

PALMDEV PTY LTD

Detailed Site Investigation

1112-1116 Barrenjoey Road, Palm Beach NSW

E25203.E02_Rev1 30 July 2021

Document Control

Report No: E25203.E02_Rev1

Copies	Recipient
1 Soft Copy (PDF – Secured, issued by email)	Mr William Allen Palmdev Pty Ltd Level 1, 600 Darling Street, Rozelle NSW 2039
2 Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, Pyrmont NSW 2009

Author

Technical Reviewer

A

& Brichle

LAN YEGREG BRICKLEEnvironmental EngineerPrincipal Environmental Scientist		l Scientist	
Revision	Details	Date	Amended By
0	Original	22 July 2021	-
1	Additional Preliminary Waste Classification Section	30 July 2021	LY

© 2021 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

EX	ECUT	IVE SU	MMARY	I
1.	INTE	RODUCT	ΓΙΟΝ	1
	1.1	Backgro	ound and Purpose	1
	1.2	Propos	ed Development	1
	1.3	Regulat	tory Framework	1
	1.4	Project	Objectives	1
	1.5	Scope	of Works	2
		1.5.1	1 5	2
		1.5.2 1.5.3	Field Work & Laboratory Analysis Data Analysis and Reporting	2 2
2.	SITE	E DESCI	RIPTION	4
	2.1	Propert	ty Identification, Location and Physical Setting	4
	2.2	Surrour	nding Land Use	4
	2.3	Region	al Setting	5
	2.4	Ground	lwater Bore Records and Groundwater Use	6
	2.5	Site Wa	alkover Inspection	6
3.	PRE	VIOUS	INVESTIGATIONS	8
4.	SITE	E HISTO	RY	9
	4.1	Land Ti	itles Information / Historic Aerial Review	9
	4.2	Council	I Information	10
	4.3	SafeWo	ork NSW Dangerous Goods Register Records	10
	4.4	EPA Re	ecords	10
			Contaminated Land – Record of Notices under Section 58 of CLN	• •
			ist of NSW Contaminated Sites Notified to EPA OEO Public Register	10 10
5.	CON	ICEPTU	IAL SITE MODEL	11
	5.1	Potentia	al Contamination Sources	11
	5.2	PFAS A	Assessment	11
	5.3	Emergi	ng chemicals	12
	5.4	Contarr	ninants of Potential Concern	12
	5.5	Potentia	al Sources, Exposure Pathways and Receptors	13
	5.6	Data G	aps	15
6.	MET	HODOL	-OGY	16
	6.1	Samplir	ng, analytical and quality plan (SAQP)	16
	6.2		uality Objectives (DQO)	16
	6.3	Data Q	uality Indicators	19
	6.4	Samplir	ng Rationale	20

	6.5 Assessment Criteria 20			
	6.6	Soil Inv	restigation	21
	6.7	Ground	lwater Investigation	22
7.	DAT	A QUAL	LITY ASSESSMENT	25
	7.1	Quality	Overview	26
8.	RES	ULTS		27
	8.1	Soil Inv	estigation Results	27
		8.1.1 8.1.2	Site Geology and Subsurface Conditions Field Observations and PID Results	27 27
	8.2	Ground	lwater Investigation Results	28
		8.2.1	Monitoring Well Construction	28
		8.2.2	Field Observations and Water Test Results	28
	8.3	Laborat	tory Analytical Results	28
		8.3.1	Soil Analytical Results	28
		8.3.2	Groundwater Analytical Results	30
9.	SITE	CHAR	ACTERISATION	33
	9.1	Soil		33
	9.2	Ground	lwater Concentration	33
	9.3	Prelimir	nary Waste Classification	33
	9.4	Review	of Conceptual Site Model	34
10.	ACIE	SULF/	ATE SOIL ASSESSMENT	35
11.	CON	CLUSIC	ONS	37
12.	REC	OMMEN	NDATIONS	39
13.	STA	LEWEN	T OF LIMITATIONS	40
RE	FERE	NCES		41
ABI	BREV	IATION	IS	42

Schedule of Tables

Table 2-1	Site Identification, Location and Zoning	4
Table 2-2	Surrounding Land Uses	5
Table 2-3	Regional Setting Information	5
Table 2-4	Summary of Registered Water Bores within 500 m of the site	6
Table 4-1	Summary of Owners and Historical Aerial Photography	9
Table 6-1	Summary of Project Data Quality Objectives	17
Table 6-2	Data Quality Indicators	19
Table 6-3	Adopted Investigation Levels for Soil and Groundwater	20
Table 6-4	Summary of Soil Investigation Methodology	21
Table 6-5	Summary of Groundwater Investigation Methodology	22
Table 7-1	Quality Control Process	25
Table 8-1	Generalised Subsurface Profile	27
Table 8-2	Monitoring Well Construction Details	28
Table 8-3	Groundwater Field Data	28
Table 8-4	Summary of Soil Analytical Results	29
Table 8-5	Summary of Groundwater Analytical Results	30
Table 9-1	Preliminary Waste Classification Summary	34
Table 10-1	Summary sPOCAS laboratory analytical results	36

Appendices

APPENDIX A - FIGURES

- **APPENDIX B TABLES**
- **APPENDIX C GROUNDWATER BORE SEARCH**
- **APPENDIX D SITE PHOTOGRAPHS**
- **APPENDIX E HISTORICAL PROPERTY TITLES SEARCH**
- **APPENDIX F SAFEWORK NSW**
- **APPENDIX G BOREHOLE LOGS**
- **APPENDIX H FIELD DATA SHEETS**
- APPENDIX I CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS
- APPENDIX J LABORATORY ANALYTICAL REPORTS

APPENDIX K - QA/QC ASSESSMENT

- K.1 Site location
- K.2 Field QA/QC Data Evaluation
- K.3 LABORATORY QA/QC
- APPENDIX L LABORATORY QA/QC POLICIES AND DQOS

Executive Summary

Background

Palmdev Pty Ltd engaged EI Australia (EI) to conduct a Detailed Site Investigation (DSI) for the industrial property located at 1112-1116 Barrenjoey Road, Palm Beach NSW ('the site'). This DSI was completed as part of the Development Application process through Northern Beaches Council for the redevelopment of the site to enable the developer to meet its obligations under the *Contaminated Land Management Act 1997* (CLM Act), for the assessment and management of contaminated soil and/or groundwater.

The site is located approximately 32km north of the Sydney central business district. The site is identified as Lot 21 in DP571298 and is situated within the Local Government Area of Northern Beaches Council. The site covers a total area of approximately 1,400 m².

It is understood that the site is currently occupied by a general store, ferry tickets store and boutique hotel, which are commercial land uses. Due to the confidentiality of matters related to the site, the proposed development was not disclosed, however it is understood that the client intends to purchase the property for future development. For the purposes of this DSI, it has been conservatively assumed that the proposed development is high density residential.

Objectives

The main objectives of the assessment were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants;
- Provide a conclusion regarding suitability of the site for the proposed development ; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

Findings

The work was conducted with reference to the regulatory framework outlined in Section 1.3 of this report and assessment findings indicated the following:

- The site is located approximately 32km north of the Sydney central business district and is situated within the Local Government Area of Northern Beaches Council. The site is identified as Lot 21 in DP571298 and occupies a total area of approximately 1,400 m² presented in Figure 2 (Appendix A);
- The allotment known as 1112-1116 Barrenjoey Road, Palm Beach NSW appears to have been used for residential purpose until 1979. The site was redeveloped for commercial purposes after 1979;
- An application to access records held by Northern Beaches Council was still pending at the time of report writing. Should pertinent information be identified upon receipt of Council records, an addendum to the DSI will be prepared and issued;
- A search of SafeWork NSW records did not identify records pertaining to dangerous goods or UPSS for the site;

- Soil sampling and analysis were conducted at six borehole locations. The sampling regime
 was considered to be appropriate for detailed investigation purposes and comprised a
 generally systematic (triangular grid) sampling pattern within accessible areas and with
 allowance for structural obstacles (e.g. buildings, services, and other physical obstructions
 in use by existing operating businesses);
- Soil sample results reported Asbestos in shallow fill at EBH103 and EBH104;
- Soil sample results reported zinc in shallow fill at EBH103 at a concentration that exceeded adopted Ecological-based Investigation Levels (EILs);
- The asbestos and zinc report in shallow fill is likely due to weathering fallout from the adjacent building and therefore localised;
- Chromium, copper, nickel and zinc were reported in groundwater at concentrations exceeding adopted ecological criteria (marine). Chromium, copper and zinc were reported at relatively low concentrations there were typical of background conditions of urban environments. Nickel was reported at elevated concentration; however, low concentrations in soil indicate that the site is unlikely to be contributing to the reported concentration in groundwater;
- Minor petroleum hydrocarbon (as TRH-F2) was reported in groundwater, This presents a low risk to human health and ecological receptors;
- Soils were assessed for acid sulfate soils, and were not found to be actual or potential acid sulfate soils; and
- Based on the analytical results, the following preliminary classifications were provided (with reference to the EPA (2014) Waste Classification Guidelines):
 - The fill materials in the vicinity of EBH103 and EBH104 can be classified as General Solid Waste (GSW) / Asbestos Waste and remaining fill on the site can be classified as General Solid Waste (GSW);
 - The underlying natural soils on the site can be classified as *Virgin Excavated Natural Material* (VENM).

Conclusions and Recommendations

Based on the findings of this DSI, which was conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 13**), bonded asbestos was identified which will require delineation and remediation in fill at EBH103 and EBH104.

El note that the site contamination issues can be managed through the development application process in accordance with the State Environmental Planning Policy 55 (SEPP 55) – Remediation of Land, with the requirements for further investigation, remediation, and validation incorporated into conditions of development consent.

El consider that the site can be made suitable for the proposed development, subject to the following recommendations being implemented during development:

 Conduct a Hazardous Materials Survey (HMS) of current site structures prior to demolition works;

- Clearance Inspection should be conducted following site building demolition and removal of all asbestos impacted fill in the vicinity of EBH103and EBH104;
- Any soil materials being removed from site (including virgin excavated natural materials or VENM) be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
- Dewatering may be required if the proposed development includes construction of a basement. This would require:
 - Preparation of a Dewatering Management Plan (DMP) and approval from local Council and WaterNSW;
 - · On-going monitoring during any dewatering in accordance with the DMP; and
 - Following completion of dewatering preparation of a Dewatering Completion Report summarising the on-going monitoring works.

1. Introduction

1.1 Background and Purpose

Palmdev Pty Ltd engaged EI Australia (EI) to conduct a Detailed Site Investigation (DSI) for the property located at 1112-1116 Barrenjoey Road, Palm Beach NSW ('the site').

As shown in **Figure A.1**, The site is located approximately 32km north of the Sydney central business district. The site is identified as Lot 21 in DP571298 and is situated within the Local Government Area of Northern Beaches Council. The site covers a total area of approximately 1,400 m² as depicted in the site plan presented as **Figure A.2**.

This assessment was conducted in support of a Development Application (DA) to Northern Beaches Council for proposed redevelopment of the site.

1.2 Proposed Development

It is understood that the site is currently occupied by a general store, ferry tickets store and boutique hotel, which are commercial land uses. Due to the confidentiality of matters related to the site, the proposed development was not disclosed however it is understood that the client intends to purchase the property for future development which will include a one level basement. For the purposes of this DSI, it has been conservatively assumed that the proposed development is high density residential.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- Pittwater Local Environmental Plan 2014;
- EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Edition);
- EPA (1995) Sampling Design Guidelines;
- NEPM (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater;
- NEPM (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act 1997;
- State Environment Protection Policy 55 (SEPP 55) *Remediation of Land*; and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.4 Project Objectives

The primary objectives of this investigation were to:

 Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;

- To investigate the degree of any potential contamination by means of limited intrusive sampling and laboratory analysis, for relevant contaminants;
- Provide a conclusion regarding suitability of the site for the proposed development; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.5 Scope of Works

In order to achieve the above objectives, the scope of works was as follows:

1.5.1 Desktop Study

- A review of relevant topographical, geological, hydrogeological and soil landscape maps for the project area;
- A search of NSW EPA Land Information records under the Contaminated Land Management Act 1997 and Protection of the Environment Operations Act 1997;
- A preparation of a Work, Health, Safety & Environment Plan.
- Search of historical aerial photographs archived at NSW Land and Property Information to review previous site use and the historical sequence of land development in the neighbouring area;
- A search of SafeWork NSW records for information relating to possible underground tank approvals and locations;
- A search of Northern Beaches Council records for information relating to operational site history and/or relevant environmental incidents;
- A land titles search, also conducted through NSW Land and Property Information for information relating to historical ownership of the site; and
- A review of existing underground services on site.

1.5.2 Field Work & Laboratory Analysis

- A detailed site walkover inspection;
- Construction of test boreholes at six (6) locations distributed in accessible areas of the site;
- Construction of one (1) groundwater monitoring bore. Groundwater monitoring bore will be constructed to standard environmental protocols to investigate the potential for groundwater contamination, and migration of contaminants off-site;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the four newly constructed groundwater monitoring bore; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation programme.

1.5.3 Data Analysis and Reporting

This DSI report has been prepared to document desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report also provides a record of observations made during the detailed site walkover inspection, borehole and

monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. Site Description

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Appendix A - Figure 1**.

Table 2-1	Site Identification,	Location	and Zoning
-----------	----------------------	----------	------------

Attribute	Description
Street Address	1112-1116 Barrenjoey Road, Palm Beach NSW
Location Description	Site is located 32 km north of the Sydney central business district, bound by Residential properties (north and east), Barrenjoey Road (west) and a restaurant (south).
Coordinates	North-west corner of site (GDA94-MGA56):
	Easting: 344160.515
	Northing: 6281321.408
	(Source: http://maps.six.nsw.gov.au)
Site Area	Approx. 1,400 m ²
Lot and Deposited Plan (DP)	Lot 21 in DP571298
State Survey Marks	One State Survey Mark (SSM) and two Permanent Marks (PM) situated in
	close proximity (<200 m) to the site:
	 SS38192 within the public car park (approx. 66 m southwest);
	 PM52391 on the Barrenjoey Road (approx. 4 m northwest); and
	 PM52392 on the corner of Palm Beach Road and Pacific Road (approx. 79 m southeast).
	(Source: http://maps.six.nsw.gov.au)
Local Government Authority	Northern Beaches Council
Parish	Narrabeen
County	Cumberland
Current Zoning	B1: Neighbourhood Centre
	(Pittwater Local Environmental Plan 2014)
Current Land Uses	Commercial

2.2 Surrounding Land Use

The site is situated within an area of mixed commercial and industrial area. Current uses of surrounding land are described in **Table 2-2**.

Direction Relative to Site	Land Use Description	Sensitive Land Receptors
North	Residential properties	 Local residence (directly adjacent)
South	Restaurant (Barrenjoey House), followed by residential properties	 Commercial properties (directly adjacent)
West	Barrenjoey Road, followed by car park then Pittwater	 Pittwater (65 m west)
East	Residential properties	 Local residence (directly adjacent)

Table 2-2	Surrounding	Land Uses
-----------	-------------	-----------

2.3 Regional Setting

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description
Topography	The western portion of the site was located within generally flat topography. The eastern portion of the site was on a steep slope.
Site Drainage	Also, stormwater is likely to flow to the west and north, consistent with the general slope of the site, via drainage systems discharging to various stormwater easements and the municipal stormwater system.
	Stormwater is assumed to ultimately discharge at Snapperman Beach and Pittwater West of the site
Regional Geology	With reference to the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1983) indicates the site is underlain by Newport Formation (Rnn) of the Upper Narrabeen Group. Newport Formation (Upper Narrabeen Group) is of middle Triassic Age and typically comprises interbedded laminite, shale and quartz to lithic quartz sandstones and pink clay pellet sandstones.
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the site is underlain by colluvial Watagan (wn) soil, which typically includes rolling to very steep hills on fine-grained Narrabeen Group sediments. Local relief 60–120 m, slopes >25%. Narrow, convex crests and ridges, steep colluvial sideslopes, occasional sandstone boulders and benches. Tall eucalypt open-forest with closed-forest (rainforest) in sheltered positions
Acid Sulfate Soil Risk	With reference to the Broken Bay Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the subject land lies within the map class description of ' <i>No Known</i> <i>Occurrence</i> '.
	With reference to the Pittwater Local Environmental Plan 2014 Acid Sulfate Soils (ASS) map (ASS-015) the site is mapped as <i>Class 5</i> Acid Sulfate Soils.
	In such cases, acid sulfate soils (ASS) are not known or expected to occur and "land management activities are not likely to be affected by ASS materials."

 Table 2-3
 Regional Setting Information

Attribute	Description
Typical Soil Profile	Fill – Silty sand, fine to medium grained, brown, with rootlets, brick, sandstone and gravel, no odour; and
	Topsoil – Silty sand, medium to coarse grained, dark grey, with rootlets, brick, tile and sandstone fragment.
Depth to Groundwater	Groundwater was encountered at 1.0 mBTOC during the groundwater investigation.
	Onsite groundwater conditions, including groundwater flow direction, are discussed in Section 8.2 .
Nearest Surface Water Feature	Snapperman Beach and Pittwater, which is located approximately 65 m west of the site.
Groundwater Flow Direction	Groundwater flow direction in the vicinity of the site is inferred to be west towards Snapperman Beach towards Pittwater.

2.4 Groundwater Bore Records and Groundwater Use

An online search of registered groundwater bores was conducted on the 1 July 2021 via the WaterNSW groundwater bore database (<u>https://realtimedata.waternsw.com.au/water.stm</u>). A total of 19 registered bores were identified within a 500 m radius of the site. The five closest bores were summarised in **Table 2-4**. A bore location plan and detailed information regarding the listed bores is attached in **Appendix C**.

Bore No.	Date Drilled	Drilled Depth (m)	SWL*/Salinity/Yield	Bore Purpose
GW105823	15/03/2004	4.0	2.0 / Good / 0.5	Domestic
GW112524	15/05/2013	4.3	1.75 / - / 1.0	Domestic
GW110407	01/01/1994	6.3	-/-/-	Domestic
GW106383	24/09/2004	4.0	2.0/-/0.5	Domestic
GW105595	05/11/2003	5.0	2.5 / Good / 0.5	Domestic

Table 2-4 Summary of Registered Water Bores within 500 m of the site

Notes: NA - Data not recorded; * SWL – Standing water level measured in m BGL, Salinity – units unspecified, Yield measured in L/s.

All listed registered bores were recorded as authorised domestic bore. The drilled bore depths ranging from 4.0 to 6.3 mBGL. The standing water levels of the water table ranging from 1.75 to 2.5 mBGL.

2.5 Site Walkover Inspection

Site observations were recorded during a site walkover inspection of the site conducted on 18 June 2021. The summary of site observations is detailed below.

With reference to the photographs taken during the inspection (Ref. **Appendix D**), pertinent site observations were summarised as follows:

 The western portion of the site was occupied by a single level brick commercial building with associated gravel car park. The north-eastern portion of the site was occupied by a timber residential house / guest house. The eastern portion of the site was covered by dense bamboo bush on a very steep slope;

- The building structures appeared to be in moderate condition with minor weathering of painted surfaces and / or metallic surfaces observed. Fibro-cement pieces (potential ACM) were observed near the timber house on the slope land;
- No unusual odours were detected during the inspection; and
- No evidence of Underground Storage Tanks (USTs) or Underground Petroleum Storage System (UPSSs) or Above-ground Storage Tanks (ASTs) was observed.

3. Previous Investigations

El are unaware of any other previous environmental investigations that may have been completed for the site.

4. Site History

4.1 Land Titles Information / Historic Aerial Review

A historical land titles search was conducted through InfoTrack Pty Ltd. Copies of relevant documents resulting from this search are presented in **Appendix E**. A summary of all the previous and current registered proprietors along with information obtained from the available historical aerial photographs, in relation to past potential land uses are presented in **Table 4-1**. The historical aerial photographs reviewed as part of this DSI included:

- 1947: Broken Bay Run 44, Jan 1947, LANDSPHOTO;
- 1951: NSW 471-4
- 1961: NSW 1057 5153;
- 1972: NSW 2015 5078;
- 1986: NSW 3534 204;
- 1998: NSW 4454 R03 M2141;
- 2005: NSW 4941 R03 M2510; and
- 2020: Google Earth.

Table 4-1	Summary of	Owners and	Historical	Aerial Photography
	Summary Or	Owners and	matuncar	Acharinotography

Period	Ownership Summary	Site description based on historical aerial photographs	Potential Land Uses
1918 to 1969	Private Owners	 1943: The site buildings appear to be established. An extra building was located at current carpark area. The surrounding area was low density residential properties and bush land; 1951, 1961: The lot appears unchanged from the previous aerial photograph. 	Residential
1969 to 1981	Cantec Pty Limited J.A. Atkinson Pty Limited	1972: The lot appears unchanged from the previous aerial photograph.	Commercial
1981 to date # Harry Anastasopoulos # Maria Anastasopoulos # Tony Anastasopoulos Now # Anastasios Anastasopoulos)		 1986: The original building in southern portion of the site was demolished. A new public car park was built to the west of the site (opposite side of Barrenjoey Road). More residential properties were established in the surrounding area; 1998, 2005 and 2020: The lot appears unchanged from the previous aerial photograph. 	Commercial/ Residential

Denotes current registered proprietor

Overall, the allotment known as 1112-1116 Barrenjoey Road, Palm Beach NSW appears to have been used for residential purposes until 1969. Part of the site was redeveloped for commercial purposes after 1969.

4.2 Council Information

An application to access records held by Northern Beaches Council was still pending at the time of report writing. Should pertinent information be identified upon receipt of Council records, an addendum to the DSI will be prepared and issued.

4.3 SafeWork NSW Dangerous Goods Register Records

A search of SafeWork NSW records did not identify records pertaining to dangerous goods or UPSS for the site. Correspondence from SafeWork NSW is presented in **Appendix F**.

4.4 EPA Records

4.4.1 Contaminated Land – Record of Notices under Section 58 of CLM Act (1997)

An on-line search of the contaminated land public record of EPA Notices was conducted on 1 July 2021. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Notices available to the public under Section 58 of the CLM Act;
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the Environment Protection Authority (EPA) has not been revoked;
- Site audit statements provided to the NSW EPA under section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and
- Actions taken by NSW EPA under section 35 or 36 of the Environmentally Hazardous Chemicals Act 1985 (EHC Act).

The search confirmed that the site known as 1112-1116 Barrenjoey Road, Palm Beach NSW and surrounding lands within close proximity (within 250 m) were not subject to any regulatory notices relevant to the above legislation.

4.4.2 List of NSW Contaminated Sites Notified to EPA

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was conducted on 1 July 2021. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted significantly enough to warrant regulation by the NSW EPA. The site or localities in proximity (\leq 250 m) to the site have not been notified as contaminated to the EPA.

4.4.3 POEO Public Register

A search of the Protection of the Environment Operations (POEO) Act public register was conducted on 1 July 2021. The public register contains records related to environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes. The search for Palm Beach, Whale Beach and Avalon Beach did not identify any record for the site or sites in proximity (≤ 500 m).

5. Conceptual Site Model

In accordance with NEPM (2013) Schedule B2 – Guideline on Site Characterisation and to aid in the assessment of data collection for the site, EI developed a conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

5.1 Potential Contamination Sources

On the basis of site history and search findings (described in **Section 4**) EI consider potential chemical hazards and onsite contamination sources to be:

- Importation of fill of unknown origin and quality placed at the site;
- Weathering of exposed building fabrics, painted surfaces and metallic objects from site structures;
- Possible uncontrolled demolition of former site structures resulting in contamination of surface soils by hazardous building materials;
- Leakage from parked vehicles on site; and
- Potential on-site use of pesticides.

5.2 PFAS Assessment

EPA (2017) requires that PFAS are considered when investigating land contamination. A desktop survey of the probability for PFAS occurrence is provided in **Table 5-2**. This survey is based on guidelines from the *PFAS National Environmental Management Plan* (NEMP 2018). From this survey a decision can be made as to whether PFAS sampling of soil and groundwater is required.

Table 5-2 PFAS Decision Tree

Preliminary Screening	Probability of Occurrence ¹
Is the past or present site activity listed in the NEMP 2.0 (2020) ² an activity with risk of fire. If so list activity.	L
Is the past or present off-site activity up-gradient or adjacent to the site listed in the NEMP 2.0 (2020) ² an activity with risk of fire. If so list activity.	L
Did fire training involving the use of suppressants occur on-site between 1970 and 2010?	L
Did fire training occur up-gradient of or adjacent to the site between 1970 and 2010? ³	L
Have "fuel" fires ever occurred on-site between 1970 and 2010? (e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks)	L
Have PFAS been used in manufacturing or stored on-site? ⁴	L
Could PFAS have been imported to the site in fill materials from a site with activity listed in NEMP (2018)?	L
Could PFAS-contaminated groundwater or run-off have migrated on to the site?	L
Is the site or any adjacent site listed in the NSW EPA PFAS Investigation Program? ⁵	L

Preliminary Screening	Probability of Occurrence ¹
If the probability is medium or high in any of the rows, does the site analytical suite need	

to be optimised to include preliminary sampling and testing for PFAS in soil (including ASLP testing) and waters?

- Note 1 Probability: L low (all necessary documentation has been reviewed and there is no recorded instance or compelling rationale); M moderate (all necessary documentation has been reviewed and there is potential evidence of a recorded instance with compelling rationale); H high (all necessary documentation has been reviewed and there is evidence of a recorded instance with compelling rationale).
 Note 2 Activities listed in Appendix B of the NEMP 2.0 (2020).
- (https://www.oecd.org/env/ehs/risk-management/PFC_FINAL-Web.pdf)
- Note 3 Runoff from up-gradient PFAS use may impact surface water, soil, sediment and groundwater.
- Note 4 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of nonstick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam. (https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas)
- Note 5 Refer to https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program.

5.3 Emerging chemicals

The EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the EHC Act 1985 to control chemicals of concern and limit their potential impact on the environment. Considerations for chemicals controlled by CCOs, and other potential emerging chemicals, are outlined in **Table 5-3**.

In this instance, the potential for an emerging chemical of concern to be present on-site was low and subsequently corresponding sampling / analysis of soil and water was unwarranted.

Table	;)-,	3	Emerg	ing c	mtroi		iem	icais	
					 	-			

Table 5.2 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or Emerging)			
Were aluminium smelter wastes used or stored on site (CCO, 1986)?			
Do dioxin contaminated wastes have the potential to impact the site (CCO, 1986)? ¹	No		
Were organotin products used or stored on site (CCO, 1989)? ²	No		
Were polychlorinated biphenyls (PCBs) used or PCB wastes stored on-site (CCO, 1997)? ³	No		
Were scheduled chemical or wastes used or stored (CCO, 2004)? ⁴			
Are other emerging chemicals suspected? ⁵			
If Yes to any questions, has site sampling suite been optimised to include specific sampling for other chemicals of concern in soil, air and water?	-		

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the Site.

- Note 2 From anti-fouling paints used or removed at boat & ship yards and marinas.
- Note 3 From older transformer oils & electrical capacitors
- Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products
- Note 5 Other chemicals considered as emerging e.g. 1,4 dioxane (associated with some VOCs).

5.4 Contaminants of Potential Concern

Based on the findings of the site contamination appraisal the contaminants of potential concern (COPC) at the site are considered to be:

 Soil – heavy metals (HMs), total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAH), the monocyclic aromatic hydrocarbon (MAH) compounds benzene, toluene, ethylbenzene and xylenes (BTEX), organochlorine and organophosphate pesticides (OCP/ OPP), polychlorinated biphenyls (PCB), and asbestos.

• Groundwater – HMs, TRH, BTEX, PAH and volatile organic compounds (VOC).

5.5 Potential Sources, Exposure Pathways and Receptors

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 5-4**.

Table 5-4 Conceptual Site Model

Site Area	Subsurface Profile	Potential Sources	Potential Contaminants	Media	Sensitive Receptor	Migration & Exposure Pathways
impacted fill overlying colluvial soil. Potential residues f pesticide Weatherin building structures	impacted fill overlying	industrial activities	 Heavy metals TRH BTEX PAH Pesticides PCB 	Soil	 Future residents Construction and Maintenance workers Deep soil planting areas 	 Dermal Contact Ingestion Inhalation
	pesticide useWeathering of building structuresLeakage from parked	PFASVOCAsbestos	Groundwater	 Groundwater Pittwater Basement users (on and offsite) Offsite land users 	 Seepage into subsoil Transport via groundwater Dermal Contact Ingestion Inhalation 	
Site	Soil beneath the current buildings	Building demolition rubble from the former buildings	LeadAsbestos	Near surface soils	 Future residents Construction workers 	Dermal ContactIngestionInhalation

Based on information from the site walkover inspection and site history review, EI considered a programme of intrusive investigation was warranted to conduct targeted sampling at locations of known, potential sources of contamination (as listed in **Section 5.1**), with systematic sampling coverage in site areas where operational site history was not documented.

6. Methodology

6.1 Sampling, analytical and quality plan (SAQP)

The SAQP ensures that the data collected during environmental works at the site are representative, and provide a robust basis for site assessment decisions. The SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the ESA;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

6.2 Data Quality Objectives (DQO)

In accordance with the US EPA (2006) *Data Quality Assessment* and the EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the EI assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in Error! Reference source not found.

Table 6-1 Summary of Project Data Quality Objectives

DQO Steps	Details				
1. State the Problem	Site history (Section 3 and 4) identified a range of contamination sources with potential to have impacted the site.				
Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual	Current site land use is commercial. Proposed development is unknown, however this has been assumed to be high density residential, that is, equivalent to a generic NEPC (2013) land use setting of residential with minimal opportunities for soil access				
site model	Intrusive investigation is required to determine:				
	Is the site suitable for the proposed residential development with minimal access to soil? and				
	Does the site pose an unacceptable risk to human and/or ecological receptors?				
2. Identify the Goal of the Study (Identify the	Based on the objectives (Section 1.4), decisions that need to be made are				
decisions) Identify the decisions that need to be made on the	 Has enough data been collected to determine the risk of contamination at the site, including potential offsite migration of contamination? and 				
contamination problem and the new environmental data required to make them	Is the data adequate to determine suitability of the site for residential use?				
3. Identify Information Inputs (Identify inputs to	Inputs to the decision-making process include:				
decision)	 The proposed future land use; 				
Identify the information needed to support any decision	 Available site historical information; 				
and specify which inputs require new environmental	 Previous investigations; 				
measurements	 Areas of concern, identified during the site inspection prior to intrusive investigations; 				
	 National and NSW EPA guidelines endorsed under the Contaminated Land Management Act 1997; 				
	 Investigation sampling (soils and groundwater) and laboratory analysis for COPCs to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; and 				
	 Further input to the decision will be sample collection and handling, field and laboratory QAQC and confirmation that data quality indicators (DQIs) were achieved. 				
4. Define the Boundaries of the Study	Spatial – The DSI is limited to the site boundaries (Figure 2) and the maximum depth of borehole advancement at each				
Specify the spatial and temporal aspects of the	sample location.				
environmental media that the data must represent to support decision	Temporal – The results will be valid on the day samples are collected and will remain valid if no changes to site use occur, and contamination (if present) does not migrate from off-site sources.				
	Constraints of sampling requiring consideration include access restrictions (due to site operations and/or conditions) and presence of both above and underground services / structures.				

DQO Steps	Details				
5. Develop the Analytic Approach (Develop a	The decision rules for the investigation are:				
decision rule)	What are the characteristics of soil at the site?				
To define the parameter of interest, specify the action	Soil boreholes will be advanced to natural, sampled and logged to characterise underlying conditions.				
level, and integrate previous DQO outputs into a single	What are the characteristics of groundwater at the site?				
statement that describes a logical basis for choosing from alternative actions	Groundwater monitoring well will be installed to determine physical characteristics, chemical composition of groundwater underlying the site.				
	 Is the site suitable for the proposed land use? 				
	If the concentrations of contaminants in the soil and groundwater data are below the relevant health-based and ecological criteria for the intended land use; then the site will be deemed suitable for the proposed development.				
	 Is additional information required to determine the suitability of the site for its proposed use? 				
	Should additional information be required as determined by the conceptual site model (CSM), then appropriate recommendations will be provided.				
	 Decision criteria for analytical data are defined by the Data Quality Indicators (DQI) in Table 6-2. 				
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors)	Specific limits for this project are to be in accordance with NEPM, appropriate data quality indicators (DQIs) for assessing the useability of the data and EI standard procedures for field sampling and handling.				
Specify the decision-maker's acceptable limits on decision errors, which are used to establish	To assess the useability of the data, pre-determined DQIs for completeness, comparability, representativeness, precision and accuracy were adopted, as presented below in Table 6-2 .				
performance goals for limiting uncertainties in the data	If any of the DQIs are not met, further assessment will be necessary to determine whether the non-conformance will significantly affect the useability of the data. Corrective actions may include requesting further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of samples.				
7. Develop the Detailed Plan for Obtaining Data	Site history indicates the potential for contamination to exist. To satisfy the decision rules, the intrusive investigation included:				
(Optimise the design for obtaining data) Identify the most resource-effective sampling and	 Sampling of locations in a systematic pattern across accessible parts of the site, targeting potential source areas identified from site history, site walkover and observations at the site made by EI. 				
analysis design for general data that are expected to	Installation and sampling of groundwater well, to determine groundwater quality.				
satisfy the DQOs	 An upper soil profile sample will be collected at each borehole location and tested for contaminants of potential concern, to assess the conditions of the fill layer, and impacts from commercial activities at ground level. Further sampling would also be carried out at deeper soil layers. Samples will be selected based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples) with consideration of subsurface stratigraphy. 				
	 Representative groundwater sample will be collected and analysed for groundwater characterisation. 				
	Review of the results will be undertaken to determine if further intrusive investigation (i.e. additional sampling) is warranted.				

6.3 Data Quality Indicators

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 6-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

Table 6-2	Data	Quality	Indicators
	ναια	Quality	inuicators

QA/QC Component	Data Quality Indicator(s)
Precision A quantitative measure of the variability (or reproducibility) of data	 Data precision was assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision was deemed acceptable if RPDs were found to be less than 30%. RPDs that exceeded this range were considered acceptable where: Results were less than 10 times the limits of reporting (LOR); Results were less than 20 times the LOR and the RPD was less than 50%; or Heterogeneous materials or volatile compounds were encountered.
Accuracy A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy was assessed through the analysis of: Split field duplicate sample sets; Field and method blanks, analysed for the analytes targeted in the primary samples; Matrix spike and matrix spike duplicate sample sets; and Laboratory control samples.
Representativeness The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory were representative of conditions encountered in the field, the following measures were taken: Blank samples run in parallel with field samples, to confirm there were no unacceptable instances of laboratory artefacts; Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples were generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage, and preservation techniques was assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the DSI were evaluated as complete upon confirmation that: Standard operating procedures (SOPs) for sampling protocols were adhered to; and Copies of all chain of custody (COC) documentation were included and found to be properly completed. It could therefore be considered whether the proportion of "useable data" generated in the data collection activities was sufficient for the purposes of the land use assessment.
Comparability The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Data sets from separate sampling episodes were required and issues of comparability were reduced through adherence to SOPs and regulator- endorsed or published guidelines and standards on each data gathering activity. In addition the data were collected by experienced samplers and NATA- accredited laboratory methodologies will be employed.

With reference to the CSM described in **Section 5**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Sampling fill and natural soils from six test bore locations located at accessible area of the site to characterise in-situ soils;
- Sampling groundwater during a single groundwater monitoring event (GME) at one monitoring well to assess for potential groundwater impacts; and
- Laboratory analysis of representative soil and groundwater samples for the identified COPC.

6.5 Assessment Criteria

The assessment criteria proposed for this project are outlined in **Table 6-3**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013	Soil within the proposed basement footprint:
	Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	Soil Health-based Investigation Levels (HIL)
		Samples to be assessed against the NEPM 2013 HIL-B thresholds for residential sites with minimal access to soils.
		Soil Health-based Screening Levels (HSL)
		NEPM (2013) HSL-D for commercial and Industrial exposure settings is it is understood the proposed development will include a single level basement.
		Asbestos HSLs:
		WADOH (2009) assessment criteria, as presented in NEPM (2013), were not adopted during this investigation. Presence / absence of asbestos (not-detected) were utilised for preliminary screening purposes.
		Ecological Investigation Levels (EILs) / Ecological Screening Levels (ESLs)
		EILs / ESLs were considered relevant for the retained deep soils of the site. EILs / ESLs only apply to the top 2 m (root zone). The derived EIL criteria presented by EI are based on the addition of site specific Added Contaminant Limit (ACL) criteria and the Ambient Background Concentration (ABC) for an old high traffic suburb. The adopted ESL criteria presented by EI are based on conservative coarse grained criteria.
		Management Limits for Petroleum Hydrocarbons
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples will also be assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.
	CRC Care (2017)	High reliability ecological criteria for Benzo(α)pyrene

Table 6-3 Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale
	High reliability ecological criteria for Benzo(α)pyrene	The CRC Care criteria has been selected for ecological assessment of Benzo(α)pyrene due to its higher reliability than the NEPM assessment level.
Groundwater	NEPM, 2013 GILs for Marine Waters	Groundwater Investigation Levels (GILs) for Marine Water NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZG 2018 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The marine criteria were considered relevant as groundwater is expected to discharge to Parramatta River, located approximately 15 m north of the site. Due to the ANZG, 2018 criteria for petroleum hydrocarbons being below the laboratory limit of reporting, the PQL for each TRH fraction was adopted as the GIL for aquatic ecosystems, as per the guidance provided in DEC (2007) Guidelines for the Assessment <i>and Management of Groundwater Contamination</i> .
	NEPM, 2013 Groundwater HSLs for Vapour Intrusion	Health-based Screening Levels (HSLs) As the proposed development will include a single level basement, HSL D was adopted.
	NEPM, 2013 GILs for Drinking purposes	Drinking Water GILs The NEPM (2013) GILs for drinking water quality were applied for exposure scenarios where receptors may be directly exposed to groundwater, either by direct contact or accidental ingestion. These were based on the Australian Drinking Water Guidelines (NHMRC, 2016).

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 8.3**.

6.6 Soil Investigation

The soil investigation works conducted at the site are described in **Table 6-4**. Test bore locations are illustrated in **Figure 2**.

Activity/Item	Details
Fieldwork	The site investigation was conducted on 11 and 18 June 2021. All hand auger boreholes were refusal in fill materials due to solid objective encountered.
Drilling Method & Investigation Depth	Test bores BH101M and BH102 were drilled using a CE180 tight access solid flight auger drill rig. EBH1 to EBH4 were drilled by a hand auger. Final bore depths ranged from 0.3 m to 9.87 mBGL. BH101M was converted to a groundwater monitoring well.

Table 6-4 Summary of Soil Investigation Methodology

Activity/Item	Details
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix G .
Field Observations (including visual and olfactory signs of potential contamination)	A summary of field observations compiled during intrusive investigations is provided on borehole logs in Appendix G . Field observations are summarised in Section 8.1.2 .
Soil Sampling	 Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) & placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars.
	 Blind field duplicates were separated from the primary samples and placed into glass jars.
	 A small amount of duplicate was collected from each soil samples and placed into zip-lock bag for Photo-ionisation Detector (PID) screening of volatile organic compounds (VOCs).
	 A small amount of duplicate was separated from all fill samples and placed into a zip-lock bag for asbestos analysis.
Decontamination Procedures	Dedicated gloves were used for the collection of each sample. Sampling equipment (i.e. trowel and shovel) was decontaminated between uses by washing in a solution of potable water and Decon 90 then rinsed with potable water.
Sample Preservation	Samples were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	Selected soil samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes, as discussed in Section 7 .
Soil Vapour Screening	Screening for potential VOCs in collected soil samples was conducted using a Photo-ionisation Detector (PID) fitted with a 10.9 eV lamp.

6.7 Groundwater Investigation

The groundwater investigation works conducted at the site are described in **Table 6-5**. Monitoring well locations are illustrated in **Figure 2**.

Table 6-5	Summary	of Groundwater	[·] Investigation	Methodology
-----------	---------	----------------	----------------------------	-------------

Activity/Item	Details
Fieldwork	Groundwater monitoring well BH101M was installed and developed on 11 June 2021, with water level gauging, well purging, field testing, and groundwater sampling conducted on 18 June 2021.

Activity/Item	Details
Well Construction	One test bore was converted to groundwater monitoring well as follows:
	BH101M: 7.0 m deep, at car park area;
	Drilled by BG Drilling using a tight access, solid-flight auger rig. Well construction details are tabulated in Table 8-2 and documented in the bore logs presented in Appendix G . The well was seated in sandstone and installed to screen across sandstone within the interval below:
	BH101M: 4.0 m to 7.0 mBGL.
Well Construction Standards	Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following:
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product if present;
	 Base and top of each well was sealed with a uPVC cap;
	 Annular, graded sand filter was used to approximately 300 mm above top of screen interval;
	 Granular bentonite was applied above annular filter to seal the screened interva
	 Drill cuttings were used to backfill the bore annulus to just below ground level; and
	 Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level.
Well Development	Well development was conducted directly following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment using a 12V, HDPE submersible bore pump (Proactive Environmental, model Super Twister). Pumping was continued until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes).
Well Gauging & Groundwater Flow Direction	Monitoring well BH101M was gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 18 June 2021 and measured SWL is shown in Table 8-2 .
Well Purging & Field Testing	GMEconducted on 18 June 2021. Measured water quality data is shown in Table 8-3 .
	A transparent HDPE bailer was used to visually assess for the presence PSH pric to the commencement of well purging. PSH was not detected in wells during the investigation.
Groundwater sampling	Once three consecutive field measurements were recorded for the purged waters to within \pm 10% for DO, \pm 3% for EC and \pm 0.05 for pH, this was considered to indicate that representative groundwater quality had been achieved and final physico-chemical measurements were recorded. Groundwater samples were there collected using a transparent, dedicated, HDPE bailer. No volatile organic odours were detected during well purging or groundwater sampling.

Activity/Item	Details
Decontamination Procedure	 Decontamination was not required as sampling equipment was stored and transported prior to use in factory-sealed, plastic sleeves, while each bailer was dedicated to each individual well.
	 All sample containers were supplied by the laboratory for the particular project and only opened once immediately prior to sampling.
	 While ice was used to keep the samples cool, all melt water was continuously drained from the Esky to prevent cross-contamination of samples.
	 The water level probe and water quality kit probes were washed in a solution of potable water and Decon 90 and then rinsed with potable water between measurements/wells.
Sample Preservation	Samples were stored in a chilled (with ice-bricks) chest, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously-identified COPC by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested blind by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.
Sample Transport	After sampling, refrigerated sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate (ILD) samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix I .

7. Data Quality Assessment

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if the data meets the objectives for the project (US EPA, 2006). Data quality assessment included an evaluation of the compliance of the field sampling, field and laboratory duplicates and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements. The findings of the data quality assessment in relation to the current investigation at the site are discussed in detail in **Appendix K**.

The QC measures generated from the field sampling and laboratory analytical program are summarised in **Table 7-1**:

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
Preliminaries	Data Quality Objectives established	Yes	See DQO/DQI (Section 6.2)
Field work	Suitable documentation of fieldwork observations including borehole logs, sample register, field notes, calibration forms	Yes	See Appendices (Appendix H)
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See sample rationale (Section 6.5)
	All media sampled and duplicates collected	Yes	Soil vapour not required
	Use of approved and appropriate sampling methods (soil, groundwater, air quality)	Yes	See methodology (Section 6.6 and 6.7)
	Selection of soil samples according to field PID readings (where VOCs are present)	Yes	See methodology (Section 6.6)
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See methodology (Section 6.6 and 6.7)
	Appropriate Rinsate, Field and Trip Blanks taken	Part	No field blanks collected (Appendix K)
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See laboratory reports (Appendix I and J)
Laboratory	Sample holding times within acceptable limits	Yes	See laboratory QA (Appendix K)
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See laboratory report (Appendix K)
	LOR/PQL low enough to meet adopted criteria	Yes	See laboratory appendi J
	Laboratory blanks	Yes	See laboratory QA/QC (Appendix K)

 Table 7-1
 Quality Control Process

Data Quality	Control	Conformance [Yes, Part, No]	Report Sections
	Laboratory duplicates	Yes	See laboratory QA/QC (Appendix K)
	Matrix spike (MS)	Yes	See laboratory QA/QC (Appendix K)
	Surrogates (or System Monitoring Compounds)	Yes	See laboratory QA/QC (Appendix K)
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as Relative Percentage Difference (RPD)	Yes	See QA Tables Appendix K
	Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements	Yes	See Appendix K.
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes.	Yes	See document control

7.1 Quality Overview

On the basis of the field and analytical data validation procedure employed, the overall quality of the analytical data produced for the site was considered to be of an acceptable standard for interpretive use and preparation of a conceptual site model (CSM).

8. Results

8.1 Soil Investigation Results

8.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of the soil investigation was a layer of silty sand and sandy clay filling overlying natural silty sand and silty clay then sandstone bedrock. The geological information obtained during the investigation is summarised in **Table 8-1** and borehole logs from these works are presented in **Appendix G**.

Layer	Description	Average Depth to top & bottom of layer (mBGL)
Hardstand	Concrete	0.0 – 0.13 (BH102)
Fill/Topsoil	Silty sand, fine to medium grained, pale brown; Sandy clay, low plasticity, brown; and Topsoil; Silty sand, medium to coarse grained, dark grey.	0.0 – 0.41 +
Natural Soil	Silty Sand, fine grained, brown; and Silty Clay, high plasticity, pale grey.	0.3- 3.11 3.0 – 9.87 +
Bedrock	Sandstone, fine grained, brown and pale grey	3.23 – 8.8 +

Table 8-1 Generalised Subsurface Profile

+ Termination depth of borehole

8.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.1 m to 6.2 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, and charcoal) and the following observations were noted:

- Fragments of metal and fibre cement sheeting were observed in fill at EBH103, Tile fragments were observed in shallow fill at EBH104. Fragments of brick and sandstone were observed in fill at each of EBH101, EBH102, EBH103 and EBH104.
- Fibrous cement sheet fragments observed on the ground surface near EBH103 and identified as asbestos containing material (ACM);
- Visual or olfactory evidence of hydrocarbon impacts were not noted at any of the borehole locations investigated during this assessment;

•

- Ssh, charcoal or slag was not observed in examined fill soils. , and
- VOC concentrations ranging from 0.1 to 0.5 parts per million (ppm) were detected in soil. The PID results are shown in the borehole logs (Appendix G).

8.2 Groundwater Investigation Results

8.2.1 Monitoring Well Construction

One groundwater monitoring well was installed onsite. Well construction details for the installed groundwater monitoring well are summarised in **Table 8-2**.

Well ID	Bore Depth	Approx.	Approx. RL	Screen Interval	Lithology
	(mBGL)	RL (GL)	(TOC)	(mBGL)	Screened
BH101M	7.0	2.31*	2.31	4.0-7.0	Sandstone

Notes:

mBGL - metres below ground level.

RL - Reduced Level – Surveyed elevation in metres relative to Australian Height Datum (m AHD).

TOC - top of well casing).

RL (TOC) - Surveyed elevation at TOC in mAHD.

8.2.2 Field Observations and Water Test Results

A single GME was conducted on 18 June 2021. On this date, standing water levels (SWLs) were measured within each well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in

Table 8-3 and copies of the completed Field Data Sheets are included in Appendix H.

Well ID	SWL (mBTOC)		Purge Volume (L)						
BH101M	1.0	2.31	1.5	1.58	7.21	206	19.1	226	None/ low

 Table 8-3
 Groundwater Field Data

Notes:

SWL – Standing Water Level as measured from TOC (top of well casing) prior to groundwater sampling. mBTOC – metres below top of well casing.

RL (TOC) - Reduced Level, elevation at TOC in metres relative to Australian Height Datum (mAHD).

Redox – Oxidation and reduction potential. Redox reported in **Table 9-2** has been adjusted relative to standard hydrogen electrode (SHE) by adding 205 mV (field probe potential) to field reading, as advised by the test equipment manufacturer). Refer to **Appendix H** for field redox readings pre-adjustment.

L - litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

µS/cm - micro Siemens per centimetre (EC units).

DO – Dissolved Oxygen in units of milligrams per litre (mg/L).

All groundwater parameters (pH, EC and DO) were tested on site.

8.3 Laboratory Analytical Results

8.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 8-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Table T1** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix I** and all laboratory analytical reports for tested soil samples are presented in **Appendix J**.

Table 8-4 S	Summary of Soil A	nalytical Re	sults	
No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Hydrocarbons				
8	Benzene	<0.1	<0.1	None
8	Toluene	<0.1	<0.1	None
8	Ethyl benzene	<1.0	<1.0	None
8	Total xylenes	<0.3	<0.3	None
8	Naphthalene	<0.1	<0.1	None
8	Total PAH	<0.8	<0.8	None
8	Carcinogenic PAHs	<0.3	<0.3	None
8	Benzo(a)pyrene	<0.1	<0.1	None
8	F1	<25	<25	None
8	F2	<25	<25	None
8	F3	<90	<90	None
8	F4	<120	<120	None
OCPs				
6	Total OCPs	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None
OPPs				
6	Total OPPs	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None
Heavy Metal				
8	Arsenic	2	4	None
8	Cadmium	<0.3	<0.3	None
8	Chromium (Total)	4.3	15	None
8	Copper	1	31	None
8	Lead	3	40	None
8	Mercury	<0.05	0.15	None
8	Nickel	0.6	3	None
8	Zinc	10	530	EBH103_0.1-0.2 (530mg/kg), (adopted EIL: 190 mg/kg).
PCBs				
6	Total PCBs	<1	<1	None
Asbestos				
6	Asbestos	No asbestos detected	Yes	Asbestos detected (presence/absence screening protocol) in EBH103_0.1-0.2 and EBH104_0.1-0.2.

Table 8-4 Summary of Soil Analytical Results

Priority Metals,

With reference to **Table T1**, all priority metals concentrations were below the corresponding health-based SILs and EILs (**Section 7-3**) with exception of the following:

 Zinc in fill sample EBH103_0.1-0.2 (530 mg/kg), exceeded adopted ecological criterion (EIL: 190 mg/kg);

PAHs

As summarised in **Table T1**, all of fill and natural soil samples tested were below the adopted health based SILs and EIL for PAHs.

TRHs including BTEX

With reference to **Table T1**, BTEX concentrations were reported below the laboratory PQL and subsequently below the adopted human health based criteria and ESLs.

OCPs, OPPs and PCBs

As illustrated in **Table T1**, the total concentrations of OCPs, OPPs and Total PCBs were reported below the laboratory PQL and the adopted human health SIL and EIL.

Asbestos

As summarised in **Table T1**, no detectable asbestos concentrations were identified in any of the tested soil samples; with the exception of the following:

 Asbestos was detected in soil (presence/absence protocol) in EBH103_0.1-0.2 and EBH104_0.1-0.2.

8.3.2 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Table T2**, which also include the adopted GILs. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix K**. Copies of the laboratory analytical reports are attached in **Appendix J**.

No. of primary samples	Analyte	Concentration (µg/L)	Sample locations exceeding investigation levels
Metals			
1	As	<1	None
1	Cd	0.2	None
1	Cr	5	BH101M (5μg/L), (GIL Marine Water: 4.4 μg/L)
1	Cu	15	BH101M (15μg/L), (GIL Marine Water: 1.3 μg/L)
1	Pb	2	None
1	Hg	<0.1	None
1	Ni	470	BH101M (470μg/L), (GIL Marine Water: 7 μg/L)
1	Zn	130	BH101M (130µg/L),

 Table 8-5
 Summary of Groundwater Analytical Results

No. of primary samples	Analyte	Concentration (µg/L)	Sample locations exceeding investigation levels
			(GIL Marine Water: 15 µg/L)
PAHs			
1	Total PAHs	<1	None
1	Benzo(α)pyrene	<0.1	None
1	Naphthalene	<0.1	None
BTEX			
1	Benzene	<0.5	None
1	Toluene	<0.5	None
1	Ethylbenzene	<0.5	None
1	o-xylene	<0.5	None
1	m/p-xylene	<1	None
TRHs			
1	F1	<50	None
1	F2	180	None
1	F3	<500	None
1	F4	<500	None
VOCs			
1	Chloroform (THM)	2.5	None
1	1,2,4- trimethylbenzene	15	None
1	1,3,5- trimethylbenzene	6.7	None
1	Other VOCs	Not detected	None
1	Total VOCs	30	None

Priority Metals

With reference to **Table T2**, concentrations in excess of GIL for Marine Water were identified for groundwater sampled from monitoring well BH101M for Chromium (5.0 μ g/L), Copper (15 μ g/L), Nickel (470 μ g/L) and Zinc (130 μ g/L).

PAHs

As summarised in Table T2, concentrations of PAHs were reported below the adopted GILs.

TRHs and BTEX

As shown in **Table T2**, tested TRHs and BTEX concentrations were below the corresponding GILs.

VOCs

As shown in **Table T2**, majority of the laboratory results for VOCs were reported below the laboratory PQL. It is noted that low concentrations of Chloroform (THM) (2.5 μ g/L), and hydrocarbons (1,2,4-trimethylbenzene (15 μ g/L), and 1,3,5-trimethylbenzene (6.7 μ g/L)), were reported in the groundwater sample.

9. Site Characterisation

9.1 Soil

Contaminant concentrations in soils were found to be below the adopted human health-based criteria and ecological criteria for site land use settings, with the exception of the following:

- Asbestos was reported in in shallow fill at location EBH103_0.1-0.2. Fragments of ACM were also observed on the ground surface at this location.
- Zinc was reported in shallow fill at location EBH103_0.1-0.2 (530 mg/kg), exceeded the of the adopted ecological criterion (EIL, 190 mg/kg);

It is noted that borehole EBH103 was located next to the residence on site, and it is likely that reported asbestos and zinc in shallow fill are due to historical weathering fall out of building materials (e.g. asbestos from cladding, zinc from metal roofing material).

9.2 Groundwater Concentration

Based on the findings from the groundwater monitoring and sampling event, concentrations of tested COPCs (PAHs, BTEX, and TRH) at monitoring well BH101M were all reported below the adopted criteria (GILs). Other analytes were also reported:

- A low concentration of chloroform (2.5 ug/L) was reported. The drinking water criteria for THMs (250 ug/L) was note exceeded.
- Petroleum hydrocarbons (1,2,4-trimethylbenzene (15 ug/L) and 1,3,5trimethylbenzene (6.7 ug/L)) were reported. The concentrations were low and the risk to human health and ecological receptors was low.

Priority metals were reported at concentrations below adopted investigation criteria at BH101M, with the exception of chromium, copper, nickel and zinc.

- The concentrations of chromium and copper are low. The concentration of zinc is elevated however zinc is ubiquitous in urban environments due to run off from zinc coated roofs, fences and other building materials. The concentrations of these metals are typical of background quality in urban settings
- The concentration of nickel in groundwater is elevated. The concentration of nickel in soil at the site is low, it is unlikely that site soil is contributing to the reported concentration of nickel in groundwater. Palm Beach has a reticulated water supply system, so there is unlikely to be beneficial use of groundwater for domestic use or other purpose. The health risk from nickel in groundwater is low.

9.3 Preliminary Waste Classification

Preliminary waste classification was conducted during this investigation. This information is for the purpose of development planning and does not constitute a formal waste classification certificate, as required by the NSW Waste Regulations 2014. A table with tabulated data can be found in **Appendix B**.

Based on the analytical results and borehole logs, a summary of resulting preliminary waste classifications and estimated volumes is provided in **Table 9-1**. It should be noted that further sampling following demolition will be required to confirm these classifications.

Table 9-1	Preliminary	Waste	Classification	Summary
	i i cini ini ai y	TT GOLG	Jussilloution	Gainnary

Material	Estimated Volume (m ³)	Estimated Tonnage (t)	Preliminary Waste Classification	Likely Disposal Options
General site fill	548	877	General Solid Waste (GSW)	Recycling Facility
Fill in the vicinity of EBH103 and EBH104	40	64	General Solid Waste (GSW) / Asbestos Waste	Landfill
Non-impacted natural materials (sand, sandstone/Shale)	3612	5779	Virgin Excavated Natural Material (VENM)	VENM Tip

Note 1 A bulk density of 1.6 t/m³ was adopted.

Note 2 Fill volume was generally calculated by area of the classification and average depth of fill.

Note 3 The area (approximate 100m²) of asbestos impacted fill was calculated based on the borehole location of EBH103 and EBH104.

The proposed development involved the construction of a single-level basement facility, natural soil volume was generally calculated by area of the site and expected excavation depth (approximately 3m BGL), then minus estimated fill volume.

9.4 Review of Conceptual Site Model

On the basis of investigation findings the CSM discussed in **Section 5** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps, as outlined in **Section 5.4** have largely been addressed; however, the following remaining data gaps need to be addressed in subsequent investigation works:

- Assessment of existing site structures for the presence of hazardous building materials;
- The lateral and vertical extent of asbestos impacted soil reported at location EBH103; and

10. Acid Sulfate Soil Assessment

In accordance with the ASSMAC (1998) Acid Sulfate Soil Manual, a total of 2 locations (BH101M and BH102) were investigated for acid sulfate soil (ASS) parameters across the site as shown in **Figure A2**, and sampling extended to a depth of 6.2m BGL. Representative soil samples from borehole locations were assigned to be analysed for the parameters recommended in Section 2 of ASSMAC (1998), to confirm the presence/absence of ASSs:

- pHf and pHfox; and
- Suspension Peroxide Oxidation Combined Acidity and Sulfate (sPOCAS).

All laboratory analyses were conducted on discrete samples using NATA-registered methods. Laboratory results are summarised in **Table 10-1**, with laboratory analytical certificates provided in **Appendix J**.

Examination of soil during borehole drilling did not report odorous soil or visual indicators of PASS

LABORATORY ANALYTICAL RESULTS

pH (field) and pH (peroxide oxidised) Testing

The pH measurements were both conducted on 1:5 soil/water extracts. For all tested samples pH readings ranged between 4.5 and 8.5 pH unites, indicating soils were slightly acidic in terms of acidity and was not actual ASS (AASS).

The peroxide testing, which involved oxidation of the soils with 30% hydrogen peroxide, showed pH readings ranging between 3.8 to 7.3 pH units and therefore indicating site soils were not found to be potential ASS (PASS).

In addition no samples exhibited a strong reaction when mixed with the peroxide solution indicating the absence of AASS or PASS.

Non-Oxidised and Oxidised pH Testing

Measured pH KCl values (non-oxidised pH testing) in samples indicated generally neutral conditions, in terms of acidity, in tested soils. Measured pH Ox values (oxidised pH testing) suggested the tested soil samples were not prone to major pH value changes after peroxide oxidisation.

sPOCAS

Suspended peroxide oxidation combined acidity and sulfate testing was conducted on 5 samples, with the peroxide oxidisable sulphur (SPOS) in three samples were found to be above 0.03% w/w. . Acid trail was detected, with total potential acidity in four samples found to be above 18 mol H+/tonne, however Measured total sulfidic acidity in all samples were found to be below 18 mol H+/tonne

To determin the presence of PASS chromium suite analysis was undertaken on 3 selected samples.

Chromium Suite Analysis

Chromium Suite Analysis was conducted on samples BH102_3.0-3.2, BH102_4.0-4.2 and BH102_5.0-5.2.

Chromium reducible sulfur (Scr) results reported below the limit of reporting (0.005%) and the action criteria (0.03%) and therefore the material not considered to be consistent with PASS.

Based on multiple lines of evidence, potential or actual ASS soils are unlikely to be present onsite.

Analysis	BH101M_0.6- 0.8	BH101M_1.6- 1.8	BH102_3.0- 3.2	BH102_4.0- 4.2	BH102_5.0- 5.2	ASSMAC (1998) Criteria ³
рН	7.1	5.1	4.8	4.5	4.7	<4.0
Peroxide pH	5.8	3.8	4.7	4.0	4.6	<3.0
pH KCl ¹	6.9	5.5	4.7	4.0	4.5	<4.0
pH Ox ²	6.3	5.0	4.6	4.5	4.5	<3.5
Total Actual Acidity (mol H⁺/tonne) - TAA	<5	40	27	130	42	NR
Total Potential Acidity (mol H ⁺ /tonne) - TPA	<5	50	37	137	45	18
Total Sulfidic Acidity (mol H ⁺ /tonne) - TSA	<5	10	10	7	<5	18
KCl extractable sulfur (% w/w) - S _{KCl}	<0.005	<0.005	<0.005	<0.005	<0.005	NR
Peroxide sulfur (% w/w) - S _P	0.005	<0.005	0.072	0.032	0.060	NR
Peroxide oxidisable sulfur (% w/w) - S _{POS}	<0.005	<0.005	0.070	0.031	0.059	0.03
Chromium Reducible Sulphur (Scr) %	-	-	<0.005	<0.005	<0.005	0.03

Table 10-1 Summary sPOCAS laboratory analytical results

Notes:

¹ for Actual Acid Sulfate Soil

² Indicative value only, for Potential Acid Sulfate Soils.

³ Action Criteria that trigger the need to prepare an ASS management plan, derived from Table 4.4, Section 2, ASSs Assessment Guidelines (ASSMAC, 1998);

N.R. = no currently available criterion

11. Conclusions

The property located at 1112-1116 Barrenjoey Road, Palm Beach NSW was the subject of a Detailed Site Investigation that was conducted in order to assess the nature and degree of onsite contamination associated with current and former uses of the property.

Based on the findings of this assessment it was concluded that:

- The site is located approximately 32km north of the Sydney central business district and is situated within the Local Government Area of Northern Beaches Council. The site is identified as Lot 21 in DP571298 and occupies a total area of approximately 1,400 m² presented in Figure 2 (Appendix A);
- The allotment known as 1112-1116 Barrenjoey Road, Palm Beach NSW appears to have been used for residential purpose until 1979. The site was redeveloped for commercial purposes after 1979;
- An application to access records held by Northern Beaches Council was still pending at the time of report writing. Should pertinent information be identified upon receipt of Council records, an addendum to the DSI will be prepared and issued;
- A search of SafeWork NSW records did not identify records pertaining to dangerous goods or UPSS for the site;
- The site was free of statutory notices issued by the EPA, and was not recorded on the List of NSW Contaminated Sites Notified to EPA;
- Soil sampling and analysis were conducted at six borehole locations. The sampling regime
 was considered to be appropriate for detailed investigation purposes and comprised a
 generally systematic (triangular grid) sampling pattern within accessible areas and with
 allowance for structural obstacles (e.g. buildings, services, and other physical obstructions
 in use by existing operating businesses);
- Soil sample results reported Asbestos in shallow fill at EBH103 and EBH104;
- Soil sample results reported zinc in shallow fill at EBH103 at a concentration that exceeded adopted Ecological-based Investigation Levels (EILs);
- The asbestos and zinc report in shallow fill is likely due to weathering fallout from the adjacent building and therefore localised;
- Chromium, copper, nickel and zinc were reported in groundwater at concentrations exceeding adopted ecological criteria (marine). Chromium, copper and zinc were reported at relatively low concentrations there were typical of background conditions of urban environments. Nickel was reported at elevated concentration; however, low concentrations in soil indicate that the site is unlikely to be contributing to the reported concentration in groundwater;
- Minor petroleum hydrocarbon (as TRH-F2) was reported in groundwater, This presents a low risk to human health and ecological receptors;
- Soils were assessed for acid sulfate soils, and were not found to be actual or potential acid sulfate soils; and

- Based on the analytical results, the following preliminary classifications were provided (with reference to the EPA (2014) Waste Classification Guidelines):
 - The fill materials in the vicinity of EBH103 and EBH104 can be classified as General Solid Waste (GSW) / Asbestos Waste and remaining fill on the site can be classified as General Solid Waste (GSW);
 - The underlying natural soils on the site can be classified as *Virgin Excavated Natural Material* (VENM).

Based on the findings of this DSI, which was conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 13**), bonded asbestos was identified which will require remediation in fill at EBH103 and EBH104.

El note that the site contamination issues can be managed through the development application process in accordance with the State Environmental Planning Policy 55 (SEPP 55) – Remediation of Land, with the requirements for further investigation, remediation, and validation incorporated into conditions of development consent.

12. Recommendations

El consider that the site can be made suitable for the proposed development, subject to the following recommendations:

- Conduct a Hazardous Materials Survey (HMS) of current site structures prior to demolition works;
- Clearance Inspection should be conducted following site building demolition and removal of all asbestos impacted fill in the vicinity of EBH103and EBH104;
- Any soil materials being removed from site (including virgin excavated natural materials or VENM) be classified for off-site disposal in accordance the EPA (2014) Waste Classification Guidelines;
- Dewatering may be required if the proposed development includes construction of a basement. This would require:
 - Preparation of a Dewatering Management Plan (DMP) and approval from local Council and WaterNSW;
 - On-going monitoring during any dewatering in accordance with the DMP; and
 - Following completion of dewatering preparation of a Dewatering Completion Report summarising the on-going monitoring works.

13. Statement of limitations

This report has been prepared for the exclusive use of Palmdev Pty Ltd, whom is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report was limited to that agreed with Palmdev Pty Ltd.

No other party should rely on this document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events (e.g. groundwater movement and or spillages of contaminating substances). These changes may occur subsequent to El's investigation.

EI's assessment is necessarily based upon the results of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the project proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for Palmdev Pty Ltd and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

References

- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, August 2018.
- Australian Standard (2005) Table E1 Minimum sampling points required for site characterisation, in Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) Geological Survey of New South Wales, Department of Mineral Resources.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW EPA, Doc. EPA2017P0269, October 2017.
- Murphy CL (1997) Acid Sulfate Soil Risk of the Prospect/Parramatta Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater ,Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- NEMP (2018) PFAS National Environmental Management Plan, The Heads of the EPAs Australia and New Zealand (HEPA), January 2018.
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- US EPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

Abbreviations

ACM	Asbestos-containing materials
ASS	Acid sulfate soils
AST	Aboveground Storage Tank
B(a)P	Benzo(a)pyrene (a PAH compound), - B(a)P TEQ Toxicity Equivalent Quotient
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CLM	Contaminated Land Management
COC	Chain of Custody
COPC	Contaminants of Potential Concern
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DA	Development Application
DP	Deposited Plan
EC	Electrical Conductivity
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
ESL	Ecological Screening Level
F1	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule
B1)	
F2 [′]	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013,
Schedule B1	
HIL	, Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
m	Metres
mAHD	Metres Australian Height Datum
mBGL	Metres Below Ground Level
mg/L	Milligrams per litre
NĂTA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PAHs	Polycyclic Aromatic Hydrocarbons
рН	Measure of the acidity or basicity of an aqueous solution
POEO	Protection of the Environment Operations
PQL	Practical Quantitation Limit (limit of detection for respective laboratory
instruments)	
QA/QC	Quality Assurance / Quality Control
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
TDS	Total dissolved solids (a measure of water salinity)
ТРН	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
UCL	Upper Confidence Limit of the mean
USEPA	United States Environmental Protection Agency
UPSS	Underground Petroleum Storage System
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A - Figures

LEGEND (Note: All locations are approximate)

- _ __ _ Site boundary
- \bigcirc Borehole location
 - Monitoring well location

Drawn:	A.N./T.M.	Pa
Approved:	EW	Detaile 1112-1116 Barre
Date:	28-06-21	Bore

almdev Pty Ltd

iled Site Investigation renjoey Road, Palm Beach NSW ehole Location Plan

Figure:

Project: E25203.E02

Appendix B - Tables

Table T1 - Summary of Soil Analytical results - within the proposed basement footprint

						Heavy	Metals	1	1	1		P#	AHs			BI	TEX	1			т	RH	1	1	Pesti	icides		Asbestos
Sample ID	Material	Date	As	Cd	Cr	Cu	РЬ	Hg	Ni	Zn	Carcinogenic PAHs (as B(ɑ)P TEQ)	Benzo(a)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	C6 - C9	C10 - C36	OCPs	OPPs	Total PCBs	Presence / absence
BH101M_0.1-0.2	Fill		3	<0.3	15	1	7	<0.05	2.3	12	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH101M_0.6-0.8	Natural	11/06/2021	3	<0.3	9.8	2.1	5	<0.05	2.4	11	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
BH102_0.15-0.25	Fill	11/00/2021	3	<0.3	12	4.1	10	<0.05	1.8	17	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
BH102_0.8-1.0	Natural		4	<0.3	4.3	1.9	3	<0.05	0.8	10	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	N.A.	N.A.
EBH101_0.1-0.2	Fill		2	<0.3	11	10	23	<0.05	0.7	45	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
EBH102_0.1-0.2	Fill	18/06/2021	2	<0.3	9.6	3.6	16	<0.05	0.6	38	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	No
EBH103_0.1-0.2	Fill		4	<0.3	14	8.4	23	0.06	1.7	530	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	Yes
EBH104_0.1-0.2	Fill		4	<0.3	9.4	31	40	0.15	3	150	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	Yes
Maximum	concentration		4	<0.3	15	31	40	0.15	3	530	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	<1	Yes
										Waste Cla	assification	Assessmen	t Criteria															•
NSW EPA 2014	CT1 (r		100	20	100		100	4	40			0.8	200		10	288	600	1,000					650	10,000	<50	250	<50	NR
General Solid Waste		(mg/L)	5	1	5		5	0.2	2			0.04	NR		0.5	14.4	30	50					NR	NR	NR	NR	NR	NR
		(mg/kg) ³	500	100	1,900		1,500	50	1050			10	200		18	518	1,080	1,800					650	10,000	<50	250	<50	NR
NSW EPA 2014		mg/kg) ²	400	80	400 ⁵		400	16	160			3.2	800		40	1,152	2,400	4,000					2,600	40,000	<50	1000	<50	NR
Restricted Solid Waste		2 (mg/L)	20	4	20		20	0.8	8			0.2	NR		2	58	120	200					NR	NR	NR	NR	NR	NR
	SCC2	(mg/kg) 4	2,000	400	7,600		6,000	200	4200			23	800		72	2,073	4,320	7,200					2,600	40,000	<50	1000	<50	NR
Special Waste / Scheduled Waste																									> 2 mg/kg - Scheduled Waste ⁵		> 2 mg/kg - PCB Waste ⁶	Where detected classification is Special Waste (Asbestos Waste)
			1	-			1	1			SIL	_S	1	500000000000000000000000000000000000000											8		88	
HIL B - I	Residential		500	150	500 Cr(VI)	30,000	1,200	120	1,200	60,000	4		400												600		1	
Source depths (0 m to <1 m. BGL)							NL	3	NL	NL	230	260	NL															
HSL D - Commercial / Industrial Source depths (1 m to <2 m. BGL)									NL	3	NL	NL	NL	370	NL								Presence / Absence					
Soil texture classification – Sand ⁷ Source depths (2m to <4 m. BGL)										NL	3	NL	NL	NL	630	NL												
	0.0				9			rce depths (4	,					NL	3	NL	NL	NL	NL	NL			1			1		1
	- Residential 89		100		205	90	1260		35	190				170	50	85	70	105	180	120	300	2800			180			
CRC Care - High Reliability Eco												33							-									
Management Limits – Residentia Coarse grain	al, parkland and public open s led soil texture ¹	space																	700	1000	2500	10000						

Notes:

All results are recorded in mg/kg (unless otherwise stated)

Waste Classification Criteria met

Highlighted values indicates concentration exceeds Human Health Based Soil Criteria (HIL B / HSL D/ Management Limits)

Highlighted values indicates concentration exceeds $\mathsf{EIL}\square$

Highlighted indicates criteria exceeded

HIL B HSL D N.A. NL 1 2 3 4 5 6 8 9 F1 F2

F3

F4

NEPC 2013 'HIL B' - Health based Residential with minimal garden/accessible soil, also includes dwellings with fully and permanenetly paved yard space such as high-rise buildings and apartments. NEPC 2013 'HSL D' Health Based Screening Levels applicable for vapour intrusion values applicable for Commercial/Industrial settings.

'Not Analysed' i.e. the sample was not analysed.

'Not Limiting' - The soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical.

NSW EPA 2014 CT1 General Solid Waste Thresholds (without leachate test), in Waste Classification Guidelines, Table 1

NSW EPA 2014 CT2 Maximum values for Leachable concentration and specific contaminant concentration for Restricted Solid Waste Thresholds, Waste Classification Guidelines Table 1

NSW EPA 2014 TCLP1/SCC1 General Solid Waste Thresholds (leachable concentration and total concentration when used together), in Waste Classification Guidelines Table 2

NSW EPA 2014 TCLP2/SCC2 Restricted Solid Waste Thresholds (leachable concentration and total concentration when used together), in Waste Classification Guidelines Table 2

NSW EPA Scheduled Chemical Wastes Chemical Control Order 2004. Section 4.14

NSW EPA Polychlorinated Biphenyl (PCB) Chemical Control Order 1997. Where PCBs are reported at concentrations >2 mg/kg and <50 mg/kg, material is non-scheduled PCB waste. Where PCBs are reported at concentrations >50 mg/kg, material is scheduled PCB waste. Coarse Grained soil (Sand) values were applied.

Fill was found to be sandy material. Therefore soil values for the sand was applied (coarse grained).

As no physiochemical properties were analysed the most conservative values were adopted for EILs.

To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

To obtain F2 subtract Naphthalene from the >C10-C16 fraction.

(>C16-C34)

(>C34-C40)

Table T2 – Summary of Groundwater Investigation Results

					Heavy	Metals					PAHs				VOCs				BT	ΈX			Т	RHs	
Sample Identification	Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(ɑ)pyrene	Naphthalene	Chloroform (THM)	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	Other VOCs	Total VOC	Benzene	Toluene	Ethylbenzene	xylene	F1	F2	F3	F4
BH101M	18/06/2021	<1	0.2	5	15	2	<0.0001	470	130	<1	<0.1	<0.1	2.5	15	6.7	<lor< td=""><td>30</td><td><0.5</td><td><0.5</td><td><0.5</td><td>2.7</td><td><50</td><td><60</td><td><500</td><td><500</td></lor<>	30	<0.5	<0.5	<0.5	2.7	<50	<60	<500	<500
S															•		•			•		•		·	
HSL D for Commercial/Industrial ⁴												NL						5000	NL	NL	NL	6000	NL		
GIL Marine	Water ³		0.7	4.4(Cr IV)	1.3	4.4	0.1 ²	7	15 ¹			50 ¹						500 ¹	180 ⁶	5 ⁶		50 ⁵	60 ⁵	500 ⁵	500 ⁵
Drinking Water ⁷		1000	200	5000	200000	1000	100	2000					300					100	80000	30000	60000				

Notes:

All values are $\mu g/L$ unless stated otherwise

NL = Not Limiting

NA = 'Not Analysed' i.e. the sample was not analysed.

LOR Limit of Reporting

F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

F2

To obtain F2 subtract naphthalene from the >C10-C16 fraction.

F3 (>C16-C34)

F4 (>C34-C40)

1 = Figure may not protect key species from chronic toxicity, refer to ANZG 2018 for further guidance

2 = Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZG 2018 for further guidance

3 = NEPM (2013) Groundwater Investigation Levels for marine water quality, based on ANZG 2018.

4 = NEPM (2013) Table 1A(4) Groundwater HSL D for vapour intrusion at the contaminant source depth ranges in sand 2m to <4m, as a conservative approach.

5 = In lack of a criteria the laboratory PQL has been used (DEC, 2007).

6 = Low reliability toxicity data, refer to ANZG 2018

7 = Drinking Water value has been used multiplied by a factor of 100 to address the secondary contact recreation (NHMRC, 2016).

Highlighted Indicates concentration value exceeding the Groundwater Investigation Level for Marine Water Highlighted indicates criteria exceeded

Appendix C - Groundwater Bore Search

Scale = 1 : 1693

Appendix D - Site Photographs

Photograph 1: View of timber house and bamboo bush facing south (18/06/2021).

Photograph 2: Location of EBH104 (lawn area for the house), facing northwest (18/06/2021).

Photograph 3: Concrete stair and walkway, facing west (18/06/2021).

Photograph 4: Timber house on site, facing east (18/06/2021).

Photograph 5: Brick retaining wall at carpark area, facing northeast (18/06/2021).

Photograph 6: Carpark at rear of the shops, facing northeast (18/06/2021).

Photograph 7: Dense bush at eastern portion of the site, facing south (18/06/2021).

Photograph 8: Fibro-cement piece on the surface near EBH103 (18/06/2021).

Photograph 9: View of roof of the shops, facing west (18/06/2021).

Appendix E - Historical Property Titles Search

Cadastral Records Enquiry Report : Lot 21 DP 571298

Locality : PALM BEACH LGA : NORTHERN BEACHES Parish : NARRABEEN

County : CUMBERLAND

Report Generated 9:48:56 PM, 1 July, 2021 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Page 1 of 4

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

, 17	V.C.N.	Blight,	Government	Printer

					FIRST	SCHEDULE (cont	tinued)	·			,17 V.C.N. Blig	ht, Government Printer	
			REGISTERED PRO	PRICTOR			cinucu)	1	INSTRUMENT				
			REGISTERED FRO	FRIETOR				NATURE	NUMBER	DATE	ENTERED	Signature of Registrar-General][.63/ke.
êrter T	My Lim				0.0			Transfer	L63166	12 3.10 196	9 R.H. 11. 1969		R-4=
1977 - 1977 - 1986 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 -	99 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2	New	de-d-is cancelled -Certificates-of	Title-bave	issued ~	19-8-1974 for loty in		· · · · · · · · · · · · · · · · · · ·		n	·····	· · · · · · · · · · · · · · · · · · ·	M92650
с. 		.De	postes Plan	No.57(29)	as-fol	lows:			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			W885932
		Lota	- <u>2-1</u> V	ndatson	15	Refined in 1/2		· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••		••••••	Pig	DPS 112
				TRAR GENER.		Y			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		11 et	
							· · · · · · · · · · · · · · · · · · ·			* makes to the state of the sta	• • • • • • • • • • • • • • • • • • •		
		······································			SECOND	SCHEDULE (cou	ntinued)					· · · · · · · · · · · · · · · · · · ·	-
NATÜRE	INSTRUMENT NUMBER	DATE		PAR	TICULARS			ENTERED	Signature of Registrar-General		CANCELLATION		
									Kegistrar-Géneral		CANCELEATION		1
Ngage	1-631643	30 10. 1969	to Elavio	. Leaner		trax of No	nt.		Registrar-General				
Ntgage	· · · · · · · · · · · · · · · · · · ·	30-10.1969	its Elwyn Nariabeen,	, Leaner Retriel		<u> </u>	xtt Z	<u>4- 11 1969</u>	Haula Cont	Diocharge		Joubeters .	
Ngage	4-6316443	30 10. 1969 	to Elwyn Nariabeen, to Edna cust Cur	Leaning Retried		<u> </u>	Pontt.			Docharge	m986207	Janko terr Janko terr	
rlgage	· · · · · · · · · · · · · · · · · · ·	30 10. 1969 2 11. 1972	te-Edna	Leaner Return Jean P		<u> </u>	Pontt.	4 11 1969	Andateon	0	m986207	Jaule terr Jaule terr	
rtgage	· · · · · · · · · · · · · · · · · · ·	30-10-1469 	te-Edna	Leaner Return Sean S		<u> </u>	Pontt.	4 11 1969	Andateon	0	m986207	Jando tarr Jando tarr	
tgage	· · · · · · · · · · · · · · · · · · ·	30 10 1919 → 11 172-	te-Edna	Learner Retuel Sear S		<u> </u>	Pontt.	4 11 1969	Andateon	0	m986207	Joulotters Joulotters	
rlgage	· · · · · · · · · · · · · · · · · · ·	30 10. 1919 	te-Edna	Leamen Retred Sean P		<u> </u>	Pontt.	4 11 1969	Andateon	0	m986207	Jaulottan	
lgage	· · · · · · · · · · · · · · · · · · ·	30 10. 1989 2 11. 1772	te-Edna	Leamen Retred Jean P		<u> </u>	Pontt.	4 11 1969	Andateon	0	m986207	Junistican	
lgage	· · · · · · · · · · · · · · · · · · ·	30 10. 1989	te-Edna	Leamen Retrieb Jean f		<u> </u>	Pontt.	4 11 1969	Andateon	0	m986207	Jandetter	
tgage	M SK 2005	30 10. 989 → 11. 1772	te-Edna	Learner Retuel Sear S		<u> </u>	Pontt.	4 11 1969	Andateon	0	k 986207 N885932	Joulation	
tgege	M SK 2005	30 10. 1919	te-Edna	Learner Retuel Secon S		<u> </u>	Pontt.	4 11 1969	Andateon	Discharge	k 986207 N885932	Joulotter	

, 17	V.C.N. Blight,	Government	Printer	
------	----------------	------------	---------	--

				·		<u>19</u>	,17 V.C.N. Bligh	nt, Government Printer
		FIRST SCHEDUL	LE (continued)		INSTRUMENT		· · · · · · · · · · · · · · · · · · ·	
	REGISTERED PROPRIETOR	<u> </u>		NATURE	NUMBER	DATE	ENTERED	Signature of Registrar-General
					· Place	1 . I		Joulation
anter PTY Limited	an a	40 0 0	ana	Warsfer	L63164	2 3.10.1969	24 11.1969	
na ann an ann an ann ann ann ann ann an	This doed is cancelled as to :	the whole	-1374	1997 - 19				
nen en la senera en la compañía de la constructiva en en entre en entre en entre en entre en entre en entre en En entre e Entre entre	This deed is carrelled as to s	-have issurd for-	ots-in			19. dae 19. de - Lande Martin, 19. de - La 19. de 19. de - 19. de 19		
and a second	Deposited Plan No.5	11298 as follows:			9.14-19. and the court of an American State			
AND THE PROPERTY OF THE ADDRESS OF THE PROPERTY OF	Lots 21 VolV2S	-1 Nol. 3 respe	MIVER	1. ann an 1.				
	1	A STAN						111
, , , , , , , , , , , , , , , , , , ,	foulat	eon Il						11/11
		-						
	REGISTBAR	e generad	· · · · · · · · · · · · · · · · · · ·	-				V 11/2
ма американ каланда жана манда ака кала са мандана са кала кала кала кала кала кала кала				e e e e e e e e e e e e e e e e e e e				and the state of the
							Carrier ?	
		SECOND SCHEDI	ULE (continued)					
INSTRUMENT NATURE NUMBER DATE		PARTICULARS			Signature of			
		11111000110		ENTERED	Signature of Registrar-General		CANCELLATION	
				ENTERED	Registrar-General			
	469 to Kluyn Lean		of North					
nortgage 1.63/643 30 10.1	969 to Elingen Lean Narrahen, Retu			24-11.1969		Diocharged	CANCELLATION	Lewatness
nortgage 1.63/643 30 10.1	» to Edna Je		2	24-11.1969 ~	Jawren	\sim	<u>11986207</u>	Jewather i
nortgage 1.63/643 30 10.1		nington Ellis ed S	2			Discharzed Discharged	M986201 C	Jewatur Jewatur
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	\sim	<u>11986207</u>	Jawartan d
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Jewhotner Jewhotner v
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	\sim	<u>11986207</u>	Jauleten 1
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Jauhrtenn Jauhrtenn
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Jandertram
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Jawartan 1
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Juistien
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Junistan
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Junistan
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Junistan
nortgage 1.63/643 30 10.1	» to Edna Je	nington Ellis ed S	2	24-11.1969 ~	Jawren	Discharged	<u>11986207</u>	Junistan

		line i serie de la composición de la co		F	IRST SCHEDULE (c	aptinued)				, 17 V.C.N. Blig	ht, Government Printer	7
			REGISTERED PROPRIET		insi sellebore (e	onunueuy	<u></u>	INSTRUMENT				
	<u>an de la transformación de</u>					<u></u>	NATURE	NUMBER	DATE	ENTERED	Signature of Registrar-General	
anter P	ry Limit	te d					The second	1/1/1/1	1 2 15 In/G		Janiation	1631
- Part - Contraction - Contrac	<u></u>				and the state of the	• • • • • • • • • • • • • • • • • • •	Thansfe	v L63164	423.10.1969	24. 11. 1967		1
		This de	eed is caneelled as to	the wh	ale	e Carro a compositiva de activita de ac				0	n i sa sina si manang	
	- V.	New	Certificates of Tit	le have issued	for lots in							M989-
-			Plan No.				······································	na alian dia dia kaominina amin'ny fisiana			····	.00503
······		•	21 Vol. 124							·····		DP 57
· · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			ورو چې د افر در دور درو د والسو و موسو کې د د	-					\$13
	······	-	hardat	00-1		··· ··· ··· ··· ··· ··· ··· ··· ···	···	· · · · · · · · · · · · · · · · · · ·		1. 	0	bud
	n - a Polosinia - a ang ny ny manana	Andread be come the construction of a state of large	0~			latat dan sa an an an an an an	**************************************	Notami e stato i se tako e se se se se se se se se	· · · · · · · · · · · · · · · · · · ·	··· • • • • • • • • • • • • • • • • • •	Vall	
			REGISTRAR	GENERAD			· · · · · · · · · · · · · · · · · · ·		and and a second se		17/8	like
·····	·····						······································	ne en el ser el entre el set des			V 11	
	······			SF	COND SCHEDULE ((continued)					Service and the service of the servi	1
NATURE		DATE				(concineer)		Cignatiura of				
				PARTICULA	RS		ENTERED	Signature of		CANCELLATION		1
				PARTICULAI	RS		ENTERED	Signature of Registrar-General		CANCELLATION	1	
nortgage		30.10.1969	to Elwin	1	<u> </u>	North	ENTERED	Registrar-General		CANCELLATION		
nortgage			the Elwyn Narrabeen y R	Le anicy to	<u> </u>	North		Andation	Durhard		Invator	
	1631643			Le anicy to	<u> </u>		ENTERED 24 <u>11.1969</u>	Andrean	Ducharged	CANCELLATION	fundation	
nortgage Ientogoge	1631643	30.10.1969	Narrabeen, R	Le anicy to	v Ellis-of			Jandation -	Discharged	m956207 C	fundation	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation			Jandater	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	fundition. Jouritan	
<u> </u>	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	fundation	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	Joulater	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	Julitan	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	Julitar	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	Junitan	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	Junter,	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	Junitan	
<u> </u>	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	Junitary	
	1631643	30.10.1969	Narrabeen, R to Edna, 5	Le anicy to	v Ellis-of		24. 1969	Joulation		m956207 C	Junitor.	

Req:R114898 /Doc:CT 10688-179 CT /Rev:13-Jan-2011 /NSW LRS /Pgs:ALL /Prt:Ul-Jul-0 Office of the Registrar-General /Src:INFOTRACK /Ref:1112-1116 Barrenjoey Road /Pgs:ALL /Prt:01-Jul-2021 21:49 TIFICATE OF TITLE 0688179 NEW SOUTH WALES OPERTY ACT, 1900, as amended. 0688 1 179Vol Appln. No.17737 C. Prior Titles Vol. 2823 Fol. 150 r Vol. 3792 Fol. 148 Edition issued 27-11-1967 Lo. AS K772774 ED 🗠 CANCE 688 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. ÷ Witness Musalter Jakao Registrar General. WARNING THIS UUCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE PLAN SHOWING LOCATION OF LAND (Page 1) Vol. σ PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON arrenjoey 5 109ft 31/2 in. Sife Ilin. 11 1314 per: 32 4 Rd 104 FE 71/2 3 Scale: 30 feet to one inch. K772774 ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lot 4 in Deposited Plan 14538 in the Shire of Warringah Parish of Narrabeen and County of Cumberland being part of Portion 18 granted to James Napper on 16-3-1816. FIRST SCHEDULE (continued overleaf) ELWIN LEAMINGTON ELLIS of North Naryategh, Rotirod. SECOND SCHEDULE (continued overleaf) 1. Reservations and conditions, if any, contained in the Crown Grant above referred to. Jata Registrar General

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

2	17	V.C.N. Blight, G		

© Office of the Registrar-

		· · · · · · · · · · · · · · · · · · ·	FIRST SCHEDULE (continued)		the second s				
			REGISTERED PROPRIETOR	NATURE		DATE	ENTERED	Signature of Registrar-General	1
								1	1.
anter 7	Ty Limit	æd.		Wangler	L63/642	3.10.1969	24.11.1969	Journation	-03/0
	·····		deed is caneelled as to here and the and the						K
	ang ang pang ang dang pang pang ang Pang ang	1 n18	deed is caneelled as to have 29-8-914 Certificates of Title have issued for lots in		er bekendent få samte av Schule aksammer i for Fragarer prova				Mades
	n an	New	Contineates of The wave issuer for tots in				· · · · · · · · · · · · · · · · · · ·		M 9762
	,	, J ., Þ.	posited Plan No.571,298 as follows:	alarmente de la construcción de la			···· • • • • • • • • • • • • • • • • •		N88593
	· 	Loty,	21 Vol. 12527 Pol. 3 respectively						21571
arya ya shara a ana a ta a ta a ta a ta a ta a ta						-		1.	719
			Jonutation (•	9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		- VAJ.	1. 4
1									Val.
			REGISTBAB GENERAL		·····	nghunga (tao ao amin'ny kaodim-paositra -		WE	1
								and the second s	1
	<u></u>	. ,	SECOND SCHEDULE (continued)			-			1
NATURE		DATE	PARTICULARS	ENTERED	Signature of Registrar-General		CANCELLATION		4
NATURE	NUTIBER				negatiar-General				1.
noitgage	1631643	30 10 1969	to Eliver Learnington Ellis of North					an an 1997. An	
- 90-			to Elington Ellis of North Narraber Matured	24. 11. 1969	Journations -	Discharged	Mas6207 C	foundation	
ontocose	DA86305	2 11 1972	To Edma Jean Monere Retty of Acril			0		1	
			Curt Curt, Wildow	22 11 1472	Jandataur d	Discharged	N885932	Jandation	
 Antonio de prés					<u> </u>				
	• • • • • • • • • • • • • • • • • • •	-				· •		ين آ محر بين محر بين ال	
<u>.</u>	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
		17, and 18 an inc		1			- and a second secon	بيحيد بمرتبعين ويرابيا المؤينا مرابه	
		and to be a set of the set of the set of the set		-			n		
		- maximum of a function of the first star of the second star				an say in the second			
en e				# 					
<u></u>									
				an a					(4) (1) (2) (4)
		· · · · · · · · · · · · · · · · · · ·					• • • • • • • • • • • • • • • • • • •		

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

Office of the Registrar-General /Src: INFOTRACK /Ref:1112-1116 Barrenjoey Road TIFICATE OF TITLE 1082200 NEW SOUTH WALES PERTY ACT, 1900, as amended. Application No. 17737 Title Vol. 6186 Fol. 141 MF Edition issued 20-6-1968 Prior L70096 CANCELLED W Ę I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. 0822 Witness Millent **Registrar** General. WARNING THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE PLAN SHOWING LOCATION OF LAND (Page 1) Vol. Wide 10 (A) 9 8 feet 7 പ Barrenjoey IBAL 6YAIN 41 B. (B) 6 10916 312in 5 4 <u>Area:</u> 16 //2 per 170096 Scale: 40 feet to one inch. ESTATE AND LAND REFERRED TO Estate in Fee Simple in Lots 5 and 6 in Deposited Plan 14538 in the Shire of Warringah, Parish of Narrabeen and County of Cumberland being part of Portion 18 granted to James Napper on 16-3-1816. FIRST SCHEDULE (continued overleaf) VALERIE DAWN WALLMAN hig wife as Joint EDWARD VICTOR KEITH WALLMAN, of North Ave Tenants. SECOND SCHEDULE (continued overleaf) 1. Reservations and conditions, if any, contained in the Crown Grant above referred to. 2. Right of Way created by Transfer No. B566414 appurtenant to Lot 6 above described affecting the piece of land 12 feet wide designated (A) in the plan hereon. Covenants created by Transfers Nos. B566414 and B687671 (affecting parts). Right of Way created by Transfer No. B687671 appurtenant to Lot 5 above described affecting the piece of land 12 feet wide designated (B) in the plan hereon. to-Alliance Acceptance -Co. Limited. Mortgage No. K798266 Entered O incharged L 460365 latoo Registrar General NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

Jul-2021 21:49

R114897

/Doc:CT

10822-001 CT

/Rev:14-Jan-2011

/NSW LRS

/Pgs:ALL

/Prt :01

			•					۵ ۲
		· · · · · ·						ft ۲
<u>a de approximitador en contra de activitador en contra de activitador en contra de activitador en contra de ac</u>		FIRST SCHEDULE (continued)				,17 V.C.N. Bligt	shity Government Printer	- [°]
		REGISTERED PROPRIETOR	—	INSTRUMENT	ίτ ΄΄΄΄		1 Chanter of	- F
	·		NATURE			ENTERED	Signature of Registrar-General	7
Quotec Limited			THIMPIER	1150	201 02 C 1400		Jendation	16080 gis
Canter Pty Limited			Fromter	- L 15-0: L 86675	and the first of the second	9-6-1970	4	Will a first
	s decd is	cancelled as to the place			The second second second	The Content of the Second		G G W T MONT A L
		leates of Title have so 293-1914	·····	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Ð	10posts	Plan No. 571298 as follows:-	· · · · · · · · · · · · · · · · · · ·		21 · · · · · · · · · · · · · · · · · · ·		an a	Harris F. F.
Lots	1 21		17 - Andrew Sterner, and and and an and a start of the st					S H
an a		Vol. 1 Fol respectively	، سر در د م د ۲۰۰ ۵۰ م					
· ···· ····.		Joulatson (1993)	· • •		en en la companya de			Manager
e na serie a conservation de la cons	1998 - 1997 - 19				н н			l' l' L'Aller
		REGISTRAE GENERAL			•		der mit ein	Property ?
ан ал ан	,							N 855931 CM
		SECOND SCHEDULE (continued)					The g	BP57129
			ENTERED	Signature of	Τ		<u></u>	19. F
NATURE NUMBER	DATE			Signature of Registrar-General		CANCELLATION	U Ang	to the second se
Line 1-60854 19	(-جهوف	the calment of the known or No 1116	1	1		l . writ	and the second s	EF-
		Darten jery Road, Polaspeach (touther	[······]	ſ		[:		nj.
	· · · · · · · · · · · · · · · · · · ·	water joy hord, to the sach Constrant	1	1				Y
	r	Poto Opto Kay Postudge of Poly Eby]	(···· · · · · · · · · · · · · · · · ·	a di marina di secolo di s		· · · · · · · · · · · · · · · · · · ·	6
		Store Keeper	~ d. 10-1963	However	Expired	hq-8-1974	Sandation !	
Mortgage Lisossi 5.		to: Hony Kong Elmance Limited	<u>]</u>]] → t %69	- and alass	Discharged	MAHIZUS	fordation	w
Martgage M941246 9-1		to tathin Marganet Blackwood of Jacobies	J		I and the second		Ĭ I	Ĩ
		wife of Henry Blackwood, Peter Pland Marine	· · · · · · · · · · · · · · · · · · ·	Kapang di			1.1.1.1.1.1	1 - 2 - 2
		ficer	Ster or Ha	fondation !	Discharged	N885931	Indations	
			p	finger and stand				Í.,
· · · · · · · · · · · · · · · · · · ·			[<u> </u> '	- 	· · · · · · · · · · · · · · · · · · ·	[1
	na may na na ang tao. Ng tao ng tao na sa		1		1	1	· · · · · · · · · · · · · · · · · · ·	1
			[]	1	$\left\{\frac{1}{2},$		f	f i statistica de la companya de la
			<u> </u>	<u>, i i i i i i i i i i i i i i i i i i i</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·		I and the second
				1	•			
				1. Anna in	1			le di ta
			<u>e sest</u>	RAD 3				
	NOTE	ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE		A second s			and a second	Carl States and Carl States and Carl

-

lo Lo

10822

Vol.

(Page 2 of 2 pages)

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

ي الم أنه

968

		i		18/1 - 18	I south	o	
	FIRST SCHEDULE (continued)	·····					
	REGISTERED PROPRIETOR		INSTRUMENT		SUTERFR	Signature of	P42847610
1		NATURE	NUMBER	DATE	ENTERED	Signature of Registrar General	
ິຕ່	_J.A. Atkinson Pty. Landed	Tranof	TENHOLIO		3-12-1979		A365666 4
	Harry Anastasopoulos and Maria Anastasopoulos in ½ share as joint tenants, Tony Anastasopoulos i	n 🖞 share, a	is tenants in o	compon by Trans	fer \$561708		
Fol.	Registered 7-7-1981					blumonia	J J J
Ľ							R5462167
2				·····			K5 171
\sim							
25	je statu ce s						55617074/19 2
Ţ							- 51/10
•							- 173/8
•							INF
Vol.						· · · · · · · · · · · · · · · · · · ·	T4417720
.		···I ·· ·	_		I	L	∫
	SECOND SCHEDULE (continued)						Treen
e .	INSTRUMENT		Signature of		· · · · · · · · · · · · · · · · · · ·		T6881210
ľ	NATURE NUMBER DATE PARTICULARS	ENTERED	Signature of Registrar General	0	ANCELLATION	1 4	- 122/12
		26-9-19 75	Jandation		R365666	to marine	20 DEC 11
	Nortgage R546217 to The Conmercial Banking Confishing of Sydney Limited	3-12-1979	10	Discharged		1 Amines	- w
	S561709 Mortrage to Finance Corporation of Australia Limited Registered (77)1981		alimania	_Discharged		blunico	T96077074
	-T441772_Lease to Reginal David Rose and Pamela Florence Rose as joint tenants of premises beir	P					W5251164.
		5					(Mithin) g
-	Registered 7-3-1983		kennen	Expired	26-9-1986		XIGUNE
	T441774 Lease to Robert Kerry Wood and Jann Elizabeth Wood as joint tenants of premises being S	hop 1, 1118					Sthen 11
	Barrenjoey-Road, Palm_Beach, together_with_an_option_of_renewalExpires_17-10-1985	Registered_					
· · .	7_7_7_1983		6 minun	Expired	23-11-1987		
Μ	T 6881220 Mortgage to National Commercial Banking Corporation of Austr	Uia					
	Limited Registered 6-9-1983		lanin				_
-	1441774 Lease Dessees New-Michael-Anthony-Davis-and-John William-Gibbons as-tenants in common in	equal	j~				
pages)	shares by Transfer T960770 Registered P1-2-1984-		Semis	Cancelled	X164403		
2 pg	W525116 ^P Lease to Reginal David Rose and Pamela Florence Rose as joint tenants of premises bein	a Shop 2					-
of	1118 Barrenjoey Road, Palm Beach. Expires 30-6-1988. Option of renewal 3 years. Register			к. К.			
je 2	26-9+1986.					<u> </u>	-
Г (Page				· · · · · ·		<u> </u>	
۲3	X164403 ⁹ Lease to George Lambatas_and_Zpi_Lambatas_as_joint_tenants_of_premises_being_Shop 1,-1148 Barrenjoey Road, Palm Beach. Expires 22+12-1987 with an option_of_renewal_for_three_years	· · · · · · · · · · · · · · · · · · ·		7			-
	Registered 23-11-1987.	j			-		-
		l			<u> </u>	<u> </u>	

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------1/7/2021 9:47PM

FOLIO: 21/571298

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 12527 FOL 3

LAND

REGISTRY

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
8/8/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
11/10/1988	X860678	LEASE	EDITION 1
16/5/1989	¥358379	LEASE	EDITION 2
25/7/1990	Z120762	LEASE	EDITION 3
23/4/1992	E405899	LEASE	EDITION 4
14/8/1992	E682014	LEASE	EDITION 5
29/4/1994	U221725	LEASE	EDITION 6
30/9/1994		AMENDMENT: LOCAL GOVT AREA	
	0501130 0501131	DISCHARGE OF MORTGAGE LEASE	EDITION 7
20/9/1996	2476419	CAVEAT	
29/11/1996	2654659	LEASE	EDITION 8
22/4/1997	2980562	WITHDRAWAL OF CAVEAT	
10/6/1997	2893201	LEASE	EDITION 9
13/8/1997	3319361	LEASE	EDITION 10
16/9/1998 16/9/1998	5268982 5268983	CHANGE OF NAME MORTGAGE	EDITION 11
16/8/2002 16/8/2002	8874474 8874475	SURRENDER OF LEASE LEASE	EDITION 12
16/4/2008	AD884743	LEASE	EDITION 13
		END OF PAG	E 1 - CONTINUED OVER

1112-1116 Barrenjoey Road

PRINTED ON 1/7/2021

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE -----1/7/2021 9:47PM

FOLIO: 21/571298

Recorded	Number	Type of Instrument	C.T. Issue
23/10/2009 23/10/2009	AE818105	SURRENDER OF LEASE DISCHARGE OF MORTGAGE	
23/10/2009		LEASE	EDITION 14
28/5/2010	AF521586	REQUEST	EDITION 15
8/11/2010	AF860274	LEASE	EDITION 16
27/2/2013	AH578652	DEPARTMENTAL DEALING	
21/8/2013	АН565852	REJECTED - APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	
16/2/2015	AI334371	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 17
13/10/2015	AJ897833	LEASE	EDITION 18
19/2/2016 19/2/2016		LEASE LEASE	EDITION 19
22/6/2021	AR165412	CAVEAT	

*** END OF SEARCH ***

1112-1116 Barrenjoey Road

PRINTED ON 1/7/2021

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright © Office of the Registrar-General 2021

Received: 01/07/2021 21:47:47

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: 21/571298

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
1/7/2021	9:47 PM	19	19/2/2016

LAND

- - - -LOT 21 IN DEPOSITED PLAN 571298 AT PALM BEACH LOCAL GOVERNMENT AREA NORTHERN BEACHES PARISH OF NARRABEEN COUNTY OF CUMBERLAND TITLE DIAGRAM DP571298

FIRST SCHEDULE _____

ANASTASIOS ANASTASOPOULOS IN 1/2 SHARE HARRY ANASTASOPOULOS MARIA ANASTASOPOULOS AS JOINT TENANTS IN 1/2 SHARE AS TENANTS IN COMMON

(CN 5268982)

SECOND SCHEDULE (8 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

- RIGHT OF WAY APPURTENANT TO THE LAND ABOVE 2 B566414 DESCRIBED AFFECTING THE SITE DESIGNATED (A) IN THE TITLE DIAGRAM
- 3 COVENANT B566414 AND B687671 AFFECTING PARTS
- B687671 RIGHT OF WAY APPURTENANT TO THE LAND ABOVE 4 DESCRIBED AFFECTING THE SITE DESIGNATED (B) IN THE TITLE DIAGRAM
- AJ897833 LEASE TO CONTEMPORARY HOTELS, BEACH HOUSES & VILLAS 5 PTY LTD OF SHOP 3, 1112 BARRENJOEY ROAD, PALM BEACH. EXPIRES: 17/9/2017. OPTION OF RENEWAL: 3 YEARS.
- AK233618 LEASE TO WAYNE LESLIE MAGRIN & KIERAN JOHN DOLLY OF 6 SHOP 1, 1112 BARRENJOEY ROAD, PALM BEACH. EXPIRES: 31/10/2018. OPTION OF RENEWAL: 3 YEARS.
- 7 AK233619 LEASE TO RIVERSIDE MARINE NSW PTY LTD OF SHOP 2, 1112 BARRENJOEY ROAD, PALM BEACH. EXPIRES: 21/11/2018. OPTION OF RENEWAL: 3 YEARS.
- AR165412 CAVEAT BY PALMDEV PTY LTD * Q

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Palm beach 1112-1116 Barrenjoey Road PRINTED ON 1/7/2021

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Appendix F - SafeWork NSW

Our Ref: D21/105497

1 July 2021

Liangshi Chen El Australia

Lance.chen@eiaustralia.com.au

Dear Liangshi,

RE SITE: 1112-1116 Barrenjoey Rd, PALM BEACH, NSW, 2108

I refer to your site search request received by SafeWork NSW requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the abovementioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email <u>licensing@safework.nsw.gov.auw</u>

Yours sincerely

May Neill

Licensing Representative, Licensing and Funds Licensing and Funds | Better Regulation Division Department of Customer Service p 13 10 50 www.customerservice.nsw.gov.au Level 3, 32 Mann Street, Gosford NSW 2250

Appendix G - Borehole Logs

			2	str		Project	Deta	iled Sit	e Inv	restigation	B	OF	REH	OLE:	EB	H101	
				SUI		cal		2-1116 r to Fig		enjoey Road, Palm Beach NSW				Sheet Date Starte	ed	1 OF 1 18/6/21	
						Job No.	E252	203		Contractor				Date Com		18/6/21	
						Client	Palm	ndev Pt	y Ltd	Drill Rig Hand Auger Inclination -90°				Logged L Checked	Y	Date: Date:	
þ								1						Checked		Buto.	_
ŀ		z		lling		Sampling			Ы	Field Material Desc							
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY		STRUC ADD OBSEF	ITIONA	L	
F	Η	-	GWNE	0		EBH101_0.1-0.2 ES			-	FILL: Silty sand, fine to medium grained, brown, with rootlets, brick, sandstone and gravels, no odour.	D	-	FILL				Γ
F	_		0		0.40	PID = 0.1 ppm	┢	FX		Hole Terminated at 0.40 m							┢
				-						Refusal on solid objects							
				1 —													-
				-													
				-													
				-													
				2													-
				-													
				_													
				3-													-
				-													
				-													
				-													
				4 —													-
				-													
-07-05				=													
1.03 2014				5													
Prj: EIA				-													
14-07-05				-													
A 1.03 20				-													
I LIB: EI				6—													-
ool - DGE				-													
In Situ Tc				-													
Lab and				-7													_
Datgel				-													
10.0.00(-													
21 12:02				-													
16/07/202				8—													-
gFile>>				-													
< <drawin< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawin<>																	
03.GPJ				_													
3 E252(9—													-
REHOLE				-													
S AU BOI				-													
B Log I				10-													
EA LIB 103 GLB Log IS AUBOREHOLE 3 E25203 GPJ <-OnawingFile>> 16/07/2021 12/02 10.0000 DatgeLubb and In Situ Tool - DGD ub: EA 1.03 2014/07-45 Pj: EIA 1.03 2014-07-05						This boreh	ole lo	og shou	uld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	es.				
EIA LI																	

eiaustralia Contamination Remediation Geotechnical

 Project
 Detailed Site Investigation

 Location
 1112-1116 Barrenjoey Road, Palm Beach NSW

Position Job No.

Client

Refer to Figure 2 E25203 Palmdev Pty Ltd

Contractor Drill Rig Hand Auger Inclination -90°
 Sheet
 1 OF 1

 Date Started
 18/6/21

 Date Complete
 18/6/21

 Logged
 LY

 Date:
 Date:

⊢																		
			Dril	ling		Sampling				Field Material Descr	iptic	n						
		PENE IRALION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS					
		-	GWNE	0	0.50	EBH102_0.1-0.2 ES PID = 0.5 ppm		\bigotimes	-	FILL: Silty sand, fine to medium grained, brown, with rootlets, brick, sandstone and gravels, no odour.	D	-	FILL					
EA LB 1.03 GLB Log IS AUBOREHOLE 3 E22203 GPJ <-07awingFile>> 16/07/2021 12:02 10.0000 Datgel Lab and In Situ Tool - DGD Lb: EIA 1.03 2014-07-05 Py: EIA 1.03 2014-07-05			GWNI		0.50					brick, saridstone and gravels, no odour.								
EIA LIB 1.03.GLB Log		10 This borehole log should be read in conjunction with El Australia's accompanying standard notes.																

eiaustralia

Project Detailed Site Investigation Location 1112-1116 Barrenjoey Road, Palm Beach NSW Position Refer to Figure 2

Job No. Client

0	
E25203	
Palmdev Pty Lt	d

Contractor Drill Rig Hand Auger Inclination -90°

Sheet	1 OF 1								
Date Started	18/6/21								
Date Completed	18/6/21								
Logged LY	Date:								
Checked	Date:								

E																				
			Dril	ling		Sampling				Field Material Desc	riptio	on								
МЕТЦОЛ		PENETRATION RESISTANCE	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS							
<	۲.		ШN	0 —		EPH102 0 1 0 2 ES		\bowtie	-	FILL: Silty sand, fine to medium grained, brown, with brick,	П		FILL							
	Ē	-	ĠW	-	0.30			$\times \times$		sandstone, scrap metal and fibro-cement piece, no odour.		-	· · · · · · · · · · · · · · · · · · ·							
EA LIB 10.3 GLB Log IS AUBOREHOLE 3 E22203 GPI <-OnswingFile>> 1607/2021 12:02 10.0000 Datgel Lab and in Situ Tool - DGD Lib: EIA 1.03 2014-07-05	- 1		GWNE W			EBH103_0.1-0.2 ES PID = 0.2 ppm														
EIA LIB 1.03.GLB Log IS AUB				10—		This borehole	e lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndar	d note	25.							

eiaustralia Contamination Remediation Geotechnical

BOREHOLE: EBH104

Project	Detailed Site Investigation
Location	1112-1116 Barrenjoey Road, Palm Beach NSW

Position Job No. Client Refer to Figure 2 E25203 Palmdev Pty Ltd Contractor Drill Rig Hand Auger Inclination -90°

			Dril	ling		Sampling	Sampling Field Material Description											
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS					
	ЧA	-	GWNE	0	0.50	EBH104_0.1-0.2 ES PID = 0.2 ppm		\square	-	Topsoil: Silty sand, medium to coarse grained, dark grey, with rootlets, brick, tile and sandstone fragments, no odour.	М	-	TOPSOIL .					
				-						Hole Terminated at 0.50 m Refusal on solid objects								
				1														
				-									-					
				2									-					
				-									-					
				3									-					
				-									-					
				4									-					
014-07-05				-									-					
· Prj: EIA 1.03 2				5 —									-					
1.03 2014-07-05				-														
DGD LIb: EIA				6									-					
d In Situ Tool -				-														
Datgel Lab and				7									-					
12:02 10.0.000				-									-					
>> 16/07/2021				8									-					
< <drawingfile:< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingfile:<>				-									-					
3 E25203.GPJ				9									-					
U BOREHOLE				-									.					
EA LIB 103 GLB Log IS AUBOREHOLE 3 E22203 GPJ < DrawingFile>> 16/07/2021 12/02 10:0000 Datgel Lab and In Situ Tool - DGD LIN: EA 1.03 2014/07-05 Phj: EIA 1.03 2014/07-05				- 10 —		This beauty	 	a ch -			de-		-					
EIA LIB 1.03.						i nis dorenoi	e 10	y snou	iu de	e read in conjunction with EI Australia's accompanying star	iuaro	i note	σъ.					

MONITORING WELL LOG

MW NO. BH101M

	roject		•		lopment		Sheet	1 of 2
	ocatio ositio				renjoey Road, Palm Beach NSW		Date Started	11/06/2021 11/06/2021
	ositio ob No		Refer to E25203.		۷		Date Completed Logged By KX	Date 11/06/2021
	lient		Palmdev		d		Reviewed By SR	Date 14/07/2021
	Drillin	g Cont)rilling Surface RL ≈2.31 m AH	D		
	Drill R			CE18				
METHOD	WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	PIEZOMETER C ID Type Stick Up & RL BH101M Standpipe	ONSTRUCTION DETA Tip Depth & RL Install 7.00 m -4.69 m	AILS ation Date Static Water Level
		-0-			FILL: Sandy CLAY; low plasticity, dark brown.	M 101 M	Gatic Cove	er
			2-		Silty SAND; fine grained, brown.			
2017-09-26 AD/T	GWNE	1-					Grout	nm Casing
2.00.1		3-] -					
1 Prj: ElA			-1	· · · · · ·	SANDSTONE; fine grained, brown-pale grey, thinly bedded.		Bentonite	
EA 2003 LB GLB LOG EA PIEZOMETER NSTALLATION LOG E25203603 BOREHOLE LOGS GPJ < <drawngfile> 1507/2021 11:14 10.0000 DageLab and in Situ Tool - DGD Lik: EA 2.003 2017-11-21 PJ: EA 2.001 2017-09-26 NMLC</drawngfile>	90-100% RETURN	4 5 6 7			— From 5.82 m, grey.	4.00 m	Sand uPVC 50 r	nm Screen
METER INSTALLATION LOG E25203.G03B		8-						
LIB.GLB Log EIA PIEZO		9-	 7 		Hole Terminated at 8.80 m Target Depth Reached.			
A 2.00.3 L		l	I		This well log should be read in conjunction with	El Australia's accompanying standard r	notes.	
Ē					- · · · · ·	, , , , , , , , , , , , , , , , , , , ,		

BOREHOLE LOG

BH NO. BH102

	Loc Pos	oject catic sitio o No ent	on n	1112- Refer E2520			m Be	each N	ISW				Sheet Date Started Date Completed Logged By KX Reviewed By SR	1 of 1 11/06/2021 11/06/2021 Date 11/06/2021 Date 14/07/2021	
		illin ill R	-	ntactor		Drilling				face RL ≈2.50 m AHD lination -90°					
	_		Dril	ling		Sampling				Field Material Des		_			_
	MEIHOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADD OBSEF	TURE AND ITIONAL RVATIONS	
ł	5			0	0.13 2.37				-	CONCRETE; 130 mm thick.	-	-	PAVEMENT		-
				-	0.50					FILL: Silty SAND; fine grained, dark brown.	м	-			
				- - 1	2.00	BH102_0.50-0.95 SPT 0.50-0.95 m 4,3,3 N=6			SM	Silty SAND; fine grained, brown.	м		RESIDUAL SOIL		-
				-		BH102_1.50-1.95 SPT 1.50-1.95 m 2,2,2 N=4						L			
			Δ	2							w				-
2017-09-26				- 3—	3.00 -0.50	BH102_3.00-3.45 SPT 3.00-3.45 m 5,9,10			СН	Silty CLAY; high plasticity, pale grey.			-		-
In Situ Tool - DGD LIb: E.M.2.00.3 2017-11-21 Pg: E.M.2.00.1 2017-09-26				- - 4		N=19									-
) Lib: EIA 2.00.3 201				-	<u>4.50</u> -2.00	BH102_4.50-4.95 SPT 4 50-4 95 m				From 4.5 m, pale grey to red-brown.	_				
	AU/I	-		5		SPT 4.50-4.95 m 8,7,10 N=17									-
EA 200.3 LB CLB Lq EA NON-CORED BOREHOLE 1 E2203.503 BOREHOLE LOGS.GPJ < <drawingfile>> 15/07/202111:13 10.0.000 DatgeLab and</drawingfile>					<u>6.00</u> -3.50	BH102_6.00-6.40				From 6.0 m, pale grey.	_				-
2021 11:10				-		SPT 6.00-6.40 m 2,10,20/100mm HB					м				
le>> 15/07/.				-							(<pl< td=""><td>_) VSt</td><td></td><td></td><td></td></pl<>	_) VSt			
C DrawingFil				7—											-
GS.GPJ <-				-											
EHOLE LC				-											
3.G03 BOR				8—											-
E 1 E2520:				-											
BORE HOL.				-											
N-CORED				9											-
Log EIA NC				-											
3 LIB.GLB 1	+	-			9.87			<u>p</u>		Hole Terminated at 9.87 m T/C Bit Refusal.					-
EIA 2.00.3				10 —		This boreho	le lo	bg sho	uld b	e read in conjunction with EI Australia's accompanying s	tanda	ard no	otes.		

Appendix H - Field Data Sheets

Site Address: [[[2-[[]6 Gaven; oeg Pood, Point Bauch Job Number: 62,52,3] Client: {alingfeu Field Staff: [] Well Location: Round No: [] MEDIUM CIGroundwater Surface Water Stormwater Other: SAMPLING POINT INFO Well Installation Date: []/6/2.[] Nell Depth (mBTOC): 7,0 Previous Sampling Date: Previous SWL (mBTOC): 4,0-7.0 Previous Swnpling Date: Previous SWL (mBTOC): PID READINGS PID Headspace (ppm): PID Background (ppm): PID Breathing Space (ppm): PID Breathing Space (ppm): PID Breathing Space (ppm): PIASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): [,0 PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC):],5 PURGE SIGNER SI	WATER	SAMPLING FI	ELD SHEET			eiaustralia								
Client: Clincter Date: If Clincter Field Staff: Sampling Location ID BH of M Well Location: Round No: Round No: MEDIUM Clicoundwater Dstrace Water Dstormwater Other: SAMPLING POINT INFO Stick up / down (m): -0.00 (+ above ground - below grouthing the state of the s	Site Address: [[[2-[[[6	tamenioeg	Road, Pal	m Beach	Job Num	ber: F25203								
Field Staff: (Y Sampling Location ID SH of M Well Location: Round No: Round No: Round No: MEDIUM Cloroundwater Distrace Water Stormwater Other: SAMPLING POINT INFO Well Installation Date: [1////////////////////////////////////					Date:	18/6/21								
Well Location: Round No: Round No: Round No: MEDIUM ClGroundwater Surface Water Stormwater Other: SAMPLING POINT INFO Stick up / down (m): -0.0 (* above ground - below ground -					Sampling	Location ID BHOIM								
MEDIUM CGroundwater Surface Water Stormwater Other: SAMPLING POINT INFO Well Installation Date: [1/b/2] Stick up / down (m): -0.00 (+ above ground - below grout) Initial Well Depth (mBTOC): 7.0 Screen Interval (mBTOC): 4.0-7.0 Previous Sampling Date: Previous SWL (mBTOC): 4.0-7.0 PiD READINGS PID Headspace (ppm): PID Background (ppm): PID Breathing Space (ppm): PID Background (ppm): PID Background (ppm): PID Breathing Space (ppm): PID Background (ppm): PID Background (ppm): PID HeadSpace (ppm): PID Background (ppm): PID Background (ppm): PID Breathing Space (ppm): PURGE Well Head Condition: Good SWL (mBTOC): 7.0 Well Head Condition: Good PID Background (ppm): SWL (mBTOC): [.0 Water Column (m): C.0 PHASE SEPARATED HYDROCARBONS (PSH) PURGE Depth to PSH (mBTOC): [.0 PSH Visually Confirmed (Bailer): PSH Thickness (mm): PURGE AND SAMPLE Sampling Method [.0] [.0] [.0] [.0] [.0] [.0] Pump Pressure Regulator (psi): [.0] <td>Well Location:</td> <td></td> <td></td> <td></td> <td></td> <td>PLIT -</td>	Well Location:					PLIT -								
SAMPLING POINT INFO Well Installation Date: [[//b/2] Initial Well Depth (mBTOC): 7.0 Previous Sampling Date: Previous SWL (mBTOC): PID READINGS Previous SWL (mBTOC): PID Headspace (ppm): PID Background (ppm): PID Breathing Space (ppm): PID Background (ppm): PURGE Well Head Condition: SWL (mBTOC): 7.0 Water Column (m): 6.0 PHASE SEPARATED HYDROCARBONS (PSH) PURGE Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PSH Thickness (mm): PURGE Sampling Method ØBladder Peristaltic Depth of Pump Inlet (mBTOC): 7.5 <td< td=""><td>MEDIUM</td><td>Groundwater</td><td>DSurface W</td><td>ater</td><td></td><td></td></td<>	MEDIUM	Groundwater	DSurface W	ater										
Well Installation Date: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		orounditotor												
Initial Well Depth (mBTOC): 7.0 Previous Sampling Date: Previous SWL (mBTOC): PID READINGS PID Headspace (ppm): PID Breathing Space (ppm): PID Background (ppm): PID Breathing Space (ppm): PID Background (ppm): PRE PURGE Vell Head Condition: Total Well Depth (mBTOC): 7.0 Well Mead Condition: 6.00 SWL (mBTOC): 7.0 PHASE SEPARATED HYDROCARBONS (PSH) Vell Head Confirmed (Bailer): PSH Thickness (mm): PSH Visually Confirmed (Bailer): PURGE AND SAMPLE Sampling Method Sampling Method Albadder Peristaltic Submersible Other: Depth of Pump Inlet (mBTOC): 3.5 Fill Timer: Pump Pressure Regulator (psi): 2.5 Discharge Timer: Weather Conditions: Find C Cycle: Cycle:		16/21			Stick up /	down (m): - (+ above ground - below ground)								
Previous Sampling Date: Previous SWL (mBTOC): PID READINGS PID Background (ppm): PID Headspace (ppm): PID Background (ppm): PID Breathing Space (ppm): PID Background (ppm): PRE PURGE Well Head Condition: Total Well Depth (mBTOC): 7.0 SWL (mBTOC): [.0 PHASE SEPARATED HYDROCARBONS (PSH) Water Column (m): Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PSH Thickness (mm): PSH Visually Confirmed (Bailer): PURGE AND SAMPLE Sampling Method Sampling Method Image: Second State St		10101												
PID READINGS PID Headspace (ppm): PID Breathing Space (ppm): PID Breathing Space (ppm): PRE PURGE Total Well Depth (mBTOC): SWL (mBTOC): Ico Water Column (m): Ico PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): PSH Thickness (mm): PURGE AND SAMPLE Sampling Method Image: Separate Regulator (psi): Image: Separate Regulator		1.0												
PID Headspace (ppm): PID Background (ppm): PID Breathing Space (ppm): PRE PURGE Total Well Depth (mBTOC): 7.0 SWL (mBTOC): [.0 PHASE SEPARATED HYDROCARBONS (PSH) Water Column (m): Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PSH Thickness (mm): PSH Visually Confirmed (Bailer): PURGE AND SAMPLE Sampling Method Sampling Method IBladder Depth of Pump Inlet (mBTOC): 3.5 Fill Timer: 5 Pump Pressure Regulator (psi): 2.5 Weather Conditions: Fine	Annual second				TTOTIOGO									
PID Breathing Space (ppm): PRE PURGE PRE PURGE Well Head Condition: Total Well Depth (mBTOC): 7.0 SWL (mBTOC): [.0 PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PSH Thickness (mm): PSH Visually Confirmed (Bailer): PURGE AND SAMPLE Sampling Method Sampling Method ØBladder Depth of Pump Inlet (mBTOC): 3.5 Fill Timer: 5 Pump Pressure Regulator (psi): 2.5 Weather Conditions: Fine					PID Back	around (nom):								
PRE PURGE Well Head Condition: Good Total Well Depth (mBTOC): 100 Water Column (m): Good SWL (mBTOC): 100 Water Column (m): 0.0 PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PSH Thickness (mm): P PURGE AND SAMPLE Sampling Method GBladder Depth of Pump Inlet (mBTOC): 3.5 Fill Timer: 5 Pump Pressure Regulator (psi): 2.5 Discharge Timer: 0 Weather Conditions: The Cycle: OHM G					TID Dack	ground (ppm).								
Total Well Depth (mBTOC): 7.0 Well Head Condition: Good SWL (mBTOC): 1.0 Water Column (m): 6.0 PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PSH Thickness (mm): PSH Visually Confirmed (Bailer): 1 PURGE AND SAMPLE Sampling Method Image: Submersible 1 Depth of Pump Inlet (mBTOC): 3.5 Fill Timer: 5 Pump Pressure Regulator (psi): 2.5 Discharge Timer: 1 Weather Conditions: Fill C Cycle: Image: Condition C														
SWL (mBTOC): Water Column (m): PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): PSH Thickness (mm): PURGE AND SAMPLE Sampling Method Depth of Pump Inlet (mBTOC): Pump Pressure Regulator (psi): 25 Pump Pressure Regulator (psi): 25 Weather Conditions: Fin C		7			Woll Hoo	d Condition:								
PHASE SEPARATED HYDROCARBONS (PSH) Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PSH Thickness (mm): PURGE AND SAMPLE Sampling Method Image: Second Sec														
Depth to PSH (mBTOC): PSH Visually Confirmed (Bailer): PSH Thickness (mm): PURGE AND SAMPLE Sampling Method Image: Submersible Image: Submersible Depth of Pump Inlet (mBTOC): Image: Submersible Image: Submersible Pump Pressure Regulator (psi): Image: Submersible Image: Submersible Weather Conditions: Image: Submersible Image: Submersible					water cc									
PSH Thickness (mm): PURGE AND SAMPLE Sampling Method Image: Sampling Method Depth of Pump Inlet (mBTOC): 3.5 Fill Timer: 5 Pump Pressure Regulator (psi): 2.5 Discharge Timer: 5 Weather Conditions: Fill C		UCARBONS (PS	п)		DOLLA	ally Confirmed (Deiler)								
PURGE AND SAMPLE Sampling Method Image: Sampling Method Depth of Pump Inlet (mBTOC): 3.5 Fill Timer: 5 Pump Pressure Regulator (psi): 2.5 Discharge Timer: 10 Weather Conditions: Fill C	An and a second s				PSH VISU	laily Confirmed (Baller):								
Sampling Method Image: Subscript of Pump Inlet (mBTOC): Image: Subscript of Pump Inlet (mBTOC): Image: Subscript of Pump Pressure Regulator (psi): Image: Subscript of Pump P	Management and a second s	/												
Depth of Pump Inlet (mBTOC): 3.5 Fill Timer: 5 Pump Pressure Regulator (psi): 2.5 Discharge Timer: 0 Weather Conditions: File Cycle: 0														
Pump Pressure Regulator (psi): 25 Discharge Timer: 0 Weather Conditions: Fine Cycle: 0		1	□Peristalti	с 🗆										
Weather Conditions: Fine Cycle: CPING						1								
	Pump Pressure Regulator (psi): 25 Discharge Timer:													
	Weather Conditions:	ne			Cycle: (
Pump on time: (0-30	Pump on time: (O200				Pump off	time: [0=30								
WATER QUALITY PARAMETERS	WATER QUALITY PARAME	TERS												
Probe Make and Model: Bump Test Date and Time:	Probe Make and Model:				Bump Te	st Date and Time:								
Time Volume (L) SWL (mbtoc) Temp (°C) EC (μS/cm) Redox (mV) DO (mg/L) pH (units) Comments (colour, turbidity, odour, sheen etc	Time					Comments (colour, turbidity, odour, sheen etc.)								
10:05 0.5 1.0 19:15 202 2015 [.54 7,19 Mean low turbidity,	10:05 0.5 1.0	19.15 20	2 2015	1.54	7.19	MARK, low turbidity,								
10-09 19:05 205 20,6 1,55 7.70		1915 20	5 20,6	1,55	7.70									
1207 1.0 1.4 19.15 204 2017 1.58 7.20 No odour, no sheen.	1207 1.0 1.4	19.15 20		650	7.20	no oclour, no shpen.								
12-08 19.15 205 20.4 1.56 7.20	(2-08		1	1.56										
10-29 15 1.8 19-14 206 21,2 1.58 7.21	10-09 15 1.8	19-14 20	6 71.2	1.58	7.11									
				1.50	100 (
Stabilisation range:	Stabilisation range:													
3 consecutive readings ±0.2°C ±3% ±20mV ±10% ±0.2		±0.2°C ±3%	% ±20mV	±10%	±0.2									
OTHER COMMENTS/OBSERVATIONS:														
OTHER COMMENTS/OBSERVATIONS:	OTHER COMMENTS/OBSE	RVATIONS:												
SIGNATURE:														
(SIGNATURE:	An												

Appendix I - Chain of Custody and Sample Receipt Forms

Sheet 1 of 2		Sam	nple M	latrix	rix Analysis														Comments						
Site: 1112 - 1116 Bit	rajoey	Road, Po	nlm	Proje	ct No:																				HM ^A Arsenic
1112-1110 D. Beach				E28.	20)				s co	S						nge)	conductivity)						#		Cadmium Chromium Copper Lead
Laboratory:	ALEXANDR	alia Maddox Stree RIA NSW 2015 0400 F: 02 859		9					HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX				Asbestos Quantification	pH / CEC (cation exchange)	EC (electrical conc	Dewatering Suite					1 PHOR	A A/ / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory	Container		Sampling	g	WATER		OTHER	P/OP	A /TH	A	X	S	Asbestos	estos	/ CEC	/ EC (vateri	sPOCAS	St	Sulphates	Chlorides	fH	TCLP HM	Cadmium Chromium
ID	ID	Туре	Da	1	Time	WA	SOIL	OTI	NH O	HMA	HM	BTEX	VOCs	Asb	Asb	Hd	H/ Hd	Dev	sPC	PFAS	Sulp	Chlo	0	TCI	Lead Mercury
3H101 M-0.1-02	-	J,2LB	11/	36/2/			X		×																Nickel Dewatering Suite
Br110/M_0.6-08	2	J, 2LB		11						¥													x		pH & EC TDS / TDU Hardness
BH101A1-1-6-1-9	53	ZLB	1																•				X		Total Cyanide Metals (Al, As, Cd, Cr,
BH102_0.15-025	4	J, 268							+																Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
BH102-0-8-1-0	5	4								+								*					X	14	ВТЕХ РАН
BH102-1.8-20	6	ZLB																					×		LABORATORY TURNAROUND
BH102-3.032	7													SGS	EHS	Sydr	ney (COC					×		Standard
137102-4-0-42	8													SE	22	206	86						x		24 Hours
BH K2.5.0-62	9																						×		48 Hours
134102-6.0-8.2	10	*																					×		72 Hours
BHARI	21	S.P.VC									+														Other
BHARBI		V .	J				1																		
Container Type: J = solvent washed, acid ri S = solvent washed, acid ri							In	vestiga	tor: I att					e colle proced		accord	lance v	vith					ste Clas	sificatio	on Table
P = natural HDPE plastic b VC = glass vial, Tefton Sep ZLB = Zip-Lock Bag	ottle						Samp Print		me (EI):				Print	ved by (2hi					S	4	H	NIT	7
120		F	YRMC		ler Stree W 2009		Sign Date	ature	m	21			Signa	aturn Mu	17	10	2:4	5							to Emmanuel
Contamination Remediation Geotechnical							u IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au							- pin	Or	rd	L	her	~						

.

source: Sydney.pdf page: 1 SSS Ref: SE220686_COC

Sheet \geq of \geq			San	nple M	latrix	atrix Analysis															Comments			
site: 1112-1116 Bc Palm Be	arrenjeg	Rood	L J	Project No:				s	Ø												-			HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	SGS Austra Unit 16, 33 ALEXANDR		eet, 5					HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	A /TRH/BTEX				Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite						1 A/ PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample ID	Laboratory ID	Container Type	Sa Date	ampling Time	WATER	SOIL	OTHER	HM A /T	HM ^A /T	HM ^A /TI	BTEX	VOCs	Asbestos	sbestos	H / CEO	H / EC)ewateri	sPOCAS	PFAS	Sulphates	Chlorides		TCLP HM A/ /	Cadmium Chromium Lead
TB	12	1 10	refor	1		X	0	1 U			+	>	4	A	đ	đ		<u>v</u>	٩.	Ñ	Ō		-	Mercury Nickel Dewatering Suite
TS	13	Lab	10/01	,		Х					Y													pH & EC TDS / TDU Hardness
																								Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
																							_	ТRH (F1, F2, F3, F4) ВТЕХ РАН
																								LABORATORY TURNAROUND
																							_	Standard
																							_	24 Hours
																		•					-	48 Hours
																								0ther
Container Type: J = solvent washed, acid rin S = solvent washed, acid ri	nsed, Tefton sea	aled glass jar le				Inv	estigat	or: I atte	est that standa	t these ard El f	sampl ield sa	es wer mpling	e colle proced	cted in dures.	accord	ance w	vith		Repor	rt with E	El Wast	e Class	sificatio	n Table
P = natural HDPE plastic b VC = glass vial, Tefton Sep	ottle						er's Nar					Receiv	ved by (SGS):				Sampl						
ZLB = Zip-Lock Bag	ralia	F	PYRMON Ph: 95	5 Miller Stree T NSW 2009 516 0722 tralia.com.au	t, J	Date		yn 761 ANT:	2(Date 15	161	21	22	:45	pa	Æ	5 [last	P	ze		
	1		COC March 201	18 FORM v.4 - SGS		Please	e-mail	laborat	ory res	sults to:	lab@	yeiau	strali	a.con	n.au					_			-	

•

CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact	Kaiyu Xu	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25203 1112-1116 Barrenjoey Road, Palm B	Samples Received	Tue 15/6/2021	
Order Number	E25203	Report Due	Tue 22/6/2021	
Samples	13	SGS Reference	SE220686	

_ SUBMISSION DETAILS

This is to confirm that 13 samples were received on Tuesday 15/6/2021. Results are expected to be ready by COB Tuesday 22/6/2021. Please quote SGS reference SE220686 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 15/6/2021 Yes 18°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 6 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

pHf&pHfox reported in SE220686A.

1 water sample has been placed on hold as no tests have been assigned for it. This sample will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E25203 1112-1116 Barrenjoey Road, Palm B

- SUMMARY	OF ANALYSIS		1	1	1		1	1	
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH101M_0.1-0.2	29	14	26	11	7	10	11	7
002	BH101M_0.6-0.8	-	-	26	-	7	10	11	7
004	BH102_0.15-0.25	29	14	26	11	7	10	11	7
005	BH102_0.8-1.0	-	-	26	-	7	10	11	7
012	ТВ	-	-	-	-	-	-	11	-
013	TS	-	-	-	-	-	-	11	-

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E25203 1112-1116 Barrenjoey Road, Palm B

- SUMMARY	OF ANALYSIS				
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water
001	BH101M_0.1-0.2	2	1	1	-
002	BH101M_0.6-0.8	-	1	1	-
004	BH102_0.15-0.25	2	1	1	-
005	BH102_0.8-1.0	-	1	1	-
011	BHQP-1	-	-	-	11
012	ТВ	-	-	1	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

Project E25203 1112-1116 Barrenjoey Road, Palm B

		5	/ed)	erable Water	er
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	Volatile Petroleum Hydrocarbons in Water
011	BHQP-1	1	7	9	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Content instant in a fragmentation of the fragmenta	_	Suite 6.01, 55 Miller Street,	VC = glass vial, Tefton Septum ZLB = Zip-Lock Bag	S = solvent washeu, acid mised years over	Container Type: J = solvent washed, acid rinsed, Tetton sealed glass jar	BHARBILLIV	BHQRI 11 S.P.VC	BM102-6-0-8-2 10 4	BH W.S. 0-E1 9	13H1W2-4-0-4- 8	B17102-3.0 J2 7	BHINT-1.8-20 6 21B	Bitio2-0-8-1-0 5 1	BH102_0.15-025 4 J.268	BH10111-16-18 3 224	BH101/M-06-08 2 J.263	34101 M-01-02 J.228 11/2/2/	ō	Sample Laboratory Container Sampling	Laboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499	1112 - 1116 Byrray Jeer Kood, Faller ESK 202	
a.com.au	W 2009 1722	ler Street,				 								 				Time WA			a mo.	
Plea	Date	Sig	Print	Sam	=	-												so				Sample Matrix
Please e-mail laboratory results to: Iab@		Signature	" Keivh	Sampler's Name (EI):	Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.													от	HER			/atrix
AN L.	1612	in l	ž	me (El):	tor: I atte									4.			*			RH/BTEX/PA P/PCB/Asbest		
lory rest	1	$\left \right\rangle$	5		est that standar		-	 					4.			× .			~	RH/BTEX/PA	Hs	_
ults to:					st that these samples were collected in standard El field sampling procedures		4						 					-		RH/BTEX		-
ab@e		3 (1)		R	amples Id samp	ļ	 											BTI				-
eiaustralia.com.au	151	Signatur N	なが	Received by (SGS):	were co ling pro							۱ 						VO Ast	ocs besto			-
alia.c	19,	2,C	6	by (SGS	ollected		Incela	SE2.2			SGS EHS									s Quantificatio	on	-
om.au	210		22		in acco 5.		. u.	SE220686A			S Alex							рН	/ CE	C (cation exch	ange)	- An
	2:4				rdance		- uncerver, 19- Junio	16A			Alexandria							рН	/ EC	(electrical cor	iductivity)	Analysis
	Span				with						Laboratory							Dev	water	ing Suite		
ono	place	2	र्चे	Samp				•			atory	_						sP(OCAS	5		
18	к. ГС	4	Jar (NY)	Sampler's Co	Report		<u> </u>	1	1	г -	1							PF.	AS			
6	- Jone	र्	مد م	mments	with El													Sulp	phate	'S		
se	the	T	X		Waste			<u>ح</u>		<u>بز</u>	X		×		<u>بر</u>	<u>۲</u>		Chl	oride:	s J pHdor	¥	4
once chur	Rafer	-1	Ę		Classific	┝			×			×							Г У ПРН	M A/ / PAH		
	Releve to		1	Ē	Report with El Waste Classification Table	-		<u> </u> ;	 	<u>}</u>		 	РАН	TRH (BTEX	Me	Harr	Dew				Arsen Cadm Chror Lead	+WH
	Ę				able		Othe	72 н	48 H	1 24 H	∀ Stan	TURNAR		CU, PD, Hg, NI, TRH (F1, F2, F3 BTEX	Total Cyanide Metals (Al, As,	pH & EC TDS / TDU Hardness	Dewatering Su	Mercury	Chromium	Nickel Zinc HM ≞ Arsenic	Arsenic Cadmium Chromium Copper Lead	Comm

CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact	Kaiyu Xu	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	Samples Received	Tue 15/6/2021	
Order Number	E25203	Report Due	Wed 16/6/2021	
Samples	13	SGS Reference	SE220686A	

SUBMISSION DETAILS

This is to confirm that 13 samples were received on Tuesday 15/6/2021. Results are expected to be ready by COB Wednesday 16/6/2021. Please quote SGS reference SE220686A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled	Yes	Complete documentation received
Sample container provider	SGS	Sample cooling method
Samples received in correct containers	Yes	Sample counts by matrix
Date documentation received	15/6/2021	Type of documentation received
Samples received in good order	Yes	Samples received without headspace
Sample temperature upon receipt	18°C	Sufficient sample for analysis
Turnaround time requested	Next Day	

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

Yes Ice Bricks 8 Soil COC Yes Yes

www.sgs.com.au

- CLIENT DETAILS -----

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Field pH for Acid Sulphate Soil
002	BH101M_0.6-0.8	4
003	BH101M_1.6-1.8	4
005	BH102_0.8-1.0	4
006	BH102_1.8-2.0	4
007	BH102_3.0-3.2	4
008	BH102_4.0-4.2	4
009	BH102_5.0-6.2	4
010	BH102_6.0-6.2	4

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25203 1112-6 Barrenjoey Rd Palm Beach

Yin, Emily (Sydney)

_	
From:	Emmanuel Woelders - ElAustralia < emmanuel.woelders@eiaustralia.com.au>
Sent:	Wednesday, 16 June 2021 10:26 AM
То:	AU.SampleReceipt.Sydney (Sydney)
Cc:	Crawford, Huong (Sydney); Harley, Paul (Sydney)
Subject:	[EXTERNAL] FW: Report Job SE220686A, your reference E25203 1112-6 Barrenjoey
	Rd Palm Beach, order number E25203
Attachments:	SE220686AF_KX_EW_LC_ANALYTICALREPORT2.PDF;
	SE220686AF_KX_EW_LC_DQO.PDF; SE220686A_COC.PDF;
	SE220686A_RECEIPT.PDF; SE220686A_F_SGS_SAMP.XLSX; ESDAT_SE220686A_F.ZIP

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Please consider the environment before printing this email.

From: AU.Environmental.Sydney@SGS.com [mailto:AU.Environmental.Sydney@SGS.cc..., Sent: Wednesday, 16 June 2021 10:03 AM

To: Emmanuel Woelders - EIAustralia; Kaiyu Xu - EIAustralia; Laboratory Results - EIAustralia; Lance Chen - EIAustralia

Subject: Report Job SE220686A, your reference E25203 1112-6 Barrenjoey Rd Palm Beach, order number E25203

Dear Kaiyu,

Please find attached the report for SGS job SE220686A, your reference E25203 1112-6 Barrenjoey Rd Palm Beach, order number E25203.

CLIENT DETAIL	s	LABORATORY DETA	MLS
Contact	Kaiyu Xu	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	Samples Received	Wed 16/6/2021
Order Number	E25203	Report Due	Wed 23/6/2021
Samples	13	SGS Reference	SE220686B

- SUBMISSION DETAILS

This is to confirm that 13 samples were received on Wednesday 16/6/2021. Results are expected to be ready by COB Wednesday 23/6/2021. Please quote SGS reference SE220686B when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 16/6/2021@10:26AM Yes 18°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 5 Soil Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

SPOCAS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

__ CLIENT DETAILS ___

Client EI AUSTRALIA

		Moisture Content	SPOCAS Net Acidity Calculations	TAA (Titratable Actual Acidity)	TPA (Titratable Peroxide Acidity)
No.	Sample ID	Mo	SР Са	Ac	Ac
002	BH101M_0.6-0.8	1	6	7	21
003	BH101M_1.6-1.8	1	6	7	21
007	BH102_3.0-3.2	1	6	7	21
008	BH102_4.0-4.2	1	6	7	21
009	BH102_5.0-6.2	1	6	7	21

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25203 1112-6 Barrenjoey Rd Palm Beach

Sheet _i of !					San	nple N	latrix	Analysis											Comments					
Site:	1	- · ·		Project No:								<u> </u>										-		HM A Arsenic
1112-1116 Barrenjoey Road, Palm Beach E2.			E25203				5 0	s					-	nge)	luctivity)	luctivity)					Envirolato		Cadmium Chromium Copper Lead	
Laboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499						HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	/ТКН/ВТЕХ				Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ng Suite					ţ	AV / PAH	Mercury Nickel Zinc H M ^g Arsenic		
Sample	Laboratory	Container		Sampling	WATER	IL.	OTHER	HM ^A /TRH/	A /TI	E v	X	s O	Asbestos	estos		/ CL/	Dewatering	sPOCAS	st	Sulphates	Chlorides	Fernand	MH d	Cadmium Chromium
ID	ID	Туре	Da		M N	SOIL	6 O	MH OC	Ĩ	HM ^A	втех	vocs	Asb	Asb	Hd	Ha	Dev	sPC	PFAS	Sulp	Chic	う	TCLP	Lead Mercury Nickel
EBH101_0.1-0.2		J, 26B	18/6	/21		X		X										• 						Dewatering Suite
(BH102_0.1-0.2	2																							pH & EC TDS / TDU Hardness
EBH 103_0.1-0.2	3																							Total Cyanide Metals (Al, As, Co, Cr,
EBH1040.1-02	4					de la		\bigvee																Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
QPI	5	Ċ,								X														PAH
QTI		Ĵ				V			:													X		LABORATORY TURNAROUND
BHIOIM	6	S,Px2,VC	2		\times				$\boldsymbol{\mathcal{X}}$			X								1	t			X Standard
GL,QD1	7				İ					X			SGS EHS Sydney COC											
GWQTI		V												SE220848										
QR1	8	S.VCY2			V					X														
QTGI	ğ	VC	1 1 2	2 1		×					X										_			Other
QTSI	10	VC	febr	-perior		X					X			-										
Container Type: J = solvent washed, acid rinsed, Tefton scaled glass jar S = solvent washed, acid rinsed glass botlle				•	Investigator: I attest that these samples were collected in accordance with standard El field sampling procedures.									Report with El Waste Classification Table										
P = natural HDPE plastic bottle VC = glass vial, Telton Septum					Sampler's Name (EI):										Sampler's Comments:									
ZLB = Zip-Lock Bag						- Lanle George Zhi								Please torward QTI and GWQTI										
Suite 6.01, 55 Miller Street, PYRMONT NSW 2009					Signature Signature								to East Ist											
eiaustralia Ph: 9516 0722 lab@eiaustralia.com.au				u	IMPORTANT:									* Please tilter plastic bottle for HMs										
es ten norse — Anexo a geze 1. Gesta anexo — COC March 2018 FORM v 4 - SGS				Please e-mail laboratory results to: lab@eiaustralia.com.au															fest.					

sense byter perparation for Sector 100

CLIENT DETAIL	S	LABORATORY DETA	ILS
Contact	Lan Ye	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-1116 Barrenjoey Road, Palm B	Samples Received	Fri 18/6/2021
Order Number	E25203	Report Due	Fri 25/6/2021
Samples	10	SGS Reference	SE220848

- SUBMISSION DETAILS

This is to confirm that 10 samples were received on Friday 18/6/2021. Results are expected to be ready by COB Friday 25/6/2021. Please quote SGS reference SE220848 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 18/6/2021 Yes 19°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes None 7 Soil, 3 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia **t** Australia **f**

alia t +61 2 8594 0400 alia f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E25203 1112-1116 Barrenjoey Road, Palm B

SUMMARY	OF ANALYSIS			1	1	1		1	
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	EBH101_0.1-0.2	29	14	26	11	7	10	11	7
002	EBH102_0.1-0.2	29	14	26	11	7	10	11	7
003	EBH103_0.1-0.2	29	14	26	11	7	10	11	7
004	EBH104_0.1-0.2	29	14	26	11	7	10	11	7
005	QD1	-	-	-	-	7	10	11	7
009	QTB1	-	-	-	-	-	-	11	-
010	QTS1	-	-	-	-	-	-	11	-

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E25203 1112-1116 Barrenjoey Road, Palm B

SUMMAR	Y OF ANALYSIS				
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water
001	EBH101_0.1-0.2	2	1	1	-
002	EBH102_0.1-0.2	2	1	1	-
003	EBH103_0.1-0.2	2	1	1	-
004	EBH104_0.1-0.2	2	1	1	-
005	QD1	-	1	1	-
006	BH101M	-	-	-	78
007	GWQD1	-	-	-	11
008	QR1	-	-	-	11
009	QTB1	-	-	1	-

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E25203 1112-1116 Barrenjoey Road, Palm B

_	SUMMARY	OF ANALYSIS -	 					
	No.	Sample ID		Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	Volatile Petroleum Hydrocarbons in Water
	006	BH101M		1	22	7	9	7
	007	GWQD1		1	-	7	9	7
	008	QR1		1	-	7	9	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . Hi GBS team,

Please book in as below- Emily is away today. Thanks.

Kind Regards,

Huong Crawford Industries & Environment Production Manager

 SGS Australia Pty Ltd

 Unit 16, 33 Maddox Street

 Alexandria NSW 2015

 Phone:
 +61 (0)2 8594 0403

 Fax:
 + 61 (0)2 8594 0499

 E-mail:
 Huong.Crawford@sgs.com

 Web:
 www.au.sgs.com

View Your Results Online: engage.sgs.com

From: Emmanuel Woelders - ElAustralia <<u>emmanuel.woelders@eiaustralia.com.au</u>
Sent: Monday, 28 June 2021 10:50 AM
To: AU.SampleReceipt.Sydney (Sydney) <<u>AU.SampleReceipt.Sydney@sgs.com</u>
Cc: Crawford, Huong (Sydney) <<u>Huong.Crawford@sgs.com</u>
; Harley, Paul (Sydney)
<<u>Paul.Harley@sgs.com</u>
; Lan Ye - ElAustralia <<u>lan.ye@eiaustralia.com.au</u>
Subject: [EXTERNAL] FW: Report Job SE220848, your reference E25203 1112-1116 Barrenjoey Road, Palm B, order number E25203

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Sample receipt,

Please test for Silica Gel Clean Up TRH and heavy metals (lab filtered) on sample BH101M on a 3 day TAT.

Regards,

Emmanuel Woelders BEnvSc, MEnvSc – Environmental Science Senior Environmental Scientist Project Manager

T 02 9516 0722 M 0475 554 312 E emmanuel.woelders@eiaustralia.com.au

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

Environmental | Geotechnical | Structural | Civil | Hazardous Materials

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

Please consider the environment before printing this email.

From: <u>AU.Samplereceipt.Sydney@SGS.com</u> [mailto:AU.Samplereceipt.Sydney@SGS.com]
Sent: Friday, 25 June 2021 3:32 PM
To: Laboratory Results - EIAustralia; Lan Ye - EIAustralia
Subject: Report Job SE220848, your reference E25203 1112-1116 Barrenjoey Road, Palm B, order number E25203

Dear Valued Customer,

Please find attached the report for SGS job SE220848, your reference E25203 1112-1116 Barrenjoey Road, Palm B, order number E25203.

How are we doing? Please take a quick online Survey

If you have any questions or concerns, please don't hesitate to contact your SGS Client Services representative.

Best Regards, SGS Alexandria Customer Service Team SGS Australia Pty Ltd Phone: +61 (0)2 8594 0400

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the Company. Finally, the recipient should check this email and any attachments for the presence of viruses. The Company accepts no liability for any damage caused by any virus transmitted by this email. All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at https://www.sgs.com/en/terms-and-conditions

CLIENT DETAIL	s	LABORATORY DETA	NLS
Contact	Lan Ye	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-1116 Barrenjoey Road, Palm B	Samples Received	Mon 28/6/2021
Order Number	E25203	Report Due	Thu 1/7/2021
Samples	10	SGS Reference	SE220848A

- SUBMISSION DETAILS

This is to confirm that 10 samples were received on Monday 28/6/2021. Results are expected to be ready by COB Thursday 1/7/2021. Please quote SGS reference SE220848A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 28/6/2021@10:50am Yes 19°C Three Days Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes None 1 Water Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

5 Australia 5 Australia

tralia t +61 2 8594 0400 tralia f +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

No.	Sample ID		Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH Silica Gel (Total Recoverable
006	BH101M		1	7	9

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25203 1112-1116 Barrenjoey Road, Palm B

Sheet <u>[</u> of <u>[</u>	<u> </u>			Sample	e Matr		ļ,		,		1		÷1		A	nalys	15	•	,							Comments		
3116: ([.12-](16 Bar	renjoey	Pocol, Palmi	Proj E25.	iect No: 203	-											ENM) Suite			-	Sulfur (CrS)			vity)					HM A Arsenic Cadmium Chromlum Copper Lead
Laboratory:	Envirolab S 12 Ashley S CHATSWOC P: 02 9910 6	ervices treet,)D NSW 2067					d filtered		HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	//BTEX				Asbestos Quantification	Excavated Natural Material (ENM) Suite	Suite	oxide		Reducible Sulfur		pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Chloride			/ PAH	Mercury Nickel Zinc HM ^g Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Sampli Date	ng Time	SOIL	WATER	0.45 µm field filtered	OTHER	IM ^A /TRF	łM^ //Rŀ	HM ^A /TRH/BTEX	втех	vocs	Asbestos	vsbestos C	xcavated ?	Dewatering	pH / pH peroxide	sPOCAS	Chromium	PFAS	H / CEC (H / EC (el	Sulphate / Chloride			TCLP HM ^B / PAH	Chromium Lead Mercury Nickel
QT(1	- 7	816/21		$\frac{\pi}{2}$				<u> </u>		X	<u> </u>	<u> </u>			ш		<u>a</u>		<u> </u>			<u></u>	S				
GWETI	1	5.982.10	2 18/6/21		<u> </u>	X					3								<u> </u>				Convic					Dewatering Suite pH & EC TDS / TDU
0-00011		1.0400	010-0	,	1						<u>/~</u>					:	1	65	MRO!	È9	En:i hatsw	124	Servic Schoy Schoy	St 7				Hardness Total Cyanide Metals (A), As, Cd, Cr,
· · · ·					1					·		·						61	GROOT	; <u>-</u> C	hatsw Ph:	<u>000 rs</u> (02) S	310 CL	 .9	. (.			Metals (A), AS, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
, , ,					1					* <u>.</u>					÷			<u> </u>	<u>ht N</u>	<u>}:</u> •	÷			H	ЦC			BTEX PAH
																÷])ate R Time F	eceivo		M		U	1	M	,	LABORATORY TURNAROUND
4					ļ	ļ												F	tecei. Iemii:	ed Eŷ Caolé	X				<u> </u>	55		_ X Standard
																			bectin	4	la ju	\			·			24 Hours
• · · · · · · · · · · · · · · · · · · ·					ļ														Securi									48 Hours
ļ					<u> </u>	ļ													「 · ·									72 Hours
۲			· · · · · · · · · · · · · · · · · · ·		<u> </u>																							Other
* Sontainer Type:	<u> </u>															:								Ļ				
X= solvent washed, acid r S= solvent washed, acid r						l Ir	ivestiga	ator: 1	attest th	at the				lected edures		rdance	e with s	tandar	d El fie	ld		Re	eport w	ith El V	Vaste C	Classific	ation T	able .
P = natural HDPE plastic t VC = glass vial, Tefton Se	ottie					Sampl Print	er's Nar	ne (El)					Receiv Print		Envirola	711			×		. ·	er's Co						
LB = Zip-Lock Bag					- 1	1		ow	le	-					$\overline{\mathbb{O}}$	M	<u>RN</u>				Ple	ose	fit	teri	last	rie b	offle	. for HMs
' <i>Me</i> e			iite 6.01, 55 M PYRMONT N	illier Stre SW 2009	et,	Signi	iture	\square	ÞÞ				Signa	ature	1	QΛ	M						I	ı				e for HMs fort.
No da			Ph: 9516	0722		Date		18	61	121			Date	ŝ		M	1	139	S									
elaust	ralla	-	b@eiaustrali			IMP									~~~~	- 	-											
			COC March 2018 FORM	v.5 - Envirolab		Please	e-mail	labora	atory res	ults to	: lab@	yeiau	Istrali	a.cor	n.au	_												

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Lan Ye

Sample Login Details	
Your reference	E25203, 1112-1116 Barrenjoey Road, Palm Beach
Envirolab Reference	272162
Date Sample Received	21/06/2021
Date Instructions Received	21/06/2021
Date Results Expected to be Reported	28/06/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Content instant in a fragmentation of the fragmenta	_	Suite 6.01, 55 Miller Street,	VC = glass vial, Tefton Septum ZLB = Zip-Lock Bag	S = solvent washeu, acid mised years over	Container Type: J = solvent washed, acid rinsed, Tetton sealed glass jar	BHARBILLIV	BHQRI 11 S.P.VC	BA162-6-0-8-2 10 4	BH W.S. 0-E1 9	13H1W2-4-0-4- 8	B17102-3.0 J2 7	BHINT-1.8-20 6 21B	Bitio2-0-8-1-0 5 1	BH102_0.15-025 4 J.248	BH10111-16-18 3 224	BH101/M-06-08 2 J.263	34101 M-01-02 J.228 11/2/2/	ō	Sample Laboratory Container Sampling	Laboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499	1112 - 1116 Byrray Jeer Kood, Fally Fryen	
a.com.au	W 2009 1722	ler Street,				 								 				Time WA			a mo.	
Plea	Date	Sig	Print	Sam	=	-												so				Sample Matrix
Please e-mail laboratory results to: Iab@		Signature	" Keivh	Sampler's Name (EI):	Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.													от	HER			/atrix
AN L.	1612	in l	ž	me (El):	tor: I atte									4.			*			RH/BTEX/PA P/PCB/Asbest		
lory rest	1	$\left \right\rangle$	5		est that standar		-	 					4.			× .			~	RH/BTEX/PA	Hs	_
ults to:					st that these samples were collected in standard El field sampling procedures		4						 					-		RH/BTEX		-
ab@e		3 (1)		R	amples Id samp	ļ	 											BTI				-
eiaustralia.com.au	151	Signatury	なが	Received by (SGS):	were co ling pro							۱ 						VO Ast	ocs besto			-
alia.c	19,	2,C	6	by (SGS	ollected		Incela	SE22			SGS EHS									s Quantificatio	on	-
om.au	210		22		in acco 5.		. u.	SE220686A			S Alex							рН	/ CE	C (cation exch	ange)	- An
	2:4				rdance		- uncerver, 19- Junio	16A			Alexandria							рН	/ EC	(electrical cor	iductivity)	Analysis
	Span				with						Laboratory							Dev	water	ing Suite		
ono	place	2	र्चे	Samp				•			atory	_						sP(OCAS	5		
8	к. ГС	4	Jar (NY)	Sampler's Co	Report		<u> </u>	1	1	г -	1							PF.	AS			
6	- Jone	र्	مد م	mments	with El													Sulp	phate	'S		
se	the	T	X		Waste			<u>ح</u>		<u>بز</u>	X		×		<u>بر</u>	<u>۲</u>		Chl	oride:	s J pHdor	¥	4
once chur	Rafer	-1	Ę		Classific	┝			×			×							Г У ПРН	M A/ / PAH		
	Releve to		1	Ē	Report with El Waste Classification Table	-		<u> </u> ;	 	<u>}</u>		 	РАН	TRH (BTEX	Me	Harr	Dew				Arsen Cadm Chror Lead	ΗM ^
	Ę				able		Othe	72 н	48 H	1 24 H	∀ Stan	TURNAR		CU, PD, Hg, NI, TRH (F1, F2, F3 BTEX	Total Cyanide Metals (Al, As,	pH & EC TDS / TDU Hardness	Dewatering Su	Mercury	Chromium	Nickel Zinc HM ≞ Arsenic	Arsenic Cadmium Chromium Copper Lead	Comm

CLIENT DETAIL	S	LABORATORY DETA	LABORATORY DETAILS				
Contact	Kaiyu Xu	Manager	Huong Crawford				
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental				
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015				
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400				
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499				
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com				
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	Samples Received	Tue 15/6/2021				
Order Number	E25203	Report Due	Wed 16/6/2021				
Samples	13	SGS Reference	SE220686A				

SUBMISSION DETAILS

This is to confirm that 13 samples were received on Tuesday 15/6/2021. Results are expected to be ready by COB Wednesday 16/6/2021. Please quote SGS reference SE220686A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled	Yes	Complete documentation received
Sample container provider	SGS	Sample cooling method
Samples received in correct containers	Yes	Sample counts by matrix
Date documentation received	15/6/2021	Type of documentation received
Samples received in good order	Yes	Samples received without headspace
Sample temperature upon receipt	18°C	Sufficient sample for analysis
Turnaround time requested	Next Day	

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

Yes Ice Bricks 8 Soil COC Yes Yes

www.sgs.com.au

- CLIENT DETAILS -----

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

No.	Sample ID	Field pH for Acid Sulphate Soil
002	BH101M_0.6-0.8	4
003	BH101M_1.6-1.8	4
005	BH102_0.8-1.0	4
006	BH102_1.8-2.0	4
007	BH102_3.0-3.2	4
008	BH102_4.0-4.2	4
009	BH102_5.0-6.2	4
010	BH102_6.0-6.2	4

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25203 1112-6 Barrenjoey Rd Palm Beach

Yin, Emily (Sydney)

_	
From:	Emmanuel Woelders - ElAustralia < emmanuel.woelders@eiaustralia.com.au>
Sent:	Wednesday, 16 June 2021 10:26 AM
То:	AU.SampleReceipt.Sydney (Sydney)
Cc:	Crawford, Huong (Sydney); Harley, Paul (Sydney)
Subject:	[EXTERNAL] FW: Report Job SE220686A, your reference E25203 1112-6 Barrenjoey
	Rd Palm Beach, order number E25203
Attachments:	SE220686AF_KX_EW_LC_ANALYTICALREPORT2.PDF;
	SE220686AF_KX_EW_LC_DQO.PDF; SE220686A_COC.PDF;
	SE220686A_RECEIPT.PDF; SE220686A_F_SGS_SAMP.XLSX; ESDAT_SE220686A_F.ZIP

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Please consider the environment before printing this email.

From: AU.Environmental.Sydney@SGS.com [mailto:AU.Environmental.Sydney@SGS.cc..., Sent: Wednesday, 16 June 2021 10:03 AM

To: Emmanuel Woelders - EIAustralia; Kaiyu Xu - EIAustralia; Laboratory Results - EIAustralia; Lance Chen - EIAustralia

Subject: Report Job SE220686A, your reference E25203 1112-6 Barrenjoey Rd Palm Beach, order number E25203

Dear Kaiyu,

Please find attached the report for SGS job SE220686A, your reference E25203 1112-6 Barrenjoey Rd Palm Beach, order number E25203.

CLIENT DETAIL	s	LABORATORY DETA	MLS
Contact	Kaiyu Xu	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	Samples Received	Wed 16/6/2021
Order Number	E25203	Report Due	Wed 23/6/2021
Samples	13	SGS Reference	SE220686B

- SUBMISSION DETAILS

This is to confirm that 13 samples were received on Wednesday 16/6/2021. Results are expected to be ready by COB Wednesday 23/6/2021. Please quote SGS reference SE220686B when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 16/6/2021@10:26AM Yes 18°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 5 Soil Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

SPOCAS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

__ CLIENT DETAILS ___

Client EI AUSTRALIA

		Moisture Content	SPOCAS Net Acidity Calculations	TAA (Titratable Actual Acidity)	TPA (Titratable Peroxide Acidity)
No.	Sample ID	Mo	SР Са	Ac	Ac
002	BH101M_0.6-0.8	1	6	7	21
003	BH101M_1.6-1.8	1	6	7	21
007	BH102_3.0-3.2	1	6	7	21
008	BH102_4.0-4.2	1	6	7	21
009	BH102_5.0-6.2	1	6	7	21

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Project E25203 1112-6 Barrenjoey Rd Palm Beach

Yin, Emily (Sydney)

From:	Emmanuel Woelders - ElAustralia <emmanuel.woelders@eiaustralia.com.au></emmanuel.woelders@eiaustralia.com.au>
Sent:	Wednesday, 23 June 2021 4:44 PM
То:	AU.SampleReceipt.Sydney (Sydney)
Cc:	Crawford, Huong (Sydney); Harley, Paul (Sydney)
Subject:	[EXTERNAL] FW: Report Job SE220686B, your reference E25203 1112-6 Barrenjoey
	Rd Palm Beach, order number E25203
Attachments:	SE220686BF_KX_EW_LC_ANALYTICALREPORT2.PDF;
	SE220686BF_KX_EW_LC_DQO.PDF; SE220686B_COC.PDF; SE220686B_RECEIPT.PDF;
	SE220686B_F_SGS_SAMP.XLSX; ESDAT_SE220686B_F.ZIP

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Sample receipt,

Please test for chromium suite analysis on samples on the following samples on a 24hr TAT.

BH102_3.0-3.2

BH102 4.0-4.2

BH102_5.0-6.2

Regards,

Emmanuel Woelders BEnvSc, MEnvSc – Environmental Science Senior Environmental Scientist Project Manager

T 02 9516 0722 M 0475 554 312 E <u>emmanuel.woelders@eiaustralia.com.au</u>

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

Practical Solutions for Built Environments

ts <u>WINNE</u> beaton

SGS EHS Alexandria Laboratory

www.eiaustralia.com.au

Environmental | Geotechnical | Structural | Civil | Hazardous Materials

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

Please consider the environment before printing this email.

From: AU.Environmental.Sydney@SGS.com [mailto:AU.Environmental.Sydney@SGS.com]
Sent: Wednesday, 23 June 2021 4:23 PM
To: Emmanuel Woelders - EIAustralia; Kaiyu Xu - EIAustralia; Laboratory Results - EIAustralia; Lance Chen - EIAustralia
Subject: Report Job SE220686B, your reference E25203 1112-6 Barrenjoey Rd Palm Beach, order number E25203

Hi Emmanuel

- CLIENT DETAIL	S	LABORATORY DETA	LABORATORY DETAILS			
Contact	Kaiyu Xu	Manager	Huong Crawford			
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental			
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015			
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400			
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499			
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com			
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	Samples Received	Wed 23/6/2021			
Order Number	E25203	Report Due	Thu 24/6/2021			
Samples	13	SGS Reference	SE220686C			

- SUBMISSION DETAILS

This is to confirm that 13 samples were received on Wednesday 23/6/2021. Results are expected to be ready by COB Thursday 24/6/2021. Please quote SGS reference SE220686C when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 23/6/2021@4:44pm Yes 18°C Next Day Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 3 Soil Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Chromium Suite subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E25203 1112-6 Barrenjoey Rd Palm Beach

SUMMAR	Y OF ANALYSIS		1	1	1	1	
No.	Sample ID	Acid Neutralising Capacity (ANC)	Chromium Reducible Sulphur (CRS)	Chromium Suite Net Acidity Calculations	HCI Extractable S, Ca and Mg in Soil ICP OES	Moisture Content	TAA (Titratable Actual Acidity)
007	BH102_3.0-3.2	4	2	7	1	1	5
008	BH102_4.0-4.2	4	2	7	1	1	5
009	BH102_5.0-6.2	4	2	7	1	1	5

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Appendix J - Laboratory Analytical Reports

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS			
Contact	Kaiyu Xu	Manager	Huong Crawford			
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental			
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015			
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400			
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499			
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com			
Project	E25203 1112-1116 Barrenjoey Road, Palm B	SGS Reference	SE220686 R0			
Order Number	E25203	Date Received	15/6/2021			
Samples	13	Date Reported	22/6/2021			

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

kinty

Ly Kim HA Organic Section Head

Dong LIANG Metals/Inorganics Team Leader

S. Ravendr.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

Kamrul AHSAN Senior Chemist

ions

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

SE220686 R0

VOC's in Soil [AN433] Tested: 17/6/2021

			BH101M_0.1-0.2	BH101M_0.6-0.8	BH102_0.15-0.25	BH102_0.8-1.0	ТВ
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.002	SE220686.004	SE220686.005	SE220686.012
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TS
			SOIL
			11/6/2021
PARAMETER	UOM	LOR	SE220686.013
Benzene	mg/kg	0.1	[103%]
Toluene	mg/kg	0.1	[98%]
Ethylbenzene	mg/kg	0.1	[96%]
m/p-xylene	mg/kg	0.2	[96%]
o-xylene	mg/kg	0.1	[96%]
Total Xylenes	mg/kg	0.3	-
Total BTEX	mg/kg	0.6	-
Naphthalene	mg/kg	0.1	-

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 17/6/2021

			BH101M_0.1-0.2	BH101M_0.6-0.8	BH102_0.15-0.25	BH102_0.8-1.0
			SOIL	SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.002	SE220686.004	SE220686.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 17/6/2021

			BH101M_0.1-0.2	BH101M_0.6-0.8	BH102_0.15-0.25	BH102_0.8-1.0
			SOIL	SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.002	SE220686.004	SE220686.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 17/6/2021

			BH101M_0.1-0.2	BH101M_0.6-0.8	BH102_0.15-0.25	BH102_0.8-1.0
			SOIL	SOIL	SOIL	SOIL
			-	-	- SOIL	- 501L
			11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.002	SE220686.004	SE220686.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8

SE220686 R0

OC Pesticides in Soil [AN420] Tested: 17/6/2021

			BH101M_0.1-0.2	BH102_0.15-0.25
			SOIL	SOIL
				-
	UOM	LOR	11/6/2021	11/6/2021
PARAMETER Hexachlorobenzene (HCB)	mg/kg	0.1	SE220686.001	SE220686.004
Alpha BHC	mg/kg	0.1	<0.1	<0.1
		0.1		<0.1
Lindane	mg/kg	0.1	<0.1	
Heptachlor	mg/kg		-	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1

OP Pesticides in Soil [AN420] Tested: 17/6/2021

			BH101M_0.1-0.2	BH102_0.15-0.25
			SOIL	SOIL
				-
			11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.004
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 17/6/2021

			BH101M_0.1-0.2	BH102_0.15-0.25
			SOIL	SOIL
			11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.004
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 18/6/2021

			BH101M_0.1-0.2	BH101M_0.6-0.8	BH102_0.15-0.25	BH102_0.8-1.0
			SOIL	SOIL	SOIL	SOIL
			- 11/6/2021	- 11/6/2021	- 11/6/2021	- 11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.002	SE220686.004	SE220686.005
Arsenic, As	mg/kg	1	3	3	3	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	15	9.8	12	4.3
Copper, Cu	mg/kg	0.5	1.0	2.1	4.1	1.9
Lead, Pb	mg/kg	1	7	5	10	3
Nickel, Ni	mg/kg	0.5	2.3	2.4	1.8	0.8
Zinc, Zn	mg/kg	2	12	11	17	10

SE220686 R0

Mercury in Soil [AN312] Tested: 18/6/2021

			BH101M_0.1-0.2	BH101M_0.6-0.8	BH102_0.15-0.25	BH102_0.8-1.0
			SOIL	SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.002	SE220686.004	SE220686.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05

SE220686 R0

Moisture Content [AN002] Tested: 18/6/2021

			BH101M_0.1-0.2	BH101M_0.6-0.8	BH102_0.15-0.25	BH102_0.8-1.0	ТВ
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.002	SE220686.004	SE220686.005	SE220686.012
% Moisture	%w/w	1	11.1	9.6	9.3	8.1	<1.0

Fibre Identification in soil [AN602] Tested: 21/6/2021

			BH101M_0.1-0.2	BH102_0.15-0.25
			SOIL	SOIL
			11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686.001	SE220686.004
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

SE220686 R0

VOCs in Water [AN433] Tested: 17/6/2021

			BHQP-1
			WATER
			- 11/6/2021
PARAMETER	UOM	LOR	SE220686.011
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 17/6/2021

			BHQP-1
			WATER
			- 11/6/2021
PARAMETER	UOM	LOR	SE220686.011
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50

SE220686 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 17/6/2021

			BHQP-1
			WATER
			-
			11/6/2021
PARAMETER	UOM	LOR	SE220686.011
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	μg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	µg/L	320	<320

SE220686 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 16/6/2021

			BHQP-1
			WATER
			- 11/6/2021
PARAMETER	UOM	LOR	SE220686.011
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	µg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	µg/L	5	<5

ANALYTICAL RESULTS

SE220686 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 16/6/2021

			BHQP-1
			WATER
			-
			11/6/2021
PARAMETER	UOM	LOR	SE220686.011
Mercury	mg/L	0.0001	<0.0001

	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
	(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

- FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	¢↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Kaiyu Xu EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-1116 Barrenjoey Road, Palm B	SGS Reference	SE220686 R0
Order Number	E25203	Date Received	15 Jun 2021
Samples	13	Date Reported	22 Jun 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES 4 items Matrix Spike OC Pesticides in Soil 1 item

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	6 Soil, 1 Water
Date documentation received	15/6/2021	Type of documentation received	COC
Samples received in good order	Yes	Samples received without headspace	Yes
Sample temperature upon receipt	18°C	Sufficient sample for analysis	Yes
Turnaround time requested	Standard		

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

Australia

www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SE220686 R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Fibre Identification in soil								ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101M_0.1-0.2	SE220686.001	LB227119	11 Jun 2021	15 Jun 2021	11 Jun 2022	21 Jun 2021	11 Jun 2022	22 Jun 2021
3H102_0.15-0.25	SE220686.004	LB227119	11 Jun 2021	15 Jun 2021	11 Jun 2022	21 Jun 2021	11 Jun 2022	22 Jun 2021
ercury (dissolved) in Wa	ater						Method: ME-(AU)-[ENV	AN311(Perth)/Al
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3HQP-1	SE220686.011	LB226817	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	17 Jun 2021
lercury in Soil							Method: I	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101M_0.1-0.2	SE220686.001	LB227036	11 Jun 2021	15 Jun 2021	09 Jul 2021	18 Jun 2021	09 Jul 2021	21 Jun 2021
3H101M_0.6-0.8	SE220686.002	LB227036	11 Jun 2021	15 Jun 2021	09 Jul 2021	18 Jun 2021	09 Jul 2021	21 Jun 2021
3H102_0.15-0.25	SE220686.004	LB227036	11 Jun 2021	15 Jun 2021	09 Jul 2021	18 Jun 2021	09 Jul 2021	21 Jun 2021
3H102_0.8-1.0	SE220686.005	LB227036	11 Jun 2021	15 Jun 2021	09 Jul 2021	18 Jun 2021	09 Jul 2021	21 Jun 2021
oisture Content							Method: I	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101M_0.1-0.2	SE220686.001	LB227010	11 Jun 2021	15 Jun 2021	25 Jun 2021	18 Jun 2021	23 Jun 2021	21 Jun 2021
	SE220686.002	LB227010	11 Jun 2021	15 Jun 2021	25 Jun 2021	18 Jun 2021	23 Jun 2021	21 Jun 2021
3H102_0.15-0.25	SE220686.004	LB227010	11 Jun 2021	15 Jun 2021	25 Jun 2021	18 Jun 2021	23 Jun 2021	21 Jun 2021
H102_0.8-1.0	SE220686.005	LB227010	11 Jun 2021	15 Jun 2021	25 Jun 2021	18 Jun 2021	23 Jun 2021	21 Jun 2021
В	SE220686.012	LB227010	11 Jun 2021	15 Jun 2021	25 Jun 2021	18 Jun 2021	23 Jun 2021	21 Jun 2021
C Pesticides in Soil							Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H101M 0.1-0.2	SE220686.001	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
H101M_0.6-0.8	SE220686.002	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
H102_0.15-0.25	SE220686.004	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
3H102_0.8-1.0	SE220686.005	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
P Pesticides in Soil							Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H101M_0.1-0.2	SE220686.001	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
H101M_0.6-0.8	SE220686.002	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
3H102_0.15-0.25	SE220686.004	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
3H102_0.8-1.0	SE220686.005	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
AH (Polynuclear Aromat	tic Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101M_0.1-0.2	SE220686.001	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
	SE220686.002	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
3H102_0.15-0.25	SE220686.004	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH102_0.8-1.0	SE220686.005	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
CBs in Soil							Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H101M_0.1-0.2	SE220686.001	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
3H101M_0.6-0.8	SE220686.002	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
3H102_0.15-0.25	SE220686.004	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
3H102_0.8-1.0	SE220686.005	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021
otal Recoverable Eleme	nts in Soil/Waste Solids/Mat	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
bampie Marite	SE220686.001	LB227063	11 Jun 2021	15 Jun 2021	08 Dec 2021	18 Jun 2021	08 Dec 2021	21 Jun 2021
	SE220686.002	LB227063	11 Jun 2021	15 Jun 2021	08 Dec 2021	18 Jun 2021	08 Dec 2021	21 Jun 2021
3H101M_0.1-0.2			11 Jun 2021	15 Jun 2021	08 Dec 2021	18 Jun 2021	08 Dec 2021	21 Jun 2021
3H101M_0.1-0.2 3H101M_0.6-0.8 3H102_0.15-0.25	SE220686.004	LB227063						
3H101M_0.1-0.2 3H101M_0.6-0.8		LB227063 LB227063	11 Jun 2021	15 Jun 2021	08 Dec 2021	18 Jun 2021	08 Dec 2021	21 Jun 2021
H101M_0.1-0.2 H101M_0.6-0.8 H102_0.15-0.25	SE220686.004 SE220686.005			15 Jun 2021	08 Dec 2021	18 Jun 2021		
H101M_0.1-0.2 H101M_0.6-0.8 H102_0.15-0.25 H102_0.8-1.0	SE220686.004 SE220686.005			15 Jun 2021 Received	08 Dec 2021 Extraction Due	18 Jun 2021 Extracted		21 Jun 2021 ME-(AU)-[ENV]A Analysed

TRH (Total Recoverable Hydrocarbons) in Soil

Sample Name Sample No. QC Ref

HOLDING TIME SUMMARY

SE220686 R0

Method: ME-(AU)-[ENV]AN433

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

TRH (Total Recoverable I	Hydrocarbons) in Soil (conti	nued)					Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.1-0.2	SE220686.001	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH101M_0.6-0.8	SE220686.002	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH102_0.15-0.25	SE220686.004	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH102_0.8-1.0	SE220686.005	LB226968	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
RH (Total Recoverable H	Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BHQP-1	SE220686.011	LB226914	11 Jun 2021	15 Jun 2021	18 Jun 2021	17 Jun 2021	27 Jul 2021	22 Jun 2021

VOC's in Soil							Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.1-0.2	SE220686.001	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH101M_0.6-0.8	SE220686.002	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH102_0.15-0.25	SE220686.004	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH102_0.8-1.0	SE220686.005	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
ТВ	SE220686.012	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
TS	SE220686.013	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
VOCs in Water							Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BHQP-1	SE220686.011	LB226964	11 Jun 2021	15 Jun 2021	18 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021

Volatile Petroleum Hydrocarbons in Soil

		00 D (
Volatile Petroleum Hydrod	carbons in Water						Method: I	ME-(AU)-[ENV]AN433
TS	SE220686.013	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
ТВ	SE220686.012	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH102_0.8-1.0	SE220686.005	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH102_0.15-0.25	SE220686.004	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH101M_0.6-0.8	SE220686.002	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
BH101M_0.1-0.2	SE220686.001	LB226972	11 Jun 2021	15 Jun 2021	25 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BHQP-1	SE220686.011	LB226964	11 Jun 2021	15 Jun 2021	18 Jun 2021	17 Jun 2021	27 Jul 2021	21 Jun 2021

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

DC Pesticides in Soil					E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	60 - 130%	90
	BH102_0.15-0.25	SE220686.004	%	60 - 130%	101
P Pesticides in Soil				Method: M	e-(au)-[env]an
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	60 - 130%	91
	BH102_0.15-0.25	SE220686.004	%	60 - 130%	94
d14-p-terphenyl (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	60 - 130%	96
	BH102_0.15-0.25	SE220686.004	%	60 - 130%	97
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	e-(au)-[env]ai
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	70 - 130%	91
	BH101M_0.6-0.8	SE220686.002	%	70 - 130%	93
	BH102_0.15-0.25	SE220686.004	%	70 - 130%	94
	BH102_0.8-1.0	SE220686.005	%	70 - 130%	93
d14-p-terphenyl (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	70 - 130%	96
	BH101M_0.6-0.8	SE220686.002	%	70 - 130%	96
	BH102_0.15-0.25	SE220686.004	%	70 - 130%	97
	BH102_0.8-1.0	SE220686.005	%	70 - 130%	95
d5-nitrobenzene (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	70 - 130%	98
	BH101M_0.6-0.8	SE220686.002	%	70 - 130%	108
	BH102_0.15-0.25	SE220686.004	%	70 - 130%	105
	BH102_0.8-1.0	SE220686.005	%	70 - 130%	100
CBs in Soll					e-(au)-[env]ai
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	60 - 130%	90
	BH102_0.15-0.25	SE220686.004	%	60 - 130%	101
/OC's in Soil				Method: M	E-(AU)-[ENV]AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	60 - 130%	98
	BH101M_0.6-0.8	SE220686.002	%	60 - 130%	100
	BH102_0.15-0.25	SE220686.004	%	60 - 130%	101
	BH102_0.8-1.0	SE220686.005	%	60 - 130%	99
	ТВ	SE220686.012	%	60 - 130%	105
	TS	SE220686.013			
d4-1,2-dichloroethane (Surrogate)			%	60 - 130%	95
	BH101M_0.1-0.2	SE220686.001	%	60 - 130% 60 - 130%	95 106
	BH101M_0.1-0.2 BH101M_0.6-0.8	SE220686.001 SE220686.002			
			%	60 - 130%	106
	BH101M_0.6-0.8	SE220686.002	%	60 - 130% 60 - 130%	106 107
	BH101M_0.6-0.8 BH102_0.15-0.25	SE220686.002 SE220686.004	% % %	60 - 130% 60 - 130% 60 - 130%	106 107 110
	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0	SE220686.002 SE220686.004 SE220686.005	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	106 107 110 107
d8-toluene (Surrogate)	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB	SE220686.002 SE220686.004 SE220686.005 SE220686.012	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	106 107 110 107 114
	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	106 107 110 107 114 104
	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	106 107 110 107 114 104 104
	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH101M_0.6-0.8	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002	% % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	106 107 110 107 114 104 104 104
	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH101M_0.6-0.8 BH102_0.15-0.25	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004	% % % % % %	60 - 130% 60 - 130%	106 107 110 107 114 104 104 104 104
	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.004 SE220686.004	% % % % % % %	60 - 130% 60 - 130%	106 107 110 107 114 104 104 104 104 108 104
d8-toluene (Surrogate)	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.005 SE220686.012	% % % % % % % %	60 - 130% 60 - 130%	106 107 110 107 114 104 104 104 108 104 112 101
d8-toluene (Surrogate)	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.005 SE220686.012	% % % % % % % %	60 - 130% 60 - 130%	106 107 110 107 114 104 104 104 108 104 112 101 E-(AU)-[ENV]A
d8-toluene (Surrogate) OCs in Water Parameter	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.005 SE220686.001 SE220686.001 SE220686.002 SE220686.003 SE220686.012 SE220686.013	% %	60 - 130% 60 - 130%	106 107 110 107 114 104 104 104 108 104 112 101 E-(AU)-[ENV]A
d8-toluene (Surrogate)	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH102_0.15-0.25 BH102_0.8-1.0 TB TS Sample Name	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.005 SE220686.005 SE220686.012 SE220686.013	% Units	60 - 130% 60 - 130%	106 107 110 107 114 104 104 104 108 104 112 101 E-(AU)-[ENV]AI Recovery
d8-toluene (Surrogate) OCs in Water Parameter Bromofluorobenzene (Surrogate)	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH102_0.8-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH102_0.8-1.0 TB TS BH102_0.8-1.0 BB BB BB BB TS Sample Name BHQP-1	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.012 SE220686.013 SE220686.013 SE220686.013 SE220686.013 SE220686.013	% % % % % % % % % % % % % % Units %	60 - 130% 60 - 130% Method: M Criteria 40 - 130%	106 107 110 107 114 104 104 104 104 104 112 101 E-(AU)-[ENV]AI Recovery 101
d8-toluene (Surrogate) OCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH102_0.15-0.25 BH102_0.8-1.0 TB TS Sample Name BHQP-1 BHQP-1	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.005 SE220686.012 SE220686.012 SE220686.013 SE220686.012 SE220686.013 SE220686.013	% % % % % % % % % % % % % % % % % %	60 - 130% 60 - 130% Method: M Criteria 40 - 130% 40 - 130%	106 107 110 107 114 104 104 104 104 104 104 112 101 E-(AU)-[ENV]AI Recovery 101 116 103
d8-toluene (Surrogate) OCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) clatile Petroleum Hydrocarbons in Soil	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH102_0.15-0.25 BH102_0.8-1.0 TB TS Sample Name BHQP-1 BHQP-1	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.005 SE220686.012 SE220686.012 SE220686.013 SE220686.012 SE220686.013 SE220686.013	% % % % % % % % % % % % % % % % % %	60 - 130% 60 - 130% Method: M Criteria 40 - 130% 40 - 130%	106 107 110 107 114 104 104 104 104 104 104 108 104 101 112 101 E-(AU)-[ENV]AI 101 116 103 E-(AU)-[ENV]AI
d8-toluene (Surrogate) OCs In Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-louene (Surrogate) d8-toluene (Surrogate) clatile Petroleum Hydrocarbons in Soil Parameter	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH102_0.15-0.25 BH102_0.8-1.0 TB TS Sample Name BHQP-1 BHQP-1	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.001 SE220686.002 SE220686.004 SE220686.012 SE220686.012 SE220686.013 SE220686.013 SE220686.011 SE220686.011 SE220686.011 SE220686.011	% %	60 - 130% 60 - 130% Method: M Criteria 40 - 130% 40 - 130% 40 - 130%	106 107 110 107 114 104 104 104 104 104 104 108 104 101 112 101 E-(AU)-[ENV]AI 101 116 103 E-(AU)-[ENV]AI
d8-toluene (Surrogate) OCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Clatile Petroleum Hydrocarbons in Soil	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH102_0.15-0.25 BH102_0.8-1.0 TB TS Sample Name BHQP-1 BHQP-1 Sample Name	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.012 SE220686.013 SE220686.012 SE220686.013 SE220686.013 SE220686.013 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011	% Units	60 - 130% 60 - 130% Method: M Criteria 40 - 130% 40 - 130% Criteria	106 107 110 107 114 104 104 104 104 104 108 104 108 104 112 101 E-(AU)-[ENV]A Recovery 101 116 103 E-(AU)-[ENV]A
d8-toluene (Surrogate) /OCs In Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate	BH101M_0.6-0.8 BH102_0.15-0.25 BH102_0.8-1.0 TB TS BH101M_0.1-0.2 BH102_0.15-0.25 BH102_0.8-1.0 TB TS Sample Name BHQP-1 BHQP-1 BHQP-1 BHQP-1 BHQP-1 BHQP-1	SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.001 SE220686.002 SE220686.004 SE220686.005 SE220686.012 SE220686.013 SE220686.012 SE220686.013 SE220686.013 SE220686.013 SE220686.013 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011 SE220686.011	% % % % % % % % % % % % % % % % % % % %	60 - 130% 60 - 130% Method: M Criteria 40 - 130% 40 - 130% Method: M Criteria 60 - 130%	106 107 110 107 114 104 104 104 104 104 104 104 104 104

BH102_0.8-1.0

SE220686.005

%

60 - 130%

99

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

d4-1,2-dichloroethane (Surrogate)

d8-toluene (Surrogate)

Method:	ME-(AU)-	-IENV	AN433

116

103

60 - 130%

40 - 130%

%

%

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d4-1,2-dichloroethane (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	60 - 130%	106
	BH101M_0.6-0.8	SE220686.002	%	60 - 130%	107
	BH102_0.15-0.25	SE220686.004	%	60 - 130%	110
	BH102_0.8-1.0	SE220686.005	%	60 - 130%	107
d8-toluene (Surrogate)	BH101M_0.1-0.2	SE220686.001	%	60 - 130%	104
	BH101M_0.6-0.8	SE220686.002	%	60 - 130%	104
	BH102_0.15-0.25	SE220686.004	%	60 - 130%	108
	BH102_0.8-1.0	SE220686.005	%	60 - 130%	104
Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]A					E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BHQP-1	SE220686.011	%	40 - 130%	101

SE220686.011

SE220686.011

BHQP-1

BHQP-1

SE220686 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-	[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB226817.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil				Method: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB227036.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB226968.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	86

OP Pesticides in Soil

OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB226968.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	103
		d14-p-terphenyl (Surrogate)	%	-	104
PAH (Polynuclear Aro	matic Hydrocarbons) in Soi			Meth	od: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB226968.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	ma/ka	0.1	<0.1

SE220686 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Result Sample Number Parameter Units LOR LB226968.001 Fluoranthene 0.1 <0.1 mg/kg Pyrene mg/kg 0.1 < 0.1 0.1 <0.1 Benzo(a)anthracene mg/kg Chrysene 0.1 <0.1 mg/kg Benzo(a)pyrene mg/kg 01 <0.1 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 <0.1 Dibenzo(ah)anthracene 0.1 ma/ka Benzo(ghi)perylene mg/kg 0.1 < 0.1 0.8 <0.8 Total PAH (18) mg/kg Surrogates d5-nitrobenzene (Surrogate) 113 % -2-fluorobiphenyl (Surrogate) % 103 d14-p-terphenyl (Surrogate) % 104 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Units LOR Result Parameter LB226968.001 Arochlor 1016 mg/kg 0.2 < 0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 < 0.2 mg/kg Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 0.2 <0.2 mg/kg Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 <0.2 Total PCBs (Arochlors) mg/kg 1 <1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 86 % Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter LOR Result LB227063.001 Arsenic, As mg/kg 1 <1 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 <0.5 Nickel, Ni 0.5 mg/kg Lead, Pb mg/kg 1 <1 <2.0 Zinc, Zn 2 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Parameter Units Result LOR LB226813.001 Arsenic, As µg/L 1 <1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu µg/L 1 <1 Lead, Pb <1 µg/L 1 Nickel, Ni µg/L 1 <1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Units LOR Result Parameter LB226968.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 45 <45 mg/kg TRH C29-C36 45 <45 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 Sample Number Units Result Parameter I B226914 001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 200 <200 µg/L TRH C29-C36 200 <200 µg/L TRH C37-C40 µg/L 200 <200 VOC's in Soil

22/6/2021

Method: ME-(AU)-[ENV]AN433

LOR

SE220686 R0

Method: ME-(AU)-[ENV]AN433

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

Sample Number		Parameter	Units	LOR	Result
B226972.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	112
		d8-toluene (Surrogate)	%	-	110
		Bromofluorobenzene (Surrogate)	%	-	104
	Totals	Total BTEX	mg/kg	0.6	<0.6
OCs in Water				Metho	od: ME-(AU)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result
B226964.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
LD220004.001	Hydrocarbons	Toluene	µg/L	0.5	<0.5
	riyulocarbons				<0.5
	Trydiocarbons	Ethylbenzene	µg/L	0.5	<0.5
	Tryulocarbons	Ethylbenzene m/p-xylene	μg/Lμg/L	0.5	<1
	nyulocalbons				
	Polycyclic VOCs	m/p-xylene	µg/L	1	<1
		m/p-xylene o-xylene	μg/L μg/L	1 0.5	<1 <0.5
	Polycyclic VOCs	m/p-xylene o-xylene Naphthalene	μg/L μg/L μg/L	1 0.5 0.5	<1 <0.5 <0.5

Volatile Petroleum Hydrocarbons in Soil

•					
Sample Number		Parameter	Units	LOR	Result
LB226972.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	112

Volatile Petroleum Hydrocarbons in Water

Sample Number		Parameter	Units	LOR	Result
LB226964.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	100
		d8-toluene (Surrogate)	%	-	101
		Bromofluorobenzene (Surrogate)	%	-	99

Method: ME-(AU)-[ENV]AN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[ENVJAN311(F	Perth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220691.006	LB226817.012	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	197

Moreury	in Soil
initio oury	

Mercury in Soil						od: ME-(AU)-[ENVJAN312
Original	Duplicate	Parameter	Units LO	R Original	Duplicate	Criteria %	RPD %
SE220686.005	LB227036.014	Mercury	mg/kg 0.0		<0.05	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220685.004	LB227010.011	% Moisture	%w/w	1	5.2	5.3	49	2
SE220719.001	LB227010.022	% Moisture	%w/w	1	20.0	16.9	35	17
SE220719.004	LB227010.024	% Moisture	%w/w	1	15.6	18.4	36	17

OC Peeticides in Soil

OC Pesticides in S	ioil						Meth	od: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220685.004	LB226968.014		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.14	30	4
SE220719.004	LB226968.023		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

oc	Pesticides	in	Soil	(continued)	

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220719.004	LB226968.023		Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	30	0

			· • • • • · · · · · · · · · · · · · · ·						
OP Pesticides in S	Soil						Meth	od: ME-(AU)-	(ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220685.004	LB226968.014		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
E220719.004	LB226968.023		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
AH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	
			Devenuester	11		<u> </u>		0	

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220685.004	LB226968.014	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
		Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
		Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
		Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E220685.004	LB226968.014		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
E220719.004	LB226968.023		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	0.3	0.1	83	76
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	0.5	0.3	55	53
			Pyrene	mg/kg	0.1	0.5	0.3	56	47
			Benzo(a)anthracene	mg/kg	0.1	0.2	0.1	87	33
			Chrysene	mg/kg	0.1	0.2	0.2	83	38
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.3	0.2	76	34
			Benzo(k)fluoranthene	mg/kg	0.1	0.1	<0.1	137	34
			Benzo(a)pyrene	mg/kg	0.1	0.2	0.2	79	31
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	<0.1	117	32
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.1	<0.1	131	12
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td>0.3</td><td>0.2</td><td>86</td><td>36</td></lor=0<>	mg/kg	0.2	0.3	0.2	86	36
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td>0.4</td><td>0.3</td><td>91</td><td>23</td></lor=lor<>	mg/kg	0.3	0.4	0.3	91	23
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>0.4</td><td>0.3</td><td>73</td><td>28</td></lor=lor>	mg/kg	0.2	0.4	0.3	73	28
			Total PAH (18)	mg/kg	0.8	2.6	1.5	70	54
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	5
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2

									· ·
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220685.004	LB226968.014		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	4
SE220719.004	LB226968.023		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Original	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD
SE220719.004	LB226968.023	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	0
otal Recoverable	Elements in Soil/Wa	ste Solids/Materials	by ICPOES				Method: ME	-(AU)-[ENV]A	N040/AI
			•		1.00	<u></u>			
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE220686.005	LB227063.024		Arsenic, As	mg/kg	1	4	4	56	0
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	4.3	8.7	38	67 (
			Copper, Cu	mg/kg	0.5	1.9	5.1	44	90 (
			Nickel, Ni	mg/kg	0.5	0.8	1.2	80	49
			Lead, Pb	mg/kg	1	3	4	58	53
			Zinc, Zn	mg/kg	2	10	17	45	49 (
SE220767.007	LB227063.014		Chromium, Cr	mg/kg	0.5	28	27	32	3
			Lead, Pb	mg/kg	1	130	140	31	9
			Zinc, Zn	mg/kg	2	870	610	30	35 (
RH (Total Recov	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	(ENVJA
Original	Duplicate	, 	Parameter	Units	LOR	Original		Criteria %	RPD
							<20		0
SE220685.004	LB226968.014		TRH C10-C14	mg/kg	20	<20		200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
RH (Total Recov	erable Hydrocarbons) in Water					Meth	od: ME-(AU)-	IENVIA
· ·		,	Deveryorken	11	100	Original			
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE220691.006	LB226914.028		TRH C10-C14	µg/L	50	<50	<50	200	0
			TRH C15-C28	μg/L	200	<200	<200	200	0
			TRH C29-C36	µg/L	200	<200	<200	200	0
			TRH C37-C40	µg/L	200	<200	<200	200	0
			TRH C10-C40	µg/L	320	<320	<320	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	<60	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	200	0
			TRH >C16-C34 (F3)	µg/L	500	<500	<500	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	<500	200	0
/OC's in Soil							Meth	od: ME-(AU)-	IENVIA
Original	Duplicato		Doromotor	Units	LOR	Original		Criteria %	
	Duplicate	Managualia	Parameter			Original			
SE220685.004	LB226972.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.6	11.0	50	4
			d8-toluene (Surrogate)	mg/kg	-	10.3	10.8	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.9	10.2	50	3
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE220719.004	LB226972.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.1	<0.1	<0.1	200	0
			o-xylene		0.2	<0.2	<0.2	200	0
		Delver - "-		mg/kg					
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.4	10.7	50	3
			d8-toluene (Surrogate)	mg/kg	-	10.2	10.6	50	3
			d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg	-	10.2 9.6	10.6 9.9	50 50	3

Method: ME-(ALI)-IENVIAN433

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

VUU's in Soli (cor	ninuea)						Mem	00: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220719.004	LB226972.025	Totals	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
VOCs in Water							Meth	od: ME-(AU)-	[ENV]AN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220736.002	LB226964.027	Monocyclic	Benzene	µg/L	0.5	2.7	2.4	50	14
		Aromatic	Toluene	µg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	µg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	12.6	9.5	30	28
			d8-toluene (Surrogate)	µg/L	-	9.3	10.7	30	15
			Bromofluorobenzene (Surrogate)	µg/L	-	9.8	10.9	30	10
SE220755.003	LB226964.028	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	µg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	11.9	10.0	30	17
			d8-toluene (Surrogate)	µg/L	-	10.7	11.1	30	4
			Bromofluorobenzene (Surrogate)	µg/L	-	10.5	10.4	30	1
/olatile Petroleum	Hydrocarbons in So	I					Meth	od: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %

Onginai	Duplicate		Falallelel	Units	LUK	Unginai	Duplicate	Griteria 70	KPU 70
SE220685.004	LB226972.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.6	11.0	30	4
			d8-toluene (Surrogate)	mg/kg	-	10.3	10.8	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.9	10.2	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE220719.004	LB226972.025		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.4	10.7	30	3
			d8-toluene (Surrogate)	mg/kg	-	10.2	10.6	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.6	9.9	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum	Hydrocarbons in Wa	iter					Meth	od: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220736.002	LB226964.027		TRH C6-C10	μg/L	50	<50	<50	200	0
			TRH C6-C9	μg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	12.6	9.5	30	28
			d8-toluene (Surrogate)	μg/L	-	9.3	10.7	30	15
			Bromofluorobenzene (Surrogate)	μg/L	-	9.8	10.9	30	10
		VPH F Bands	Benzene (F0)	μg/L	0.5	2.7	2.4	50	14
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0
SE220755.003	LB226964.028		TRH C6-C10	µg/L	50	<50	<50	200	0
			TRH C6-C9	µg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	11.9	10.0	30	17
			d8-toluene (Surrogate)	µg/L	-	10.7	11.1	30	4
			Bromofluorobenzene (Surrogate)	µg/L	-	10.5	10.4	30	1
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227036.002	Mercury	mg/kg	0.05	0.22	0.2	70 - 130	108

	oc	Pest	icides	in So	il.
--	----	------	--------	-------	-----

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B226968.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	119
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	94
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	101
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	103
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	125
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	121
S	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	89
P Pesticides in Soil						N	/ethod: ME-(A	U)-[ENV]AN
ample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B226968.002		Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	78
		Diazinon (Dimpylate)	mg/kg	0.5	2.0	2	60 - 140	100
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	2	60 - 140	98
_		Ethion	mg/kg	0.2	1.7	2	60 - 140	85
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	93
S	Surrogates	z-horobiphenyi (Surrogate)	0.0					
S	Surrogates	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
S AH (Polynuclear Aron		d14-p-terphenyl (Surrogate)		-	0.4	0.5	40 - 130 //ethod: ME-(A	
		d14-p-terphenyl (Surrogate)		LOR	0.4 Result	0.5		U)-[ENV]AN
AH (Polynuclear Aron		d14-p-terphenyl (Surrogate) the second secon	mg/kg		-	0.5	Nethod: ME-(A	U)-[ENV]AN
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter	mg/kg Units	LOR	Result	0.5 N Expected	/lethod: ME-(A Criteria %	U)-[ENV]AN Recovery
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene	mg/kg Units mg/kg	LOR 0.1	Result 3.4	0.5 N Expected 4	Aethod: ME-(A Criteria % 60 - 140	U)-[ENV]AN Recovery 86
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene	mg/kg Units mg/kg mg/kg	LOR 0.1 0.1	Result 3.4 3.6	0.5 N Expected 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN Recovery 86 90
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	Result 3.4 3.6 3.5	0.5 Expected 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 86 90 88
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	Result 3.4 3.6 3.5 3.5	0.5 Expected 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 86 90 88 88
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) toons) in Soil Parameter Naphthalene Accenaphthylene Acenaphthylene Phenanthrene Anthracene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1	Result 3.4 3.6 3.5 3.5 3.5 3.5	0.5 Expected 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 86 90 88 88 88 88
AH (Polynuclear Aron Sample Number		d14-p-terphenyl (Surrogate) toons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Fluoranthene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.4 3.6 3.5 3.5 3.5 3.5 3.5	0.5 Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 86 90 88 88 88 88 88 88
AH (Polynuclear Aron Sample Number B226968.002		d14-p-terphenyl (Surrogate) tbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Fluoranthene Pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.4 3.6 3.5 3.5 3.5 3.5 3.5 3.5 3.7	0.5 N Expected 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 86 90 88 88 88 88 88 88 92
AH (Polynuclear Aron Sample Number B226968.002	matic Hydroca	d14-p-terphenyl (Surrogate) tbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.4 3.6 3.5 3.5 3.5 3.5 3.5 3.7 3.7 3.7	0.5 K Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 86 90 88 88 88 88 88 88 92 93
AH (Polynuclear Aron Sample Number B226968.002	matic Hydroca	d14-p-terphenyl (Surrogate) tbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.4 3.6 3.5 3.5 3.5 3.5 3.5 3.7 3.7 0.5	0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 86 90 88 88 88 88 88 88 92 93 93 97
AH (Polynuclear Aron Sample Number B226968.002	matic Hydroca	d14-p-terphenyl (Surrogate) tbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.4 3.6 3.5 3.5 3.5 3.5 3.5 3.7 3.7 0.5 0.5	0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5	Aethod: ME-(A Criteria % 60 - 140 % 60 - 130 %	U)-[ENV]AN Recovery 86 90 88 88 88 88 88 88 88 88 88 88 88 92 93 97 93 88
AH (Polynuclear Aron Sample Number B226968.002 S	matic Hydroca	d14-p-terphenyl (Surrogate) tbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 3.4 3.6 3.5 3.5 3.5 3.5 3.5 3.7 3.7 0.5 0.5	0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5	Aethod: ME-(A Criteria % 60 - 140 % 40 - 130 % 40 - 130 %	U)-[ENV]AN Recovery 86 90 88 88 88 88 88 88 88 88 92 93 93 97 93 88

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements i	n Soil/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	vjan040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227063.002	Arsenic, As	mg/kg	1	350	318.22	80 - 120	110
	Cadmium, Cd	mg/kg	0.3	5.9	4.81	70 - 130	123
	Chromium, Cr	mg/kg	0.5	42	38.31	80 - 120	110
	Copper, Cu	mg/kg	0.5	330	290	80 - 120	115
	Nickel, Ni	mg/kg	0.5	200	187	80 - 120	108
	Lead, Pb	mg/kg	1	96	89.9	80 - 120	107
	Zinc, Zn	mg/kg	2	290	273	80 - 120	107
Trace Metals (Dissolved) in W	ater by ICPMS					Method: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB226813.002	Arsenic, As	μg/L	1	21	20	80 - 120	103
	Cadmium, Cd	μg/L	0.1	21	20	80 - 120	104
	Chromium, Cr	μg/L	1	22	20	80 - 120	108
	Copper, Cu	μg/L	1	22	20	80 - 120	110
	Lead, Pb	μg/L	1	23	20	80 - 120	113
	Nickel, Ni	μg/L	1	21	20	80 - 120	106
	Zinc, Zn	µg/L	5	22	20	80 - 120	110

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

-	erable Hydrocarboi	•					Method: ME-(A	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
LB226968.002		TRH C10-C14	mg/kg	20	43	40	60 - 140	108
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	105
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	100
	TRH F Bands	TRH >C10-C16	mg/kg	25	43	40	60 - 140	108
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	105
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	100
	erable Hydrocarbor	ns) in Water					Method: ME-(A	
Sample Number	,	Parameter	Units	LOR	Result	Expected	Criteria %	
LB226914.002		TRH C10-C14	μg/L	50	980	1200	60 - 140	82
		TRH C15-C28	μg/L	200	1200	1200	60 - 140	103
		TRH C29-C36	μg/L	200	1200	1200	60 - 140	103
	TRH F Bands	TRH >C10-C16	μg/L	60	1100	1200	60 - 140	93
		TRH >C16-C34 (F3)	μg/L	500	1300	1200	60 - 140	107
		TRH >C34-C40 (F4)	μg/L	500	620	600	60 - 140	103
'OC's in Soil							Method: ME-(A	U)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB226972.002	Monocyclic	Benzene	mg/kg	0.1	4.6	5	60 - 140	92
	Aromatic	Toluene	mg/kg	0.1	4.6	5	60 - 140	92
		Ethylbenzene	mg/kg	0.1	4.7	5	60 - 140	95
		m/p-xylene	mg/kg	0.2	9.4	10	60 - 140	94
		o-xylene	mg/kg	0.1	4.7	5	60 - 140	94
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.9	10	70 - 130	109
		d8-toluene (Surrogate)	mg/kg	-	10.5	10	70 - 130	105
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.8	10	70 - 130	98
OCs in Water						I	Method: ME-(A	U)-[ENV]A
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB226964.002	Monocyclic	Benzene				-		100
	A		μg/L	0.5	45	45.45	60 - 140	100
	Aromatic	Toluene		0.5	45	45.45 45.45	60 - 140 60 - 140	
	Aromatic	Toluene Ethylbenzene	µg/L					
	Aromatic	Ethylbenzene	μg/L μg/L	0.5	47	45.45	60 - 140	102
	Aromatic	Ethylbenzene m/p-xylene	µg/L µg/L µg/L	0.5 0.5 1	47 42 80	45.45 45.45 90.9	60 - 140 60 - 140 60 - 140	102 93
		Ethylbenzene m/p-xylene o-xylene	µg/L µg/L µg/L µg/L	0.5 0.5	47 42	45.45 45.45	60 - 140 60 - 140	102 93 88
	Aromatic	Ethylbenzene m/ρ-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1	47 42 80 44	45.45 45.45 90.9 45.45	60 - 140 60 - 140 60 - 140 60 - 140	102 93 88 97
		Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5 -	47 42 80 44 10.7	45.45 45.45 90.9 45.45 10 10	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	102 93 88 97 107
olatile Petroleum	Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5 - -	47 42 80 44 10.7 10.4	45.45 45.45 90.9 45.45 10 10 10	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130	102 93 88 97 107 104 98
	Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 1 0.5 - -	47 42 80 44 10.7 10.4	45.45 45.45 90.9 45.45 10 10 10	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130	102 93 88 97 107 104 98 U)-[ENV] A
Sample Number	Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oil	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units	0.5 0.5 1 0.5 - - -	47 42 80 44 10.7 10.4 9.8	45.45 45.45 90.9 45.45 10 10 10	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Method: ME-(A	102 93 88 97 107 104 98 U)-[ENV] A
Sample Number	Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - -	47 42 80 44 10.7 10.4 9.8 Result	45.45 90.9 45.45 10 10 10 Expected	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria %	102 93 88 97 107 104 98 U)-[ENV]A Recove
Sample Number	Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 - - - LOR 25	47 42 80 44 10.7 10.4 9.8 Result 73	45.45 45.45 90.9 45.45 10 10 10 Expected 92.5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140	102 93 88 97 107 104 98 U)-[ENV]/ Recove 79 80
Sample Number	Surrogates Hydrocarbons in S	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 - - - LOR 25 20	47 42 80 44 10.7 10.4 9.8 Result 73 64	45.45 45.45 90.9 45.45 10 10 10 Expected 92.5 80	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140	102 93 88 97 107 104 98 U)-[ENV]A Recove 79 80
Sample Number	Surrogates Hydrocarbons in S	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 - - - LOR 25 20	47 42 80 44 10.7 10.4 9.8 Result 73 64 10.9	45.45 90.9 45.45 10 10 10 10 Expected 92.5 80 10	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 70 - 130	102 93 88 97 107 104 98 U)-[ENV]A Recover 79 80 109
Sample Number LB226972.002	Surrogates Hydrocarbons in S Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 - - - LOR 25 20 -	47 42 80 44 10.7 10.4 9.8 Result 73 64 10.9 9.8	45.45 90.9 45.45 10 10 10 10 Expected 92.5 80 10 10 10 62.5	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 70 - 130 70 - 130	102 93 88 97 107 104 98 U)-[ENV]A Recover 79 80 109 98 71
Sample Number LB226972.002 /olatile Petroleum	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 - - - LOR 25 20 -	47 42 80 44 10.7 10.4 9.8 Result 73 64 10.9 9.8	45.45 90.9 45.45 10 10 10 10 Expected 92.5 80 10 10 10 62.5	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 60 - 140	102 93 88 97 107 104 98 Recover 79 80 109 98 71 U)-[ENV]A
Sample Number LB226972.002 /olatile Petroleum Sample Number	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) //ater	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 - - - - - - - - - - - - - - - - - -	47 42 80 44 10.7 10.4 9.8 Result 73 64 10.9 9.8 45	45.45 45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 62.5	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(A	102 93 88 97 107 104 98 Recover 79 80 109 98 71 U)-[ENV]A
Sample Number LB226972.002 /olatile Petroleum Sample Number	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) /ater Parameter	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/k mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 0.5 - - - - - - - - - - 25 20 - - 25 25	47 42 80 44 10.7 10.4 9.8 Result 73 64 10.9 9.8 45 Result	45.45 90.9 45.45 10 10 10 10 Expected 92.5 80 10 10 62.5	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(A Criteria %	102 93 88 97 107 104 98 WJ-[ENV]A Recove 79 80 109 98 71 WJ-[ENV]A Recove
Sample Number LB226972.002 /olatile Petroleum Sample Number	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) /ater Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 0.5 - - - - - - - - 25 20 - - 25 20 - 25 20 - 50	47 42 80 44 10.7 10.4 9.8 Result 73 64 10.9 9.8 45 Result 920	45.45 90.9 45.45 10 10 10 10 Expected 92.5 80 10 10 62.5 Expected 946.63	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(A Criteria % 60 - 140	102 93 88 97 107 104 98 W)-[ENV]A Recove 79 80 109 98 71 U)-[ENV]A Recove 97 97
Sample Number LB226972.002 /olatile Petroleum Sample Number	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oil Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 1 0.5 - - - - - - - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - - - 25 20 - - - - - - - - - - - - - - - - - -	47 42 80 44 10.7 10.4 9.8 Result 73 64 10.9 9.8 45 Result 920 800	45.45 90.9 45.45 10 10 10 10 Expected 92.5 80 10 10 62.5 Expected 946.63 818.71	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(A Criteria % 60 - 140 Method: ME-(A Criteria % Method: ME-(A Criteria % Criteria % Cri	102 93 88 97 107 104 98 W)-[ENV]A Recover 98 71 U)-[ENV]A Recover 97
Sample Number LB226972.002	Surrogates Hydrocarbons in S Surrogates VPH F Bands Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C8-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) /ator Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L mg/kg	0.5 0.5 1 0.5 - - - - - - - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - 25 20 - - - - 25 20 - - - - - - - - - - - - - - - - - -	47 42 80 44 10.7 10.4 9.8 Result 73 64 10.9 9.8 45 Result 920 800 10.7	45.45 90.9 45.45 10 10 10 0 Expected 92.5 80 10 10 62.5 Expected 946.63 818.71 10	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Criteria % 60 - 140 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	102 93 88 97 107 104 98 U)-[ENV]A Recover 79 80 109 98 71 U)-[ENV]A Recover 97 97 107

MATRIX SPIKES

SE220686 R0

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	in Water				Met	hod: ME-(AU)-	ENVJAN311	I (Perth)/AN312
QC Sample S	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE220683.040 L	LB226817.004	Mercury	mg/L	0.0001	0.0020	<0.00005	0.008	98

Mercury in Soil

-								
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE220634.001	LB227036.004	Mercury	mg/kg	0.05	0.39	0.23	0.2	77

OC Pesticides in Soil

	001						Men	100. MIL-(AC)-[LINV]/14420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE220684.001	LB226968.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	19	15	0.2	1751 ⑤
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	99
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	122
			Heptachlor epoxide	mg/kg	0.1	0.4	0.3	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	8.6	6.2	-	-
			Alpha Chlordane	mg/kg	0.1	1.1	0.9	-	-
			trans-Nonachlor	mg/kg	0.1	0.3	0.3	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	0.3	<0.2	0.2	131
			Endrin	mg/kg	0.2	0.3	<0.2	0.2	132
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	_	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	_	-
			p,p'-DDT	mg/kg	0.1	0.3	<0.1	0.2	126
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1		
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	_	
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	
			Isodrin	mg/kg	0.1	<0.1	<0.1	_	-
			Mirex	mg/kg	0.1	<0.1	<0.1	_	-
			Total CLP OC Pesticides	mg/kg	1	30	23	_	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.17		96
Pesticides in	Soil	ounogutes		nignig		0.14)-[ENV]AN42
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E220684.001	LB226968.004		Dichlorvos	mg/kg	0.5	1.6	<0.5	2	81
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	2.0	<0.5	2	101
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	<0.2	2	99
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	1.9	<0.2	2	91
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	7.6	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5		95
		Gunoyates	d14-p-terphenyl (Surrogate)	mg/kg		0.3	0.5	-	88
			art piterprenyr (ourrogate)	шулу	-	0.4	0.0	-	00

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

QC Sample	Sample Number	Parameter	Units	LOR

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

		ons) in Soil (con				-			J)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE220684.001	LB226968.004		Naphthalene	mg/kg	0.1	3.5	<0.1	4	88
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	3.7	<0.1	4	91
			Acenaphthene	mg/kg	0.1	3.6	<0.1	4	90
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	3.8	0.4	4	86
			Anthracene	mg/kg	0.1	3.6	0.1	4	87
			Fluoranthene	mg/kg	0.1	4.2	0.9	4	83
			Pyrene	mg/kg	0.1	4.3	0.8	4	86
			Benzo(a)anthracene	mg/kg	0.1	0.3	0.4	-	-
			Chrysene	mg/kg	0.1	0.4	0.5	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.5	0.5	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	0.2	0.3	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.1 0.2	0.5	4	92
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene Benzo(ghi)perylene	mg/kg mg/kg	0.1	0.2	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.1</td><td>4.3</td><td>0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.1	4.3	0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0 Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td></td><td>0.2</td><td>4.3</td><td>0.6</td><td>-</td><td>-</td></lor=lor<></lor=0 		0.2	4.3	0.6	-	-
				TEQ (mg/kg) TEQ (mg/kg)	0.3	4.4	0.7	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td>4.3</td><td>4.9</td><td>-</td><td>-</td></lor=lor>	mg/kg	0.2	4.3	4.9	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	- 99
		Sunogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	95
			d14-p-terphenyl (Surrogate)	mg/kg		0.4	0.5	-	88
00-1-0-1				nightg		0.4			
CBs in Soil									J)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE220684.001	LB226968.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	105
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	96
race Metals (Dis	ssolved) in Water by I	CPMS					Meth	nod: ME-(AU	J)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE220640.001	LB226813.004		Arsenic, As	µg/L	1	23	<1	20	115
			Cadmium, Cd	µg/L	0.1	21	<0.1	20	105
			Chromium, Cr	µg/L	1	22	<1	20	106
			Copper, Cu	µg/L	1	23	1	20	108
			Lead, Pb	µg/L	1	23	<1	20	112
			Nickel, Ni	µg/L	1	22	<1	20	105
			Zinc, Zn	µg/L	5	94	73	20	104
RH (Total Reco	verable Hydrocarbons	s) in Soil							J)-[ENV]AN4
· · · · · · · · · · · · · · · · · · ·	-		D			D			<u> </u>
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE220684.001	LB226968.004		TRH C10-C14	mg/kg	20	42	<20	40	105
			TRH C15-C28	mg/kg	45	61	<45	40	68
			TRH C29-C36	mg/kg	45	45	<45	40	113
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	150	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	25	41	<25	40	103
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	37	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	63

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil	• • • • •				1.00	D #			J)-[ENV]AN43
QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE220684.001	LB226972.004	Monocyclic Aromatic	Benzene	mg/kg	0.1	4.2	<0.1	5	85
		Aromatic	Toluene	mg/kg	0.1	4.4	<0.1	5	88
			Ethylbenzene	mg/kg	0.1	4.6	<0.1	5	92
			m/p-xylene	mg/kg	0.2	9.1	<0.2	10	91
			o-xylene	mg/kg	0.1	4.6	<0.1	5	92
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.2	9.1	10	102
			d8-toluene (Surrogate)	mg/kg	-	9.9	9.0	10	99
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.4	8.4	10	94
		Totals	Total Xylenes	mg/kg	0.3	14	<0.3	-	-
			Total BTEX	mg/kg	0.6	27	<0.6	-	-
OCs in Water							Met	hod: ME-(AU	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE220731.001	LB226964.026	Monocyclic	Benzene	µg/L	0.5	40	<0.5	45.45	88
		Aromatic	Toluene	μg/L	0.5	44	<0.5	45.45	96
			Ethylbenzene	μg/L	0.5	42	<0.5	45.45	92
			m/p-xylene	μg/L	1	86	<1	90.9	95
			o-xylene	μg/L	0.5	42	<0.5	45.45	93
		Polycyclic	Naphthalene	μg/L	0.5	38	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	7.9	13.4	-	79
			d8-toluene (Surrogate)	μg/L	-	8.8	10.3	-	88
			Bromofluorobenzene (Surrogate)	μg/L	-	9.2	10.4	-	92
olatile Petroleu	m Hydrocarbons in S	Soil					Met	hod: ME-(AU	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE220684.001	LB226972.004		TRH C6-C10	mg/kg	25	65	<25	92.5	70
			TRH C6-C9	mg/kg	20	58	<20	80	73
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.2	9.1	10	102
			d8-toluene (Surrogate)	mg/kg	-	9.9	9.0	10	99
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.4	8.4	-	94
		VPH F	Benzene (F0)	mg/kg	0.1	4.2	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	38	<25	62.5	61
olatile Petroleu	m Hydrocarbons in \	Nater					Meti	hod: ME-(AU	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recover
SE220731.001	LB226964.026		TRH C6-C10	μg/L	50	780	<50	946.63	82
			TRH C6-C9	µg/L	40	700	<40	818.71	85
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	7.9	13.4	-	79
		-	d8-toluene (Surrogate)	µg/L	-	8.8	10.3	-	88
			Bromofluorobenzene (Surrogate)	μg/L	-	9.2	10.4	-	92
		VPH F	Benzene (F0)	μg/L	0.5		0	-	-

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Kaiyu Xu	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile	61 2 9516 0722 (Not specified) kaiyu.xu@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Email Project Order Number Samples	E25203 1112-1116 Barrenjoey Road, Palm B E25203 2	SGS Reference Date Received Date Reported	SE220686 R0 15 Jun 2021 22 Jun 2021

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Kamrul AHSAN

Senior Chemist

Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia

Ly Kim HA

Organic Section Head

t +61 2 8594 0400 f +61 2 8594 0499

km/n/

99

www.sgs.com.au

ANALYTICAL REPORT

SE220686 R0

Fibre Identifica	ation in soil	Method	AN602			
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE220686.001	BH101M_0.1-0.2	Soil	256g Sand, Soil, Rocks	11 Jun 2021	No Asbestos Found at RL of 0.1g/kg	<0.01
SE220686.004	BH102_0.15-0.25	Soil	275g Sand, Soil, Rocks	11 Jun 2021	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	 The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles -*** Indicates that both * and ** apply. -

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

 CLIENT DETAILS 		LABORATORY DE	LABORATORY DETAILS				
Contact Client Address	Kaiyu Xu EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015				
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400				
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499				
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com				
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	SE220686A R0				
Order Number	E25203	Date Received	15/6/2021				
Samples	13	Date Reported	16/6/2021				

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

ion

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

16/06/2021

SE220686A R0

Field pH for Acid Sulphate Soil [AN104] Tested: 16/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_0.8-1.0	BH102_1.8-2.0	BH102_3.0-3.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686A.002	SE220686A.003	SE220686A.005	SE220686A.006	SE220686A.007
pHf	pH Units	-	7.1	5.1	8.5	8.1	4.8
pHfox	pH Units	-	5.8	3.8	7.3	7.3	4.7
Reaction Rate*	No unit	-	х	х	х	х	х
pH Difference*	pH Units	-10	1.3	1.3	1.2	0.8	0.1

			BH102_4.0-4.2	BH102_5.0-6.2	BH102_6.0-6.2
			SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686A.008	SE220686A.009	SE220686A.010
pHf	pH Units	-	4.5	4.7	4.9
pHfox	pH Units	-	4.0	4.6	4.3
Reaction Rate*	No unit	-	х	х	х
pH Difference*	pH Units	-10	0.5	0.1	0.6

FOOTNOTES -

METHOD	METHODOLOGY SUMMARY
AN104	pHF is determined on an extract of approximately 2g of as received sample in approximately 10 mL of deionised water with pH determined after standing 30 minutes.
AN104	pHFox is determined on an extract of approximately 2g of as received sample with a few mLs of 30% hydrogen peroxide (adjusted to pH 4.5 to 5.5) with the extract reaction being rated from slight to extreme, with pH determined after reaction is complete and extract has cooled. Referenced to ASS Laboratory Methods Guidelines, method 23Af-Bf, 2004.
	 No Reaction Slight Reaction Moderate Reaction Strong/High Reaction Extreme/Vigorous Reaction (gas evolution and heat generation)

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	analysis.		Reporting.
***	Indicates that both * and ** apply.		Sample listed, but not received.		

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity: a. 1 Bg is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	LS
Contact Client Address	Kaiyu Xu EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	SE220686A R0
Order Number	E25203	Date Received	15 Jun 2021
Samples	13	Date Reported	16 Jun 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 859 Australia f +61 2 859

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Field pH, for Acid Sulphate Soil

Field pH for Acid Sulphate S	pH for Acid Sulphate Soil Method: ME-(AU)-[ENV]AN104								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH101M_0.6-0.8	SE220686A.002	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021	
BH101M_1.6-1.8	SE220686A.003	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021	
BH102_0.8-1.0	SE220686A.005	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021	
BH102_1.8-2.0	SE220686A.006	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021	
BH102_3.0-3.2	SE220686A.007	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021	
BH102_4.0-4.2	SE220686A.008	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021	
BH102_5.0-6.2	SE220686A.009	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021	
BH102_6.0-6.2	SE220686A.010	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021	

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

SE220686A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No method blanks were required for this job.

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Field pH for Acid Sulphate Soil

Field pH for Acid Sulphate Soil Method: ME-(AU)-[ENV].						ENVJAN104		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220686A.010	LB226830.010	pHf	pH Units	-	4.9	4.6	30	7
		pHfox	pH Units	-	4.3	4.4	30	0

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number Parameter

Units LOR

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Kaiyu Xu	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	SE220686B R0
Order Number	E25203	Date Received	16/6/2021
Samples	13	Date Reported	23/6/2021

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SPOCAS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146- CE153344

SIGNATORIES

SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE220686B R0

Moisture Content [AN002] Tested: 23/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686B.002	SE220686B.003	SE220686B.007	SE220686B.008	SE220686B.009
% Moisture	%w/w	0.5	18	23	39	40	35

SE220686B R0

TAA (Titratable Actual Acidity) [AN219] Tested: 23/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 11/6/2021	- 11/6/2021	- 11/6/2021	- 11/6/2021	- 11/6/2021
PARAMETER	UOM	LOR	SE220686B.002	SE220686B.003	SE220686B.007	SE220686B.008	SE220686B.009
pH KCI*	pH Units	-	6.9	5.5	4.7	4.0	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	2.0	1.3	6.4	2.1
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	40	27	130	42
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	0.06	0.04	0.21	0.07
Sulphur (SKCI)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium (CaKCI)	%w/w	0.005	0.022	0.006	0.007	0.016	0.017
Magnesium (MgKCl)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005	<0.005

TPA (Titratable Peroxide Acidity) [AN218] Tested: 23/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686B.002	SE220686B.003	SE220686B.007	SE220686B.008	SE220686B.009
Peroxide pH (pH Ox)	pH Units	-	6.3	5.0	4.6	4.5	4.5
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	<0.25	2.5	1.8	6.7	2.2
TPA as moles H+/tonne	moles H+/T	5	<5	50	37	137	45
TPA as S % W/W	%w/w S	0.01	<0.01	0.08	0.06	0.22	0.07
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	10	10	7	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	0.49	0.49	0.37	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	0.02	0.02	0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	-	-	-	-	-
ANCE as moles H+/tonne	moles H+/T	5	-	-	-	-	-
ANCE as S % W/W	%w/w S	0.01	-	-	-	-	-
Peroxide Oxidisable Sulphur (Spos)*	%w/w	0.005	<0.005	<0.005	0.070	0.031	0.059
Peroxide Oxidisable Sulphur as moles H+/tonne*	moles H+/T	5	<5	<5	44	19	37
Sulphur (Sp)	%w/w	0.005	0.005	<0.005	0.072	0.032	0.060
Calcium (Cap)	%w/w	0.005	0.078	<0.005	0.069	0.010	0.061
Reacted Calcium (CaA)*	%w/w	0.005	0.055	<0.005	0.062	<0.005	0.044
Reacted Calcium (CaA)*	moles H+/T	5	28	<5	31	<5	22
Magnesium (Mgp)	%w/w	0.005	0.026	0.020	0.073	0.055	0.036
Reacted Magnesium (MgA)*	%w/w	0.005	0.025	0.020	0.072	0.054	0.034
Reacted Magnesium (MgA)*	moles H+/T	5	20	16	59	44	28
Net Acid Soluble Sulphur as % w/w*	%w/w	0.005	-	-	-	0.057	-
Net Acid Soluble Sulphur as moles H+/tonne*	moles H+/T	5	-	-	-	36	-

SE220686B R0

SPOCAS Net Acidity Calculations [AN220] Tested: 23/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686B.002	SE220686B.003	SE220686B.007	SE220686B.008	SE220686B.009
s-Net Acidity	%w/w S	0.005	-	-	-	-	-
a-Net Acidity	moles H+/T	5	-	-	-	-	-
Liming Rate*	kg CaCO3/T	0.1	-	-	-	-	-
Verification s-Net Acidity*	%w/w S	-20	-	-	-	-	-
a-Net Acidity without ANCE*	moles H+/T	5	-	-	-	180	-
Liming Rate without ANCE*	kg CaCO3/T	0.1	-	-	-	13	-

 METHOD	- METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	÷	LABORATORY DETAI	ILS
Contact Client Address	Kaiyu Xu EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	SE220686B R0
Order Number	E25203	Date Received	16 Jun 2021
Samples	13	Date Reported	23 Jun 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Samples clearly labelled Sample container provider Samples received in correct of Date documentation received Samples received in good ord Sample temperature upon rec Turnaround time requested	containers	Yes SGS 16/6/2021@10:26AI Yes 18°C Standard	Sample coo Sample cou Type of doc Samples ree	ocumentation received ling method nts by matrix umentation received ceived without headspace imple for analysis		Yes Ice Bricks 5 Soil Email Yes Yes	
SGS Australia Pty Ltd	Environment, Health and	Unit 16 33 Ma	ddox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sgs.com.au

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015

Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

No holding time data is available for this job.

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE220686B R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No method blanks were required for this job.

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

No duplicates were required for this job.

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No laboratory control standards were required for this job.

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Lan Ye	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-1116 Barrenjoey Road, Palm B	SGS Reference	SE220848 R0
Order Number	E25203	Date Received	18/6/2021
Samples	10	Date Reported	25/6/2021

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #3: Chrysotile asbestos found in approx 60x40x4mm cement sheet fragment. Sample #4: Chrysotile asbestos found in approx 10x4x2mm cement sheet fragments x2.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

kinty

Ly Kim HA Organic Section Head

Dong LIANG Metals/Inorganics Team Leader

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

Kamrul AHSAN Senior Chemist

ena

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au Member of the SGS Group

Page 1 of 21

SE220848 R0

VOC's in Soil [AN433] Tested: 21/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/6/2021	18/6/2021	18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004	SE220848.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			QTB1	QTS1
			SOIL - 18/6/2021	SOIL - 18/6/2021
PARAMETER	UOM	LOR	SE220848.009	SE220848.010
Benzene	mg/kg	0.1	<0.1	[104%]
Toluene	mg/kg	0.1	<0.1	[116%]
Ethylbenzene	mg/kg	0.1	<0.1	[96%]
m/p-xylene	mg/kg	0.2	<0.2	[94%]
o-xylene	mg/kg	0.1	<0.1	[94%]
Total Xylenes	mg/kg	0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	-

SE220848 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 21/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			18/6/2021	18/6/2021	18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004	SE220848.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 21/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/6/2021	18/6/2021	18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004	SE220848.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 21/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
			- 18/6/2021	- 18/6/2021	- 18/6/2021	- 18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 21/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	18/6/2021 SE220848.001	18/6/2021 SE220848.002	18/6/2021 SE220848.003	18/6/2021 SE220848.004
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 21/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2
			SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	18/6/2021 SE220848.001	18/6/2021 SE220848.002	18/6/2021 SE220848.003	18/6/2021 SE220848.004
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 21/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
			18/6/2021	18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1

SE220848 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 23/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/6/2021	- 18/6/2021	- 18/6/2021	- 18/6/2021	- 18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004	SE220848.005
Arsenic, As	mg/kg	1	2	2	4	4	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	9.6	14	9.4	9.5
Copper, Cu	mg/kg	0.5	10	3.6	8.4	31	22
Lead, Pb	mg/kg	1	23	16	23	40	30
Nickel, Ni	mg/kg	0.5	0.7	0.6	1.7	3.0	2.6
Zinc, Zn	mg/kg	2	45	38	530	150	100

SE220848 R0

Mercury in Soil [AN312] Tested: 23/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/6/2021	18/6/2021	18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004	SE220848.005
Mercury	mg/kg	0.05	<0.05	<0.05	0.06	0.15	<0.05

SE220848 R0

Moisture Content [AN002] Tested: 21/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			18/6/2021	18/6/2021	18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004	SE220848.005
% Moisture	%w/w	1	9.7	8.8	12.4	24.5	26.3

			QTB1
			SOIL
			- 18/6/2021
PARAMETER	UOM	LOR	SE220848.009
% Moisture	%w/w	1	<1.0

Fibre Identification in soil [AN602] Tested: 23/6/2021

			EBH101_0.1-0.2	EBH102_0.1-0.2	EBH103_0.1-0.2	EBH104_0.1-0.2
			SOIL	SOIL	SOIL	SOIL
						-
			18/6/2021	18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.001	SE220848.002	SE220848.003	SE220848.004
Asbestos Detected	No unit	-	No	No	Yes	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	>0.01	<0.01

SE220848 R0

VOCs in Water [AN433] Tested: 24/6/2021

			BH101M	GWQD1	QR1
			WATER	WATER	WATER
			- 18/6/2021	- 18/6/2021	- 18/6/2021
PARAMETER	UOM	LOR	SE220848.006	SE220848.007	SE220848.008
Benzene	µg/L	0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	1	1	<1
o-xylene	µg/L	0.5	1.6	1.6	<0.5
Total Xylenes	µg/L	1.5	2.7	2.6	<1.5
Total BTEX	µg/L	3	<3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	-	-
Chloromethane	µg/L	5	<5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	-	-
Bromomethane	µg/L	10	<10	-	-
Chloroethane	µg/L	5	<5	-	-
Trichlorofluoromethane	µg/L	1	<1	-	-
Acetone (2-propanone)	µg/L	10	<10	-	-
lodomethane	µg/L	5	<5	-	-
1,1-dichloroethene	μg/L	0.5	<0.5	-	-
Acrylonitrile	µg/L	0.5	<0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	<5	-	-
Allyl chloride	µg/L	2	<2	-	-
Carbon disulfide	µg/L	2	<2	-	-
trans-1,2-dichloroethene	µg/L	0.5	<0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	-	-
1,1-dichloroethane	µg/L	0.5	<0.5	-	-
Vinyl acetate	µg/L	10	<10	-	-
MEK (2-butanone)	µg/L	10	<10	-	-
cis-1,2-dichloroethene	µg/L	0.5	<0.5	-	-
Bromochloromethane	µg/L	0.5	<0.5	-	-
Chloroform (THM)	µg/L	0.5	2.5	-	-
2,2-dichloropropane	µg/L	0.5	<0.5	-	-
1,2-dichloroethane	µg/L	0.5	<0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	<0.5	-	-
1,1-dichloropropene	µg/L	0.5	<0.5	-	-
Carbon tetrachloride	µg/L	0.5	<0.5	-	-
Dibromomethane	µg/L	0.5	<0.5	-	-
1,2-dichloropropane	µg/L	0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	-	-
2-nitropropane	µg/L	100	<100	-	-
Bromodichloromethane (THM)	µg/L	0.5	<0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	<5	-	-
cis-1,3-dichloropropene	µg/L	0.5	<0.5	-	-
trans-1,3-dichloropropene	μg/L	0.5	<0.5	-	-
1,1,2-trichloroethane	μg/L	0.5	<0.5	-	-
1,3-dichloropropane	μg/L	0.5	<0.5	-	-
Dibromochloromethane (THM)	μg/L	0.5	<0.5	-	-
2-hexanone (MBK)	μg/L	5	<5	-	-
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	-	-
Chlorobenzene	μg/L	0.5	<0.5	-	-
Bromoform (THM)	µg/L	0.5	<0.5	-	
cis-1,4-dichloro-2-butene	µg/L	1	<1	-	_
				1	
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	-	-
	μg/L μg/L			-	-
Styrene (Vinyl benzene) 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L	0.5	<0.5 <0.5 <0.5		

SE220848 R0

VOCs in Water [AN433] Tested: 24/6/2021 (continued)

			BH101M	GWQD1	QR1
			WATER	WATER	WATER
			- 18/6/2021	- 18/6/2021	- 18/6/2021
PARAMETER	UOM	LOR	SE220848.006	SE220848.007	SE220848.008
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	-	-
Bromobenzene	µg/L	0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	-	-
2-chlorotoluene	µg/L	0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	6.7	-	-
tert-butylbenzene	µg/L	0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	15	-	-
sec-butylbenzene	µg/L	0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	-	-
Total VOC	µg/L	10	30	-	-

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 24/6/2021

			BH101M	GWQD1	QR1
			WATER	WATER	WATER
			18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.006	SE220848.007	SE220848.008
TRH C6-C9	µg/L	40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403]

— Т(este	ed:	21/	6/	202	21

			BH101M	GWQD1	QR1
			WATER	WATER	WATER
			-	-	-
			18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.006	SE220848.007	SE220848.008
TRH C10-C14	µg/L	50	88	<50	<50
TRH C15-C28	µg/L	200	340	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200
TRH >C10-C16	µg/L	60	180	<60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	180	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500
TRH C10-C40	µg/L	320	430	<320	<320

SE220848 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 21/6/2021

			BH101M WATER -
PARAMETER	UOM	LOR	18/6/2021 SE220848.006
Naphthalene	μg/L	0.1	<0.1
2-methylnaphthalene	μg/L	0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1
Fluorene	µg/L	0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1
Anthracene	µg/L	0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1
Pyrene	µg/L	0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1
Chrysene	µg/L	0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1
Total PAH (18)	µg/L	1	<1

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 21/6/2021

			BH101M	GWQD1	QR1
			WATER	WATER	WATER
			18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.006	SE220848.007	SE220848.008
Arsenic, As	µg/L	1	<1	<1	<1
Cadmium, Cd	µg/L	0.1	0.1	0.2	<0.1
Chromium, Cr	µg/L	1	5	5	<1
Copper, Cu	µg/L	1	14	15	<1
Lead, Pb	µg/L	1	2	2	<1
Nickel, Ni	µg/L	1	470	450	<1
Zinc, Zn	µg/L	5	130	130	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 21/6/2021

			BH101M	GWQD1	QR1
			WATER	WATER	WATER
			18/6/2021	18/6/2021	18/6/2021
PARAMETER	UOM	LOR	SE220848.006	SE220848.007	SE220848.008
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001

- METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602 The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if
(a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	t↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Lan Ye EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-1116 Barrenjoey Road, Palm B	SGS Reference	SE220848 R0
Order Number	E25203	Date Received	18 Jun 2021
Samples	10	Date Reported	25 Jun 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate	PAH (Polynuclear Aromatic Hydrocarbons) in Water	1 item
Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Fibre Identification in soil							Method:	ME-(AU)-[ENV]AN60
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
EBH101_0.1-0.2	SE220848.001	LB227368	18 Jun 2021	18 Jun 2021	18 Jun 2022	23 Jun 2021	18 Jun 2022	25 Jun 2021
EBH102_0.1-0.2	SE220848.002	LB227368	18 Jun 2021	18 Jun 2021	18 Jun 2022	23 Jun 2021	18 Jun 2022	25 Jun 2021
EBH103_0.1-0.2	SE220848.003	LB227368	18 Jun 2021	18 Jun 2021	18 Jun 2022	23 Jun 2021	18 Jun 2022	25 Jun 2021
EBH104_0.1-0.2	SE220848.004	LB227368	18 Jun 2021	18 Jun 2021	18 Jun 2022	23 Jun 2021	18 Jun 2022	25 Jun 2021
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]AN311(Perth)/AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE220848.006	LB227098	18 Jun 2021	18 Jun 2021	16 Jul 2021	21 Jun 2021	16 Jul 2021	22 Jun 2021
GWQD1	SE220848.007	LB227098	18 Jun 2021	18 Jun 2021	16 Jul 2021	21 Jun 2021	16 Jul 2021	22 Jun 2021
QR1	SE220848.008	LB227098	18 Jun 2021	18 Jun 2021	16 Jul 2021	21 Jun 2021	16 Jul 2021	22 Jun 2021
Mercury in Soil							Method:	ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
EBH101_0.1-0.2	SE220848.001	LB227375	18 Jun 2021	18 Jun 2021	16 Jul 2021	23 Jun 2021	16 Jul 2021	25 Jun 2021
EBH102_0.1-0.2	SE220848.002	LB227375	18 Jun 2021	18 Jun 2021	16 Jul 2021	23 Jun 2021	16 Jul 2021	25 Jun 2021
EBH103_0.1-0.2	SE220848.003	LB227375	18 Jun 2021	18 Jun 2021	16 Jul 2021	23 Jun 2021	16 Jul 2021	25 Jun 2021
EBH104_0.1-0.2	SE220848.004	LB227375	18 Jun 2021	18 Jun 2021	16 Jul 2021	23 Jun 2021	16 Jul 2021	25 Jun 2021
QD1	SE220848.005	LB227375	18 Jun 2021	18 Jun 2021	16 Jul 2021	23 Jun 2021	16 Jul 2021	25 Jun 2021
Moisture Content								ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
EBH101_0.1-0.2	SE220848.001	LB227188	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	26 Jun 2021	23 Jun 2021
EBH102_0.1-0.2	SE220848.002	LB227188	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	26 Jun 2021	23 Jun 2021
EBH103_0.1-0.2	SE220848.003	LB227188	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	26 Jun 2021	23 Jun 2021
EBH104_0.1-0.2	SE220848.004	LB227188	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	26 Jun 2021	23 Jun 2021
QD1	SE220848.005	LB227188	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	26 Jun 2021	23 Jun 2021
QTB1	SE220848.009	LB227188	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	26 Jun 2021	23 Jun 2021
OC Pesticides in Soil								ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	
EBH101_0.1-0.2	Sample No. SE220848.001	LB227177	Sampled 18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	Analysed 23 Jun 2021
EBH101_0.1-0.2	SE220848.001	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH103_0.1-0.2	SE220848.002	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH104_0.1-0.2	SE220848.004	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
QD1	SE220848.005	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
OP Pesticides in Soil								ME-(AU)-[ENV]AN42
	O - maile Nie	00 0-6	O a manufacial	Dessived	Futur stilen Due	Estur et e d		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
EBH101_0.1-0.2	SE220848.001	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH102_0.1-0.2	SE220848.002	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH103_0.1-0.2	SE220848.003	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH104_0.1-0.2 QD1	SE220848.004	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
	SE220848.005	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
PAH (Polynuclear Aromatic H	• •					_		ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
EBH101_0.1-0.2	SE220848.001	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH102_0.1-0.2	SE220848.002	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH103_0.1-0.2	SE220848.003	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH104_0.1-0.2 QD1	SE220848.004 SE220848.005	LB227177 LB227177	18 Jun 2021 18 Jun 2021	18 Jun 2021 18 Jun 2021	02 Jul 2021 02 Jul 2021	21 Jun 2021 21 Jun 2021	31 Jul 2021 31 Jul 2021	23 Jun 2021 23 Jun 2021
PAH (Polynuclear Aromatic H		LOZZIIII	10 0011 2021	10 0011 2021	02 001 202 1	2100112021		ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE220848.006	LB227088	18 Jun 2021	18 Jun 2021	25 Jun 2021	21 Jun 2021	31 Jul 2021	24 Jun 2021
GWQD1	SE220848.007	LB227088	18 Jun 2021	18 Jun 2021	25 Jun 2021	21 Jun 2021	31 Jul 2021	25 Jun 2021
QR1	SE220848.008	LB227088	18 Jun 2021	18 Jun 2021	25 Jun 2021	21 Jun 2021	31 Jul 2021	25 Jun 2021
PCBs in Soil								ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	SE220848.001	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
EBH101_0.1-0.2						21 Jun 2021		
	SE220848.007 SE220848.002 SE220848.003	LB227177 LB227177	18 Jun 2021 18 Jun 2021	18 Jun 2021 18 Jun 2021	02 Jul 2021 02 Jul 2021	21 Jun 2021 21 Jun 2021	31 Jul 2021 31 Jul 2021	23 Jun 2021 23 Jun 2021

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

CBs in Soil (continued)							Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QD1	SE220848.005	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
tal Recoverable Elemen	ts in Soil/Waste Solids/Mat	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE220848.001	LB227364	18 Jun 2021	18 Jun 2021	15 Dec 2021	23 Jun 2021	15 Dec 2021	25 Jun 2021
BH102_0.1-0.2	SE220848.002	LB227364	18 Jun 2021	18 Jun 2021	15 Dec 2021	23 Jun 2021	15 Dec 2021	25 Jun 2021
BH103_0.1-0.2	SE220848.003	LB227364	18 Jun 2021	18 Jun 2021	15 Dec 2021	23 Jun 2021	15 Dec 2021	25 Jun 2021
BH104_0.1-0.2	SE220848.004	LB227364	18 Jun 2021	18 Jun 2021	15 Dec 2021	23 Jun 2021	15 Dec 2021	25 Jun 2021
D1	SE220848.005	LB227364	18 Jun 2021	18 Jun 2021	15 Dec 2021	23 Jun 2021	15 Dec 2021	25 Jun 2021
ace Metals (Dissolved) ir	1 Water by ICPMS						Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H101M	SE220848.006	LB227126	18 Jun 2021	18 Jun 2021	15 Dec 2021	21 Jun 2021	15 Dec 2021	23 Jun 2021
WQD1	SE220848.007	LB227126	18 Jun 2021	18 Jun 2021	15 Dec 2021	21 Jun 2021	15 Dec 2021	23 Jun 2021
R1	SE220848.008	LB227126	18 Jun 2021	18 Jun 2021	15 Dec 2021	21 Jun 2021	15 Dec 2021	23 Jun 2021
RH (Total Recoverable H	ydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE220848.001	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
BH102_0.1-0.2	SE220848.002	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 202
BH103_0.1-0.2	SE220848.003	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
 BH104_0.1-0.2	SE220848.004	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
D1	SE220848.005	LB227177	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 202
RH (Total Recoverable H	ydrocarbons) in Water						Method: I	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H101M	SE220848.006	LB227088	18 Jun 2021	18 Jun 2021	25 Jun 2021	21 Jun 2021	31 Jul 2021	24 Jun 2021
WQD1	SE220848.007	LB227088	18 Jun 2021	18 Jun 2021	25 Jun 2021	21 Jun 2021	31 Jul 2021	24 Jun 2021
R1	SE220848.008	LB227088	18 Jun 2021	18 Jun 2021	25 Jun 2021	21 Jun 2021	31 Jul 2021	24 Jun 2021
DC's in Soil							Method: I	ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE220848.001	LB227181	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
BH102_0.1-0.2	SE220848.002	LB227181	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
BH103_0.1-0.2	SE220848.003	LB227181	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 202
BH104_0.1-0.2	SE220848.004	LB227181	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
-		LB227181	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
QD1	SE220848.005							
	SE220848.005 SE220848.009	LB227181	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021	23 Jun 2021
TB1		LB227181 LB227181	18 Jun 2021 18 Jun 2021	18 Jun 2021 18 Jun 2021	02 Jul 2021 02 Jul 2021	21 Jun 2021 21 Jun 2021	31 Jul 2021 31 Jul 2021	
QTB1 QTS1	SE220848.009						31 Jul 2021	23 Jun 2021
ITB1 ITS1 DCs in Water	SE220848.009 SE220848.010	LB227181	18 Jun 2021	18 Jun 2021	02 Jul 2021	21 Jun 2021	31 Jul 2021 Method: I	23 Jun 202 [,] M E-(AU)-[ENV]/
NTB1 NTS1 DCs in Water Sample Name	SE220848.009						31 Jul 2021 <mark>Method: I</mark> Analysis Due	23 Jun 202 [,] ME-(AU)-[ENV]A Analysed
tTB1 tTS1 CCs in Water ample Name H101M	SE220848.009 SE220848.010 Sample No.	LB227181 QC Ref	18 Jun 2021 Sampled	18 Jun 2021 Received	02 Jul 2021 Extraction Due	21 Jun 2021 Extracted	31 Jul 2021 Method: I	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021
TB1 TS1 CCs in Water ample Name H101M WQD1	SE220848.009 SE220848.010 Sample No. SE220848.006	LB227181 QC Ref LB227471	18 Jun 2021 Sampled 18 Jun 2021	18 Jun 2021 Received 18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021	21 Jun 2021 Extracted 24 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021	23 Jun 202 ME-(AU)-[ENV]/ Analysed 25 Jun 202 25 Jun 202
TB1 TS1 DCs in Water ample Name H101M WQD1 R1	SE220848.009 SE220848.010 Sample No. SE220848.006 SE220848.007 SE220848.008	LB227181 QC Ref LB227471 LB227471	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021	18 Jun 2021 Received 18 Jun 2021 18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021 25 Jun 2021 25 Jun 2021
ITB1 ITS1 DCs in Water Sample Name H101M WQD1 IR1 olatile Petroleum Hydroca	SE220848.009 SE220848.010 Sample No. SE220848.006 SE220848.007 SE220848.008 arbons in Soil	LB227181 QC Ref LB227471 LB227471 LB227471	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021 18 Jun 2021	18 Jun 2021 Received 18 Jun 2021 18 Jun 2021 18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I	23 Jun 202 ⁻ ME-(AU)-[ENV]/ Analysed 25 Jun 202 ⁻ 25 Jun 202 ⁻ 25 Jun 202 ⁻ 25 Jun 202 ⁻
ITB1 ITS1 DCs in Water Sample Name H101M WQD1 IR1 olatile Petroleum Hydroca sample Name	SE220848.009 SE220848.010 SE220848.006 SE220848.006 SE220848.007 SE220848.008 arbons in Soil Sample No.	LB227181 QC Ref LB227471 LB227471 LB227471 QC Ref	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021 18 Jun 2021 Sampled	18 Jun 2021 Received 18 Jun 2021 18 Jun 2021 18 Jun 2021 Received	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 Extraction Due	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 Extracted	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due	23 Jun 202 ME-(AU)-[ENV]A Analysed 25 Jun 202 25 Jun 202 25 Jun 202 ME-(AU)-[ENV]A Analysed
ITB1 ITS1 DCs in Water ample Name H101M SWQD1 IR1 olatile Petroleum Hydroca ample Name BH101_0.1-0.2	SE220848.009 SE220848.010 Sample No. SE220848.006 SE220848.007 SE220848.008 arbons in Soil	LB227181 QC Ref LB227471 LB227471 LB227471 QC Ref LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021 18 Jun 2021 Sampled 18 Jun 2021	18 Jun 2021 Received 18 Jun 2021 18 Jun 2021 18 Jun 2021 Received 18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 Extraction Due 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 Extracted 21 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due 31 Jul 2021	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021 25 Jun 2021 25 Jun 2021 ME-(AU)-[ENV]A Analysed 23 Jun 2021
TB1 TS1 DCs in Water ample Name H101M WQD1 R1 Iatile Petroleum Hydroca ample Name BH101_0.1-0.2 BH102_0.1-0.2	SE220848.009 SE220848.010 Sample No. SE220848.006 SE220848.007 SE220848.008 arbons in Soil Sample No. SE220848.001	LB227181 QC Ref LB227471 LB227471 LB227471 QC Ref	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021 18 Jun 2021 Sampled	18 Jun 2021 Received 18 Jun 2021 18 Jun 2021 18 Jun 2021 Received	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 Extraction Due	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 Extracted	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021 25 Jun 2021 25 Jun 2021 ME-(AU)-[ENV]A Analysed 23 Jun 2021 23 Jun 2021
TB1 TS1 DCs in Water ample Name H101M WQD1 R1 Iatile Petroleum Hydroca ample Name BH101_0.1-0.2 BH102_0.1-0.2 BH103_0.1-0.2	SE220848.009 SE220848.010 SE220848.006 SE220848.006 SE220848.007 SE220848.008 arbons in Soil Sample No. SE220848.001 SE220848.002	LB227181 QC Ref LB227471 LB227471 LB227471 QC Ref LB227181 LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021 18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021 18 Jun 2021	18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 Extraction Due 02 Jul 2021 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 24 Jun 2021 Extracted 21 Jun 2021 21 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due 31 Jul 2021 31 Jul 2021	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021 25 Jun 2021 25 Jun 2021 ME-(AU)-[ENV]A Analysed 23 Jun 2021 23 Jun 2021 23 Jun 2021
TB1 TS1 DCs in Water ample Name H101M WQD1 R1 Iatile Petroleum Hydroca ample Name BH101_0.1-0.2 BH102_0.1-0.2 BH103_0.1-0.2 BH104_0.1-0.2	SE220848.009 SE220848.010 SE220848.006 SE220848.006 SE220848.007 SE220848.008 arbons in Soil Sample No. SE220848.001 SE220848.002 SE220848.003	LB227181 QC Ref LB227471 LB227471 LB227471 B227471 CB227471 LB227471 LB227471 LB227471 LB227181 LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021 18 Jun 2021 18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021 18 Jun 2021	18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 24 Jun 2021 Extracted 21 Jun 2021 21 Jun 2021 21 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due 31 Jul 2021 31 Jul 2021 31 Jul 2021	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 ME-(AU)-[ENV]A Analysed 23 Jun 2021 23 Jun 2021 23 Jun 2021
TB1 TS1 TS1 CCs in Water ample Name H101M WQD1 R1 latile Petroleum Hydrocs ample Name BH101_0.1-0.2 BH102_0.1-0.2 BH103_0.1-0.2 BH104_0.1-0.2 D1	SE220848.009 SE220848.010 SE220848.006 SE220848.006 SE220848.007 SE220848.008 arbons in Soil Sample No. SE220848.001 SE220848.002 SE220848.003 SE220848.004	LB227181 QC Ref LB227471 LB227471 LB227471 LB227471 LB227471 LB227471 LB227471 LB227181 LB227181 LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021	18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 24 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due 31 Jul 2021 31 Jul 2021 31 Jul 2021	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 Analysed 23 Jun 2021 23 Jun 2021 23 Jun 2021 23 Jun 2021 23 Jun 2021
TB1 TS1 TS1 CCs in Water ample Name H101M WQD1 R1 latile Petroleum Hydrocs ample Name BH101_0.1-0.2 BH102_0.1-0.2 BH103_0.1-0.2 BH104_0.1-0.2 D1 TB1	SE220848.009 SE220848.010 Sample No. SE220848.006 SE220848.007 SE220848.008 arbons in Soll Sample No. SE220848.001 SE220848.001 SE220848.001 SE220848.001 SE220848.001 SE220848.001 SE220848.002 SE220848.003 SE220848.004 SE220848.005	LB227181 QC Ref LB227471 LB227471 LB227471 LB227471 LB227471 LB227471 LB227471 LB227181 LB227181 LB227181 LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021	18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due 31 Jul 2021 31 Jul 2021 31 Jul 2021 31 Jul 2021	23 Jun 202 ⁻ ME-(AU)-[ENV]/ Analysed 25 Jun 202 ⁻ 25 Jun 202 ⁻ 25 Jun 202 ⁻ 25 Jun 202 ⁻ ME-(AU)-[ENV]/ Analysed 23 Jun 202 ⁻ 23 Jun 202 ⁻ 25 Jun 202 ⁻
TB1 TS1 TS1 DCs in Water ample Name H101M WQD1 R1 latile Petroleum Hydroca ample Name BH101_0.1-0.2 BH102_0.1-0.2 BH103_0.1-0.2 BH104_0.1-0.2 D1 TB1 TS1	SE220848.009 SE220848.010 Sample No. SE220848.006 SE220848.007 SE220848.008 arbons in Soll Sample No. SE220848.001 SE220848.001 SE220848.001 SE220848.001 SE220848.002 SE220848.003 SE220848.004 SE220848.005 SE220848.009 SE220848.010	LB227181 QC Ref LB227471 LB227471 LB227471 LB227471 LB227471 LB227481 LB227181 LB227181 LB227181 LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021	18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 21 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due 31 Jul 2021 31 Jul 2021 31 Jul 2021 31 Jul 2021 31 Jul 2021	23 Jun 202 ⁻ ME-(AU)-[ENV]/ Analysed 25 Jun 202 ⁻ 25 Jun 202 ⁻ 25 Jun 202 ⁻ 25 Jun 202 ⁻ 23 Jun 202 ⁻ 25 Jun 202
TB1 TS1 DCs in Water ample Name H101M WQD1 IR1 alatile Petroleum Hydroca ample Name BH101_0.1-0.2 BH102_0.1-0.2 BH103_0.1-0.2 BH104_0.1-0.2 ID1 ITS1 alatile Petroleum Hydroca	SE220848.009 SE220848.010 SE220848.006 SE220848.007 SE220848.008 arbons in Soil Sample No. SE220848.001 SE220848.002 SE220848.001 SE220848.001 SE220848.001 SE220848.003 SE220848.003 SE220848.004 SE220848.005 SE220848.009 SE220848.010 SE220848.010	LB227181 QC Ref LB227471 LB227471 LB227471 LB227471 LB227471 LB227181 LB227181 LB227181 LB227181 LB227181 LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021	18 Jun 2021 Received 18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 Extracted 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due 31 Jul 2021 31 Jul 2021	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021 25 Jun 2021 25 Jun 2021 ME-(AU)-[ENV]A Analysed 23 Jun 2021 23 Jun 2021
TB1 TS1 DCs in Water Sample Name BH101M SWQD1 R1 Dotatile Petroleum Hydroca Sample Name BH101_0.1-0.2 BH102_0.1-0.2 BH103_0.1-0.2 BH104_0.1-0.2 DD1 DTB1 DTS1 Sample Name	SE220848.009 SE220848.010 Sample No. SE220848.006 SE220848.007 SE220848.008 arbons in Soil Sample No. SE220848.001 SE220848.002 SE220848.001 SE220848.001 SE220848.003 SE220848.003 SE220848.004 SE220848.005 SE220848.009 SE220848.010 arbons in Water Sample No.	LB227181 QC Ref LB227471 LB227471 LB227471 LB227471 LB227471 LB227181 LB227181 LB227181 LB227181 LB227181 LB227181 LB227181 LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021	18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 24 Jun 2021 Extracted 21 Jun 2021 21 Jun 2021	31 Jul 2021 Method: I O3 Aug 2021 O3 Aug 2021 O3 Aug 2021 O3 Aug 2021 Method: I Analysis Due 31 Jul 2021 31 Jul 2021 31 Jul 2021 31 Jul 2021 31 Jul 2021 31 Jul 2021 31 Jul 2021 Method: I Analysis Due	23 Jun 2021 23 Jun 2021 23 Jun 2021 ME-(AU)-[ENV]A 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 23 Jun 2021
201 2015 2015 2015 2015 2015 2015 2015 2015 2016 2017 2	SE220848.009 SE220848.010 SE220848.006 SE220848.007 SE220848.008 arbons in Soil Sample No. SE220848.001 SE220848.002 SE220848.001 SE220848.001 SE220848.001 SE220848.003 SE220848.003 SE220848.004 SE220848.005 SE220848.009 SE220848.010 SE220848.010	LB227181 QC Ref LB227471 LB227471 LB227471 LB227471 LB227471 LB227181 LB227181 LB227181 LB227181 LB227181 LB227181	18 Jun 2021 Sampled 18 Jun 2021 18 Jun 2021	18 Jun 2021 Received 18 Jun 2021 18 Jun 2021	02 Jul 2021 Extraction Due 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 Extraction Due 02 Jul 2021	21 Jun 2021 Extracted 24 Jun 2021 24 Jun 2021 24 Jun 2021 Extracted 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021 21 Jun 2021	31 Jul 2021 Method: I Analysis Due 03 Aug 2021 03 Aug 2021 03 Aug 2021 Method: I Analysis Due 31 Jul 2021 31 Jul 2021	23 Jun 2021 ME-(AU)-[ENV]A Analysed 25 Jun 2021 25 Jun 2021 25 Jun 2021 25 Jun 2021 23 Jun 2021

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil	Commite Manua	Comple Number	1 he ite		E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Fetrachloro-m-xylene (TCMX) (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	92
	EBH102_0.1-0.2	SE220848.002	%	60 - 130%	93 94
	EBH103_0.1-0.2 EBH104 0.1-0.2	SE220848.003 SE220848.004	%	60 - 130% 60 - 130%	103
	EBH104_0.1-0.2	3E220640.004	/0		
P Pesticides in Soil					E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	90
	EBH102_0.1-0.2	SE220848.002	%	60 - 130%	84
	EBH103_0.1-0.2	SE220848.003	%	60 - 130%	90
	EBH104_0.1-0.2	SE220848.004	%	60 - 130%	96
d14-p-terphenyl (Surrogate)	EBH101_0.1-0.2 EBH102 0.1-0.2	SE220848.001	%	60 - 130%	90
	EBH102_0.1-0.2 EBH103_0.1-0.2	SE220848.002 SE220848.003	%	60 - 130% 60 - 130%	86 90
	EBH105_0.1-0.2	SE220848.004	%	60 - 130%	96
	LDI1104_0.1-0.2	3L220040.004	70		
AH (Polynuclear Aromatic Hydrocarbons) in Soil					E-(AU)-[ENV]AI
arameter	Sample Name	Sample Number	Units	Criteria	Recovery S
2-fluorobiphenyl (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	70 - 130%	90
	EBH102_0.1-0.2	SE220848.002	%	70 - 130%	84
	EBH103_0.1-0.2	SE220848.003	%	70 - 130%	90
	EBH104_0.1-0.2	SE220848.004	%	70 - 130%	96
114-p-terphenyl (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	70 - 130%	90
	EBH102_0.1-0.2	SE220848.002	%	70 - 130%	86
	EBH103_0.1-0.2	SE220848.003	%	70 - 130%	90
d5-nitrobenzene (Surrogate)	EBH104_0.1-0.2 EBH101_0.1-0.2	SE220848.004 SE220848.001	%	70 - 130% 70 - 130%	96 96
us-nitrobenzene (Surrogate)	EBH101_0.1-0.2 EBH102_0.1-0.2	SE220848.002	%	70 - 130%	100
	EBH102_0.1-0.2	SE220848.002	%	70 - 130%	100
	EBH104_0.1-0.2	SE220848.004	%	70 - 130%	116
AH (Polynuclear Aromatic Hydrocarbons) in Water				Method: M	E-(AU)-[ENV]AN
	Comple Nome	Comple Number	Unite		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH101M BH101M	SE220848.006 SE220848.006	%	40 - 130% 40 - 130%	40 52
d14-p-terphenyl (Surrogate) d5-nitrobenzene (Surrogate)	BH101M	SE220848.006	%	40 - 130 %	30 ①
	BITTOTIM	3L220040.000	70		
CBs in Soil					E-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Tetrachloro-m-xylene (TCMX) (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	92
	EBH102_0.1-0.2	SE220848.002	%	60 - 130%	93
	EBH103_0.1-0.2	SE220848.003	%	60 - 130%	94
	EBH104_0.1-0.2	SE220848.004	%	60 - 130%	103
DC's in Soil				Method: M	E-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Bromofluorobenzene (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	85
	EBH102_0.1-0.2	SE220848.002	%	60 - 130%	82
	EBH103_0.1-0.2	SE220848.003	%	60 - 130%	76
	EBH104_0.1-0.2	SE220848.004	%	60 - 130%	80
	QD1	SE220848.005	%	60 - 130%	78
	QTB1	SE220848.009	%	60 - 130%	89
	QTS1	SE220848.010	%	60 - 130%	78
d4-1,2-dichloroethane (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	90
	EBH102_0.1-0.2	SE220848.002	%	60 - 130%	90
	EBH103_0.1-0.2	SE220848.003	%	60 - 130%	86
	EBH104_0.1-0.2	SE220848.004	%	60 - 130%	83
	QD1	SE220848.005	%	60 - 130%	87
	QTB1	SE220848.009	%	60 - 130%	95
	QTS1	SE220848.010	%	60 - 130%	84
d8-toluene (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	71
					74
	EBH102_0.1-0.2 EBH103_0.1-0.2	SE220848.002 SE220848.003	%	60 - 130% 60 - 130%	68

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)				Method: MI	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	EBH104_0.1-0.2	SE220848.004	%	60 - 130%	68
	QD1	SE220848.005	%	60 - 130%	68
	QTB1	SE220848.009	%	60 - 130%	77
	QTS1	SE220848.010	%	60 - 130%	72
/OCs in Water				Method: MI	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101M	SE220848.006	%	40 - 130%	102
	GWQD1	SE220848.007	%	40 - 130%	102
	QR1	SE220848.008	%	40 - 130%	103
d4-1,2-dichloroethane (Surrogate)	BH101M	SE220848.006	%	40 - 130%	96
	GWQD1	SE220848.007	%	40 - 130%	96
	QR1	SE220848.008	%	40 - 130%	98
d8-toluene (Surrogate)	BH101M	SE220848.006	%	40 - 130%	95
	GWQD1	SE220848.007	%	40 - 130%	95
	QR1	SE220848.008	%	40 - 130%	95
olatile Petroleum Hydrocarbons in Soil				Method: MI	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	85
	EBH102_0.1-0.2	SE220848.002	%	60 - 130%	82
	EBH103_0.1-0.2	SE220848.003	%	60 - 130%	76
	EBH104_0.1-0.2	SE220848.004	%	60 - 130%	80
	QD1	SE220848.005	%	60 - 130%	78
d4-1,2-dichloroethane (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	90
	EBH102_0.1-0.2	SE220848.002	%	60 - 130%	90
	EBH103_0.1-0.2	SE220848.003	%	60 - 130%	86
	EBH104 0.1-0.2	SE220848.004	%	60 - 130%	83
	QD1	SE220848.005	%	60 - 130%	87
d8-toluene (Surrogate)	EBH101_0.1-0.2	SE220848.001	%	60 - 130%	71
	EBH102_0.1-0.2	SE220848.002	%	60 - 130%	74
	EBH103 0.1-0.2	SE220848.003	%	60 - 130%	68
	EBH104 0.1-0.2	SE220848.004	%	60 - 130%	68
	QD1	SE220848.005	%	60 - 130%	68
olatile Petroleum Hydrocarbons in Water					E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101M	SE220848.006	%	40 - 130%	102
	GWQD1	SE220848.007	%	40 - 130%	102
	QR1	SE220848.008	%	40 - 130%	103
d4-1,2-dichloroethane (Surrogate)	BH101M	SE220848.006	%	60 - 130%	96
,	GWQD1	SE220848.007	%	60 - 130%	96
	0.1.401	02220010.001		00 100/0	

QR1

BH101M

GWQD1

QR1

SE220848.008

SE220848.006

SE220848.007

SE220848.008

%

%

%

%

60 - 130%

40 - 130%

40 - 130%

40 - 130%

d8-toluene (Surrogate)

98

95

95

95

SE220848 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN3					
Sample Number	Parameter	Units	LOR	Result	
LB227098.001	Mercury	mg/L	0.0001	<0.0001	

Mercury in Soil

Mercury in Soil			Met	hod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB227375.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Pesticides in Soil			Meth	od: ME-(AU)-[ENV]A
Imple Number	Parameter	Units	LOR	Result
227177.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	_	89

OP Pesticides in Soil

25/6/2021

OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB227177.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94
		d14-p-terphenyl (Surrogate)	%	-	96
PAH (Polynuclear Aromat	ic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB227177.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Fluorene

<0.1

<0.1

<0.1

<0.1

<0.1

0.1

0.1

0.1

0.1

0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

SE220848 R0

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

PAH (Polynuclear Aromatic Hyd	AH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)					
Sample Number		Parameter	Units	LOR	Result	
LB227177.001		Fluoranthene	mg/kg	0.1	<0.1	
		Pyrene	mg/kg	0.1	<0.1	
		Benzo(a)anthracene	mg/kg	0.1	<0.1	
		Chrysene	mg/kg	0.1	<0.1	
		Benzo(a)pyrene	mg/kg	0.1	<0.1	
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	
		Total PAH (18)	mg/kg	0.8	<0.8	
Sur	rrogates	d5-nitrobenzene (Surrogate)	%	-	96	
		2-fluorobiphenyl (Surrogate)	%	-	94	
		d14-p-terphenyl (Surrogate)	%	-	96	

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Sample Number		Parameter	Units	LOR	Result
LB227088.001		Naphthalene	μg/L	0.1	<0.1
		2-methylnaphthalene	μg/L	0.1	<0.1
		1-methylnaphthalene	μg/L	0.1	<0.1
		Acenaphthylene	μg/L	0.1	<0.1
		Acenaphthene	μg/L	0.1	<0.1
		Fluorene	μg/L	0.1	<0.1
		Phenanthrene	μg/L	0.1	<0.1
		Anthracene	μg/L	0.1	<0.1
		Fluoranthene	μg/L	0.1	<0.1
		Pyrene	μg/L	0.1	<0.1
		Benzo(a)anthracene	μg/L	0.1	<0.1
		Chrysene	μg/L	0.1	<0.1
		Benzo(a)pyrene	μg/L	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
		Dibenzo(ah)anthracene	μg/L	0.1	<0.1
		Benzo(ghi)perylene	μg/L	0.1	<0.1
Surro	ogates	d5-nitrobenzene (Surrogate)	%	-	56
		2-fluorobiphenyl (Surrogate)	%	-	66
		d14-p-terphenyl (Surrogate)	%	-	72

PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb LOR Result Parameter I B227177 001 Arochlor 1016 mg/kg 02 <0.2 Arochlor 1221 mg/kg 0.2 <0.2 Arochlor 1232 0.2 <0.2 mg/kg Arochlor 1242 mg/kg 0.2 <0.2 Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 0.2 <0.2 mg/kg Arochlor 1260 mg/kg 0.2 < 0.2 Arochlor 1262 mg/kg 0.2 <0.2 <0.2 Arochlor 1268 0.2 mg/kg Total PCBs (Arochlors) mg/kg 1 <1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) % 89 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB227364.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0
Trace Metals (Dissolved) in Water by ICPMS			Met	hod: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	

SE220848 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

cis-1,2-dichloroethene

Trace Metals (Dissolved) in Water by ICPMS (continued) Method: ME-(AU)-[ENV]AN318 Result Sample Number Parameter Units LOR LB227126.001 Arsenic, As µg/L 1 <1 Cadmium, Cd µg/L 0.1 < 0.1 Chromium, Cr <1 µg/L 1 Copper, Cu 1 <1 µg/L Lead, Pb µg/L 1 <1 Nickel, Ni µg/L <1 Zinc. Zn 5 <5 ua/L LB227126.025 Arsenic, As µg/L 1 <1 <0.1 Cadmium, Cd µg/L 0.1 Chromium, Cr <1 µg/L 1 Copper, Cu µg/L <1 1 Lead, Pb <1 µg/L 1 Nickel, Ni 1 µg/L <1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Result Parameter LB227177.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 45 <45 mg/kg TRH C29-C36 45 <45 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 Result Sample Number Parameter Units LOR LB227088.001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 µg/L 200 <200 TRH C29-C36 200 <200 µg/L TRH C37-C40 µg/L 200 <200 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units Result LB227181.001 Monocyclic Aromatic Benzene mg/kg 0.1 < 0.1 Hvdrocarbons Toluene 0.1 <0.1 mg/kg Ethylbenzene 0.1 <0.1 mg/kg <0.2 m/p-xvlene 0.2 ma/ka o-xylene mg/kg 0.1 <0.1 Polycyclic VOCs <0.1 Naphthalene mg/kg 0.1 Surrogates d4-1,2-dichloroethane (Surrogate) % 109 d8-toluene (Surrogate) % 108 % Bromofluorobenzene (Surrogate) 99 Totals 0.6 Total BTEX <0.6 mg/kg VOCs in Water Method: ME-(AU)-[ENV]AN433 Result Sample Number Parameter LOR LB227471.001 Fumigants 2,2-dichloropropane 0.5 <0.5 µg/L < 0.5 1,2-dichloropropane µg/L 0.5 cis-1,3-dichloropropene 0.5 <0.5 µg/L 0.5 <0.5 trans-1,3-dichloropropene µg/L 1.2-dibromoethane (EDB) µg/L 0.5 < 0.5 Halogenated Aliphatics Dichlorodifluoromethane (CFC-12) 5 <5 µg/L Chloromethane 5 <5 µg/L Vinyl chloride (Chloroethene) µg/L 0.3 < 0.3 Bromomethane 10 <10 µg/L Chloroethane µg/L 5 <5 Trichlorofluoromethane µg/L 1 <1 lodomethane µg/L 5 <5 1,1-dichloroethene 0.5 <0.5 µg/L Dichloromethane (Methylene chloride) µg/L 5 <5 Allyl chloride µg/L 2 <2 trans-1,2-dichloroethene 0.5 <0.5 µg/L 1.1-dichloroethane µg/L 0.5 < 0.5

<0.5

0.5

µg/L

SE220848 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

ple Number 7471.001 Halogenated Alip Halogenated Alip Halogenated Aro Monocyclic Arom Hydrocarbons Mitrogenous Corr Oxygenated Corr Oxygenated Corr Surrogates		Parameter Bromochloromethane 1,2-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-trichloropropene Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethane (Perchloroethylene,PCE) 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,2,2-tetrachloroethane 1,2,2-tetrachloroethane 1,2,3-trichloropane trans-1,4-dichloro-2-butene	μց/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Result <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Halogenated Aro Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Oxygenated Com		1,2-dichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethane (Perchloroethylene,PCE) 1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,2,3-trichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5	<0.5 <0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L μg/L	0.5 0.5 0.5	<0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L μg/L	0.5 0.5	
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	1,1,1,2-tetrachloroethane cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L μg/L	0.5	<0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	cis-1,4-dichloro-2-butene 1,1,2,2-tetrachloroethane 1,2,3-trichloropropane	μg/L		<0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	1,1,2,2-tetrachloroethane 1,2,3-trichloropropane			
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	1,2,3-trichloropropane	ua/L	1	<1
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics			0.5	<0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	trans-1,4-dichloro-2-butene	μg/L	0.5	<0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics		μg/L	1	<1
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
Monocyclic Arom Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated	tics	Hexachlorobutadiene	µg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		Chlorobenzene	μg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		Bromobenzene	μg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		2-chlorotoluene	μg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		4-chlorotoluene	μg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		1,3-dichlorobenzene	µg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		1,4-dichlorobenzene	µg/L	0.3	<0.3
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		1,2-dichlorobenzene	µg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
Hydrocarbons Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated		Benzene		0.5	<0.5
Nitrogenous Com Oxygenated Com Polycyclic VOCs Sulphonated			μg/L		
Oxygenated Com Polycyclic VOCs Sulphonated		Toluene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		Ethylbenzene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		m/p-xylene	μg/L	1	<1
Oxygenated Com Polycyclic VOCs Sulphonated		o-xylene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		Isopropylbenzene (Cumene)	µg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		n-propylbenzene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		tert-butylbenzene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		sec-butylbenzene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		p-isopropyltoluene	μg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated		n-butylbenzene	µg/L	0.5	<0.5
Oxygenated Com Polycyclic VOCs Sulphonated	unds	Acrylonitrile	µg/L	0.5	<0.5
Polycyclic VOCs Sulphonated		Acetone (2-propanone)	μg/L	10	<10
Sulphonated		MtBE (Methyl-tert-butyl ether)	μg/L	2	<2
Sulphonated		Vinyl acetate	μg/L	10	<10
Sulphonated				10	<10
Sulphonated		MEK (2-butanone)	μg/L		
Sulphonated		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
Sulphonated		2-hexanone (MBK)	μg/L	5	<5
		Naphthalene	µg/L	0.5	<0.5
Surrogates		Carbon disulfide	μg/L	2	<2
		d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	93
		Bromofluorobenzene (Surrogate)	%	-	100
Trihalomethanes		Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	µg/L	0.5	<0.5
		Bromoform (THM)	µg/L	0.5	<0.5
le Petroleum Hydrocarbons in Soil					od: ME-(AU)-[EN

SE220848 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Volatile Petroleum Hydrocarbons in Soil (continued)					od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB227181.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	109

Volatile Petroleum Hydrocarbons in Water

Sample Number		Parameter	Units	LOR	Result
LB227471.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	93
		Bromofluorobenzene (Surrogate)	%	-	100

Method: ME-(AU)-[ENV]AN433

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury (dissolved) in Water

Mercury (dissolved) in Water Method: ME-(AU)-[ENV].					ENVJAN311(P	erth)/AN312		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220821.006	LB227098.014	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0
SE220848.008	LB227098.024	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	198

Mercury in Soil

								-
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220829.010	LB227375.014	Mercury	mg/kg	0.05	<0.05	<0.05	133	0
SE220848.005	LB227375.023	Mercury	mg/kg	0.05	<0.05	<0.05	161	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220738.012	LB227188.011	% Moisture	%w/w	1	<1	<1	200	0
SE220848.004	LB227188.022	% Moisture	%w/w	1	24.5	25.7	34	5
SE220848.009	LB227188.025	% Moisture	%w/w	1	<1	<1	200	0

OC Peeticides in Soil

OC Pesticides in S	oil						Meth	od: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220738.004	LB227177.032		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.14	30	0
SE220848.004	LB227177.027		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	0.1	0.1	125	1
			trans-Nonachlor	mg/kg	0.1	0.1	0.2	98	8
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-[ENV]AN002

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220848.004	LB227177.027		Dieldrin	mg/kg	0.2	<0.2	<0.2	89	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Endosulfan sulphate Endrin Aldehyde	Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	30	2

P Pesticides in S	ioil						Meth	od: ME-(AU)-	ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220738.004	LB227177.028		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
E220848.003	LB227177.029		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	7
		-	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
VH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	(ENVJA

Original	Dunlingto	Devementer			Original	Dunlingto	Critorio 9/	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220738.004	LB227177.028	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
		Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
		Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
		Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E220738.004	LB227177.028		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	0
E220848.003	LB227177.029		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0

									· •
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220738.004	LB227177.029		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	0
SE220848.004	LB227177.027		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220848.004	LB227177.027	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	2
otal Recoverable	Elements in Soil/Was	ste Solids/Materials					Method: ME	-(AU)-[ENV]A	N040/A
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE220829.010	LB227364.014		Arsenic, As	mg/kg	1	22	24	34	8 KPD
02220020.010	LB227004.014		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	620	500	30	23
			Copper, Cu	mg/kg	0.5	43	50	31	15
			Nickel, Ni	mg/kg	0.5	380	600	30	46 @
			Lead, Pb	mg/kg	1	16	29	34	62 @
			Zinc, Zn	mg/kg	2	35	41	35	16
SE220848.005	LB227364.023		Arsenic, As	mg/kg	1	4	3	58	22
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	9.5	7.6	36	22
			Copper, Cu	mg/kg	0.5	22	23	32	2
			Nickel, Ni	mg/kg	0.5	2.6	3.1	48	16
			Lead, Pb	mg/kg	1	30	29	33	4
			Zinc, Zn	mg/kg	2	100	100	32	2
race Metals (Diss	olved) in Water by IC	PMS					Meth	od: ME-(AU)-	- IENVIAI
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE220821.008	LB227126.014		Arsenic, As	μg/L	1	1	1	97	10 KPD
	1022.120.014		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	μg/L	1	<1	<1	147	0
			Copper, Cu	μg/L	1	<1	<1	200	0
			Lead, Pb	μg/L	1	<1	<1	200	0
			Nickel, Ni	μg/L	1	4	4	39	4
			Zinc, Zn	μg/L	5	<5	<5	200	0
RH (Total Recov	erable Hydrocarbons)	in Soil					Meth	od: ME-(AU)-	IENVIA
	erable Hydrocarbons)	in Soil	Paramotor	Unite	LOR	Original		od: ME-(AU)-	
Original	Duplicate	in Soil	Parameter	Units	LOR 20	Original	Duplicate	Criteria %	RPD
Original		in Soil	TRH C10-C14	mg/kg	20	<20	Duplicate <20	Criteria % 200	RPD 0
Original	Duplicate	in Soil	TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 45	<20 <45	Duplicate <20 <45	Criteria % 200 200	RPD 0 0
Original	Duplicate	in Soil	TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg	20 45 45	<20 <45 <45	Duplicate <20 <45 <45	Criteria % 200 200 200	RPD 0 0 0
Original	Duplicate	in Soil	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg	20 45	<20 <45	Duplicate <20 <45	Criteria % 200 200	RPD 0 0
Original	Duplicate	in Soil	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100	<20 <45 <45 <100	Duplicate <20 <45 <45 <100 <110	Criteria % 200 200 200 200 200	RPD 0 0 0 0
Original	Duplicate		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210	<20 <45 <45 <100 <110 <210	Duplicate <20	Criteria % 200 200 200 200 200 200 200	RPD 0 0 0 0 0
Original	Duplicate	In Soil	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110	<20 <45 <45 <100 <110	Duplicate <20 <45 <45 <100 <110	Criteria % 200 200 200 200 200	RPD 0 0 0 0 0 0 0 0
Original	Duplicate		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25	<20 <45 <45 <100 <110 <210 <25	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200	RPD 0 0 0 0 0 0 0 0 0
Original	Duplicate		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25	<20 <45 <45 <100 <110 <210 <25 <25	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200	RPD 0
Original SE220738.004	Duplicate		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 25 90	<20 <45 <45 <100 <110 <210 <25 <25 <90	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90 120	<20 <45 <400 <110 <210 <25 <25 <90 <120	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
	Duplicate LB227177.027		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 210 25 25 90 120 20	<20 <45 <100 <110 <210 <25 <25 <90 <120 <20	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90 120 20 45	<20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C32-C40 (F4) TRH >C10-C14 TRH C10-C36 TRH C10-C38 TRH C10-C38 TRH C10-C38 TRH C10-C38 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 25 25 90 120 20 45 45	<20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH C10-C14 TRH C10-C14 TRH C10-C36 TRH C10-C36 TRH C10-C36 TRH C10-C36 TRH C10-C36 TRH C10-C34 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 25 25 90 120 20 45 45 100	<20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C34-C40 (F4) TRH C15-C28 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90 120 20 45 45 45 100 110	<pre><20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110</pre>	Duplicate <20 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C40-C40 (F4) TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90 120 20 45 45 100 110 210	<pre><20 <45 <45 <100 <110 <210 <25 <25 <25 <20 <420 <45 <45 <100 <110 <210</pre>	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C46-C34 (F3) TRH >C16-C34 (F4) TRH >C10-C14 TRH C15-C28 TRH C37-C40 TRH C37-C40 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 100 110 210 25 25 90 120 20 45 45 100 110 210 25	<pre><20 <45 <45 <100 <110 <210 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <210</pre>	Duplicate <20 <45 <100 <110 <210 <25 <25 <25 <90 <120 <45 <45 <100 <110 <210 <25	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C4-C40 (F4) TRH >C14 TRH C15-C28 TRH C29-C36 TRH C29-C36 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C10-C14 TRH C10-C14 TRH C10-C14 TRH C15-C28 TRH C10-C14 TRH C10-C14 TRH C10-C16 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16	mg/kg	20 45 100 110 210 25 25 90 120 20 45 45 45 45 100 110 210 25 25	<pre><20 <45 <45 <100 <110 <210 <25 <25 <20 <420 <45 <45 <100 <110 <210 <210 <210 <210 <25 </pre>	Duplicate <20	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C10-C14 TRH C10-C14 TRH C10-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 / Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2)	mg/kg	20 45 100 110 210 25 25 90 120 20 45 45 45 100 110 210 25 25 90	<pre><20 <45 <45 <100 <110 <210 <225 <25 <90 <120 <20 <45 <45 <100 <110 <210 <210 <25 <90 <90 <90 <120 <90 <90 <90 <90 <90 <90 <90 <90 <90 <9</pre>	Duplicate <20 <45 <100 <110 <210 <25 <25 <90 <120 <45 <45 <100 <110 <210 <210 <25 <25 <90 <120 <120	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004 SE220848.003	Duplicate LB227177.027	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH SC10-C36 Total TRH >C10-C36 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C14 TRH C10-C14 TRH C29-C36 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C40 (F4)	mg/kg	20 45 100 110 25 25 25 90 120 20 45 45 100 110 210 25 25 90 120	<pre><20 <425 <45 <100 <110 <210 <25 <90 <120 <220 <45 <45 <100 <110 <210 <210 <210 <210 <210 <210</pre>	Duplicate <20 <45 <45 <100 <210 <225 <25 <25 <90 <120 <45 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 <120 <120 <45 <45 <45 <45 <45 <45 <45 <45 <45 <45	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004 SE220848.003 SE220848.003	Duplicate LB227177.027 LB227177.028	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH >C10-C14 TRH C15-C28 TRH C29-C36 TRH C29-C36 TRH C37-C40 TRH C10-C16 (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) <td>mg/kg mg/kg mg/kg</td> <td>20 45 45 100 110 25 25 25 90 120 20 45 45 100 110 210 25 25 90 120</td> <td><pre><20 <425 <45 <100 <110 <210 <25 <90 <120 <20 <45 <45 <100 <110 <210 <210 <210 <210 <210 <210</pre></td> <td>Duplicate <20 <45 <45 <100 <210 <225 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 <120 <meth< td=""><td>Criteria % 200 200 200 200 200 200 200 200 200 20</td><td>RPD 0</td></meth<></td>	mg/kg	20 45 45 100 110 25 25 25 90 120 20 45 45 100 110 210 25 25 90 120	<pre><20 <425 <45 <100 <110 <210 <25 <90 <120 <20 <45 <45 <100 <110 <210 <210 <210 <210 <210 <210</pre>	Duplicate <20 <45 <45 <100 <210 <225 <25 <25 <90 <120 <20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 <120 <meth< td=""><td>Criteria % 200 200 200 200 200 200 200 200 200 20</td><td>RPD 0</td></meth<>	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004 SE220848.003 SE220848.003	Duplicate LB227177.027	TRH F Bands TRH F Bands Monocyclic	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C40 (F4) TRH >C16-C34 (F3) TRH >C10-C14 TRH C10-C14 TRH C10-C14 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C34 (F3) TRH >C16-C34 (F3) TRH >C16-C34 (F4)	mg/kg	20 45 45 100 110 25 25 25 90 120 45 45 100 110 210 25 25 90 120 120 120	<pre><20 <425 <45 <100 <110 <210 <25 <25 <25 <90 <120 <45 <45 <100 <110 <210 <225 <25 <90 <120 <210 <225 <25 <90 <120 <00 <120 <00 <00 <00 <00 <00 <00 <00 <00 <00 <</pre>	Duplicate <20 <45 <45 <100 <210 <25 <25 <90 <120 <45 <45 <100 <110 <210 <25 <25 <90 <120 <100 <110 <210 <210 <20 <45 <45 <45 <100 <110 <210 <20 <45 <45 <45 <45 <45 <45 <45 <45 <45 <45	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004	Duplicate LB227177.027 LB227177.028	TRH F Bands	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16-Naphthalene (F2) TRH >C16-C34 (F3) TRH >C46-C34 (F3) TRH >C40-C14 TRH >C10-C14 TRH C10-C14 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C40 Total (F bands)	mg/kg	20 45 45 100 110 25 25 90 120 45 45 45 100 110 210 25 25 90 120 120 20 120	<pre><20 <45 <45 <100 <110 <210 <25 <25 <20 <420 <45 <45 <100 <110 <210 <210 <25 <25 <90 <120 <010 <210 <25 <25 <90 <120 <011 <0.1 <0.1 </pre>	Duplicate <20 <45 <45 <100 <210 <25 <25 <90 <120 <45 <45 <100 <110 <220 <45 <45 <100 <110 <225 <25 <90 <120 <00 <120 <00 <120 <00 <100 <00 <00 <00 <00 <00 <00 <00 <	Criteria % 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004 SE220848.003 SE220848.003	Duplicate LB227177.027 LB227177.028	TRH F Bands TRH F Bands Monocyclic	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C14 TRH C10-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C16	mg/kg	20 45 45 100 110 210 25 25 90 120 20 45 45 45 45 100 110 210 25 25 90 120 20 120 0.1 0.1 0.1	<pre><20 <45 <45 <100 <110 <210 <25 <25 <25 <90 <120 <45 <45 <100 <110 <210 <25 <25 <90 <120 <0120 <0110 <25 <25 <90 <120 <0110 <011 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	Duplicate <20 <45 <100 <210 <225 <25 <90 <120 <20 <45 <45 <100 <110 <2210 <25 <25 <90 <120 Meth Duplicate <0.1 <0.1 <0.1	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004 SE220848.003 SE220848.003	Duplicate LB227177.027 LB227177.028	TRH F Bands TRH F Bands Monocyclic	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C14 TRH >C10-C36 Total TRH >C10-C14 TRH C10-C14 TRH C29-C36 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C40 TRH >C10-C40 TRH >C10-C40 TRH >C10-C40 TRH >C10-C40 TRH >C10-C40 TRH >C10-C40 Total (F bands) TRH >C10-C40 Total (F bands) TRH >C10-C40 Total (F bands) TRH >C10-C40 (F4)	mg/kg mg/kg </td <td>20 45 100 110 25 25 90 120 20 45 45 100 110 210 210 210 210 20 45 45 100 110 210 210 20 45 45 100 110 210 20 45 45 100 110 20 20 45 100 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 20 120 20 20 20 20 20 20 20 20 20 20 20 20 2</td> <td><pre><20 <420 <45 <45 <100 <110 <210 <225 <25 <90 <120 <45 <45 <100 <110 <210 <220 <45 <45 <100 <110 <210 <25 <25 <90 <120 </pre></td> <td>Duplicate <20 <45 <100 <210 <225 <25 <90 <120 <20 <45 <45 <100 <210 <210 <25 <25 <90 <120 Meth Duplicate <0.1 <0.1 <0.2</td> <td>Criteria % 200 200 200 200 200 200 200 200 200 20</td> <td>RPD 0</td>	20 45 100 110 25 25 90 120 20 45 45 100 110 210 210 210 210 20 45 45 100 110 210 210 20 45 45 100 110 210 20 45 45 100 110 20 20 45 100 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 20 120 20 20 20 20 20 20 20 20 20 20 20 20 2	<pre><20 <420 <45 <45 <100 <110 <210 <225 <25 <90 <120 <45 <45 <100 <110 <210 <220 <45 <45 <100 <110 <210 <25 <25 <90 <120 </pre>	Duplicate <20 <45 <100 <210 <225 <25 <90 <120 <20 <45 <45 <100 <210 <210 <25 <25 <90 <120 Meth Duplicate <0.1 <0.1 <0.2	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004 SE220848.003 SE220848.003	Duplicate LB227177.027 LB227177.028	TRH F Bands TRH F Bands Monocyclic Aromatic	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C14 TRH >C37-C40 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C14 TRH C10-C14 TRH C29-C36 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16-C34 (F3) TRH >C10-C40 (F4)	mg/kg mg/kg </td <td>20 45 100 110 25 5 5 90 120 20 45 45 100 110 210 210 25 5 25 90 120 20 45</td> <td><pre><20 <420 <45 <45 <100 <110 <210 <225 <25 <90 <120 <45 <45 <100 <110 <210 <210 <210 <210 <100 <210 <21</pre></td> <td>Duplicate <20 <45 <45 <100 <110 <210 <25 <90 <120 <45 <45 <100 <110 <210 <210 <210 <25 <25 <90 <120 <120 <0.1 <0.1 <0.1 <0.2 <0.1</td> <td>Criteria % 200 200 200 200 200 200 200 200 200 20</td> <td>RPD 0</td>	20 45 100 110 25 5 5 90 120 20 45 45 100 110 210 210 25 5 25 90 120 20 45	<pre><20 <420 <45 <45 <100 <110 <210 <225 <25 <90 <120 <45 <45 <100 <110 <210 <210 <210 <210 <100 <210 <21</pre>	Duplicate <20 <45 <45 <100 <110 <210 <25 <90 <120 <45 <45 <100 <110 <210 <210 <210 <25 <25 <90 <120 <120 <0.1 <0.1 <0.1 <0.2 <0.1	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004 SE220848.003 SE220848.003	Duplicate LB227177.027 LB227177.028	TRH F Bands TRH F Bands TRH F Bands Monocyclic Aromatic Polycyclic	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3) TRH >C10-C14 TRH >C10-C36 Total TRH >C10-C36 TRH >C37-C40 TRH C10-C36 TRH C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C34 (F3) TRH >C10-C40 (F4)	mg/kg mg/kg </td <td>20 45 100 110 25 25 90 120 20 45 45 100 110 210 210 210 210 20 45 45 100 110 210 210 20 45 45 100 110 210 20 45 45 100 110 20 20 45 100 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 20 120 20 20 20 20 20 20 20 20 20 20 20 20 2</td> <td><pre><20 <425 <45 <100 <110 <210 <25 <25 <90 <120 <45 <45 <100 <110 <210 <210 <225 <45 <100 <110 <210 <210 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0</pre></td> <td>Duplicate <20 <45 <45 <100 <110 <210 <25 <90 <120 <20 <45 <45 <100 <110 <210 <210 <210 <25 <90 <120 Meth Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td>Criteria % 200 200 200 200 200 200 200 200 200 20</td> <td>RPD 0</td>	20 45 100 110 25 25 90 120 20 45 45 100 110 210 210 210 210 20 45 45 100 110 210 210 20 45 45 100 110 210 20 45 45 100 110 20 20 45 100 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 120 20 20 20 120 20 20 20 20 20 20 20 20 20 20 20 20 2	<pre><20 <425 <45 <100 <110 <210 <25 <25 <90 <120 <45 <45 <100 <110 <210 <210 <225 <45 <100 <110 <210 <210 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0</pre>	Duplicate <20 <45 <45 <100 <110 <210 <25 <90 <120 <20 <45 <45 <100 <110 <210 <210 <210 <25 <90 <120 Meth Duplicate <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0
Original SE220738.004 SE220848.003 SE220848.003	Duplicate LB227177.027 LB227177.028	TRH F Bands TRH F Bands Monocyclic Aromatic	TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C14 TRH >C37-C40 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C14 TRH C10-C14 TRH C29-C36 TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C36 Total TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16 - Naphthalene (F2) TRH >C10-C16-C34 (F3) TRH >C10-C40 (F4)	mg/kg mg/kg </td <td>20 45 45 100 110 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 210 0.1 0.1 0.1 0.1 0.1</td> <td><pre><20 <420 <45 <45 <100 <110 <210 <225 <25 <90 <120 <45 <45 <100 <110 <210 <210 <210 <210 <100 <210 <21</pre></td> <td>Duplicate <20 <45 <45 <100 <110 <210 <25 <90 <120 <45 <45 <100 <110 <210 <210 <210 <25 <25 <90 <120 <120 <0.1 <0.1 <0.1 <0.2 <0.1</td> <td>Criteria % 200 200 200 200 200 200 200 200 200 20</td> <td>RPD 0</td>	20 45 45 100 110 25 25 90 120 20 45 45 100 110 210 25 25 90 120 20 45 45 100 110 210 210 0.1 0.1 0.1 0.1 0.1	<pre><20 <420 <45 <45 <100 <110 <210 <225 <25 <90 <120 <45 <45 <100 <110 <210 <210 <210 <210 <100 <210 <21</pre>	Duplicate <20 <45 <45 <100 <110 <210 <25 <90 <120 <45 <45 <100 <110 <210 <210 <210 <25 <25 <90 <120 <120 <0.1 <0.1 <0.1 <0.2 <0.1	Criteria % 200 200 200 200 200 200 200 200 200 20	RPD 0

Method: ME-(AU)-[ENV]AN433

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

			- .		1.0.5				
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE220738.009	LB227181.035	Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE220848.004	LB227181.037	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	8.3	50	0
		ounogates	d8-toluene (Surrogate)	mg/kg	_	6.8	6.6	50	2
			Bromofluorobenzene (Surrogate)	mg/kg		8.0	7.5	50	7
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
OCs in Water							Meth	od: ME-(AU)-	[ENV]AN4:
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220954.001	LB227471.026	Fumigants	2,2-dichloropropane		0.5	<0.5	<0.5	200	0
3E220934.001	LB227471.020	Fulligants		μg/L					
			1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	200	0
			cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	200	0
			trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	200	0
			1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	200	0
		Aliphatics	Chloromethane	µg/L	5	<5	<5	200	0
			Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	200	0
			Bromomethane	µg/L	10	<10	<10	200	0
			Chloroethane	µg/L	5	<5	<5	200	0
			Trichlorofluoromethane	μg/L	1	<1	<1	200	0
			lodomethane	μg/L	5	<5	<5	200	0
			1,1-dichloroethene		0.5	<0.5	<0.5	200	0
				μg/L					
			Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	200	0
			Allyl chloride	μg/L	2	<2	<2	200	0
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	200	0
			1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	200	0
			cis-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	200	0
			Bromochloromethane	μg/L	0.5	<0.5	<0.5	200	0
			1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	200	0
			1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	200	0
			1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	200	0
			Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	200	0
			Dibromomethane	µg/L	0.5	<0.5	<0.5	200	0
			Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5	<0.5	200	0
			1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	200	0
			1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	200	0
			1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	200	0
			cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	200	0
			1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	200	0
			1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	200	0
			trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	200	0
			Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	200	0
		Halogeneted	Chlorobenzene		0.5	<0.5	<0.5	200	0
		Halogenated		μg/L					
		Aromatics	Bromobenzene	μg/L	0.5	<0.5	<0.5	200	0
			2-chlorotoluene	µg/L	0.5	<0.5	<0.5	200	0
			4-chlorotoluene	µg/L	0.5	<0.5	<0.5	200	0
			1,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	200	0
			1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
		Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E220954.001	LB227471.026	Monocyclic	Toluene		0.5	<0.5	<0.5	200	RPD 0
LZZU904.001	LDZZ/4/1.020	Monocyclic Aromatic		μg/L					0
		Aromatic	Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	
			Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	200	0
			Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	<0.5	200	0
			n-propylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			tert-butylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			sec-butylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	200	0
			n-butylbenzene	μg/L	0.5	<0.5	<0.5	200	0
		Nitrogenous	Acrylonitrile	μg/L	0.5	<0.5	<0.5	200	0
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	<10	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	2	<2	<2	200	0
		Compoundo	Vinyl acetate	μg/L	10	<10	<10	200	0
			· · ·		10	<10	<10	200	0
			MEK (2-butanone)	µg/L					
			MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	200	0
			2-hexanone (MBK)	μg/L	5	<5	<5	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	<0.5	200	0
		Sulphonated	Carbon disulfide	µg/L	2	<2	<2	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.7	9.1	30	7
			d8-toluene (Surrogate)	µg/L	-	9.5	9.4	30	1
			Bromofluorobenzene (Surrogate)	µg/L	-	10.4	10.0	30	4
		Trihalomethan	Chloroform (THM)	µg/L	0.5	<0.5	<0.5	200	0
		es	Bromodichloromethane (THM)	µg/L	0.5	<0.5	<0.5	200	0
			Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	200	0
			Bromoform (THM)	μg/L	0.5	<0.5	<0.5	200	0
E220954.008	LB227471.027	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	200	0
222000 1.000		ranigano	1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	200	0
			cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	200	0
					0.5	<0.5	<0.5	200	0
			trans-1,3-dichloropropene	µg/L					
			1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	200	0
		Aliphatics	Chloromethane	µg/L	5	<5	<5	200	0
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	200	0
			Bromomethane	µg/L	10	<10	<10	200	0
			Chloroethane	µg/L	5	<5	<5	200	0
			Trichlorofluoromethane	μg/L	1	<1	<1	200	0
			lodomethane	µg/L	5	<5	<5	200	0
			1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	200	0
			Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	200	0
					2	<2	<2	200	0
			Allvl chloride	ua/L			-		
			Allyl chloride trans-1.2-dichloroethene	µg/L			<0.5	200	0
			trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	200	
			trans-1,2-dichloroethene 1,1-dichloroethane	μg/L μg/L	0.5 0.5	<0.5 <0.5	<0.5	200	0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene	μg/L μg/L μg/L	0.5 0.5 0.5	<0.5 <0.5 <0.5	<0.5 <0.5	200 200	0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane	μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5	200 200 200	0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane	μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	200 200 200 200	0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1,1-trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200	0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane	μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200	0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethene Bromochloromethane 1,2-dichloroethane 1,1,1-trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200	0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethene Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,1,1-trichloroethane 1,1,1-trichloroptopene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200	0 0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethene Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,1,1-trichloroethane 1,1,1-trichloropropene Carbon tetrachloride	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethane Bromochloromethane 1,2-dichloroethane 1,1-dichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethane Bromochloromethane 1,2-dichloroethane 1,1-dichloroethane 1,1-trichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane 1,1,2-trichloroethane	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethane Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane 1,1-2-trichloroethane 1,2-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane 1,3-dichloropropane	μց/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethane Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethane Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,1-trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethene (Trichloroethylene,TCE) 1,1,2-trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) 1,1,1,2-tetrachloroethane	μց/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			trans-1,2-dichloroethene 1,1-dichloroethane cis-1,2-dichloroethane Bromochloromethane 1,2-dichloroethane 1,2-dichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane 1,1-dichloropropene Carbon tetrachloride Dibromomethane Trichloroethane 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	200 200 200 200 200 200 200 200 200 200	0

Method: ME-(AU)-[ENV]AN433

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOCs in Water (continued)

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
E220954.008	LB227471.027	Halogenated	trans-1,4-dichloro-2-butene	μg/L	1	<1	<1	200	0
220004.000	LDZZIATI.OZI	Aliphatics	1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	200	0
		Aliphatios	Hexachlorobutadiene		0.5	<0.5	<0.5	200	0
				μg/L					0
		Halogenated	Chlorobenzene	μg/L	0.5	<0.5	<0.5	200	
		Aromatics	Bromobenzene	μg/L	0.5	<0.5	<0.5	200	0
			2-chlorotoluene	μg/L	0.5	<0.5	<0.5	200	0
			4-chlorotoluene	μg/L	0.5	<0.5	<0.5	200	0
			1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	200	0
			1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	200	0
			1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	200	0
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	200	0
		Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	<0.5	200	0
		, a official	Ethylbenzene		0.5	<0.5	<0.5	200	0
				μg/L					
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	μg/L	0.5	<0.5	<0.5	200	0
			Styrene (Vinyl benzene)	μg/L	0.5	<0.5	<0.5	200	0
			Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	200	0
			n-propylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			1,3,5-trimethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			tert-butylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			1,2,4-trimethylbenzene	μg/L	0.5	<0.5	<0.5	200	C
			sec-butylbenzene	μg/L	0.5	<0.5	<0.5	200	C
			p-isopropyltoluene	μg/L	0.5	<0.5	<0.5	200	0
			n-butylbenzene		0.5	<0.5	<0.5	200	0
		N 114		μg/L					
		Nitrogenous	Acrylonitrile	μg/L	0.5	<0.5	<0.5	200	(
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	<10	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	2	<2	<2	200	0
			Vinyl acetate	µg/L	10	<10	<10	200	0
			MEK (2-butanone)	µg/L	10	<10	<10	200	C
			MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	200	C
			2-hexanone (MBK)	µg/L	5	<5	<5	200	C
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	<0.5	200	(
		Sulphonated	Carbon disulfide	μg/L	2	<2	<2	200	(
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L		9.7	9.6	30	
		ounogates			_	9.5	9.5	30	(
			d8-toluene (Surrogate)	μg/L					
			Bromofluorobenzene (Surrogate)	μg/L	-	10.2	10.2	30	(
		Trihalomethan	Chloroform (THM)	μg/L	0.5	<0.5	<0.5	200	(
		es	Bromodichloromethane (THM)	µg/L	0.5	<0.5	<0.5	200	
			Dibromochloromethane (THM)	µg/L	0.5	<0.5	<0.5	200	(
			Bromoform (THM)	µg/L	0.5	<0.5	<0.5	200	(
tile Petroleum	Hydrocarbons in So	1					Meth	od: ME-(AU)-	-IENVI
	-		Demonstration		1.00	0			
iginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		RP
220738.009	LB227181.035		TRH C6-C10	mg/kg	25	<25	<25	200	(
			TRH C6-C9	mg/kg	20	<20	<20	200	(
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.7	10.4	30	
			d8-toluene (Surrogate)	mg/kg	-	9.5	10.3	30	
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.8	9.4	30	
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	(
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	(
220848.004	LB227181.037		TRH C6-C10		25	<25	<25	200	
220040.004	LDZZ/ 101.03/			mg/kg					(
			TRH C6-C9	mg/kg	20	<20	<20	200	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	8.3	30	(
			d8-toluene (Surrogate)	mg/kg	-	6.8	6.6	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.0	7.5	30	7
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	C
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	C
atile Petroleum	Hydrocarbons in Wa	ter					Moth	od: ME-(AU)-	
	THYOROGALDULIS IT WE	1001					Mem	ou. wi⊆-(AU)-	JCHAN N

Original Duplicate Parameter Units LOR

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

tile Petroleum Hydrocarbons in Water (continued) Vo

Volatile Petroleum	Hydrocarbons in Wa	ter (continued)					Meth	od: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220954.001	LB227471.026		TRH C6-C10	µg/L	50	<0.05	<50	200	0
			TRH C6-C9	µg/L	40	<0.04	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.7	9.1	30	7
			d8-toluene (Surrogate)	µg/L	-	9.5	9.4	30	1
			Bromofluorobenzene (Surrogate)	µg/L	-	10.4	10.0	30	4
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.0005	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<0.05	<50	200	0
SE220954.008	LB227471.027		TRH C6-C10	μg/L	50	<0.05	<50	200	0
			TRH C6-C9	μg/L	40	<0.04	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.7	9.6	30	1
			d8-toluene (Surrogate)	μg/L	-	9.5	9.5	30	0
			Bromofluorobenzene (Surrogate)	μg/L	-	10.2	10.2	30	0
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.0005	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<0.05	<50	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Nercury in Soil				N	lethod: ME-(A	U)-[ENV]AN312
Sample Number Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227375.002 Mercury	mg/kg	0.05	0.23	0.2	70 - 130	113

OC Pesticides in S	Soil						Method: ME-(A	U)-[ENV]AN4
Sample Number	r .	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB227177.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	111
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	88
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	113
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	95
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	115
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	108
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	98
OP Pesticides in S	Soil						Method: ME-(A	U)-[ENV]AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB227177.002		Dichlorvos	mg/kg	0.5	1.7	2	60 - 140	83
		Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	95
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	2	60 - 140	95
		Ethion	mg/kg	0.2	1.6	2	60 - 140	79
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
	Ū	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	76
AH (Polynuclear	Aromatic Hydroca	arbons) in Soil					Method: ME-(A	U)-[ENV]AN
Sample Number	·	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B227177.002		Naphthalene	mg/kg	0.1	3.5	4	60 - 140	88
		Acenaphthylene	mg/kg	0.1	3.6	4	60 - 140	90
		Acenaphthene	mg/kg	0.1	3.6	4	60 - 140	89
		Phenanthrene	mg/kg	0.1	3.5	4	60 - 140	87
		Anthracene	mg/kg	0.1	3.5	4	60 - 140	87
		Fluoranthene	mg/kg	0.1	3.4	4	60 - 140	86
		Pyrene	mg/kg	0.1	3.6	4	60 - 140	90
		Benzo(a)pyrene	mg/kg	0.1	3.8	4	60 - 140	95
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
		2-fluorobiphenyl (Surrogate)	mg/kg	_	0.4	0.5	40 - 130	82
		d14-p-terphenyl (Surrogate)	mg/kg		0.4	0.5	40 - 130	76
AH (Polvnuclear	Aromatic Hydroca						Method: ME-(A	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	
_B227088.002		Naphthalene	µg/L	0.1	25	40	60 - 140	63
		Acenaphthylene	µg/L	0.1	29	40	60 - 140	73
		Acenaphthene	µg/L	0.1	29	40	60 - 140	73
		Phenanthrene	µg/L	0.1	34	40	60 - 140	85
		Anthracene	μg/L	0.1	33	40	60 - 140	81
		Fluoranthene	μg/L	0.1	36	40	60 - 140	91
		Pyrene	μg/L	0.1	36	40	60 - 140	91
		Benzo(a)pyrene	μg/L	0.1	37	40	60 - 140	93
	Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.3	0.5	40 - 130	52
		2-fluorobiphenyl (Surrogate)	μg/L	-	0.3	0.5	40 - 130	64
		d14-p-terphenyl (Surrogate)	μg/L		0.4	0.5	40 - 130	74
CBs in Soil							Method: ME-(A	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B227177.002		Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	120

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227364.002	Arsenic, As	mg/kg	1	340	318.22	80 - 120	108
	Cadmium, Cd	mg/kg	0.3	5.1	4.81	70 - 130	106
	Chromium, Cr	mg/kg	0.5	42	38.31	80 - 120	110
	Copper, Cu	mg/kg	0.5	320	290	80 - 120	109
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	103

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number	Elements in Soil/V	Vaste Solids/Materials by ICPOES (continued)				weutou.	ME-(AU)-[EN\	/janu4u/ana
Cample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB227364.002		Lead, Pb	mg/kg	1	93	89.9	80 - 120	104
		Zinc, Zn	mg/kg	2	280	273	80 - 120	104
race Metals (Disso	olved) in Water by	ICPMS				N	Method: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B227126.002		Arsenic, As	µg/L	1	20	20	80 - 120	98
		Cadmium, Cd	µg/L	0.1	20	20	80 - 120	101
		Chromium, Cr	μg/L	1	19	20	80 - 120	95
		Copper, Cu	μg/L	1	19	20	80 - 120	95
		Lead, Pb	μg/L	1	20	20	80 - 120	101
		Nickel, Ni	μg/L	1	20	20	80 - 120	100
		Zinc, Zn	μg/L	5	20	20	80 - 120	98
LB227126.026		Arsenic, As	μg/L	1	20	20	80 - 120	101
		Cadmium, Cd	μg/L	0.1	20	20	80 - 120	98
		Chromium, Cr	μg/L	1	19	20	80 - 120	93
		Copper, Cu	µg/L	1	19	20	80 - 120	94
		Lead, Pb	μg/L	1	21	20	80 - 120	104
		Nickel, Ni	µg/L	1	20	20	80 - 120	98
		Zinc, Zn	μg/L	5	19	20	80 - 120	93
RH (Total Recover	rable Hydrocarboi	ns) in Soil				N	Nethod: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB227177.002		TRH C10-C14	mg/kg	20	39	40	60 - 140	98
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	90
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	83
	TRH F Bands	TRH >C10-C16	mg/kg	25	38	40	60 - 140	95
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	90
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
RH (Total Recover	rable Hydrocarboi	ns) in Water				N	Method: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB227088.002		TRH C10-C14	µg/L	50	970	1200	60 - 140	81
LB227088.002		TRH C15-C28	μg/L	200	1200	1200	60 - 140	98
		TRH C29-C36	μg/L	200	1200	1200	60 - 140	96
	TRH F Bands	TRH >C10-C16	μg/L	60	1100	1200	60 - 140	90
	Harr Bando	TRH >C16-C34 (F3)	μg/L	500	1200	1200	60 - 140	103
		TRH >C34-C40 (F4)	μg/L	500	570	600	60 - 140	95
OC's in Soil			F-3 [,] -					
						N	fethod: ME-(A)	U)-IENVIAN
		Parameter	Units	LOR	Result		Method: ME-(A Criteria %	
Sample Number	Monocyclic	Parameter Benzene	Units ma/ka		Result	Expected	Criteria %	Recovery
Sample Number	Monocyclic Aromatic	Benzene	mg/kg	0.1	4.9	Expected 5	Criteria % 60 - 140	Recovery 97
Sample Number	Monocyclic Aromatic	Benzene Toluene	mg/kg mg/kg	0.1 0.1	4.9 4.9	Expected 5 5	Criteria % 60 - 140 60 - 140	Recovery 97 99
Sample Number	-	Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	4.9 4.9 5.0	Expected 5 5 5	Criteria % 60 - 140 60 - 140 60 - 140	Recovery 97 99 100
Sample Number	-	Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	4.9 4.9 5.0 9.9	Expected 5 5 5 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 97 99 100 99
Sample Number	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1	4.9 4.9 5.0 9.9 5.0	Expected 5 5 5 10 5	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 97 99 100 99 100
Sample Number	-	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	4.9 4.9 5.0 9.9 5.0 11.3	Expected 5 5 10 5 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130	Recovery 97 99 100 99 100 113
Sample Number	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - -	4.9 4.9 5.0 9.9 5.0 11.3 10.9	Expected 5 5 10 5 10 10 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130	Recovery 97 99 100 99 100 113 109
Sample Number LB227181.002	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1	4.9 4.9 5.0 9.9 5.0 11.3	Expected 5 5 10 5 10 10 10 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130	Recovery 97 99 100 99 100 113 109 101
Sample Number LB227181.002	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - -	4.9 4.9 5.0 9.9 5.0 11.3 10.9 10.1	Expected 5 5 10 5 10 10 10 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Vethod: ME-(A	Recovery 97 99 100 99 100 113 109 101 U)-[ENV]AN
Sample Number .B227181.002 OCs in Water Sample Number	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 - - - LOR	4.9 4.9 5.0 9.9 5.0 11.3 10.9 10.1 Result	Expected 5 5 10 5 10 10 10 10 8 5 5 5 10 10 10 10 8 5 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Vethod: ME-(A Criteria %	Recovery 97 99 100 99 100 113 109 101 U)-[ENV]AN Recovery
Sample Number LB227181.002 OCs in Water Sample Number	Aromatic Surrogates Halogenated	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L	0.1 0.1 0.2 0.1 - - - - LOR 0.5	4.9 4.9 5.0 9.9 5.0 11.3 10.9 10.1 Result 49	Expected 5 5 10 5 10 10 10 10 8 Expected 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Xethod: ME-(Al Criteria % 60 - 140	Recovery 97 99 100 99 100 113 109 101 U)-[ENV]AN Recovery 107
Sample Number .B227181.002 OCs In Water Sample Number	Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethane 1,2-dichloroethane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	4.9 4.9 5.0 9.9 5.0 11.3 10.9 10.1 Result 49 49	Expected 5 5 10 5 10 10 10 10 10 5 5 5 10 10 10 10 8 Expected 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Xethod: ME-(Al Criteria % 60 - 140 60 - 140	Recovery 97 97 99 100 99 100 113 109 101 U)-[ENV]AN Recovery 107 107
Sample Number .B227181.002 OCs In Water Sample Number	Aromatic Surrogates Halogenated Aliphatics	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethane 1,2-dichloroethane Trichloroethane Trichloroethane (Trichloroethylene,TCE)	mg/kg units μg/L μg/L μg/L	0.1 0.1 0.2 0.1 - - - - UOR 0.5 0.5 0.5	4.9 4.9 5.0 9.9 5.0 11.3 10.9 10.1 Result 49 49 48	Expected 5 5 10 5 10 10 10 10 10 2 5 5 45.45 45.45 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Vethod: ME-(Al Criteria % 60 - 140 60 - 140	Recovery 97 99 100 99 100 91 100 91 100 91 100 91 100 101 U)-[ENV]AN Recovery 107 107 106
Sample Number .B227181.002 OCs in Water Sample Number	Aromatic Surrogates Halogenated Aliphatics Halogenated	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethane 1,2-dichloroethane Trichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	0.1 0.1 0.2 0.1 - - - UOR 0.5 0.5 0.5 0.5	4.9 4.9 5.0 9.9 5.0 11.3 10.9 10.1 Result 49 49 48 47	Expected 5 5 10 5 10 10 10 10 10 Expected 45.45 45.45 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Vethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140	Recovery 97 99 100 99 100 113 109 101 U)-[ENV]AN Recovery 107 106 104
Sample Number LB227181.002 OCs in Water Sample Number	Aromatic Surrogates Halogenated Aliphatics Halogenated Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethane 1,2-dichloroethane Trichloroethane Trichloroethane Chlorobenzene Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L	0.1 0.1 0.2 0.1 - - - - UOR 0.5 0.5 0.5 0.5 0.5	4.9 4.9 5.0 9.9 5.0 11.3 10.9 10.1 Result 49 49 48 47 49	Expected 5 5 10 5 10 10 10 10 10 5 Expected 45.45 45.45 45.45 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Vethod: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 97 99 100 99 100 99 100 91 100 99 100 99 100 99 100 113 109 101 U)-[ENV]AN Recovery 107 106 104 108
Sample Number LB227181.002 OCs in Water Sample Number LB227471.002	Aromatic Surrogates Halogenated Aliphatics Halogenated	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethane 1,2-dichloroethane Trichloroethane Trichloroethane Chlorobenzene Benzene Toluene	mg/kg up/kg up/l	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	4.9 4.9 5.0 9.9 5.0 11.3 10.9 10.1 Result 49 49 48 47 49 49	Expected 5 5 10 5 10 10 10 10 10 Expected 45.45 45.45 45.45 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Vethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 97 99 100 99 100 99 100 91 100 99 100 99 100 99 100 113 109 101 U)-[ENV]AN Recovery 107 106 104 108 108
Sample Number LB227181.002	Aromatic Surrogates Halogenated Aliphatics Halogenated Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene 1,2-dichloroethane Trichloroethene (Trichloroethylene,TCE) Chlorobenzene Benzene Toluene Ethylbenzene	mg/kg up/kg up/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	4.9 4.9 5.0 9.9 5.0 111.3 10.9 10.1 Result 49 49 49 48 47 49 49 48	Expected 5 5 10 5 10 10 10 10 10 Expected 45.45 45.45 45.45 45.45 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 Vethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery 97 99 100 99 100 91 100 99 100 99 100 99 100 99 100 113 109 101 U)-[ENV]AN Recovery 107 106 104 108 106
Sample Number LB227181.002 OCs in Water Sample Number	Aromatic Surrogates Halogenated Aliphatics Halogenated Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethene 1,2-dichloroethene 1,2-dichloroethene 1,2-dichloroethene 1,2-dichloroethene Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene	mg/kg ug/L µg/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	4.9 4.9 5.0 9.9 5.0 111.3 10.9 10.1 Result 49 49 48 47 49 48 47 49 48 47 49 9 48	Expected 5 5 10 5 10 10 10 10 10 Expected 45.45 45.45 45.45 45.45 45.45 45.45 90.9	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Xethod: ME-(A) Criteria % 60 - 140 60 -	Recovery 97 99 99 100 99 100 13 109 101 U)-[ENV]AN Recovery 107 106 104 108 108 106 107 107
Sample Number LB227181.002 OCs in Water Sample Number	Aromatic Surrogates Halogenated Aliphatics Halogenated Monocyclic Aromatic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethene 1,2-dichloroethane Trichloroethene 1,2-dichloroethane Trichloroethene 1,2-dichloroethane Trichloroethene 1,2-dichloroethane Trichloroethene 1,2-dichloroethane Toluene Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg ug/L µg/L µg/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	4.9 4.9 5.0 9.9 5.0 111.3 10.9 10.1 Result 49 49 49 48 47 49 49 48 47 49 49 48	Expected 5 5 10 5 10 10 10 10 Expected 45.45 45.45 45.45 45.45 45.45 45.45 90.9 45.45	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Criteria % 60 - 140 60 - 140	Recovery 97 99 100 99 100 113 109 101 U)-[ENV]AN Recovery 107 106 104 108 108 1007 106
Sample Number .B227181.002 OCs In Water Sample Number	Aromatic Surrogates Halogenated Aliphatics Halogenated Monocyclic	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Parameter 1,1-dichloroethene 1,2-dichloroethene 1,2-dichloroethene 1,2-dichloroethene 1,2-dichloroethene Chlorobenzene Benzene Toluene Ethylbenzene m/p-xylene	mg/kg ug/L μg/L μg/L	0.1 0.1 0.2 0.1 - - - - - - - - - - - - - - - - - - -	4.9 4.9 5.0 9.9 5.0 111.3 10.9 10.1 Result 49 49 48 47 49 48 47 49 48 47 49 9 48	Expected 5 5 10 5 10 10 10 10 10 Expected 45.45 45.45 45.45 45.45 45.45 45.45 90.9	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 70 - 130 Xethod: ME-(A) Criteria % 60 - 140 60 -	Recovery 97 99 99 100 99 100 13 109 101 U)-[ENV]AN Recovery 107 106 104 108 108 106 107 107

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (co	ntinued)					N	Nethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227471.002	Trihalomethan	Chloroform (THM)	μg/L	0.5	51	45.45	60 - 140	113
/olatile Petroleum	Hydrocarbons in S	oil				N	/lethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227181.002		TRH C6-C10	mg/kg	25	71	92.5	60 - 140	76
		TRH C6-C9	mg/kg	20	63	80	60 - 140	79
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	11.3	10	70 - 130	113
		Bromofluorobenzene (Surrogate)	mg/kg	-	10.1	10	70 - 130	101
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	41	62.5	60 - 140	65
/olatile Petroleum	Hydrocarbons in V	/ater				N	/lethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227471.002		TRH C6-C10	µg/L	50	850	946.63	60 - 140	90
		TRH C6-C9	μg/L	40	740	818.71	60 - 140	90
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.5	10	60 - 140	105
		d8-toluene (Surrogate)	μg/L	-	10.4	10	70 - 130	104
		Bromofluorobenzene (Surrogate)	µg/L	-	9.5	10	70 - 130	95
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	560	639.67	60 - 140	87

MATRIX SPIKES

SE220848 R0

Method: ME-(AU)-[ENV]AN312

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	fercury (dissolved) in Water						ENVJAN311	1(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE220807.001	LB227098.004	Mercury	mg/L	0.0001	0.0020	<0.0001	0.008	99

Mercury in Soil

QC Sample Sample Number Parameter Units LOR Result Original Sp	OC Samala						
	QC Sample	Sample Number Parameter	Units LOR	Result	Original	Spike	Recovery%
SE220820-001 LB227375-004 Mercupy malka 0.05 0.25 0.04087806764 0			mg/kg 0.05	0.25	0.04087806764	0.2	107

OC Pesticides in Soil

Pesticides in	Soil						М	ethod: ME-(AU)
Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
220738.002	LB227177.031		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	<0.1	0.2	121
			Aldrin	mg/kg	0.1	<0.1	0.2	104
			Beta BHC	mg/kg	0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	<0.1	0.2	111
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	0.2	112
			Endrin	mg/kg	0.2	<0.2	0.2	135
			o,p'-DDD	mg/kg	0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	124
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	-	89

QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE220738.002	LB227177.027	Dichlorvos	mg/kg	0.5	<0.5	2	85
		Dimethoate	mg/kg	0.5	<0.5	-	-
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	93
		Fenitrothion	mg/kg	0.2	<0.2	-	-
		Malathion	mg/kg	0.2	<0.2	-	-
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	95
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
		Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
		Methidathion	mg/kg	0.5	<0.5	-	-
		Ethion	mg/kg	0.2	<0.2	2	78
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
		Total OP Pesticides*	mg/kg	1.7	<1.7	-	-
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	82

	in A contaile right course ite			
QC Sample	Sample Number	Parameter	Units	LOR

IV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter SE220738.002 LB227177.027 Naphthalene 2-methylnaphthalene Acenaphthylene Acenaphthylene Benzo(a)anthracene Fluoranthene Pyrene Benzo(bå)/fluoranthene Benzo(bå)/fluoranthene Benzo(da)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(gh)pyrene Carcinogenic PAHs, BaP TEQ <lor< td=""> Total PAH (18) Surrogates</lor<>	TEQ (mg/kg) 0.3 <0.3
2-methylnaphthalene 1-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Fluorent Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(bä)ifluoranthene Benzo(a)anthracene Chrysene Benzo(a)anthracene Dibenzo(ah)anthracene Benzo(a)pyrene Indeno(1.2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Benzo(ah)anthracen	mg/kg 0.1 <0.1
1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Antracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(k)filuoranthene Benzo(k)filuoranthene Benzo(k)filuoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Benzo(ah)anthracene Benzo(apyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor< td=""> Total PAH (18) Surrogates 2-fluorobiphenyl (Surrogate) 2-fluorobiphenyl (Surrogate) 214-p-terphenyl (Surrogate) Bas in Soll C Sample Sample Number Parameter E220738.002 LB227177.028 <t< td=""><td>mg/kg 0.1 <0.1 - mg/kg 0.1 <0.1</td> 4 89 mg/kg 0.1 <0.1</t<></lor<></lor<></lor<></lor<></lor<>	mg/kg 0.1 <0.1 - mg/kg 0.1 <0.1
Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Benzo(b)ijfluoranthene Benzo(b)ijfluoranthene Benzo(b)ijfluoranthene Benzo(b)ijfluoranthene Benzo(b)ijfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Carcinogenic PAHs, BaP TEQ <lor <lor="" bap="" carcinogenic="" ezent<="" ezentsene="" pahs,="" td="" teq=""><td>mg/kg 0.1 <0.1 4 89 mg/kg 0.1 <0.1</td> 4 89 mg/kg 0.1 <0.1</lor>	mg/kg 0.1 <0.1 4 89 mg/kg 0.1 <0.1
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(bå)ifluoranthene Benzo(a)anthracene Chrysene Benzo(bå)ifluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Benzo(ah)anthra	mg/kg 0.1 <0.1 4 89 mg/kg 0.1 <0.1
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)ijfluoranthene Benzo(a)ijfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Benzo(ah)anthracene Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor< td=""> Surrogates 45-nitrobenzene (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) Bas in Soll C Sample Arochlor 1016 Arochlor 1221 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1248</lor<></lor<></lor<></lor<></lor<>	mg/kg 0.1 <0.1 - - mg/kg 0.1 <0.1
Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(bi)fluoranthene Benzo(bi)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Benzo(ab)rene Carcinogenic PAHs, BaP TEQ <lor< td=""> Carcinogenic PAHs, BaP TEQ <lor< td=""> Carcinogenic PAHs, BaP TEQ <lor< td=""> Surrogates d5-nitrobenzene (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1221</lor<></lor<></lor<>	mg/kg 0.1 <0.1 4 86 mg/kg 0.1 <0.1
Anthracene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(bå)fluoranthene Benzo(bå)fluoranthene Benzo(bå)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthe	mg/kg 0.1 <0.1 4 87 mg/kg 0.1 <0.1
Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(båi)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ahi)perylene Carcinogenic PAHs, BaP TEQ <lor< td=""> Surrogates d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) 2-fluorobiphenyl (Surrogate) 214-p-terphenyl (Surrogate) 220738.002 LB227177.028 Arochlor 1016 Arochlor 121 Arochlor 1221 Arochlor 1242 Arochlor 1248</lor<></lor<></lor<></lor<></lor<>	mg/kg 0.1 <0.1 4 85 mg/kg 0.1 <0.1
Pyrene Benzo(a)anthracene Chrysene Benzo(båi)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ah)anthracene Benzo(ah)anthracene Benzo(ah)perylene Carcinogenic PAHs, BaP TEQ <lor< td=""> Carcinogenic PAHs, BaP TEQ <lor< td=""> Carcinogenic PAHs, BaP TEQ <lor< td=""> Total PAH (18) Surrogates d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) 2-fluorobiphenyl (Surrogate) 220738.002 LB227177.028 Arochlor 1016 Arochlor 121 Arochlor 1221 Arochlor 1242 Arochlor 1248</lor<></lor<></lor<>	mg/kg 0.1 <0.1 4 85 mg/kg 0.1 <0.1
Be in Soll Sample Sample Number Parameter 220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1221 Arochlor 1248 Arochlor 1254	mg/kg 0.1 <0.1 4 89 mg/kg 0.1 <0.1
Benzo(a)anthracene Chrysene Benzo(b&)jfluoranthene Benzo(k)jfluoranthene Benzo(k)jfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor Carcinogenic PA</lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor 	mg/kg 0.1 <0.1 - - mg/kg 0.1 <0.1
Chrysene Berzo(b&)fluoranthene Berzo(b&)fluoranthene Berzo(a)pyrene Indeno(1,2,3-cd)pyrene Diberzo(ah)anthracene Berzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor <lor="" bap="" carcinogenic="" pahs,="" td="" teq="" teq<=""><td>mg/kg 0.1 <0.1 - - mg/kg 0.1 <0.1</td> - - mg/kg 0.1 <0.1</lor>	mg/kg 0.1 <0.1 - - mg/kg 0.1 <0.1
Benzo(b&)jfluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a)pyrene Dibenzo(a)hanthracene Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor Carcinogenic PAHs, BaP TEQ <lor Carcino</lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor </lor 	mg/kg 0.1 <0.1 - mg/kg 0.1 <0.1
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor <lor="" bap="" carcinogenic="" pahs,="" td="" teq="" teq<=""><td>mg/kg 0.1 <0.1 - mg/kg 0.1 <0.1</td> 4 92 mg/kg 0.1 <0.1</lor>	mg/kg 0.1 <0.1 - mg/kg 0.1 <0.1
Bein Soll Sample Sample Number Sample Sample Number Sample Sample Number Parameter Par	mg/kg 0.1 <0.1 4 92 mg/kg 0.1 <0.1
Indeno(1,2,3-cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor <lo<="" <lor="" bap="" carcinogenic="" pahs,="" td="" teq=""><td>mg/kg 0.1 <0.1 - - mg/kg 0.1 <0.1</td> - - mg/kg 0.1 <0.1</lor>	mg/kg 0.1 <0.1 - - mg/kg 0.1 <0.1
Biberzo(ah)anthracene Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor< td=""> d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) <t< td=""><td>mg/kg 0.1 <0.1 - - mg/kg 0.1 <0.1</td> - - mg/kg 0.1 <0.1</t<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	mg/kg 0.1 <0.1 - - mg/kg 0.1 <0.1
Benzo(ghi)perylene Carcinogenic PAHs, BaP TEQ <lor Carcinogenic PAHs, BaP TEQ <lor Carcinogenic PAHs, BaP TEQ <lor Carcinogenic PAHs, BaP TEQ <lor Total PAH (18) Surrogates d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) 38 In Soll Sample Sample Number Parameter 220738.002 LB227177.028 Arochlor 1016 Arochlor 1211 Arochlor 1221 Arochlor 1248 Arochlor 1254</lor </lor </lor </lor 	mg/kg 0.1 <0.1 - - R=0 TEQ (mg/kg) 0.2 <0.2
Carcinogenic PAHs, BaP TEQ <lor Carcinogenic PAHs, BaP TEQ <lor Carcinogenic PAHs, BaP TEQ <lor Total PAH (18) Surrogates d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) Ba In Soll ES ample Number Parameter 220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1221 Arochlor 1248 Arochlor 1254</lor </lor </lor 	TEQ (mg/kg) 0.2 <0.2 - - R=LOR TEQ (mg/kg) 0.3 <0.3
Surrogates Carcinogenic PAHs, BaP TEQ <lor< td=""> Carcinogenic PAHs, BaP TEQ <lor< td=""> Total PAH (18) Surrogates d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) 220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1242 Arochlor 1248 Arochlor 1254</lor<></lor<>	N=LOR TEQ (mg/kg) 0.3 <0.3 - - R=LOR/2 TEQ (mg/kg) 0.2 <0.2
Surrogates Carcinogenic PAHs, BaP TEQ <lor< td=""> Total PAH (18) d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) 8s in Soll Hermitian Surrogate 220738.002 LB227177.028 Arochlor 1016 Arochlor 1121 Arochlor 1221 Arochlor 1248 Arochlor 1254 Arochlor 1254</lor<>	R=LOR/2 TEQ (mg/kg) 0.2 <0.2 - - mg/kg 0.8 <0.8
Total PAH (18) Surrogates d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) 8s in Soil 220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254	Image 0.8 <0.8 - - mg/kg 0.8 <0.8
Surrogates d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) 8 in Soll Sample Sample Number Parameter 220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254	mg/kg - 0.4 - 92 mg/kg - 0.4 - 90 mg/kg - 0.4 - 90 mg/kg - 0.4 - 90 mg/kg - 0.4 - 82 Method: ME-(AU)-[ENV]A Units LOR Result Original Spike Recov mg/kg 0.2 <0.2
2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) 3s in Soil 220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254	mg/kg - 0.4 - 90 mg/kg - 0.4 - 82 Method: ME-(AU)-[ENV]A Units LOR Result Original Spike Recov mg/kg 0.2 <0.2
d14-p-terphenyl (Surrogate) 3s in Soll 2 Sample Sample Number 2 Sample LB227177.028 Arochlor 1016 Arochlor 121 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254	mg/kg - 0.4 - 82 Method: ME-(AU)-[ENV]A Units LOR Result Original Spike Recov mg/kg 0.2 <0.2
As in Soli Parameter 2 Sample Sample Number Parameter 220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254 Arochlor 1254	Method: ME-(AU)-[ENV]A Units LOR Result Original Spike Recov mg/kg 0.2 <0.2
As in Soil Parameter 2 Sample Sample Number Parameter 220738.002 LB227177.028 Arochlor 1016 Arochlor 121 Arochlor 1221 Arochlor 1232 Arochlor 1232 Arochlor 1248 Arochlor 1254	Wethod: ME-(AU)-[ENV]A Units LOR Result Original Spike Recov mg/kg 0.2 <0.2
2 Sample Sample Number Parameter 220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1248 Arochlor 1254	Units LOR Result Original Spike Recov mg/kg 0.2 <0.2 <0.2 - - mg/kg 0.2 <0.2 <0.2 - -
220738.002 LB227177.028 Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254	mg/kg 0.2 <0.2 <0.2 - - mg/kg 0.2 <0.2
Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254	mg/kg 0.2 <0.2 <0.2 - - mg/kg 0.2 <0.2
Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254	mg/kg 0.2 <0.2 <0.2 mg/kg 0.2 <0.2
Arochlor 1242 Arochlor 1248 Arochlor 1254	mg/kg 0.2 <0.2
Arochlor 1248 Arochlor 1254	
Arochlor 1254	
	mg/kg 0.2 <0.2
Arochlor 1260	mg/kg 0.2 <0.2
740010011200	mg/kg 0.2 0.6 <0.2 0.4 13
Arochlor 1262	mg/kg 0.2 <0.2
Arochlor 1268	mg/kg 0.2 <0.2
Total PCBs (Arochlors)	mg/kg 1 <1 <1
Surrogates Tetrachloro-m-xylene (TCMX) (Surrog	ngate) mg/kg - 0 0 - 89
I Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	Method: ME-(AU)-[ENV]AN040/A
Sample Sample Number Parameter	Units LOR Result Original Spike Recov
220829.001 LB227364.004 Arsenic, As	mg/kg 1 55 10.56554769705 50 89
Cadmium, Cd	mg/kg 0.3 42 0.07206476329 50 83
Chromium, Cr	mg/kg 0.5 460 60.3610865532 50 1 @
Copper, Cu	mg/kg 0.5 59 12.99157002444 50 93
Nickel, Ni	mg/kg 0.5 200 30.3092117808 50 138
Lead, Pb	mg/kg 1 58 12.8085634545C 50 90
Zinc, Zn	mg/kg 2 74 27.0764383656€ 50 94
I (Total Recoverable Hydrocarbons) in Soil	Method: ME-(AU)-[ENV]A
Sample Sample Number Parameter	Units LOR Original Spike Recovery%
220738.002 LB227177.029 TRH C10-C14	mg/kg 20 <20 40 98
TRH C15-C28	mg/kg 45 <45 40 105
TRH C29-C36	mg/kg 45 <45 40 90
TRH C37-C40	mg/kg 100 <100
TRH C10-C36 Total	mg/kg 110 <110
TRH >C10-C40 Total (F bands)	mg/kg 210 <210
TRH F TRH >C10-C16 TRH = 0.0.0.010 TRH = 0.000	
Bands TRH >C10-C16 - Naphthalene (F2)	mg/kg 25 <25 40 95
TRH >C16-C34 (F3)	mg/kg 25 <25 40 95 mg/kg 25 <25

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Sail							Math		
OC's in Soil QC Sample	Sample Numbe		Parameter	Units	LOR	Result	Original	Spike	J)-[ENV]AN4 Recover
SE220738.001	LB227181.005	Monocyclic	Benzene	mg/kg	0.1	3.7	<0.1	5	74
5E220738.001	LB227181.005	Aromatic	Toluene	mg/kg	0.1	3.9	<0.1	5	74
		Aromatic	Ethylbenzene	mg/kg	0.1	4.0	<0.1	5	81
			m/p-xylene	mg/kg	0.1	8.1	<0.1	10	81
					0.2	4.1	<0.2	5	82
		Delvevelie	o-xylene	mg/kg	0.1	<0.1	<0.1	-	02
		Polycyclic	Naphthalene	mg/kg	-	9.7	10.2	- 10	97
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg					97
			d8-toluene (Surrogate)	mg/kg	-	9.1 9.0	10.0	10	91
		T-4-1-	Bromofluorobenzene (Surrogate)	mg/kg			9.3	10	
		Totals	Total Xylenes	mg/kg	0.3	12	<0.3	-	-
			Total BTEX	mg/kg	0.6	24	<0.6	-	-
OCs in Water							Meth	od: ME-(AU	J)-[ENV]AN
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recove
E220847.012	LB227471.028	Monocyclic	Benzene	µg/L	0.5	50	0	45.45	111
		Aromatic	Toluene	μg/L	0.5	51	0.08627126111	45.45	112
			Ethylbenzene	μg/L	0.5	50	0.01436591664	45.45	109
			m/p-xylene	μg/L	1	100	0.03790649283	90.9	110
			o-xylene	μg/L	0.5	50	0.01529462123	45.45	111
		Polycyclic	Naphthalene	μg/L	0.5	49	0.05487634812	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.5	9.72567768887	-	105
			d8-toluene (Surrogate)	μg/L	-	10.4	9.48300331547	-	104
			Bromofluorobenzene (Surrogate)	μg/L	-	9.6	10.20890841552	-	96
olatile Petroleu	m Hydrocarbons in S	Soil					Meth	od: ME-(AU	J)-[ENV]AN
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recove
SE220738.001	LB227181.005		TRH C6-C10	mg/kg	25	73	<25	92.5	79
			TRH C6-C9	mg/kg	20	66	<20	80	82
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.7	10.2	10	97
			d8-toluene (Surrogate)	mg/kg	-	9.1	10.0	10	91
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.0	9.3	-	90
		VPH F	Benzene (F0)	mg/kg	0.1	3.7	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	50	<25	62.5	79
olatile Petroleu	m Hydrocarbons in V	Water					Meth	od: ME-(AU	J)-[ENV]AN
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recove
SE220847.012	LB227471.028		TRH C6-C10	µg/L	50	0.83	0	946.63	87
			TRH C6-C9	μg/L	40	0.71	0	818.71	87
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	0.0	9.72567768887	-	105
			d8-toluene (Surrogate)	µg/L	-	0.0	9.48300331547	-	104
			Bromofluorobenzene (Surrogate)	μg/L	-	0.0	10.20890841552	-	96
				r9/=					50
		VPH F	Benzene (F0)	µg/L	0.5		0	-	-

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	Lan Ye	Manager	Huong Crawford	
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone Facsimile Email	61 2 95160722 (Not specified) Lan.ye@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com	
Project Order Number Samples	E25203 1112-1116 Barrenjoey Road, Palm B E25203 4	SGS Reference Date Received Date Reported	SE220848 R0 18 Jun 2021 25 Jun 2021	

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #3: Chrysotile asbestos found in approx 60x40x4mm cement sheet fragment. Sample #4: Chrysotile asbestos found in approx 10x4x2mm cement sheet fragments x2.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Kamrul AHSAN

Senior Chemist

Alexandria NSW 2015 Alexandria NSW 2015

/ 2015 Australia / 2015 Australia

Ly Kim HA

Organic Section Head

a t +61 2 8594 0400 a f +61 2 8594 0499

km/n/

0400 www.sgs.com.au 0499

ANALYTICAL REPORT

SE220848 R0

Fibre Identifica	ation in soil				Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE220848.001	EBH101_0.1-0.2	Soil	171g Clay, Sand, Soil, Rocks, Plant matter	18 Jun 2021	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE220848.002	EBH102_0.1-0.2	Soil	168g Clay, Sand, Soil, Rocks, Plant matter	18 Jun 2021	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE220848.003	EBH103_0.1-0.2	Soil	103g Clay, Sand, Soil, Rocks, Plant matter	18 Jun 2021	Chrysotile Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	>0.01
SE220848.004	EBH104_0.1-0.2	Soil	108g Clay, Sand, Soil, Rocks, Plant matter	18 Jun 2021	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	 The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles -*** Indicates that both * and ** apply. -

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Lan Ye	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-1116 Barrenjoey Road, Palm B	SGS Reference	SE220848A R0
Order Number	E25203	Date Received	28/6/2021
Samples	10	Date Reported	1/7/2021

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Kamrul AHSAN Senior Chemist

km/m/

Ly Kim HA Organic Section Head

Teresa NGUYEN Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

ANALYTICAL RESULTS

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Water [AN403] Tested: 29/6/2021

			BH101M WATER - 18/6/2021
PARAMETER	UOM	LOR	SE220848A.006
TRH C10-C14-Silica	µg/L	50	<50
TRH C15-C28-Silica	µg/L	200	<200
TRH C29-C36-Silica	µg/L	200	<200
TRH C37-C40-Silica	µg/L	200	<200
TRH >C10-C16-Silica	µg/L	60	<60
TRH >C16-C34-Silica	µg/L	500	<500
TRH >C34-C40-Silica	µg/L	500	<500
TRH Sum C10-C36-Silica	µg/L	450	<450
TRH Sum C10-C40-Silica	µg/L	650	<650

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 29/6/2021

			BH101M
			WATER
			- 18/6/2021
PARAMETER	NOU	LOR	SE220848A.006
Arsenic, As	µg/L	1	<1
Cadmium, Cd	µg/L	0.1	0.2
Copper, Cu	µg/L	1	15
Chromium, Cr	µg/L	1	5
Nickel, Ni	µg/L	1	470
Lead, Pb	µg/L	1	2
Zinc, Zn	µg/L	5	130

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 29/6/2021

			BH101M
			WATER
			18/6/2021
PARAMETER	UOM	LOR	SE220848A.006
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRHisilica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Lan Ye EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Lan.ye@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-1116 Barrenjoey Road, Palm B	SGS Reference	SE220848A R0
Order Number	E25203	Date Received	28 Jun 2021
Samples	10	Date Reported	01 Jul 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Water

1 item

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

HOLDING TIME SUMMARY

SE220848A R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE220848A.006	LB227735	18 Jun 2021	28 Jun 2021	16 Jul 2021	29 Jun 2021	16 Jul 2021	29 Jun 2021
'race Metals (Dissolved) i	in Water by ICPMS						Method: I	ME-(AU)-[ENV]AI
. ,	-	00 B (
<mark>race Metals (Dissolved)</mark> i Sample Name	in Water by ICPMS Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Method: Analysis Due	ME-(AU)-[ENV]AN Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE220848A.006	LB227736	18 Jun 2021	28 Jun 2021	25 Jun 2021	29 Jun 2021†	08 Aug 2021	01 Jul 2021

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE220848A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)	-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB227735.001	Mercury	mg/L	0.0001	<0.0001

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Water by ICPMS			Meth	od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB227819.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	µg/L	5	<5
TRH Silica Gel (Total Recoverable Hydrocart	oons - Silica Gel) in Water		Meth	od: ME-(AU)-[ENV]AN403
Sample Number	Parameter	Units	LOR	Result
LB227736.001	TRH C10-C14-Silica	μg/L	50	<50
	TRH C15-C28-Silica	μg/L	200	<200
	TRH C29-C36-Silica	μg/L	200	<200
	TRH C37-C40-Silica	μg/L	200	<200

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[ENVJAN311(P	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE221132.031	LB227735.007	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[E			ENVJAN318				
Original	Duplicate	Parameter	Units LOR	Original	Duplicate	Criteria %	RPD %
SE220931RE.00	LB227819.006	Zinc, Zn	μg/L 5	770	810	16	6

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Trace Metals (Dissolved) in W	ater by ICPMS					Nethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227819.002	Arsenic, As	μg/L	1	20	20	80 - 120	101
	Cadmium, Cd	μg/L	0.1	20	20	80 - 120	99
	Chromium, Cr	μg/L	1	19	20	80 - 120	97
	Copper, Cu	µg/L	1	20	20	80 - 120	98
	Lead, Pb	µg/L	1	21	20	80 - 120	105
	Nickel, Ni	μg/L	1	21	20	80 - 120	106
	Zinc, Zn	μg/L	5	21	20	80 - 120	106
TRH Silica Gel (Total Recover	able Hydrocarbons - Silica Gel) in Water					Nethod: ME-(A	U)-[ENV]AN403
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB227736.002	TRH C10-C14-Silica	μg/L	50	760	1200	60 - 140	64
	TRH C15-C28-Silica	μg/L	200	950	1200	60 - 140	79
	TRH C29-C36-Silica	μg/L	200	1100	1200	60 - 140	92
	TRH >C10-C16-Silica	μg/L	60	850	1200	60 - 140	71
	TRH >C16-C34-Silica	μg/L	500	1100	1200	60 - 140	95
	TRH >C34-C40-Silica	μg/L	500	520	600	60 - 140	86

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Trace Metals (Dis	solved) in Water by ICPMS					Mett	nod: ME-(AU)-[ENV]AN318
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE220848A.006	LB227819.004	Arsenic, As	μg/L	1	23	<1	20	110
		Cadmium, Cd	μg/L	0.1	20	0.2	20	100
		Chromium, Cr	μg/L	1	24	5	20	95
		Copper, Cu	μg/L	1	34	15	20	94
		Lead, Pb	μg/L	1	23	2	20	105
		Nickel, Ni	μg/L	1	480	470	20	84
		Zinc, Zn	µg/L	5	140	130	20	89

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 272162

Client Details	
Client	El Australia
Attention	Lan Ye
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E25203, 1112-1116 Barrenjoey Road, Palm Beach
Number of Samples	1 soil, 1 Water
Date samples received	21/06/2021
Date completed instructions received	21/06/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	28/06/2021				
Date of Issue	28/06/2021				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Thomas Beenie, Lab Technician Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 272162 Revision No: R00

Page | 1 of 17

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		272162-1
Your Reference	UNITS	QT1
Date Sampled		18/06/2021
Type of sample		soil
Date extracted	-	22/06/2021
Date analysed	-	22/06/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	103

svTRH (C10-C40) in Soil		
Our Reference		272162-1
Your Reference	UNITS	QT1
Date Sampled		18/06/2021
Type of sample		soil
Date extracted	-	22/06/2021
Date analysed	-	23/06/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	110
TRH C ₂₉ - C ₃₆	mg/kg	230
TRH >C10 -C16	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	270
TRH >C ₃₄ -C ₄₀	mg/kg	150
Total +ve TRH (>C10-C40)	mg/kg	420
Surrogate o-Terphenyl	%	92

Acid Extractable metals in soil		
Our Reference		272162-1
Your Reference	UNITS	QT1
Date Sampled		18/06/2021
Type of sample		soil
Date prepared	-	23/06/2021
Date analysed	-	24/06/2021
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	8
Copper	mg/kg	24
Lead	mg/kg	25
Mercury	mg/kg	<0.1
Nickel	mg/kg	4
Zinc	mg/kg	100

Moisture		
Our Reference		272162-1
Your Reference	UNITS	QT1
Date Sampled		18/06/2021
Type of sample		soil
Date prepared	-	22/06/2021
Date analysed	-	23/06/2021
Moisture	%	28

vTRH(C6-C10)/BTEXN in Water		
Our Reference		272162-2
Your Reference	UNITS	GWQT1
Date Sampled		18/06/2021
Type of sample		Water
Date extracted	-	23/06/2021
Date analysed	-	23/06/2021
TRH C ₆ - C ₉	μg/L	10
TRH C ₆ - C ₁₀	µg/L	41
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	40
Benzene	µg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	μg/L	<2
o-xylene	µg/L	2
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	106
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	100

svTRH (C10-C40) in Water		
Our Reference		272162-2
Your Reference	UNITS	GWQT1
Date Sampled		18/06/2021
Type of sample		Water
Date extracted	-	22/06/2021
Date analysed	-	22/06/2021
TRH C ₁₀ - C ₁₄	µg/L	96
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	90
TRH >C10 - C16 less Naphthalene (F2)	µg/L	90
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	79

HM in water - dissolved		
Our Reference		272162-2
Your Reference	UNITS	GWQT1
Date Sampled		18/06/2021
Type of sample		Water
Date prepared	-	22/06/2021
Date analysed	-	22/06/2021
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	0.1
Chromium-Dissolved	µg/L	8
Copper-Dissolved	µg/L	17
Lead-Dissolved	µg/L	2
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	530
Zinc-Dissolved	μg/L	130

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
	1

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate Spike Reco				covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			23/06/2021	[NT]		[NT]	[NT]	22/06/2021	
Date analysed	-			23/06/2021	[NT]		[NT]	[NT]	22/06/2021	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	100	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	100	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	105	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	98	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	96	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	100	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	101	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	94	[NT]		[NT]	[NT]	96	

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			22/06/2021	[NT]	[NT]		[NT]	22/06/2021	
Date analysed	-			23/06/2021	[NT]	[NT]		[NT]	23/06/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]	[NT]		[NT]	128	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]	[NT]		[NT]	113	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]	[NT]		[NT]	123	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]	[NT]		[NT]	128	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]	[NT]		[NT]	113	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]	[NT]		[NT]	123	
Surrogate o-Terphenyl	%		Org-020	82	[NT]	[NT]	[NT]	[NT]	109	[NT]

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil					Duplicate Spike R			Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			23/06/2021	[NT]		[NT]	[NT]	23/06/2021	
Date analysed	-			24/06/2021	[NT]		[NT]	[NT]	24/06/2021	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	106	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	105	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	106	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	108	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water					Duplicate Spike Recovery					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			23/06/2021	[NT]	[NT]		[NT]	23/06/2021	
Date analysed	-			23/06/2021	[NT]	[NT]		[NT]	23/06/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	106	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	106	
Benzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	100	
Toluene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	103	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	109	
m+p-xylene	µg/L	2	Org-023	<2	[NT]	[NT]		[NT]	110	
o-xylene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	108	
Naphthalene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	100	[NT]	[NT]		[NT]	99	
Surrogate toluene-d8	%		Org-023	99	[NT]	[NT]		[NT]	99	
Surrogate 4-BFB	%		Org-023	101	[NT]	[NT]		[NT]	100	

QUALITY CONTROL: svTRH (C10-C40) in Water				Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	
Date analysed	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	121	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	125	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	121	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	125	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	84	
Surrogate o-Terphenyl	%		Org-020	86	[NT]	[NT]	[NT]	[NT]	99	[NT]

QUALITY CC	NTROL: HN	l in water	- dissolved			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	
Date analysed	-			22/06/2021	[NT]		[NT]	[NT]	22/06/2021	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	106	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	110	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	111	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	117	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	97	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	109	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Kaiyu Xu	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile	61 2 9516 0722 (Not specified)	Telephone Facsimile	+61 2 8594 0400 +61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E25203 1112-6 Barrenjoey Rd Palm Beach E25203 13	SGS Reference Date Received Date Reported	SE220686C R0 23/6/2021 24/6/2021

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

Chromium Suite subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. CE153344A

SIGNATORIES

SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Moisture Content [AN002] Tested: 24/6/2021

			BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686C.007	SE220686C.008	SE220686C.009
% Moisture	%w/w	0.5	39	40	35

TAA (Titratable Actual Acidity) [AN219] Tested: 24/6/2021

			BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
					00"
			SOIL	SOIL	SOIL
			- 11/6/2021	- 11/6/2021	- 11/6/2021
PARAMETER	UOM	LOR	SE220686C.007	SE220686C.008	SE220686C.009
pH KCI*	pH Units	-	4.7	4.0	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	1.3	6.4	2.1
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	27	130	42
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.04	0.21	0.07
Sulphur (SKCI)	%w/w	0.005	-	<0.005	-

Chromium Reducible Sulphur (CRS) [AN217] Tested: 24/6/2021

			BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686C.007	SE220686C.008	SE220686C.009
Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5	<5

HCI Extractable S, Ca and Mg in Soil ICP OES [AN014] Tested: 24/6/2021

			BH102_4.0-4.2
			SOIL
			- 11/6/2021
PARAMETER	UOM	LOR	SE220686C.008
Acid Soluble Sulfur (SHCI)	%w/w	0.005	0.059

Chromium Suite Net Acidity Calculations [AN220] Tested: 24/6/2021

			BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	11/6/2021 SE220686C.007	11/6/2021 SE220686C.008	11/6/2021 SE220686C.009
s-Net Acidity	%w/w S	0.005	0.046	0.25	0.070
a-Net Acidity	moles H+/T	5	29	160	44
Liming Rate*	kg CaCO3/T	0.1	2.1	12	3.3
Verification s-Net Acidity*	%w/w S	-20	0.00	0.00	0.00
a-Net Acidity without ANCBT*	moles H+/T	5	29	160	44
Liming Rate without ANCBT*	kg CaCO3/T	0.1	2.1	12	3.3
s-Net Acidity without ANC	%w/w S	0.005	0.046	0.25	0.070

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN014	This method is for the determination of soluble sulfate (SO4-S) by extraction with hydrochloric acid. Sulphides should not react and would normally be expelled. Sulfur is determined by ICP.
AN214	Acid Neutralising Capacity (ANC)or Neutralising Value (NV): The crushed or as received sample is reacted with excess normal acid (HCI) and then back titrated with standard sodium hydroxide to determine the acid consumed. The result is expressed as kg H2SO4/tonne or %CaCO3. Based on AS4969-13.
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	Chromium Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

- FOOTNO	DTES					
*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.	
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.	
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of	
	time exceeded.	LNR	Sample listed, but not received.		Reporting.	
***	Indicates that both * and ** apply.					

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Admin	Manager	Anthony Nilsson
Client	SGS I&E SYDNEY	Laboratory	SGS Cairns Environmental
Address	5058 201 I&E HSE SYDNEY (EX 5258)	Address	Unit 2, 58 Comport St
	UNIT 16		Portsmith QLD 4870
	33 MADDOX STREET		
	ALEXANDRIA NSW 2015		
Telephone	0285940400	Telephone	+61 07 4035 5111
Facsimile	0285940499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	CE153344A R0
Order Number	SE220686C	Date Received	23 Jun 2021
Samples	13	Date Reported	24 Jun 2021

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(3146/19038)

SIGNATORIES _

Anthony NILSSON Operations Manager

Jon DICKER Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Unit 2 58 Comport

Portsmith QLD

Australia t +61 7 4035 5111

f +61 7 4035 5111 **f** +61 7 4035 5122

ANALYTICAL REPORT

CE153344A R0

		Sample Matrix Sample Date		CE153344A.002 Soil 06 Nov 2021 SE220686C.002	CE153344A.003 Soil 06 Nov 2021 SE220686C.003	CE153344A.004 Soil 06 Nov 2021 SE220686C.004
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 24/6/2021						
% Moisture	%w/w	0.5	-	-	-	-

TAA (Titratable Actual Acidity) Method: AN219 Tested: 24/6/2021

рН КСІ	pH Units	-	-	-	-	-
Titratable Actual Acidity	kg H2SO4/T	0.25	-	-	-	-
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	-	-	-	-
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	-	-	-	-
Sulphur (SKCI)	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur (Snas) moles H+/tonne	moles H+/T	3	-	-	-	-
Net Acid Soluble Sulphur (Snas)	%w/w	0.005	-	-	-	-

Chromium Reducible Sulphur (CRS) Method: AN217 Tested: 24/6/2021

Chromium Reducible Sulphur (Scr)	%	0.005	-	-	-	-		
Chromium Reducible Sulphur (Scr)	moles H+/T	5	-	-	-	-		
HCI Extractable S, Ca and Mg in Soil ICP OES Method: AN014 Tested: 24/6/2021								
Acid Soluble Sulfur (SHCI)	%w/w	0.005	-	-	-	-		

Chromium Suite Net Acidity Calculations Method: AN220 Tested: 24/6/2021

s-Net Acidity	%w/w S	0.005	-	-	-	-
s-Net Acidity without ANC	%w/w S	0.005	-	-	-	-
a-Net Acidity	moles H+/T	5	-	-	-	-
Liming Rate	kg CaCO3/T	0.1	-	-	-	-
Verification s-Net Acidity	%w/w S	-20	-	-	-	-
a-Net Acidity without ANCBT	moles H+/T	5	-	-	-	-
Liming Rate without ANCBT	kg CaCO3/T	0.1	-	-	-	-

CE153344A R0

		Sample Matrix Sample Date		CE153344A.006 Soil 06 Nov 2021 SE220686C.006	CE153344A.007 Soil 06 Nov 2021 SE220686C.007	CE153344A.008 Soil 06 Nov 2021 SE220686C.008
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 24/6/2021						
% Moisture	%w/w	0.5	-	-	39	40

TAA (Titratable Actual Acidity) Method: AN219 Tested: 24/6/2021

pH KCI	pH Units	-	-	-	4.7	4.0
Titratable Actual Acidity	kg H2SO4/T	0.25	-	-	1.3	6.4
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	-	-	27	130
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	-	-	0.04	0.21
Sulphur (SKCI)	%w/w	0.005	-	-	-	<0.005
Net Acid Soluble Sulphur (Snas) moles H+/tonne	moles H+/T	3	-	-	-	36
Net Acid Soluble Sulphur (Snas)	%w/w	0.005	-	-	-	0.057

Chromium Reducible Sulphur (CRS) Method: AN217 Tested: 24/6/2021

Chromium Reducible Sulphur (Scr)	%	0.005	-	-	<0.005	<0.005			
Chromium Reducible Sulphur (Scr)	moles H+/T	5	-	-	<5	<5			
HCI Extractable S, Ca and Mg in Soil ICP OES Method: AN014 Tested: 24/6/2021									
Acid Soluble Sulfur (SHCI)	%w/w	0.005	-	-	-	0.059			

Chromium Suite Net Acidity Calculations Method: AN220 Tested: 24/6/2021

s-Net Acidity	%w/w S	0.005	-	-	0.046	0.25
s-Net Acidity without ANC	%w/w S	0.005	-	-	0.046	0.25
a-Net Acidity	moles H+/T	5	-	-	29	160
Liming Rate	kg CaCO3/T	0.1	-	-	2.1	12
Verification s-Net Acidity	%w/w S	-20	-	-	0.00	0.00
a-Net Acidity without ANCBT	moles H+/T	5	-	-	29	160
Liming Rate without ANCBT	kg CaCO3/T	0.1	-	-	2.1	12

CE153344A R0

		Sample Matrix Sample Date	CE153344A.009 Soil 06 Nov 2021 SE220686C.009	CE153344A.010 Soil 06 Nov 2021 SE220686C.010	CE153344A.011 Water 06 Nov 2021 SE220686C.011	CE153344A.012 Soil 06 Nov 2021 SE220686C.012
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 24/6/2021						
% Moisture	%w/w	0.5	35	-	-	-

TAA (Titratable Actual Acidity) Method: AN219 Tested: 24/6/2021

pH KCI	pH Units	-	4.5	-	-	-
Titratable Actual Acidity	kg H2SO4/T	0.25	2.1	-	-	-
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	42	-	-	-
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.07	-	-	-
Sulphur (SKCI)	%w/w	0.005	-	-	-	-
Net Acid Soluble Sulphur (Snas) moles H+/tonne	moles H+/T	3	-	-	-	-
Net Acid Soluble Sulphur (Snas)	%w/w	0.005	-	-	-	-

Chromium Reducible Sulphur (CRS) Method: AN217 Tested: 24/6/2021

Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	-	-	-		
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	-	-	-		
HCI Extractable S, Ca and Mg in Soil ICP OES Method: AN014 Tested: 24/6/2021								
Acid Soluble Sulfur (SHCI)	%w/w	0.005	-	-	-	-		

Chromium Suite Net Acidity Calculations Method: AN220 Tested: 24/6/2021

s-Net Acidity	%w/w S	0.005	0.070	-	-	-
s-Net Acidity without ANC	%w/w S	0.005	0.070	-	-	-
a-Net Acidity	moles H+/T	5	44	-	-	-
Liming Rate	kg CaCO3/T	0.1	3.3	-	-	-
Verification s-Net Acidity	%w/w S	-20	0.00	-	-	-
a-Net Acidity without ANCBT	moles H+/T	5	44	-	-	-
Liming Rate without ANCBT	kg CaCO3/T	0.1	3.3	-	-	-

		Sa	nple Number Imple Matrix Sample Date ample Name	soil
Parameter		Units	LOR	
Moisture Content Method: AN002	Tested: 24/6/2021			
% Moisture		%w/w	0.5	-

TAA (Titratable Actual Acidity) Method: AN219 Tested: 24/6/2021

рН КСІ	pH Units	-	-
Titratable Actual Acidity	kg H2SO4/T	0.25	-
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	-
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	-
Sulphur (SKCI)	%w/w	0.005	-
Net Acid Soluble Sulphur (Snas) moles H+/tonne	moles H+/T	3	-
Net Acid Soluble Sulphur (Snas)	%w/w	0.005	-

Chromium Reducible Sulphur (CRS) Method: AN217 Tested: 24/6/2021

Chromium Reducible Sulphur (Scr)	%	0.005	-			
Chromium Reducible Sulphur (Scr)	moles H+/T	5	-			
HCI Extractable S, Ca and Mg in Soil ICP OES Method: AN014 Tested: 24/6/2021						
Acid Soluble Sulfur (SHCI)	%w/w	0.005	-			

Chromium Suite Net Acidity Calculations Method: AN220 Tested: 24/6/2021

s-Net Acidity	%w/w S	0.005	-
s-Net Acidity without ANC	%w/w S	0.005	-
a-Net Acidity	moles H+/T	5	-
Liming Rate	kg CaCO3/T	0.1	-
Verification s-Net Acidity	%w/w S	-20	-
a-Net Acidity without ANCBT	moles H+/T	5	-
Liming Rate without ANCBT	kg CaCO3/T	0.1	-

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulphur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Chromium Reducible Sulphur (Scr)	LB091408	%	0.005	<0.005	0%	99%
Chromium Reducible Sulphur (Scr)	LB091408	moles H+/T	5	<5		

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN014	This method is for the determination of soluble sulfate (SO4-S) by extraction with hydrochloric acid. Sulphides should not react and would normally be expelled. Sulfur is determined by ICP.
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	Chromium Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES .

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting ↑↓ NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service QFI QC result is below the lower tolerance ++ Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte *** Indicates that both * and ** apply. NVI Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

 CLIENT DETAILS 		LABORATORY DE	– LABORATORY DETAILS –					
Contact Client Address	Kaiyu Xu El AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400					
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499					
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com					
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	SE220686A R0					
Order Number	E25203	Date Received	15/6/2021					
Samples	13	Date Reported	16/6/2021					

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

ion

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

16/06/2021

SE220686A R0

Field pH for Acid Sulphate Soil [AN104] Tested: 16/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_0.8-1.0	BH102_1.8-2.0	BH102_3.0-3.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686A.002	SE220686A.003	SE220686A.005	SE220686A.006	SE220686A.007
pHf	pH Units	-	7.1	5.1	8.5	8.1	4.8
pHfox	pH Units	-	5.8	3.8	7.3	7.3	4.7
Reaction Rate*	No unit	-	х	х	х	х	х
pH Difference*	pH Units	-10	1.3	1.3	1.2	0.8	0.1

			BH102_4.0-4.2	BH102_5.0-6.2	BH102_6.0-6.2
			SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686A.008	SE220686A.009	SE220686A.010
pHf	pH Units	-	4.5	4.7	4.9
pHfox	pH Units	-	4.0	4.6	4.3
Reaction Rate*	No unit	-	х	х	х
pH Difference*	pH Units	-10	0.5	0.1	0.6

FOOTNOTES -

METHOD	METHODOLOGY SUMMARY
AN104	pHF is determined on an extract of approximately 2g of as received sample in approximately 10 mL of deionised water with pH determined after standing 30 minutes.
AN104	pHFox is determined on an extract of approximately 2g of as received sample with a few mLs of 30% hydrogen peroxide (adjusted to pH 4.5 to 5.5) with the extract reaction being rated from slight to extreme, with pH determined after reaction is complete and extract has cooled. Referenced to ASS Laboratory Methods Guidelines, method 23Af-Bf, 2004.
	 No Reaction Slight Reaction Moderate Reaction Strong/High Reaction Extreme/Vigorous Reaction (gas evolution and heat generation)

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	analysis.		Reporting.
***	Indicates that both * and ** apply.		Sample listed, but not received.		

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity: a. 1 Bg is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	ILS
Contact Client Address	Kaiyu Xu EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	SE220686A R0
Order Number	E25203	Date Received	15 Jun 2021
Samples	13	Date Reported	16 Jun 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 859 Australia f +61 2 859

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Field pH, for Acid Sulphate Soil

Field pH for Acid Sulphate Soil Method: ME-(AU)-[ENV]								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M_0.6-0.8	SE220686A.002	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021
BH101M_1.6-1.8	SE220686A.003	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021
BH102_0.8-1.0	SE220686A.005	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021
BH102_1.8-2.0	SE220686A.006	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021
BH102_3.0-3.2	SE220686A.007	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021
BH102_4.0-4.2	SE220686A.008	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021
BH102_5.0-6.2	SE220686A.009	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021
BH102_6.0-6.2	SE220686A.010	LB226830	11 Jun 2021	15 Jun 2021	09 Jul 2021	16 Jun 2021	09 Jul 2021	16 Jun 2021

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE220686A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No method blanks were required for this job.

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Field pH for Acid Sulphate Soil

Field pH for Acid Sulphate Soil Method: ME-(AU					od: ME-(AU)-	ENVJAN104		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE220686A.010	LB226830.010	pHf	pH Units	-	4.9	4.6	30	7
		pHfox	pH Units	-	4.3	4.4	30	0

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number Parameter

Units LOR

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

- CLIENT DETAILS		LABORATORY DE	_ LABORATORY DETAILS				
Contact	Kaiyu Xu	Manager	Huong Crawford				
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental				
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015				
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400				
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499				
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com				
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	SE220686B R0				
Order Number	E25203	Date Received	16/6/2021				
Samples	13	Date Reported	23/6/2021				

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SPOCAS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146- CE153344

SIGNATORIES

SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE220686B R0

Moisture Content [AN002] Tested: 23/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686B.002	SE220686B.003	SE220686B.007	SE220686B.008	SE220686B.009
% Moisture	%w/w	0.5	18	23	39	40	35

SE220686B R0

TAA (Titratable Actual Acidity) [AN219] Tested: 23/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 11/6/2021	- 11/6/2021	- 11/6/2021	- 11/6/2021	- 11/6/2021
PARAMETER	UOM	LOR	SE220686B.002	SE220686B.003	SE220686B.007	SE220686B.008	SE220686B.009
pH KCI*	pH Units	-	6.9	5.5	4.7	4.0	4.5
Titratable Actual Acidity	kg H2SO4/T	0.25	<0.25	2.0	1.3	6.4	2.1
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	<5	40	27	130	42
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	<0.01	0.06	0.04	0.21	0.07
Sulphur (SKCI)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calcium (CaKCI)	%w/w	0.005	0.022	0.006	0.007	0.016	0.017
Magnesium (MgKCl)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005	<0.005

TPA (Titratable Peroxide Acidity) [AN218] Tested: 23/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686B.002	SE220686B.003	SE220686B.007	SE220686B.008	SE220686B.009
Peroxide pH (pH Ox)	pH Units	-	6.3	5.0	4.6	4.5	4.5
TPA as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	<0.25	2.5	1.8	6.7	2.2
TPA as moles H+/tonne	moles H+/T	5	<5	50	37	137	45
TPA as S % W/W	%w/w S	0.01	<0.01	0.08	0.06	0.22	0.07
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	10	10	7	<5
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	0.49	0.49	0.37	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	0.02	0.02	0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	-	-	-	-	-
ANCE as moles H+/tonne	moles H+/T	5	-	-	-	-	-
ANCE as S % W/W	%w/w S	0.01	-	-	-	-	-
Peroxide Oxidisable Sulphur (Spos)*	%w/w	0.005	<0.005	<0.005	0.070	0.031	0.059
Peroxide Oxidisable Sulphur as moles H+/tonne*	moles H+/T	5	<5	<5	44	19	37
Sulphur (Sp)	%w/w	0.005	0.005	<0.005	0.072	0.032	0.060
Calcium (Cap)	%w/w	0.005	0.078	<0.005	0.069	0.010	0.061
Reacted Calcium (CaA)*	%w/w	0.005	0.055	<0.005	0.062	<0.005	0.044
Reacted Calcium (CaA)*	moles H+/T	5	28	<5	31	<5	22
Magnesium (Mgp)	%w/w	0.005	0.026	0.020	0.073	0.055	0.036
Reacted Magnesium (MgA)*	%w/w	0.005	0.025	0.020	0.072	0.054	0.034
Reacted Magnesium (MgA)*	moles H+/T	5	20	16	59	44	28
Net Acid Soluble Sulphur as % w/w*	%w/w	0.005	-	-	-	0.057	-
Net Acid Soluble Sulphur as moles H+/tonne*	moles H+/T	5	-	-	-	36	-

ANALYTICAL RESULTS

SE220686B R0

SPOCAS Net Acidity Calculations [AN220] Tested: 23/6/2021

			BH101M_0.6-0.8	BH101M_1.6-1.8	BH102_3.0-3.2	BH102_4.0-4.2	BH102_5.0-6.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/6/2021	11/6/2021	11/6/2021	11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220686B.002	SE220686B.003	SE220686B.007	SE220686B.008	SE220686B.009
s-Net Acidity	%w/w S	0.005	-	-	-	-	-
a-Net Acidity	moles H+/T	5	-	-	-	-	-
Liming Rate*	kg CaCO3/T	0.1	-	-	-	-	-
Verification s-Net Acidity*	%w/w S	-20	-	-	-	-	-
a-Net Acidity without ANCE*	moles H+/T	5	-	-	-	180	-
Liming Rate without ANCE*	kg CaCO3/T	0.1	-	-	-	13	-

 METHOD	- METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	÷	LABORATORY DETAI	ILS
Contact Client Address	Kaiyu Xu EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203 1112-6 Barrenjoey Rd Palm Beach	SGS Reference	SE220686B R0
Order Number	E25203	Date Received	16 Jun 2021
Samples	13	Date Reported	23 Jun 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Samples clearly labelled Sample container provider Samples received in correct of Date documentation received Samples received in good ord Sample temperature upon rec Turnaround time requested	containers	Yes SGS 16/6/2021@10:26AI Yes 18°C Standard	Sample coo Sample cou Type of doc Samples ree	ocumentation received ling method nts by matrix umentation received ceived without headspace imple for analysis		Yes Ice Bricks 5 Soil Email Yes Yes	
SGS Australia Pty Ltd	Environment, Health and	Unit 16 33 Ma	ddox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sgs.com.au

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015

Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

No holding time data is available for this job.

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE220686B R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No method blanks were required for this job.

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

No duplicates were required for this job.

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No laboratory control standards were required for this job.

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: - Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Appendix K - QA/QC Assessment

K.1 Site location

K.1.1 Introduction

For the purpose of assessing the quality of data presented in this Contaminant Delineation Report, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, with the allowable data acceptance ranges are presented in **Table K-1**.

Table K.1	Sampling	Data	Quality	Indicators
-----------	----------	------	---------	------------

QA/QC Measures	Data Quality Indicators				
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:				
	 Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or 				
	 Results are less than 20 times the LOR and the RPD is less than 50%, of Heterogeneous materials or volatile compounds are encountered. 				
	· · · · · · · · · · · · · · · · · · ·				
Accuracy – A quantitative measure of the closeness of reported data to the "true"	 Data accuracy would be assessed through the analysis of: Method blanks, which are analysed for the analytes targeted in the primary samples; 				
value	 Matrix spike and matrix spike duplicate sample sets; 				
	 Laboratory control samples; and 				
	 Calibration of instruments against known standards. 				
Representativeness – The confidence (expressed qualitatively) that data are	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:				
representative of each medium present onsite	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts; 				
	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and 				
	 The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods). 				
Completeness – A measure of the amount of useable data	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:				
from a data collection activity	 Standard operating procedures (SOPs) for sampling protocols were adhered to; and 				
	 Copies of all COC documentation are presented, reviewed and found to be properly completed. 				
	It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.				
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.				

QA/QC Measures	Data Quality Indicators
each sampling and analytical event	In addition the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.

K.1.2 Calculation of Relative Percentage Difference (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

 C_{O} = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

K.2 Field QA/QC Data Evaluation

The field quality assurance/quality control (QA/QC) soil and groundwater samples collected during the investigations were as follows:

- Blind field duplicates;
- Inter-laboratory duplicates;
- Trip blanks;
- Trip spikes; and
- Rinsate blanks.

Analytical results for tested soil and groundwater QA/QC samples, including calculated RPD values between primary and duplicate samples, are presented in **Table K-2**.

K.2.1 Soil Investigation

K.2.1.1 Blind Field Duplicates

One blind field duplicate (BFD) soil sample was collected in total, as follows:

Sample QD1 was collected from the primary sample EBH104_0.1-0.2 on 18/06/2021.

The preparation of the BFD samples involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate samples were then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD soil samples were analysed for TRHs, BTEX and selected heavy metals and calculated RPD values were found to be within the Data Acceptance Criteria (**Appendix K**, **Table QC5**).

K.2.1.2 Inter-Laboratory Duplicate

Sample QT1 was collected as inter-laboratory duplicate (ILD) of the primary samples EBH104_0.1-0.2 on 18/06/2021. The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX and selected heavy metals. The calculated RPD values were found to be within the Data Acceptance Criteria.

K.2.1.3 Trip Blank

One trip blank (TB) sample TB was prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

K.2.1.4 Trip Spike

One trip spike (TS) sample TS was submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

K.2.1.5 Rinsate Blank

One rinsate blank (RB) sample BHQR-1 was submitted to the primary laboratory for TRHs, BTEX and selected heavy metals analysis, the results for which were reported below laboratory LOR.

K.2.2 Groundwater Investigation

K.2.2.1 Blind Field Duplicates

One groundwater BFD sample was collected in total, as follows:

Sample GWQD1 was collected from the primary sample BH101M on 18/06/2021.

The preparation of BFD samples involved the decanting of the groundwater collected from the respective monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. Sample mixing did not occur prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFDs were analysed for TRHs, BTEX and selected heavy metals. The RPD values calculated for all the analytes tested were found to be within the Data Acceptance Criteria (DAC), with the exception of Cadmium (66.67%). The reported groundwater concentration for Cadmium was within ten times the laboratory LOR and was deemed to be acceptable.

K.2.2.2 Inter-Laboratory Duplicate

One ILD sample was collected in total, as follow:

ILD sample GWQT1 was split from the primary sample BH101M on 18/06/2021;

The preparation of a groundwater ILD sample was identical to the BFD sample as described above and also analysed for TRHs, BTEX and selected heavy metals. The RPD values calculated for the ILD samples were found to be within the Data Acceptance Criteria, with the exception of F2 (66.67%).

K.2.2.3 Trip Blanks

One trip blank (TB) sample, prepared by the primary laboratory, were analysed for BTEX by the primary laboratory during groundwater testing. TB results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

K.2.2.4 Trip Spikes

One TS sample was submitted to the primary laboratory for BTEX analysis, the results for which were all reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

K.2.2.5 Rinsate Blanks

One RB samples (QR1) was submitted to the primary laboratory for TRHs, BTEX, selected heavy metals and VOCs analyses. Analytical results were reported below the laboratory LOR.

K.2.3 Assessment of Field QA/QC Data

All samples were classified in the field with respect to any observable signs of contamination based on visual and odour assessment and observable characteristics, in regards to soil and groundwater. Furthermore, samples were placed immediately into laboratory supplied containers to reduce the loss of volatiles. Results of sampling indicated that the samples collected were representative of the conditions present at the time of sampling. El conclude that the samples collected are representative of the soils present at the respective sampling locations.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data EI considered the field QA/QC programme carried out during the data gap closure investigations to be appropriate and the results to be acceptable.

K.3 LABORATORY QA/QC

K.3.1 Laboratory Accreditation

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix L**), respective tests would be accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix L**.

K.3.2 Sample Holding Times

Sample holding times were within the laboratory DQOs, which were consistent with standard environmental protocols as tabulated in **Appendix L**, **Tables QC1** and **QC2**.

K.3.3 Test Methods and Practical Quantitation Limits (PQLs)

Practical Quantitation Limits for all tested parameters during the assessment of soils and groundwater are presented in **Appendix L**, **Tables QC3** and **QC4**.

K.3.4 Method Blanks

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

K.3.5 Laboratory Duplicate Samples

The Laboratory Control Samples (LCS) for the analysis batches showed calculated RPDs that were within acceptable ranges and conformed to the DAC, with the exception of six heavy metals due to sample heterogeneity.

K.3.6 Laboratory Control Samples

The Laboratory Control Samples for the analysis batches were within acceptable ranges and conformed to the DAC.

K.3.7 Matrix Spikes

All matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DAC, with the exception of two heavy metals due to sample heterogeneity and one OCP due to the presence of significant concentration of analyte (from another batch of samples).

K.3.8 Surrogate

Recovery results for all surrogate samples conformed to the DAC, with the exception of one PAH but at least 2 of 3 surrogates are within acceptance criteria.

K.3.9 Concluding Remark

Based on the laboratory QA/QC results EI considers that although a small number of discrepancies were identified, which in most cases could be attributed to the non-homogenous nature of the submitted samples, the data generally confirms that the analytical results for the various phases of laboratory testing were valid and useable for interpretation purposes.

LO L				TF	RH			B	TEX					Heavy	Metals			
Sample identification	Sampling Date	Description	F1	F2	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
	GS PQL for So		25	25	90	120	0.1	0.1	0.1	0.3	3	0.3	0.3	0.5	1	0.01	0.5	0.5
SGS F	PQL for Ground	dwater	50	60	500	500	0.5	0.5	0.5	1.5	1	0.1	1	1	1	0.1	1	5
Soil Assessment																		
EBH104_0.1-0.2 QD1	18/06/2021	Topsoil Intra-lab Duplicate	<25 <25	<25 <25	<90 <90	<120 <120	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.3 <0.3	4 4	<0.3 <0.3	9.4 9.5	31 22	40 30	0.15 <0.05	3 2.6	150 100
	RPD		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.06	33.96	28.57	100.00	14.29	40.00
EBH104_0.1-0.2 QT1	18/06/2021	Topsoil Inter-lab Duplicate	<25 <25	<25 <50	<90 <100	<120 <100	<0.1 <1	<0.1 <1	<0.1 <1	<0.3 <2	4 <4	<0.3 <0.4	9.4 8	31 24	40 25	0.15 <0.1	3 4	150 100
	RPD		0.00	NA	NA	NA	NA	NA	NA	NA	0.00	NA	16.09	25.45	46.15	40.00	28.57	40.00
QR1		Rinsate	-	-	-	-	-	-	-	-	<1	<0.1	<1	<1	<1	<0.1	<1	<5
QTB1	18/06/2021	Trip blank	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
QTS1		Trip spike	-	-		-	[104%]	[116%]	[96%]	[94%]		-				-	-	-
BHQR-1	_	Rinsate	-	-	-	-	-	-	-	-	<1	<0.1	<1	<1	<1	<0.1	<1	<5
ТВ	11/06/2021	Trip blank	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
TS		Trip spike	•	-		-	[103%]	[98%]	[96%]	[96%]	•		•	•	•	-	•	-
Groundwater Asses	sment																	
BH101M	18/06/2021	Groundwater	<50	180	<500	<500	<0.5	<0.5	<0.5	2.7	<1	0.1	5	14	2	<0.1	470	130
GWQD1		Intra-lab Duplicate	<50	<60	<500	<500	<0.5	<0.5	<0.5	2.6	<1	0.2	5	15	2	<0.1	450	130
	RPD		0.00	100.00	0.00	0.00	0.00	0.00	0.00	3.77	0.00	66.67	0.00	6.90	0.00	0.00	4.35	0.00
BH101M	18/06/2021	Groundwater	<50	180	<500	<500	<0.5	<0.5	<0.5	2.7	<1	0.1	5	14	2	<0.1	470	130
GWQT1	RPD	Inter-lab Duplicate	40 22.22	90 66.67	<100 NA	<100 NA	<1 NA	<1 NA	<1 NA	<4 38.81	<1 0.00	0.1 0.00	8 46.15	17 19.35	2 0.00	<0.05 NA	530 12.00	130 0.00

NOTE: All soil results are reported in mg/kg . All water results are reported in μ g/L.

RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005) RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Appendix L – Laboratory QA/QC Policies and DQOs

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil						
Parameter	Container	Preservation	Maximum Holding Time			
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months			
Mercury	Glass with Teflon Lid	Nil	28 days			
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days			
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days			
Phenols	Glass with Teflon Lid	4°C ¹	14 days			
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days			
Asbestos	Sealed Plastic Bag	Nil	N/A			

Table QC2 - Containers, Preservation Requirements and Holding Times - Water							
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time				
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months				
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months				
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days				
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4°C ¹	28 days				

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil							
Parameter	Unit	PQL	Method Reference				
Metals in Soil							
Arsenic - As ¹	mg / kg	1	USEPA 200.7				
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7				
Chromium - Cr ¹	mg / kg	1	USEPA 200.7				
Copper - Cu ¹	mg / kg	1	USEPA 200.7				
Lead - Pb ¹	mg / kg	1	USEPA 200.7				
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A				
Nickel - Ni ¹	mg / kg	1	USEPA 200.7				
Zinc - Zn ¹	mg / kg	1	USEPA 200.7				
	al Petroleum Hyd	rocarbons (TP	Hs) in Soil				
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260				
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000				
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000				
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000				
	BTE	X in Soil					
Benzene	mg / kg	1	USEPA 8260				
Toluene	mg / kg	1	USEPA 8260				
Ethylbenzene	mg / kg	1	USEPA 8260				
m & p Xylene	mg / kg	2	USEPA 8260				
o- Xylene	mg / kg	1	USEPA 8260				
	Other Organic C	ontaminants i	n Soil				
PAHs	mg / kg	0.05-0.2	USEPA 8270				
CHCs	mg / kg	1	USEPA 8260				
VOCs	mg / kg	1	USEPA 8260				
SVOCs	mg / kg	1	USEPA 8260				
OCPs	mg / kg	0.1	USEPA 8140, 8080				
OPPs	mg / kg	0.1	USEPA 8140, 8080				
PCBs	mg / kg	0.1	USEPA 8080				
Phenolics	mg / kg	5	APHA 5530				
	As	bestos					
Asbestos	mg / kg	Presence / Absence	AS4964-2004				

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method	
	Heavy	Metals		Chlorinated Hydrocarbons (CHCs)				
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B	
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B	
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B	
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B	
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B	
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B	
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B	
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D	
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B	
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga				
Nickel - Ni		1	USEPA 200.8	Aniline		10	USEPA 8260B	
	μg/L	1	USEPA 200.8		μg/L			
Selenium - Se	μg/L			2,4-dichloroaniline	μg/L	10	USEPA 8260B	
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B	
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B	
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L μg/L	50 50	USEPA 8260B	
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	USEPA 8260B			
Total Petrol	leum Hy	drocarb	ons (TPHs)	Phenolic Compounds				
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041	
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041	
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041	
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041	
	BT	EX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041	
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041	
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041	
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041	
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous Paramete		ers	
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN	
Polyciclic Are	omatic H	lydrocar	bons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C	
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510	
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+	
OrganoCl	nlorine F	Pesticide	es (OCPs)	OrganoPhosphate Pesticides (OPPs)				
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141	
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141	
DDT	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141	
Dieldrin	μg/L	0.001	USEPA 8081	Dimethoate	μg/L	0.01	USEPA 8141	
Endosulfan	μg/L	0.001	USEPA 8081	Fenitrothion	μg/L	0.01	USEPA 8141	
Endrin	μg/L	0.001	USEPA 8081	Malathion	μg/L	0.01	USEPA 8141	
Heptachlor Lindane	μg/L	0.001	USEPA 8081	Parathion Temephos	μg/L	0.01	USEPA 8141	
	μg/L	0.001	USEPA 8081	· · ·	μg/L	0.01	USEPA 8141	
Toxaphene	μg/L	0.001	USEPA 8081		-	-		
				Individual PCBs	μg/L	0.01	USEPA 8081	

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

QC Sample Type	Method of Assessment	Acceptable Range		
	Field QC	1		
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean}(X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels f detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL) 		
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		
Laboratory prepared Frip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%		
	Laboratory QC			
_aboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample result > 10 LOR		
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)		
Matrix Spikes Laboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).		
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)		
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)		
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.
Calibration Check Standard & Blank	Calibration Standards are checked old versus new with a criteria of ±10%

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".				
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.				
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.				
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.				
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests. All recoveries are to be reported to 3 significant figures.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: Inorganics (water samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client field duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike⁴ Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. Control Standards must be 80-120% of the accepted value. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS⁴/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ± 2 standard deviations of the expected value. 				
	• Where CRMs are used, results to be within ± 2 standard deviations of				

	Organics
	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	 Retention times are to vary by no more than 0.2 min.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
All recoveries are to be reported to 3 significant figures.	 Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
8	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS⁴/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ⁴ Matrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK_DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS