscs	Material Description	Additional Observations
 _ _		$\times\!\!\times\!\!\times$	CL	FILL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
0.1			CL	FILL: Silty CLAY, dark grey-brown, high plasticity, dry.	indicators observed.
- 0.2	TP13-0.2-0.3				
0.3					
- 0.5			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling,	No contamination
- 0.6				dry-moist.	indicators observed.
- 0.7					
				Termination Depth: 0.8 m	
0.9					
- 1					
- 1.1					
- 1.2					
- 1.3					
- 1.4					
- 1.5					
- 1.6					
- 1.7					
- 1.8					
- 1.9					
L	l	1		1	1

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.9 m LOGGED BY TB CHECKED BY MK

сомм	ENTS				
Depth (m)	Samples	Graphic Log	nscs	Material Description	Additional Observations
		$\times\!\!\times\!\!\times$	CL	FILL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
- 0.1			CL	FILL: Silty CLAY, dark grey, medium plasticity, dry-moist.	indicators observed.
- 0.2	TP14-0.2-0.3	\bigotimes			
- 0.3					
- 0.4					
- 0.5					
- 0.6			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	No contamination indicators observed.
- 0.7					
0.8					
- 0.9 -		~~~~~		Termination Depth: 0.9 m	
- - 1 -					
- - 1.1 - -					
- 1.2					
- 1.3					
- 1.4					
- 1.5					
- 1.6					
- 1.7 					
- 1.8 - - - 1.9					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.7 m

LOGGED BY TB CHECKED BY MK

no no<						
CL TOPSOIL: Silly CLAY, grey-brown, low plasticity, dry, high organic matter. No contamination indicators observed. 0.1 TP15-0.2-0.3 CL TOPSOIL: Silly CLAY, dark grey-brown, high plasticity, dry. 0.3 CL TOPSOIL: Silly CLAY, dark grey-brown, high plasticity, dry. Indicators observed. 0.3 CL TOPSOIL: Silly CLAY, dark grey-brown, high plasticity, dry. Indicators observed. 0.4 CL INFERRED NATURAL: CLAY, medium plasticity, oriange with red-grey motiling. Indicators observed. 0.5 CL INFERRED NATURAL: CLAY, medium plasticity, oriange with red-grey motiling. Indicators observed. 0.5 CL INFERRED NATURAL: CLAY, medium plasticity, oriange with red-grey motiling. Indicators observed. 0.5 CL Intermination Depth: 0.7 m Intermination Depth: 0.7 m Intermination 1.1 Intermination Intermination Depth: 0.7 m Intermination Intermination 1.1 Intermination Intermination Intermination Intermination 1.1 Intermination Intermination Intermination Intermination 1.1 Intermination Intermination<	COMN	IENTS				
0.1 CL TOPSOL: Silty CLAY, dark grey-brown, high plasticity, dry. indicators observed. 0.2 TP15.0.2.0.3 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry.moist. 0.3 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry.moist. 0.4 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry.moist. 0.4 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry.moist. 0.5 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry.moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry.moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry.moist. 0.7 Termination Depth: 0.7 m Inferred dry.moist. 1.1 Inferred dry.moist. Inferred dry.moist. 1.1 Inferred dry.moist. Inferred dry.moist. 1.1 Inferred dry.moist. Inferred dry.moist. 1.2 Inferred dry.moist. Inferred dry.moist. 1.3 Inferred dry.moist. Inferred dry.moist. 1.4 Inferred dry.moist. Inferred dry.moist. <th>Depth (m)</th> <th>Samples</th> <th>Graphic Log</th> <th>NSCS</th> <th>Material Description</th> <th>Additional Observations</th>	Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
0.1 TP15-0.2-0.3 CL 10PSOL: Stily CLAY, dark grey-brown, high plasticity, dry. 0.3 TP15-0.2-0.3 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 0.4 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 0.5 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 0.7 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 0.8 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 0.9 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 1.1 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 1.1 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 1.1 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 1.1 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey motiling, dry-moist. 1.1 INFERRED NATURAL: CLAY, medi	_			CL	TOPSOIL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
0.3 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.4 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.6 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.7 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.8 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.7 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 0.8 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 1.9 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 1.1 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dy-moist. 1.1 INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottlin	-	TP15-0.2-0.3		CL	TOPSOIL: Silty CLAY, dark grey-brown, high plasticity, dry.	indicators observed.
04 1 05 1 06 1 07 1 08 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1	- 			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	
0.8 Image: Constraint of the second seco	-					
08 1 1 09 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1	-					
08 1 1 09 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1	 					
	-				Termination Depth: 0.7 m	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					
-1.4 -1.5 -1.6 -1.7 -1.8						
-1.5 -1.6 -1.7 -1.8	- - 1.3 -					
-1.7 -1.8	- 1.4					
-1.7	- 1.5					
	-					
- 1.9	- - - - 1.8					
	- 1.9					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.9 m LOGGED BY TB CHECKED BY MK

COMM	ENTS				
Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
		\times	CL	FILL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
- 0.1			CL	FILL: Silty CLAY, dark grey, medium plasticity, dry-moist.	indicators observed. Foreign materials such as glass and plastic observed.
- 0.3	TP16-0.2-0.3				
- 0.4					
- 0.5					
- 0.6			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	No contamination indicators observed.
- 0.8					
- - - - 0.9				Termination Depth: 0.9 m	
- - - 1 -					
- 1.1 					
- 1.2					
- 1.3					
- 1.4 - - - 1.5					
- 1.6					
- 1.7					
- 1.8					
- 1.9					
_					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.6 m

LOGGED BY TB CHECKED BY MK

СОММ	IENTS				
Depth (m)	Samples	Graphic Log	nscs	Material Description	Additional Observations
		\otimes	CL	FILL: Silty CLAY, dark grey-brown, high plasticity, dry, high organic matter.	Foreign materials such as asbestos observed.
0.1			CL	FILL: Silty CLAY, dark grey-brown, high plasticity, dry.	as aspestos observed.
- 0.2	TP17-0.2-0.3		CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	No contamination indicators observed.
 0.4 					
0.5					
0.6				Termination Depth: 0.6 m	
- 0.7					
- 0.8					
0.9					
1 					
- 1.1 - - - 1.2					
- - - - 1.3					
 1.4					
_ 1.5 					
- 1.6 					
1.7					
- 1.8					
- 1.9					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.7 m

LOGGED BY TB CHECKED BY MK

сомм	ENTS				
Depth (m)	Samples	Graphic Log	nscs	Material Description	Additional Observations
_			CL	TOPSOIL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
0.1	TP18-0.2-0.3		CL	TOPSOIL: Silty CLAY, dark grey-brown, high plasticity, dry.	indicators observed.
-					
0.3			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	
- 0.6 - 0.7					
- - - - - - -				Termination Depth: 0.7 m	
- 0.9 - - - 1					
- - 1.1					
- 1.2					
- 1.3					
- 1.4 - - - 1.5					
- 1.6					
- - 1.7					
- 1.8 					

Disclaimer This log is intended for environmental not geotechnical purposes.

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.7 m

LOGGED BY TB CHECKED BY MK

сомм	ENTS				
Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
			CL	TOPSOIL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
- 0.1	TP19-0.2-0.3		CL	TOPSOIL: Silty CLAY, dark grey-brown, high plasticity, dry.	indicators observed.
- 0.3			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	
- 					
- 0.8				Termination Depth: 0.7 m	
- 0.9 - 1					
- 1.1 - 1.2					
- 1.3					
- - 1.4 -					
- 1.5 - - 1.6					
- 1.7					
 1.8 					
- 1.9 					

Disclaimer This log is intended for environmental not geotechnical purposes.

PROJECT NUMBER 2148 PROJECT NAME DSI CLIENT Macpherson Kelly ADDRESS 43-49 Warriewood Road, Warriewood

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.7 m

LOGGED BY TB CHECKED BY MK

СОММ	IENTS				
Depth (m)	Samples	Graphic Log	nscs	Material Description	Additional Observations
_		/////	CL	TOPSOIL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
- 0.1	TP20-0.2-0.3		CL	TOPSOIL: Silty CLAY, dark grey-brown, high plasticity, dry.	indicators observed.
0.3			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	
0.5					
0.7				Termination Depth: 0.7 m	
- 0.8					
- 0.9 					
- 1.1 					
- 1.2 					
- - - - - - - 1.4					
 1.5					
 1.6 					
- 1.7					
- 1.8 					
- 1.9					

Disclaimer This log is intended for environmental not geotechnical purposes.

produced by ESlog.ESdat.net on 27 Jul 2023

1.4

- 1.5

- 1.6

- 1.7

- 1.8

PROJECT NUMBER 2148 LOGGED BY TB WORKS DATE 18/07/2023 PROJECT NAME DSI CHECKED BY MK **EXCAVATION METHOD** Excavator **CLIENT** Macpherson Kelly EXCAVATOR CO. Smart Scan ADDRESS 43-49 Warriewood Road, **OPERATOR** Paris Warriewood TOTAL DEPTH 1.1 m COMMENTS Graphic Log Additional Observations Depth (m) **Material Description** Samples uscs Ŏ CL FILL: Silty CLAY, dark brown, medium plasticity, dry, high organic matter. Foreign materials such as brick observed. CL FILL: Silty CLAY, dark brown, medium plasticity, dry. 0.1 0.2 TP21-0.2-0.3 0.3 0.4 0.5 0.6 0.7 - 0.8 CL INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, No contamination dry-moist. indicators observed. 0.9 1 Termination Depth: 1.1 m - 1.2 1.3

Disclaimer This log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 27 Jul 2023

PROJECT NUMBER 2148 PROJECT NAME DSI CLIENT Macpherson Kelly ADDRESS 43-49 Warriewood Road, Warriewood

WORKS DATE 18/07/2023 EXCAVATION METHOD Excavator EXCAVATOR CO. Smart Scan OPERATOR Paris TOTAL DEPTH 0.7 m

LOGGED BY TB CHECKED BY MK

СОМИ	IENTS				
Depth (m)	Samples	Graphic Log	nscs	Material Description	Additional Observations
_			CL	TOPSOIL: Silty CLAY, grey-brown, low plasticity, dry, high organic matter.	No contamination
- 0.1	TP22-0.2-0.3		CL	TOPSOIL: Silty CLAY, dark grey-brown, high plasticity, dry.	indicators observed.
- 0.3			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	
- 0.5					
0.7		//////		Termination Depth: 0.7 m	
0.8					
- 1					
- 1.1					
- 1.2					
- 1.3					
- 1.4					
- 1.5 - - 1.6					
- 1.7					
- 1.8					
- 1.9					
_					

Disclaimer This log is intended for environmental not geotechnical purposes.

produced by ESlog.ESdat.net on 27 Jul 2023

PROJECT NUMBER 2148 WORKS DATE 18/07/2023 PROJECT NAME DSI EXCAVATION METHOD Excavator CLIENT Macpherson Kelly EXCAVATOR CO. Smart Scan ADDRESS 43-49 Warriewood Road, OPERATOR Paris Warriewood TOTAL DEPTH 1.1 m COMMENTS COMMENTS

LOGGED BY TB CHECKED BY MK

СОММ	ENTS				
Depth (m)	Samples	Graphic Log	NSCS	Material Description	Additional Observations
-		$\times\!\!\times\!\!\times$	CL	FILL: Silty CLAY, dark brown, medium plasticity, dry, high organic matter.	Foreign materials such
- 0.1			CL	FILL: Silty CLAY, dark brown, medium plasticity, dry.	as brick observed.
- - - -	TP23-0.2-0.3				
0.3					
0.4					
- 0.5					
0.6 					
- 0.7					
- 0.8			CL	INFERRED NATURAL: CLAY, medium plasticity, orange with red-grey mottling, dry-moist.	No contamination indicators observed.
 1					
- - - - -					
 1.2				Termination Depth: 1.1 m	
 1.3					
 1.4					
 1.5					
 1.6 					
1.7 					
 1.8 					
1.9 					
E				nmental not geotechnical purposes.	

Disclaimer This log is intended for environmental not geotechnical purposes.

produced by ESlog.ESdat.net on 27 Jul 2023

APPENDIX B

LABORATORY DOCUMENTATION

Sydney Environmental Group Pty Ltd Unit 63/45 Huntley St Alexandria NSW 2015

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Atten	tion:
Allon	

Mitchell Kirby

Report Project name Project ID Received Date 1009382-S WARRIEWOOD DSI 2148 Jul 19, 2023

Client Sample ID			TP01 0.2 0.3	TP02 0.2 0.3	TP03 0.2 0.3	TP04 0.2 0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041444	S23-JI0041445	S23-JI0041446	S23-JI0041447
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	130	64	80	90
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			TP01_0.2_0.3 Soil	TP02_0.2_0.3 Soil	TP03_0.2_0.3 Soil	TP04_0.2_0.3 Soil
Eurofins Sample No.			S23-JI0041444	S23-JI0041445	S23-JI0041446	S23-JI0041447
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
		1.1	Jul 19, 2025	Jul 19, 2025	Jul 19, 2025	Jul 19, 2025
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons			0.5	0.5	0.5	0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	1	тту/ку %	83	< 0.5 85	<u>< 0.5</u> 90	91
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	74	78	79	81
Heavy Metals		/0	/4	10	19	01
Arsenic	2	mallea	3.7	4.6	F C	3.0
	0.4	mg/kg		4.6 0.6	5.6 < 0.4	< 0.4
Cadmium	5	mg/kg	< 0.4	45	< 0.4 18	
Chromium	5	mg/kg	11 9.0	45 26	18	13 14
Copper Lead	5	mg/kg	9.0	20	24	28
Mercury	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1
Nickel	5	mg/kg mg/kg	< 5	< 5	< 5	8.2
Zinc	5	mg/kg	42	210	85	62
Sample Properties	5	шу/ку	42	210	00	02
• •	1	0/	15	20	0.1	0.4
% Moisture Organochlorine Pesticides		%	15	29	9.1	8.4
Chlordanes - Total	0.1	mallea	-	.01		< 0.1
4.4'-DDD	0.05	mg/kg mg/kg	-	< 0.1	-	< 0.05
4.4-DDD	0.05	mg/kg	-	0.06	-	< 0.05
4.4-DDE 4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	_	< 0.05
b-HCH	0.05	mg/kg	_	< 0.05	_	< 0.05
d-HCH	0.05	mg/kg		< 0.05		< 0.05
Dieldrin	0.05	mg/kg	_	< 0.05	_	< 0.05
Endosulfan I	0.05	mg/kg	_	< 0.05	_	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	_	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	_	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	_	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	_	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	_	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	_	< 0.05	_	< 0.05
Methoxychlor	0.05	mg/kg	_	< 0.05	_	< 0.05
Toxaphene	0.5	mg/kg	_	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	_	< 0.05	_	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	_	0.06	_	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	_	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	_	< 0.1
Dibutylchlorendate (surr.)	1	%	-	76	_	66
Tetrachloro-m-xylene (surr.)	1	%	-	78	-	79

Client Sample ID Sample Matrix			TP01_0.2_0.3 Soil	TP02_0.2_0.3 Soil	TP03_0.2_0.3 Soil	TP04_0.2_0.3 Soil
Eurofins Sample No.			S23-JI0041444	S23-JI0041445	S23-JI0041446	S23-JI0041447
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	76	-	66
Tetrachloro-m-xylene (surr.)	1	%	-	78	-	79

Client Sample ID			TP05_0.2_0.3	TP06_0.2_0.3	TP07_1.1_1.2	TP08_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041448	S23-JI0041449	S23-JI0041450	S23-JI0041451
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	90	131	125	136
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			TP05_0.2_0.3	TP06_0.2_0.3	TP07_1.1_1.2	TP08_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041448	S23-JI0041449	S23-JI0041450	S23-JI0041451
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	ł	1				
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	95	87	91	88
p-Terphenyl-d14 (surr.)	1	%	78	81	83	75
Heavy Metals	·					
Arsenic	2	mg/kg	9.8	15	4.7	3.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.4
Chromium	5	mg/kg	28	8.6	11	13
Copper	5	mg/kg	5.9	16	16	22
Lead	5	mg/kg	29	29	28	22
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	39	440	71	210
Sample Properties						
% Moisture	1	%	17	19	16	16
Organochlorine Pesticides	·					
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
b-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
d-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05

Client Sample ID Sample Matrix			TP05_0.2_0.3 Soil	TP06_0.2_0.3 Soil	TP07_1.1_1.2 Soil	TP08_0.2_0.3 Soil
Eurofins Sample No.			S23-JI0041448	S23-JI0041449	S23-JI0041450	S23-JI0041451
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	106	-	98
Tetrachloro-m-xylene (surr.)	1	%	-	82	-	80
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	106	-	98
Tetrachloro-m-xylene (surr.)	1	%	-	82	-	80

Client Sample ID			TP09_0.2_0.3	TP10_0.2_0.3	TP11_0.2_0.3	TP12_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041452	S23-JI0041453	S23-JI0041454	S23-JI0041455
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	86	78	106	144
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			TP09_0.2_0.3	TP10_0.2_0.3	TP11_0.2_0.3	TP12_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041452	S23-JI0041453	S23-JI0041454	S23-JI0041455
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Linit	501 13, 2025	501 13, 2025	501 13, 2025	501 15, 2025
	LUR	Unit				
Polycyclic Aromatic Hydrocarbons	0.5		0.5	0.5	0.5	0.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthene Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	86	88	91	91
p-Terphenyl-d14 (surr.)	1	%	76	71	76	79
Heavy Metals		,,,				
Arsenic	2	mg/kg	4.7	< 2	5.1	4.1
Cadmium	0.4	mg/kg	0.5	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	12	27	15
Copper	5	mg/kg	33	7.3	14	10
Lead	5	mg/kg	33	23	25	18
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	250	9.7	95	39
Sample Properties						
% Moisture	1	%	7.1	16	11	15
Organochlorine Pesticides	·					
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
ь-НСН	0.05	mg/kg	-	< 0.05	-	< 0.05
d-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05

Client Sample ID			TP09_0.2_0.3	TP10_0.2_0.3	TP11_0.2_0.3	TP12_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041452	S23-JI0041453	S23-JI0041454	S23-JI0041455
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	86	-	85
Tetrachloro-m-xylene (surr.)	1	%	-	78	-	79
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	86	-	85
Tetrachloro-m-xylene (surr.)	1	%	-	78	-	79

Client Sample ID			TP13 0.2 0.3	TP14 0.2 0.3	TP15 0.2 0.3	TP16 0.2 0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041456	S23-JI0041457	S23-JI0041458	S23-JI0041459
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			TP13_0.2_0.3	TP14_0.2_0.3	TP15_0.2_0.3	TP16_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			S23-JI0041456	S23-JI0041457	S23-JI0041458	S23-JI0041459
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
ВТЕХ						
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	86	136	138	131
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons		1				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5 91	< 0.5
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	93 75	85 78	86	96 77
Heavy Metals		70	75	10	00	
Arsenic	2	mallea	E 9	0.7	5.0	4.4
	0.4	mg/kg ma/ka	5.8 0.5	2.7	5.2 < 0.4	4.1
Cadmium		- 3 3		-	_	_
Chromium	5	mg/kg	81 19	5.7 < 5	< 5 7.7	13 12
Copper Lead	5	mg/kg mg/kg	35	< 5 18	36	12
Mercury	0.1	mg/kg	0.2	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	8.8
Zinc	5	mg/kg	120	29	32	50
Sample Properties	5	iiig/kg	120	29	52	50
% Moisture	1	%	18	15	14	9.7
Organochlorine Pesticides		70	10	15	14	9.7
	0.1	mallea		.01		- 0.1
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD 4.4'-DDE	0.05	mg/kg	-	< 0.05 < 0.05	-	< 0.05 < 0.05
4.4-DDE 4.4'-DDT	0.05	mg/kg mg/kg	-	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
b-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
d-HCH	0.05			< 0.05		< 0.05
Dieldrin	0.05	mg/kg mg/kg	-	< 0.05	-	< 0.05
	0.05	I IIY/KY	-	< 0.00	-	< 0.00

Client Sample ID			TP13_0.2_0.3	TP14_0.2_0.3	TP15_0.2_0.3	TP16_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041456	S23-JI0041457	S23-JI0041458	S23-JI0041459
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	82	-	76
Tetrachloro-m-xylene (surr.)	1	%	-	74	-	81
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	82	-	76
Tetrachloro-m-xylene (surr.)	1	%	-	74	-	81

Client Sample ID Sample Matrix			TP17_0.2_0.3 Soil	TP18_0.2_0.3 Soil	TP19_0.2_0.3 Soil	TP20_0.2_0.3 Soil
Eurofins Sample No.			S23-JI0041460	S23-JI0041461	S23-JI0041462	S23-JI0041463
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID			TP17_0.2_0.3	TP18_0.2_0.3	TP19_0.2_0.3	TP20_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041460	S23-JI0041461	S23-JI0041462	S23-JI0041463
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	131	57	73	83
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	91	87	70	86
p-Terphenyl-d14 (surr.)	1	%	76	74	58	76
Heavy Metals						
Arsenic	2	mg/kg	3.0	4.1	< 2	5.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.2	6.5	< 5	11
Copper	5	mg/kg	< 5	5.5 30	< 5	< 5
Lead	5	mg/kg	14		19	47
Mercury Nickel	0.1	mg/kg	< 0.1 < 5	< 0.1 < 5	< 0.1 < 5	< 0.1 < 5
Zinc	5	mg/kg mg/kg	< 5 44	35	< 5 19	< 5 14
Sample Properties	<u> </u>	I my/ky			13	14
% Moisture	1	%	15	14	15	15
Organochlorine Pesticides	1	70	15	14	15	10
	0.4	m a/l		-0.4		-0.4
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05

Client Sample ID			TP17_0.2_0.3	TP18_0.2_0.3	TP19_0.2_0.3	TP20_0.2_0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041460	S23-JI0041461	S23-JI0041462	S23-JI0041463
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides	•	-				
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
b-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
d-HCH	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	79	-	85
Tetrachloro-m-xylene (surr.)	1	%	-	75	-	75
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	79	-	85
Tetrachloro-m-xylene (surr.)	1	%	-	75	-	75

Client Sample ID Sample Matrix			TP21_0.2_0.3 Soil	TP22_0.2_0.3 Soil	TP23_0.2_0.3 Soil	DUP01 Soil
Eurofins Sample No.			S23-JI0041464	S23-JI0041465	S23-JI0041466	S23-JI0041467
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-

Client Sample ID Sample Matrix			TP21_0.2_0.3 Soil	TP22_0.2_0.3 Soil	TP23_0.2_0.3 Soil	DUP01 Soil
Eurofins Sample No.			S23-JI0041464	S23-JI0041465	S23-JI0041466	S23-JI0041467
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
		1.1	Jul 19, 2025	Jul 19, 2025	Jul 19, 2025	Jul 19, 2025
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	50		50	50	50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40 TRH >C10-C40 (total)*	100	mg/kg mg/kg	< 100 < 100	< 100 < 100	< 100 < 100	-
BTEX	100	mg/kg	< 100	< 100	< 100	-
	0.1	mallea	.01	.01	.01	
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene m&p-Xylenes	0.1	mg/kg	< 0.1	< 0.2	< 0.1	-
	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene Xylenes - Total*	0.1	mg/kg mg/kg	< 0.1	< 0.1	< 0.1	-
4-Bromofluorobenzene (surr.)	1	111g/kg %	138	138	149	_
Total Recoverable Hydrocarbons - 2013 NEPM Fra		/0	130	130	149	-
Naphthalene ^{N02}		mallea	. O E	: 0 E	. O F	
-	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Polycyclic Aromatic Hydrocarbons	0.5		.0.5	. 0.5	.0.5	.0.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5 0.6	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6		0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Anthracene Benz(a)anthracene	0.5	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	96	87	89	84
p-Terphenyl-d14 (surr.)	1	%	70	69	80	72
Heavy Metals						
Arsenic	2	mg/kg	5.6	4.8	7.3	3.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	22	6.4	15	10
Copper	5	mg/kg	15	10	22	8.2
Lead	5	mg/kg	33	37	23	30
Mercury	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	8.7	< 5	8.8	< 5
Zinc	5	mg/kg	49	63	67	42
Sample Properties						
% Moisture	1	%	12	35	12	14

Client Sample ID			TP21_0.2_0.3	TP22_0.2_0.3	TP23_0.2_0.3	DUP01
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S23-JI0041464	S23-JI0041465	S23-JI0041466	S23-JI0041467
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides	Loix	Onit				
Chlordanes - Total	0.1	mg/kg	_	< 0.1	_	_
4.4'-DDD	0.05	mg/kg	-	< 0.05	_	_
4.4'-DDE	0.05	mg/kg	-	< 0.05	_	_
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-HCH	0.05	mg/kg	-	< 0.05	_	_
Aldrin	0.05	mg/kg	-	< 0.05	_	_
b-HCH	0.05	mg/kg	-	< 0.05	-	_
d-HCH	0.05	mg/kg	-	< 0.05	_	_
Dieldrin	0.05	mg/kg	_	< 0.05		_
Endosulfan I	0.05	mg/kg	_	< 0.05		_
Endosulfan II	0.05	mg/kg	_	< 0.05		_
Endosulfan sulphate	0.05	mg/kg	_	< 0.05		-
Endrin	0.05	mg/kg	_	< 0.05		-
Endrin aldehyde	0.05	mg/kg		< 0.05		-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
g-HCH (Lindane)					-	-
Heptachlor	0.05	mg/kg	-	< 0.05		-
Heptachlor epoxide Hexachlorobenzene	0.05	mg/kg		< 0.05	-	
	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.05	mg/kg	-	< 0.05	-	-
Toxaphene	0.5	mg/kg	-	< 0.5	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	91	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	74	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	-	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	-
Total PCB*	0.1	mg/kg	-	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	-	91	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	74	-	-

Client Sample ID			DUP02	EIL	TRIP SPIKE	TRIP BLANK
Sample Matrix			Soil	Soil	Trip Spike (solid)	Trip Blank (solid)
Eurofins Sample No.			S23-JI0041468	S23-JI0041469	S23-JI0041470	S23-JI0041471
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
		11.21	501 13, 2025	501 13, 2025	501 15, 2025	501 15, 2025
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	-	-	-	< 20
	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	-	< 20
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	88
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	89	-	-	-
p-Terphenyl-d14 (surr.)	1	%	75	-	-	-
Heavy Metals						
Arsenic	2	mg/kg	4.1	< 2	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	7.0	10.0	-	-
Copper	5	mg/kg	< 5	< 5	-	-
Lead	5	mg/kg	25	11	-	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	-
Nickel	5	mg/kg	< 5	< 5	-	-
Zinc	5	mg/kg	9.9	< 5	-	-
Sample Properties						
% Moisture	1	%	14	17	-	-

Client Sample ID Sample Matrix Eurofins Sample No.			DUP02 Soil S23-JI0041468	EIL Soil S23-JI0041469	TRIP SPIKE Trip Spike (solid) S23-JI0041470	TRIP BLANK Trip Blank (solid) S23-JI0041471
Date Sampled			Jul 19, 2023	Jul 19, 2023	Jul 19, 2023	Jul 19, 2023
Test/Reference	LOR	Unit				
% Clay	1	%		25		_
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	_	52	_	_
pH (1:5 Aqueous extract at 25 °C as rec.)	0.1	pH Units	_	5.8	-	_
TRH C6-C10	1	%	-	-	100	-
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
Cation Exchange Capacity	·					
Cation Exchange Capacity*	0.5	meq/100g	-	6.1	-	-
Total Recoverable Hydrocarbons						
Naphthalene	1	%	-	-	89	-
TRH C6-C9	1	%	-	-	100	-
BTEX						
Benzene	1	%	-	-	110	-
Ethylbenzene	1	%	-	-	98	-
m&p-Xylenes	1	%	-	-	97	-
o-Xylene	1	%	-	-	96	-
Toluene	1	%	-	-	98	-
Xylenes - Total	1	%	-	-	97	-
4-Bromofluorobenzene (surr.)	1	%	-	-	66	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Contam Suite 2 (TRH/BTEX/PAH/Metals/OCP/PCB/Asbestos)			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jul 21, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 21, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jul 21, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jul 21, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Jul 21, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Jul 21, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Jul 21, 2023	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Sydney	Jul 21, 2023	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Total Recoverable Hydrocarbons	Sydney	Jul 21, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
% Moisture	Sydney	Jul 20, 2023	14 Days
- Method: LTM-GEN-7080 Moisture			
% Clay	Brisbane	Jul 24, 2023	14 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25 °C as rec.)	Sydney	Jul 21, 2023	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	Sydney	Jul 21, 2023	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Jul 25, 2023	28 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			

- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage

	L	C'	Eurofins Env ABN: 50 005 08		nt Testing Austr	alia Pty Ltd												Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn NZBN: 942904602495	nent Testing NZ Ltd
web: w	ww.eurofins.com.au		Melbourne 6 Monterey Road Dandenong Sou VIC 3175 Tel: +61 3 8564	ad uth 5000	Geelong 19/8 Lewalan Stree Grovedale VIC 3216 Tel: +61 3 8564 50 NATA# 1261 Site#	Girrawee NSW 214 000 Tel: +61 3	en 45 2 9900 8	8400	Mitche ACT 2 Tel: +	1,2 Dacr ell 2911 -61 2 61	re Street 113 8091 Site# 2	t 1/ M Q 1 Te	urarrie LD 417 el: +61 7	allwood 72 7 3902 4	4600	Mayfie Tel: +6 NATA	ost Drive eld West N 61 2 4968 # 1261	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	4 Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290
	mpany Name: dress:	Sydney Env Unit 63/45 H Alexandria NSW 2015	ironmental G luntley St	roup Pt	ty Ltd			Re Pl	rder N eport hone: ax:	#:		10093 1300 8		64				Received: Due: Priority: Contact Name:	Jul 19, 2023 7:15 F Jul 24, 2023 3 Day Mitchell Kirby	۶M
	oject Name: oject ID:	WARRIEWO 2148)OD DSI															Eurofins Analytical	Services Manager	: Asim Khan
		Sa	ample Detail				% Clay	НОГр	pH (1:5 Aqueous extract at 25 °C as rec.)	Polycyclic Aromatic Hydrocarbons	Metals M8	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	BTEXN and Volatile TRH	Contam Suite 1 (TRH/BTEX/PAH/Metals/ Asbestos)	Contam Suite 2 (TRH/BTEX/PAH/Metals/OCP/PCB/Asbestos			
Melb	ourne Laborato	ory - NATA # 12	261 Site # 12	54									x							
	ney Laboratory							X	х	X	Х	х	x	х	х	X	х			
Bris	bane Laborator	y - NATA # 126	1 Site # 207	94			Х													
	rnal Laboratory																			
No	Sample ID	Sample Date	Sampling Time	M	latrix	LAB ID														
1	TP01_0.2_0.3			Soil		-JI0041444						Х				Х				
2	TP02_0.2_0.3	1	<u> </u>	Soil	S23-	-JI0041445	<u> </u>	<u> </u>	<u> </u>	└──	<u> </u>	Х					Х			
3	TP03_0.2_0.3			Soil	S23-	-JI0041446	_	_	ļ'	_	_	х				X				
4	TP04_0.2_0.3		<u> </u>	Soil	S23-	-JI0041447	<u> </u>	<u> </u>	<u> </u>		—	Х					Х			
5	TP05_0.2_0.3	1	 	Soil		-JI0041448	_	<u> </u>	<u> </u>		_	Х				X				
6	TP06_0.2_0.3		<u> </u>	Soil		-JI0041449	—	_	 	_	—	Х					Х			
7	TP07_1.1_1.2		<u> </u>	Soil		-JI0041450	—	—	 	_	—	Х				X				
8	TP08_0.2_0.3		<u> </u>	Soil		-JI0041451	—	—	 	_	—	Х					Х			
9	TP09_0.2_0.3		<u> </u>	Soil		-JI0041452	—	_	 	_	—	Х				X				
10	TP10_0.2_0.3		 	Soil	S23-	-JI0041453			 '		\bot	Х					Х			
11	TP11_0.2_0.3			Soil		-JI0041454						Х				X				

	C •	Eurofins Environme	ent Testing Australia F	Pty Ltd													Eurofins ARL Pty Ltd ABN: 91 05 0159 898	NZBN: 9429046024954	-
veb: www.eurofins.com.au mail: EnviroSales@eurofins.		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 25403	Sydney 179 Mago Girrawee NSW 214 Tel: +61 2 NATA# 12	n 5 2 9900 8	3400	Mitch ACT : Tel: +	l,2 Daci ell 2911 -61 2 61	e Stree 13 809 ⁻ Site# 2	t 1/ M Q 1 T	urarrie LD 417 el: +61	allwood 72 7 3902 4	4600	Mayfie Tel: + NATA	ost Drive eld West NS 61 2 4968 84 # 1261	448	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 520 IANZ# 1290
Company Name: Address:	Sydney En Unit 63/45 Alexandria NSW 2015		Pty Ltd			R	rder N eport hone: ax:	#:		0093 300 8		64					Received: Due: Priority: Contact Name:	Jul 19, 2023 7:15 F Jul 24, 2023 3 Day Mitchell Kirby	PM
Project Name: Project ID:	WARRIEW 2148	OOD DSI															Eurofins Analytical	Services Manager :	Asim Khan
	S	ample Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Polycyclic Aromatic Hydrocarbons	Metals M8	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	BTEXN and Volatile TRH	Contam Suite 1 (TRH/BTEX/PAH/Metals/ Asbestos)	Contam Suite 2 (TRH/BTEX/PAH/Metals/OCP/PCB/Asbestos				
		261 Sito # 1254									x								
Melbourne Laborato	ry - NAIA # 1	201 3110 # 1234				~	х	х	v	Х	x	х	х	X	X				
Melbourne Laborato Sydney Laboratory -						X			X										
	NATA # 1261	I Site # 18217			x	X													
Sydney Laboratory - Brisbane Laboratory	NATA # 1261	I Site # 18217	S23-JI004	41455	x	X			×	x					x				
Sydney Laboratory - Brisbane Laboratory	NATA # 126 ⁴ 7 - NATA # 12 Jul 19, 2023	I Site # 18217 61 Site # 20794	S23-JI004 S23-JI004		x									x					
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3	NATA # 126 - NATA # 12 Jul 19, 2023 Jul 19, 2023	I Site # 18217 61 Site # 20794 Soil		41456	X	X				X									
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3	NATA # 126 / - NATA # 12 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 Soil	S23-JI004	41456 41457	X					x x					x				
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3	NATA # 126 - NATA # 12 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 Soil Soil Soil	S23-JI004 S23-JI004	41456 41457 41458	X	X				x x x				x	x				
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3 15 TP15_0.2_0.3	NATA # 126 - NATA # 12 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 Soil Soil Soil Soil Soil	S23-JI004 S23-JI004 S23-JI004	41456 41457 41458 41459	X					X X X X				x	x				
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3 15 TP15_0.2_0.3 16 TP16_0.2_0.3 17 TP17_0.2_0.3	NATA # 126 - NATA # 12 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 Soil Soil Soil Soil Soil Soil Soil	S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004	41456 41457 41458 41459 41460	X					X X X X X X				X X X	x				
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3 15 TP15_0.2_0.3 16 TP16_0.2_0.3 17 TP17_0.2_0.3 18 TP18_0.2_0.3	NATA # 126' / NATA # 12 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 Soil	S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004	41456 41457 41458 41459 41460 41461	X					X X X X X X X				X X X	x x x				
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3 15 TP15_0.2_0.3 16 TP16_0.2_0.3 17 TP17_0.2_0.3 18 TP18_0.2_0.3	NATA # 126 - NATA # 12 Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 61 Site # 20794 Soil	S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004	41456 41457 41458 41459 41460 41461 41462	X					x x x x x x x x x x x				X X X	x x x				
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3 15 TP15_0.2_0.3 16 TP16_0.2_0.3 17 TP17_0.2_0.3 18 TP18_0.2_0.3 19 TP19_0.2_0.3 20 TP20_0.2_0.3	NATA # 126 - NATA # 12 Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 61 Site # 20794 Soil	S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004 S23-JI004	41456 41457 41458 41459 41460 41461 41462 41463						x x x x x x x x x x x x x				X X X	x x x x				
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3 15 TP15_0.2_0.3 16 TP16_0.2_0.3 17 TP17_0.2_0.3 18 TP18_0.2_0.3 19 TP19_0.2_0.3 20 TP20_0.2_0.3	NATA # 126' - NATA # 12 Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 61 Site # 20794 Soil	S23-JI00 S23-JI00 S23-JI00 S23-JI00 S23-JI00 S23-JI00 S23-JI00 S23-JI00	41456 41457 41458 41459 41460 41461 41462 41463 41463 41464						x x x x x x x x x x x x x x x				X X X X	x x x x				
Sydney Laboratory - Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3 15 TP15_0.2_0.3 16 TP16_0.2_0.3 17 TP17_0.2_0.3 18 TP18_0.2_0.3 19 TP19_0.2_0.3 20 TP20_0.2_0.3 21 TP21_0.2_0.3	NATA # 126' - NATA # 12' Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 61 Site # 20794 Soil	S23-JI00	41456 41457 41458 41459 41460 41461 41462 41463 41464 41465						x x x x x x x x x x x x x x x x				X X X X	x x x x x x				
Sydney Laboratory Brisbane Laboratory 12 TP12_0.2_0.3 13 TP13_0.2_0.3 14 TP14_0.2_0.3 15 TP15_0.2_0.3 16 TP16_0.2_0.3 17 TP17_0.2_0.3 18 TP18_0.2_0.3 19 TP19_0.2_0.3 20 TP20_0.2_0.3 21 TP21_0.2_0.3 22 TP22_0.2_0.3 23 TP23_0.2_0.3	NATA # 126' - NATA # 12' Jul 19, 2023 Jul 19, 2023	Site # 18217 61 Site # 20794 61 Site # 20794 Soil Soil	S23-JI00 S23-JI00	41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466						x x x x x x x x x x x x x x x x x x				x x x x x x	x x x x x x				

•		c :	Eurofins Environme ABN: 50 005 085 521	ent Testing Australia	Pty Ltd													Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn NZBN: 942904602495	n <mark>ent Testing NZ Ltd</mark> 4
web: v	WWW.eurofins.com.au		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 2544	Sydney 179 Mag Girrawee NSW 214 Tel: +61 03 NATA# 1	n 15 2 9900 8	8400	Mitche ACT 2 Tel: +	,2 Dacı ell 2911 61 2 61	re Street 13 8091 Site# 2	: 1/ M Q I T	lurarrie LD 417 el: +61	allwood 72 7 3902 -	4600	1/2 Fi Mayfi Tel: + NATA	castle rost Drive eld West NS -61 2 4968 8- A# 1261 -25079 & 252	148	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290
	ompany Name: Idress:	Sydney En Unit 63/45 Alexandria NSW 2015		Pty Ltd			R	rder N eport hone: ax:	#:		0093 300 8	82 384 10	64					Received: Due: Priority: Contact Name:	Jul 19, 2023 7:15 Jul 24, 2023 3 Day Mitchell Kirby	РΜ
	oject Name: oject ID:	WARRIEW 2148	OOD DSI															Eurofins Analytical	Services Manager	: Asim Khan
		S	Sample Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Polycyclic Aromatic Hydrocarbons	Metals M8	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	BTEXN and Volatile TRH	Contam Suite 1 (TRH/BTEX/PAH/Metals/ Asbestos)	Contam Suite 2 (TRH/BTEX/PAH/Metals/OCP/PCB/Asbestos				
Mell	bourne Laborato	ory - NATA # 1	261 Site # 1254									X								
Syd	ney Laboratory	- NATA # 126	1 Site # 18217				X	х	х	х	х	X	X	х	X	х				
Bris	bane Laborator	y - NATA # 12	61 Site # 20794			Х														
26	EIL	Jul 19, 2023	Soil	S23-JI00	041469	Х		х		Х	Х	Х								
27	TRIP SPIKE	Jul 19, 2023	Trip (solid	Spike S23-JI00	041470									х						
28	TRIP BLANK	Jul 19, 2023	(solio	Blank S23-JI00 J)	041471								х							
29	TP01_1.1_1.2		Soil	S23-JI00	041473		Х													
30	TP03_1.1_1.2		Soil	S23-JI00			X													
31	TP04_0.6_0.7	Jul 19, 2023	Soil	S23-JI00	041475		X													
32		Jul 19, 2023	Soil	S23-JI00			X													
33	TP07_0.2_0.3	Jul 19, 2023	Soil	S23-JI00			X													
34	FC-01	Jul 19, 2023	Build Mate	rials			x													
35	TP08-FC	Jul 19, 2023	Build Mate	ing S23-JI00 rials	041479		х													
Tes	t Counts					1	7	1	2	3	26	1	1	1	12	11				

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

Terms

APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank				•	
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank			0.0	1 0.00	
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ons				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Method Blank	ing/kg	< 0.0	0.0	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Method Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank				1	
Heavy Metals	~~~//~~			Dese	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	 5	Pass	
Copper	mg/kg	< 5	 5	Pass	
Lead	mg/kg	< 5	 5	Pass	
Mercury	mg/kg	< 0.1	 0.1	Pass	
Nickel	mg/kg	< 5	 5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank		1			ļ
Organochlorine Pesticides	1		 		
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acco	eptance .imits	Pass Limits	Qualifying Code
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	(0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	(0.05	Pass	
a-HCH	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05	(0.05	Pass	
Endosulfan II	mg/kg	< 0.05	(0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05	(0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	(0.05	Pass	
Endrin ketone	mg/kg	< 0.05	(0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	(0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	(0.05	Pass	
Methoxychlor	mg/kg	< 0.05	(0.05	Pass	
Toxaphene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.1		0.1	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.1		0.1	Pass	
Aroclor-1242	mg/kg	< 0.1		0.1	Pass	
Aroclor-1248	mg/kg	< 0.1		0.1	Pass	
Aroclor-1254	mg/kg	< 0.1		0.1	Pass	
Aroclor-1260	mg/kg	< 0.1		0.1	Pass	
Total PCB*	mg/kg	< 0.1		0.1	Pass	
Method Blank						
Conductivity (1:5 aqueous extract at 25 °C as rec.)	uS/cm	< 10		10	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons						
TRH C6-C9	%	82	70	0-130	Pass	
TRH C10-C14	%	90	70	0-130	Pass	
TRH C6-C10	%	81	70	0-130	Pass	
TRH >C10-C16	%	89	70	0-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	103	70	0-130	Pass	
Toluene	%	96	70	0-130	Pass	
Ethylbenzene	%	98	70	0-130	Pass	
m&p-Xylenes	%	97	70	0-130	Pass	
o-Xylene	%	99	70	0-130	Pass	
Xylenes - Total*	%	98	70	0-130	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	98	70	0-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	82	70	0-130	Pass	
Acenaphthylene	%	76		0-130	Pass	
Anthracene	%	82		0-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benz(a)anthracene	%	71	70-130	Pass	
Benzo(a)pyrene	%	80	70-130	Pass	
Benzo(b&j)fluoranthene	%	79	70-130	Pass	
Benzo(g.h.i)perylene	%	77	70-130	Pass	
Benzo(k)fluoranthene	%	91	70-130	Pass	
Chrysene	%	86	70-130	Pass	
Dibenz(a.h)anthracene	%	75	70-130	Pass	
Fluoranthene	%	80	70-130	Pass	
Fluorene	%	76	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	73	70-130	Pass	
Naphthalene	%	82	70-130	Pass	
Phenanthrene	%	70	70-130	Pass	
Pyrene	%	82	70-130	Pass	
LCS - % Recovery			· · ·		
Heavy Metals					
Arsenic	%	102	80-120	Pass	
Cadmium	%	105	80-120	Pass	
Chromium	%	105	80-120	Pass	
Copper	%	105	80-120	Pass	
Lead	%	105	80-120	Pass	
Mercury	%	106	80-120	Pass	
Nickel	%	105	80-120	Pass	
Zinc	%	103	80-120	Pass	
LCS - % Recovery	70	105	00-120	1 455	
Organochlorine Pesticides					
Chlordanes - Total	%	83	70-130	Pass	
4.4'-DDD	%	80	70-130	Pass	
4.4'-DDE	%	85	70-130	Pass	
4.4'-DDT	%	89	70-130	Pass	
a-HCH	%	82	70-130	Pass	
Aldrin	%	78	70-130	Pass	
b-HCH	%	81	70-130	Pass	
d-HCH	%	78	70-130	Pass	
		78	70-130		
Dieldrin Endeaulfan I	%	87	70-130	Pass Pass	
Endosulfan I			70-130		
Endosulfan II Endosulfan sulphate	%	75 84		Pass	
			70-130	Pass	
Endrin	%	83	70-130	Pass	
Endrin aldehyde	%	70	70-130	Pass	
Endrin ketone	%	88	70-130	Pass	
g-HCH (Lindane)	%	83	70-130	Pass	
Heptachlor	%	70	70-130	Pass	
Heptachlor epoxide	%	82	70-130	Pass	
Hexachlorobenzene	%	77	70-130	Pass	
Methoxychlor	%	84	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls				+	
Aroclor-1016	%	73	70-130	Pass	
Aroolor 1960	%	71	70-130	Pass	
Aroclor-1260 LCS - % Recovery	/0	· · · ·			

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery						-	
Total Recoverable Hydrocarbor	IS			Result 1			
TRH C6-C9	S23-JI0045529	NCP	%	115	70-130	Pass	
TRH C10-C14	S23-JI0032014	NCP	%	100	70-130	Pass	
TRH C6-C10	S23-JI0045529	NCP	%	110	70-130	Pass	
TRH >C10-C16	S23-JI0032014	NCP	%	93	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	S23-JI0045529	NCP	%	84	70-130	Pass	
Toluene	S23-JI0045529	NCP	%	112	70-130	Pass	
Ethylbenzene	S23-JI0045529	NCP	%	104	70-130	Pass	
m&p-Xylenes	S23-JI0045529	NCP	%	103	70-130	Pass	
o-Xylene	S23-JI0045529	NCP	%	105	70-130	Pass	
Xylenes - Total*	S23-JI0045529	NCP	%	104	70-130	Pass	
Spike - % Recovery						-	
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fract	tions		Result 1			
Naphthalene	S23-JI0045529	NCP	%	98	70-130	Pass	
Spike - % Recovery						-	
Polycyclic Aromatic Hydrocarb	ons			Result 1			
Acenaphthene	S23-JI0041451	CP	%	74	70-130	Pass	
Acenaphthylene	S23-JI0041451	CP	%	71	70-130	Pass	
Anthracene	S23-JI0041451	CP	%	71	70-130	Pass	
Benzo(a)pyrene	S23-JI0041451	CP	%	77	70-130	Pass	
Benzo(b&j)fluoranthene	S23-JI0041451	CP	%	71	70-130	Pass	
Benzo(g.h.i)perylene	S23-JI0041451	CP	%	74	70-130	Pass	
Benzo(k)fluoranthene	S23-JI0041451	CP	%	89	70-130	Pass	
Chrysene	S23-JI0041451	CP	%	81	70-130	Pass	
Dibenz(a.h)anthracene	S23-JI0041451	CP	%	70	70-130	Pass	
Fluoranthene	S23-JI0041451	CP	%	72	70-130	Pass	
Naphthalene	S23-JI0041451	CP	%	76	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	S23-JI0041451	CP	%	74	70-130	Pass	
4.4'-DDT	S23-JI0041451	CP	%	79	70-130	Pass	
Endosulfan I	S23-JI0041451	CP	%	73	70-130	Pass	
Endosulfan II	S23-JI0041451	CP	%	74	70-130	Pass	
Endosulfan sulphate	S23-JI0041451	CP	%	72	70-130	Pass	
Endrin	S23-JI0041451	CP	%	79	70-130	Pass	
Endrin aldehyde	S23-JI0041451	CP	%	84	70-130	Pass	
Endrin ketone	S23-JI0041451	CP	%	84	70-130	Pass	
g-HCH (Lindane)	S23-JI0041451	CP	%	70	70-130	Pass	
Heptachlor epoxide	S23-JI0041451	CP	%	83	70-130	Pass	
Methoxychlor	S23-JI0041451	CP	%	75	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S23-JI0041465	CP	%	100	75-125	Pass	
Cadmium	S23-JI0041465	CP	%	99	75-125	Pass	
Chromium	S23-JI0041465	CP	%	101	75-125	Pass	
Copper	S23-JI0041465	CP	%	98	75-125	Pass	
Lead	S23-JI0041465	CP	%	105	75-125	Pass	
Mercury	S23-JI0041465	CP	%	86	75-125	Pass	
Nickel	S23-JI0041465	CP	%	98	75-125	Pass	
Zinc	S23-JI0041465	CP	%	88	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S23-JI0041449	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S23-JI0041449	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S23-JI0041449	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S23-JI0041449	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S23-JI0041449	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S23-JI0041449	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				•				•	
Polycyclic Aromatic Hydrocarbor	าร			Result 1	Result 2	RPD			
Acenaphthene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	1			1					
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S23-JI0041449	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S23-JI0041449	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S23-JI0041449	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S23-JI0041449	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S23-JI0041449	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S23-JI0041449	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S23-JI0041449	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S23-JI0041449	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S23-JI0041449	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S23-JI0041449	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S23-JI0041449	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	S23-JI0041453	CP	%	16	15	3.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S23-JI0041454	CP	mg/kg	5.1	6.6	26	30%	Pass	
Copper	S23-JI0041454	CP	mg/kg	14	26	59	30%	Fail	Q15
Lead	S23-JI0041454	CP	mg/kg	25	33	28	30%	Pass	
Mercury	S23-JI0041454	CP	mg/kg	< 0.1	0.1	72	30%	Fail	Q15
Nickel	S23-JI0041454	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S23-JI0041456	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10	S23-JI0041456	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ			_	Result 1	Result 2	RPD			
Benzene	S23-JI0041456	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S23-JI0041456	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S23-JI0041456	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S23-JI0041456	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S23-JI0041456	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S23-JI0041456	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				I	1				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S23-JI0041456	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1					
Sample Properties	1			Result 1	Result 2	RPD			
% Moisture	S23-JI0041463	CP	%	15	15	2.5	30%	Pass	
Duplicate				1					
Heavy Metals	1		1	Result 1	Result 2	RPD			
Arsenic	S23-JI0041464	CP	mg/kg	5.6	6.7	17	30%	Pass	
Cadmium	S23-JI0041464	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S23-JI0041464	CP	mg/kg	22	14	43	30%	Fail	Q15
Copper	S23-JI0041464	CP	mg/kg	15	11	30	30%	Pass	
Lead	S23-JI0041464	CP	mg/kg	33	26	21	30%	Pass	
Mercury	S23-JI0041464	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S23-JI0041464	CP	mg/kg	8.7	7.7	12	30%	Pass	
Zinc	S23-JI0041464	CP	mg/kg	49	25	64	30%	Fail	Q15
Duplicate									
Polycyclic Aromatic Hydrocarbons		07		Result 1	Result 2	RPD	0.001		
Acenaphthene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									·
Polycyclic Aromatic Hydrocarbons	 S			Result 1	Result 2	RPD			
Benzo(g.h.i)perylene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S23-JI0041466	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	020 0100 11 100	01			v 0.0	1	0070	1 400	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S23-JI0041466	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S23-JI0041466	CP		< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S23-JI0041466	CP	mg/kg mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S23-JI0041466	CP		< 0.05	< 0.05	<1	30%	Pass	
Heptachlorobenzene	S23-JI0041466	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S23-JI0041466	CP	mg/kg		< 0.05		30%	Pass	
Toxaphene	S23-JI0041466	CP	mg/kg	< 0.05 < 0.5	< 0.05	<1 <1	30%	Pass	
Duplicate	323-310041400		mg/kg	< 0.5	< 0.5	<1	30%	F 455	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S23-JI0041466	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S23-JI0041466	CP		< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S23-JI0041466	CP	mg/kg		< 0.1	<1	30%	Pass	
Aroclor-1232	S23-JI0041466	CP	mg/kg	< 0.1 < 0.1	< 0.1	<1	30%	Pass	
		CP	mg/kg						
Aroclor-1248 Aroclor-1254	S23-JI0041466 S23-JI0041466	CP	mg/kg	< 0.1	< 0.1	<1 <1	30% 30%	Pass Pass	
Aroclor-1254 Aroclor-1260	S23-JI0041466	CP	mg/kg	< 0.1	< 0.1		30%	Pass	
	S23-JI0041466	CP	mg/kg	< 0.1	< 0.1	<1			
Total PCB*	323-310041400	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				Deput 1	Deput 2				
Sample Properties	S22 110044460	СР	0/	Result 1	Result 2	RPD 1.0	200/	Dece	
% Moisture Duplicate	S23-JI0041469	CP	%	17	16	1.9	30%	Pass	
Duplicate				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	S23-JI0045937	NCP	uS/cm	260	300	13	30%	Pass	
pH (1:5 Aqueous extract at 25 °C as rec.)	S23-JI0045937	NCP	pH Units	11	11	<1	30%	Pass	
as rec.)	523-JIU045937	NCP	pH Units	11	11	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Asim Khan	Analytical Services Manager
Caitlin Breeze	Senior Analyst-Metal
Fang Yee Tan	Senior Analyst-Metal
Jonathon Angell	Senior Analyst-Inorganic
Mickael Ros	Senior Analyst-Metal
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Volatile
Ryan Phillips	Senior Analyst-Inorganic
Sayeed Abu	Senior Analyst-Asbestos

Glenn Jackson Managing Director

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order	ES2324402	Page	: 1 of 5
Client	SYDNEY ENVIRONMENTAL GROUP PTY LTD	Laboratory	Environmental Division Sydney
Contact	: ENVIRO	Contact	: Customer Services ES
Address	: Unit 63/45 Huntley Street,	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	Alexandria 2014		
Telephone	:	Telephone	: +61-2-8784 8555
Project	: 2148 Warriewood DSI	Date Samples Received	: 21-Jul-2023 13:30
Order number	:	Date Analysis Commenced	: 23-Jul-2023
C-O-C number	:	Issue Date	: 26-Jul-2023 11:29
Sampler	: MK		
Site	:		
Quote number	: SY/412/22		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Evie Sidarta	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Analytical Results

Sampling date / Imp 19-Jul-2023 00:00 Compound CAS Mumber LOR Unit E82324402-001 E82324402-002 EAD55: Motisture Content (Dried @ 10-110°C) Result Result Result Result EOD55: Motisture Content (Dried @ 10-ALS2 5 mg/kg 6 <5 EOD55: EOD30]T: Total Motals by ICP-AES mg/kg <1 <1 <1 Commum 7440-43-3 1 mg/kg 6 <5 Commum 7440-43-5 5 mg/kg 8 6 Lead 7439-82-1 5 mg/kg 30 9 Nacki 7440-66-5 5 mg/kg 36 6 Macury 739-97-0 0.1 mg/kg <0.5	 	 Dup02a	Dup01a	Sample ID		ub-Matrix: SOIL Matrix: SOIL)
EAdS5: Moleture Result Result Result	 	 19-Jul-2023 00:00	19-Jul-2023 00:00	ng date / time	Samplii	
EA055: Molsture Content (Dried @ 195-110*C) V V V Molsture Content 1.0 % 20.2 12.1 Ansoic 7440.36.9 .5 mg/kg 6 <5 Codmium 7440.43.9 1 mg/kg 28 5 Chronium 7440.43.9 1 mg/kg 28 5 Copper 7440.43.9 5 mg/kg 6 <5 Icad 7439.92.1 5 mg/kg 2 <2 Morcury 743.947.6 0.1 mg/kg <0.1 <0.1 E0051: Total Recoverable Marcury by BIM Mercury 743.947.6 0.1 mg/kg <0.5 Porto/SIMIB: Polynuclear Aromatic Hydrocarbom	 	 ES2324402-002	ES2324402-001	Unit	LOR	Compound CAS Number
Moisure Content 1.0 % 20.2 12.1 EC003E[E003]T: Total Metals by ICP-AES Cadmium 7440-38-2 5 mg/kg <1 <1 Cadmium 7440-38-1 1 mg/kg <1 <1 Chromium 7440-473 2 mg/kg 86 < Load 7439-62-1 mg/kg 30 9 Nickel 7440-62-5 mg/kg 36 6 Zinc 7440-66-5 5 mg/kg 30 9 E00351: Total Mercury by FIMS Morcury 7439-67-5 0.1 mg/kg 40.5 40.5 PROTAIN 7439-67-5 0.1 mg/kg 40.5 40.5	 	 Result	Result			
Motive Content 1.0 % 20.2 12.1 EC005(ED03)T: Total Metals by ICP-AES T440-38 1 mg/kg 6 <5 Cadmium 7440-38 1 mg/kg <1 <1 Commum 7440-473 2 mg/kg 6 <5 Copper 7440-473 5 mg/kg 30 9 Ioad 7439-62-1 5 mg/kg 30 9 Nickel 7440-620 5 mg/kg 30 9 Zinc 7440-660 5 mg/kg 30 9 Motiva 7449-67 0.1 mg/kg 305 60.5 Recoverable Mercury by FIMS Mortury 7439-67 0.1 mg/kg 40.5 40.5 Potematinene						A055: Moisture Content (Dried @ 105-110°C)
Arenic740.38-25mg/g665Cadmium740.43-31mg/g<1<1<1<1Chronium740.42-32mg/g285<1<1<1<1Coppor740.63-36<5<1<1<1<1<1<1Lead743.92-16<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1.	 	 12.1	20.2	%	1.0	
Arenic740.38-25mg/g665Cadmium740.43-31mg/g<1<1<1<1Chronium740.42-32mg/g285<1<1<1<1Coppor740.63-36<5<1<1<1<1<1<1Lead743.92-16<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1.				· · · · · ·		G005(ED093)T: Total Metals by ICP-AES
Cadmium 7440.430 1 mg/kg <1	 	 <5	6	mg/kg	5	
Chromium 7440-47.3 2 mg/kg 28 5 Copper 7440-050.8 5 mg/kg 30 9 Nickel 7439-02.1 5 mg/kg 30 9 Nickel 7440-02.0 2 mg/kg 36 6 Zinc 7440-066 5 mg/kg 36 6 Zinc 7439-07.6 0.1 mg/kg 30 9 G0321 Total Recoverable Mercury by FIMS EP075(SIM)8: Polynuclear Aromatic Hydrocarbons Recoverable Mercury by FIMS Recoverable Mercury by FIMS	 	 <1	<1		1	
Copper 7440.50.8 5 mg/kg 6 Lad 7439.92-1 5 mg/kg 30 9 Nickei 7440.20 2 mg/kg 2 -2 Zinc 7440.66.6 5 mg/kg 36 6 EG03517: Total Recoverable Mercury by FIMS PPO75(SIM)81: Polynuclear Aromatic Hydrocarbons Nacenaphthyne 20.8-96 0.5 mg/kg <0.5 <0.5 Florene 86-73-7 0.5 mg/kg <0.5 </th <th> </th> <th> 5</th> <th>28</th> <th>mg/kg</th> <th>2</th> <th></th>	 	 5	28	mg/kg	2	
Lead 7439-92-1 6 mgkg 30 9 Nickel 740-02-0 2 mgkg 36 6 Zinc 740-02-0 5 mgkg 36 6 EG0351: Total Recoverable Mercury by FIMS Mercury 7439-97-6 0.1 mgkg <0.1 <0.1 Port5(SIM)B: Polynuclear Aromatic Hydrocarbons Acenaphthylene 208-96.8 0.5 mgkg <0.5< <0.5 < Fluorene 80-37.7 0.5 mgkg <0.5 <0.5 < Phenanthrene 86-37.7 0.5 mgkg <0.5 <0.5 < Anthracene 120-12.7 0.5 mgkg <0.5 <0.5 < Prone 120-12.7	 	 <5			5	
Nickel 7440-02-0 2 mg/kg 2 <2	 	 9	30		5	
Zinc 7440-66-6 5 mg/kg 36 6 EG035T: Total Recoverable Mercury by FIMS Mercury 7439-97-6 0.1 mg/kg <0.1 <0.1 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Acenaphthylene 208-96-8 0.5 mg/kg <0.5 <0.5 Acenaphthylene 208-96-8 0.5 mg/kg <0.5 <0.5 Fluorene 83-32-9 0.5 mg/kg <0.5 <0.5 Phenanthrene 85-01-8 0.5 mg/kg <0.5 <0.5 Fluoranthene 206-440 0.5 mg/kg <0.5 <0.5 Pyrene 120-12-7 0.5 mg/kg <0.5 <0.5 Benzo(k)fluor	 	 <2	2		2	Nickel 7440-02-0
Mercury 743997-6 0.1 mg/kg <0.1	 	 6	36		5	Zinc 7440-66-6
Mercury 743997-6 0.1 mg/kg <0.1						EG035T: Total Recoverable Mercury by FIMS
Naphthaiene 91-20.3 0.5 mg/kg <0.5	 	 <0.1	<0.1	mg/kg	0.1	
Naphthalene 91-20-3 0.5 mg/kg <0.5						P075(SIM)B: Polynuclear Aromatic Hydrocarbons
Acenaphthylene 208-96-8 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	
Acenaphthene 83-32-9 0.5 mg/kg <0.5	 	 <0.5	<0.5		0.5	•
Fluorene 86-73-7 0.5 mg/kg <0.5	 	 <0.5	<0.5		0.5	
Anthracene 120.12-7 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	
Fluoranthene 206-44-0 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Phenanthrene 85-01-8
Pyrene 129-00- 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Anthracene 120-12-7
Benz(a)anthracene 56-55-3 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Fluoranthene 206-44-0
Chrysene 218-01-9 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Pyrene 129-00-0
Benzo(b+j)fluoranthene 205-99-2 205-82-3 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Benz(a)anthracene 56-55-3
Benzo(k)fluoranthene 207089 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Chrysene 218-01-9
Benzo(a)pyrene 50-32-8 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Benzo(b+j)fluoranthene 205-99-2 205-82-3
Indeno(1.2.3.cd)pyrene 193-39-5 0.5 mg/kg <0.5	 			mg/kg		Benzo(k)fluoranthene 207-08-9
Dibenz(a.h)anhracene 53-70-3 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Benzo(a)pyrene 50-32-8
Benzo(g.h.i)perylene 191-24-2 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Indeno(1.2.3.cd)pyrene 193-39-5
^ Sum of polycyclic aromatic hydrocarbons 0.5 mg/kg <0.5	 	 <0.5	<0.5	mg/kg	0.5	Dibenz(a.h)anthracene 53-70-3
^ Benzo(a)pyrene TEQ (zero) 0.5 mg/kg <0.5	 			mg/kg		
^ Benzo(a)pyrene TEQ (half LOR) 0.5 mg/kg 0.6	 					
	 	 <0.5	<0.5	mg/kg	0.5	
^ Benzo(a)pyrene TEQ (LOR)	 			mg/kg		
	 	 1.2	1.2	mg/kg	0.5	Benzo(a)pyrene TEQ (LOR)
EP075(SIM)S: Phenolic Compound Surrogates						P075(SIM)S: Phenolic Compound Surrogates
Phenol-d6 13127-88-3 0.5 % 112 86.8	 	 86.8	112	%	0.5	
Page : 4 of 5 Work Order : ES2324402 Client : SYDNEY ENVIRONMENTAL GROUP PTY LTD Project : 2148 Warriewood DSI

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	Dup01a	Dup02a	 	
		Sampli	ng date / time	19-Jul-2023 00:00	19-Jul-2023 00:00	 	
Compound	CAS Number	LOR	Unit	ES2324402-001	ES2324402-002	 	
				Result	Result	 	
EP075(SIM)S: Phenolic Compound Su	Irrogates - Continued	i E					
2-Chlorophenol-D4	93951-73-6	0.5	%	86.9	89.3	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	84.6	93.2	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	92.8	51.5	 	
Anthracene-d10	1719-06-8	0.5	%	90.8	87.7	 	
4-Terphenyl-d14	1718-51-0	0.5	%	68.4	91.7	 	

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrog	gates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129

Certificate of Analysis

Environment Testing

Sydney Environmental Group Pty Ltd Unit 63/45 Huntley St Alexandria NSW 2015

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Report Project Name Project ID Received Date Date Reported	Mitchell Kirby 1009382-AID WARRIEWOOD DSI 2148 Jul 19, 2023 Jul 26, 2023
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia" there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project Name	WARRIEWOOD DSI
Project ID	2148
Date Sampled	Jul 19, 2023
Report	1009382-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
TP01_0.2_0.3	23-JI0041444	Jul 19, 2023	Approximate Sample 101g Sample consisted of: Brown coarse-grained sandy soil, sand stone, glass and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP02_0.2_0.3	23-JI0041445	Jul 19, 2023	Approximate Sample 47g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP03_0.2_0.3	23-JI0041446	Jul 19, 2023	Approximate Sample 62g Sample consisted of: Brown fine-grained clayey soil, glass, plastic, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP04_0.2_0.3	23-JI0041447	Jul 19, 2023	Approximate Sample 64g Sample consisted of: Brown fine-grained clayey soil, cement and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP05_0.2_0.3	23-JI0041448	Jul 19, 2023	Approximate Sample 60g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP06_0.2_0.3	23-JI0041449	Jul 19, 2023	Approximate Sample 76g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP07_1.1_1.2	23-JI0041450	Jul 19, 2023	Approximate Sample 72g Sample consisted of: Brown fine-grained clayey soil, organic debris, brick, cement and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP08_0.2_0.3	23-JI0041451	Jul 19, 2023	Approximate Sample 37g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
TP09_0.2_0.3	23-JI0041452	Jul 19, 2023	Approximate Sample 36g Sample consisted of: Brown fine-grained clayey soil, organic debris, cement and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP10_0.2_0.3	23-JI0041453	Jul 19, 2023	Approximate Sample 55g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP11_0.2_0.3	23-JI0041454	Jul 19, 2023	Approximate Sample 87g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP12_0.2_0.3	23-JI0041455	Jul 19, 2023	Approximate Sample 127g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP13_0.2_0.3	23-JI0041456	Jul 19, 2023	Approximate Sample 67g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP14_0.2_0.3	23-JI0041457	Jul 19, 2023	Approximate Sample 110g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP15_0.2_0.3	23-JI0041458	Jul 19, 2023	Approximate Sample 75g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP16_0.2_0.3	23-Jl0041459	Jul 19, 2023	Approximate Sample 102g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP17_0.2_0.3	23-JI0041460	Jul 19, 2023	Approximate Sample 68g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP18_0.2_0.3	23-JI0041461	Jul 19, 2023	Approximate Sample 53g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP19_0.2_0.3	23-JI0041462	Jul 19, 2023	Approximate Sample 29g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP20_0.2_0.3	23-JI0041463	Jul 19, 2023	Approximate Sample 46g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP21_0.2_0.3	23-JI0041464	Jul 19, 2023	Approximate Sample 83g Sample consisted of: Brown coarse-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Client S	Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
TP22_	_0.2_0.3	23-JI0041465	Jul 19, 2023	Sample consisted of: Brown coarse-grained sandy soil, organic	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP23_	_0.2_0.3	23-JI0041466	Jul 19, 2023	Sample consisted of: Brown coarse-grained sandy soil, organic	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedSydneyJul 20, 2023

Holding Time Indefinite

•		C	Eurofins Env ABN: 50 005 08		ng Australia Pty Lt	d												Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environr	nent Testing NZ Ltd
web: www.eurofins.com.au email: EnviroSales@eurofins.com			Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564	ey Aagowar R ween 2145 -61 2 9900 A# 1261 Sit	8400	Unit 1 Mitch ACT : Tel: +	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 7 NATA# 1261 Site# 25466			Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 66 NATA# 1261 Site# 20794			Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 94 Site# 25079 & 25289			Perth 46-48 Banksia Road	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290		
	mpany Name: dress:	Sydney Env Unit 63/45 H Alexandria NSW 2015	ironmental G luntley St	roup Pty Ltd			R P	rder N eport hone: ax:	#:		0093 300 8		64					Received: Due: Priority: Contact Name:	Jul 19, 2023 7:15 Jul 24, 2023 3 Day Mitchell Kirby	PM
	oject Name: oject ID:	WARRIEWO 2148	DOD DSI															Eurofins Analytical	Services Manager	: Asim Khan
		Sa	ample Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Polycyclic Aromatic Hydrocarbons	Metals M8	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	BTEXN and Volatile TRH	Contam Suite 1 (TRH/BTEX/PAH/Metals/ Asbestos)	Contam Suite 2 (TRH/BTEX/PAH/Metals/OCP/PCB/Asbestos				
Melk	ourne Laborato	ory - NATA # 12	261 Site # 12	54								X								
Syd	ney Laboratory	- NATA # 1261	Site # 18217	7			Х	Х	Х	Х	х	х	х	х	Х	х				
Bris	bane Laborator	y - NATA # 126	1 Site # 207	94		Х														
Exte	rnal Laboratory	/		-																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	TP01_0.2_0.3	Jul 19, 2023		Soil	S23-JI004144	4					х				Х					
2	TP02_0.2_0.3			Soil	S23-JI004144						Х					х				
3	TP03_0.2_0.3		-	Soil	S23-JI004144						Х				X					
4	TP04_0.2_0.3			Soil	S23-JI004144		+				Х					X				
5	TP05_0.2_0.3			Soil	S23-JI004144						X				X					
6	TP06_0.2_0.3		-	Soil	S23-JI004144		+	-			X	<u> </u>			<u> </u>	Х				
7	TP07_1.1_1.2			Soil	S23-JI004145		+	+			X	<u> </u>			X					
8	TP08_0.2_0.3			Soil	S23-JI004145		+	+			X	<u> </u>			<u>.</u> .	Х				
9	TP09_0.2_0.3			Soil	S23-JI004145		+				X				X					
10	TP10_0.2_0.3			Soil	S23-JI004145		+				X					Х				
11	TP11_0.2_0.3	Jul 19, 2023		Soil	S23-JI004145	4					Х				Х					

••		Eurofins Environme ABN: 50 005 085 521	ent Testing Australia	Pty Ltd													Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environr NZBN: 942904602495	_
veb: www.eurofins.com.au mail: EnviroSales@eurofins.com		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000	Sydney 179 Mago Girrawee NSW 214 Tel: +61 2 3 NATA# 1	n 5 2 9900 8	3400	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 0 Tel: +61 2 6113 8091 3217 NATA# 1261 Site# 2546			t 1, N G 1 T	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 466 NATA# 1261 Site# 2079-			Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 94 Site# 25079 & 25289			Perth 46-48 Banksia Road	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290	
Company Name: Address:	Sydney En Unit 63/45 Alexandria NSW 2015		Pty Ltd			Re Pl	rder N eport none: ax:	#:		10093 1300 8	82 384 1	64					Received: Due: Priority: Contact Name:	Jul 19, 2023 7:15 Jul 24, 2023 3 Day Mitchell Kirby	PM
Project Name: Project ID:	WARRIEW 2148	OOD DSI															Eurofins Analytical	Services Manager	: Asim Khan
	٤	Sample Detail			% Clay	НОГД	pH (1:5 Aqueous extract at 25 °C as rec.)	Polycyclic Aromatic Hydrocarbons	Metals M8	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	BTEXN and Volatile TRH	Contam Suite 1 (TRH/BTEX/PAH/Metals/ Asbestos)	Contam Suite 2 (TRH/BTEX/PAH/Metals/OCP/PCB/Asbestos				
Melbourne Laborato	ry - NATA # 1	261 Site # 1254									X								
Sydney Laboratory -						X	Х	х	х	Х	X	Х	х	X	Х				
Brisbane Laboratory	- NATA # 12	61 Site # 20794			Х														
12 TP12_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41455						х					Х				
13 TP13_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41456						х				Х					
14 TP14_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41457						х					Х				
15 TP15_0.2_0.3	Jul 19, 2023	Soil	S23-JI00							х				Х					
16 TP16_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41459						х					х				
17 TP17_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41460						х				X					
18 TP18_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41461						х					х				
19 TP19_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41462						х				X					
20 TP20_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41463						х					Х				
21 TP21_0.2_0.3	-	Soil	S23-JI00	41464						х				X					
22 TP22_0.2_0.3	Jul 19, 2023	Soil	S23-JI00	41465						х					Х				
	1.1.40.0000	Soil	S23-JI00	41466						х				X					
23 TP23_0.2_0.3	Jul 19, 2023	001	0_0 0.00																
	Jul 19, 2023 Jul 19, 2023	Soil	S23-JI00					Х	Х	Х									

		C	Eurofins Environr ABN: 50 005 085 521	nent Testing Australi	a Pty Ltd													Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn	
web: w	WW.eurofins.com.au		Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000	Sydney 179 Mag Girrawee NSW 21- Tel: +61 403 NATA# 1	n 15 2 9900 8	3400	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 217 NATA# 1261 Site# 25466				Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 66 NATA# 1261 Site# 20794			Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 94 Site# 25079 & 25289			Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290	
	ompany Name: Idress:	Sydney En Unit 63/45 Alexandria NSW 2015		Pty Ltd			Re Pl	rder N eport hone: ax:	#:		10093 1300 8		64					Received: Due: Priority: Contact Name:	Jul 19, 2023 7:15 F Jul 24, 2023 3 Day Mitchell Kirby	PM
	oject Name: oject ID:	WARRIEW 2148	OOD DSI															Eurofins Analytical S	Services Manager	: Asim Khan
		s	Sample Detail			% Clay	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Polycyclic Aromatic Hydrocarbons	Metals M8	Moisture Set	Cation Exchange Capacity	BTEXN and Volatile TRH	BTEXN and Volatile TRH	Contam Suite 1 (TRH/BTEX/PAH/Metals/ Asbestos)	Contam Suite 2 (TRH/BTEX/PAH/Metals/OCP/PCB/Asbestos				
Melk	ourne Laborato	ory - NATA # 1	261 Site # 1254									X								
	ney Laboratory						Х	х	х	х	Х	X	Х	х	Х	X				
	bane Laborator					Х														
26	EIL	Jul 19, 2023	Soi	S23-JI	0041469	Х		Х		Х	х	X								
27	TRIP SPIKE	Jul 19, 2023	Trip (sol	Spike S23-JI	0041470									х						
28	TRIP BLANK	Jul 19, 2023	Trip (sol		0041471								х							
29	TP01_1.1_1.2		Soi		0041473		X				ļ				-					
30	TP03_1.1_1.2		Soi		0041474		X				ļ				-					
31	TP04_0.6_0.7		Soi		0041475		X				ļ				-					
32	TP06_1.1_1.2		Soi		0041476		х													
33	TP07_0.2_0.3	Jul 19, 2023	Soi	S23-JI	0041477		Х													
34	FC-01	Jul 19, 2023	Bui Mat	erials	041478		x													
35	TP08-FC	Jul 19, 2023	Bui Mat	ding S23-JI0 erials	0041479		x													
Test	Counts					1	7	1	2	3	26	1	1	1	12	11				

Internal Quality Control Review and Glossary General

- 1. 2. 3.
- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour **blue** indicates data provided by customer that may have an impact on the results. This report replaces any interim results previously issued. 4. 5.

Holding Times Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units	
% w/w:	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w)
F/fld F/mL	Airborne fibre filter loading as Fibres (N) per Fields counted (n) Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C)
g, kg	Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)
g/kg	Concentration in grams per kilogram
L, mL L/min	Volume, e.g. of air as measured in AFM (V = r x t) Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r)
min	Time (t), e.g. of air sample collection period
Calculations	
Airborne Fibre Concentration:	$C = \left(\frac{A}{a}\right) \times \left(\frac{N}{n}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{n}\right) \times \left(\frac{1}{t}\right)$
Asbestos Content (as asbestos):	$\% w/w = \frac{(m \times P_A)}{M}$
Weighted Average (of asbestos):	$\mathscr{H}_{WA} = \sum \frac{(m \times P_A)_x}{x}$
Terms	
%asbestos	Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P _A).
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g. by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
Asbestos Content (as asbestos	s) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).
Chrysotile	Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.
сос	Chain of Custody.
Crocidolite	Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Dry	Sample is dried by heating prior to analysis.
DS	Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
FA	Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
PCM	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
Sampling	Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
UK HSE HSG	United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.
UMF	Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Bennel Jiri

Senior Analyst-Asbestos

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos

Glenn Jackson Managing Director

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Sydney Environmental Group Pty Ltd Unit 63/45 Huntley St Alexandria **NSW 2015**

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Report Project Name Project ID Received Date Date Reported	Mitchell Kirby 1010813-AID ADDITIONAL: WARRIEWOOD DSI ADDITIONAL: 2148 Jul 25, 2023 Jul 26, 2023
Methodology: Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project Name	ADDITIONAL: WARRIEWOOD DSI
Project ID	ADDITIONAL: 2148
Date Sampled	Jul 19, 2023
Report	1010813-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
FC01	23-JI0054650	Jul 19, 2023	Approximate Sample 10g / 40x35x3mm Sample consisted of: Grey fibre cement material	Chrysotile and amosite asbestos detected.
TP08-FC	23-JI0054651	Jul 19, 2023	Approximate Sample 45g / 60x55x5mm Sample consisted of: Grey fibre cement material	Chrysotile and amosite asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedSydneyJul 25, 2023

Holding Time Indefinite

•		f :	Eurofins Env ABN: 50 005 085		g Australia Pty Ltd					Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	•
web: w	ww.eurofins.com.au		Melbourne 6 Monterey Road Dandenong Sour VIC 3175 Tel: +61 3 8564	Geelong d 19/8 Lewa th Grovedale VIC 3216 5000 Tel: +61 3	alan Street 179 Ma e Girrawe NSW 2 8 8564 5000 Tel: +6	gowar Roa en 145 I 2 9900 84	Mitchell ACT 2911 00 Tel: +61 2 6113 8091	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 i466 NATA# 1261 Site# 2079-	Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tei: +61 2 4968 8448 NATA# 1261 4 Site# 25079 & 25289	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 520 IANZ# 1290
	mpany Name: dress:	Sydney Env Unit 63/45 H Alexandria NSW 2015	rironmental G Huntley St	roup Pty Ltd			•	010813 300 884 164		Received: Due: Priority: Contact Name:	Jul 25, 2023 3:31 F Jul 26, 2023 1 Day Mitchell Kirby	PM
	oject Name:		L: WARRIEV	VOOD DSI								
Pro	oject ID:	ADDITIONA	AL: 2148							Eurofins Analytical	Services Manager :	Asim Khan
			ample Detail			Asbestos Absence /Presence						
	ney Laboratory		Site # 18217	,		Х						
	rnal Laboratory	1	Compliant	Motrix								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	FC01	Jul 19, 2023		Building Materials	S23-JI0054650	x						
2	TP08-FC	Jul 19, 2023		Building Materials	S23-JI0054651	x						
Test	Counts					2						

Internal Quality Control Review and Glossary General

- 1. 2. 3.
- CC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour **blue** indicates data provided by customer that may have an impact on the results. This report replaces any interim results previously issued. 4. 5.

Holding Times Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units	
% w/w:	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w)
F/fld F/mL	Airborne fibre filter loading as Fibres (N) per Fields counted (n) Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C)
g, kg	Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)
g/kg L, mL	Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (V = r x t)
L/min	Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r)
min	Time (t), e.g. of air sample collection period
Calculations	
Airborne Fibre Concentration:	$C = \left(\frac{A}{a}\right) \times \left(\frac{N}{n}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{n}\right) \times \left(\frac{1}{t}\right)$
Asbestos Content (as asbestos):	$\% w/w = \frac{(m \times P_A)}{M}$
Weighted Average (of asbestos):	$\mathscr{H}_{WA} = \sum \frac{(m \times P_A)_x}{x}$
Terms	
%asbestos	Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P _A).
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable
	material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g. by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
•	S) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w). Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.
Chrysotile COC	Chain of Custody.
Crocidolite	Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Dry	Sample is dried by heating prior to analysis.
DS	Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
FA	Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become
	friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
PCM	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
Sampling	Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
UK HSE HSG UMF	United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication. Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004.
	May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WADOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Bennel Jiri

Senior Analyst-Asbestos

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos

Glenn Jackson Managing Director

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Company	Sydney Environmental Group	Project NP	2	148				Proj Mara	ect iger	P	ß	San	ipter(s)	M	К.		
		Project Name	Norrier	Jone	SG	(EDD F (ESdat,	ormat EGudS,	12	J	Hande	d over by				
lddreas	U63, 45 Huntley Street Alexandria NSW			_				Cust	9 <i>10</i>)			1.500		envi	ro@syd	neyen <u>vironmer</u>	ntal.com.au
		_	(C)										ny Email				
rlact Name		The H	estos II 8. Achei	(al so								Secon		Mik	hell		d Tame (TAT)
horse NR	1300 884 164	(D)	CB, Asb	Asbest								- 11	Gent	ainers	1	Regolaments re	and all the trace of the lines
I Directions		(3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	SEG Contam Suite 2 (TRH, BTEX, PAH, Metals, OCP, PCB, Asbestos ID) SEG Contam Suite 3 TTRH RTFY PAH Metals, OCP, DPP, PCR, Asbestos ID)	SEG ENM Sulte 1 (TRH, BTEX, PAH, Metals, pH, EC, Asbestos ID)	-		Asbestos ID NEPM & WA (0.001%)								Silver	Overnight D 1 Day	□ Same Day □ 2 Day
hase Order		t etals, /	etals, (etals, (etals, p	Salinity Assessment Sulte (L2 Aggresivity Suite, ESP %)	Asbestos ID AS4964 (0.01%)	4 WA (0	letais)				8 8	antic er Glæs	Nomit VIDA vol Omit PFAS Boste	HIPE I	🖌 3 Day	D 5 Day
ote ID Ne		Suite 1 AH, M	SEG Contam Suite 2 (TRH, BTEX, PAH, Me SEG Contam Suite 3 (TBH BTFY PAH Me	hte 1 PAH, M	ssment y Suite,	4 54964	NEPM 8	B7 Suite (TRH, BTEX, PAH, Metals)		6		11. Plan	tzémi Panis en, Amain G	IomL Vo	(Chintri el Internetion	D Other {	,
a danay	Sampled Date (dd/mm/yy	BTEX, F	ontam BTEX, F ontam ATEX F	SEG ENM Sulte 1 (TRH, BTEX, PAH,	y Asse gresivit	tos ID /	tos ID I	ite BTEX, i	uite PCB)	Lo lo				. .	18 10 10		ents / Dangerous
		Matux (Solid) SEG Conta (M) (TRH, BTE)	SEG C (TRH, SEG C (TRH	SEG E (TRH,	Salini((L2 Ag	Asbes	Asbas	B7 Su (TRH,	B13 Suite (OCP, PCB)							Goods Haz	ard Warning
TPO	1-0.2-0.3 9723	J ×															
TPO	1-1-1-2	1	從							×							
(Po	2-0.2-0.3		×							3							
	3-0.2-0.3	×															
Tro	3-1-1-2-2															5	
TPOL	(-0.2.6.7 (-0.6-0.7 5-0.2-0.3		×		ł											帶.	
TPO	4-0.6-0.7				-		_			×							
TPO	5-0.2-0-3	\times															
TPO	6-2-2-23		X														
TROG	-1.1-1.2									×							
1107	-22-0.3	they								Y							
TROT	-1.1-(-2	X															
TPOP.	0.2-03		×														
Trog	-0.2-03	×															
PLO	-0.2-0.3		×														
[P 11.	-0.2-0.3	1															
12	-02-6.3		×														
913	-0.20.3	X															
TP 14	-6.2-0.3		\propto														
115-	-0.2-0.3 -0.2-0.3 -0.2-0.3 -0.2-0.3 -0.2-0.3	¥ ×													-		
	Tota	I Counts				11	11							19-	0.00		di S
hipment	Courier (#)	Hand Delivered		Na		Sigr		11 K	CA)	Signatun	Sec. AP	100	Date Time	197	0	Time Temperature	-

Suburnission of samples to the laboratory will be deemed as acceptance of Eurofins [mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins [mgt Standard Terms and Conditions is available on request. Eurofins Environment Testing Australia Pty Ltd trading as Eurofins [mgt

1009382

STEDARTY	Sydney Environment	tal Group	Project N	8400 Envir	oaempter/S	- Genouts	a.com		UF 33U2 4	500 Enviro	ect	-georonns	.uDi¥i		Se	mpleri	15	_	03 8364	5000 EnviroSample	wicigedfollas.cl	Mu.
	oyunoy Environment	an oroup								Man EDD F		_										
ddress	U63, 45 Huntley S Alexandria NS		Project Name							(EScial, Gust	EQUIS,				Hand	ted ovi	irby.					
l'art			al and a		s ID)										Prin	nary Er	nađ	<u>e</u>	nviro@:	sydnevenviron	mental.com	n.au
tact Name			1	(OI so:	sbesto	â							Tat		Seco	ndary i	Email					
tone Na	1300 884 164	1		SEG Contam Suite 2 (TRH, BTEX, PAH, Metals, OCP, PCB, Asbestos ID)	SEG Contam Suite 3 (TRH, BTEX, PAH, Metals, OCP, OPP, PCB, Asbestos ID)	SEG ENM Suite 1 (TRH, BTEX, PAH, Metals, pH, EC, Asbestos ID)							EC+ PH+Clay X + Nelels				Contai	ners		Turnar Requirenten	ound Tyne (Dimmit of in t	
d Directions			SEG Contam Sulte 1	P, PCB,	P, OPP,	, EC, As			01%)				X							D Overnigh	nt ⊡ Sa	ime [
Porte and			als. Ast	als, OC	als, OC	als, pH	uite SP %)	.01%)	IA (0.0	als)		HA.	and a	-			3	a alia	<u></u> 里 5	🗖 1 Day	0 21	Day
hase Order			ite 1 4. Met:	l ite 2 1, Meta	ite 3 1, Meta	1 1, Met	Salinity Assessment Suite (L2 Aggresivity Suite, ESP %)	Asbestos ID AS4964 (0.01%)	Asbestos ID NEPM & WA (0.001%)	4, Meti	B13 Suite (OCP, PCB)	redus , RAH	7+0	\mathbf{x}	1L Planto	zsum Pann 126ail Plasi	Amber G	L VOA 10 PFAS Bo	0H s tu	🖾 3 Day	□ 5 £	Day
nte ID Na	and the second	Sampled	tam Su	SEG Contam Sulte 2 (TRH, BTEX, PAH, Me	SEG Contam Suite 3 (TRH, BTEX, PAH, Me	SEG ENM Suite 1 (TRH, BTEX, PAH,	sivity S	id AS	ID NEI	EX, PA	_ @	To	9	BTEX	-	1235	200mL	AURI SUIML	10)	D Other (* · · · ·	UA
	lient Sample ID	Sampled Date (Si) (ddimmiyy	G Cont	G Cont RH, BTI	G Cont RH, BTI	G ENN RH, BTI	linity A 2 Aggre	bestoa	bestos	87 Sulte (TRH, BTE	.3 Suite CP, PC	Pel	U.	aA.						Sample Co Goods	mments / Da Hazard War	aige Slog
TOIL	· ~ 6,2-a3				SE	SE	83	As	Å	6E	80		D D									-
MIC	0,2-013	11.1.21		X		_					_					-		+	+			
			X					_						-	-	-		+				_
				×							-					_		_				
			X										1					_				
	/			Y	_													_				
			X	1														_				
	\checkmark			X			_															
TP23	-2-2-23 fc-01 08-fc yof wfola	5	X																			
R	fc-01	B	n																			
TR	od-fc	-	V																			
On	pol		5									X										
D	npola		1									X								Fue	ALS	5
0.	1002											×										
Dia	1020-										10	×								FWD	، مه	A
E	11										401	/	\times									
To	po20 fo20 iL ip Sthe f Blank		1	-										×								1
T	Rhule	1	1									_		X								_
(10)	DRAKE		Y											~								
			_										_					-			_	
							_	_														
-		The second second												_	-	-		-		10000		
thotiof	Courie (#	Total Count																		-67.1		
ipment,	Courier (# Received By) 🗆 Hand	Delivered C	I PO	stal	Nar ER LAN		Signa	ula uno'		0	Signa	-	Delo		Date	3		m 2.1	Time		5

Scumssion of samples to the aboratory will be determed as acceptance or curvings i migri standard remins and continuous unless agreed onnewise. A copy or curving i migri standard remins and contactoris is a valiable on request. **Eurofins Environment Testing Australia Pty Ltd trading as Eurofins | mgt
Non: Masis = As, C4, C7, Cu, Hg, Ni, Pb, and Zu, TRH = Total Recoverable Hydrocattoria, PHH = Polyoydic Anonalitic Hydrocattoria, PHH = Polyoydic**

1009382

1 DAY TAT Additional Analysis FW: Eurofins Test Results - Report 1009382 : Site WARRIEWOOD DSI (2148)

Asim Khan

Tue 2023-07-25 3:59 PM

To:#AU25_Enviro_Sample_NSW <EnviroSampleNSW@eurofins.com>;Ryan Phillips <RyanPhillips@eurofins.com>

Cc:Adam Bateup <AdamBateup@eurofins.com>

INFO: INTERNAL EMAIL - Sent from your own Eurofins email domain.

Additional analysis please on <u>1 day TAT</u>.

Thanks,

Kind regards,

Asim Khan Analytical Services Manager Please note my hours are from 9:30 am to 5:30 pm

Eurofins Environment Testing Australia Pty Ltd Phone: +61 2 9900 8432

Mobile: +61 429 051 456

E-mail: AsimKhan@eurofins.com

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the intended recipient, please inform the sender by an e-mail reply and delete the message. Transmission by e-mail is not secure and can result in errors or omissions in the content of the message. Despite state-of-the-art precautions we cannot guarantee that e-mails and attachments are free from viruses. We accept no liability for viruses or any transmission-related errors and omissions. You need to always virus-check any e-mails and attachments.

Eurofins companies are independent legal entities that are bound only by members of their management bodies. No other persons have representation power unless specifically authorised by proxy or other legal means.

From: Mitchell Kirby <mitchell@sydneyenvironmental.com.au>
Sent: Tuesday, 25 July 2023 3:31 PM
To: Adam Bateup <AdamBateup@eurofins.com>
Cc: Asim Khan <AsimKhan@eurofins.com>
Subject: RE: Eurofins Test Results - Report 1009382 : Site WARRIEWOOD DSI (2148)

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Adam,

Could we please get the fibre cement fragments 'FC01' and 'TP08-FC' analysed from Asbestos ID on 1 day TAT.

Kind Regards,

Mitchell Kirby | Project Manager / Environmental Consultant

M. Environmental Science / NSW LAA

E: <u>mitchell@sydneyenvironmental.com.au</u> W: <u>http://www.sydneyenvironmental.com.au</u> M: 0433 518 334 P: 1300 884 164

Sydney Environmental Group acknowledges the Traditional Owners of the land upon which we live and work and pay our respects to their Elders past, present and emerging.

This email and any attachments are confidential. If you are not the intended recipient you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited. Any personal views or opinions expressed by the writer may not necessarily reflect the views or opinions of Sydney Environmental Group. Sydney Environmental Group accepts no liability for the content of this email, or for the consequences of any actions taken on the basis of the information provided, unless that information is subsequently confirmed in writing.

Sydney Environmental Group's management systems are certified to ISO9001:2015 (Quality), ISO45001:2015 (OH&S) and ISO14001:2015 (Environment).

Please consider the environment before printing this email.

From: AdamBateup@eurofins.com <AdamBateup@eurofins.com>
Sent: Monday, July 24, 2023 11:08 PM
To: Mitchell Kirby <<u>mitchell@sydneyenvironmental.com.au</u>>
Cc: Patrick Brown <<u>patrick@sydneyenvironmental.com.au</u>>
Subject: Eurofins Test Results - Report 1009382 : Site WARRIEWOOD DSI (2148)

Please find the attached draft reports, please disregard my previoius email.

Kind regards, Adam Bateup Assistant Analytical Services Manager My hours are 3 pm - 11 pm

Eurofins Environment Testing Australia Pty Ltd

Email: <u>AdamBateup@eurofins.com</u> Website: <u>www.eurofins.com/environmental-testing</u> <u>View our latest EnviroNotes</u>

<u>Message protected by MailGuard: e-mail anti-virus, anti-spam and content filtering.</u> <u>https://www.mailguard.com.au</u>

Report this message as spam

.

1	A	В	С		E ICL Statis	F stics for Und	G G	H Data Sets		J	K	L
1 2												
2		User Sele	ected Options	;								
4	Da	ate/Time of C	Computation	ProUCL 5.125/	07/2023 1	2:31:13 PM						
5			From File	WorkSheet.xls								
6		Fu	Ill Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9												
10												
11	C0											
12												
13						General	Statistics					
14			Total	Number of Obse	ervations	26			Number	r of Distinct O	bservations	23
15									Number	of Missing O	bservations	0
16				I	Minimum	5					Mean	81.93
17				Ν	/laximum	440					Median	46.5
18					SD	96.96				Std. Er	ror of Mean	19.01
19				Coefficient of	Variation	1.183					Skewness	2.488
20												
21							GOF Test					
22				Shapiro Wilk Test		0.692			-	lk GOF Test		
23			5% S	hapiro Wilk Critic		0.92		Data Not		5% Significan	ce Level	
24				Lilliefors Test		0.276				GOF Test		
25			5	% Lilliefors Critic		0.17			Normal at §	5% Significan	ce Level	
26					Data Not	Normal at !	5% Significa	nce Level				
27												
28			050/ 11		As	suming Nor	mal Distribut					
29			95% N	ormal UCL		114.4				sted for Skev	•	100.1
30				95% Studen	ts-tUCL	114.4			-	ed-CLT UCL (,	123.1
31										ed-t UCL (Joh	15011-1976)	116
32						Gamma	GOF Test					
33				A-D Test	Statistic	0.699		Anders	on-Darling	Gamma GOF	- Toet	
34				5% A-D Critic		0.033	Detecte	d data appear	-			
35					Statistic	0.161	Delecter			ov Gamma G	-	
36				5% K-S Critic		0.176	Detecte	d data appear				ice Level
37								5% Significan				
38				20100104 44								
39						Gamma	Statistics					
40 41				k h	at (MLE)	1.111			ks	star (bias corr	ected MLE)	1.009
					at (MLE)	73.73				star (bias corr	-	81.23
42 43	1				at (MLE)	57.78				nu star (bias	,	52.45
43			М	LE Mean (bias c		81.93				MLE Sd (bias	,	81.58
44				, -	,			A	pproximate	Chi Square \	,	36.81
45			Adjus	sted Level of Sig	nificance	0.0398				djusted Chi So		35.95
40			-				1					
48					Ass	suming Gan	nma Distribu	tion				
49		95% Approx	kimate Gamm	a UCL (use whe	n n>=50)	116.7		95% Adj	usted Gamr	na UCL (use	when n<50)	119.5
50							1					
51						Lognorma	I GOF Test					
52			S	Shapiro Wilk Test	Statistic	0.975		Shap	ro Wilk Log	normal GOF	Test	
53			5% S	hapiro Wilk Critio	cal Value	0.92		Data appear	Lognormal	at 5% Signific	cance Level	
54				Lilliefors Test	Statistic	0.117		Lilli	efors Logno	ormal GOF Te	əst	
55			5	% Lilliefors Critic	cal Value	0.17		Data appear	Lognormal	at 5% Signific	cance Level	
56				Dat	ta appear	Lognormal	at 5% Signif	icance Level				
57												
58						Lognorma	al Statistics					

	А	В	С	D	E	F	G	Н	I	J	К	L	
59				Minimum of L	_ogged Data	1.609					logged Data	3.893	
60			Ν	Maximum of L	_ogged Data	6.087				SD of	logged Data	1.053	
61													
62					Assu	uming Logno	ormal Distribu	ution					
63					95% H-UCL	146.8				Chebyshev (I	,	141.7	
64			95% (Chebyshev (I	MVUE) UCL	168.4			97.5% (Chebyshev (I	MVUE) UCL	205.4	
65			99% (Chebyshev (I	MVUE) UCL	278.2							
66													
67					-		tion Free UC						
68				Data appea	r to follow a	Discernible [Distribution a	at 5% Signifi	icance Level				
69													
70		Nonparametric Distribution Free UCLs											
71				95	5% CLT UCL	113.2			114.4				
72			95%	Standard Bo	otstrap UCL	112.3		139.1					
73				5% Hall's Bo		137		113.9					
74			ć	95% BCA Bo	otstrap UCL	123.7							
75			90% Ch	ebyshev(Mea	an, Sd) UCL	139			95% Ch	ebyshev(Mea	an, Sd) UCL	164.8	
76			97.5% Ch	ebyshev(Mea	an, Sd) UCL	200.7			99% Ch	ebyshev(Mea	an, Sd) UCL	271.1	
77													
78						Suggested	UCL to Use						
79			959	% Adjusted C	Jamma UCL	119.5							
80													
81	١	Vote: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to help	p the user to	select the m	ost appropria	ate 95% UCL		
82			F	Recommenda	itions are bas	sed upon dat	a size, data c	distribution, a	and skewnes	S.			
83		These recor	mmendations	are based u	pon the resu	Its of the sim	ulation studie	es summariz	zed in Singh,	Maichle, and	Lee (2006).		
84	Ho	wever, simu	lations result	s will not cov	er all Real W	/orld data set	ts; for addition	nal insight th	ne user may v	want to consu	ult a statistici	an.	
85													

APPENDIX C

SITE PLANS

PROPOSED RESIDENTIAL DEVELOPMENT

45-49 WARRIEWOOD ROAD, WARRIEWOOD, NSW

SCALE 1:200@A1

PROPOSED RESIDENTIAL DEVELOPMENT

45-49 WARRIEWOOD ROAD, WARRIEWOOD, NSW

SCALE 1:200@A1

