2 Macpherson Street, Warriewood Water Quality Monitoring Plan

Meriton Group

DOCUMENT TRACKING

Project Name	2 Macpherson Street, Warriewood Water Quality Monitoring Plan (includes Data update to January 2019)
Project Number	11527
Project Manager	lan Dixon
Prepared by	Rizwana Rumman, Claire Wheeler
Reviewed by	Richard Cresswell
Approved by	Richard Cresswell
Status	Final
Version Number	4
Last saved on	12 July 2019

This report should be cited as 'Eco Logical Australia 2019. 2 Macpherson Street, Warriewood Water Quality Monitoring Report (including Data update to January 2019). Prepared for Meriton Group.'

ACKNOWLEDGEMENTS

This document has been prepared by Eco Logical Australia Pty Ltd with assistance from Meriton Group

Disclaimer

This document may only be used for the purpose for which it was commissioned and in accordance with the contract between Eco Logical Australia Pty Ltd and Meriton Group. The scope of services was defined in consultation with Meriton Group, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information. Eco Logical Australia Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited.

Template 2.8.1

Contents

1. Introduction	4
1.1 Purpose and application	4
1.2 Objective of the WQMP	4
1.3 Legislative guidelines	5
1.3.1 Warriewood Valley Urban Land Release Water Management Specification (2001)	5
1.3.2 Australian & New Zealand Guidelines for Fresh & Marine Water Quality (2018)	5
1.3.3 Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000)	6
2. Project environment	7
2.1 Project Area	7
2.2 Surface Water	7
2.3 Existing aquatic environment	7
3. Water Quality Monitoring Plan	9
3.1 Monitoring Parameters	9
3.2 Sampling Locations	9
3.3 Monitoring Parameters for Water Quality Assessment	
3.4 Sampling Frequency	10
3.5 Laboratory detection limits	11
3.6 Acceptance Criteria	12
3.7 Reporting	15
4. Baseline assessment – Pre-construction phase conditions	16
4.1 Existing environment	16
The Narrabeen Creek catchment	
Rainfall patterns	
4.2 Location of monitoring sites	
4.3 Sampling techniques	
4.3.1 Field data	
4.3.2 Water sampling	
4.3.3 Sediment and Biotic SIGNAL sampling	
4.4 Analytical techniques	19
4.5 QA/QC procedures	20
4.6 Baseline (Pre-construction) Results and <i>status quo</i> Conditions	20
4.6.1 Wet weather sampling	20
4.6.2 Dry weather sampling	21
5. Construction phase assessment	27
6. References	

Appendix A: Sampling Site Photos	
Appendix B: Certificate of Analysis	
Appendix C: Quality Control Report	
Appendix D: Chain of Custody	
Appendix E: Non-filterable Phosphorus Report	
Appendix F: QA/QC Compliance Assessment	

List of Figures

Figure 2-1: Project Area with initial sampling locations	8
Figure 3-1: Sampling locations for wet and dry weather monitoring	10
Figure 4-1: Cumulative rainfall data for Warriewood (Mona Vale Golf Club Station) in	2018. (Source
http://www.bom.gov.au)	17

List of Tables

Table 2-1: Results from water quality monitoring undertaken during preliminary Project Site survey (May
10, 2018)
Table 3-1: Summary of monitoring parameters and site requirements11
Table 3-2: Acceptance Criteria
Table 4-1: Location of each water quality sampling site within 2 Macpherson Street, Warriewood17
Table 4-2: Summary of sampling techniques19
Table 4-3: Field water quality data from the sampling events (ANZECC exceedances highlighted)23
Table 4-4: Laboratory water quality data from the sampling events (ANZECC exceedances highlighted)
Table 4-5: Macroinvertebrate data from dry weather sampling event on 26 th October 201826

1. Introduction

1.1 Purpose and application

A Water Quality Monitoring Plan (WQMP) is to be prepared and commenced prior to the granting of a development application (DA) in accordance with <u>Section 4.2</u> and <u>Appendix C</u> of "Pittwater Council 2001, Warriewood Valley Urban Land Release Water Management Specification".

Eco Logical Australia Pty Ltd (ELA) has been commissioned by Meriton Group to prepare a WQMP for development of their Project Site at 2 Macpherson Street, Warriewood (DA No. N03981). This WQMP is applicable to all stages of development at the site, from pre-construction; during-construction activities and post-construction stage.

The purpose of this WQMP is to present how the extent and nature of potential impacts to surface water quality will be monitored during construction and operation of the proposed development and provide guidance on triggers that might initiate mitigation strategies (**Section 3**).

Critical to appreciation of any future impacts is assessment of pre-construction baseline conditions for the existing surface waters and this document presents results from one wet and two dry weather sampling events used to establish baseline conditions for the site prior to construction (**Section 4**).

This current version (v.4) of the WQMP (July 2019) supersedes all previous versions and includes results of sampling applicable to baseline assessment (to January 2019) undertaken during the predevelopment phase of the development. These data provide *status quo* conditions relevant to assessment of future water and sediment quality conditions during construction and post-construction phases of the development.

This report will be up-dated to include data collected during the construction and post-construction phases of the DA as that data is collected. Future versions will also include interpretation and risk assessment against the baseline conditions provided in this version (version 4) of the WQMP.

1.2 Objective of the WQMP

The water quality requirements for the Project Site nominated in the "Warriewood Valley Urban Land Release Water Management Specification" (Pittwater Council 2001) are provided below:

"Specific standards have been developed for in-sector monitoring applicable to wet or dry weather stormwater discharge concentrations. However, as a minimum, a 'no worsening' of existing runoff quality is required".

The objective of the WQMP is to maintain the existing quality of local surface water through early identification of potential impacts to the health of the waterway via implementation of the WQMP, before and after construction to allow for appropriate response. It is designed to establish the water quality and ecological characteristics of the of the waterways within the vicinity of the development site.

As per Council's requirement (Pittwater Council, 2001) this WQMP relates to three key phases of the development:

- Pre-development phase (prior to approval of development application)
- Construction phase monitoring period (immediately after site works commence and up to Subdivision Certificate Issue) and
- Post-construction phase monitoring period (immediately after Subdivision Certificate Issue and up to Handover)

This version of the WQMP (version 4) has been updated following approval of the construction phase of the DA and reference is made to those criteria pertinent to that phase as described in **Section 3** with sampling protocols summarised in **Table 3-1** and **Table 3-2**.

A report is to be submitted to Council for baseline data collected for the pre-construction phase and then every three months for all types of monitoring conducted at the Project Site. Reporting criteria and frequency is described in **Section 3.7**.

1.3 Legislative guidelines

1.3.1 Warriewood Valley Urban Land Release Water Management Specification (2001)

The Warriewood Valley Urban Land Release Water Management Specification (Pittwater Council, 2001) was prepared to ensure that the development of the Warriewood Valley is carried out in an ecologically sustainable manner within the realm of the water environment. The document aims to achieve this by providing Applicants and Council with tools to guide the Applicants preparation of water-related documentation in the Rezoning, Development Application, Construction Certificate, Subdivision Certificate and Handover phases for the redevelopment (on a sector by sector basis) of the Valley.

This document provides specific requirements for the preparation by Applicants of Rezoning Applications, Development Applications, Construction Certificates, Subdivision Certificates and Handover documentation and outlines what levels of expertise will be required for certification to meet the requirements of the Warriewood Valley Development Control Plan (DCP No 20, 1998).

1.3.2 Australian & New Zealand Guidelines for Fresh & Marine Water Quality (2018)

The <u>Guidelines</u> provide the management framework for long-term strategies for consistent water quality management and planning; technical support for Australia's National Water Quality Management Strategy and tools to assess and manage ambient water quality. The focus is on water quality within the context of broader ecosystem health management. Water quality compliance targets are largely sourced from the precursor "Australian and New Zealand Guidelines for Fresh and Marine Water Quality" (ANZECC/ARMCANZ, 2000b) and the recently-revised Guidelines currently default to the earlier documentation for most targets and guideline values.

The objective of the 2018 Australian and New Zealand Guidelines for Fresh and Marine Water Quality is primarily to provide authoritative guidance on the management of water quality in Australia and New Zealand. This guidance includes setting water quality and sediment quality objectives designed to sustain current, or likely future, community values for natural and semi-natural water resources.

1.3.3 Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000)

The Australian and New Zealand Environment and Conservation Council and the Agriculture and Resource Management Council of Australia and New Zealand developed the "Australian and New Zealand Guidelines for Fresh and Marine Water Quality" (ANZECC/ARMCANZ 2000b) as part of the Australian National Water Quality Management Strategy (<u>NWQMS</u>). The NWQMS aims to achieve the sustainable use of Australia's and New Zealand's water resources by protecting and enhancing their quality while maintaining any social development.

For each catchment in NSW, the State Government has endorsed the community's environmental values for water, known as Water Quality Objectives (WQOs). The NSW WQOs are the environmental values and long-term goals for consideration when assessing and managing the likely impact of activities on waterways (ANZECC/ARMCANZ, 2000a).

Environmental values are particular values or uses of the environment important to maintain a healthy ecosystem, to provide a public benefit, and improve or maintain safety or health from the effects of pollution, waste discharges and deposits. The environmental values expressed as WQOs provide goals that help in the selection of the most appropriate management options. The guiding principles are:

- Where the environmental values are being achieved in a waterway they should be protected; and
- Where the environmental values are not being achieved in a waterway, all activities should work towards their achievement over time.

A range of water quality indicators are used to help assess whether the current condition of a waterway supports these values. Each indicator has an associated "trigger" value which, if exceeded, could mean one or more of the water quality objectives might not be met. These key indicators are derived from ANZECC/ARMCANZ (2000a).

2. Project environment

2.1 Project Area

The Project Site is located in Warriewood Valley, approximately 23 km north-east of Sydney CBD. The Project Site is bounded by Narrabeen Creek to the north and east, Macpherson Street to the south and an undeveloped lot to the west (**Figure 2-1**). The site is located in Sector D of the "Warriewood Valley Urban Land Release Water Management Specification" (Pittwater Council, 2001).

The site is generally flat with a slightly higher elevation at the north section of the Project Site and then falls from north to south-east. Narrabeen Creek, a 2nd order watercourse and one of the three major creeks in Warriewood Valley, forms a border around the northern and eastern sides of the Project Site. A high-flow drainage channel separate to Narrabeen Creek exists along the western side of the Site eventually connecting to Warriewood Wetlands.

2.2 Surface Water

Narrabeen Creek flows from west to east on the north west section of the site and from then flows south under Macpherson Street. There are existing culverts on the south eastern side of the Project Site on Macpherson Street and at the south-west corner of the Project Site.

A Riparian zone borders the Project Site alongside Narrabeen Creek at the north and east of the Site and adjacent to the high-flow drainage channel on the western side of the creek (**Figure 2-1**).

2.3 Existing aquatic environment

Prior to development of the WQMP, a preliminary reconnaissance survey was conducted at the Project Site on May 10th, 2018. Water was tested for salinity, pH and temperature within existing drainage channels (locations of the sampling sites are shown in **Figure 2-1**). All sites, except site 1, presented as stagnant pools and this is reflected in slightly elevated salinity at sites 2 and 3. The water was generally observed to be clear and slightly acidic with surface algae present in the channels located at the north, east and western sections of the Project Site (**Table 2-1**). These conditions are reflective of rainfall runoff with subsequent stagnation in isolated pools. Site 1 appears to be receiving fresh water from a drainage pipe from the eastern bank.

Location in Figure 2-1	Temperature (ºC)	рН	EC(μS/cm)	Present condition
1	15.8	6	142	Clear water
2	15.7	6	410	Algae present, clear water
3	-	-	221	Algae present, clear water
4	15.7	6	210	Algae present, clear water

Table 2-1: Results from water quality monitoring undertaken during preliminary Project Site survey (May 10, 2018)

Figure 2-1: Project Area with initial sampling locations

3. Water Quality Monitoring Plan

This section describes the specifications of sampling and analysis to be carried out under the Water Quality Monitoring Plan, including sampling requirements and frequency for each phase of development.

3.1 Monitoring Parameters

Three types of monitoring will be undertaken (Pittwater Council, 2001):

- Water Quality Monitoring (discrete sampling)
- Rapid Biological Assessment
- Sediment Toxicant Monitoring

Water quality samples will be collected and sent to a NATA-accredited laboratory with a comprehensive QA/QC process. The ALS laboratory in Smithfield, for example, is one such laboratory suitable to carry out these analyses.

The Rapid Biological Assessment provides a clear indicator of river health. Macroinvertebrates are to be sampled, sorted and identified by a person familiar with SE Australian waters, using accredited sampling and identification methods. Biological activity is to be reported using the SIGNAL Index (Chessman, 1995).

An assessment of sediment toxicant quality will be undertaken parallel with the Rapid Biological Assessment. ALS Environmental are an accredited NATA laboratory capable of carrying out these analyses.

3.2 Sampling Locations

Six (6) sampling locations have been selected following Council guidelines (Pittwater Council, 2001). These sampling locations are shown in **Figure 3-1** (and in **Appendix A**) and are described below:

- one site on Narrabeen Creek upstream of the proposed development (Site 1)
- one site on Narrabeen Creek at the downstream extent of the Site on the south eastern boundary upstream of the culverts on Macpherson Street (Site 2)
- three within-sector sites at proposed stormwater management structures along Narrabeen Creek (Site 3, Site 4 and Site 5) and
- one site at the downstream extent of the high flow channel adjacent to the west of the Site (Site
 6)

Access to sampling sites will be engineered and maintained to facilitate safe and repeatable sampling of the creek without disruption to creek function and flow (e.g. cleared pathways).

Figure 3-1: Sampling locations for wet and dry weather monitoring

3.3 Monitoring Parameters for Water Quality Assessment

The parameters to be sampled as part of the Pittwater Council's Water Management Specifications (Pittwater Council, 2001) are summarised in **Table 3-1**. Different parameters and monitoring locations are required to be sampled depending on the weather and phase of the development.

Dry and Wet-weather sampling will be undertaken as per Council's requirements in the specified locations, as listed in detail in **Table 3-1** below.

3.4 Sampling Frequency

Dry-weather samplings are to be conducted on a regular three-monthly basis.

Wet-weather samples are to be undertaken for at least three (3) events spread evenly over the year at times where the rainfall is predicted to be greater than 20 mm over the catchment in a 24-hour period. Wet weather sampling will target the rising limb and/or the falling limb of the hydrograph, with at least one sample on the rising limb and one sample on the falling limb during each year.

Rapid Biological Assessment and Sediment sampling are to be carried out during the development application and annually thereafter, up to and including the handover stage of the Project. A minimum of one set of Biological Assessment and Sediment sampling should be carried out during the pre-

construction phase, with on-going annual assessments carried out for the construction phase and postconstruction phase upon Development Application and Construction Certificate approvals, respectively.

3.5 Laboratory detection limits

The specified laboratory detection limits (LORs) for each analyte are listed in Table 3-1.

Media	State	Variable	LOR or precision as	Sampling Pre-develo phase	ocations opment	Sampling Constructi	ocations on Phase	Sampling Post-const Phase	Locations truction
			specified	Wet weather	Dry weather	Wet weather	Dry Weather	Wet weather	Dry Weather
Water	Physical	Visual	-	1,2.4	1,2.4	1-6	1-6	1-6	1-6
		Salinity	10 µS/cm	1,2	1,2	1,2	1,2	1,2	1,2
		pH (Field)	0.01 pH Unit	1,2	1,2	1,2	1,2	1,2	1,2
		Temperature (Field)	-	1,2	1,2	1,2	1,2	1,2	1,2
		Dissolved Oxygen (Field)	0.1	1,2	1,2	1,2	1,2	1,2	1,2
		Turbidity (Field)	0.1 NTU	1,2	1,2	1,2	1,2	1,2	1,2
		Suspended Solids	5	1,2,4	1,2,4	1-6	1-6	1-6	1-6
		Volume Gross Pollutants Removed	n/a	n/a	n/a	n/a	SQID	n/a	SQID
	Chemical	Total Nitrogen	0.1	1,2.4	1,2.4	1-6	1-6	1-6	1-6
		Ammonia- Nitrogen	0.1	1,2.4	1,2.4	1-6	1-6	1-6	1-6
		Total Kjeldahl Nitrogen	0.1	1,2.4	1,2.4	1-6	1-6	1-6	1-6
		Nitrates and Nitrites	0.1	1,2.4	1,2.4	1-6	1-6	1-6	1-6
		Total Phosphorous	0.1	1,2.4	1,2.4	1-6	1-6	1-6	1-6
		Ortho- Phosphate	0.1	1,2.4	1,2.4	1-6	1-6	1-6	1-6
		Non-Filterable Phosphorous	0.1	1,2.4	1,2.4	1-6	1-6	1-6	1-6
		Hardness (CaCO ₃)	1	n/a	1,2	n/a	1,2	n/a	1,2
		Chromium	0.01	n/a	1,2	n/a	1,2	n/a	1,2
		Lead	0.01	n/a	1,2	n/a	1,2	n/a	1,2
		Zinc	0.5	n/a	1,2	n/a	1,2	n/a	1,2
		Arsenic	0.005	n/a	1,2	n/a	1,2	n/a	1,2
		Mercury	0.001	n/a	1,2	n/a	1,2	n/a	1,2
		Copper	1	n/a	1,2	n/a	1,2	n/a	1,2
		Phenolic Compounds	0.1	n/a	1,2	n/a	1,2	n/a	1,2
		OC/OP Pesticides	0.1 μg/L	n/a	1,2	n/a	1,2	n/a	1,2

Table 3-1: Summary of monitoring parameters and site requirements

Media	State	Variable	LOR or precision as	Sampling Pre-develo phase	locations opment	Sampling Construct	locations ion Phase	Sampling Post-cons Phase	Locations truction
			specified	Wet weather	Dry weather	Wet weather	Dry Weather	Wet weather	Dry Weather
		Oil & Grease (H.E.M)	5	n/a	1,2	n/a	1,2	n/a	1,2
		PAH	1 μg/L	n/a	1,2	n/a	1,2	n/a	1,2
		Chlorophyll-a	1 mg/m ³	n/a	n/a	n/a	n/a	n/a	1,2
	Biological	Algal Identification and Count	10	n/a	1,2	n/a	1,2	n/a	1,2
		Faecal Coliform Count	1 cfu/100mL	1,2,4	1,2,4	1-6	1-6	1-6	1-6
		Biotic Index (SIGNAL)	-	n/a	1,2	n/a	1,2	n/a	1,2
Sediment	Chemical	Chromium	0.1	n/a	1,2	n/a	1,2	n/a	1,2
		Lead	0.1	n/a	1,2	n/a	1,2	n/a	1,2
		Zinc	0.1	n/a	1,2	n/a	1,2	n/a	1,2
		Arsenic	0.1	n/a	1,2	n/a	1,2	n/a	1,2
		Mercury	0.1	n/a	1,2	n/a	1,2	n/a	1,2
		Copper	0.1	n/a	1,2	n/a	1,2	n/a	1,2
		Phenolic Compounds	0.1	n/a	1,2	n/a	1,2	n/a	1,2
		Organochlorine Pesticides	0.5	n/a	1,2	n/a	1,2	n/a	1,2
		PAH	0.5 μg/L	n/a	1,2	n/a	1,2	n/a	1,2

3.6 Acceptance Criteria

The Acceptance Criteria will be assigned for each term (Short, Medium and Long-term) based on Council's guidelines (Pittwater Council, 2001). Thus, 'Short-term' relates to the period during and just after development (up to 'Handover'). 'Medium-term' is the period of <u>one-year</u> after completion of all water quality controls associated with the fully developed area. 'Long-term' relates to the period after control measures are introduced for all pollutant sources in the valley (if applicable).

In the short-term, existing conditions ('status quo') will be maintained (i.e. 90% compliance with the median values from pre-development (baseline) monitoring data)(*see* Section 4).

In the medium and long-term, a compliance rate of 90% against listed guidelines (**Table 3-2**) will to be targeted.

The Acceptance Criteria are summarised in Table 3-2.

Media	State	Variable	Units	During Construction Site Discharges/In Sector	Post Construction Site Discharges	In-stream Short Term (Status Quo)	In-Stream Medium Term	In-Stream Long Term	
Water	Physical	Visual	-	No litter	No litter	No litter	No litter	No litter	
		Salinity (TDS)	mg/L			1000	1000	1000	
		pH (Field)	-			6.6 - 8	6.6 - 8	6.6 - 8	
		Temperature (Field)	°C			Status quo	Status quo	Status quo	
		Dissolved Oxygen (Field)	%Sat			Status quo	90	90	
		Turbidity (Field)	NTU			Status quo	50	20	
		Suspended Solids	mg/L	100	50	Status quo	20	6	
		Volume Gross	Tonne*	-	-	-	-	-	
		Pollutants Removed							
	Chemical	Total Nitrogen	mg/L	1.6	1.6	Status quo	1.6	1.0	
		Ammonia-Nitrogen	mg/L	See Notes	See Notes	See Notes	See Notes	See Notes	
		Total Kjeldahl Nitrogen	mg/L	-	-	-	-	-	
		Nitrates and Nitrites	mg/L	-	-	-	-	-	
		Total Phosphorous	mg/L	0.1	0.05	Status quo	0.1	0.04	
		Ortho-Phosphate	mg/L	-	-	-	-	-	
		Non-Filterable Phosphorous	mg/L	-	-	-	-	-	
		Hardness (CaCO ₃)	mg/L			-	-	-	
		Chromium	mg/L			Status quo	50% status quo	10	
		Lead	mg/L			Status quo	50% status quo	1	
		Zinc	mg/L			Status quo	50% status quo	50	
		Arsenic	mg/L			Status quo	50% status quo	50	
		Mercury	mg/L			Status quo	50% status quo	0.1	
		Copper	mg/L			Status quo	50% status quo	2	
		Phenolic Compounds	mg/L			Status quo	50% status quo	See Notes	
		OC/OP Pesticides	mg/L			Status quo	50% status quo	See Notes	
		Oil & Grease (H.E.M)	mg/L			50	20	5	
		РАН	mg/L			Status quo	50% status quo	3	
		Chlorophyll-a	mg/m ³			15	15	10	
	Biological	Algal Identification and Count	-			Status quo	No algal bloom	No algal bloom	
	Ũ	Faecal Coliform Count	Cfu/100mL	150	150	1000	150	150	
		Biotic Index	-			Status quo	> 5	> 6	
Sediment	Chemical	Chromium	mg/kg			Status quo	50% status quo	80	

Table 3-2: Acceptance Criteria

Media	State	Variable	Units	During Construction Site Discharges/In Sector	Post Construction Site Discharges	In-stream Short Term (Status Quo)	In-Stream Medium Term	In-Stream Long Term
		Lead	mg/kg			Status quo	50% status quo	50
		Zinc	mg/kg			Status quo	50% status quo	200
		Arsenic	mg/kg			Status quo	50% status quo	20
		Mercury	mg/kg			Status quo	50% status quo	0.15
		Copper	mg/kg			Status quo	50% status quo	65
		Phenolic Compounds	mg/kg			Status quo	50% status quo	See Note
		Organochlorine Pesticides	mg/kg			Status quo	50% status quo	See Note
		Total PAH	mg/kg			Status quo	50% status quo	4000

2 Macpherson St Water Quality Monitoring Plan

* If gross pollutants are removed from site, this parameter should be included in Table 3-1

Notes for Table 3-2:

- 'Status Quo' means the median value is within the range of the 10th percentile and 90th percentile from the pre-development condition data
- 50% Status Quo means the median value is within the range of 50th percentile of the 10th percentile and 50th percentile of the 90th percentile from the predevelopment condition data
- Sediment guidelines are dry weight from ANZECC/ARMCANZ, 2000
- General values have been adopted with consideration of ANZECC/ARMCANZ, 2000
- Water Hardness required to assist with interpretation of trigger guidelines for metal concentrations
- For the purposes of comparing the results with ANZECC/AMCANZ, 2000 guidelines, the creeks can generally be defined as 'lowland rivers'. If the existing level is lower than the medium or long-term guideline provided, the existing level is not to be exceeded.
- Note ANZECC/ARMCANZ 2000 guidelines for each compound to be used
- For Ammonia: reported as equivalent total ammonia at a common pH value of 8, following the formalism of ANZECC/ARMCANZ, 2000.

3.7 Reporting

A report is to be submitted to Council for baseline data collected for the pre-construction phase and then every three months for all types of monitoring conducted at the Project Site. This report will include:

- objectives of the monitoring program;
- limitations of the program;
- map indicating the location of the monitoring sites;
- description of the monitoring site's catchment, including catchment area, land use, and estimated impervious fraction;
- description of the rainfall patterns during the monitoring period (including the daily rainfall and monitoring dates)
- summary of the sampling techniques;
- summary of the analytical techniques, including detection limits;
- QA/QC procedures;
- any factors which may have affected the results;
- the laboratory test certificates (will be included in an Appendix).
- a discussion (including graphs) on the influence of season and flow conditions on the monitoring results;
- a comparison between the observed pollutant concentrations and the long-term water quality objectives for ecosystem protection (as described in <u>Appendix C</u>, Pittwater Council, 2001).

The minimum requirement for the development application is the inclusion of results of initial water quality sampling for wet and dry weather. Subsequent monitoring results will be included in the Construction Certificate and Handover reports.

Following an event sampling, the report will include the following additional information (using data acquired by Council at the Narrabeen Creek, Macpherson Road data collection sites):

- a table containing the event date, approximate runoff volume (or depth) based on spot or continuous gaugings, Event Mean Concentration (EMC) and load.
- event rainfall depth, peak flow and peak concentration rate.

Once development consent is granted by Council, the original laboratory analysis reports and details of site locations, and the date and time of sampling will be forwarded to Council three weeks after a dry or wet weather sampling event where data has been collected and analysed. A summary report of the event will then be prepared to be included in the three-monthly reports described above.

4. Baseline assessment – Pre-construction phase conditions

The sampling program for this WQMP requires both wet weather and dry weather sampling of the local water features prior to any construction. This section presents the outcomes of two pre-construction sampling events conducted in late 2018 at the Project Site.

A wet weather sampling event was conducted on September 27, 2018 following approximately 20 mm of rain in the previous 24-hours at Warriewood. A dry weather sampling was conducted on October 26, 2018 with <2 mm rainfall in the previous 24 hours. These two sampling events satisfy the requirements for baseline data for the pre-development phase of the project.

Samples were collected for water quality assessment for wet weather and sediment toxicant assessment and rapid biological assessment in addition to water quality assessment for dry weather as per the *'Warriewood Valley Urban Land Release Water Management Specification'* (Pittwater Council 2001, ELA 2018).

4.1 Existing environment

As per the reporting specifications of Pittwater Council's Water Management Specifications (Pittwater Council, 2001), a description of the catchment and rainfall pattern is provided below:

The Narrabeen Creek catchment

The Narrabeen Creek catchment has become increasingly developed over the past decade. The headwaters of Narrabeen Creek are located to the east of Mona Vale Road, where there is still remnant bushland. As it flows downstream, Narrabeen Creek flows through the newly developed areas of Warriewood before reaching 2 Macpherson Street. The catchment area upstream of the subject site is approximately 1.4 km². Land use in the Narrabeen Creek catchment is mainly residential, with a few industrial complexes towards the upstream extent of the catchment.

Whilst the creek runs through a preserved 20-50 m wide riparian strip, the remaining area of the catchment presents predominantly as impervious roof-tops and roads, with only the initial 30-40 m of the upper catchment under native bush.

Rainfall patterns

Prior to the wet weather sampling event, rainfall recorded in Warriewood had been low, with the area having experienced a relatively dry winter. Between 1 July 2018 and 27 September 2018, 71.5 mm of rain was recorded at Warriewood. As mentioned previously, 20 mm of rain was recorded at Boondah Reserve in Warriewood in the 24 hours to 6am 27 September 2018. Less than 2 mm rainfall fell in the previous 24-hours prior to the dry weather sampling (Figure 4-1).

Mona Vale Golf Club (066141) 2018 rainfall

4.2 Location of monitoring sites

For the baseline assessment, three sites along Narrabeen Creek were sampled for the wet/dry weather monitoring (Table 4-1). These three locations were chosen based on: safe access to Narrabeen Creek; requirements of *Warriewood Valley Urban Land Release Water Management Specification*' (Pittwater Council, 2001) and ease of repeat sampling at the chosen location.

Site Code	Location (Figure 3-1)	GPS Coordinates	Description of sampling location
US01	1	33° 41′ 10″, 151° 18′ 0″	Located at upstream extent of site. No litter or oily residue was observed at the time of sampling
MS01	4	33° 41′ 20″, 151° 17′ 57″	Located approximately halfway along Narrabeen Creek within the site, beneath large fig tree on right bank. No litter or oily residue was observed at the time of sampling
DS01	2	33° 41′ 23″, 151° 17′ 58″	Located at downstream extent of site, approximately 15 m upstream of culverts under Macpherson Street. No litter or oily residue was observed at the time of sampling

|--|

4.3 Sampling techniques

At each of the sampling locations within the Project Site, the following sampling techniques were used to collect data for the required parameters (summarised in **Table 4-2**).

4.3.1 Field data

A hand-held water quality meter (calibrated immediately prior to the sampling event) was used to collect field measurements shown in **Table 4-2**. The meter was left in the water until the dissolved oxygen levels, temperature and pH had stabilised before a measurement of each of the parameters was recorded.

4.3.2 Water sampling

Water samples at each of the sampling locations were collected by hand (without the need for a sampling pole) as access to the creek line facilitated easy access to the water. Unless the sample bottles had been pre-treated (such as with sodium thiosulphate for the faecal coliform test), each sample bottle was rinsed with creek water three times before being filled with enough water for the appropriate sample. Water was collected from approximately 10 cm below the water's surface. Care was taken to not disturb the sediment on the bed of the creek while collecting water samples or measurements using the hand-held water quality meter, as this could skew the results.

4.3.3 Sediment and Biotic SIGNAL sampling

As per the WQMP, sampling for sediment and Biotic Index SIGNAL was conducted for two sites: the upstream (US01) and the downstream (DS01) site. Collected water samples and sediment samples were stored on ice in a sealed esky before they were taken to the ALS laboratory in Smithfield for analysis. Aseptic techniques were followed to ensure integrity of all collected samples.

Macroinvertebrates were sampled, sorted and identified using AUSRIVAS sampling and identification protocols. For each sampling site, edge sampling for macroinvertebrates was conducted by 2 ecologists using a 250 μ m-mesh sweep net over a total length of 10 m with a focus on getting a representative sample from each habitat. Net contents were emptied into a white sorting tray and scanned for a period of 40 minutes. Each invertebrate taxon was removed and preserved in small specimen jars containing 85% un-denatured ethanol. No additional taxa were identified after 40 minutes of scanning.

Macroinvertebrates were identified to the family taxonomic level and counted. Identified taxa were given a relative SIGNAL score indicating the taxon's tolerance to pollution.

As per Council's Water Management Specifications (Pittwater Council, 2001), the SIGNAL indices are presented in Table 4-5. Each site was classified as per the categories below:

less than 4 = severely impaired, very poor water quality

- 4-5 = moderately impaired, poor water quality
- 5-6 = mildly impaired, fair water quality
- 6 -7 = unimpaired, good water quality
- >7 = unimpaired and rich in sensitive taxa, excellent water quality.

No sediment samples nor macroinvertebrates were collected for the wet weather sampling event, as per the Council's Water Management Specifications (Pittwater Council, 2001).

Sampling	Media	Parameter measured	Location o	of measurement
technique			Wet weather	Dry weather
Hand-held	Water	Salinity	US01/DS01	US01/DS01
water quality		, pH	US01/DS01	US01/DS01
meter		Temperature	US01/DS01	US01/DS01
		Dissolved Oxygen	US01/DS01	US01/DS01
		Turbidity	US01/DS01	US01/DS01
Water sample		Suspended solids	US01/MS01/DS01	US01/MS01/DS01
collected and		Total Nitrogen	US01/MS01/DS01	US01/MS01/DS01
sent to ALS		Ammonia-Nitrogen	US01/MS01/DS01	US01/MS01/DS01
laboratory		Total Kjeldahl Nitrogen	US01/MS01/DS01	US01/MS01/DS01
		Nitrates and Nitrites	US01/MS01/DS01	US01/MS01/DS01
		Total Phosphorus	US01/MS01/DS01	US01/MS01/DS01
		Ortho-Phosphate	US01/MS01/DS01	US01/MS01/DS01
		Non-filterable	US01/MS01/DS01	US01/MS01/DS01
		Hardnoss (CaCO ₂)	n/2	
		Chromium	n/a	
		Load	n/a	
		Zinc	n/a	
		Arsonic	n/a	
		Mercury	n/a	
		Conner	n/a	
		Phenolic Compounds	n/a	
		OC/OP Pesticides	n/a	
		Oil & Grease (H E M)	n/a	
			n/a	
		Algal Identification	n/a	US01/DS01
		and Count		
		Faecal coliform	US01/MS01/DS01	US01/MS01/DS01
	Sediment	Chromium	n/a	US01/DS01
		Lead	n/a	US01/DS01
		Zinc	n/a	US01/DS01
		Arsenic	n/a	US01/DS01
		Mercury	n/a	US01/DS01
		Copper	n/a	US01/DS01
		Phenolic Compounds	n/a	US01/DS01
		Organochlorine Pesticides	n/a	US01/DS01
		PAH	n/a	US01/DS01

Table 4-2: Summary of sampling techniques

n/a = not requires as per Pittwater Council's Water Management Specifications (Pittwater Council, 2001)

4.4 Analytical techniques

The water samples were analysed by the NATA-accredited ALS laboratory at Smithfield. The details of the analyses undertaken by ALS are included in **Appendix B**. Detection limits or limits of reporting (LOR) for each of the parameters tested for are included in Table 4-4, below.

4.5 QA/QC procedures

To ensure the accuracy of the water quality results, the water quality meter was calibrated in the office before being used in the field by using calibration liquids. The meter was rinsed with creek water between each sampling location and each water sample bottle that hadn't been pre-treated was rinsed three times before being filled with the final sample.

Nitrile gloves were worn by the samplers to ensure that the samples and the water quality meter weren't inadvertently contaminated during the sampling process and each set of gloves was discarded between each sampling location.

ALS laboratory QA/QC compliance assessments for the samples collected are included in **Appendix C** and **Appendix F**.

Note that ALS is not a NATA-accredited laboratory for the non-filterable phosphorus test (Appendix E).

4.6 Baseline (Pre-construction) Results and status quo Conditions

Analytical results for the wet weather sampling and two dry weather sampling events (and a representative rainwater sample from Central Coast about 30 km northeast of the site) are presented below.

4.6.1 Wet weather sampling

The samples for the wet weather monitoring were collected following 20 mm of rain over the previous 24 hours to 9 am, September 27, 2018.

A stormwater outlet from adjacent properties discharges into Narrabeen Creek approximately 50 m upstream from sampling location DS01. Without the water quality results from these properties collected during the same period, it is not possible to tell if these results are affected by discharge from neighbouring, upstream, properties.

Field measurements

A number of physical and chemical properties were collected in the field (Table 4-3). In summary:

- pH at all locations fell within guidelines for slightly disturbed aquatic ecosystems, except for at US01 at the upstream extent of the site.
- Dissolved oxygen concentration was outside (below) guidelines for aquatic ecosystems at all sites. At DS01, there was significant vegetation growing within the waterway and a lot of green filamentous algae in the water, which could have affected the concentration of dissolved oxygen at this location. Oxygen potential decreased across the site.
- Turbidity was very low at all locations (i.e. good water clarity) and below trigger values.
- Conductivity (measure of salinity) was low at all locations and below trigger values for aquatic ecosystems.

4.6.1.1.1 Analytes

• All analysed analytes reported within or below recommended ANZECC guidelines, with the exception of some nutrients and pathogens (*see below*).

Nutrients

Total phosphorus, nitrogen and ammonia levels were all above the trigger values for slightly disturbed freshwater ecosystems at all three sampling locations. There was no longitudinal pattern to these results (i.e. the upstream and downstream values are similar) to suggest that the elevated nutrients are derived from a point-source, such as the subject site. It may be due to broader catchment influences. Elevated levels of algae were observed at the downstream site which may be promoted by the elevated nutrient levels.

Biological

- Faecal coliforms are an indicator of bacteria from animal faeces and were detected at elevated levels at all sampling locations. Levels are relatively high and exceed recommended levels for primary contact (150 CFU/100mL) but are below levels for secondary contact (1000 CFU/100mL). Concentrations reduce across the site by 30%, suggesting a primary source upstream of the site.
- Comparison between the preliminary reconnaissance survey and the wet weather event suggests that conditions in the main channel have not appreciably changed between the two sampling dates, with waters exhibiting similar salinities on both dates. The former, however, did not constitute a full sampling event and further dry weather, pre-construction samples should be collected for baseline comparison.

4.6.2 Dry weather sampling

The results from the two dry weather samplings may be summarised as follows:

Field measurements

- pH at all locations fell within guidelines for slightly disturbed aquatic ecosystems.
- Dissolved oxygen concentration was outside (below) guidelines for aquatic ecosystems at all sites and was lower than values observed during the wet weather sampling on September. The lowest DO was observed at the DS01 site (7.5%). Significant vegetation growing within the waterway and a lot of green filamentous algae in the water at this site could have affected the concentration of dissolved oxygen at this location. Oxygen potential decreased across the site.
- Turbidity was very low at all locations (i.e. good water clarity) and below trigger values.
- Conductivity (measure of salinity) was low at all locations and below trigger values for aquatic ecosystems during the wet weather sampling, however, it exceeded the trigger limit at all sites during the dry weather sampling. The highest conductivity (and salinity) was observed at the DS01 site.
- Total suspended solid was higher at DS01 site during dry weather sampling compared to the wet weather sampling and was higher again at US01 during the January 2019 sampling.

4.6.2.1.1 Water Analytes

 All analysed analytes reported within or below recommended ANZECC guidelines, with the exception of some nutrients and pathogens (*see below*) and zinc and copper metals. These latter likely represent collection of zinc dust from neighbourhood construction and the use of zincalume roofing.

Nutrients

- Total phosphorus, nitrogen and ammonia levels were all above the trigger values for slightly
 disturbed freshwater ecosystems at all three sampling locations. No longitudinal pattern was
 observed in the results (i.e. the upstream and downstream values are similar) to suggest that
 the elevated nutrients are derived from a point-source, such as the subject site. It may be due
 to broader catchment influences. Elevated levels of algae were observed at the downstream
 site which may be promoted by the elevated nutrient levels.
- Ortho-Phosphate and non-filterable phosphorous were not analysed during the first dry weather sampling but these values are likely to be similar if not lower to the values obtained during the wet weather sampling conducted on September (Ortho-Phosphate = <0.01 mg/L, non-filterable phosphorous = 0.01 mg/L). Ortho-Phosphate was 0.03 at DS01 during the January 2019 sampling. Non-filtered Phosphorus was also higher at the MS01 and DS01 sites (0.03 and 0.1 mg/L respectively) during the January 2019 sampling.

Biological

 Faecal coliforms are an indicator of bacteria from animal faeces and were detected at elevated levels at all sampling locations, however, was found to be lower than the wet weather sampling at all sites. Levels are relatively high and exceeded recommended levels for primary contact (150 CFU/100mL) but are below levels for secondary contact (1000 CFU/100mL). No longitudinal pattern was observed in the results.

Sediment results

• All analytes remained within the recommended range except for zinc, which was slightly over the range at US01 and below the range at DS01. High levels likely reflect runoff from corrugated metal roofs in the area.

Macroinvertebrates

- Macroinvertebrates from a total of 12 families were collected from the three sampling locations during dry weather sampling on 26th October 2018. Table 4-5 presents the macroinvertebrates (identified to family level) and their SIGNAL scores.
- The calculated SIGNAL score for each site are presented in Table 4-5. Both sites can be classified as "severely impaired" with a SIGNAL score <4 based on Council's guidelines (Pittwater Council, 2001) indicating "very poor" water quality.
- Slightly higher family richness was recorded at the DS01.

Analyte	Media	Guidelines ANZECC (1, 2)	Units LOR	Wet weather sampling (September 27, 2018)		Dry weather sampling (October 26, 2018)			Dry weather sampling (January 18, 2019)			
				US01	MS01	DS01	US01	MS01	DS01	US01	MS01	DS01
				27/9/18 9:40am	27/9/18 10:40am	27/9/18 11:20am	26/10/18 12:45 pm	26/10/18 12:15 pm	26/10/18 11:00 am	18/01/19 8:20 am	18/01/19 09:15 am	18/01/19 09:55 am
Temperature	Water (3)		°C	13.75	14	13.95	18.8	17.9	17.5	20.19	20.12	20.36
рН		6.5 - 8	pH units	6.39	6.62	6.53	6.97	6.93	6.80	6.92	6.84	6.73
Dissolved Oxygen		85-110	%	65.2	58	49	2.1	26.8	25.8	12	9.9	7.5
Turbidity		50	NTU	7.2	7.3	8.4	4.2	3.9	12.6	6.7	12.6	11.2
Conductivity		0.300	mS/cm	0.195	0.209	0.203	0.481	0.518	0.534	0.459	0.513	0.535
Salinity [†]		180	mg/L	117	125	122	289	311	320	275	308	321

Table 4-3: Field water quality data from the sampling events (ANZECC exceedances highlighted)

+ = calculated assuming salinity as 0.6 x conductivity

Table 4-4: Laboratory water quality data from the sampling events (ANZECC exceedances highlighted)

Analyte	Media	Guideline s ANZECC	Units	LOR	Wet weather sampling (September 27, 2018)			Dry weather sampling (October 26, 2018)		Dry weather sampling (January 18, 2019)			Representati ve Rainwater sample (Central	
		(1, 2)			US01	MS01	DS01	US01	MS01	DS01	US01	MS01	DS01	coast)
					27/9/ 18 9:40 am	27/9/1 8 10:40 am	27/9/1 8 11:20 am	26/10/1 8 12:45 pm	26/10/1 8 12:15 pm	26/10/1 8 11:00 am	18/01/1 9 8:20 am	18/01 /19 09:15 am	18/01/1 9 09:55 am	
Hardness (CaCO ₃)			mg/L	5				96	110	110	106	113	110	17

Analyte	Media	Guideline s ANZECC	Units	LOR	Wet weather sampling [(September 27, 2018) (Dry weather sampling (October 26, 2018)			Dry weather sampling (January 18, 2019)			Representati ve Rainwater sample (Central	
		(1, 2)			US01	MS01	DS01	US01	MS01	DS01	US01	MS01	DS01	(Central coast)
					27/9/ 18 9:40 am	27/9/1 8 10:40 am	27/9/1 8 11:20 am	26/10/1 8 12:45 pm	26/10/1 8 12:15 pm	26/10/1 8 11:00 am	18/01/1 9 8:20 am	18/01 /19 09:15 am	18/01/1 9 09:55 am	
Chromium	Water	0.003	mg/L	0.001				<0.001	-	<0.001	0.001	-	<0.001	<0.001
Lead	(3)	0.0034	mg/L	0.001				<0.001	-	<0.001	<0.001	-	<0.001	<0.001
Zinc		0.008	mg/L	0.005				0.016	-	0.018	0.006		<0.005	0.007
Arsenic		0.024	mg/L	0.001				<0.001	-	0.002	0.002	-	0.001	<0.001
Mercury		0.0006	mg/L	0.0001				<0.0001	-	<0.0001	<0.0001	-	<0.0001	<0.0001
Copper		0.0014	mg/L	0.001				0.002	-	0.002	0.002	-	<0.001	<0.001
Phenolic compounds (total Phenol)		0.32	mg/L	0.5				<0.05	-	<0.05	<0.005	-	<0.005	-
OC/OP pesticides**			μg/L	0.5				<0.5	-	<0.5	<0.5	-	<0.5	-
Oil & Grease (H.E.M)			mg/L	0.5				<0.5	-	<05	8	-	<0.05	
PAH								N/A	N/A	N/A	<1	-	<1	
Ammonia as N		0.9	mg/L	0.01	0.06	0.04	0.04	0.04	0.05	0.06	0.09	0.12	0.03	0.02
Nitrite + Nitrate as N (NOx)		0.04	mg/L	0.01	0.32	0.30	0.34	0.07	0.04	0.17	<0.01	<0.01	0.01	0.3
Total Kjeldahl Nitrogen as N (TKN)			mg/L	0.1	0.3	0.3	0.3	0.3	0.4	0.4	0.2	1.2	0.9	<0.01
Total Nitrogen as N (TKN + NOx)		0.5	mg/L	0.1	0.6	0.6	0.6	0.4	0.4	0.5	0.2	1.2	0.9	0.3
Total Phosphorus as P		0.05	mg/L	0.01	0.04	0.04	0.04	0.03	0.04	0.06	0.08	0.24	0.13	0.01
Ortho-Phosphate			mg/L	0.01	<0.01	<0.01	<0.01	N/A	N/A	N/A	0.02	0.01	0.03	<0.01
Non-filterable phosphorous			mg/L	0.01	0.01	0.01	0.01	N/A	N/A	N/A	<0.01	0.03	0.1	<0.01
Faecal Coliforms		1000	CFU/100 mL	1	430	390	290	~56	110	160	160	140	~400	<1
Total Suspended Solids			mg/L	5	<5	<5	<5	<5	<5	12	5	14	<5	<5

2 Macpherson St Water Quality Monitoring Plan

Analyte	Media	Guideline s ANZECC	leline Units _{LOR} Wet weather sampling Dry w (September 27, 2018) (Octo ECC		Dry weat (October	Dry weather sampling (October 26, 2018)			Dry weather sampling (January 18, 2019)					
		(1, 2)			US01	MS01	DS01	US01	MS01	DS01	US01	MS01	DS01	coast)
					27/9/ 18 9:40 am	27/9/1 8 10:40 am	27/9/1 8 11:20 am	26/10/1 8 12:45 pm	26/10/1 8 12:15 pm	26/10/1 8 11:00 am	18/01/1 9 8:20 am	18/01 /19 09:15 am	18/01/1 9 09:55 am	
Chromium	Sedime	80-370	mg/kg	2				38	-	9	0.01			
Lead	nt (4)	50-220	mg/kg	5				93	-	15				
Zinc		200-410	mg/kg	5				451	-	88				
Arsenic		20-70	mg/kg	5				15	-	5				
Mercury		0.15-1	mg/kg	0.1				0.1	-	<0.1				
Copper		65-270	mg/kg	5				62	-	18				
Phenolic compounds (total Phenol)			mg/kg	1				<1	-	<1				
OC pesticides**			mg/kg	0.05				<0.05	-	<0.05				
PAH**			mg/kg	0.5				<0.8	-	<0.5				

2 Macpherson St Water Quality Monitoring Plan

Notes:

(1) 95% level of protection for freshwater species (ANZECC & ARMCANZ 2000)

(2) Default trigger values for slightly disturbed ecosystems and lowland rivers in south-east Australia (NSW &Vic east flowing coastal rivers) (ANZECC & ARMCANZ 2000)

(3) Guideline values indicate 95% protection levels for slightly-moderately disturbed ecosystems (ANZECC 2000)

(4) Guideline range indicates ISQC – Low (Trigger value) and ISQC High values

N/A = Not analysed for dry-weather sampling

* = Non-filterable phosphorus is not covered by ALS's NATA accreditation

** = see Appendix B for individual analyte values

Site	Order		Family	Count	SIGNAL
US01	Diptera		Chironomidae/Chironominae	19	3
Edge sampling (12:45 nm)	Diptera		Chironomidae/ Tanypodinae	2	3
(12.45 pm)	Misc. Class: Oligochaeta			2	2
	Hemiptera		Gelastocoridae	1	5
	Acarina		Hydracarina	8	6
	Diptera		Culicidae	1	1
	Misc. (no head	I)		1	N/A
	Coleoptera		Hydraenidae	1	3
	Microcrustace	an	Ostracoda	3	4
	Total families		8	Total SIGNAL	3.37
DS01	Diptera		Chironomidae/Chironomiae	29	3
Edge sampling	Diptera		Chironomidae/ Tanypodinae	5	3
(11.00 am)	Mollusca Gastropoda	and	Lymnacidae	13	1
	Mollusca Gastropoda	and	Planorbidae	5	2
	Diptera		Simuliidae	7	5
	Odonata Zygospora	-	Coenagrionidae	3	2
	Diptera		Culicidae	9	1
	Acarina		Hydracarina	3	6
	Microcrustace	an	Ostracoda	11	N/A
	Microcrustace	an	Copapoda	12	N/A
	Odonata		Corduliid	1	5
	Rhynchobdelli	da	Glossiphoniidae	1	1
	Total families		10	Total SIGNAL	2.9

Table 4-5: Macroinvertebrate data from dry weather sampling event on 26 th October 2018.	

5. Construction phase assessment

Development Application (DA No. 0398/17) was approved on 31st May, 2019 for the civil works, including cut and fill to create a suitable building platform for future development, private road, drainage works and environmental management works.

Subsequent versions of this report will provide data against this phase as collected and reported following the guidelines described in **Section 3.7**.

6. References

ANZECC, 2000. Australian Guidelines for Water Quality Monitoring and Reporting, Australian and New Zealand Environment and Conservation Council, 2000.

ANZECC/ARMCANZ, 2000a. Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 1, Australian and New Zealand Environment and Conservation Council, 2000.

ANZECC/ARMCANZ, 2000b. Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 2, Australian and New Zealand Environment and Conservation Council, 2000Pitwater Council, 2001. *Warriewood Valley Urban Land Release Water Management Specification (revised version)*, February 2001.

ANZG, 2018. *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at: <u>www.waterquality.gov.au/anz-guidelines</u>

Chessman, B.C., 1995. *Rapid Assessment of Rivers using macroinvertebrates: A procedure based on habitat-specific sampling, family level identification and a biotic index*. Aus. J. of Ecology, **10**(1).

Pittwater Council, 2001. *Warriewood Valley Urban Land Release Water Management Specification* (revised version), February 2001.

Appendix A: Sampling Site Photos

Site 1: Upstream of the proposed development at the confluence of Narrabeen Creek and drainage from western culvert

Site 2: Downstream of the proposed development at culvert on Macpherson Street.

Site 4: An in-sector site at mid-point of the development area

Site 6: Downstream extent of the high flow channel adjacent to the west of the Site

Appendix B: Certificate of Analysis

CERTIFICATE OF ANALYSIS

Work Order	ES1901722	Page	: 1 of 8
Client	ECO LOGICAL AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney
Contact	: MR Ian Dixon	Contact	: Customer Services ES
Address	: PO BOX 12	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	SUTHERLAND NSW 1499		
Telephone	: +61 02 4201 2208	Telephone	: +61-2-8784 8555
Project	: 11527 Macpherson St, Warrie Wood	Date Samples Received	: 18-Jan-2019 16:00
Order number	:	Date Analysis Commenced	: 19-Jan-2019
C-O-C number	:	Issue Date	: 25-Jan-2019 11:33
Sampler	: Claire Wheeler/Rizwaua Kumman		HALA NALA
Site	:		
Quote number	: EN/222		
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Sarah Griffiths	Microbiologist	Sydney Microbiology, Smithfield, NSW
Sunitha Kannampilli	Phycologist	Sydney Phycology, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Results apply to sample(s) as submitted.
- MF = membrane filtration
- CFU = colony forming unit
- KEY: PTP=Potential Toxin Producers
 ; ND=Not Detected; NS=Not Specified
 ; cf. = comparable from
- Samples were preserved with Lugols lodine solution.
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range
 of 10 100cfu.
- Under microscopic observation, debris present in sample #01 and #03
- Under microscopic observation, 'No Algae' detected in sample #04
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	US01	MS01	DS01	RC	
	CI	lient sampli	ng date / time	18-Jan-2019 08:20	18-Jan-2019 09:15	18-Jan-2019 09:55	15-Jan-2019 13:21	
Compound	CAS Number	LOR	Unit	ES1901722-001	ES1901722-002	ES1901722-003	ES1901722-004	
				Result	Result	Result	Result	
EA025: Total Suspended Solids dried at	104 ± 2°C							
Suspended Solids (SS)		5	mg/L	5	14	<5	<5	
ED093F: SAR and Hardness Calculations	;							
Total Hardness as CaCO3		1	mg/L	106	113	110	17	
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.001	mg/L	0.002		0.001	<0.001	
Chromium	7440-47-3	0.001	mg/L	0.001		<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	0.002		<0.001	0.001	
Lead	7439-92-1	0.001	mg/L	<0.001		<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	0.006		<0.005	0.007	
EG035T: Total Recoverable Mercury by I	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001		<0.0001	<0.0001	
EK055G: Ammonia as N by Discrete Ana	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.09	0.12	0.03	0.02	
EK057G: Nitrite as N by Discrete Analyse	er							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Analys	ser							
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	0.01	0.30	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.01	0.30	
EK061G: Total Kjeldahl Nitrogen By Disc	rete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	1.2	0.9	<0.1	
EK067FG: Filtered Total Phosphorus as I	P bv Discrete Ar	nalvser						
Filtered Total Phosphorus as P		0.01	mg/L	0.08	0.21	0.03	0.01	
EK067G: Total Phosphorus as P by Disc	rete Analvser							
Total Phosphorus as P		0.01	mg/L	0.08	0.24	0.13	0.01	
EK071G: Reactive Phosphorus as P by d	iscrete analvser	r						
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	0.01	0.03	<0.01	
EP020: Oil and Grease (O&G)								
Oil & Grease		5	mg/L	8		<5		
EP035G: Total Phenol by Discrete Analys	ser							
Phenols (Total)		0.05	mg/L	<0.05	<0.05	<0.05		
EP068A: Organochlorine Pesticides (OC)								
alpha-BHC	319-84-6	0.5	µg/L	<0.5		<0.5		
						1		

Page : 4 of 8 Work Order : ES1901722 Client : ECO LOGICAL AUSTRALIA PTY LTD Project : 11527 Macpherson St, Warrie Wood

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	US01	MS01	DS01	RC	
	Cli	ient sampliı	ng date / time	18-Jan-2019 08:20	18-Jan-2019 09:15	18-Jan-2019 09:55	15-Jan-2019 13:21	
Compound	CAS Number	LOR	Unit	ES1901722-001	ES1901722-002	ES1901722-003	ES1901722-004	
				Result	Result	Result	Result	
EP068A: Organochlorine Pesticides (OC) - Continued							
Hexachlorobenzene (HCB)	118-74-1	0.5	µg/L	<0.5		<0.5		
beta-BHC	319-85-7	0.5	µg/L	<0.5		<0.5		
gamma-BHC	58-89-9	0.5	µg/L	<0.5		<0.5		
delta-BHC	319-86-8	0.5	µg/L	<0.5		<0.5		
Heptachlor	76-44-8	0.5	µg/L	<0.5		<0.5		
Aldrin	309-00-2	0.5	µg/L	<0.5		<0.5		
Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5		<0.5		
trans-Chlordane	5103-74-2	0.5	µg/L	<0.5		<0.5		
alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5		<0.5		
cis-Chlordane	5103-71-9	0.5	µg/L	<0.5		<0.5		
Dieldrin	60-57-1	0.5	µg/L	<0.5		<0.5		
4.4`-DDE	72-55-9	0.5	µg/L	<0.5		<0.5		
Endrin	72-20-8	0.5	µg/L	<0.5		<0.5		
beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5		<0.5		
4.4`-DDD	72-54-8	0.5	µg/L	<0.5		<0.5		
Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5		<0.5		
Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5		<0.5		
4.4`-DDT	50-29-3	2.0	µg/L	<2.0		<2.0		
Endrin ketone	53494-70-5	0.5	µg/L	<0.5		<0.5		
Methoxychlor	72-43-5	2.0	µg/L	<2.0		<2.0		
^ Total Chlordane (sum)		0.5	µg/L	<0.5		<0.5		
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.5	µg/L	<0.5		<0.5		
	0-2							
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	µg/L	<0.5		<0.5		
EP068B: Organophosphorus Pesticid	les (OP)							
Dichlorvos	62-73-7	0.5	µg/L	<0.5		<0.5		
Demeton-S-methyl	919-86-8	0.5	µg/L	<0.5		<0.5		
Monocrotophos	6923-22-4	2.0	µg/L	<2.0		<2.0		
Dimethoate	60-51-5	0.5	µg/L	<0.5		<0.5		
Diazinon	333-41-5	0.5	µg/L	<0.5		<0.5		
Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5		<0.5		
Parathion-methyl	298-00-0	2.0	µg/L	<2.0		<2.0		
Malathion	121-75-5	0.5	µg/L	<0.5		<0.5		
Fenthion	55-38-9	0.5	µg/L	<0.5		<0.5		
Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5		<0.5		
Page : 5 of 8 Work Order : ES1901722 Client : ECO LOGICAL AUSTRALIA PTY LTD Project : 11527 Macpherson St, Warrie Wood

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			US01	MS01	DS01	RC	
	Cli	ient sampli	ng date / time	18-Jan-2019 08:20	18-Jan-2019 09:15	18-Jan-2019 09:55	15-Jan-2019 13:21	
Compound	CAS Number	LOR	Unit	ES1901722-001	ES1901722-002	ES1901722-003	ES1901722-004	
				Result	Result	Result	Result	
EP068B: Organophosphorus Pesticid	es (OP) - Continued							
Parathion	56-38-2	2.0	µg/L	<2.0		<2.0		
Pirimphos-ethyl	23505-41-1	0.5	µg/L	<0.5		<0.5		
Chlorfenvinphos	470-90-6	0.5	µg/L	<0.5		<0.5		
Bromophos-ethyl	4824-78-6	0.5	µg/L	<0.5		<0.5		
Fenamiphos	22224-92-6	0.5	µg/L	<0.5		<0.5		
Prothiofos	34643-46-4	0.5	µg/L	<0.5		<0.5		
Ethion	563-12-2	0.5	µg/L	<0.5		<0.5		
Carbophenothion	786-19-6	0.5	µg/L	<0.5		<0.5		
Azinphos Methyl	86-50-0	0.5	µg/L	<0.5		<0.5		
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0		<1.0		
Acenaphthylene	208-96-8	1.0	µg/L	<1.0		<1.0		
Acenaphthene	83-32-9	1.0	µg/L	<1.0		<1.0		
Fluorene	86-73-7	1.0	µg/L	<1.0		<1.0		
Phenanthrene	85-01-8	1.0	µg/L	<1.0		<1.0		
Anthracene	120-12-7	1.0	µg/L	<1.0		<1.0		
Fluoranthene	206-44-0	1.0	µg/L	<1.0		<1.0		
Pyrene	129-00-0	1.0	µg/L	<1.0		<1.0		
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0		<1.0		
Chrysene	218-01-9	1.0	μg/L	<1.0		<1.0		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0		<1.0		
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0		<1.0		
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5		<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0		<1.0		
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0		<1.0		
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0		<1.0		
^ Sum of polycyclic aromatic hydrocarbon	IS	0.5	µg/L	<0.5		<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5		<0.5		
MW006: Faecal Coliforms & E.coli by	MF							
Faecal Coliforms		1	CFU/100mL	160	140	~400	<1	
MW024: Bacillariophytes (Diatoms) - F	Pennales							
Navicula spp.		5	cells/ml	25		125		
Nitzschia spp.		5	cells/ml	25		75		
Pinnularia spp.		5	cells/ml			25		

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			US01	MS01	DS01	RC	
	Clie	nt samplir	ng date / time	18-Jan-2019 08:20	18-Jan-2019 09:15	18-Jan-2019 09:55	15-Jan-2019 13:21	
Compound CAS	S Number	LOR	Unit	ES1901722-001	ES1901722-002	ES1901722-003	ES1901722-004	
				Result	Result	Result	Result	
MW024: Bacillariophytes (Diatoms) - Pennales -	Continued							
Synedra spp.		5	cells/ml	5				
MW024: Bacillariophytes (Diatoms) - TOTAL BA	CILLARIO	PHYTES						
Total Bacillariophytes		5	cells/ml	55		225		
MW024: Chlorophytes (Green Algae)								
Chlamydomonas spp.		5	cells/ml			375		
Kirchneriella spp.		5	cells/ml	25				
Monoraphidium spp.		5	cells/ml			25		
Scenedesmus spp.		5	cells/ml	1170				
MW024: Chlorophytes (Green Algae) - TOTAL C	HLOROPH	YTES						
Total Chlorophytes		5	cells/ml	1200		400		
MW024: Cyanophytes (Blue Green Algae)								
Pseudanabaena spp.		5	cells/ml	475		325		
Romeria spp.		5	cells/ml	350		2790		
Aphanocapsa spp. < 2µm		5	cells/ml	300		950		
MW024: Cyanophytes (Blue Green Algae) - TOT	AL CYANO	PHYTES	\$					
Total Cyanophytes		5	cells/ml	1120		4060	<5	
MW024: Cyanophytes (Blue Green Algae) - TOT	AL POTEN	TIALLY	TOXIC CYAN	OPHYTES				
Total Potentially Toxic Cyanophytes		5	cells/ml	<5		<5	<5	
MW024: Flagellates - Cryptophytes								
Cryptomonas spp.		5	cells/ml	125		75		
MW024: Flagellates - Euglenophytes								
Euglena spp.		5	cells/ml	25		175		
Trachelomonas spp.		5	cells/ml	25		75		
MW024: Flagellates - Pyrrophytes								
Peridinium spp.		5	cells/ml	25				
MW024: Flagellates - TOTAL FLAGELLATES								
Total Flagellates		5	cells/ml	200		325		
MW024T: TOTAL ALGAE								
Total Algae Count		5	cells/ml	2580		5020	<5	
EP068S: Organochlorine Pesticide Surrogate								
Dibromo-DDE 2'	655-73-2	0.5	%	93.6		100		
EP068T: Organophosphorus Pesticide Surroga	te							
DEF	78-48-8	0.5	%	82.9		89.1		

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	US01	MS01	DS01	RC	
	Cli	ient sampli	ng date / time	18-Jan-2019 08:20	18-Jan-2019 09:15	18-Jan-2019 09:55	15-Jan-2019 13:21	
Compound	CAS Number	LOR	Unit	ES1901722-001	ES1901722-002	ES1901722-003	ES1901722-004	
				Result	Result	Result	Result	
EP075(SIM)S: Phenolic Compound Sur	rogates							
Phenol-d6	13127-88-3	1.0	%	22.2		25.6		
2-Chlorophenol-D4	93951-73-6	1.0	%	52.5		56.8		
2.4.6-Tribromophenol	118-79-6	1.0	%	53.6		68.5		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	87.4		96.2		
Anthracene-d10	1719-06-8	1.0	%	100		90.5		
4-Terphenyl-d14	1718-51-0	1.0	%	91.3		96.6		

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	67	111
EP068T: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	67	111
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112

CERTIFICATE OF ANALYSIS

Work Order	ES1831929	Page	: 1 of 10	
Client	ECO LOGICAL AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney	
Contact	: MR IAN DIXON	Contact	Customer Services ES	
Address	: PO BOX 12	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164	
	SUTHERLAND NSW 1499			
Telephone	: +61 02 8081 2683	Telephone	: +61-2-8784 8555	
Project	: Mephemson St Warriewood	Date Samples Received	: 26-Oct-2018 18:12	
Order number	:	Date Analysis Commenced	: 26-Oct-2018	\wedge
C-O-C number	:	Issue Date	: 31-Oct-2018 17:45	
Sampler	: Claire Wheeler Rizwana Rnmmsia		Hac-MRA NA	AIA
Site	:			
Quote number	: EN/222			ion No. 935
No. of samples received	: 5		Accredited for compli	iance with
No. of samples analysed	: 5		ISO/IEC 17025	5 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Sarah Griffiths	Microbiologist	Sydney Microbiology, Smithfield, NSW
Sunitha Kannampilli	Phycologist	Sydney Phycology, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- Results apply to sample(s) as submitted.
- MF = membrane filtration
- CFU = colony forming unit
- Microbiological Comment: Membrane filtration results are reported as estimate (~) due to the presence of many non-target organism colonies that may have inhibited the growth of the target organisms on the filter membrane. It may be informative to record this fact.
- KEY: PTP=Potential Toxin Producers ; ND=Not Detected; NS=Not Specified

; cf. = comparable from

- Samples were preserved with Lugols lodine solution.
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range
 of 10 100cfu.
- Under microscopic observation, debris present in sample #02
- MW006 is ALS's internal code and is equivalent to AS4276.7.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	US01	DS01	 	
	Cl	ient sampliı	ng date / time	26-Oct-2018 00:00	26-Oct-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1831929-004	ES1831929-005	 	
				Result	Result	 	
EA055: Moisture Content (Dried @ 105-1	10°C)						
Moisture Content		1.0	%	74.6	38.8	 	
EG005T: Total Metals by ICP-AES							
Arsenic	7440-38-2	5	mg/kg	15	5	 	
Chromium	7440-47-3	2	mg/kg	38	9	 	
Copper	7440-50-8	5	mg/kg	62	18	 	
Lead	7439-92-1	5	mg/kg	93	15	 	
Silver	7440-22-4	2	mg/kg	<2	<2	 	
Zinc	7440-66-6	5	mg/kg	451	88	 	
EG035T: Total Recoverable Mercury by	FIMS						
Mercury	7439-97-6	0.1	mg/kg	0.1	<0.1	 	
EP035G: Total Phenol by Discrete Analy	ser						
Phenols (Total)		1	mg/kg	<1	<1	 	
EP068A: Organochlorine Pesticides (OC)						
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	 	

Page : 4 of 10 Work Order : ES1831929 Client : ECO LOGICAL AUSTRALIA PTY LTD Project : Mephemson St Warriewood

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	US01	DS01	 	
	Cli	ient samplii	ng date / time	26-Oct-2018 00:00	26-Oct-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1831929-004	ES1831929-005	 	
				Result	Result	 	
EP068A: Organochlorine Pesticides	s (OC) - Continued						
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	 	
	0-2						
EP068B: Organophosphorus Pestic	ides (OP)						
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	 	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	 	
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.8	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.8	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.8	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.8	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.8	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.8	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.8	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.8	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.8	<0.5	 	

Page : 5 of 10 Work Order : ES1831929 Client : ECO LOGICAL AUSTRALIA PTY LTD Project : Mephemson St Warriewood

Sub-Matrix: SOIL	Client sample ID			US01	DS01	 	
	Cl	ient sampli	na date / time	26-Oct-2018 00:00	26-Oct-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1831929-004	ES1831929-005	 	
				Result	Result	 	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued					
Chrysene	218-01-9	0.5	mg/kg	<0.8	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.8	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.8	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.8	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.8	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.8	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.8	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	<0.5	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	 	
EP068S: Organochlorine Pesticide S	urrogate						
Dibromo-DDE	21655-73-2	0.05	%	95.1	94.4	 	
EP068T: Organophosphorus Pesticio	de Surrogate						
DEF	78-48-8	0.05	%	85.3	79.7	 	
EP075(SIM)S: Phenolic Compound S	urrogates						
Phenol-d6	13127-88-3	0.5	%	92.0	89.5	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	94.4	96.0	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	66.1	67.4	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	96.6	97.9	 	
Anthracene-d10	1719-06-8	0.5	%	104	103	 	
4-Terphenyl-d14	1718-51-0	0.5	%	98.0	99.8	 	

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			US01	DS01	MS01	
	Cl	lient sampli	ng date / time	26-Oct-2018 12:30	26-Oct-2018 12:30	26-Oct-2018 12:15	
Compound	CAS Number	LOR	Unit	ES1831929-001	ES1831929-002	ES1831929-003	
				Result	Result	Result	
EA025: Total Suspended Solids dried at 10	4 ± 2°C						
Suspended Solids (SS)		5	mg/L	<5	12	<5	
ED093F: SAR and Hardness Calculations							
Total Hardness as CaCO3		1	mg/L	96	110	110	
EG020T: Total Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.002		
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001		
Copper	7440-50-8	0.001	mg/L	0.002	0.002		
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001		
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001		
Zinc	7440-66-6	0.005	mg/L	0.016	0.018		
EG035T: Total Recoverable Mercury by FI	IS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001		
EK055G: Ammonia as N by Discrete Analys	ser						
Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.06	0.05	
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N	14797-65-0	0.01	mg/L	0.01	0.03	<0.01	
EK058G: Nitrate as N by Discrete Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.06	0.14	0.04	
EK059G: Nitrite plus Nitrate as N (NOx) by	Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.07	0.17	0.04	
EK061G: Total Kjeldahl Nitrogen By Discre	te Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.4	0.4	
EK067G: Total Phosphorus as P by Discret	e Analyser						
Total Phosphorus as P		0.01	mg/L	0.03	0.06	0.04	
EP020: Oil and Grease (O&G)							
Oil & Grease		5	mg/L	<5	<5		
EP035G: Total Phenol by Discrete Analyse	r						
Phenols (Total)		0.05	mg/L	<0.05	<0.05	<0.05	
EP068A: Organochlorine Pesticides (OC)							
alpha-BHC	319-84-6	0.5	μg/L	<0.5	<0.5		
Hexachlorobenzene (HCB)	118-74-1	0.5	µg/L	<0.5	<0.5		
beta-BHC	319-85-7	0.5	µg/L	<0.5	<0.5		
gamma-BHC	58-89-9	0.5	µg/L	<0.5	<0.5		

Page : 7 of 10 Work Order : ES1831929 Client : ECO LOGICAL AUSTRALIA PTY LTD Project : Mephemson St Warriewood

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	US01	DS01	MS01	
	Cli	ent samplir	ng date / time	26-Oct-2018 12:30	26-Oct-2018 12:30	26-Oct-2018 12:15	
Compound	CAS Number	LOR	Unit	ES1831929-001	ES1831929-002	ES1831929-003	
				Result	Result	Result	
EP068A: Organochlorine Pesticides (OC) - Continued						
delta-BHC	319-86-8	0.5	µg/L	<0.5	<0.5		
Heptachlor	76-44-8	0.5	µg/L	<0.5	<0.5		
Aldrin	309-00-2	0.5	µg/L	<0.5	<0.5		
Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5	<0.5		
trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	<0.5		
alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	<0.5		
cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	<0.5		
Dieldrin	60-57-1	0.5	µg/L	<0.5	<0.5		
4.4`-DDE	72-55-9	0.5	µg/L	<0.5	<0.5		
Endrin	72-20-8	0.5	µg/L	<0.5	<0.5		
beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	<0.5		
4.4`-DDD	72-54-8	0.5	µg/L	<0.5	<0.5		
Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	<0.5		
Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	<0.5		
4.4`-DDT	50-29-3	2.0	µg/L	<2.0	<2.0		
Endrin ketone	53494-70-5	0.5	µg/L	<0.5	<0.5		
Methoxychlor	72-43-5	2.0	µg/L	<2.0	<2.0		
^ Total Chlordane (sum)		0.5	µg/L	<0.5	<0.5		
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.5	µg/L	<0.5	<0.5		
	0-2						
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	µg/L	<0.5	<0.5		
EP068B: Organophosphorus Pesticid	les (OP)						
Dichlorvos	62-73-7	0.5	µg/L	<0.5	<0.5		
Demeton-S-methyl	919-86-8	0.5	µg/L	<0.5	<0.5		
Monocrotophos	6923-22-4	2.0	µg/L	<2.0	<2.0		
Dimethoate	60-51-5	0.5	µg/L	<0.5	<0.5		
Diazinon	333-41-5	0.5	µg/L	<0.5	<0.5		
Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5	<0.5		
Parathion-methyl	298-00-0	2.0	µg/L	<2.0	<2.0		
Malathion	121-75-5	0.5	µg/L	<0.5	<0.5		
Fenthion	55-38-9	0.5	µg/L	<0.5	<0.5		
Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5	<0.5		
Parathion	56-38-2	2.0	µg/L	<2.0	<2.0		
Pirimphos-ethyl	23505-41-1	0.5	µg/L	<0.5	<0.5		
Chlorfenvinphos	470-90-6	0.5	µg/L	<0.5	<0.5		

Page : 8 of 10 Work Order : ES1831929 Client : ECO LOGICAL AUSTRALIA PTY LTD Project : Mephemson St Warriewood

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	US01	DS01	MS01	
	Cli	ient sampli	ng date / time	26-Oct-2018 12:30	26-Oct-2018 12:30	26-Oct-2018 12:15	
Compound	CAS Number	LOR	Unit	ES1831929-001	ES1831929-002	ES1831929-003	
				Result	Result	Result	
EP068B: Organophosphorus Pesticides	(OP) - Continued						
Bromophos-ethyl	4824-78-6	0.5	µg/L	<0.5	<0.5		
Fenamiphos	22224-92-6	0.5	µg/L	<0.5	<0.5		
Prothiofos	34643-46-4	0.5	µg/L	<0.5	<0.5		
Ethion	563-12-2	0.5	µg/L	<0.5	<0.5		
Carbophenothion	786-19-6	0.5	µg/L	<0.5	<0.5		
Azinphos Methyl	86-50-0	0.5	µg/L	<0.5	<0.5		
MW006: Faecal Coliforms & E.coli by M	F						
Faecal Coliforms		1	CFU/100mL	~56	160	110	
MW024: Bacillariophytes (Diatoms) - Pe	ennales						
Nitzschia spp.		5	cells/ml	25	5		
Synedra spp.		5	cells/ml		5		
MW024: Bacillariophytes (Diatoms) - TC	TAL BACILLARIO	OPHYTES					
Total Bacillariophytes		5	cells/ml	25	10		
MW024: Chlorophytes (Green Algae)							
Scenedesmus spp.		5	cells/ml	25	150		
MW024: Chlorophytes (Green Algae) - T	OTAL CHLOROP	HYTES					
Total Chlorophytes		5	cells/ml	25	150		
MW024: Cvanophytes (Blue Green Alga	e)						
Planktolyngbya limnetica		5	cells/ml	220			
Pseudanabaena spp.		5	cells/ml		925		
MW024: Cvanophytes (Blue Green Alga	e) - TOTAL CYAN	OPHYTE	S				
Total Cyanophytes		5	cells/ml	220	925		
MW024: Cvanophytes (Blue Green Alga	e) - TOTAL POTE	NTIALLY	TOXIC CYAN	OPHYTES			
Total Potentially Toxic Cyanophytes		5	cells/ml	<5	<5		
MW024: Flagellates - Cryptophytes							
Cryptomonas spp.		5	cells/ml	50	25		
MW024: Elagellates - Euglenonbytes							
Euglena spp.		5	cells/ml		25		
MW024: Elagoliatos - TOTAL ELAGELLA							
Total Flagellates	ATE3	5	cells/ml	50	50		
		-					
Total Algae Count		5	cells/ml	320	1140		
		5	Cello/III	520			
EP068S: Organochlorine Pesticide Surr	ogate						

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	US01	DS01	MS01	
	Cli	ent sampli	ng date / time	26-Oct-2018 12:30	26-Oct-2018 12:30	26-Oct-2018 12:15	
Compound	CAS Number	LOR	Unit	ES1831929-001	ES1831929-002	ES1831929-003	
				Result	Result	Result	
EP068S: Organochlorine Pesticide Surr							
Dibromo-DDE	21655-73-2	0.5	%	88.6	90.0		
EP068T: Organophosphorus Pesticide \$	Surrogate						
DEF	78-48-8	0.5	%	78.7	87.0		

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	67	111
EP068T: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	67	111

CERTIFICATE OF ANALYSIS

Work Order	ES1828653	Page	: 1 of 3
Client	ECO LOGICAL AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney
Contact	CLAIRE WHEELER	Contact	: Customer Services ES
Address	: PO BOX 12	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	SUTHERLAND NSW 1499		
Telephone	:	Telephone	: +61-2-8784 8555
Project	: Warriewood	Date Samples Received	: 27-Sep-2018 13:30
Order number	:	Date Analysis Commenced	: 27-Sep-2018
C-O-C number	:	Issue Date	02-Oct-2018 17:58
Sampler	: CLAIRE WHEELER, DO		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Apprediction No. 825
No. of samples received	: 3		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Sarah Griffiths	Microbiologist	Sydney Microbiology, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- MF = membrane filtration
- CFU = colony forming unit
- Microbiological Comment: In accordance with ALS work instruction QWI-MIC/04, membrane filtration result is reported an approximate (~) when the count of colonies on the filtered membrane is outside the range
 of 10 100cfu.
- MW006 is ALS's internal code and is equivalent to AS4276.7.

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	US01	MS01	DS01	
	Cl	ient sampli	ng date / time	27-Sep-2018 09:40	27-Sep-2018 10:40	27-Sep-2018 11:20	
Compound	CAS Number	LOR	Unit	ES1828653-001	ES1828653-002	ES1828653-003	
				Result	Result	Result	
EA025: Total Suspended Solids dried	at 104 ± 2°C						
Suspended Solids (SS)		5	mg/L	<5	<5	<5	
EK055G: Ammonia as N by Discrete A	nalyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.06	0.04	0.04	
EK057G: Nitrite as N by Discrete Anal	lyser						
Nitrite as N	14797-65-0	0.01	mg/L	0.01	0.01	0.02	
EK058G: Nitrate as N by Discrete Ana	lyser						
Nitrate as N	14797-55-8	0.01	mg/L	0.31	0.29	0.32	
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	0.32	0.30	0.34	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.3	0.3	
EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete Ar	alyser					
^ Total Nitrogen as N		0.1	mg/L	0.6	0.6	0.6	
EK067FG: Filtered Total Phosphorus a	as P by Discrete An	alyser					
Filtered Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.03	
EK067G: Total Phosphorus as P by Di	screte Analyser						
Total Phosphorus as P		0.01	mg/L	0.04	0.04	0.04	
EK071G: Reactive Phosphorus as P b	y discrete ana <u>lyser</u>						
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	<0.01	
MW006: Faecal Coliforms & E.coli by I	MF						
Faecal Coliforms		1	CFU/100mL	430	390	290	

Appendix C: Quality Control Report

QUALITY CONTROL REPORT

Work Order	: ES1901722	Page	: 1 of 7
Client	ECO LOGICAL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR Ian Dixon	Contact	: Customer Services ES
Address	: PO BOX 12 SUTHERLAND NSW 1499	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 4201 2208	Telephone	: +61-2-8784 8555
Project	: 11527 Macpherson St, Warrie Wood	Date Samples Received	: 18-Jan-2019
Order number	:	Date Analysis Commenced	: 19-Jan-2019
C-O-C number	:	Issue Date	: 25-Jan-2019
Sampler	: Claire Wheeler/Rizwaua Kumman		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 925
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Sarah Griffiths	Microbiologist	Sydney Microbiology, Smithfield, NSW
Sunitha Kannampilli	Phycologist	Sydney Phycology, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA025: Total Suspen	ded Solids dried at 104 ± 2°	C (QC Lot: 2147875)							
ES1901546-010	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	9	28	105	No Limit
ES1901704-005	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	10	8	17.1	No Limit
EA025: Total Suspen	ded Solids dried at 104 ± 2°	C (QC Lot: 2150327)							
ES1901611-001	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.00	No Limit
ES1901720-005	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.00	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 21466	07)							
ES1901664-009	Anonymous	EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.005	0.004	25.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.022	0.022	0.00	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.031	0.045	37.4	No Limit
ES1901665-001	Anonymous	EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.006	0.008	38.6	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.028	0.031	8.40	No Limit
EG035T: Total Recov	verable Mercury by FIMS(C	C Lot: 2146304)							
ES1901715-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
ES1901737-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia as	s N by Discrete Analyser(C	QC Lot: 2147440)							
ES1901609-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	56.0	52.0	7.41	0% - 20%
EW1900231-004	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.12	0.13	9.23	0% - 50%
EK057G: Nitrite as N	by Discrete Analyser (QC	Lot: 2144998)							
ES1901709-011	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit

Page	: 3 of 7
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: 11527 Macpherson St, Warrie Wood

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK057G: Nitrite as N	N by Discrete Analyser (QC I	Lot: 2144998) - continued							
ES1901709-020	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.13	0.13	0.00	0% - 50%
EK059G: Nitrite plus	s Nitrate as N (NOx) by Disci	rete Analyser (QC Lot: 2147441)							
ES1901665-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	15.3	15.2	0.322	0% - 20%
ES1901609-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.95	0.95	0.00	0% - 20%
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC Lot: 2147444)									
ES1901609-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	65.2	63.6	2.48	0% - 20%
ES1901665-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	35.8	34.6	3.41	0% - 50%
EK067FG: Filtered T	EK067FG: Filtered Total Phosphorus as P by Discrete Analyser (QC Lot: 2147447)								
ES1901722-001	US01	EK067FG: Filtered Total Phosphorus as P		0.01	mg/L	0.08	0.08	0.00	No Limit
EK067G: Total Phos	phorus as P by Discrete Ana	lyser (QC Lot: 2147443)							
ES1901609-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	9.96	9.84	1.16	0% - 20%
ES1901665-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	43.0	40.4	6.24	0% - 20%
EK067G: Total Phos	phorus as P by Discrete Ana	lyser (QC Lot: 2147445)							
WN1900406-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	0.01	0.00	No Limit
EK071G: Reactive Pl	hosphorus as P by discrete a	analyser (QC Lot: 2145001)							
ES1901722-001	US01	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	0.02	0.00	No Limit
EP035G: Total Phene	ol by Discrete Analyser (QC	Lot: 2150824)							
ES1901639-001	Anonymous	EP035G: Phenols (Total)		0.05	mg/L	<0.05	<0.05	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 2147875)								
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	116	83	129	
		_	<5	1000 mg/L	94.9	82	110	
EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 2150327)								
EA025H: Suspended Solids (SS)	5	mg/L	<5	150 mg/L	92.7	83	129	
			<5	1000 mg/L	88.8	82	110	
EG020T: Total Metals by ICP-MS (QCLot: 2146607)								
EG020A-T: Arsenic 7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	102	82	114	
EG020A-T: Chromium 7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	92.2	86	116	
EG020A-T: Copper 7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	103	83	118	
EG020A-T: Lead 7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	101	85	115	
EG020A-T: Zinc 7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	111	79	117	
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2146304)								
EG035T: Mercury 7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	99.0	77	111	
EK055G: Ammonia as N by Discrete Analyser (QCLot: 2147440)								
EK055G: Ammonia as N 7664-41-7	0.01	mg/L	<0.01	1 mg/L	97.4	90	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 2144998)								
EK057G: Nitrite as N 14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	105	82	114	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (OCLot: 2	147441)							
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	101	91	113	
FK061G: Total Kieldahl Nitrogen By Discrete Analyser (OCI of: 2147444								
EK061G: Total Kieldahl Nitrogen as N	0.1	mg/L	<0.1	10 mg/L	88.4	69	101	
		Ū.	<0.1	1 mg/L	76.7	70	118	
			<0.1	5 mg/L	102	74	118	
EK067FG: Filtered Total Phosphorus as P by Discrete Analyser (QCLot:	2147447)							
EK067FG: Filtered Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	98.5	71	115	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 2147443)								
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	99.1	71	101	
			<0.01	0.442 mg/L	98.9	72	108	
			<0.01	1 mg/L	116	78	118	
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 2147445)								
EK067G: Total Phosphorus as P	0.01	mg/L	<0.01	4.42 mg/L	97.9	71	101	
			<0.01	0.442 mg/L	97.6	72	108	
			<0.01	1 mg/L	101	78	118	

Page	5 of 7
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: 11527 Macpherson St, Warrie Wood

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 2145001)									
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	106	85	117	
EP020: Oil and Grease (O&G) (QCLot: 2149937)									
EP020: Oil & Grease		5	mg/L	<5	5000 mg/L	102	81	121	
EP035G: Total Phenol by Discrete Analyser (QC	CLot: 2150824)								
EP035G: Phenols (Total)		0.05	mg/L	<0.05	0.5 mg/L	90.6	64	98	
EP068A: Organochlorine Pesticides (OC) (OCL	ot: 2145594)								
EP068: alpha-BHC	319-84-6	0.5	µg/L	<0.5	5 µg/L	84.2	65	107	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	µg/L	<0.5	5 µg/L	77.8	58	111	
EP068: beta-BHC	319-85-7	0.5	µg/L	<0.5	5 µg/L	104	69	117	
EP068: gamma-BHC	58-89-9	0.5	µg/L	<0.5	5 µg/L	85.0	70	112	
EP068: delta-BHC	319-86-8	0.5	µg/L	<0.5	5 µg/L	100	69	110	
EP068: Heptachlor	76-44-8	0.5	µg/L	<0.5	5 µg/L	95.6	65	108	
EP068: Aldrin	309-00-2	0.5	µg/L	<0.5	5 µg/L	84.9	66	109	
EP068: Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5	5 µg/L	82.4	67	107	
EP068: trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	5 µg/L	85.3	64	110	
EP068: alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	5 µg/L	82.9	67	112	
EP068: cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	5 µg/L	86.7	63	111	
EP068: Dieldrin	60-57-1	0.5	µg/L	<0.5	5 µg/L	89.9	65	113	
EP068: 4.4`-DDE	72-55-9	0.5	µg/L	<0.5	5 µg/L	93.3	66	112	
EP068: Endrin	72-20-8	0.5	µg/L	<0.5	5 µg/L	102	65	113	
EP068: beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	5 µg/L	100	67	114	
EP068: 4.4`-DDD	72-54-8	0.5	µg/L	<0.5	5 µg/L	94.3	72	122	
EP068: Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	5 µg/L	91.4	67	109	
EP068: Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	5 µg/L	95.1	65	112	
EP068: 4.4`-DDT	50-29-3	2	µg/L	<2.0	5 µg/L	97.4	65	112	
EP068: Endrin ketone	53494-70-5	0.5	µg/L	<0.5	5 µg/L	103	64	110	
EP068: Methoxychlor	72-43-5	2	µg/L	<2.0	5 µg/L	99.8	61	114	
EP068B: Organophosphorus Pesticides (OP)(C	QCLot: 2145594)								
EP068: Dichlorvos	62-73-7	0.5	µg/L	<0.5	5 µg/L	85.8	66	114	
EP068: Demeton-S-methyl	919-86-8	0.5	µg/L	<0.5	5 µg/L	92.8	64	113	
EP068: Monocrotophos	6923-22-4	2	µg/L	<2.0	5 µg/L	26.1	20	48	
EP068: Dimethoate	60-51-5	0.5	µg/L	<0.5	5 µg/L	84.4	70	110	
EP068: Diazinon	333-41-5	0.5	µg/L	<0.5	5 µg/L	86.7	71	110	
EP068: Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5	5 µg/L	82.1	77	119	
EP068: Parathion-methyl	298-00-0	2	µg/L	<2.0	5 µg/L	91.7	70	124	
EP068: Malathion	121-75-5	0.5	µg/L	<0.5	5 µg/L	102	68	116	
EP068: Fenthion	55-38-9	0.5	µg/L	<0.5	5 µg/L	93.3	69	112	
EP068: Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5	5 µg/L	87.4	75	119	

Page	: 6 of 7
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	11527 Macpherson St, Warrie Wood

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068B: Organophosphorus Pesticides (OP)	(QCLot: 2145594) - continue	ed							
EP068: Parathion	56-38-2	2	μg/L	<2.0	5 µg/L	100	67	121	
EP068: Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	5 µg/L	97.0	69	121	
EP068: Chlorfenvinphos	470-90-6	0.5	μg/L	<0.5	5 µg/L	106	72	110	
EP068: Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	5 µg/L	96.0	68	112	
EP068: Fenamiphos	22224-92-6	0.5	μg/L	<0.5	5 µg/L	108	64	116	
EP068: Prothiofos	34643-46-4	0.5	μg/L	<0.5	5 µg/L	92.1	68	114	
EP068: Ethion	563-12-2	0.5	μg/L	<0.5	5 µg/L	98.9	74	120	
EP068: Carbophenothion	786-19-6	0.5	μg/L	<0.5	5 µg/L	93.6	66	114	
EP068: Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	5 µg/L	92.7	52	128	
EP075(SIM)B: Polynuclear Aromatic Hydrocar	bons (QCLot: 2145595)								
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 µg/L	68.8	50	94	
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 µg/L	95.4	64	114	
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 µg/L	85.0	62	113	
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 µg/L	89.7	64	115	
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 µg/L	93.5	63	116	
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 µg/L	81.4	64	116	
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 µg/L	86.0	64	118	
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 µg/L	94.3	63	118	
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 µg/L	91.4	64	117	
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 µg/L	95.7	63	116	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	5 µg/L	95.3	62	119	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 µg/L	86.4	63	115	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 µg/L	86.1	63	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	84.3	60	118	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	89.4	61	117	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 µg/L	83.8	59	118	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG020T: Total Metals by ICP-MS (QCLot: 2146607)								
ES1901664-010	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	97.8	70	130	
		EG020A-T: Chromium	7440-47-3	1 mg/L	101	70	130	
		EG020A-T: Copper	7440-50-8	1 mg/L	101	70	130	

Page	: 7 of 7
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	 11527 Macpherson St. Warrie Wood

Sub-Matrix: WATER				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020T: Total Met	als by ICP-MS (QCLot: 2146607) - continued						
ES1901664-010	Anonymous	EG020A-T: Lead	7439-92-1	1 mg/L	106	70	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	103	70	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2146304)						
ES1901722-001	US01	EG035T: Mercury	7439-97-6	0.01 mg/L	104	70	130
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 2147440)						
ES1901609-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	# Not Determined	70	130
EK057G: Nitrite as	s N by Discrete Analyser (QCLot: 2144998)						
ES1901709-011	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	98.6	70	130
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 214	7441)					
ES1901609-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	110	70	130
EK061G: Total Kje	ldahl Nitrogen By Discrete Analyser (QCLot: 2147444)						
ES1901650-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	92.8	70	130
EK067FG: Filtered	Total Phosphorus as P by Discrete Analyser (QCLot: 21	47447)					
ES1901722-002	MS01	EK067FG: Filtered Total Phosphorus as P		1 mg/L	110	70	130
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 2147443)						
ES1901650-001	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	# Not Determined	70	130
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 2147445)						
WN1900406-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	102	70	130
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 2145001)					
ES1901722-001	US01	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	100	70	130
EP035G: Total Phe	enol by Discrete Analyser (QCLot: 2150824)						
ES1901639-001	Anonymous	EP035G: Phenols (Total)		0.42 mg/L	82.4	70	130

QUALITY CONTROL REPORT

Work Order	ES1831929	Page	: 1 of 11
Client	ECO LOGICAL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR IAN DIXON	Contact	: Customer Services ES
Address	: PO BOX 12 SUTHERLAND NSW 1499	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 8081 2683	Telephone	: +61-2-8784 8555
Project	: Mephemson St Warriewood	Date Samples Received	: 26-Oct-2018
Order number	:	Date Analysis Commenced	: 26-Oct-2018
C-O-C number	:	Issue Date	31-Oct-2018
Sampler	: Claire Wheeler Rizwana Rnmmsia		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 5		Accredited for compliance with
No. of samples analysed	: 5		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Sarah Griffiths	Microbiologist	Sydney Microbiology, Smithfield, NSW
Sunitha Kannampilli	Phycologist	Sydney Phycology, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Cor	itent (Dried @ 105-110°C)	(QC Lot: 2006728)							
ES1831929-004	US01	EA055: Moisture Content		0.1	%	74.6	74.1	0.620	0% - 20%
ES1832000-003	Anonymous	EA055: Moisture Content		0.1	%	16.9	16.8	0.768	0% - 50%
EG005T: Total Metals	by ICP-AES (QC Lot: 200	9433)							
ES1831568-008	Anonymous	EG005T: Chromium	7440-47-3	2	mg/kg	28	26	5.61	0% - 50%
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	11	14	20.2	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	5	<5	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	8	8	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	20	19	0.00	No Limit
ES1832100-001	Anonymous	EG005T: Chromium	7440-47-3	2	mg/kg	9	8	0.00	No Limit
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	7	8	15.4	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	19	20	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	12	17	31.7	No Limit
EG035T: Total Reco	verable Mercury by FIMS(QC Lot: 2009432)							
ES1831568-008	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1832100-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP035G: Total Pheno	ol by Discrete Analyser (Q	C Lot: 2009037)							
ES1831812-001	Anonymous	EP035G: Phenols (Total)		1	mg/kg	<1	<1	0.00	No Limit
ES1831812-010	Anonymous	EP035G: Phenols (Total)		1	mg/kg	<1	<1	0.00	No Limit
EP068A: Organochlo	rine Pesticides (OC) (QC I	ot: 2005502)							
ES1831919-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page	: 3 of 11
Work Order	: ES1831929
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochlo	rine Pesticides (OC) (QC L	ot: 2005502) - continued							
ES1831919-001	Anonymous	EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP068B: Organophos	sphorus Pesticides (OP) (C	C Lot: 2005502)							
ES1831919-001	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SIM)B: Polynu	Iclear Aromatic Hydrocarbo	ons (QC Lot: 2005501)							

Page	: 4 of 11
Work Order	: ES1831929
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polynu	clear Aromatic Hydrocarboi	ns (QC Lot: 2005501) - continued							
ES1831954-006	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.5	0.6	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	2.0	2.2	9.92	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	2.3	2.2	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	1.1	1.0	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	1.2	1.0	12.4	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	1.3	1.2	9.96	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	0.6	0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	1.2	1.1	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	0.6	0.6	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	0.9	0.7	15.2	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	11.7	11.1	5.26	0% - 20%
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	1.6	1.4	8.85	No Limit
ES1831919-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.5	0.6	16.8	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	0.6	0.6	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	0.5	0.6	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	1.6	1.8	11.8	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 5 of 11
Work Order	: ES1831929
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Sub-Matrix: WATER	Matrix: WATER					Laboratory Duplicate (DUP) Report			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA025: Total Suspen	ded Solids dried at 104 ± 2°0	C (QC Lot: 2008199)							
ES1831677-002	Anonymous	EA025H: Suspended Solids (SS)		5	mg/L	50	49	0.00	0% - 50%
ES1831929-001	US01	EA025H: Suspended Solids (SS)		5	mg/L	<5	<5	0.00	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 20056	98)							
EW1804281-002	Anonymous	EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.070	0.072	2.48	0% - 20%
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.031	0.030	3.60	0% - 20%
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.136	0.142	3.89	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.035	0.036	0.00	0% - 20%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.095	0.099	3.99	0% - 50%
ES1831929-001	US01	EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.002	0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.016	0.015	0.00	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 20056	99)							
ES1831929-001	US01	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EG035T: Total Recov	verable Mercury by FIMS (Q	C Lot: 2007262)							
ES1831915-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
ES1831918-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia a	s N by Discrete Analyser (Q	C Lot: 2005277)							
ES1831822-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.21	0.20	4.90	0% - 20%
ES1831838-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.03	0.00	No Limit
EK057G: Nitrite as N	by Discrete Analyser (QC I	_ot: 2005073)							
ES1831876-010	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	960	980	2.06	0% - 20%
ES1831830-005	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Discr	rete Analyser (QC Lot: 2005278)							
ME1801391-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1831838-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	0.00	No Limit
EK061G: Total Kjelda	hl Nitrogen By Discrete Ana	alyser (QC Lot: 2005270)							
EW1804325-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.6	0.00	No Limit
EW1804280-005	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.8	2.8	0.00	0% - 20%
EK067G: Total Phosp	horus as P by Discrete Ana	lyser (QC Lot: 2005268)							
ES1831697-002	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.22	0.20	9.10	0% - 20%
ES1831822-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.02	0.01	0.00	No Limit
EP035G: Total Pheno	l by Discrete Analyser (QC	Lot: 2006632)							
EB1825801-001	Anonymous	EP035G: Phenols (Total)		0.05	mg/L	<0.05	<0.05	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Report Spike Spike Recovery (%) Recovery Links (%) Idethod: Compound CAS Number LOR Unit Result Concentration LCS Low It EG005T: Total Metals by ICP-AES (QCLot: 2009433) E Unit Result Concentration LCS Low It EG005T: Arsenic 7440-38-2 5 mg/kg <5 21.7 mg/kg 100 86 EG005T: Chromium 7440-47-3 2 mg/kg <5 32 mg/kg 105 76 EG005T: Copper 7440-47-3 2 mg/kg <5 32 mg/kg 106 86 EG005T: Lead 7439-92-1 5 mg/kg <5 40 mg/kg 104 80 EG005T: Silver 7440-62-4 2 mg/kg <5 60.8 mg/kg 108 80 EG005T: Silver 7440-66-6 5 mg/kg <5 60.8 mg/kg 108 80 EG035T: Total Recoverable Mercury by FIMS	0
Itethod: Compound CAS Number LOR Unit Result Concentration LCS Low H EG005T: Total Metals by ICP-AES (QCLot: 2009433) EG005T: Arsenic 7440-38-2 5 mg/kg <5	0)
EG005T: Total Metals by ICP-AES (QCLot: 2009433) EG005T: Arsenic 7440-38-2 5 mg/kg <5 21.7 mg/kg 100 86 EG005T: Chromium 7440-47-3 2 mg/kg <2 43.9 mg/kg 105 76 EG005T: Copper 7440-50-8 5 mg/kg <5 32 mg/kg 106 86 EG005T: Lead 7439-92-1 5 mg/kg <5 40 mg/kg 104 80 EG005T: Silver 7440-22-4 2 mg/kg <2 2.1 mg/kg 114 77 EG005T: Zinc 7440-66-6 5 mg/kg <5 60.8 mg/kg 108 80 EG035T: Total Recoverable Mercury by FIMS (QCLot: 2009432) E E E E E E E E E 5 5 60.1 2.57 mg/kg 83.7 70 1 EP035G: Total Phenol by Discrete Analyser (QCLot: 2009037) 1 mg/kg <1 5 mg/kg 71.1 60 1 EP035G: Phenols (Total) <t< th=""><th>ligh</th></t<>	ligh
EG005T: Arsenic 7440-38-2 5 mg/kg <5	
EG005T: Chromium 7440-47-3 2 mg/kg <2	26
EG005T: Copper 7440-50-8 5 mg/kg <5 32 mg/kg 106 86 EG005T: Lead 7439-92-1 5 mg/kg <5	28
EG005T: Lead 7439-92-1 5 mg/kg <5	20
EG005T: Silver 7440-22-4 2 mg/kg <2 2.1 mg/kg 114 77 7 EG005T: Zinc 7440-66-6 5 mg/kg <5	14
EG005T: Zinc 7440-66-6 5 mg/kg <5 60.8 mg/kg 108 80 EG035T: Total Recoverable Mercury by FIMS (QCLot: 2009432) EG035T: Mercury 7439-97-6 0.1 mg/kg <0.1 2.57 mg/kg 83.7 70 70 EG035T: Mercury 7439-97-6 0.1 mg/kg <1 2.57 mg/kg 83.7 70 70 EP035G: Total Phenol by Discrete Analyser (QCLot: 2009037) 1 mg/kg <1 5 mg/kg 71.1 60 1 EP068A: Organochlorine Pesticides (OC) (QCLot: 2005502) 5 mg/kg <1 5 mg/kg 99.3 69. 1	17
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2009432) EG035T: Mercury 7439-97-6 0.1 mg/kg <0.1	22
EG035T: Mercury 7439-97-6 0.1 mg/kg <0.1 2.57 mg/kg 83.7 70 EP035G: Total Phenol by Discrete Analyser (QCLot: 2009037) EP035G: Phenols (Total) 1 mg/kg <1	
EP035G: Total Phenol by Discrete Analyser (QCLot: 2009037) EP035G: Phenols (Total) 1 mg/kg <1	05
EP035G: Phenols (Total) 1 mg/kg <1 5 mg/kg 71.1 60 7 EP068A: Organochlorine Pesticides (OC) (QCLot: 2005502) 1 mg/kg <1	
EP068A: Organochlorine Pesticides (OC) (QCLot: 2005502)	02
ED068 alpha BHC 319-84-6 0.05 ma/kg <0.05 0.5 mg/kg 99.3 69 1	
	13
EP068: Hexachlorobenzene (HCB) 118-74-1 0.05 mg/kg <0.05 0.5 mg/kg 93.3 65	17
EP068: beta-BHC 319-85-7 0.05 mg/kg <0.05 0.5 mg/kg 92.3 67	19
EP068: gamma-BHC 58-89-9 0.05 mg/kg <0.05 0.5 mg/kg 97.9 68 f	16
EP068: delta-BHC 319-86-8 0.05 mg/kg <0.05 0.5 mg/kg 102 65 f	17
EP068: Heptachlor 76-44-8 0.05 mg/kg <0.05 0.5 mg/kg 94.0 67	15
EP068: Aldrin 309-00-2 0.05 mg/kg <0.05 0.5 mg/kg 86.4 69	15
EP068: Heptachlor epoxide 1024-57-3 0.05 mg/kg <0.05 0.5 mg/kg 90.7 62	18
EP068: trans-Chlordane 5103-74-2 0.05 mg/kg <0.05 0.5 mg/kg 89.4 63	17
EP068: alpha-Endosulfan 959-98-8 0.05 mg/kg <0.05 0.5 mg/kg 90.7 66	16
EP068: cis-Chlordane 5103-71-9 0.05 mg/kg <0.05 0.5 mg/kg 91.4 64 1	16
EP068: Dieldrin 60-57-1 0.05 mg/kg <0.05 0.5 mg/kg 94.8 66 1	16
EP068: 4.4`-DDE 72-55-9 0.05 mg/kg <0.05 0.5 mg/kg 97.8 67	15
EP068: Endrin 72-20-8 0.05 mg/kg <0.05 0.5 mg/kg 90.0 67	23
EP068: beta-Endosulfan 33213-65-9 0.05 mg/kg <0.05 0.5 mg/kg 95.9 69	15
EP068: 4.4`-DDD 72-54-8 0.05 mg/kg <0.05 0.5 mg/kg 97.3 69	21
EP068: Endrin aldehyde 7421-93-4 0.05 mg/kg <0.05 0.5 mg/kg 106 56	20
EP068: Endosulfan sulfate 1031-07-8 0.05 mg/kg <0.05 0.5 mg/kg 100 62	24
EP068: 4.4'-DDT 50-29-3 0.2 mg/kg <0.2 0.5 mg/kg 99.6 66	20
EP068: Endrin ketone 53494-70-5 0.05 mg/kg <0.05 0.5 mg/kg 101 64 1	22
EP068: Methoxychlor 72-43-5 0.2 mg/kg <0.2 0.5 mg/kg 81.9 54 1	30
EP068B: Organophosphorus Pesticides (OP) (QCLot: 2005502)	
EP068: Dichlorvos 62-73-7 0.05 mg/kg <0.05 0.5 mg/kg 101 59 1	19

Page : 7 of 11 Work Order : ES1831929 Client : ECO LOGICAL AUSTRALIA PTY LTD Project : Mephemson St Warriewood

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068B: Organophosphorus Pesticides (OP) (Q0	CLot: 2005502) - continu	ed							
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.8	62	128	
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	77.8	54	126	
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	67	119	
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	82.2	70	120	
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	89.3	72	120	
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	84.0	68	120	
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	89.9	68	122	
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	88.5	69	117	
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.2	76	118	
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	83.8	64	122	
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	103	70	116	
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	80.1	69	121	
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	86.3	66	118	
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	107	68	124	
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	90.9	62	112	
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	93.3	68	120	
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	90.7	65	127	
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	105	41	123	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbor	ns (QCLot: 2005501)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	98.2	77	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	96.3	72	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	92.8	73	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	98.2	72	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	97.8	75	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	99.2	77	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	101	73	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	96.7	74	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	91.4	69	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	92.5	75	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	96.1	68	116	
ED075(SIM): Donzo(k)fluoronthono	205-82-3	0.5	ma/ka	<0.5	6 ma/ka	97.6	74	126	
EP075(SIM): Benzo(k)nuorantnene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	91.6	74	120	
EP075(SIM): Benzo(a)pyrene	103 30 5	0.5	mg/kg	<0.5	6 mg/kg	85.5	61	120	
EP075(SIM): Indeno(1.2.3.cd)pyrene	53 70 3	0.5	mg/kg	<0.5	6 mg/kg	86.4	62	110	
	101-24-2	0.5	mg/kg	<0.5	6 mg/kg	89.0	63	121	
Eroro(olivi). Benzo(g.n.i)peryiene	131-24-2	0.0	ilig/kg	-0.0		03.0	00	121	
Sub-Matrix: WATER				Method Blank (MB) Report	Spika	Laboratory Control Spike (LC	S) Report	Limite (%)	
Matheads Operational	CAS Number	LOR	Unit	Posult	Concentration		Low	High	
wernoa. Combouna	one number	2011	onic	nesun	ouncentration	200	LOW	ingn	

Page	: 8 of 11
Work Order	: ES1831929
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA025: Total Suspended Solids dried at 104 ± 2°C(QC	CLot: 2008199)								
EA025H: Suspended Solids (SS)		5	mg/L	<5	150 mg/L	94.3	83	129	
				<5	1000 mg/L	93.4	82	110	
EG020T: Total Metals by ICP-MS (QCLot: 2005698)									
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	106	82	114	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.6	86	116	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	102	83	118	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.2	85	115	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	99.6	79	117	
EG020T: Total Metals by ICP-MS (QCLot: 2005699)									
EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001					
EG035T: Total Recoverable Mercury by FIMS (QCLot:	2007262)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	92.2	77	111	
EK055G: Ammonia as N by Discrete Analyser (QCLot:	2005277)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	98.4	90	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 20	05073)		-		_				
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	109	82	114	
FK059G: Nitrite plus Nitrate as N (NOx), by Discrete A	nalyser (QCI of: 20	05278)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	101	91	113	
EK061G: Total Kieldahl Nitrogen By Discrete Analyser	(OCI of: 2005270)		-		_				
EK001G: Total Kieldahl Nitrogen as N		0.1	mg/L	<0.1	10 ma/L	97.6	69	101	
			5	<0.1	1 mg/L	110	70	118	
				<0.1	5 mg/L	104	74	118	
EK067G: Total Phosphorus as P by Discrete Analyser	(QCLot: 2005268)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	97.1	71	101	
				<0.01	0.442 mg/L	100	72	108	
				<0.01	1 mg/L	103	78	118	
EP020: Oil and Grease (O&G) (QCLot: 2006959)									
EP020: Oil & Grease		5	mg/L	<5	5000 mg/L	96.4	81	121	
EP035G: Total Phenol by Discrete Analyser (QCLot: 2	006632)								
EP035G: Phenols (Total)		0.05	mg/L	<0.05	0.5 mg/L	82.0	64	98	
EP068A: Organochlorine Pesticides (OC) (QCLot: 200	5939)								
EP068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	5 µg/L	91.1	65	107	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	5 µg/L	84.7	58	111	
EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	5 µg/L	97.2	69	117	
EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	5 µg/L	101	70	112	
EP068: delta-BHC	319-86-8	0.5	µg/L	<0.5	5 µg/L	106	69	110	
EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	5 µg/L	95.7	65	108	

Page	: 9 of 11
Work Order	: ES1831929
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Spike Recovery (%) Recovery Lim			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC)) (QCLot: 2005939) - continued								
EP068: Aldrin	309-00-2	0.5	µg/L	<0.5	5 µg/L	93.4	66	109	
EP068: Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5	5 µg/L	103	67	107	
EP068: trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	5 µg/L	103	64	110	
EP068: alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	5 μg/L	102	67	112	
EP068: cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	5 µg/L	101	63	111	
EP068: Dieldrin	60-57-1	0.5	µg/L	<0.5	5 µg/L	106	65	113	
EP068: 4.4`-DDE	72-55-9	0.5	µg/L	<0.5	5 µg/L	97.0	66	112	
EP068: Endrin	72-20-8	0.5	µg/L	<0.5	5 µg/L	101	65	113	
EP068: beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	5 µg/L	105	67	114	
EP068: 4.4`-DDD	72-54-8	0.5	µg/L	<0.5	5 µg/L	108	72	122	
EP068: Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	5 µg/L	95.3	67	109	
EP068: Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	5 µg/L	108	65	112	
EP068: 4.4`-DDT	50-29-3	2	µg/L	<2.0	5 µg/L	99.6	65	112	
EP068: Endrin ketone	53494-70-5	0.5	µg/L	<0.5	5 µg/L	91.3	64	110	
EP068: Methoxychlor	72-43-5	2	µg/L	<2.0	5 µg/L	83.8	61	114	
EP068B: Organophosphorus Pesticides	(OP) (QCLot: 2005939)								
EP068: Dichlorvos	62-73-7	0.5	μg/L	<0.5	5 µg/L	94.1	66	114	
EP068: Demeton-S-methyl	919-86-8	0.5	µg/L	<0.5	5 µg/L	91.0	64	113	
EP068: Monocrotophos	6923-22-4	2	µg/L	<2.0	5 μg/L	24.1	20	48	
EP068: Dimethoate	60-51-5	0.5	µg/L	<0.5	5 µg/L	86.5	70	110	
EP068: Diazinon	333-41-5	0.5	µg/L	<0.5	5 µg/L	99.3	71	110	
EP068: Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5	5 µg/L	95.9	77	119	
EP068: Parathion-methyl	298-00-0	2	µg/L	<2.0	5 µg/L	81.1	70	124	
EP068: Malathion	121-75-5	0.5	µg/L	<0.5	5 µg/L	97.5	68	116	
EP068: Fenthion	55-38-9	0.5	µg/L	<0.5	5 µg/L	92.3	69	112	
EP068: Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5	5 μg/L	99.0	75	119	
EP068: Parathion	56-38-2	2	µg/L	<2.0	5 µg/L	78.6	67	121	
EP068: Pirimphos-ethyl	23505-41-1	0.5	µg/L	<0.5	5 µg/L	91.2	69	121	
EP068: Chlorfenvinphos	470-90-6	0.5	µg/L	<0.5	5 µg/L	101	72	110	
EP068: Bromophos-ethyl	4824-78-6	0.5	µg/L	<0.5	5 µg/L	95.2	68	112	
EP068: Fenamiphos	22224-92-6	0.5	µg/L	<0.5	5 µg/L	93.8	64	116	
EP068: Prothiofos	34643-46-4	0.5	µg/L	<0.5	5 µg/L	98.1	68	114	
EP068: Ethion	563-12-2	0.5	µg/L	<0.5	5 µg/L	106	74	120	
EP068: Carbophenothion	786-19-6	0.5	µg/L	<0.5	5 µg/L	104	66	114	
EP068: Azinphos Methyl	86-50-0	0.5	µg/L	<0.5	5 µg/L	78.6	52	128	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report			
						Recovery L	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005T: Total Met	als by ICP-AES (QCLot: 2009433)						
ES1831568-008	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	101	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	99.4	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	102	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	96.6	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	98.7	70	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2009432)						
ES1831568-008	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	86.2	70	130
EP035G: Total Phe	nol by Discrete Analyser (QCLot: 2009037)						
ES1831812-001	Anonymous	EP035G: Phenols (Total)		4.2 mg/kg	71.9	70	130
EP068A: Organoch	nlorine Pesticides (OC) (QCLot: 2005502)						
ES1831919-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	95.3	70	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	78.2	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	76.9	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	76.7	70	130
		EP068: Endrin	72-20-8	2 mg/kg	92.2	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	83.0	70	130
EP068B: Organopl	nosphorus Pesticides (OP) (QCLot: 2005502)						
ES1831919-001	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	89.4	70	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	98.0	70	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	80.8	70	130
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	81.6	70	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	78.2	70	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 200550 ²	1)					
ES1831919-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	93.0	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	99.1	70	130
Sub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020T: Total Met	als by ICP-MS (QCLot: 2005698)						
ES1831929-001	US01	EG020A-T: Arsenic	7440-38-2	1 mg/L	106	70	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	106	70	130
		EG020A-T: Copper	7440-50-8	1 mg/L	105	70	130
		EG020A-T: Lead	7439-92-1	1 mg/L	109	70	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	106	70	130

Page	: 11 of 11
Work Order	: ES1831929
Client	ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Sub-Matrix: WATER				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2007262)							
ES1831915-002	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	91.3	70	130
EK055G: Ammonia as N by Discrete Analyser (QCLot: 2005277)							
ES1831748-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	99.4	70	130
EK057G: Nitrite as N by Discrete Analyser (QCLot: 2005073)							
ES1831830-005	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	103	70	130
EK059G: Nitrite plu	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 200	5278)					
ES1831835-007	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	106	70	130
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 2005270)						
EW1804324-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	100	70	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 2005268)						
ES1831697-003	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	106	70	130
EP035G: Total Phe	nol by Discrete Analyser (QCLot: 2006632)						
EB1825801-001	Anonymous	EP035G: Phenols (Total)		0.42 mg/L	72.1	70	130

	QA/QC Compliance As	ssessment to assist witl	n Quality Review	
Work Order	: ES1828653	Page	: 1 of 6	
Client	ECO LOGICAL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney	
Contact	CLAIRE WHEELER	Telephone	: +61-2-8784 8555	
Project	: Warriewood	Date Samples Received	: 27-Sep-2018	
Site	:	Issue Date	: 02-Oct-2018	
Sampler	: CLAIRE WHEELER, DO	No. of samples received	: 3	
Order number	:	No. of samples analysed	: 3	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = With	in holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H) US01, DS01	MS01,	27-Sep-2018				28-Sep-2018	04-Oct-2018	~
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) US01, DS01	MS01,	27-Sep-2018				27-Sep-2018	25-Oct-2018	~
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) US01, DS01	MS01,	27-Sep-2018				27-Sep-2018	29-Sep-2018	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discret	te Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) US01, DS01	MS01,	27-Sep-2018				27-Sep-2018	25-Oct-2018	~
EK061G: Total Kieldahl Nitrogen By Discrete Analy	/ser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) US01, DS01	MS01,	27-Sep-2018	27-Sep-2018	25-Oct-2018	~	27-Sep-2018	25-Oct-2018	~
EK067FG: Filtered Total Phosphorus as P by Discr	rete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067FG) US01, DS01	MS01,	27-Sep-2018	28-Sep-2018	25-Oct-2018	~	28-Sep-2018	25-Oct-2018	~
EK067G: Total Phosphorus as P by Discrete Analys	ser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) US01, DS01	MS01,	27-Sep-2018	27-Sep-2018	25-Oct-2018	~	27-Sep-2018	25-Oct-2018	~
EK071G: Reactive Phosphorus as P by discrete an	alyser							
Clear Plastic Bottle - Natural (EK071G) US01, DS01	MS01,	27-Sep-2018				27-Sep-2018	29-Sep-2018	~

Page	: 3 of 6
Work Order	: ES1828653
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	Warriewood

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW006: Faecal Coliforms & E.coli by MF							
Sterile Plastic Bottle - Sodium Thiosulfate (MW006) US01, MS01, DS01	27-Sep-2018				27-Sep-2018	28-Sep-2018	•

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	17	23.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	3	22	13.64	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	4	18	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	6	18	33.33	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a filtered sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Thermotolerant Coliforms & E.coli by Membrane Filtration	MW006	WATER	AS 4276.7 2007
Preparation Methods	Method	Matrix	Method Descriptions

 Page
 : 6 of 6

 Work Order
 : ES1828653

 Client
 : ECO LOGICAL AUSTRALIA PTY LTD

 Project
 : Warriewood

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
TKN/TP (filtered) Digestion	EK061F/EK067F	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)

Appendix D: Chain of Custody

						CHARLET DT VAN DAMA	loof Month	2000 OLD 4740		CONCLUSION OF	1 000 V	Antonia May	C MISH 1997	SU 10	SVINEY 277.0	an weedow to coard Smithfield MSVV218	-
		CHAIN OF	LIADELAIDE Pr. 08 5369 0	21 Burma Ro 1890 E. adela	oad Pooraka SA 5095 vide@alsglobal.com		nu roudd meru Marckay@aist	global.com	:	Phr 02 AC	45 I LE 9/905 N 14 25/01 E: Sar	nples.newcastle	Galsglobal.com	12 E	02.8784 8555	es woorpark voer ommende een Er samples sydney@akglobai.com A 15 Deree Court Futhe OLD 4818	
		CUSTODY	LUBRISBANE Phr. 07 3243 7	32 Shand St. 222 E: sainpl	treet Stufford QLO 4053 Hes.brisbario@alsglubal.com	UMELBOURNE 2.4 Ph. 03 8549 0600 E:	Westall Róad samplesunell	l Springvale VIC 31. bourne@aisglobar.c	71 - 1610	LINOVIN Ph: 0244.	A 4/13 Geary F 73 2063 E: nov	riace North Now vraggalsglobal.cr			07 4796 0600	E: townsville.envronmental@atsplobal.con	
Enu	ronmental	ALS Laboratory: nease fick →	Det ADST 05 Det ADST 05	NE 46 Callom 1800 E: gladsi	onudati Orive Crinton QLID 4680 tone@elsgicibut.com	LIMUDGEE 27 Sydn Ph 02 8372 6735 (ey Rouri Mud, mudgee.maily	gee NSW 2850 Øalsglobal com		EDPL: 108 52 Phr: 08 52	10 Hod Way N 09 7655 Ei sai	Malaga WVA 609 Inples, perth@als) global com	95	NOLLONGONC	a 99 Kenny Street Wollongong NSW 256 E: portkembla微atsglobal.com	9
SLIENT:	For Inviout	Auction	11.0	TURNA	ROUND REQUIREMENTS :	E Standard	TAT (List o	due date): 2	1-1-1-	5			FOR	ABORATORY	(USE ONL		1
DFFICE:	244404			(Standard Ultra Trac	d TAT may be longer for some tests e.g. e Organics)	1. 🗌 Non Stan	dard or urg	ent TAT (List d	ue date):	-			Gilsto	V. SEAL MISCO			0
ROJECT	1577 Mac	not not a	SJ, WALN'L	ALS QL	JOTE NO.:		•		-	COC SEQU	ENCE NUM	BER (Circle	diese				
ORDER N	UMBER:		MOUA						200	4	3	5	7 PARO	naSample Cop	alature of R	E A	
ROJECT	MANAGER: TOUN	DIXOM	CONTACT P	Ŧ					ÖF	1 2	3 4	5 6	. 7 Sher	sourcent		2 2 1	
SAMPLEF	Claire Wheel	er/Rizuou	OL SAMPLER N	IOBILE:	0405 068 121		ED ΒΥ:		RECE		-		RELINQUIS	HED BY:		RECEIVED BY:	
COC emai	ited to ALS? (YES / NO	Z SZ	AWWAY EDD FORMA	AT (or def.	fault):				5		2						
Email Rep	sorts to (will default to PM If	no other addresses	s are listed): CI a ine	2. Wh	eeler@ ecoaus	DATE/TIME:			DATE/	TIME	∿	00:1:	DATE/TIME			DATE/TIME:	
Email Invo	bice to (will default to PM if r	no other addresses	are listed): Claire	MM.	ecler @ ecount	20 20 20	d L		9	1	2	ΰŇ					
COMMEN	TS/SPECIAL HANDLING/S	TORAGE OR DISP	20SAL:		,	4				-							
								ANALYSIS	REQUIRE) including	N SALUS	B. Suite Code	s must be listed	to attract suite pi	rice)		
ALS USE	international design of the second	TRIX: SOLID (S) W	ales Vater (W)		CONTAINER INFO	DRMATION		Where the rate	is are requi	red, specify	Tota Unfilte	ered bottle reg juired).	uired) or Disso	ved (field filtered	bottle	Additional Informatio	 c
							st.	20417 20417 2047 2047 2047	on on the second	7572	H &A		0 tr	53			
LAB ID	SAMPLEI	۵	DATE / TIME	ХІЯТАІ	TYPE & PRESERVATIVE to codes below)	(refer	латот Ізиіати	102 - 1034 - EQN- 55345	1421 111	nn 4	" uz (q \$10	4	mog I Ye	Н भ сід О£	<u>, 5 0 0</u>	omments on likely contaminant lev lutions, or samples requiring spec nalysis etc.	els, fic QC
				M			00	20103 551 72N 72N N0H	T KN P KN	o 110	1d'-12) 47 M	ביר	616 616	49 229 220			
-	10çn	-	18.01.19 8,20	3	-		∞	×	×	×	×	×	×	×			1
5	W M 501	-	18.01.19 9:15	3			Ĺ	×	×			×					
3	0501		18-01-19 9155	3			00	×	×	×	×	×	×	×			
9	Re		18-01-19 1:21	3			3	×	×		×	×	x				
_	•		•														
														_	Envire	onmental Division	
-											1				Svdne		
															۶Ļ	K Order Reference	
	-										-	in t			Ú	22/108/0	
						*					*						<u> </u>
												-					1
											Ĺ	1]
										J	2		، ، و				T
						ROTAL	r					} }	2		Telephor	ne:+61-2-8784 8555	
Water Con V = VOA V	<i>itatiner</i> Co des: P = Unpreserve Ial HCl Preserved; VB = VOA Vi	<pre>>d Plastic; N = Nitric F ial Sodium Bisulphate</pre>	Preserved Plastic; ORC = Ni Preserved; VS = VOA Vial S	tric Preserv Sulfuric Pres	ved ORC; SH = Sodium Hydroxide/Cd served; AV = Airfreight Unpreserved V	Preserved; S = Sc [al SG = Sulfuric P	dium Hydro reserved A	xide Preserved I mber Glass; H	Plastic; AG = HCI prese	= Amber GI rved Plasti	ass Unprese c; HS = HCI	rved; AP - Air preserved Sp	reight Unprese	ved Plasti. sP = Sulfuric Pre	served Plasti	ic; F = Formaldehyde Preserved (alass;
7 - Zine Ar	vatate Desenved Dottle: E ~ ED)	TA Dressonad Dottlas.	 NT = Otable Bottle AXX = TO 	Olactic Hac	• for Acid Sulphate Solis; b = Unpreser	Ved Dad.											

	DS01 26/10/18 S	- DSel 26/10/18	DS01 26/10/18	/ DSD 20192	> 0501 24/10/18 V	1 U 301 24/10/18	0501 22122	26/10/18 30 3	U501 12:30	USO1 16/10/18	USO1 26/10/18	10501 76/19/18 1	B ID SAMPLE ID DATE / TIME	LS SAMPLE: DETAILS SE MATRIX: SOLID (S) WATER (M)	MENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	iil Reports to (will default to PM if no other addresses are listed): $cla; rci$	emailed to ALS? (YES / NO) No EDD FORMAT (JECT MANAGER: JOM DIXEN CONTACT PH:	ER NUMBER:	IECT: A WALL ALANCE AND ALANCE IN	MT: Ew Logical Australia T	CUSTODY - LISSINAL AL CUSTODY - F of a training CUSTODY - LISSINAL AL LISSINAL ALS LISSINAL ALS
PFA(6)0	SG1 60 we plastic 4	250 ml plastic/ Lugol's solution 1	250 mr glass Jan 1	p 500 ml plastic 1	UB 250 MI glass/NaHSE2 1	Comrytons 1	aso we plastic 1	361 60 mil plastic 1	apo mi plastic/ Legol's solution 1	250 ml gloss jar 1	p 500 ml plastic 1	VB 250 ml glass/NaHSOL 1	MATRIX TYPE & PRESERVATIVE codes below) (refer to TOTAL CONTAINERS (1+ E·M)	CONTAINER INFORMATION	. COM. out	whetter @ ecoaus cus	for default): (or default):			Ultra Trace Organics) I Non Standars or urgent ALS OUOTE NO	Standard TAT may be longer for some tests e.g.	(4) Standard Stan Standard Standard Stand Standard Standard Stand Standard Standard Stan Standard Standard Stand Standard Standard Stand Standar
	4	5		<u>\</u>	5				5	5	۲		OIL 4 GREASE NO2/NO3 T35, Haran PAH Oe/DP M, Pb, Zum ALgab Cours TP, NH3 TKN, phan Compound FC Cn, Pb, Zn, M Hg, Cu OC/OP Pe	ANALYSIS REQUIRED Including SUITES (NB. Suite Codes must be listed to altract suite Where Metals are required. specify Octal (unfiltered bottle required) or Dissolved (field filter required).	Cu phi con	26(0 3 6.12pm		OF: 1 2 3 4 5 6 7 Othercomment	coc: 1 2 3 4 5 6 7 Random Sample Te	IAI (LIST DUP DAIRE): COC SEQUENCE NUMBER (Circle) Free ce / frozen ice	nate); due ch 3//10/18 FORLABORATO	javija s bila stani i jako 1990. U 19 sekara Processova na razvanskog 1990. do 1997. – Jako 1990. Stani 1990. – na razvija stani stani od 1990. – 2017. Stani 1990. – Jako 1990. – Javija Stani Javija stani stani 1990. 1990. do 1991. – Bila de De De Alde Bilana Stani Javija stani stani 1990.
	Telephone : + 61-2-8784 8555				ES1831929	Work Order Reference	Environmental Division						Comments on likely conterninant levels, dilutons, or samples requiring specific QC analysts etc.	leproe) red bottle Additional Information		DATE/TIME	RECEIVED BY:		Imperature on Receipt C	blicks present upon Yes No A		TECHNOLOGIC CONTRACTOR CONTRAC

	CHAIN OF	CIADELAIDE 21 6 Ph: 08 8359 0890	Burma Roac E: adelakie	d Pooraka SA 5005 e@assglobal.com	2MACKAY 78 Har Ph: 07 4844 0177 B	Dour Road Mac E. niackay@ak	sglobal.com	LINEWCASTLE 5/585 Mailand Rd Mayfie Prc 02 4014 2503 Er samples.newcastle@	ald West NSW 2304 Balsglobal com	DSYDNEY 277 Ph: 02 8784 85	7-255 Woodpark Road Smithfield NSW 2164 35 £: samples sydney@jals@lobal.com
	CUSTODY ALS Laboratory: please tick →	_JBRISBANE 32 S Ph: 07 3243 7222 _JGLADSTONE 4 Ph: 07 7471 5600	Shand Stree E: samplee 6 Catlemon E. gladstor	el Stafford GLD 4053 s brisbane@alsglobal.com ridah Drive Clinton QLD 4680 ne@alsglobal.com	UMELBOURNE 2 Ph: 03 8549 9600 UMUDGEE 27 Syc Ph: 02 6372 6735 (-4 Westall Roa €' samples.me Iney Road Muc ∷ mudgee mai	d Springvale VIC : Ibourne@atsgloba (gee NSW 2850 I@atsglobal.com	1771 DINOWRA 4/13 Geary Place North Novra Ph. 024023 2053 E novra@alsgloba.com DPER111 10 Hod Way Mataga WA 5050 Ph. 06 9209 7655 E samples penth@alsg	n Film	LTOWNSVILL Ph: 07 4796 09 LWOLLONGO Ph: 02 4225 31	E 14.15 Desma Court Bohle QLD 48.6 100 E: townsville environmental@asglobal.com NG3 99 Kenny Street Wolfcrang NSW 2500 25 E: portkembag@asglobal.com
CLIENT:		Т	URNAR	OUND REQUIREMENTS :	□ Standar	d TAT (List	due date):		FOR LABORATO	RY USE OF	VLY (Circle)
OFFICE:		() ()	tandard T tra Trace	TAT may be longer for some tests e.g. Organics)	Non Sta	indard or urg	gent TAT (List	due date):	Oustony Sont Intado?		Net Net No.
PROJECT:		A	LS QUO	DTE NO.:				COC SEQUENCE NUMBER (Cirole)	Free ice / frozent/celt	nicks presen	tipon vesting to the
ORDER NUMBER:								coc: 1 2 3 4 5 6	7 Random Sample Ten	to emicrod	Recept 1970
PROJECT MANAGER:		CONTACT PH:						OF: 1 2 3 4 5 6	Citeriano 2		
SAMPLER:		SAMPLER MOE	BILE:		RELINQUISI	HED BY:		RECEIVED BY:	RELINQUISHED BY:		RECEIVED BY:
COC emailed to ALS? (YES / N	0	EDD FORMAT (or defau	u(t):							
Email Reports to (will default to PN	l if no other addresses are lit	sted):			DATE/TIME:			DATE/TIME:	DATE/TIME:		DATE/TIME:
Email Invoice to (will default to PM	if no other addresses are lis	(ed):					:				
COMMENTS/SPECIAL HANDLING	STORAGE OR DISPOSAL										
ALS USE N	SAMPLE DETAILS	W)	2000 - 2000 2000 - 2000	CONTAINER INFO	RMATION		ANALYS Where Met	IS REQUIRED includingSUITES (NB. Suite Codes n als are required, specifyStotal (unfiltered bottle requir grequired).	nust be listed to attract suite ed) or Dissolved (field filtera	price) id bottle	Additional Information
LABID SAMPL	Π 	ATE / TIME		YPE & PRESERVATIVE codes below)	(refer to	TOTAL CONTAINERS	Fe	CP, PB, EN / Hg. CU OC/OP P. TP, NHJ TICN Phenolic NO2, NO3 T32, Hardne			Comments on likely contaminant levels, ditutions, or samples requiring spacific QC analysis etc.
7 2301	9-6	110/12		150 ml phostic			\leq				
10501	91	81/01/	0	60 mt / HND 2							
) M301	26	10.18	64	aso wi plastic	3 (*		5				
L MSOI	26,	12/18 \$	S					<			
U MSOI	37	10/18 1	5 5	500 ml plastic				\checkmark	 In the matching discrete of the force of the force of the second s		
		21.3									
									· · · · · · · · · · · · · · · · · · ·		
					IOIA						
Water Container Coues. r - onpression V = VOA Vial HCI Preserved; VB = VOA V Z = Zinc Acetate Preserved Bottle; E = EE	ed riastic; N = Nittic rieserveu /ial Sodium Bisulphate Preserve)TA Preserved Bottles; ST = Ste	riastic; ORC - wurd ru d; VS = VOA Vial Sulfurio rile Bottle; ASS = Plastic	eserved - Preserve Bag for /	JRC; SH = Sodium HydroxiderCal Field ad; AV = Airfreight Unpreserved Vial S Acid Sulphate Soils; B = Unpreserved	served;	served Amb	te Preserveo, ∺ ber Glass; H =	astic; אַנ = אַזיאַר כוּוּמּצַ Unpreserved; אַי - אַווירפּוּטָד HCl preserved Plastic; HS = HCl preserved Speciatic	t Unpreserved Plastic on bottle; SP = Sulfuric Prese	rved Plastic;	F = Formaldehyde Preserved Glass;

2/10/18

¥:--

r			~									-						
	Physics 27: 2018 Woodschill Kreeds and Analogi 18: 49 - 10: 2018 (2018): 18:20: E. sampler entropy adjustation from LTP2 (WRSNILL E. 44: 46 - Berning Schweid Sample (ED - 2018) Ph. 16: 47:30: 50: 10: E. Honnender and Contral and ED - 2018 LWCLL (2018): 2018 E. Honnender and Contral and ED - 2018 Fig. 72: 2018 E. D. 40: Honney Schweider Schweider Lenger Fig. 72: 2018 E. 2018 E. Honnender and Schweider Schweider Lenger Fig. 72: 2018 E. 2018 E. Honney Schweider Schweider Lenger Fig. 72: 2018 E. 2018 E. 2018 E. 2018 E. 2018 Fig. 72: 2018 E. 2018 E. 2018 E. 2018 E. 2018 Fig. 72: 2018 E. 2018 E. 2018 E. 2018 F. 2018 Fig. 72: 2018 E. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F. 2018 F.	ATORY USE ONLY (Circle) Ideat? No No In be broks present upon Yes No No	De lemperature on Receipt. 1. 2. bernenven bv.	DATE/TIME:	stife price)	Additional Information	Comments on likely contaminant levels, clutions, or samples requiring specific QC analysis etc.						Environmental Division Sydney	ES1828653			Telephone : + 61-2-8794 Arrs	
	P. M. C. M.	a): COCYANA a): COC SEQUENCE NUMBER COC SEQUENCE NUMBER COC SEQUENCE NUMBER COC SEQUENCE NUMBER COCANA COCAN		TETTIME 27-00/18 DATETIME	RED including UREs (Vie Codes must be listed to attract	Line of the section o	roman strong total strong stro	>			>			>		>	≐ Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic read Plasticy, HS = HCI preserved Specialian bottlet. SP = Sulfunic P	
QMAC(A) 78 Harbour Paers Nadray QLD 4740	ទីលើ សីសីលេខី 177 និះ សេខាស់ស្ទិតទៅស្នេសំពេលា JAREDS CUNNE	L Sjandard TAT (List due date): Won Standard or urgent TAT (List due dat con	2 3 00 3 RELINQUISHED BY: RE	WATETIME CN DA	ORMATION When Madats or a		FOR FOR CONTRIN CONTRIN FOR CONTRIN FOR CONTRIN FOR CONTRIN	Na2520 1		H2CH /		V V V	204 1 ·	Na2529 (V			reserved; S = Sodium Hydroxide Preserved Plastic; AG = SG = Sulfunc Preserved Amber Glass; H = HCI preser d Bag.	
UELACE 11 Burnin Poso Peccasio 54, 5025 10: 5026 Abin - Secretor Demander	uv verve and serve a variable galacitych o con REBARG CS Share Streak streaks durft d.p. 400 07 CS-08 7225 E servide Christian Specific 41-270 1402 NOVE 44 Galactionadals Three Galactin QLD 4890 07 777 600 Z: oldections Spatigiches acon	TURNAROUND REQUIREMENTS : (Standard TAT may be longer for some tests e.g. Ultra Trace Organics) ALS QUOTE NO .:	ACT PH: OLOS OCS 1 LER MOBILE: OLOS 0612	ORMAT (or default): Dire . Wheeler @ CLO US. Ire . Wheel ered aroa US.	CONTAINER INF	XR	MATT MANA	1-000	140 1 2 50ml	Port of the second	140 P 500 F L	40 0 250mL	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	10 ZSOML	20 P 250-L		Intric Preserved ORC; SH = Sodium Hydroxite/Cd Plat Suffurite Preserved Val at Suffurite Preserved; AV = Auffreight Unpreserved Val = Plastic Bag for Acid Sulphate Soils; B = Unpreserved	
CHAIN OF	CUSTODY E	arriewood	LAIREWHELECONT	/ NOT EDD F o PM if no other addresses are listed): CA PM if no other addresses are listed): CA	INGISTORAGE OR DISPOSAL: SAMPLE DETAILS MATRIX: SOLID (S) WATER (M)			1 27/4/18 4	1 27918		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0) 8/1/2 (0	+ NSO1 2791.8 (0	A DSOI 2791816	M 14222 279/19/1-		And Preserved Bottles: ST = Sterile Bottle; ASS EDTA Preserved Bottles: ST = Sterile Bottle; ASS	GENT
<		OFFICE: Sudre		COUC emailed to ALS? (YES Email Reports to (will default to Email invoice to (will default to	COMMEN' SYSPECIAL HANDL			020	0 20	O S O	a lack lost	OSM	M N O	42.4	0501 1050 1050 1050 1050 1050 1050 1050	Mater Container Codes: P = Unones	V ≈ VOA Via HCI Preserved; VB = VOA Z = Zine Acetate Preserved Bottle; E = 1	UR

URGENT

Appendix E: Non-filterable Phosphorus Report

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

ES1901722

BATCH NUMBER: CLIENT: ADDRESS:

ECOAUS PO BOX 12 Sutherland NSW, AUSTRALIA 1499

CONTACT:

CLAIRE WHEELER

ANALYSIS: N	Ion-filtered Phosphorous
ALS METHOD: N	Ion-filtered Phosphorous
UNITS: m	Jd/L

WATER	MS01					18/01/2019 9:15	ES1901722-002	0.03
WATER	US01					18/01/2019 8:20	ES1901722-001	< 0.01
							LOR	0.01
							Units	mg/L
Sub-Matrix	Sample Name	Sample Description	Depth Type	Depth in	metres	Analyte		Non-filtered Phosphorous

ALS Laboratory Group Locked Bag 106, Wetherill Park BC 1851 Phone +61 8784 8555 Fax +61 8784 8500 www.alsglobal.com A Campbell Brothers Limited Company

.

Sub-Matrix			WATER	WATER
Sample Name			DS01	RC
Sample Description				
Depth Type				
Depth in				
metres				
Analyte			18/01/2019 9:55	15/01/2019 13:21
	Units	LOR	ES1901722-003	ES1901722-004
Non-filtered Phosphorous	mg/L	0.01	0.1	< 0.01

Wisam Marassa

301112019

ALS | Environmental Division

This report is not covered by ALS' NATA accreditation

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

BATCH NUMBER: CLIENT: ADDRESS: ES1828653 ECOAUS PO BOX 12 Sutherland NSW, AUSTRALIA 1499

CONTACT:

CLAIRE WHEELER

ANALYSIS:	Non-filtered Phosphorous
ALS METHOD:	Non-filtered Phosphorous
UNITS:	mg/L

Sub-Matrix			WATER	WATER	WATER
Sample Name			US01	MS01	DS01
Sample Description					
Depth Type		× ·			
epth in metres					
Analyte			27/09/2018 9:40	27/09/2018 10:40	27/09/2018 11:20
	Units	LOR	ES1828653- 001	ES1828653- 002	ES1828653- 003
Non-filtered Phosphorous	mg/L	0.01	0.01	0.01	0.01

WISAM MARASSA

02/10/2018

ALS | Environmental Division

2

This report is not covered by ALS' NATA accreditation

ALS Laboratory Group Locked Bag 106, Wetherill Park BC 1851 Phone +61 8784 8555 Fax +61 8784 8500 www.alsglobal.com A Campbell Brothers Limited Company Appendix F: QA/QC Compliance Assessment

	QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: ES1901722	Page	: 1 of 12				
Client	ECO LOGICAL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney				
Contact	: MR Ian Dixon	Telephone	: +61-2-8784 8555				
Project	: 11527 Macpherson St, Warrie Wood	Date Samples Received	: 18-Jan-2019				
Site	:	Issue Date	: 25-Jan-2019				
Sampler	: Claire Wheeler/Rizwaua Kumman	No. of samples received	: 4				
Order number	:	No. of samples analysed	: 4				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK055G: Ammonia as N by Discrete Analyser	ES1901609001	Anonymous	Ammonia as N	7664-41-7	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK067G: Total Phosphorus as P by Discrete Analyser	ES1901650001	Anonymous	Total Phosphorus as P		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EK055G: Ammonia as N by Discrete Analyser						
Clear Plastic Bottle - Natural						
RC				22-Jan-2019	16-Jan-2019	6
EK057G: Nitrite as N by Discrete Analyser						
Clear Plastic Bottle - Natural						
RC				19-Jan-2019	17-Jan-2019	2
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser						
Clear Plastic Bottle - Natural						
RC				22-Jan-2019	17-Jan-2019	5
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser						
Clear Plastic Bottle - Natural						
RC	22-Jan-2019	16-Jan-2019	6			
EK067FG: Filtered Total Phosphorus as P by Discrete Analyser						
Clear Plastic Bottle - Natural						
RC	22-Jan-2019	17-Jan-2019	5			
EK067G: Total Phosphorus as P by Discrete Analyser						
Clear Plastic Bottle - Natural						
RC	22-Jan-2019	17-Jan-2019	5			
EK071G: Reactive Phosphorus as P by discrete analyser						
Clear Plastic Bottle - Natural						
RC				19-Jan-2019	17-Jan-2019	2
MW006: Faecal Coliforms & E.coli by MF						
Clear Plastic Bottle - Natural						
RC				19-Jan-2019	16-Jan-2019	3
Outline - Engineering of Outlite Outline I Outline						

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Matrix: WATER

Quality Control Sample Type	Со	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	18	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	0	5	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	18	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	0	5	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	i: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H) RC		15-Jan-2019				22-Jan-2019	22-Jan-2019	1
Clear Plastic Bottle - Natural (EA025H) US01, DS01	MS01,	18-Jan-2019				23-Jan-2019	25-Jan-2019	~
ED093F: SAR and Hardness Calculations								
Clear Plastic Bottle - Natural (ED093F) RC		15-Jan-2019				22-Jan-2019	22-Jan-2019	~
Clear Plastic Bottle - Natural (ED093F) US01, DS01	MS01,	18-Jan-2019				22-Jan-2019	25-Jan-2019	~
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) RC		15-Jan-2019	21-Jan-2019	14-Jul-2019	1	21-Jan-2019	14-Jul-2019	~
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) US01,	DS01	18-Jan-2019	21-Jan-2019	17-Jul-2019	1	21-Jan-2019	17-Jul-2019	1
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) RC		15-Jan-2019				21-Jan-2019	12-Feb-2019	✓
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) US01,	DS01	18-Jan-2019				21-Jan-2019	15-Feb-2019	1

Page	: 4 of 12
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	11527 Macpherson St, Warrie Wood

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	in holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK055G) RC		15-Jan-2019				22-Jan-2019	16-Jan-2019	×
Clear Plastic Bottle - Sulfuric Acid (EK055G) US01, DS01	MS01,	18-Jan-2019				22-Jan-2019	15-Feb-2019	1
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) RC		15-Jan-2019				19-Jan-2019	17-Jan-2019	*
Clear Plastic Bottle - Natural (EK057G) US01, DS01	MS01,	18-Jan-2019				19-Jan-2019	20-Jan-2019	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser							
Clear Plastic Bottle - Natural (EK059G) RC		15-Jan-2019				22-Jan-2019	17-Jan-2019	*
Clear Plastic Bottle - Sulfuric Acid (EK059G) US01, DS01	MS01,	18-Jan-2019				22-Jan-2019	15-Feb-2019	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	r							
Clear Plastic Bottle - Natural (EK061G) RC		15-Jan-2019	22-Jan-2019	16-Jan-2019	×	22-Jan-2019	19-Feb-2019	✓
Clear Plastic Bottle - Sulfuric Acid (EK061G) US01, DS01	MS01,	18-Jan-2019	22-Jan-2019	15-Feb-2019	1	22-Jan-2019	15-Feb-2019	~
EK067FG: Filtered Total Phosphorus as P by Discrete	Analyser							
Clear Plastic Bottle - Natural (EK067FG) RC		15-Jan-2019	22-Jan-2019	17-Jan-2019	×	22-Jan-2019	19-Feb-2019	~
Clear Plastic Bottle - Sulfuric Acid (EK067FG) US01, DS01	MS01,	18-Jan-2019	22-Jan-2019	15-Feb-2019	~	22-Jan-2019	15-Feb-2019	~
EK067G: Total Phosphorus as P by Discrete Analyser								
Clear Plastic Bottle - Natural (EK067G) RC		15-Jan-2019	22-Jan-2019	17-Jan-2019	¥	22-Jan-2019	19-Feb-2019	~
Clear Plastic Bottle - Sulfuric Acid (EK067G) US01, DS01	MS01,	18-Jan-2019	22-Jan-2019	15-Feb-2019	1	22-Jan-2019	15-Feb-2019	~
EK071G: Reactive Phosphorus as P by discrete analy	ser							
Clear Plastic Bottle - Natural (EK071G) RC		15-Jan-2019				19-Jan-2019	17-Jan-2019	×
Clear Plastic Bottle - Natural (EK071G) US01, DS01	MS01,	18-Jan-2019				19-Jan-2019	20-Jan-2019	✓

Page	5 of 12
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: 11527 Macpherson St, Warrie Wood

Matrix: WATER					Evaluation	n: 🗴 = Holding time	breach ; 🗸 = Withi	n holding time	
Method		Sample Date	Ex	traction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP020: Oil and Grease (O&G)									
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020) US01,	DS01	18-Jan-2019				23-Jan-2019	15-Feb-2019	✓	
EP035G: Total Phenol by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EP035G) US01, DS01	MS01,	18-Jan-2019	23-Jan-2019	15-Feb-2019	1	23-Jan-2019	15-Feb-2019	~	
EP068A: Organochlorine Pesticides (OC)									
Amber Glass Bottle - Unpreserved (EP068) US01,	DS01	18-Jan-2019	21-Jan-2019	25-Jan-2019	1	23-Jan-2019	02-Mar-2019	✓	
EP068B: Organophosphorus Pesticides (OP)									
Amber Glass Bottle - Unpreserved (EP068) US01,	DS01	18-Jan-2019	21-Jan-2019	25-Jan-2019	1	23-Jan-2019	02-Mar-2019	✓	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons									
Amber Glass Bottle - Unpreserved (EP075(SIM)) US01,	DS01	18-Jan-2019	21-Jan-2019	25-Jan-2019	~	23-Jan-2019	02-Mar-2019	✓	
MW006: Faecal Coliforms & E.coli by MF									
Clear Plastic Bottle - Natural (MW006) RC		15-Jan-2019				19-Jan-2019	16-Jan-2019	×	
Sterile Plastic Bottle - Sodium Thiosulfate (MW006) US01, DS01	MS01,	18-Jan-2019				19-Jan-2019	19-Jan-2019	~	
MW024: Bacillariophytes (Diatoms) - Centrales									1
Plastic Bottle - Lugols Iodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	
Plastic Bottle - Lugols Iodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	~	
MW024: Bacillariophytes (Diatoms) - Pennales									
Plastic Bottle - Lugols Iodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	
Plastic Bottle - Lugols Iodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	✓	_
MW024: Bacillariophytes (Diatoms) - TOTAL BACILLAR	IOPHYTES								
Plastic Bottle - Lugols Iodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	 ✓ 	_
Plastic Bottle - Lugols Iodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	 ✓ 	
MW024: Chlorophytes (Green Algae)									
Plastic Bottle - Lugols Iodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	_
Plastic Bottle - Lugols Iodine (MW024_TOT) US01.	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	1	

Page	: 6 of 12
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: 11527 Macpherson St, Warrie Wood

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	in holding tim	le.
Method		Sample Date	Ex	traction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
MW024: Chlorophytes (Green Algae) - TOTAL CHI	OROPHYTES								
Plastic Bottle - Lugols lodine (MW024_TOT)									
RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	
Plastic Bottle - Lugols Iodine (MW024_TOT)	DS01	18- Jan-2019				21- Jan-2019	17 <u>- lul-</u> 2019		
		10-0011-2013				21-0411-2013	17 001 2010	V	-
MW024: Chrysophytes (Golden Algae)									_
RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	1	
Plastic Bottle - Lugols lodine (MW024_TOT)									
US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	✓	
MW024: Chrysophytes (Golden Algae) - TOTAL Cl	HRYSOPHYTES								
Plastic Bottle - Lugols lodine (MW024_TOT)		45 1. 0040				o	44.1-1-0040		
RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	
Plastic Bottle - Lugois Iodine (MW024_TOT)	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019		
NW/024: Cycenenbytee (Blue Green Alree)									-
Plastic Bottle - Lugols Iodine (MW024, TOT)									_
RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	
Plastic Bottle - Lugols lodine (MW024_TOT)									
US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	✓	_
MW024: Cyanophytes (Blue Green Algae) - Other	Cyanophytes								
Plastic Bottle - Lugols lodine (MW024_TOT)		15 Jan 2010				21 Jan 2010	14 101 2010		
RC Blastic Bottle Lugals Indina (MW/024 TOT)		15-Jan-2019				21-Jaii-2019	14-301-2013	✓	_
US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	1	
MW024: Cvanophytes (Blue Green Algae) - TOTAL	CYANOPHYTES								
Plastic Bottle - Lugols Iodine (MW024_TOT)									
RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	
Plastic Bottle - Lugols lodine (MW024_TOT)	500/	40 1 0040				04 1 0040	17 101 2010		
0501,	DS01	18-Jan-2019				21-Jan-2019	17-Jui-2019	✓	_
MW024: Cyanophytes (Blue Green Algae) - TOTAL	. POTENTIALLY TOXIC CYANOPHYTES		1	1		1			
Plastic Bottle - Lugois Iodine (MW024_TOT)		15-Jan-2019				21-Jan-2019	14-Jul-2019		
Plastic Bottle - Lugols Iodine (MW024 TOT)									_
US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	✓	
MW024: Flagellates - Cryptophytes									
Plastic Bottle - Lugols lodine (MW024_TOT)									
RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	
Plastic Bottle - Lugols Iodine (MW024_TOT)	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019		
0001,	D001	10 0011 2010						· · · · · · · · · · · · · · · · · · ·	

Page	: 7 of 12
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	11527 Macpherson St, Warrie Wood

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = With	n holding time	
Method	Sample Date	Ex	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
MW024: Flagellates - Euglenophytes									
Plastic Bottle - Lugols lodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	1	
Plastic Bottle - Lugols Iodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	~	
MW024: Flagellates - Pyrrophytes									
Plastic Bottle - Lugols Iodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	~	
Plastic Bottle - Lugols lodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	~	
MW024: Flagellates - TOTAL FLAGELLATES									
Plastic Bottle - Lugols lodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	~	
Plastic Bottle - Lugols lodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	~	
MW024: Raphidophyte									
Plastic Bottle - Lugols lodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	√	
Plastic Bottle - Lugols lodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	~	
MW024: Raphidophyte - TOTAL RAPHIDOPHYTE									
Plastic Bottle - Lugols lodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	✓	
Plastic Bottle - Lugols lodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	~	
MW024T: TOTAL ALGAE									
Plastic Bottle - Lugols lodine (MW024_TOT) RC		15-Jan-2019				21-Jan-2019	14-Jul-2019	~	
Plastic Bottle - Lugols Iodine (MW024_TOT) US01,	DS01	18-Jan-2019				21-Jan-2019	17-Jul-2019	~	

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.	
Quality Control Sample Type		С	Count Rate (%				Quality Control Specification	
Analvtical Methods	Method	00	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Ammonia as N by Discrete analyser	EK055G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	18	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	0	5	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phenol by Discrete Analyser	EP035G	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	3	27	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	4	25.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Oil and Grease	EP020	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phenol by Discrete Analyser	EP035G	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	6	27	22.22	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Oil and Grease	EP020	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Pesticides by GCMS	EP068	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Page	: 9 of 12
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: 11527 Macpherson St, Warrie Wood

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	18	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	0	5	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	27	7.41	5.00	~	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a filtered sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)
Total Phenol by Discrete Analyser	EP035G	WATER	In house: Referenced to APHA 5530 B&D. Steam distillable Phenols are reacted with 4-aminoantipyrine. The resultant colour intensity is measured by Seal. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Thermotolerant Coliforms & E.coli by Membrane Filtration	MW006	WATER	AS 4276.7 2007
Total Algae Count	MW024 TOT	WATER	In house: Referenced to Hotzel and Groome, 1999 and APHA 10200
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
TKN/TP (filtered) Digestion	EK061F/EK067F	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)
Phenols After Microdistillation	EP035D	WATER	In house: Referenced to APHA 5530 A, B&D pH adjusted Steam distillable Phenolic compounds. The resultant colour intensity is measured by Discrete Analyser.

Page	: 12 of 12
Work Order	: ES1901722
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	11527 Macpherson St, Warrie Wood

Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS default excludes sediment which may be resident in the container.

view
vision Sydney

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
MW006: Faecal Coliforms & E.coli by MF						
Sterile Plastic Bottle - Sodium Thiosulfate						
US01, DS01,				28-Oct-2018	27-Oct-2018	1
MS01						

Outliers : Frequency of Quality Control Samples

Matrix: WATER					
Quality Control Sample Type	Count		Rate	(%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Pesticides by GCMS	0	2	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)					
Total Metals by ICP-MS - Suite B	0	2	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
Pesticides by GCMS	0	2	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) US01, DS01	26-Oct-2018				29-Oct-2018	09-Nov-2018	✓
EG005T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) US01, DS01	26-Oct-2018	30-Oct-2018	24-Apr-2019	~	30-Oct-2018	24-Apr-2019	~
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) US01, DS01	26-Oct-2018	30-Oct-2018	23-Nov-2018	1	31-Oct-2018	23-Nov-2018	✓
EP035G: Total Phenol by Discrete Analyser							
Soil Glass Jar - Unpreserved (EP035G) US01, DS01	26-Oct-2018	30-Oct-2018	09-Nov-2018	1	30-Oct-2018	09-Nov-2018	~

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068)					_			_
US01,	DS01	26-Oct-2018	29-Oct-2018	09-Nov-2018	~	29-Oct-2018	08-Dec-2018	✓
EP068B: Organophosphorus Pesticides (OP)		1	1			1		
Soil Glass Jar - Unpreserved (EP068)	D\$01	26-Oct-2018	29-Oct-2018	09-Nov-2018		29-Oct-2018	08-Dec-2018	
		20 000 2010	20 000 2010		•	20 001 2010	00 200 2010	v
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons		1						
US01,	DS01	26-Oct-2018	29-Oct-2018	09-Nov-2018	1	29-Oct-2018	08-Dec-2018	1
Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C								
Clear Plastic Bottle - Natural (EA025H)								
US01,	DS01,	26-Oct-2018				30-Oct-2018	02-Nov-2018	✓
MS01								
ED093F: SAR and Hardness Calculations								
Clear Plastic Bottle - Natural (ED093F)		26 Oct 2018				29 Oct 2018	02-Nov-2018	,
0501, MS01	DS01,	20-001-2010				29-001-2010	02-1107-2010	V
			<u> </u>			<u></u>		
Clear Plastic Bottle - Natural (EG020B-T)								
US01		26-Oct-2018	29-Oct-2018	24-Apr-2019	1	29-Oct-2018	24-Apr-2019	✓
Clear Plastic Bottle - Nitric Acid; Unspecified (EG020B-T)								
DS01		26-Oct-2018	29-Oct-2018	24-Apr-2019	~	29-Oct-2018	24-Apr-2019	✓
EG035T: Total Recoverable Mercury by FIMS						1		
Clear Plastic Bottle - Natural (EG035T)		26-Oct-2018				29-Oct-2018	23-Nov-2018	
Clear Plastic Bottle - Nitric Acid: Unspecified (EG035T)		20 000 2010				20 001 2010	201107 2010	•
DS01		26-Oct-2018				29-Oct-2018	23-Nov-2018	✓
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
US01,	DS01,	26-Oct-2018				27-Oct-2018	23-Nov-2018	✓
MS01								
EK057G: Nitrite as N by Discrete Analyser						I		
LIS01	DS01	26-Oct-2018				26-Oct-2018	28-Oct-2018	
MS01	5001,							•

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) US01, MS01	DS01,	26-Oct-2018				27-Oct-2018	23-Nov-2018	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	er							
Clear Plastic Bottle - Sulfuric Acid (EK061G) US01, MS01	DS01,	26-Oct-2018	27-Oct-2018	23-Nov-2018	✓	27-Oct-2018	23-Nov-2018	~
EK067G: Total Phosphorus as P by Discrete Analyse	r							
Clear Plastic Bottle - Sulfuric Acid (EK067G) US01, MS01	DS01,	26-Oct-2018	27-Oct-2018	23-Nov-2018	1	27-Oct-2018	23-Nov-2018	1
EP020: Oil and Grease (O&G)								
Amber Jar - Sulfuric Acid or Sodium Bisulfate (EP020 US01,) DS01	26-Oct-2018				29-Oct-2018	23-Nov-2018	~
EP035G: Total Phenol by Discrete Analyser			1					
Clear Plastic Bottle - Sulfuric Acid (EP035G) US01, MS01	DS01,	26-Oct-2018	29-Oct-2018	23-Nov-2018	1	29-Oct-2018	23-Nov-2018	~
EP068A: Organochlorine Pesticides (OC)								
Amber Glass Bottle - Unpreserved (EP068) US01,	DS01	26-Oct-2018	29-Oct-2018	02-Nov-2018	1	30-Oct-2018	08-Dec-2018	1
EP068B: Organophosphorus Pesticides (OP)								
Amber Glass Bottle - Unpreserved (EP068) US01,	DS01	26-Oct-2018	29-Oct-2018	02-Nov-2018	~	30-Oct-2018	08-Dec-2018	1
MW006: Faecal Coliforms & E.coli by MF		1	I			1		
Sterile Plastic Bottle - Sodium Thiosulfate (MW006) US01, MS01	DS01,	26-Oct-2018				28-Oct-2018	27-Oct-2018	×
MW024: Bacillariophytes (Diatoms) - Centrales								
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oct-2018				29-Oct-2018	24-Apr-2019	1
MW024: Bacillariophytes (Diatoms) - Pennales			1			1		
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oct-2018				29-Oct-2018	24-Apr-2019	1
MW024: Bacillariophytes (Diatoms) - TOTAL BACILL	ARIOPHYTES		I			I		
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oct-2018				29-Oct-2018	24-Apr-2019	1
MW024: Chlorophytes (Green Algae)						1		
White Plastic Bottle-Lugols Iodine (MW024_TOT) US01,	DS01	26-Oct-2018				29-Oct-2018	24-Apr-2019	1

Page	: 5 of 12
Work Order	: ES1831929
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Matrix: WATER						Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sampl	le Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW024: Chlorophytes (Green Algae) - TOTAL CHLO	PROPHYTES								
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	✓
MW024: Chrysophytes (Golden Algae)									
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	✓
MW024: Chrysophytes (Golden Algae) - TOTAL CHR	RYSOPHYTES								
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	✓
MW024: Cyanophytes (Blue Green Algae)									
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	✓
MW024: Cyanophytes (Blue Green Algae) - Other Cy	yanophytes								
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	✓
MW024: Cyanophytes (Blue Green Algae) - TOTAL C	CYANOPHYTES								
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	✓
MW024: Cyanophytes (Blue Green Algae) - TOTAL F	POTENTIALLY TOXIC CYANOPHYTES								
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	~
MW024: Flagellates - Cryptophytes									
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	✓
MW024: Flagellates - Euglenophytes									
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	✓
MW024: Flagellates - Pyrrophytes									
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	~
MW024: Flagellates - TOTAL FLAGELLATES									
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	~
MW024: Raphidophyte									
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	~
MW024: Raphidophyte - TOTAL RAPHIDOPHYTE									
White Plastic Bottle-Lugols lodine (MW024_TOT) US01,	DS01	26-Oc	ct-2018				29-Oct-2018	24-Apr-2019	1

Page	: 6 of 12
Work Order	: ES1831929
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW024T: TOTAL ALGAE							
White Plastic Bottle-Lugols Iodine (MW024_TOT)							
US01, DS01	26-Oct-2018				29-Oct-2018	24-Apr-2019	\checkmark

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	on: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phenol By Discrete Analyser	EP035G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phenol By Discrete Analyser	EP035G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phenol By Discrete Analyser	EP035G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phenol By Discrete Analyser	EP035G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER	· · · · · · · · · · · · · · · · · · ·			Evaluatio	on: $\mathbf{x} = Quality Co$	ontrol frequency	not within specification : \checkmark = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DLIP)							
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	11	18.18	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	16	12.50	10.00		NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	0	2	0.00	10.00	<u>x</u>	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	13	15.38	10.00		NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	18	11.11	10.00	- -	NEPM 2013 B3 & ALS QC Standard
Letter Construct the Construction of Construct			1				

Page	: 8 of 12
Work Order	: ES1831929
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	: Mephemson St Warriewood

Matrix: WATER	Evaluation: 🛪 = Quality Control frequency not within specification ; 🗹 = Quality Control frequency within specification.						
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP) - Continued							
Total Metals by ICP-MS - Suite A	EG020A-T	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite B	EG020B-T	1	2	50.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	6	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	11	9.09	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	2	50.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	3	13	23.08	15.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite B	EG020B-T	0	2	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	~	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Oil and Grease	EP020	1	12	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	13	7.69	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite B	EG020B-T	1	2	50.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	11	9.09	5.00	~	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	0	2	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Page	: 9 of 12						
------------	---------------------------------						
Work Order	: ES1831929						
Client	: ECO LOGICAL AUSTRALIA PTY LTD						
Project	: Mephemson St Warriewood						

Matrix: WATER			Evaluation: * = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specificati				
Quality Control Sample Type		Со	unt	Rate (%)			Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate
			spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix
			matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS)
			FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an
			appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then
			purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This
			method is compliant with NEPM (2013) Schedule B(3)
Total Phenol By Discrete Analyser	EP035G	SOIL	In house: Referenced to APHA 5530 B&D Steam distillable Phenols are reacted with 4-aminoantipyrine. The
			resultant colour intensity is measured by Seal
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is
			by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013)
			Schedule B(3) (Method 504,505)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion
			Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is
			compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of
			`non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water,
			oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um).
			The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by
			either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)
			Sodium Adsorption Ratio is calculated from Ca. Mg and Na which determined by ALS in house method
			OWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)
			Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013)
			Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes
			a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Total Metals by ICP-MS - Suite B	EG020B-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Oil and Grease	EP020	WATER	In house: Referenced to APHA 5520 B. Oil & grease is a gravimetric procedure to determine the amount of oil & grease residue in an aqueous sample. The sample is serially extracted three times n-hexane. The resultant extracts are combined, dehydrated and concentrated prior to gravimetric determination. This method is compliant with NEPM (2013) Schedule B(3)
Total Phenol by Discrete Analyser	EP035G	WATER	In house: Referenced to APHA 5530 B&D. Steam distillable Phenols are reacted with 4-aminoantipyrine. The resultant colour intensity is measured by Seal. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Thermotolerant Coliforms & E.coli by Membrane Filtration	MW006	WATER	AS 4276.7 2007
Total Algae Count	MW024 TOT	WATER	In house: Referenced to Hotzel and Groome, 1999 and APHA 10200
Preparation Methods	Method	Matrix	Method Descriptions

Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Phenols After Microdistillation	EP035D	SOIL	In house: Referenced to APHA 5530 A, B&D. pH adjusted Steam distillable Phenolic compounds. The resultant colour intensity is measured by Discrete Analyser.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)
Phenols After Microdistillation	EP035D	WATER	In house: Referenced to APHA 5530 A, B&D pH adjusted Steam distillable Phenolic compounds. The resultant colour intensity is measured by Discrete Analyser.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.

	QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: ES1828653	Page	: 1 of 6				
Client	ECO LOGICAL AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney				
Contact	CLAIRE WHEELER	Telephone	: +61-2-8784 8555				
Project	: Warriewood	Date Samples Received	: 27-Sep-2018				
Site	:	Issue Date	: 02-Oct-2018				
Sampler	: CLAIRE WHEELER, DO	No. of samples received	: 3				
Order number	:	No. of samples analysed	: 3				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = Withi	in holding time		
Method			Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA025: Total Suspended Solids dried at 104 ± 2°C									
Clear Plastic Bottle - Natural (EA025H) US01, DS01	MS01,		27-Sep-2018				28-Sep-2018	04-Oct-2018	~
EK055G: Ammonia as N by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK055G) US01, DS01	MS01,		27-Sep-2018				27-Sep-2018	25-Oct-2018	~
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G) US01, DS01	MS01,		27-Sep-2018				27-Sep-2018	29-Sep-2018	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	ete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK059G) US01, DS01	MS01,		27-Sep-2018				27-Sep-2018	25-Oct-2018	~
EK061G: Total Kieldahl Nitrogen By Discrete Analy	vser								
Clear Plastic Bottle - Sulfuric Acid (EK061G) US01, DS01	MS01,		27-Sep-2018	27-Sep-2018	25-Oct-2018	1	27-Sep-2018	25-Oct-2018	~
EK067FG: Filtered Total Phosphorus as P by Discr	rete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK067FG) US01, DS01	MS01,		27-Sep-2018	28-Sep-2018	25-Oct-2018	~	28-Sep-2018	25-Oct-2018	~
EK067G: Total Phosphorus as P by Discrete Analy	/ser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) US01, DS01	MS01,		27-Sep-2018	27-Sep-2018	25-Oct-2018	~	27-Sep-2018	25-Oct-2018	~
EK071G: Reactive Phosphorus as P by discrete an	nalyser								
Clear Plastic Bottle - Natural (EK071G) US01, DS01	MS01,		27-Sep-2018				27-Sep-2018	29-Sep-2018	~

Page	: 3 of 6
Work Order	: ES1828653
Client	: ECO LOGICAL AUSTRALIA PTY LTD
Project	Warriewood

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW006: Faecal Coliforms & E.coli by MF							
Sterile Plastic Bottle - Sodium Thiosulfate (MW006) US01, MS01, DS01	27-Sep-2018				27-Sep-2018	28-Sep-2018	•

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER	atrix: WATER Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within spe							
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Ammonia as N by Discrete analyser	EK055G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	17	23.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	3	22	13.64	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	4	18	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	6	18	33.33	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	3	20	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	22	9.09	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Suspended Solids (High Level)	EA025H	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Filtered Total Phosphorus as P By Discrete Analy	EK067FG	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a filtered sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Thermotolerant Coliforms & E.coli by Membrane Filtration	MW006	WATER	AS 4276.7 2007
Preparation Methods	Method	Matrix	Method Descriptions

 Page
 : 6 of 6

 Work Order
 : ES1828653

 Client
 : ECO LOGICAL AUSTRALIA PTY LTD

 Project
 : Warriewood

Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
TKN/TP (filtered) Digestion	EK061F/EK067F	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)

