

This document is issued in confidence to Dad & Dave's Brewery Pty Ltd for the purposes of providing a detailed site investigation of the property located at 45 Mitchell Road, Brookvale NSW, limited to the scope and objectives as outlined in Section 1. It must not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of Metech Consulting Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of Metech Consulting Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, Metech Consulting Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© MEtech Consulting Pty Ltd

VERSION CONTROL RECORD

Document File Name	Date Issued	Version
EP147_RP02	24 August 2020	V1.0

CERTIFICATION RECORD

Document Approved by		Qualification	
Michael Evans Principal Environmental Scientist	CENTROL OF THE PROPERTY OF THE	Certified Environmental Practitioner Site Contamination Specialist (No.SC41108)	

DOCUMENT OWNER

METECH CONSULTING PTY LTD

ABN 56 161 42 356

PO BOX 1184 SUTHERLAND NSW 1499

Tel: + 61 2 9575 7755

www.metech.consulting

Contents

		Page
Execut	tive Summary	v
1	Introduction	1
1.1	Preamble	1
1.2	Objectives	1
1.3	Scope of Work	2
2	Site Identification	3
2.1	Site Identification	3
2.2	Site Layout	3
3	Site Condition and Surrounding Environment	5
3.1	Surrounding Uses	5
3.2	Property Zoning	5
3.3	Topography and Hydrology	5
3.4	Geology	6
3.5	Acid Sulfate Soils	6
3.6	Hydrogeology	6
4	Site History Evaluation	8
4.1	Introduction	8
4.2	Storage of Hazardous Chemicals Information	8
4.3	Summary of Site History	8
5	Conceptual Site Model	10
6	Data Quality Objectives	13
6.1	Define the Problem	13
6.2	Identify the Decision	13
6.3	Identify the Inputs to the Decision	14
6.4	Define the Boundaries of the Study	14
6.5	Develop a Decision Rule	14
6.6	Specify Limits of Decision Errors	14
7	Sampling and Analytical Program	16
7.1	Assessment Strategy	16
7.2	Assessment Methodology	18
7.2.1	Preliminaries	18
7.2.2	Soil Sampling Methodology	18
7.2.3	Groundwater Sampling Methodology	19
7.2.4	Analytical Program	20
7.2.5	Data Quality Indicators	21

List of Appendices

Appendix A SafeWork NSW Information

Appendix B Borehole Logs

Appendix C Field Records

Appendix D Analytical Results Summary Tables

Appendix E Laboratory Reports

Executive Summary

Metech Consulting was commissioned to undertake a Detailed Site Investigation at the property located at 45 Mitchell Road, Brookvale NSW, that is proposed for redevelopment as an artisan brewery.

The purpose of the investigation was to identify any constraints posed by the presence of contamination at the Site and to support the Development Application for the proposed works.

The investigation was undertaken by evaluating the previous preliminary site investigation (PSI, Metech 2020) and supplementary dangerous goods records, implementing a comprehensive sampling and analytical program to investigate identified areas of environmental concern and determining the significance of any identified contamination.

The PSI reported the history of the local area has been commercial / light industrial since the 1950/1960s with the current warehouse present at the property since the mid-1960s. Potentially contaminating activities were identified as:

- Petroleum products stored and used at the property in the underground storage tank and bowser (installed in the 1970s).
- The use of pesticides associated with the former market garden use.
- Off-site commercial activities (i.e. mechanics adjacent to the property and fabricators located up-gradient).

The dangerous goods records were consistent with PSI and did not identify any additional sources or areas of concern. Based on the potential sources of contamination, the conceptual site model determined that the primary exposure pathway to contamination that could pose a risk to harm to occupants of the Site was via the vapour intrusion pathway. Exposure pathways for offsite ecological and human health receptors were also considered.

A soil and groundwater investigation was undertaken to assess these risk pathways, which identified localised petroleum hydrocarbons in soil (one result above the adopted vapour intrusion screening criteria) adjacent to the former underground storage tank, outside of the warehouse footprint. Groundwater detected two metals above the adopted ecological screening criteria considered to be background regional concentrations unlikely to be related to the Site.

The detailed site investigation has determined that there is no unacceptable risk to occupants of the Site under the current commercial / industrial land use setting and the Site is suitable of the proposed development and intended use.

"THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK"

1 Introduction

1.1 Preamble

Metech Consulting Pty Ltd has been commissioned to undertake a Detailed Site Investigation of the property located at 45 Mitchell Road, Brookvale (hereafter referred to as "the Site"). The Site is described as Lot 6 of Depositional Plan (DP) 30579 and occupies an area of approximately 556 m².

The location of the Site is shown in Figure 1, with the current layout shown in Figure 2.

The Site is located in a commercial / industrial setting and is occupied by a warehouse building with a partial mezzanine level fronting Mitchell Road. A Development Application (DA2020/0182) was submitted to Northern Beaches Council for use of the Site as an artisan food and drink premises (micro-brewery) and construction of signage.

To support the Development Application (DA2020/0182), a Preliminary Site Investigation (PSI) was undertaken by Metech Consulting Pty Ltd dated 23 July 2020, which identified three areas of environmental concern as follows:

- Petroleum products stored and used at the property in the former underground storage tank and bowser (installed in the 1970s).
- The use of pesticides associated with the former market garden use.
- Off-site commercial activities (i.e. mechanics adjacent to the property and fabricators located up-gradient).

Based on these findings, it was recommended that a Stage 2 Detailed Site Investigation be undertaken to assess whether these areas area affected by contamination to the extent that may affect the suitability of the Site for the proposed land use setting.

This investigation has been undertaken to identify any constraints posed by the presence of contamination at the Site and to support the Development Application (DA) for the proposed works.

This DSI has been undertaken in accordance with the requirements of the NSW contaminated land management framework, specifically:

- Planning Guidelines: SEPP 55 (Remediation of Land) Managing Land Contamination (DUAP, 1998);
- National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPC, 2013); and
- Contaminated Land Guidelines: Consultants Reporting on Contaminated Land (NSW EPA, 2020).

1.2 Objectives

The objectives of the investigation were to:

• Evaluate the potential contamination issues at the Site as identified in the PSI;

- Assess the type, extent and level of contamination that may exist at the Site;
- Determine whether the contamination (if present) poses any unacceptable risk to human health or the environment under the proposed land use;
- Determine whether remediation of contamination is required to make the Site suitable for the proposed land use setting; and
- Determine the suitability of the Site for the proposed development and land use setting.

1.3 Scope of Work

The following scope of work was undertaken to meet the objectives of the investigation:

- Review and evaluation of the information presented in the PSI.
- Review of SafeWork NSW information for the Site regarding storage of hazardous chemicals (not available for reporting in the PSI).
- A detailed site inspection to confirm the condition of the Site is consistent with what was reported in the PSI.
- Preparation of a sampling, analysis and quality plan to determine the requirements for the investigation works based on the outcomes of the preliminary site investigation and in accordance with the NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines.
- Implementation of a comprehensive soil and groundwater investigation and analytical program.
- Evaluation of the findings of the investigation program with reference to the Tier 1 assessment criteria outlined in the NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.
- Assessment of the level of risk/impact (if any) of any identified contamination sources.
- Evaluation of the suitability of the Site for the proposed use as an artisan food and drink premises (micro-brewery).
- Preparation of this Detailed Site Investigation report in accordance with the requirements of National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPC 2013).

2 Site Identification

2.1 Site Identification

Details of the Site are summarised below:

Table 2.1: Site Identification

Address:	45 Mitchell Road, Brookvale NSW (refer Figure 1)
Title:	Lot 6 DP 30579
Size:	556 m ²
Local Government Area:	Northern Beaches Council
Zoning:	IN1 General Industrial Warringah Local Environmental Plan (2011)
Current Land Use:	Commercial / Industrial
Proposed Land Uses:	Micro-brewery

2.2 Site Layout

A detailed inspection of the Site was undertaken by an appropriately qualified and experienced environmental scientist during the PSI (Metech 2020) on 13 July 2020 and 8 August 2020 during this investigation.

The primary purpose of the DSI inspection was to confirm if any additional evidence of potential contamination since the July inspection. The site inspection indicated the layout of the Site is similar to that reported in the PSI.

The Site is a rectangular-shaped parcel of land, oriented east-west. The western portion of the Site fronts Mitchell Road and is used for carparking. A warehouse building occupies the majority of the site area with a small rear yard along the eastern site boundary. The building is steel-framed and of brick construction, formed by a single-room ground floor factory/showroom (approx. 300 m²) and a first-floor mezzanine office level (approx. 90 m²).

Internal walls on the ground floor are limited to the partitioning of a staircase in north-west corner of the building, with a storage room / closet located on the ground floor beneath the internal staircase. The office level comprises an entryway, office / storage rooms and bathroom facilities. The interior of the building has a modern fit-out. The building materials were assessed to be in good condition. The ground surface of the warehouse is completely sealed with a concrete pavement on a raised concrete slab which was assessed to be in good condition with no notable degradation.

Access to the building is provided on the ground level by a roller door and adjacent pedestrian entry door, and via an external staircase which provides access from the driveway to the first floor office level. The ground surface beneath the external staircase was unpaved and void of any vegetation. Evidence of a former fuel dispenser pump was identified in the area beneath the external staircase, adjacent to the driveway.

At the time of inspection, the building was being used for storage of beer and brewery supplies. Little plant / equipment was present at the Site other than small brewing equipment and forklifts. A

shipping container used for storage was located along the northern wall of the building. It appeared that the Site was being operated predominantly on a retail / wholesale basis and manufacturing of beer did not appear to be undertaken. No significant chemical, oil, grease or degreaser storage was identified within the building.

A pedestrian door provides access to a small rear yard area (approx. 35m²). The ground surface of this area is partially sealed with a worn concrete pavement and a small area of unsealed gravel. Two metal awnings partially shade the area on either side of the doorway. Two above-ground water tanks are located opposite each other in this area, each atop brick foundation, in the north-eastern and south-eastern corners of the Site

A thin pipe (approximately 400mm diameter) was identified in the unsealed gravel area, protruding approximately 30cm from the ground surface

Fibre-cement pipework, assessed to be potential asbestos-containing material (ACM) was identified in this area, as drainage from the building roof and protruding from the rear wall of the building towards the north-east corner. The pipework was assessed to be in sound condition, with no evidence of degradation or impact to surrounding ground surface.

The Site is surrounded by light industrial / commercial properties. Topographically, the area falls gently to the east with a slope of approximately 1%. The landform is consistent with the local topography. No evidence of the presence of any significant quantities of fill material was identified.

Drainage infrastructure was identified with drains across the front driveway of the Site and inside the building by the roller door. A former drain was identified in the rear yard area, filled with cement. Surface water is likely to be intercepted by drainage features.

The findings from the site inspection were generally consistent with those from the desktop review.

3 Site Condition and Surrounding Environment

3.1 Surrounding Uses

The land uses surrounding the Site are described in the table below.

Table 3.1: Surrounding Land Uses

North:	Commercial / industrial
South:	Commercial / industrial
East:	Commercial / industrial
West:	Mitchell Road, then commercial / industrial

3.2 Property Zoning

Property zoning information for the Site is described in the table below.

Table 3.2: Property Zoning

Property Zoning:	Zone IN1 General Industrial
Permissible Uses:	Without consent: Nil. With consent: Boat building and repair facilities; Depots; Freight transport facilities; Garden centres; General industries; Hardware and building supplies; Industrial retail outlets; Industrial training facilities; Light industries; Liquid fuel depots; Neighbourhood shops; Places of public worship; Roads; Storage premises; Take away food and drink premises; Timber yards; Vehicle body repair workshops; Vehicle repair stations; Vehicle sales or hire premises; Warehouse or distribution centres; Any other development not specified as permissible or prohibited.
Prohibited Uses:	Advertising structures; Agriculture; Air transport facilities; Amusement centres; Animal boarding or training establishments; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Eco-tourist facilities; Educational establishments; Entertainment facilities; Environmental facilities; Exhibition homes; Exhibition villages; Extractive industries; Forestry; Function centres; Health services facilities; Heavy industrial storage establishments; Heavy industries; Highway service centres; Home-based child care; Home businesses; Home occupations; Home occupations (sex services); Information and education facilities; Marinas; Mooring pens; Moorings; Open cut mining; Passenger transport facilities; Port facilities; Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Restricted premises; Rural industries; Tourist and visitor accommodation; Veterinary hospitals; Water recreation structures; Wharf or boating facilities.

3.3 Topography and Hydrology

The Site is located within the Northern Beach Lagoon catchment. Greendale Creek is located approximately 240 metres north-east of the Site and is a tributary of Curl Curl Lagoon located 1.2km east of the Site.

The Site is located on a mid-hillslope and slopes approximately 6% to the east to south-east toward the rear boundary. Topography of the local area (<100m) is relatively level and a slight slope to the east towards Curl Curl Lagoon.

The Site is sealed with concrete. Surface water would be expected to flow towards surface water drainage infrastructure identified around the Site (refer **Section 2**).

3.4 Geology

The 1:100,000 Sydney Geological Series Sheet 9130 shows the Site and surrounding properties are underlain by silty to peaty quartz sand, silt and clay, ferruginous and humic cementation in places and common shell layers. Hawkesbury Sandstone is located approximately 200m north and south comprising medium to coarse-grained quartz sandstone, very minor shale and laminate lenses.

The 1:100 000 Sydney Soils Landscape Map 9130 identifies the Site to be located within the "disturbed terrain" landscape, which is characterised by level to hummocky terrain extensively disturbed by human activity including complete disturbance, removal or burial of soils. Variable relief and slopes include quarries, tips, areas of landfill, large cut and fill features with original vegetation usually cleared and weeds may be abundant.

Ground conditions encountered during this investigation is in **Table 3.1**. In general, fill materials were encountered in the west portion, outside the footprint of the building with deeper fill in the vicinity of the former underground storage tank.

Table 3.1: Site Geology

Depth (m)	Material Type	Description
0 - 0.2	Hardstand pavement	Concrete (increased thickness of 0.23 - 0.38m beneath factory)
0.2 - 0.5	Fill	Silty sand with gravels (west portion and up 1.9mbgl near UST)
0.35 – 1.2	Sandy Clay	Low plasticity clay with medium grained sand.
1.4 – 2.6	Clayey Sand	Medium grained sand with low plasticity clay.
2.6 – 6m	Sandy Clay	Light to medium sandy clay with medium grained sand.

3.5 Acid Sulfate Soils

Acid sulfate soils are typically formed in coastal area with an elevation of 5m AHD or less. The elevation of the Site is approximately10 AHD.

A review of the Warringah LEP (2011) identifies Class 4 acid sulfate soils at the Site. Class 4 acid sulfate soils indicates works more than 2 metres below natural ground surface and works by which the water table is likely to be lowered more than 2 metres below natural ground surface present an environmental risk.

3.6 Hydrogeology

A shallow, unconfined groundwater aquifer is present at the Site within the sandy clay unit with standing water levels ranging from 0.4 to 0.5m.

Groundwater contours could not be developed with the current data set, however it is anticipated groundwater flow would be to the north-east and east towards Greendale Creek.

A review of groundwater boreholes registered with NSW Department of Primary Industries was undertaken on 2 July 2020 as part of the PSI. The search identified three (3) groundwater bores installed within close vicinity of the Site (approximately 110m west and up-gradient).

The bores were installed for monitoring purposes to shallow depths between 4 and 4.5 metres below ground level (mbgl). The standing water levels were not reported. Subsurface soil conditions were described in drill logs as comprising fill as silty sand to 0.5mbgl with silty sand, sand and sandy clays at depths ranging from approximately 0.5 to 4.5 mbgl.

The closest down-gradient bores are several private spears installed approximately 660m to 800m to the east of the Site to depths of 2 to 4mbgl and used for domestic purposes. Approximately 860m to 900m south-east, several bores are installed to depths between 3 and 4mbgl and used for monitoring purposes.

4 Site History Evaluation

4.1 Introduction

The history of the Site and surrounding area was obtained from review of the recently completed PSI (Metech 2020) and SafeWork NSW Storage of Hazardous Chemicals records not available at the time of the PSI. Details of SafeWork NSW records are provided in **Section 4.2** with a summary of the PSI site history incorporating the SafeWork records included in **Section 4.3**.

4.2 Storage of Hazardous Chemicals Information

A search of the SafeWork NSW records on the storage of hazardous chemicals at the Site was undertaken and results provided in **Appendix A**. SafeWork NSW records (35/012164) for the Site reported:

- On 10 February 1977, Golden Fleece Petroleum, on behalf of Sydney Meat Supply, wrote to the Dangerous Goods Branch of the Department of Labour and Industry to gain approval to install a single petrol bowser and underground storage tank (UST) for the storage of super petrol (11,900 litre capacity).
- On 24 March 1977, the Dangerous Goods branch certified the premises complied with the requirements of the Inflammable Liquid Act 1915 with regards to construction for keeping the requested inflammable liquid and / or dangerous goods in quantity and nature specified.
- In March 1986, Dangerous Goods inspected the Site and certified agreement with the most recent licence form for storage of one 11,900 litre underground storage tank. The licensee was Sydney Meat Supply under licence no 12164.
- Two plans of the location of the tank and bowser were provided, both showed the tank in a similar location to the council information provided in the PSI.

4.3 Summary of Site History

The history of the Site and surrounding areas indicates the local area has been dominated by commercial / light industrial facilities for past 60 - 70 year with adjacent and upgradient (west and north-west) properties historically operated as auto repairs / panel beaters and steel fabricators further west.

The Site has been owned by various individual and companies with land use as follows:

- From 1919 to 1949 the Site was vacant and owned by several individuals (listed as market gardeners form 1940 to 1949) and leased to market gardeners from 1920 to 1937. The Site was likely used for market garden activities, consistent with surrounding properties at the time.
- From 1949 to 1961, the Site was vacant and owned by several companies with no evidence to
 of manufacturing or operations undertaken at the Site by these companies. The existing
 warehouse at the Site appears to have been constructed in the early 1960s.
- From 1961 to 1971, the Site was owned by a food wholesaler (French's Foods) who applied to
 use the site for fresh and frozen food wholesaling in 1961 and applied and received approval
 to install a petrol pump. Council reports indicate the petrol pump installation did not proceed.

- From 1971 to 1997, the Site was owned by several individuals, listed as butchers with the following occurring:
 - In 1973, Council approved the extension of the building and the use of the Site for the storage, preparation and distribution of meats operating as Sydney Meat Supply Brookvale Pty Ltd. The building extension is noted in the 1978 aerial photograph.
 - In January 1977, Council approved the installation of one 11,900 litre underground tank and electric bowser to be located at the front of the lot. Sydney Meat Supply approved Golden Fleece to undertake the installation works.
 - In February 1977, Golden Fleece on behalf of Sydney Meats applied for the dangerous goods licence for storage of super petrol in the tank, which was received in March 1977.
 - In 1986, the regulatory authority for dangerous goods in NSW inspected the Site and indicated compliance with the license.
- From 1997 to 2019, the Site was owned by two individuals with four leases noted on the title information (no information provided), although likely to be used for commercial purposes.
- In 2019, the Site was leased to the current tenant, Dad & Dave Brewing Pty Ltd who commissioned a tank investigation to identify if the underground storage tank remained beneath the car park. The investigation indicated the tank is unlikely to be present.
- The removal of the former UST has not been documented and there is no evidence of any past remediation and validation works associated with the former tank. The commercial uses of the Site between 1997 and 2019 are not known.

5 Conceptual Site Model

Based on the outcomes of the desktop review and detailed site inspection, a Conceptual Site Model (CSM) has been developed to outline the framework for identifying how the Site may have become contaminated and how potential receptors may be exposed to contamination either in the present or the future. The key elements of the CSM as outlined in NEPC (2013) include:

- Known and potential sources of contamination;
- Contaminants of concern;
- Mechanism of contamination;
- Potentially affected media;
- Human and ecological receptors;
- Potential for migration; and
- Exposure pathways.

Known and Potential Sources of Contamination

Past and present land use of the Site, adjacent and up-gradient properties were assessed to be generally limited to low-moderate risk, market gardening and commercial / light industrial use. The following potential sources of contamination were identified:

- Petroleum products stored and used at the Site in the former underground storage tank and bowser (installed in the 1970s).
- The use of pesticides associated with the former market garden use.
- Off-site commercial activities (i.e. mechanics adjacent to the Site and fabricators upgradient).

Contaminants of Concern

Potential contaminants of concern typically associated with the potential sources of contamination are as follows:

- Heavy metals.
- Polycyclic aromatic hydrocarbons.
- Petroleum hydrocarbons.
- Volatile Organic Compounds
- Pesticides

Mechanism of Contamination

The primary mechanisms likely to have caused contamination at the Site are as follows:

- Application of pesticides to vegetation across the ground surfaces while the site was used for market gardening activities.
- The storage and use of a former underground storage tank and bowser, including the potential for leaks and spills of petroleum products.
- Migration of contamination from off-site properties, including mechanics and fabrication.

Potentially Affected Media

Potentially affected media at the Site would be surface and sub-surface soils across the Site within proximity to the identified potential sources of contamination.

Groundwater is likely to be present at the Site at relatively shallow depths (<5m bgl) and the nature of the contaminants of concern (liquid form) represent a likelihood of migration from the soil to underlying groundwater. The potential for groundwater to be affected by site-derived contamination is moderate.

Human and Ecological Receptors

The proposed land use is an artisan food and drink premise in association with a micro-brewery. Sensitive receptors would therefore include as staff and customers / visitors to the property, and workers during any construction or maintenance activities.

Greendale Creek is present approximately 240m north-east of the Site, which is also considered to be at risk from any significant site contamination if present.

Users of shallow groundwater for drinking water purposes from down-gradient registered groundwater bores / spears targeting shallow groundwater (<5mbgl) are considered to be at risk if significant groundwater contamination is present.

Potential for Migration

Contaminants generally migrate via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff, which is affected by the following:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology

The Site is located in an area of relatively level topography with a slope to the east and south-east. Considering the nature of the potential contaminants of concern (liquid form), the near-surface and sub-surface soils and groundwater are considered to be at the highest risk of being affected by any site-derived contamination.

Considering adjacent properties and the local area is commercial / industrial, land uses historically and currently include potentially contaminating activities (i.e. auto repairs, steel fabrication), it is possible that the Site could be affected by contamination migrating from off-site.

Exposure Pathways

Exposure pathways to any site-derived contamination are dependent on the type and characteristics of the contaminants of concern. Based on the potential contamination issues at the Site and the proposed future use as a micro-brewery, exposure pathways to any site-derived contamination for Site users could include:

- Inhalation via vapour intrusion; and
- Dermal contact.

Potential Areas of Environmental Concern (AECs) and Contaminants of Concern (COCs)

Based on the CSM developed for the Site, a summary of the potential areas of environmental concern and potential contaminants of concern are presented in **Table 5.1**.

Table 5.1: Potential Areas of Environmental Concern and Contaminants of Concern

Potential Source	Description	Potential Areas of Environmental Concern	Likelihood of Contamination	Potential Contaminants of Concern
Use and /or storage of petroleum products	Former underground storage tank and bowser installed at site.	Soils and groundwater in the vicinity of the UST	Moderate	Heavy metalsPetroleum hydrocarbons
Use of pesticides	Pesticides associated with historic market gardens at the site and local area	Surface soils	Low	 Heavy metals Organochlorine pesticides Organophosphorus pesticides
Use of adjacent and nearby properties associated with light industrial operations (including auto repair and steel fabrication)	Migration of contaminants via movement of groundwater or vapour intrusion	Natural soils at depth and groundwater	Moderate	 Heavy metals Petroleum Hydrocarbons Volatile Organic Compounds Polycyclic aromatic hydrocarbons

6 Data Quality Objectives

The Data Quality Objective (DQO) process is a systematic planning tool based on the scientific method for establishing criteria for data quality and for developing data collection designs. The process aims to eliminate unnecessary, duplicative or overly precise data whilst at the same time, ensuring the data collected is of sufficient quality and quantity to support defensible decision making.

The most efficient way to accomplish this goal is to establish criteria for defensible decision making prior to data collection, and to develop a data collection design based on these criteria. By using the DQO process to plan the investigation effort, Metech improved the effectiveness, efficiency and defensibility of the decision in a resource and cost-effective manner.

The DQO process consists of seven steps, which were designed to clarify the study objectives, define the appropriate type of data and specify tolerable levels of potential decision errors. The seven-step DQO process adopted for this investigation is summarised as follows:

- Step 1 Defining the Problem. The first step in the DQO process is to 'define the problem' that has initiated the investigation.
- Step 2 Identify the Decision. The second step in the process is to define the decision statements that the study will attempt to resolve.
- Step 3 Identify Inputs to the Decision. In this step, the different types of information needed to resolve the decision statement are identified.
- Step 4 Define the Study Boundaries.
- Step 5 Develop a Decision Rule.
- Step 6 Specify Limits on Decision Errors.
- Step 7 Optimise the Design for Obtaining the Data.

6.1 Define the Problem

To determine whether there are any significant contamination issues at the Site that would pose a potential constraint to the proposed development and land use.

6.2 Identify the Decision

The relevant decision statements for this investigation are:

 Does contamination occur at the Site at concentrations that pose an unacceptable level of risk to human health and / or environmental receptors based on the current land use setting?

And if so:

What measures could be adopted to mitigate or manage the risk?

6.3 Identify the Inputs to the Decision

Key data required to resolve the project problem includes the concentrations of contaminants of concern in soil, fill materials (if present) at on -site locations, the pathways for contaminant movement and the location of sensitive receptors.

A robust sampling and analytical program was designed to inform the decision statements, which is outlined in **Section 7**.

6.4 Define the Boundaries of the Study

The boundary of the study are limited to the extent of the Site (refer **Figure 2**). The vertical extent of the study boundaries is limited to 6 metres below the ground surface.

The temporal boundaries of the study extend across the dates for which environmental data has been collected for the Site (August 2020).

6.5 Develop a Decision Rule

The decision rule is:

- If the concentrations of contaminants are below the adopted investigation levels, and the data is of acceptable quality, then contamination issues are unlikely to pose a constraint to use of the Site under a commercial land use setting and remedial action is not required.
- If the concentrations of contaminants are above the adopted investigation levels, and the data
 is of acceptable quality, then further risk assessment is required to quantify the level of risk,
 which may also require the implementation of remedial action mitigate risk to acceptable
 levels.

6.6 Specify Limits of Decision Errors

Two primary decision error-types may occur due to uncertainties or limitations in the project data set:

- A sample / area may be deemed to pass the nominated criteria, when in fact it does not. This
 may occur if contamination is 'missed' due to limitations in the sampling plan, or if the project
 analytical data set is unreliable.
- A sample / area may be deemed to fail the nominated criteria, when in fact it does not. This
 may occur if the project analytical data set is unreliable, due to inappropriate sampling,
 sample handling, or analytical procedures.

To minimise the potential for the decision errors above, a statistical evaluation of the data (including calculation of upper confidence limits) will be carried out where required.

In order to further evaluate the adequacy of the data, Data Quality Indicators (DQIs) have been established for precision, accuracy, representativeness, comparability and completeness. The DQIs for sampling techniques and laboratory analysis of collected samples identifies the acceptable level of error for the investigation. The DQOs will be assessed by reference to DQIs as follows:

Precision - measures the reproducibility of measurements under a given set of conditions. The
precision of the laboratory data and sampling techniques is assessed by calculating the
Relative Percent Difference (RPD) of duplicate samples.

$$\frac{\text{RPD\%}}{C_{o} + C_{d}} = \frac{\text{(C}_{o} - C_{d})}{C_{o} + C_{d}} \times 200$$

Where Co is the analyte concentration of the original sample

Cd is the analyte concentration of the duplicate sample

Metech adopts a nominal acceptance criterion of $\pm 30\%$ RPD for field duplicates and splits for inorganics and a nominal acceptance criterion of $\pm 50\%$ RPD for field duplicates and splits for organics. However, it is noted that this will not always be achieved, particularly in heterogeneous soil or fill materials, or at low analyte concentrations.

Accuracy - measures the bias in a measurement system. The accuracy of the laboratory data
that are generated during this study is a measure of the closeness of the analytical results
obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical
results of laboratory control samples, laboratory spikes and analyses against reference
standards.

The nominal "acceptance limits" on laboratory control samples are defined as follows:

- Matrix spikes 70-130% recovery for metals / inorganics and 60-140% for organics
- Laboratory Surrogates (Organics only) 60 140% recovery.
- Laboratory blanks < PQL.
- Representativeness expresses the degree which sample data accurately and precisely represents a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples in an appropriate pattern across the Site and by using an adequate number of sample locations to characterise the Site.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples, ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- Completeness is defined as the percentage of measurements made which are judged to be
 valid measurements. The completeness goal is set at their being sufficient valid data
 generated during the study. If there is insufficient valid data, then additional data are required
 to be collected.

7 Sampling and Analytical Program

7.1 Assessment Strategy

The assessment strategy is designed to target each of the areas of environmental concern, that is to, ascertain the nature and extent of contamination within soils and groundwater derived from the Site. The strategy comprised a detailed evaluation of existing information for the Site and the implementation of a targeted investigation program that was designed in accordance with the requirements of the NSW EPA (1995) *Contaminated Sites: Sampling Design Guidelines*.

The investigation comprised:

- Drilling of seven (7) boreholes to depths of one (1) to 5.4 metres below ground surface to assess soil conditions.
- Drilling of two (2) of the seven (7) boreholes to a maximum depth of five (5) metres below ground surface for the installation of groundwater monitoring wells for the assessment of the shallow groundwater aquifer.
- Collection of representative soil samples from each borehole locations for assessment of the lateral and vertical extent of contamination.
- Collection of groundwater samples from the two (2) groundwater monitoring wells for the assessment of the contamination status of the shallow aquifer.

The investigation was designed to address areas of environmental concern identified during the PSI and additional information (outlined in **Section 4**) collected during this investigation to meet investigation objectives (outlined in **Section 1.2**).

The assessment strategy is detailed in **Table 7.1** The investigation locations area shown in **Figures 4** and **5**.

Table 7.1: Assessment Strategy

Area of Environmental Concern	Description of Land Use	Media	Investigation Strategy	Analytical Program	Details/Constraints
Use and /or storage of petroleum products	Former inderground storage tank and bowser installed at site.	Soil and Groundwater	 Four bore holes (BH2, BH2A, MW1 and MW2) installed to assess soil conditions adjacent to and downgradient of the UST and bowser. Two groundwater monitoring wells (MW1 and MW2) installed and sampled to assess groundwater adjacent and downgradient of the UST and bowser. 	Petroleum Hydrocarbons Heavy metals Polycyclic Aromatic Hydrocarbons	Refusal at 1.9mbgl on concrete in BH2 where elevated PID readings indicated contamination triggered the installation of adjacent BH2A to assess deeper soils to 6mbgl.
Use of pesticides	Pesticides associated with historic market gardens at the site and local area	Soil	Two bore holes installed to assess near surface soils directly beneath hard stand cover (BH1A and BH3).	Heavy metals Organochlorine pesticides Organophosphorus pesticides	Refusal at 0.6mbgl on brick structure triggered the installation of BH1A and sample collection of near surface soils directly below hard stand cover.
Use of adjacent and nearby properties associated with light industrial operations (including auto repair and steel fabrication)	Migration of contaminants via movement of groundwater or vapour intrusion	Natural soils at depth and groundwater	Two boreholes (BH1 and BH1A) on upgradient site boundary.	Petroleum Hydrocarbons Heavy Metals Volatile Organic Compounds (including BTEXN) Polycyclic Aromatic Hydrocarbons	Refusal at 0.6mbgl on brick structure triggered the installation of BH1A and assessment of soils to 5.4mbgl.

Details of the assessment methodology are outlined in **Section 7.2**.

45 Mitchell Road

Brookvale, NSW

7.2 Assessment Methodology

7.2.1 Preliminaries

Prior to the commencement of intrusive works, details of underground services were identified by the dial before you dig search. A certified underground cable location was also used to provide clearance of all underground infrastructure prior to drilling.

Underground and above ground services are present at the Site, however did not constrain the availability of investigation locations.

7.2.2 Soil Sampling Methodology

The primary contaminants of concern at the Site have been assessed to be volatile and semi-volatile petroleum hydrocarbons and therefore the adopted sampling methodology was implemented to minimise sample disturbance as far as practicable. Details of the type of soil sampling methodology are described as follows:

Hand auger

Considering the proximity of investigations to underground services, all boreholes were initially advanced to a depth of approximately 1 mbgl using a hand auger. Samples were collected from the upper metre of the soil profile for laboratory analysis. Samples were collected via the contents of the auger being transferred directly to the sample container. The hand auger was appropriately decontaminated between sampling locations.

Direct Push-tube Sampling

Direct push-tube sampling using a limited access Geoprobe was undertaken at all investigation locations. The adopted methodology minimises the potential loss of volatile contaminants, minimises the potential for cross-contamination of samples and allows for a detailed visual inspection of the geological soil profile.

The push-tube was advanced until the targeted depth or refusal (generally on bricks structures or concrete). Samples were collected directly from the push-tube with minimal disturbance using a stainless-steel trowel and were immediately transferred to an appropriate sample container. Samples were immediately placed in ice filled eskies. All sample contact equipment was appropriately decontaminated between samples and locations.

Once each sample was collected, it was immediately placed into an ice filled esky. Samples were kept secure and chilled during the field program and subsequent transportation to the laboratory. Sample receipt advice describing the condition of the sample on receipt is provided in **Appendix E**.

Field Screening

Soil samples were screened on site during works using a photo-ionisation detector (PID) to assess the potential presence of VOCs such as may be associated with light fraction petroleum hydrocarbon contamination.

Samples obtained for PID screening were placed in a sealed plastic bag for a period of approximately 5 minutes to equilibrate, prior to a PID being attached to the bag. Readings were monitored for a period of approximately 1 minute or until values stabilised and the stabilised/highest reading was recorded.

PID screening results were recorded on the borehole logs.

Soil Logging

Soil logging was carried out in general accordance with the United Soil Classification System (USCS) by a suitably experienced and qualified environmental scientist. Features such as seepage, discolouration, staining, odours and other indicators of contamination were noted. Soil borehole logs are presented in **Appendix B**.

7.2.3 Groundwater Sampling Methodology

Groundwater Well Construction

A total of two (2) groundwater monitoring wells were installed to enable collection of representative groundwater samples for analysis.

Boreholes were installed with the use of a Geoprobe to a maximum depth of 6mbgl for the monitoring wells. The monitoring wells were constructed from Class 18 UPVC (50mm) screen, generally 2-3m from the base of the well, and casing from surface, with a filter pack and bentonite seal above the slotted section. The annulus of the bore was then grouted to the ground surface (refer **Appendix B** for full construction details). Wells were finished with a lockable cap and a lockable gatic cover.

Both monitoring wells were developed, immediately after installation, to ensure removal of fine particles from the screened interval, to stabilise the annular filter and to maximise the hydraulic efficiency of the monitoring well. A stainless-steel bailer, (decontaminated between each use), was used to develop the wells via surging and purging. Well development continued until the turbidity of the water improved or the well became dry. The wells were allowed to stabilise for 7 days after development, prior to groundwater sampling.

Water Level Measurement

Water level measurements were undertaken prior to purging of each well. All level measurements were carried out from a measuring point marked on the casing with a permanent marker to ensure consistent measurements over time.

The groundwater levels in each well were measured within the same day (11 August 2020) within a short a period as possible to enable a consistent comparison of water levels. Measurements were undertaken using an electronic interface probe, which was decontaminated between wells.

The following measurements were also taken and recorded on the field data sheet:

- Thickness of any phase separated hydrocarbons (PSH) (if present).
- Static water level relative to the top of casing; and

• Total depth of well.

Well Purging

Purging and sampling of wells was undertaken in order of least likely contaminated well to most likely contaminated well to minimise the potential for cross-contamination. Purging was undertaken using a new, clear disposal bailer. Measurement of the following field parameters were undertaken during well purging:

- pH;
- electrical conductivity (EC);
- temperature;
- dissolved oxygen (DO); and
- redox potential (Redox).

Purging of monitoring wells continued until stable water parameters were achieved or until the bore was purged dry. The water parameters were considered to have stabilised when successive measurements were found to vary by less than +/- 10%.

Groundwater Sampling

Both wells were sampled immediately following well purging. Disposable bailers were used to sample the monitoring wells, using flow restrictors for samples collected for volatile analysis. Care was taken to minimise disturbance of the groundwater as far as practicable during sampling.

Groundwater samples were collected in sample containers of appropriate composition, pre-treated in a manner appropriate for the scheduled laboratory analysis.

Once each sample was collected, it was immediately placed into a ice filled esky. Samples were kept secure and chilled during the field program and subsequent transportation to the laboratory. Sample receipt advice describing the condition of the samples on receipt is provided in **Appendix E**.

7.2.4 Analytical Program

All analysis was undertaken in accordance with the relevant standards as defined by NEPM (NEPC 2013). Eurofins Environment Testing Australia was the primary laboratory, NATA-accredited for all required analytical methods.

The analytical program has been summarised in **Table 7.2**.

Table 7.2: Analytical Program

Sample Type	Analytes Tested
Soil	TRH: 9 primary soil samples (plus 1 QA/QC sample) BTEXN: 9 primary soil samples (plus 1 QA/QC sample) PAH: 9 primary soil samples (plus 1 QA/QC sample) Metals: 5 primary soil samples OCP / OPP: 2 primary soil samples
Groundwater	TRH: 2 primary groundwater samples (plus 1 QA/QC sample) BTEXN: 2 primary groundwater samples (plus 1 QA/QC sample) PAH: 2 primary groundwater samples (plus 1 QA/QC sample) Heavy metals: 2 primary groundwater samples (plus 1 QA/QC sample)

7.2.5 Data Quality Indicators

The Data Quality Indicators (DQIs) that will be used to evaluate the data are outlined in Table 7.3.

Table 7.3: Quality Assurance and Quality Control Program

Data Quality Indicator	Frequency	Acceptance Criteria
Precision		
Blind duplicates (organics)	1 in 20 samples	< 50% RPD
Blind duplicates (inorganics)	1 in 20 samples	< 30% RPD
Accuracy		
Surrogate spikes	All Organic Samples	60 – 140%
Field blanks	1 per Batch	<pql< td=""></pql<>
Matrix spikes	1 per Batch	60 – 140%
Laboratory blanks	1 per Batch	<pql< td=""></pql<>
Representativeness		
Sampling appropriate for media and analytes	All Samples	All Samples
Samples extracted and analysed within holding times	All Samples	All Samples
Completeness		
Soil description and COCs completed and appropriate	All Samples	All Samples
Appropriate documentation	All Samples	All Samples
Satisfactory frequency and result for QC samples	All Samples	All Samples
Comparability		
Standard operating procedures used for sample	All Samples	All Samples
collection and handling		

Data Quality Indicator	Frequency	Acceptance Criteria
NATA-accredited analytical methods used for all	All Samples	All Samples
analytes		
Consistent field conditions, sampling staff and	All Samples	All Works
laboratory analysis		
Limits of reporting appropriate and consistent	All Samples	All Samples

8 Assessment Criteria

8.1 Soil Investigation Levels

The purpose of any contaminated land assessment is to determine the human health and ecological risks associated with the presence of site contamination and to inform any remediation or management plan to make the site fit for the current or proposed land use. The appropriate use of investigation levels is an integral component of the assessment process.

The National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPC 2013) outlines the framework for implementing a Tier 1 risk assessment using investigation and screening levels. A Tier 1 assessment is a risk-based analysis comparing site data with generic investigation and screening levels for various land uses to determine the need for further assessment or development of an appropriate management strategy.

NEPC (2013) provides both environmental investigation / screening levels (EILs/ESLs) and health-based investigation / screening levels (HILs/ HSLs) for the following land use settings:

- HIL A: Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, [(no poultry]), includes children's day care centres, preschools and primary schools.
- **HIL B**: Residential with minimal opportunities for soil access, includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats.
- **HIL C**: Public open space such as parks, playgrounds, playing fields (eg. ovals), secondary schools and footpaths.
- HIL D: Commercial/industrial such as shops, offices, factories and industrial sites.

The HILs have been derived for the above land use scenarios based on long-term exposures for the most sensitive receptor populations exposed. The HILs are therefore considered to be protective of exposures to other receptor populations.

Based on the CSM developed for the Site and in comparison to the CSM's developed for the above four (4) generic land use settings (NEPC 2013), it has been determined that the most appropriate land use setting for the Site that is to be adopted for the tier 1 risk assessment is HIL D – Commercial/Industrial such as shop, offices, factories and industrial sites ("Commercial/Industrial D").

Table 8.1: Site Assessment Criteria - Soil

Parameter	Ecological Criteria ^{1,2} (mg/kg)	Human Health Criteria ^{3, 4} (mg/kg)	
Arsenic	160	3000	
Cadmium	3	900	
Chromium	310 ⁵	3600	
Copper	140 ⁵	240,000	
Lead	1,800	1,500	
Mercury	1	180	
Nickel	55 ⁵	6,000	

Parameter	Ecological Criteria ^{1,2} (mg/kg)	Human Health Criteria ^{3, 4} (mg/kg)		
Zinc	110 ⁵	400,000		
TRH F1	215	260		
TRH >C ₁₀ -C ₁₆	170	1,000		
TRH F2 >C ₁₀ -C ₁₆ less napthalene	170	1,000		
TRH F3 >C ₁₆ -C ₃₄	1,700	3,500		
TRH F4 >C ₃₄ -C ₄₀	3,300	10,000		
Benzene	75	3		
Toluene	135	-		
Ethylbenzene	165	-		
Total xylenes	180	230		
Napthalene	370	-		
Benzo(a)pyrene	0.7	-		
Benzo(a)pyrene TEQ	-	40		
Total PAH	-	4,000		
НСВ	-	80		
Heptachlor	-	50		
Aldrin and Dieldrin	-	45		
DDE + DDT + DDD	-	3,600		
DDT	640	-		
Endosulfan	-	2,000		
Chlordane	-	530		
Endrin	-	100		
Methoxychlor	-	2,500		
Toxaphene	-	160		
Chlorpyriphos	-	2,000		

- Environmental Investigation Levels Commercial and Industrial (NEPC 2013). Inorganic compounds.
- ² Environmental Screening Levels Commercial and Industrial (NEPC 2013). Organic compounds. 'COARSE' soil texture criteria adopted to account for 'Sand' geological conditions.
- ³ Health-based Investigation Levels Commercial Industrial D (NEPC 2013).
- ⁴ Health screening Levels Management limits, 'Coarse' soil texture for Commercial and Industrial (NEPC 2013).
- ⁵ The ACL for soils with a CEC of 5 cmol_c/kg and clay content 1 % (most conservative) have been adopted.

8.2 Groundwater Investigation Levels

To determine the most appropriate groundwater guidelines values, the following considerations have been made:

- Aquatic Ecosystems: The closest surface water receptor is Greendale Creek located 240m north-east of the Site, a tributary of Curl Curl Lagoon located 1.2km east of the Site. This freshwater creek would be classed as beneficial receptor of groundwater and should be protected.
- **Human Receptors (Vapour Intrusion)**: The Site is an operational commercial facility. Workers within this premise may potentially be at risk via vapour intrusion pathway from contaminated groundwater that may exist beneath the Site. Occupants of the adjacent properties may also be at risk of harm from any site-derived contamination via the vapour intrusion pathway.

• Human Receptors (Drinking Water): Registered bores have been identified within the vicinity (500m radius) of the Site or downgradient of the Site (660m east or greater). Although the site and surrounding properties are used for commercial purposes and groundwater abstraction for drinking water purposes is unlikely, it is possible that the groundwater aquifer beneath the Site is connected to groundwater down-gradient where registered bores / spears are used for abstracting groundwater for drinking water purposes. The Site groundwater is therefore, considered as a beneficial drinking water resource.

Based on the above factors, the groundwater assessment criteria to be adopted for evaluation of potential risks of harm posed by any identified groundwater contamination at the Site with be environmental (95% protection level) and human health (vapour intrusion and drinking water) guideline values.

Table 8.2: Site Assessment Criteria - Groundwater

Parameter	Ecological Criteria¹ (μg/L)	Human Health Criteria² (μg/L)
Arsenic	13	10
Cadmium	0.2	2
Chromium	1 4	50
Copper	1.44	2000
Lead	3.4	10
Mercury	0.06	1
Nickel	11 4	20
Zinc	84	-
TRH F1	-	6,000³
Benzene	950	1 / 5,000³
Toluene	-	800
Ethylbenzene	-	300
Total xylenes	200 (m&p-xylene) / 350 (o-xylene)	600
Napthalene	16	-
Benzo(a)pyrene	-	0.01

Groundwater Investigation Levels (GILs) – NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Freshwater trigger values for slightly-moderately disturbed systems (95% protection levels).

Groundwater Investigation Levels (GILs) – NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Drinking water trigger values.

³ Health Screening Levels (HSLs) – Commercial Industrial D for 2 to <4mbgl (NEPC 2013). It is noted that the groundwater levels are generally present at a depth of 1mbgl. Therefore these criteria are used for initial screening purposes only.

9 Results

9.1 Field Observations

Subsurface conditions across the Site indicated fill materials in the west portion of the Site, outside of the warehouse footprint with no fill beneath the warehouse. The general geological profile beneath the Site is included in **Section 3.4**.

Key observations during the field investigation included:

- Fill as silty sand and clayey sand in the bore adjacent to the tank (BH2) is likely backfill material used during the installation of the tank. The fill extended to 1.9mbgl where bore refusal occurred on concrete (potentially a former tank anchor). From depths of 0.4 to 1.9mbgl, a hydrocarbon odour was noted. Field screening with a PID confirmed the presence of petroleum hydrocarbon contamination (1021ppmv) at this location.
- The adjacent bore (BH2A), installed to assess deeper soils following refusal at BH2, indicated fill to approximately 0.7mbgl underlain by natural sandy clays and clayey soils. A hydrocarbon odour was noted during drilling at 3mbgl in the natural soils. Field screening with a PID were elevated (<50ppmv), however no odour was detected at 4mbgl or greater with similar screening results.
- Groundwater was encountered at approximately 1mbgl and no hydrocarbon odours were reported during well installation or groundwater sampling.

9.2 Soil Analytical Results

Analytical results are provided in summary tables included in **Appendix D**, with the laboratory certificates provided in **Appendix E**. The sampling locations are shown on **Figures 4** and **5**.

The results for the analytical program are summarised as follows:

- Concentrations of heavy metals were reported to be below adopted environmental
 investigation levels (EILs) and the human health investigation levels (HILs) in all samples, with
 the exception of one result for zinc that exceeded the EIL.
- Concentrations of polycyclic aromatic hydrocarbons were reported to be below both the adopted EILs and the HILs in all soil samples.
- Concentrations of total recoverable hydrocarbons, benzene, toluene, ethylbenzene and xylenes were below the adopted EILs, HILs and HSLs in all soil samples with the exception of TRH F1 in one result that exceeded the vapour intrusion HSL (450m/kg compared to 260mg/kg).
- Concentrations of organochlorine pesticides (OCP) and organophosphorus pesticides (OPP) were below the adopted EILs and HILs.

9.3 Groundwater Quality Parameters

Groundwater quality parameters were recorded at the Site as detailed in **Table 9.1.**

Table 9.1: Water Quality Parameters

ID	Depth to Water	рН	Temp (°C)	Conductivity (μS/cm)	DO (ppm)	Redox (mV)	Parameters Stabilised?	Well Purged Dry?
MW1	0.405	5.83	18.5	82	5.71	99.3	Yes	No
MW2	0.524	5.23	18.9	186	3.49	-59.7	Yes	No

The water quality parameter results show:

- Groundwater temperatures and pH values (5.23 and 5.83) were consistent in groundwater from each well.
- Electrical conductivity was 82 and 186 μS/cm indicating freshwater conditions.
- Dissolved oxygen concentrations were variable, indicating aerobic conditions.
- Redox potential levels varied between groundwater in both of the wells.

9.4 Groundwater Analytical Results

Analytical results are provided in summary tables in **Appendix D**, with the laboratory certificates provided in **Appendix E**.

The results from the groundwater analytical program are summaries as follows:

- Phase separated hydrocarbons (PSH) was not identified in either of the wells;
- Concentrations of heavy metals were reported to be below HSL, HILs and EILs in both samples
 with the exception of copper in both wells (QC sample of MW1) and zinc in MW2 above the
 adopted EILs.
- Concentrations of polycyclic aromatic hydrocarbons were reported below the laboratory detection limits, the adopted EILs and HILs in both groundwater samples, noting the benzo(a)pyrene limit of detection is higher than the drinking water HIL.
- Concentrations of Total recoverable hydrocarbons, benzene, toluene, ethylbenzene and xylenes were below the laboratory detection limits and the adopted EILs, HILs and HSLs in both groundwater samples.

9.5 QA/QC Results

The QA/QC results were assessed against the pre-determined DQIs as shown in Table 9.2.

Table 9.2: Quality Assurance / Quality Control Results

Data Quality Indicator	Result	DQI Achieved
Precision		
Duplicates (inorganics)	<30% RPD	Partial
Duplicates (organics)	<50% RPD	Yes
Accuracy		
Laboratory Blanks	<pql< td=""><td>Yes</td></pql<>	Yes
Representativeness		
Sampling appropriate for media and analytes	All Samples	Yes
Samples extracted and analysed within holding times	All Samples	Yes
Completeness		
Soil description and COCs completed and appropriate	All Samples	Yes
Appropriate documentation	All Samples	Yes
Satisfactory frequency and result for QC samples	All Samples	Yes
Comparability		
Standard operating procedures used for sample collection and handling	All Samples	Yes
NATA-accredited analytical methods used for all analytes	All Samples	Yes
Consistent field conditions, sampling staff and laboratory analysis	All Samples	Yes
Limits of reporting appropriate and consistent	All Samples	Yes

Relative percent differences between the primary and duplicate results for copper (133%) and zinc (46%) in the groundwater primary/duplicate pair exceeded the acceptance criteria due to low analyte concentrations that exaggerate the apparent difference. The exceedance do not affect the data set.

Based on the results of the QA/QC program as outlined above, the data produced from the assessment works are considered to precise, accurate, representative, complete and comparable.

Therefore the data is considered to be of an acceptable quality upon which appropriate conclusions and decisions can be made with respect to the environmental conditions at the Site.

10 Discussion

Section 6.2, identified the key problem for which this investigation sought to assess, which was to determine whether there are any significant contamination issues at the Site that would pose a potential constraint to the proposed development and land use.

In accordance with the decision-making process for assessing urban redevelopment sites detailed in DEC (2006) and the pre-determined project DQOs, the decisions required to be made are discussed below.

Does contamination occur at the Site at concentrations that pose an unacceptable level of risk to human health and / or environmental receptors based on the current land use setting?

And if so:

What measures could be adopted to mitigate or manage the risk?

Key findings from this assessment indicate petroleum hydrocarbons, as TRH F1 was identified marginally above the adopted screening criteria in one result at a depth of 0.9mbgl adjacent to the former underground storage tank. No petroleum hydrocarbons were detected in the deeper sample at 3mbgl or any other results across the Site. As the underground storage tank and bowser have been removed, there is unlikely to be an ongoing source of contamination. There is no evidence of past remediation and validation associated with the tank and the result indicates residual contamination localised to this area of the Site. Given the contamination is limited and present outside the building footprint, vapour intrusion is considered to be negligible.

No soil contamination associated with the potential use of pesticides or offsite commercial / industrial activities were identified.

Groundwater was assessed at locations adjacent to and down-gradient of the underground storage tank (east and north-east) and did not identify any contamination associated with the storage and use of petroleum hydrocarbons. Additionally, the groundwater results were below the adopted vapour intrusion and drinking water screening levels indicating no exposure pathways to human receptors.

Detections of zinc and copper in groundwater were reported above the adopted ecological screening criteria for freshwater ecosystems, however the concentrations are likely regional background levels, not associated with Site activities.

The low levels of contamination do not pose an unacceptable risk to human health or environmental receptors based on the current land use setting and no mitigation or management measures are required.

11 Conclusions

Metech Consulting was commissioned to undertake a Detailed Site Investigation of the property located at 45 Mitchell Road, Brookvale NSW. The Site is proposed to be redeveloped as a microbrewery.

The objectives of the assessment were to:

- Evaluate the potential contamination issues at the Site as identified in the PSI and supplementary information;
- Assess the type, extent and level of contamination that may exist at the Site;
- Determine whether the contamination (if present) poses any unacceptable risk to human health or the environment under the proposed land use;
- Determine whether remediation of contamination is required to make the Site suitable for the proposed land use setting; and
- Determine the suitability of the Site for the proposed development and land use setting.

A summary of the key findings from the assessment are as follows:

- Supplementary information from SafeWork NSW regarding tank installation was consistent with the PSI and the three areas of environmental concern identified were assessed as part of this investigation:
 - o Potential use of pesticides during market gardening at the Site;
 - o A former underground storage tank and bowser installed at the Site in the 1970s; and
 - o Potentially contaminating off-site commercial activities.
- The conceptual site model that was developed for the Site determined that the primary
 exposure pathway to contamination that could pose a risk to harm to occupants of the Site
 was via the vapour intrusion pathway. Exposure pathways for offsite ecological and human
 health receptors were also assessed.
- A soil and groundwater investigation was undertaken to assess these risk pathways, which
 identified localised petroleum hydrocarbons in soil (one result above the adopted vapour
 intrusion screening criteria) adjacent to the former underground storage tank, outside of the
 warehouse footprint. Groundwater detected two metals above the adopted ecological
 screening criteria considered to be background regional concentrations unlikely to be related
 to the Site.

Based on the results of this investigation, it is concluded that there no unacceptable risk to occupants of the Site under the current commercial / industrial land use setting and the Site is suitable of the proposed development and intended use.

12 References

Contaminated Land Management Act 1997.

Department of Urban Affairs and Planning (1998) *Planning Guidelines: SEPP 55 (Remediation of Land) – Managing Land Contamination*

Environmental Planning and Assessment Act 1979.

Metech Consulting (2020) Preliminary Site Investigation 45 Mitchell Rd Brookvale NSW 2100.

National Environment Protection Council (NEPC 2013) *National Environment Protection (Assessment of Site Contamination) Measure 1999.*

NSW Environment Protection Authority (EPA 2020) *Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.*

NSW Environment Protection Authority (EPA 1995) Contaminated Sites: Sampling Design Guidelines.

NSW Office of Environment and Heritage (OEH 2016) SALIS: NSW Soil & Land Information System.

Protection of the Environment Operations Act 1997.

Warringah Local Environmental Plan (2011).

13 Limitations

Metech prepared this report in accordance with the scope of work as outlined in our proposal dated 23 July 2020 and in accordance with normal prudent practice and by reference to applicable environmental regulatory authority and industry standards, guidelines and assessment criteria in existence at the date of this report and any previous site investigation and assessment reports referred to in this report.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Metech for use of any part of this report in any other context.

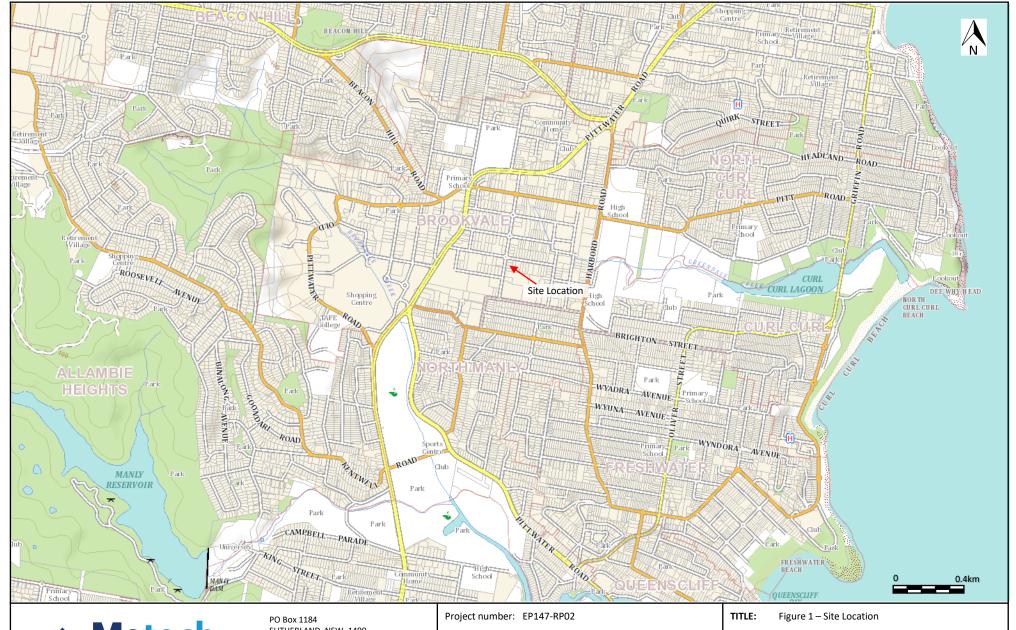
Subsurface conditions can vary across a particular site and cannot be exhaustively defined by the investigations carried out prior to this report. It is unlikely therefore that the results and estimations expressed or used to compile this report will represent conditions at any location removed from the specific points of sampling.

Site conditions may change over time. This report is based on conditions encountered at the Site at the time of the report and Metech disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent Metech's professional judgement based on information made available during the course of this assignment and are true and correct to the best of Metech's knowledge as at the date of the assessment.

Metech did not independently verify all of the written or oral information provided to Metech during the course of this investigation. While Metech has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to Metech was itself complete and accurate. Metech assumes no liability for any inaccuracies in or omissions to that information.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.


To the extent permitted by law, Metech expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this report. Metech does not admit that any action, liability or claim may exist or be available to any third party.

13.1 User Reliance

This report has been prepared exclusively for Dad & Dave's Brewery Pty Ltd and may not be relied upon by any other person or entity without Metech's express written permission.

Figures

Source: SIX Maps, 2020

Revision: 1.0

Date: 13 August 2020

PROJECT: Detailed Site Investigation

45 Mitchell Road, Brookvale, NSW

CLIENT: Dad & Dave's Brewing Pty Ltd

Project number: EP147-RP02

Source: SIX Maps, Chatswood 17/08/2018

Revision: 1.0

Date: 13 August 2020

TITLE: Figure 2 – Site Layout

PROJECT: Detailed Site Investigation

PROJECT: 45 Mitchell Road, Brookvale, NSW

CLIENT: Dad & Dave's Brewing Pty Ltd

Project number: EP147-RP02

SIX Maps, Chatswood 17/08/2018 Source:

1.0 Revision:

Date: 13 August 2020 TITLE: Figure 3 – Areas of Environmental Concern

PROJECT:

Detailed Site Investigation 45 Mitchell Road, Brookvale, NSW

CLIENT: Dad & Dave's Brewing Pty Ltd

Project number: EP147-RP02

SIX Maps, Chatswood 17/08/2018 Source:

1.0 Revision:

Date: 13 August 2020 TITLE: Figure 4 – Sampling Locations

PROJECT:

Detailed Site Investigation 45 Mitchell Road, Brookvale, NSW

CLIENT: Dad & Dave's Brewing Pty Ltd

Project number: EP147-RP02

Source: SIX Maps, Chatswood 17/08/2018

Revision: 1.0

Date: 19 August 2020

TITLE: Figure 5 – Investigation Criteria Exceedances

PROJECT: Detailed Site Investigation

45 Mitchell Road, Brookvale, NSW

CLIENT: Dad & Dave's Brewing Pty Ltd

Appendix A SafeWork NSW Information

Locked Bag 2906, Lisarow NSW 2252 Customer Experience 13 10 50 ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D20/166460

14 August 2020

Ms Michelle Metech Consulting Pty Ltd mbattam@metech.consulting

Dear Michelle

RE SITE: 45 Mitchell Rd, Brookvale NSW 2100

I refer to your site search request received by SafeWork NSW 28 July 2020 requesting information on Storage of Hazardous Chemicals for the above site.

Enclosed are copies of the documents that SafeWork NSW holds on record number 35/012164 relating to the storage of Hazardous Chemicals at the above-mentioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email licensing@safework.nsw.gov.au

Yours sincerely

Customer Service Officer

Customer Experience - Operations

SafeWork NSW

SALFWARK NEW YZ DUNNISUN SIREE! GUSHUKU NSW 225U

MAKK

MULH

\$3UY.5U

10.86

14ZU8ZZU 14:12

UUUU3U#7613

LIHEKX

LIHEKX

INV HIL

UK UAKU

EFTPOS FROM WESTPAC SAFEWORK NSW 92 TO 100 DONNISON STRE GOSFORD 2250 Australia

TIME 14AUG20 25234691 100381916593 MID TSP 200814055991 RRN Mastercard(M) .9861 CARD 024695 AUTH

> (000) APPROVED *CUSTOMER COPY*

AUD310.86

* indicates taxable PAR INVILLE

5.51U.86

MOTO

81 A12 820 1.4A

INSPECTION RECORD

		MITCHELL RORD	RROOKYALE	Licence No. 12164.
			·	·
Sketch of F	Premises (Dimer	nsions of depot and distance of same	from adjoining "protected work	s" to be shown).
t: •	hat the de	date inspected the above pot detailed on the most agree with s located on the premises f Dangerous Goods	recent licence form ((DG1) dated
Inspected	Initials	Requisit	ions made or state of depot	,
3/86	166			

Dangerous Goods Branch

Sydneyment Supply Pryter
45. mithice. Rd
Burnsynes.

1 Oxford Street Sydney P.O. Box 846 Darlinghurst, N.S.W. 2010

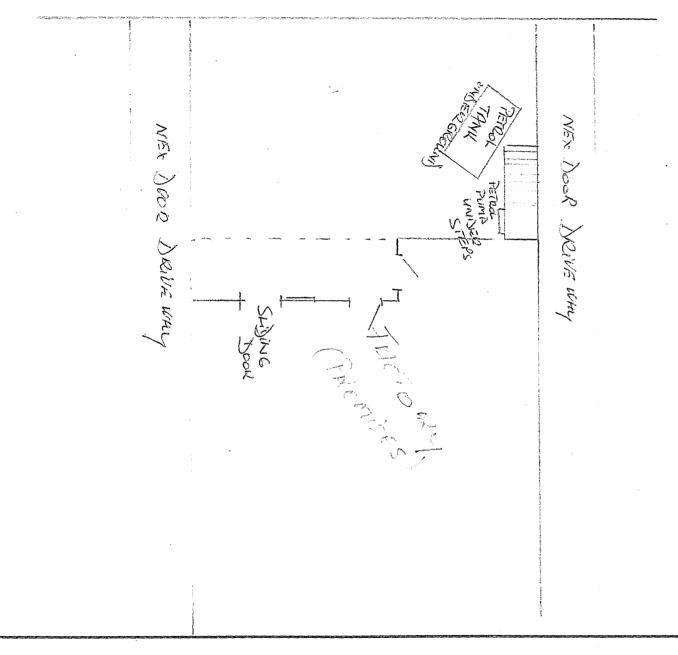
Our reference, 2/64.

Your reference:

Telephone: 2388

31

core.


4.3.81

Rfs.15/4/8/ on. Order. 30.4.81 Rfs.16/8/ Rfs.1/5/8/ OK. 5.8.81

Department of Labour and Industry

	IOIT I OIN.	STORE L	ATION OF ICENCE ENT TO RI	Carrier and Carrie		R LICE	NCE	INF	R THE LAMM D/OR I	ABLE	LIQUI				
Name of O	ccupier	Sydr (Surname)	VEY M	EUT.	Supp	sky	Pry	,), Names)						
Trading Na	me (if any)	Sytu	iez m	eol.	Supp	sty	Pry	. Cid							
Postal Addı	ress <u>É</u>	30x 5=	 3	200K	rale)			Pos	tcode	2/6	20			
Address of premises in depot or de situated	which the	45 M	TCARE	2 R.	D.	Kv.	UE		Pos	tcode	210	20			
Occupation															
Nature of P	remises	WHORE	SAKE	17F2 49	25										
Particulars at any one		on of depots	and maximu	ım quant	ities of ir	ıflamm	able liq	uid and	/or dan	gerous	goods 1	to be kep			
		PISTA	SE SKETCH	ISITE O	N-BACK	OR-A-I	TACH	PLAN	•						
Depot	Cons	struction of depots	*	Inflamma	ible Liquid			Dangerous Goods							
No.	Walls	Roof	Floor	Mineral spirit litres	Mineral oil litres	Class 1 litres	Class 2 litres	Class 3 kg	Class 4 m ³	Class 5A# litres	Class 5B# litres	Class 9 litres			
1	Unders	200400	Tank	11900											
2				/											
3					-										
4															
5															
<u>6</u> 7															
8															
9															
10								PH	FALLEY	120 (121)	2 822 553 4				
		TOTAL							10	* 175 047 7 6 9447	12	A SOLD PORTUGAL WAS			
* I:	f kept in tank	s describe dep	ots as under	ground o	r abovegr	ound to	anks.	. 100	l	9	29/	25			
# I	nsert water ca	pacity of tank	s or cylinde	rs.				1.4.1	E)	90	1 -	9//7			
		plying inflam			<u>CS</u>				i de.	0_2	60	Parties the second section in the second			
Have pre	mises previou	sly been licens	sed?	<u> </u>											
-	_	of previous oc		NR											
		Signature of	/	hia	no Lo	100	ee_		Dat	te 2	4-5	'-72			
			X												
												<i>w</i> .			
	//		CERT	FICATE	OF INSP	ECTIO	N				•	***************************************			
T	e Jac	. F. d	Work	0					bein	ıg an In	specto	r under th			
requirem	ents of that A	Act, 1915, do Act and regula is goods in qu	ations with	regard to	its situat	nises or	r store d const	describe ruction	ed abov	e does	comp	ly with th			
								-K	1/2	b	,				
					Signature	of Ins		1/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 /U/\ \	\sim				
					•		Date_	$\mathcal{A}\mathcal{A}$		<u> </u>	<u>'</u>				

MITCHELL RI).

EXPLANATORY NOTES

NAME IN FULL OF OCCUPIER/S — Full name(s) of occupier(s) must be given. Trading name (if any) should also be shown.

NATURE OF PREMISES – State whether premises comprise of dwelling, service station, depot, etc.

CONSTRUCTION OF DEPOT — If storage is in an aboveground depot indicate the material of which the depot is constructed, e.g., brick, steel, concrete, and then the amount of inflammable liquid or dangerous goods and the type being stored, e.g., mineral spirit, kerosene, acetone, etc.

If storage is within underground or aboveground tanks, indicate the quantities and type of liquid or goods being stored in each tank. Also the capacity of each individual tank. Attach separate list, if space insufficient.

•	Building? NO If building describe prese	so, under what su	irface (wood, concret		
	— Describe type of soil		,		
		COUNCIL REQU	4		
Has Council Permit bea	en obtained? Expouncil requirements?	NS NG	Aprived	- 76 J. 135	7.8 Bos.
Prepare below Sketch F Company Pumps in rela	lan of Driveway Area stion to the Building. Fro	howing details of P	ump, Tank and Fill l distance between pu	Point including location mps, width of drivew	on of othe
Show Single Pumps		Dual P	umps	<u>,</u>	Jy
		BUILT	16		
Yed Star		-SM Silece		<u> </u>	
	3.511	200	NB. AREA OF.	TANK EXCAVATION STANTES HOTH B	VHEN
SIVES I	U MO	I DRIVING L			
14/D-// SHREETTO COMPLIA REGULATION	NOCERVITER SS	DKW	-MITCHELL K	\longrightarrow	

San Control

GOLDEN FLEECE PETROLEUM

A division of H. C. Sleigh Limited: incorporated in Victoria

GOLDEN FLEECE HOUSE 100 PACIFIC HIGHWAY, NORTH SYDNEY 2060 P.O. BOX 915 NORTH SYDNEY 2060 TELEGRAMS GOLDENPET SYDNEY TELEX 25652 TELEPHONE 929 0755

10/8/1977

The Superintendent .
Explosives Department P.O. Box R 216 ROYAL EXCHANGE SYDNEY 2000

Dear Sir,

	This Compa	ny is desirou	s of insta	alling:-	•
./x.T.		underground	tank for	SUPET	Motor Spirit
• • • • • • •	• • • • • • • • • •	. underground	tank for	••••••	• • • • • • •
, • • • • • • • •		. underground		•••••	• • • • • • •
	At Sy	dney Meat.	Supply.		
	J.	5. Mitche Brackvert	ll KA:)		
	9)r.00.KV 01.	· · · · · · · · · · · · · · · · · · ·		•

Attached hereto are two copies of sketch plans for your consideration and approval.

Yours faithfully GOLDEN FLEECE PETROLEUM

OPERATIONS DEPARTMENT

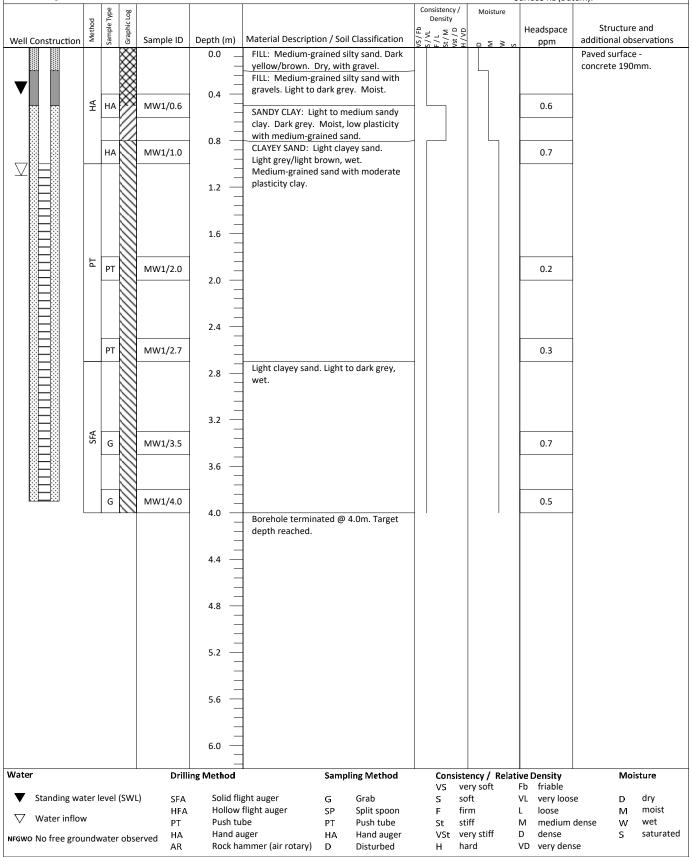
GOLDEN FLEECE

Appendix B Borehole Logs

Metech Client:

Project:

Location:

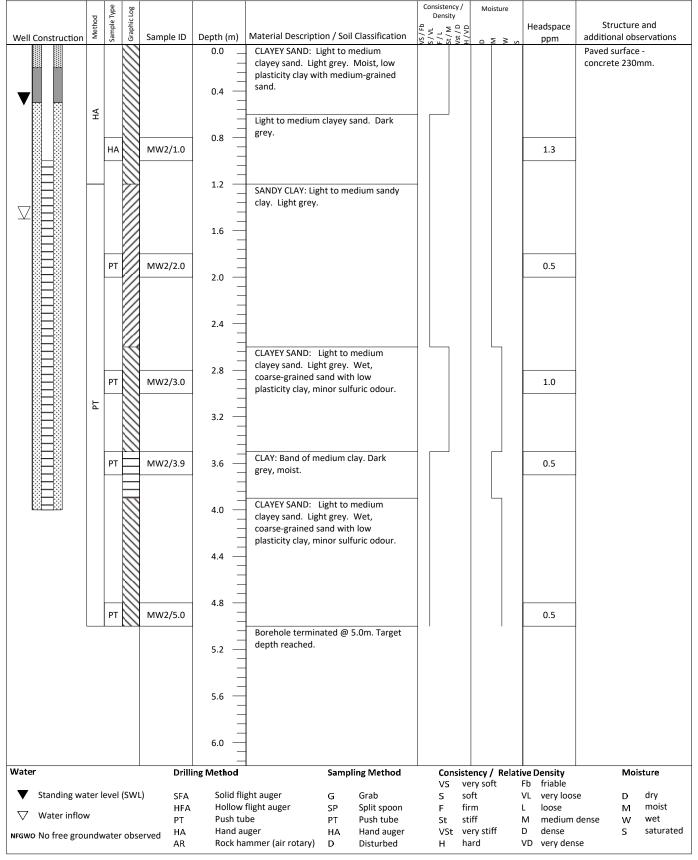

Date Investigated:

Dad & Dave's Brewing Pty Ltd EP147 - Detailed Site Investigation

45 Mitchell Road, Brookvale NSW 6/08/2020

Supervised by: Melissa Moyce Driller: **Epoca Environmental** Excavation Method: Geoprobe

Log checked by: Michelle Battam Surface RL (Datum):



Date Investigated:

Client: Dad & Dave's Brewing Pty Ltd Project: EP147 - Detailed Site Investigation Location:

45 Mitchell Road, Brookvale NSW 6/08/2020

Supervised by: Melissa Moyce Log checked by: Michelle Battam Driller: **Epoca Environmental** Excavation Method: Geoprobe

Metech Client: Dad & Dave's Brewing Pty Ltd Project:

EP147 - Detailed Site Investigation Location: 45 Mitchell Road, Brookvale NSW

Supervised by: Melissa Moyce Log checked by: Michelle Battam Date Investigated: 6/08/2020

Driller: Epoca Environmental Excavation Method: Geoprobe

Date Investigated:	6/0	18/202	20			Log check	ed by: Michelle Battan	n			Surfa	ace RL (Dat	um):	
		,be	36					C	onsistency /	Moisture				
	pou	le T	jc L						Density		II		Struc	ture and
Well Construction	Method	Sample Type	Graphic Log	ample ID	Depth (m)	Material Description	on / Soil Classification	VS / Fb	S/VL F/L St/M Vst/D H/VD			eadspace ppm		observations
vveii construction	_	l v	XX 3°	ibic iD	0.0 _		edium sandy clay.	Š	<u>λ.π. t2 χ.π.</u>	ب ≼ ≥ ۵	+	ρμιι	Paved sur	
		1 8	燹		0.0 _	Dark grey. Moist							concrete	
	d	8	88		_		nedium-grained sand						CONCIECE	100111111.
	¥	8	燹			and gravel.	icaiaiii grainca sana							
		1 8	₩		0.4 —									
			XX		_									
							ated @ 0.6m. Refusal							
					0.8 —	on brick structur	e (drain).							
					_									
					1.2 —	-								
					1.2									
					_	-								
					_	1								
					1.6 —									
					_	-								
					2.0 —]								
						-								
]								
						-								
					2.4 —									
					2.8 —									
					_									
					_									
					3.2 —									
					_									
					_									
					3.6									
					_									
					_									
					4.0 —									
					_									
					_									
					4.4 —									
					4.4 _									
					_									
					_									
					4.8 —]								
					_									
					_]								
					5.2 —									
					=]								
					=									
]								
					5.6 —]								
					_	-								
]								
					6.0 —	1								
Water				Drilli	ng Method		Sampling Method		Consiste	ency / Rela	tive I	Density		Moisture
Ctanding	+0-1	lovel /	C\A/I\	65.4	ניוויש דוו	aht augar	C Crab			ry soft		friable	•	D dr
▼ Standing wa	iter I	ievei (S	5 VV L)	SFA HFA		ght auger flight auger	G Grab SP Split spoon		S so F fir		VL L	very loos loose		D dry M moist
	v			PT	Push tu		PT Push tube		St st		М	medium		w wet
NFGWO No free grou	ındı	vater 4	nhserve		Hand a	uger	HA Hand auger		VSt ve		D	dense		saturated
dwo ito nee glot	411UV	vuiti (SOSCI VE	AR		immer (air rotary)	D Disturbed			ırd	VD	very dens	se	

Metech CONSULTING

Client: Dad & Dave's Brewing Pty Ltd
Project: EP147 - Detailed Site Investigation
Location: 45 Mitchell Road, Brookvale NSW

Location: 45 Mitchell Road, Brookvale NSW
Date Investigated: 6/08/2020

Supervised by: Melissa Moyce Log checked by: Michelle Battam Driller: Epoca Environmental Excavation Method: Geoprobe

ate Investigated:	0/0	J8/2C)20			Log checked by: Michelle Batta	m			Surface RL (Dat	tum):
	Method	Sample Type	Graphic Log					nsistency / Density	Moisture	Headspace	Structure and
ell Construction	Σ	Sam	Gra	Sample ID	Depth (m)	Material Description / Soil Classification	VS / Fb	5/ VL F/L St/M Vst/D H/VD	οΣ≯	1	additional observations
			$\overset{\times}{\otimes}$		0.0 _	FILL: Light to medium sandy clay. Dark grey. Moist, moderate					Paved surface - concrete 160mm.
	_	НА	\otimes	BH1A/0.5	0.4 —	plasticity, with medium-grained sand and gravel.				0.5	
	H		\otimes		=						
		HA	※	BH1A/1.0	0.8 —	SANDY CLAY: Light to medium sandy	-			0.3	
				B1117 Y 1.0	_	clay. Dark grey. Moist, low plasticity clay with medium-grained sand.				0.5	
					1.2 —						
					1.6						
					1.6 — — —						
		НА		BH1A/2.0	2.0	CLAYEY SAND: Light clayey sand. Light grey, wet, minor sulfuric odour.				2.6	
					=	Medium-grained sand with low plasticity clay					
					2.4 —						
		PT		BH1A/3.0	2.8 —					0.5	
	PT				3.2						
					- -						
					3.6						
		РТ		BH1A/3.9	_	CLAY: Band of medium clay. Dark grey, moist.				0.2	
					4.0 —	CLAYEY SAND: Light clayey sand.					
				51144/45		Light grey, moist, coarse-grained sand.				0.5	
		PT		BH1A/4.5	4.4 — — —					0.5	
					4.8 —	SAND: Coarse-grained sand. Light					
					=	grey, wet.					
		PT		BH1A/5.4	5.2 —					0.3	
			<u> Hili</u>	_ , , ,	=	Borehole terminated @ 5.4m. Pushtube refusal in wet sand.					
					5.6 — —	r usiitube reiusai ili wet saliu.					
					6.0 —						
ter				Drilli	ng Method	Sampling Method				ative Density	Moisture
Standing wa	ater l	evel	(SWI			ght auger G Grab flight auger SP Split spoon		VS ve S so F fir		Fb friable VL very loos L loose	
Water inflo				HFA PT erved HA	Push tu Hand a	be PT Push tube		St sti VSt ve	ff	M medium D dense	
wo No free gro	undv	vater	obs	erved ^{ПА} AR		ammer (air rotary) D Disturbed		H ha		VD very den	

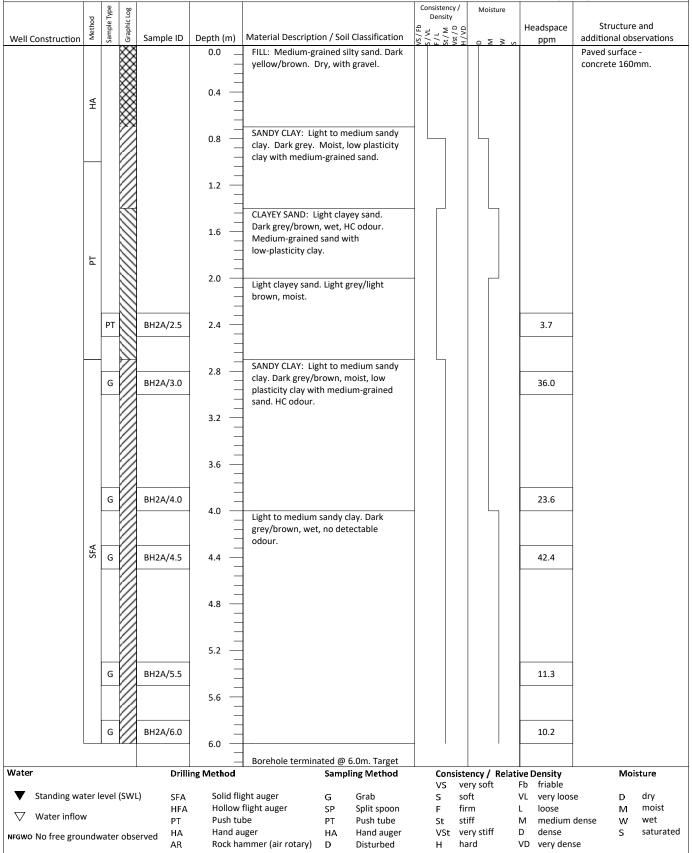
Client: Dad & Dave's Brewing Pty Ltd Project: EP147 - Detailed Site Investigation Location:

45 Mitchell Road, Brookvale NSW Date Investigated: 6/08/2020

Supervised by: Melissa Moyce Log checked by: Michelle Battam

Driller: Epoca Environmental Excavation Method: Geoprobe

ate investigated:	6/0	18/20	20			Log checked by: Michelle Ba	ttam		S	urface RL (Dat	tum):
		уре	go.				(Consistency /	Moisture		
	Method	Sample Type	Graphic Log				ڡ	Density		Headspace	Structure and
Well Construction	Me	Sam	Grap	Sample ID	Depth (m)	Material Description / Soil Classification	n /s	S / VL F / L St / M Vst / D H / VD	ο Σ > ν	ppm	additional observations
			XX		0.0	FILL: Medium-grained silty sand. Dar		0 1 0 2 1			Paved surface -
			∞		-	yellow/brown. Dry, with gravel.					concrete 130mm.
			$\times\!\!\times$		-	1					
			\approx		0.4				L		
	¥		∞		-	FILL: Medium-grained silty sand.					
	_		∞		-	Light to dark grey. Moist, minor HC					
			₩		_	odour.	-/				
		НА	∞	BH2/0.9	0.8 —	FILL: Medium-grained clayey sand with gravel. Dark grey/black. Moist,				1021.0	
			$\times\!\!\times$		_	HC odour.					
		1	⋘		-	- The oddar.					
			∞		1.2						
			XX		1.2						
		PT	∞	BH2/1.5	-	1				110.0	
	PT	Ľ.	XX.	5112, 1.5	_						
			$\times\!\!\times$		1.6		_				
			∞		-	FILL: Medium-grained clayey sand	_				
		PT	∞	BH2/1.9	_	with gravel. Dark grey/black. Wet, H	١			112.0	
			ХX		_	odour. Borehole terminated @ 1.9m. Refusa		T	'		
					2.0 —	on concrete (inferred associated with					
					=	former tankpit).					
					-	1 ' '					
					2.4 —						
						-					
					_						
					-	-					
					2.8	-					
					_						
					-	-					
					3.2						
					J.2 -	_					
					-	1					
					_						
					3.6	-					
					_						
					_						
					-	1					
					4.0 —						
					-	-					
					_						
					4.4 —						
					-	1					
					_	1					
					-	-					
					4.8 —						
					_	4					
					-	-					
					5.2 —]					
					J.Z —	4					
					-	1					
					-	1					
					5.6 —	-					
					-	1					
					_						
					_	-					
					6.0]					
					_						
					_	1					
ter				Drilli	ng Method	Sampling Method			ency / Relati	ve Density	Moisture
					-			VS ve	ry soft	Fb friable	
_	iter l	evel	SWL	.) SFA	Solid f	ight auger G Grab		VS ve S so	ry soft ft	Fb friable VL very loos	e D dry
Standing wa		evel	SWL	.) SFA HFA	Solid fi Hollow	ight auger G Grab flight auger SP Split spoor		VS ve S so F fir	ry soft ft m	Fb friable VL very loos L loose	e D dry M moist
ater ✓ Standing wa ✓ Water inflov	v			SFA HFA PT	Solid f	ight auger G Grab flight auger SP Split spoor ube PT Push tube	ı	VS ve S so	ry soft ft m	Fb friable VL very loos	e D dry M moist



Client: Dad & Dave's Brewing Pty Ltd Project: EP147 - Detailed Site Investigation Location:

45 Mitchell Road, Brookvale NSW

6/08/2020 Date Investigated:

Supervised by: Melissa Moyce Log checked by: Michelle Battam Driller: **Epoca Environmental** Excavation Method: Geoprobe

Metech

Client: Dad & Dave's Brewing Pty Ltd Project: EP147 - Detailed Site Investigation Location:

45 Mitchell Road, Brookvale NSW Date Investigated: 6/08/2020

Supervised by: Melissa Moyce Log checked by: Michelle Battam

Driller: Epoca Environmental Excavation Method: Geoprobe

Date Investigated:	6/0)20			Log cneck	ed by: Michelle Battar	n			S	urface RL (D	atum):		
	_	Sample Type	Log					Co	onsistency / Density	Мо	isture				
	Method	mple	Graphic Log				/ C : ! C : . : . :	VS / Fb				Headspace	St	ructure a	
Well Construction	Σ	Sar	Ü	Sample ID	Depth (m)		on / Soil Classification	SS.	S = 35 E = 3	۵	Σ ≥ σ	ppm	_		rvations
					0.0		ht to medium sandy Moist, low plasticity							surface - te 380m	
					-	clay with mediur							Contro	tc 500m	
		НА		BH3/0.5	0.4 —							0.2			
	¥			-,	_										
					_	-									
					0.8 —										
		НА		BH3/1.0	_	-						0.2			
			//		_	Borehole termin	ated @ 1.0m. Target	-	'				-		
					1.2	depth reached.									
					_										
					-	+									
					1.6										
					_										
					-	+									
					2.0	-									
					_	1									
					_										
					2.4 —	-									
					_	1									
					_										
					2.8										
					_	-									
					_										
					3.2	1									
					_	+									
					_	1									
					3.6 —										
					_	-									
					_	-									
					4.0 —										
					_										
					_	+									
					4.4 —	-									
					_										
					4.8 —										
						+									
					_										
					5.2 —										
					-	+									
					_	-									
					5.6 —										
						1									
					_	-									
					6.0	1									
					_	1									
/ater				Drilli	ng Method		Sampling Method				/ Relati	ve Density Fb friable		Moist	ure
▼ Standing w	ater	level	(SWL	-) SFA		ght auger	G Grab		S sof			VL very loc	se		dry
				HFA		flight auger	SP Split spoon		F fire			L loose			moist
FGWO No free gro				PT erved HA	Push tu Hand a		PT Push tube HA Hand auger		St sti			M mediun D dense	ı aense		wet saturate
						- O									

Appendix C Field Records Instrument

PhoCheck Tiger

Serial No.

T-111092

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comments	3	25
Battery	Charge Condition	1					
	Fuses	✓			7,1		
	Capacity	✓					
	Recharge OK?	✓				8	
Switch/keypad	Operation	1					
Display	Intensity	✓					
	Operation (segments)	✓					
Grill Filter	Condition	✓					
	Seal	✓					
Pump	Operation	✓		75			
	Filter	✓					
	Flow	1					1
	Valves, Diaphragm	✓	8				
PCB	Condition	✓					
Connectors	Condition	✓		*			
Sensor	PID	✓	10.6 ev				
Alarms	Beeper	✓	Low	High	TWA	STEL	
7	Settings	✓	50ppm	100ppm			
Software	Version	✓					
Data logger	Operation	✓					
Download	Operation	✓					
Other tests:			N.				

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode

Aspirated mode

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	1	Instrument Reading
PID Lamp		92 ppm isobutylene		SY245	1000	91.3ppm

Calibrated by:

Lesley Nearn-Cavanagh

Calibration date:

4/08/2020

Next calibration due:

31/01/2021

Groundwater Monitoring Field Sheet

sulting Pty Ltd

roject l	nformatio	on .	Tir	BIAN S		121	100		P.				
Project N	lumber:		EP147		3,6-12	ν	Vell ID:	4	· /	MWI			
Project N	lame:		BROCK	NALE	(M)-	rchel	, Ro)			***************************************		
Date:	######################################	***************************************	***************************************	8/20				t: 11:09	Time	Finish: N	21.15		
Equipmo	ent.				Day!	744	ill r.Hu						
Water Q	uality Mor	nitor:	Y51 1	Professi	onal P	lus 1	Daily Cali	bration:	(es)	Yes / No			
Interface	Probe:			steeh		750	Calibratio	n Certifica	te: Yes	/ No			
Purging	Equipmer	ot	Bailer Ty		Tef	flon		Plastic		Stamless	Steel		
Pump Type: Peristaltic Micro-purge								rge	Submers	ible			
Well Ga	uging an	d Purge \		alculations	Hards 1	4/2011	A war		4.14				
	Diameter:		25mn			0mm	125mm	150mm	200mm	250mm	300mm		
Convers	ion Facto	r (L/m):	0.98	(1.9	7	.75	31.4	49.1 [,]	70.7	125.7	196.3		
Total W	ell Depth	(-) Wa	ter Level	(=) Wate	er Column	l	0			1	1		
3.81				(=) _3	***************************************						************************************		
				Vater Colun			on Factor	r (=) Litn	es per 1 W	ell Volume			
***************************************					<u>m</u> (x) _			***************************************	6.8012	L			
Ground	water Ga	uaina			<u>····</u> (^/								
9.18	ell Depth			303 3	Q75	Initial	SWL (mT	OC):	7	2 this			
Purge D	raw-dowr) —	- 3	1903 >		Purge	Draw-do	wn –	0	2,403	1.19		
082224238001919	VL (mTOC					Stabili	sea SVVL	(mTOC):	100	4 (()			
Litres	Time	рН	Temp (°C)	Cond (uS/cm)	DO (ppm)	Redox (mV)	Comi	ments					
10	11:08	6.30		313 3	4.36	99.4				ada	a - 9h06		
_		6.36	18.2	61	10n.18					odour	(10 one		
25		6.37		200.2			3	y sity		1	u		
	11:33		18.5	259.4	2,35	112,0	1	158-			9		
30	11:45	Cerl	19.5	2397		122.	W			5-4-5	4		
35	11:30	6,20	18.5	69.3	2,72	119.3	32 32	.0	A				
40	11:55	657	18.5	76.7		1813	-	ulturie	odour	Mary Control	· · · · · · · · · · · · · · · · · · ·		
45	12-03	15.46	195	91.9	5.71	99.				2			
	lisation iteria	+/- 0.05	+/- 10%	+/- 3%	+/- 10%	+/- 10%	6	1	-				
		Total P	urge Volui	me	Did Fie	ld Paran	neters St	abilise: (Yes/No	3			
			43		Was th	e Well F	Purged Dr	y:	Yes / 🔞		Tan-		
		I- Da	talle				79.76		š 12.	6			
Ground	dwater Sa	mbie De	talls		Alberta Company	12		200 julija (1902)					
Ground		imple De	Mu	1		No. C	Container	s: 8					

Groundwater Monitoring Field Sheet

Project	Informati	on 🔻 🗀						and the second					
Project	Number:		EPI	47			Well ID:		MU	MWZ			
Project	Name:		Bro	OKVALE	Ca	MTC	454	(95					
Date:	**************************************			8/20				nt: 12:35	Time	Finish:	2:58		
Equipn	nent					V.			74.4	等体。全元 然作			
Water (Quality Mo	nitor:	YST '	Professio	nal P	lug	Daily Ca	libration:	1	/ No			
Interfac	e Probe:		Greo	_			Calibration	on Certifica	te: Yes	/ No			
Purging	g Equipme	nt	Bailer Ty	ype:	Te	eflon		Plastic		Stainless	Steel		
			Pump T	уре:	Pe	eristaltic	,	Micro-pu	rge	Submers	ible		
Well G	auging an	d Purge	Volume C	alculations									
Casing	Diameter:		25m	m sor	nm 10	00mm	125mm	150mm	200mm	250mm	300mm		
Conver	sion Facto	r (L/m):	0.98	3 (1.9	96	7.75	31.4	49.1	70.7	125.7	196.3		
Total V	/ell Depth	(-) Wa	ter Level	(=) Wate	er Colum	n					A		
4.20	3 <u>m</u>	(-) O.	524 m	(=) 3.	676 n	2				1000011117rpn x 22 2001111217q11111111			
	THE SECTION ASSESSMENT PROPERTY AND ASSESSMENT ASSESSME)		Water Colun	nn (x)	Conver	sion Facto	or (=) Liti	es per 1 W	ell Volume	AND THE PERSON NAMED AND PARTY OF TH		
	***************************************			3.676	<u>m</u> (x)	1-9	6 1	n (=)	9.20	L			
Ground	dwater Ga	uging		4									
Initial V	Vell Depth	(mTOC):	ч	20	Carlo Sanka Va	Initia	SWL (m	TOÇ):	4	2-95	2.524		
	Draw-down WL (mTOC		1				e Draw-do	own – L (mTOC):		P.595			
The state of the s	Quality Pa					Jan	mseu Svvi	<u>- (IIII OG).</u>					
Litres	Time	рН	Temp (°C)	Cond (uS/cm)	DO (ppm)	Redo (mV	(.om	ments					
10	12:35	8-04	18.9	649	11.44			Hu are	y, out	and of	las		
20	12:39	633	18.9	39.1	8,50	-12:		7 9	1,	W. C.	0		
400	12:43	3.88		43,	7.87	-26	3						
680	12:46		19.0		6.07	-44							
80	12:50	B.45	189	199.4	6.05	-74							
3 60	12:54	5,35	18.9	185.0	6.97	-							
50	12:38	5,23	18.9	186.1	3.40	-							
Stabi	ilisation iteria	+/- 0.05	+/- 10%	+/- 3%	+/- 10%	+/- 10	-						
Cr	пона	Total Pu	ırge Volui	me	Did Fie	ld Para	meters St	abilise: (Yes / No				
	٠.		50L				Purged Di		Yes /No				
Groun	dwater Sa	CAN THE BOOK OF THE SAME		3 2566 29				(agree) (g. 1)					
Sample	<u> </u>			W2	and the second	No.	Container	s: 4	4		31 mar 1933 (175 No.		
Quality	Control:			nple: Yes /	NO	QC	D:						

Instrument

YSI Quatro Pro Plus

Serial No. 14D101796

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass	Comments
Battery	Charge Condition	✓ .	
	Fuses	✓	
	Capacity	1	
Switch/keypad	Operation	1	
Display	Intensity	✓	
	Operation (segments)	✓	
Grill Filter	Condition	1	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	✓	1
	3. EC	✓	
	4. D.O	✓ .	
	5. Temp	1	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			chy marks

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 10.00		pH 10.00		352607	pH 9.60
2. pH 7.00		pH 7.00		330737	pH 7.07
3. pH 4.00		pH 4.00		330734	pH 4.12
4. mV		231.8mV		346052/342074	231.6mV
5. EC		2.76mS		343511	2.74mS
6. D.O		0.00ppm		1904288592	0.00ppm
7. Temp		21.0°C		MultiTherm	21.0°C

Calibrated by:

Eloise Carroll

Calibration date:

10/08/2020

Next calibration due:

6/02/2021

Appendix D
Analytical Result Summary Tables

Table 1
Detailed Site Investigation - 45 Mitchell Road Brookvale
Sample Register

Sample ID	Date Sampled	Sample Interval	Sampled By	Sample Type	QC Sample	PID	Analytes Tested ¹
Soil Investigatio	n	- Interval					
MW1/0.6	6/08/2020	0.4	ММ	Soil	-	0.6	TRH, BTEXN, PAH, Heavy Metals
MW1/1.0	6/08/2020	0.8	ММ	Soil	-	0.7	Hold
MW1/2.0	6/08/2020	1.8	ММ	Soil	QA1	0.2	TRH, BTEXN, PAH
MW1/2.7	6/08/2020	2.5	ММ	Soil	-	0.3	Hold
MW1/3.5	6/08/2020	3.3	MM	Soil	-	0.7	Hold
MW1/4.0	6/08/2020	3.8	MM	Soil	-	0.5	Hold
MW2/1.0	6/08/2020	0.8	MM	Soil	-	1.3	TRH, BTEXN, PAH, Heavy Metals
MW2/2.0	6/08/2020	1.8	MM	Soil	-	0.5	Hold
MW2/3.0	6/08/2020	2.8	MM	Soil	-	1.0	TRH, BTEXN, PAH
MW2/3.9	6/08/2020	3.5	MM	Soil	-	0.5	Hold
MW2/5.0	6/08/2020	4.8	MM	Soil	-	0.5	Hold
BH1A/0.5	6/08/2020	0.3	ММ	Soil	-	0.5	OCP, OPP
BH1A/1.0	6/08/2020	0.8	ММ	Soil	-	0.3	TRH, BTEXN, PAH, Heavy Metals
BH1A/2.0	6/08/2020	1.8	ММ	Soil	-	2.6	Hold
BH1A/3.0	6/08/2020	2.8	ММ	Soil	-	0.5	TRH, BTEXN, PAH
BH1A/3.9	6/08/2020	3.7	ММ	Soil	-	0.2	Hold
BH1A/4.5	6/08/2020	4.3	ММ	Soil	-	0.5	Hold
BH1A/5.4	6/08/2020	5.2	ММ	Soil	-	0.3	Hold
BH2/0.9	6/08/2020	0.7	MM	Soil	-	1021	TRH, BTEXN, PAH, Heavy Metals
BH2/1.5	6/08/2020	1.3	ММ	Soil	-	110	Hold
BH2/1.9	6/08/2020	1.7	ММ	Soil	-	112	Hold
BH2A/2.5	6/08/2020	2.3	ММ	Soil	QA2	3.7	Hold
BH2A/3.0	6/08/2020	2.8	ММ	Soil	-	36.0	TRH, BTEXN, PAH
BH2A/4.0	6/08/2020	3.8	ММ	Soil	-	23.6	Hold
BH2A/4.5	6/08/2020	4.3	ММ	Soil	-	42.4	Hold
BH2A/5.5	6/08/2020	5.3	ММ	Soil	-	11.3	Hold
BH2A/6.0	6/08/2020	5.8	ММ	Soil	-	10.2	Hold
BH3/0.5	7/08/2020	0.3	ММ	Soil	-	0.2	TRH, BTEXN, PAH, Heavy Metals, OCP, OPP
BH3/1.0	7/08/2020	0.8	ММ	Soil	-	0.2	Hold
Groundwater In	vestigation						
MW1	11/08/2020	-	ММ	Water	QA3	-	TRH, BTEXN, PAH, Heavy Metals
MW2	11/08/2020	-	ММ	Water	-	-	TRH, BTEXN, PAH, Heavy Metals
QA/QC							
QA1	6/08/2020	-	ММ	Soil	Duplicate of MW1/2.0	-	TRH, BTEXN, PAH
QA2	6/08/2020	-	ММ	Soil	Duplicate of BH2A/2.5	-	Hold
QA3	11/08/2020	-	ММ	Water	Duplicate of MW1	-	TRH, BTEXN, PAH, Heavy Metals

Notes:

Heavy Metals = As, Cd, Cr, Cu, Pb, Hg, Ni and Zn
TRH = Total Recoverable Hydrocarbons
BTEXN = Benzene, Toluene, Ethylbenzene, Xylenes, Napthalene

PAH = Polycyclic Aromatic Hydrocarbons OCP = Organochlorine Pesticides OPP = Organophosporus Pesticides

Table 2
Detailed Site Investigation - 45 Mitchell Road Brookvale
Soil Analytical Results - Heavy Metals

All units in mg/kg (except where indicated)

			Metals												
Sample ID	Depth	Sampling Date	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc					
			(As)	(Cd)	(Cr)	(Cu)	(Pb)	(Hg)	(Ni)	(Zn)					
PQL			4.0	0.4	1.0	1.0	1.0	0.10	1.0	1.0					
Environmental Inv	Environmental Investigation Levels ¹			3 ⁷	310 ⁸	140 ⁶	1,800 ⁵	1 7	55 ⁹	110 ¹⁰					
Health Investigation	on Levels ²		3000	900	3600 ⁴	240,000	1,500	180 ³	6,000	400,000					
MW1/0.6	0.6	6/08/2020	2.8	nd	25	nd	35	0.1	5.3	8.9					
MW2/1.0	1	6/08/2020	7.9	nd	17	8.3	61	0.3	nd	89					
BH1A/1	1	6/08/2020	3.4	nd	16	17	58	0.2	nd	160					
BH2/0.9	0.9	6/08/2020	nd	nd	7.9	5.3	15	nd	11	22					
BH3/0.5	0.5	6/08/2020	nd	nd	14	nd	15	nd	nd	12					

¹ Environmental Investigation Levels (EILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial and industrial setting

PQL: Practical Quantification Limit nd: Concentration below PQL

-: Not applicable

BOLD

Above ESL

Above HIL

² Health Investigation Levels (HILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 HIL D: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.

³ Based on inorganic mercury.

⁴ Due to the absence of criteria for Cr (Total), Cr(VI) criteria has been adopted for initial screening purposes.

⁵ Generic EIL adopted for Aged Contaminants (NEPC 2013).

⁶ CEC data not available to calculate site-specific criteria for Cu based on NEPC (2013) requirements. Conservatively, the ACL for soils with a CEC of 5 cmol₂/kg has been adopted (commercial and industrial setting).

Due to absence of criteria in NEPC (2013), the provisional phytotoxicity-based investigation levels (NSW DEC 2006) have been adopted for initial screening purposes.

⁸ Clay content data not available to calculate site-specific criteria for Cr(III) based on NEPC (2013) requirements. Conservatively, the ACL for soils with 1% clay content has been adopted (commercial and industrial).

⁹ CEC data not available to calculate site-specific criteria for Ni based on NEPC (2013) requirements. Conservatively, the ACL for soils with a CEC of 5 cmol_c/kg has been adopted (commercial and industrial).

¹⁰ CEC data not available to calculate site-specific criteria for Zn based on NEPC (2013) requirements. Conservatively, the ACL for soils with a CEC of 5 cmol_x/kg and a pH of 4.0 has been adopted (commercial and industrial).

Table 3 Detailed Site Investigation - 45 Mitchell Road Brookvale Soil Analytical Results - Volatile Total Recoverable Hydrocarbons

All units in mg/kg

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147 RP02 - DS\\Results Tables\[EP147 RP01 - Appendix D - Result Tables.xlsx]3. Soil-vTRH

					Vo	olatile Total Reco	verable Hydroca	rbons (vTRH/BTEX	N)		
Sample ID	Depth	Sampling Date	c ₆ -C ₉	c ₆ -C ₁₀	F1 (C6-C10 less BTEX)	Benzene	Toluene	Ethylbenzene	m+p-Xylene	m+p-Xylene o-Xylene	
PQL	PQL			25	25	0.2	0.5	1	2	1	1
Environmental Scr	eening Levels ¹			-	215	75	135	165	1	80	370 ²
Health Screening L	evels - Vapour Int	rusion (0 - <1m) ³		-	260	3	-	-	2	30	-
Health Screening L	Health Screening Levels - Vapour Intrusion (1 - <2m) ³			-	370	3	-	-		-	
Health Screening L	evels - Manageme	nt Limits ⁴		-	700		-	-		-	
MW1/0.6	0.6	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW1/2.0	0.2	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW2/1.0	1	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW2/3.0	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH1A/1	1	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH1A/3	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH2/0.9	0.9	6/08/2020	380	110	450	0.5	nd	0.5	0.4	0.1	14
BH2A/3.0	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd nd		nd
BH3/0.5	0.5	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
QA1	-	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd

¹ Environmental Screening Levels (ESLs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial and industrial setting

PQL: Practical Quantification Limit nd: Concentration below PQL

-: Not applicable

Owing to the presence of sand, the 'COARSE' soil type assessment criteria have been adopted.

⁴ Environmental Investigation Levels (EILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial and industrial setting

⁴ Health Screening Levels (HSLs) for Vapour Intrusion - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

Commercial / industrial land use setting, 'SAND' criteria has been adopted based on site geological conditions.

Health Screening Levels (HSLs), Management Limits for TPH Fractions - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999

^{&#}x27;COARSE' soil texture criteria adopted.

Table 4
Detailed Site Investigation - 45 Mitchell Road Brookvale
Soil Analytical Results - Semi-Volatile Total Recoverable Hydrocarbons

All units in mg/kg

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]4. Soil-svTRH

			Semi-Volatile Total Recoverable Hydrocarbons (svTRH/BTEXN)									
Sample ID	Depth	Sampling Date	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	>C ₁₀ -C ₁₆	F2 >C10-C16 less Naphthalene	F3 >C ₁₆ -C ₃₄	F4 >C ₃₄ -C ₄₀			
PQL			50	100	100	50	50	100	100			
Environmental Scr	eening Levels ¹			-	-	170	170	1,700	3,300			
Health Screening L	evels - Vapour Inti	rusion (0 - <1m) ²	-	-	-	-	-	-	-			
Health Screening L	Health Screening Levels - Vapour Intrusion (1 - <2m) ²			-	-	-	-					
Health Screening L	Health Screening Levels - Vapour Intrusion (2 - <4m) ²			-	-	-	-					
Health Screening L	evels - Manageme	nt Limits ^s		-	-	1,000	1,000	3,500	10,000			
MW1/0.6	0.6	6/08/2020	nd	nd	nd	nd	nd	nd	nd			
MW1/2.0	0.2	6/08/2020	nd	nd	nd	nd	nd	nd	nd			
MW2/1.0	1	6/08/2020	nd	nd	nd	nd	nd	nd	nd			
MW2/3.0	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd			
BH1A/1	1	6/08/2020	nd	nd	nd	nd	nd	nd	nd			
BH1A/3	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd			
BH2/0.9	0.9	6/08/2020	110	110 nd nd 130 116		116	nd	nd				
BH2A/3.0	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd			
BH3/0.5	0.5	6/08/2020	nd	nd	nd	nd	nd	nd	nd			
QA1	-	6/08/2020	nd	nd	nd	nd	nd	nd	nd			

¹ Environmental Screening Levels (ESLs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial and industrial setting

PQL: Practical Quantification Limit nd: Concentration below PQL

-: Not applicable

Above HSL (Vapour Intrusion)

Above HSL (Management Limits)

Owing to the presence of sand, the 'COARSE' soil type assessment criteria have been adopted.

⁴ Health Screening Levels (HSLs) for Vapour Intrusion - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

Commercial / industrial land use setting, 'SAND' criteria has been adopted based on site geological conditions.

⁴ Health Screening Levels (HSLs), Management Limits for TPH Fractions - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 'COARSE' soil texture criteria adopted.

Table 5
Detailed Site Investigation - 45 Mitchell Road Brookvale
Soil Analytical Results - Polycyclic Aromatic Hydrocarbons

All units in mg/kg

	Depth	Sampling Date							F	Polycycli	ic Arom	atic Hyd	lrocarbo	ns						
Sample ID			Total PAH	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b & j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	В(а)Р ТЕQ
PQL			0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Environmental In	vestigation Leve	els ¹						0.7 5									370 ³			-
Health Investigat	tion Levels ²		4,000																	40 ⁴
MW1/0.6	0.6	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
MW1/2.0	0.2	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
MW2/1.0	1	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
MW2/3.0	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
BH1A/1	1	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
BH1A/3	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
BH2/0.9	0.9	6/08/2020	6.4	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	6.4	nd	nd	0.6
BH2A/3.0	3	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
BH3/0.5	0.5	6/08/2020	4.4	nd	nd	nd	nd	0.6	0.5	nd	0.6	0.5	nd	1.1	nd	nd	nd	nd	1.1	1
QA1	-	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6

BOLD

Above EIL

Above HIL

 $Where \ the \ B(a) P \ occurs \ in \ bitumen \ fragments \ it \ is \ relatively \ immobile \ and \ does \ not \ represent \ a \ significant \ health \ risk.$

Owing to the presence of sand, the 'COARSE' soil type assessment criteria have been adopted.

PQL: Practical Quantification Limit nd: Concentration below PQL

-: Not applicable

¹ Environmental Investigation Levels (ElLs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial and industrial setting

² Health Investigation Levels (HILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 HIL D: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.

³ Generic EIL adopted for fresh contaminants in soil.

⁴ HIL based on the 8 carcinogenic PAHs and their TEFs [potency relative to B(a)P]. The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF and summing these products.

⁵ Environmental Screening Levels (ESLs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial and industrial setting

Table 6
Detailed Site Investigation - 45 Mitchell Road Brookvale
Soil Analytical Results - Polycyclic Aromatic Hydrocarbons

All units in mg/kg

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]6. Soil-OCP

												Orga	nochlor	ine Pes	ticides (OCPs)									
Sample ID	Depth	Sampling Date	Chlordanes - Total	4.4'-DDD	4.4'-DDE	4.4'-DDT	а-внс	Aldrin	р-внс	р-внс	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene (HCB)	Methoxychlor	Toxaphene	Aldrin and Dieldrin (Total)	DDT + DDE + DDD (Total)
PQL			0.10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.20	1	0.05	0.05
Environment	tal Investigati	on Levels ¹	-									-			-						-				640
Health Inves	vironmental Investigation Levels ¹ salth Investigation Levels ²		530	-	-	-	-	-	-	-	-	2000 5	2000 5	-	100	-	-	-	50	-	80	2500	160	45 ⁴	3600 ³
BH1A/0.5	0.5	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH3/0.5	0.5	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

¹ Environmental Investigation Levels (EILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

Commercial and industrial setting

-: Not applicable

BOLD Above EIL

Above HIL

⁴ Health Investigation Levels (HILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999

HIL D: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.

³ Sum of DDT, DDE and DDD

⁴ Sum of Aldrin and Dieldrin

³ Sum of Endosulfan

^b Sum of Chlordane

Sum of DDT

nd: Concentration below PQL

Table 7
Detailed Site Investigation - 45 Mitchell Road Brookvale
Soil Analytical Results - Organophosphorus Pesticides (OPPs)

All units in mg/kg

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]7. Soil-OPP

												Organ	ophosph	norus Pe	esticides	(OPPs)									
Sample ID	Depth	Sampling Date	Azinphos-methyl	Bolstar	Chlorfenvinphos	Chlorpyrifos	Chlorpyrifos-methyl	Coumaphos	Demeton-O	Demeton-S	Diazinon	Dichlorvos	Dimethoate	Disulfoton	EPN	Ethion	Ethoprop	Ethyl parathion	Fenitrothion	Fensulfothion	Fenthion	Malathion	Merphos	Methyl parathion	Mevinphos
PQL			0.2	0.2	0.2	0.2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Environment	tal Investigat	ion Levels ¹																							-
Health Invest	tigation Leve	els ¹				2000																			-
BH1A/0.5	0.5	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH3/0.5	0.5	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

						Organo	phosph	norus Pe	esticides	(OPPs)			
Sample ID	Depth	Sampling Date	Monocrotophos	Naled	Omethoate	Phorate	Pirimiphos-methyl	Pyrazophos	Ronnel	Terbufos	Tetrachlorvinphos	Tokuthion	Trichloronate
PQL			2	0.2	2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Environment	tal Investigati	ion Levels ¹	-										-
Health Invest	tigation Leve	ls¹	-										
BH1A/0.5	0.5	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BH3/0.5	0.5	6/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

¹ Environmental Investigation Levels (EILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial and industrial setting

PQL: Practical Quantification Limit

Above HIL

⁶ Health Investigation Levels (HILS) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 HILD: Commercial/industrial, includes premises such as shops, offices, factories and industrial sites.

Table 8
Detailed Site Investigation - 45 Mitchell Road Brookvale
Groundwater Analytical Results - Heavy Metals

All units in ug/L

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]8. GW-Metals

Above Freshwater Criteria

Above HSL

					Meta	als			
Sample ID	Sampling Date	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
		(As)	(Cd)	(Cr)	(Cu)	(Pb)	(Hg)	(Ni)	(Zn)
PQL		1.0	0.2	1.0	1.0	1.0	0.1	1.0	5.0
Groundwater Investigatio	n Levels - Environment ¹	13 ²	0.2	1 3	1.4	3.4	0.06 4	11	8 ³
Human Health Criteria - D	rinking Water ²	10	2	50	2000	10	1	20	-
MW1	11/08/2020	nd	nd	nd	nd	nd	nd	nd	nd
MW2	11/08/2020	nd	nd	nd	8	nd	nd	2	190
QA3	11/08/2020	nd	nd	nd	5	nd	nd	nd	8

¹ Groundwater Investigation Levels (GILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

PQL: Practical Quantification Limit nd: Concentration below PQL

-: Not applicable

Freshwater trigger value for slightly-moderately disturbed systems (95% protection levels) (refer ANZECC & ARMCANZ 2000).

⁴ Total As concentration reported, therefore the As(V) value has been conservatively adopted as the initial screening value.

³ Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.

^a Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

Table 9 Detailed Site Investigation - 45 Mitchell Road Brookvale Groundwater Analytical Results - Volatile Total Recoverable Hydrocarbons

All units in ug/L

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]9. GW-vTRH

				Vo	latile Total Recov	erable Hydrocarl	ons (vTRH/BTEXN	i)		
Sample ID	Sampling Date	c ₆ -C ₉	c ₆ -C ₁₀	F1 (C6-C10 less BTEX)	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Naphthalene
PQL		20	50	20	1	1	1	2	1	10
Groundwater Investigation	Levels - Environment ¹	-		-	950		-	200	350	16
Human Health Criteria - Dr	inking Water ²	-		-	1	800	300	6	00	-
Health Screening Levels - \	apour Intrusion (2 - <4m) ³	-		6,000	5,000		-			-
MW1	11/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW2	11/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd
QA3	11/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd

¹ Groundwater Investigation Levels (GILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

PQL: Practical Quantification Limit nd: Concentration below PQL

-: Not applicable

NL: Not Limiting

Above Freshwater Criteria

Bold Above Drinking Water Criteria

Above HSL

Freshwater trigger values for slightly-moderately disturbed systems (95% protection levels) (refer ANZECC & ARMCANZ 2000).

Groundwater Investigation Levels (GILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

³ Health Screening Levels (HSLs) for Vapour Intrusion - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial / industrial land use setting, 'SAND' criteria has been adopted based on site geological conditions.

Above Freshwater Criteria

Above HSL

Table 10 Detailed Site Investigation - 45 Mitchell Road Brookvale Groundwater Analytical Results - Semi-Volatile Total Recoverable Hydrocarbons

All units in ug/L

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]10. GW-svTRH

			Semi-	Volatile Total Rec	overable Hydroca	arbons (svTRH/BT	EXN)	
Sample ID	Sampling Date	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	>C ₁₀ -C ₁₆	F2 >C10-C16 less Naphthalene	F3 >C ₁₆ -C ₃₄	F4 >C ₃₄ -C ₄₀
PQL		50	100	100	50	50	100	100
Groundwater Investigation	Levels - Environment ¹	-						
Health Screening Levels - V	apour Intrusion (2 - <4m) ²	-						
MW1	11/08/2020	nd	nd	nd	nd	nd	nd	nd
MW2	11/08/2020	nd	nd	nd	nd	nd	nd	nd
QA3	11/08/2020	nd	nd	nd	nd	nd	nd	nd

¹ Groundwater Investigation Levels (GILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

PQL: Practical Quantification Limit nd: Concentration below PQL

-: Not applicable

NL: Not Limiting

Freshwater trigger value for slightly-moderately disturbed systems (95% protection levels) (refer ANZECC & ARMCANZ 2000).

² Health Screening Levels (HSLs) for Vapour Intrusion - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial / industrial land use setting, 'SAND' criteria has been adopted based on site geological conditions.

Table 11 Detailed Site Investigation - 45 Mitchell Road Brookvale **Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons**

All units in ug/L

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]11. GW-PAH

								Polyc	yclic Ar	omatic H	lydroca	rbons						
Sample ID	Sampling Date	Total PAH	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b&j)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(ah)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
PQL		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Groundwater Investigation	Levels - Environment ¹															16		-
Human Health Criteria - Dri	inking Water ²						0.01											
Health Screening Levels - V	apour Intrusion (2 - <4m) ³						-						-					
MW1	11/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MW2	11/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
QA3	11/08/2020	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd

¹ Groundwater Investigation Levels (GILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

PQL: Practical Quantification Limit

nd: Concentration below PQL

-: Not applicable NL: Not Limiting

Above Freshwater Criteria Bold Above Drinking Water Criteria Above HSL

Freshwater trigger value for slightly-moderately disturbed systems (95% protection levels) (refer ANZECC & ARMCANZ 2000).

Groundwater Investigation Levels (GILs) - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999.

³ Health Screening Levels (HSLs) for Vapour Intrusion - NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999. Commercial / industrial land use setting, 'SAND' criteria has been adopted based on site geological conditions.

Table 12
Detailed Site Investigation - 45 Mitchell Road Brookvale
Relative Percentage Difference Calculations - Metals

All units in mg/kg, except RPDs Z\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]12. RPD - Metals

					Me	etals			
Туре	Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
		(As)	(Cd)	(Cr)	(Cu)	(Pb)	(Hg)	(Ni)	(Zn)
Original	MW1	nd	nd	nd	1	nd	nd	nd	5
Duplicate	QA3	nd	nd	nd	5	nd	nd	nd	8
RPDs (Dup.)	-	N/A	N/A	N/A	133	N/A	N/A	N/A	46

BOLD = PQL used to calculate RPD value

Table 13
Detailed Site Investigation - 45 Mitchell Road Brookvale
Relative Percentage Difference Calculations - Total Recoverable Hydrocarbons

All units in mg/kg, except RPDs

Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DSI\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xlsx]13. RPD - TRH

				V	olatile Total Reco	verable Hydroca	rbons (vTRH/BTEX	N)		
Туре	Sample ID	C ₆ -C ₉	C ₆ -C ₁₀	F1 (C6-C10 less BTEX)	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Napthalene
Original	MW1/2.0	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	QA1	nd	nd	nd	nd	nd	nd	nd	nd	nd
RPDs (Dup.)	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Original	MW1	nd	nd	nd	nd	nd	nd	nd	nd	nd
Duplicate	QA3	nd	nd	nd	nd	nd	nd	nd	nd	nd
RPDs (Dup.)	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

			Semi	-Volatile Total Re	coverable Hydro	arbons (svTRH/B	TEXN)	
Туре	Sample ID	C ₁₀ -C ₁₄	C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	>C ₁₀ -C ₁₆	F2 >C10-C16 less Naphthalene	F3 >C ₁₆ -C ₃₄	F4 >C ₃₄ -C ₄₀
Original	MW1/2.0	nd	nd	nd	nd	nd	nd	nd
Duplicate	QA1	nd	nd	nd	nd	nd	nd	nd
RPDs (Dup.)	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Original	MW1	nd	nd	nd	nd	nd	nd	nd
Duplicate	QA3	nd	nd	nd	nd	nd	nd	nd
RPDs (Dup.)	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A

BOLD = PQL used to calculate RPD value

Table 14
Detailed Site Investigation - 45 Mitchell Road Brookvale
Relative Percentage Difference Calculations - Polycyclic Aromatic Hydrocarbons

All units in mg/kg, except RPDs Z:\METECH CONSULTING\EP - Projects\EP147 - Brookvale (Mitchell Rd)\08 Report\EP147_RP02 - DS1\Results Tables\[EP147_RP01 - Appendix D - Result Tables.xisx]13. RPD - TRH

								P	olycycli	c Aroma	tic Hyd	rocarbo	ns						
Туре	Sample ID	Total PAH	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a) pyrene	Benzo(b & j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	B(a)P TEQ
Original	MW1/2.0	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
Duplicate	QA1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.6
RPDs (Dup.)	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0
Original	MW1	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-
Duplicate	QA3	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	-
RPDs (Dup.)	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-

BOLD = PQL used to calculate RPD value

Appendix E Laboratory Certificates

ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000

Child Special Control of the Con Site # 1254 & 14271

Unit F3 Building F NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

Metech Consulting Pty Ltd

Contact name:

Michelle Battam

Project name:

BROOKVALE (MITCHELL RD)

Project ID: Turnaround time: EP147 5 Day

Date/Time received

Aug 7, 2020 5:41 PM

Eurofins reference

736726

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Unlabelled bag received extra and placed on hold.

Samples received by the laboratory after 5.30pm are deemed to have been received the following working day.

Contact

If you have any questions with respect to these samples, please contact your Analytical Sales Manager:

Alena Bounkeua on Phone: or by email: AlenaBounkeua@eurofins.com

Results will be delivered electronically via email to Michelle Battam - mbattam@metech.consulting.

Note: A copy of these results will also be delivered to the general Metech Consulting Pty Ltd email address.

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Metech Consulting Pty Ltd

PO Box 1184 Sutherland

NSW 1499

Project Name:

Address:

BROOKVALE (MITCHELL RD)

Project ID:

EP147

Order No.: Report #:

736726

(02)9575 7755

Phone: Fax: **Received:** Aug 7, 2020 5:41 PM

Due: Aug 14, 2020 **Priority:** 5 Day

Contact Name: Michelle Battam

		Sa	mple Detail			HOLD	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10	Eurofins Suite B7	Eurofins Suite B4
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271							
		- NATA Site # 1				Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794								
		NATA Site # 237	'36								
	castle Laborato	•									
	rnal Laboratory			1	_						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	MW1/0.6	Aug 06, 2020		Soil	S20-Au11642			Х		Х	
2	MW1/2.0	Aug 06, 2020		Soil	S20-Au11643			Х			Х
3	MW2/1.0	Aug 06, 2020		Soil	S20-Au11644			Х		Х	
4	MW2/3.0	Aug 06, 2020		Soil	S20-Au11645			Х			Х
5	BH1A/0.5	Aug 06, 2020		Soil	S20-Au11646		Х	Х			
6	BH1A/1.0	Aug 06, 2020		Soil	S20-Au11647			Х		Х	
7	BH1A/3.0	Aug 06, 2020		S20-Au11648			Х			Х	
8	BH2/0.9	Aug 06, 2020		Soil	S20-Au11649			Х		Х	
9	BH2A/3.0	Aug 06, 2020		Soil	S20-Au11650			Х			Х

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Metech Consulting Pty Ltd

Address: PO Box 1184 Sutherland

NSW 1499

Project Name:

Company Name:

BROOKVALE (MITCHELL RD)

Project ID: EP147

Order No.: Report #:

736726

(02)9575 7755

Phone: Fax:

Received: Aug 7, 2020 5:41 PM **Due:** Aug 14, 2020

Priority: 5 Day

Contact Name: Michelle Battam

		HOLD	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10	Eurofins Suite B7	Eurofins Suite B4					
Mell	bourne Labora											
Syd	Sydney Laboratory - NATA Site # 18217							Х	Х	Х	Х	
Bris	Brisbane Laboratory - NATA Site # 20794											
Pert	h Laboratory -	NATA Site # 237	736									
10	BH3/0.5	Aug 07, 2020		Soil	S20-Au11651			Х	Х			
11	QA1	Aug 06, 2020		Soil	S20-Au11652			Х			Х	
12	MW1/1.0	Aug 06, 2020		Soil	S20-Au11653	Х						
13	MW1/2.7	Aug 06, 2020		Soil	S20-Au11654	Х						
14	MW1/3.5	Aug 06, 2020		Soil	S20-Au11655	Х					<u> </u>	
15	MW1/4.0	Aug 06, 2020		Soil	S20-Au11656	Х						
16	MW2/2.0	Aug 06, 2020		Soil	S20-Au11657	Х						
17	MW2/3.9	Aug 06, 2020		Soil	S20-Au11658	Х						
18	MW2/5.0	Aug 06, 2020		Soil	S20-Au11659	Х						
19	BH1A/2.0	Aug 06, 2020		Soil	S20-Au11660	Х						
20	BH1A/3.9	Aug 06, 2020		Soil	S20-Au11661	Х						
21	BH1A/4.5	Aug 06, 2020		Soil	S20-Au11662	Х						
22	BH1A/5.4	Aug 06, 2020		Soil	S20-Au11663	Х						

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
16 Mars Road
Phone : +61 3 8564 5000
NATA # 1261
Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Metech Consulting Pty Ltd

PO Box 1184 Sutherland

NSW 1499

Project Name:

Address:

BROOKVALE (MITCHELL RD)

Project ID:

EP147

Order No.: Report #:

736726 (02)9575 7755

Phone: Fax:

Received: Due: Priority:

Aug 14, 2020 5 Day

Aug 7, 2020 5:41 PM

Contact Name: Michelle Battam

Sample Detail							Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10	Eurofins Suite B7	Eurofins Suite B4
Mell	Melbourne Laboratory - NATA Site # 1254 & 14271										
Sydney Laboratory - NATA Site # 18217							Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794								
Pert	h Laboratory - N	NATA Site # 237	36								
23	BH2/1.5	Aug 06, 2020		Soil	S20-Au11664	Х					
24	BH2/1.9	Aug 06, 2020		Soil	S20-Au11665	Х					
25	BH2A/2.5	Aug 06, 2020		Soil	S20-Au11666	Х					
26	BH2A/4.0	Aug 06, 2020		Soil	S20-Au11667	Х					
27	BH2A/5.5	Aug 06, 2020		Soil	S20-Au11668	Х					
28	BH2A/6.0	Aug 06, 2020		Soil	S20-Au11669	Х					
29	BH3/1.0	Aug 07, 2020		Soil	S20-Au11670	Х					
30	QA2	Aug 06, 2020		Soil	S20-Au11671	Х					
31	UNLABELLED	Aug 06, 2020		Soil	S20-Au11672	Х					
Test	Test Counts							11	1	4	5

Metech Consulting Pty Ltd PO Box 1184 Sutherland NSW 1499

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Michelle Battam

Report 736726-S

Project name BROOKVALE (MITCHELL RD)

Project ID EP147

Received Date Aug 07, 2020

Client Sample ID			MW1/0.6	MW1/2.0	MW2/1.0	MW2/3.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au11642	S20-Au11643	S20-Au11644	S20-Au11645
Date Sampled			Aug 06, 2020	Aug 06, 2020	Aug 06, 2020	Aug 06, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
ВТЕХ	·					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	101	103	100
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			MW1/0.6	MW1/2.0	MW2/1.0	MW2/3.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au11642	S20-Au11643	S20-Au11644	S20-Au11645
Date Sampled			Aug 06, 2020	Aug 06, 2020	Aug 06, 2020	Aug 06, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	114	113	114	113
p-Terphenyl-d14 (surr.)	1	%	119	115	118	116
Heavy Metals						
Arsenic	2	mg/kg	2.8	-	7.9	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	25	-	17	-
Copper	5	mg/kg	< 5	-	8.3	-
Lead	5	mg/kg	35	-	61	-
Mercury	0.1	mg/kg	0.1	-	0.3	-
Nickel	5	mg/kg	5.3	-	< 5	-
Zinc	5	mg/kg	8.9	-	89	-
% Moisture	1	%	22	13	20	21

Client Sample ID			BH1A/0.5	BH1A/1.0	BH1A/3.0	BH2/0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au11646	S20-Au11647	S20-Au11648	S20-Au11649
Date Sampled			Aug 06, 2020	Aug 06, 2020	Aug 06, 2020	Aug 06, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	-	< 20	< 20	380
TRH C10-C14	20	mg/kg	-	< 20	< 20	110
TRH C15-C28	50	mg/kg	-	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	-	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	-	< 50	< 50	110
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	0.5
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	0.5
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	0.4
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	0.1
Xylenes - Total*	0.3	mg/kg	-	< 0.3	< 0.3	0.5
4-Bromofluorobenzene (surr.)	1	%	-	93	82	71
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	14
TRH C6-C10	20	mg/kg	-	< 20	< 20	450
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	450
TRH >C10-C16	50	mg/kg	-	< 50	< 50	130
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	< 50	116
TRH >C16-C34	100	mg/kg	-	< 100	< 100	< 100

Client Sample ID			BH1A/0.5	BH1A/1.0	BH1A/3.0	BH2/0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au11646	S20-Au11647	S20-Au11648	S20-Au11649
Date Sampled			Aug 06, 2020	Aug 06, 2020	Aug 06, 2020	Aug 06, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPN						
TRH >C34-C40	100	mg/kg	-	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	_	< 100	< 100	130
Polycyclic Aromatic Hydrocarbons	1 .00	19,9		1.00	1.00	1.00
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	6.4
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5	< 0.5	6.4
2-Fluorobiphenyl (surr.)	1	%	-	110	100	116
p-Terphenyl-d14 (surr.)	1	%	-	109	105	121
Heavy Metals						
Arsenic	2	mg/kg	-	3.4	-	< 2
Cadmium	0.4	mg/kg	-	< 0.4	-	< 0.4
Chromium	5	mg/kg	-	16	-	7.9
Copper	5	mg/kg	-	17	-	5.3
Lead	5	mg/kg	-	58	-	15
Mercury	0.1	mg/kg	-	0.2	-	< 0.1
Nickel	5	mg/kg	-	< 5	-	11
Zinc	5	mg/kg	-	160	-	22
% Moisture	1	%	14	27	16	20
Organochlorine Pesticides	1					_
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	_	_	_
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	_
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	_
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	_	_	-
Dieldrin	0.05	mg/kg	< 0.05	_	_	-
Endosulfan I	0.05	mg/kg	< 0.05	_	_	_
Endosulfan II	0.05	mg/kg	< 0.05	_	_	_
Endosulfan sulphate	0.05	mg/kg	< 0.05	_	_	_

Client Sample ID			BH1A/0.5	BH1A/1.0	BH1A/3.0	BH2/0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au11646	S20-Au11647	S20-Au11648	S20-Au11649
<u>-</u>						
Date Sampled			Aug 06, 2020	Aug 06, 2020	Aug 06, 2020	Aug 06, 2020
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	101	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	118	-	-	-
Organophosphorus Pesticides		1				
Azinphos-methyl	0.2	mg/kg	< 0.2	-	-	-
Bolstar	0.2	mg/kg	< 0.2	-	-	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	-	-
Coumaphos	2	mg/kg	< 2	-	-	-
Demeton-S	0.2	mg/kg	< 0.2	-	-	-
Demeton-O	0.2	mg/kg	< 0.2	-	-	-
Diazinon	0.2	mg/kg	< 0.2	-	-	-
Dichlorvos	0.2	mg/kg	< 0.2	-	-	-
Dimethoate	0.2	mg/kg	< 0.2	-	-	-
Disulfoton	0.2	mg/kg	< 0.2	-	-	-
EPN	0.2	mg/kg	< 0.2	-	-	-
Ethion	0.2	mg/kg	< 0.2	-	-	-
Ethoprop	0.2	mg/kg	< 0.2	-	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	-
Fenitrothion	0.2	mg/kg	< 0.2	-	-	-
Fensulfothion	0.2	mg/kg	< 0.2	-	-	-
Fenthion	0.2	mg/kg	< 0.2	-	-	-
Malathion	0.2	mg/kg	< 0.2	-	-	-
Merphos	0.2	mg/kg	< 0.2	-	-	-
Methyl parathion	0.2	mg/kg	< 0.2	-	-	-
Mevinphos	0.2	mg/kg	< 0.2	-	-	-
Monocrotophos	2	mg/kg	< 2	-	-	-
Naled	0.2	mg/kg	< 0.2	-	-	-
Omethoate	2	mg/kg	< 2	-	-	-
Phorate District has a reached	0.2	mg/kg	< 0.2	-	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	-
Pyrazophos	0.2	mg/kg	< 0.2	-	-	-
Ronnel	0.2	mg/kg	< 0.2	-	-	-
Terbufos Terbus de la circula	0.2	mg/kg	< 0.2	-	=	-
Tetrachlorvinphos Tokuthion	0.2	mg/kg mg/kg	< 0.2 < 0.2	-	-	-

Client Sample ID			BH1A/0.5	BH1A/1.0	BH1A/3.0	BH2/0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Au11646	S20-Au11647	S20-Au11648	S20-Au11649
Date Sampled			Aug 06, 2020	Aug 06, 2020	Aug 06, 2020	Aug 06, 2020
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Trichloronate	0.2	mg/kg	< 0.2	-	-	-
Triphenylphosphate (surr.)	1	%	109	-	-	-

Client Sample ID			BH2A/3.0	BH3/0.5	QA1
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-Au11650	S20-Au11651	S20-Au11652
Date Sampled			Aug 06, 2020	Aug 07, 2020	Aug 06, 2020
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	- 1			
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50
BTEX	•				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	0.6	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	69	82	97
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons	•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	0.7	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.0	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.3	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.6	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	0.6	< 0.5
Chrysene	0.5	mg/kg	< 0.5	0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	1.1	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID			BH2A/3.0	BH3/0.5	QA1
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-Au11650	S20-Au11651	S20-Au11652
Date Sampled			Aug 06, 2020	Aug 07, 2020	Aug 06, 2020
Test/Reference	LOR	Unit	, 100	71.09 01, 2020	71.09 00, 2020
Polycyclic Aromatic Hydrocarbons	LOIX	Offic			
Naphthalene	0.5	ma/ka	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	1.1	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	4.4	< 0.5
2-Fluorobiphenyl (surr.)	1	%	111	124	52
p-Terphenyl-d14 (surr.)	1	%	115	132	50
Heavy Metals	<u>'</u>	/0	113	102	1 30
Arsenic	2	mg/kg	_	< 2	_
Cadmium	0.4	mg/kg	_	< 0.4	-
Chromium	5	mg/kg	_	14	-
Copper	5	mg/kg	-	< 5	-
Lead	5	mg/kg	_	15	-
Mercury	0.1	mg/kg	-	< 0.1	-
Nickel	5	mg/kg	_	< 5	-
Zinc	5	mg/kg	_	12	-
ZIIIO		ilig/kg		12	
% Moisture	1	%	17	16	16
Organochlorine Pesticides		,,,			
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-
a-BHC	0.05	mg/kg	-	< 0.05	-
Aldrin	0.05	mg/kg	-	< 0.05	-
b-BHC	0.05	mg/kg	-	< 0.05	-
d-BHC	0.05	mg/kg	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-
Endrin	0.05	mg/kg	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-
Toxaphene	1	mg/kg	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-
Dibutylchlorendate (surr.)	1	%	-	INT	-
Tetrachloro-m-xylene (surr.)	1	%	-	120	-

Client Sample ID			BH2A/3.0	BH3/0.5	QA1
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-Au11650	S20-Au11651	S20-Au11652
Date Sampled			Aug 06, 2020	Aug 07, 2020	Aug 06, 2020
Test/Reference	LOR	Unit			
Organophosphorus Pesticides	'	1			
Azinphos-methyl	0.2	mg/kg	-	< 0.2	-
Bolstar	0.2	mg/kg	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-
Coumaphos	2	mg/kg	-	< 2	-
Demeton-S	0.2	mg/kg	-	< 0.2	-
Demeton-O	0.2	mg/kg	-	< 0.2	-
Diazinon	0.2	mg/kg	-	< 0.2	-
Dichlorvos	0.2	mg/kg	-	< 0.2	-
Dimethoate	0.2	mg/kg	-	< 0.2	-
Disulfoton	0.2	mg/kg	-	< 0.2	-
EPN	0.2	mg/kg	-	< 0.2	-
Ethion	0.2	mg/kg	-	< 0.2	-
Ethoprop	0.2	mg/kg	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	-	< 0.2	-
Fenitrothion	0.2	mg/kg	-	< 0.2	-
Fensulfothion	0.2	mg/kg	-	< 0.2	-
Fenthion	0.2	mg/kg	-	< 0.2	-
Malathion	0.2	mg/kg	-	< 0.2	-
Merphos	0.2	mg/kg	-	< 0.2	-
Methyl parathion	0.2	mg/kg	-	< 0.2	-
Mevinphos	0.2	mg/kg	-	< 0.2	-
Monocrotophos	2	mg/kg	-	< 2	-
Naled	0.2	mg/kg	-	< 0.2	-
Omethoate	2	mg/kg	-	< 2	-
Phorate	0.2	mg/kg	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-
Pyrazophos	0.2	mg/kg	-	< 0.2	-
Ronnel	0.2	mg/kg	-	< 0.2	-
Terbufos	0.2	mg/kg	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-
Tokuthion	0.2	mg/kg	-	< 0.2	-
Trichloronate	0.2	mg/kg	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	131	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Eurofins Suite B4	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 12, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 BTEX	Sydney	Aug 12, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 12, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 12, 2020	
- Method: LTM-ORG-2010 TRH C6-C40 Polycyclic Aromatic Hydrocarbons	Sydney	Aug 12, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water Metals M8	Sydney	Aug 12, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS % Moisture	, ,		•
- Method: LTM-GEN-7080 Moisture	Sydney	Aug 07, 2020	14 Days
Organochlorine Pesticides - Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Sydney	Aug 12, 2020	14 Days
Organophosphorus Pesticides - Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS	Sydney	Aug 12, 2020	14 Days

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000
NATA # 1261
Phone : +61 2 Phone : +61 2

Site # 1254 & 14271

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
4 NATA # 1261
Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Metech Consulting Pty Ltd

PO Box 1184 Sutherland

NSW 1499

Project Name:

Address:

BROOKVALE (MITCHELL RD)

Project ID: EP147

Order No.: Report #:

736726

(02)9575 7755

Phone: Fax:

Received: Aug 7, 2020 5:41 PM

Due: Aug 14, 2020 **Priority:** 5 Day

Contact Name: Michelle Battam

		HOLD	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10	Eurofins Suite B7	Eurofins Suite B4				
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71							
		- NATA Site # 1				Х	Х	Х	Х	Х	Х
		y - NATA Site#									
		NATA Site # 237	36								
	castle Laborato										
	rnal Laboratory				1						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	MW1/0.6	Aug 06, 2020		Soil	S20-Au11642			Х		Х	
2	MW1/2.0	Aug 06, 2020		Soil	S20-Au11643			Х			Х
3	MW2/1.0	Aug 06, 2020		Soil	S20-Au11644			Х		Х	
4	MW2/3.0	Aug 06, 2020		Soil	S20-Au11645			Х			Х
5	BH1A/0.5	Aug 06, 2020	S20-Au11646		Х	Х					
6	BH1A/1.0	Aug 06, 2020	S20-Au11647			Х		Х			
7	BH1A/3.0	Aug 06, 2020		Soil	S20-Au11648			Х			Х
8	BH2/0.9	Aug 06, 2020		Soil	S20-Au11649			Х		Х	
9	BH2A/3.0	Aug 06, 2020		Soil	S20-Au11650			Χ			Х

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Aug 7, 2020 5:41 PM

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Metech Consulting Pty Ltd

> PO Box 1184 Sutherland

NSW 1499

Project Name:

Address:

BROOKVALE (MITCHELL RD)

Project ID:

EP147

Order No.: Report #:

736726 (02)9575 7755

Phone: Fax:

Received: Due:

Aug 14, 2020

Priority: 5 Day

Michelle Battam **Contact Name:**

		Sa	mple Detail			HOLD	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10	Eurofins Suite B7	Eurofins Suite B4
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271							
Syd	ney Laboratory	- NATA Site # 1	8217			X	Х	Х	Х	Х	Х
		y - NATA Site#									
Pert	h Laboratory - I	NATA Site # 237	36	_							
10	BH3/0.5	Aug 07, 2020		Soil	S20-Au11651			Х	Х		
11	QA1	Aug 06, 2020		Soil	S20-Au11652			Х			Х
12	MW1/1.0	Aug 06, 2020		Soil	S20-Au11653	Х					
13	MW1/2.7	Aug 06, 2020		Soil	S20-Au11654	Х					
14	MW1/3.5	Aug 06, 2020		Soil	S20-Au11655	Х					
15	MW1/4.0	Aug 06, 2020		Soil	S20-Au11656	Х					
16	MW2/2.0	Aug 06, 2020		Soil	S20-Au11657	Х					
17	MW2/3.9	Aug 06, 2020		Soil	S20-Au11658	Х					
18	MW2/5.0	Aug 06, 2020		Soil	S20-Au11659	Х					
19	BH1A/2.0	Aug 06, 2020		Soil	S20-Au11660	Х					
20	BH1A/3.9	Aug 06, 2020		Soil	S20-Au11661	Х					
21	BH1A/4.5	Aug 06, 2020		Soil	S20-Au11662	Х					
22	BH1A/5.4	Aug 06, 2020		Soil	S20-Au11663	Х					

Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone : +61 3 8564 5000 Lane Cove We
NATA # 1261 Phone : +61 2

Site # 1254 & 14271

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Metech Consulting Pty Ltd

Address: PO Box 1184 Sutherland

NSW 1499

Project Name:

BROOKVALE (MITCHELL RD)

Project ID:

EP147

Order No.: Report #:

736726 (02)9575 7755

Phone: Fax:

Received: Aug 7, 2020 5:41 PM **Due:** Aug 14, 2020

Priority: 5 Day

Contact Name: Michelle Battam

		HOLD	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10	Eurofins Suite B7	Eurofins Suite B4				
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271							
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х
	bane Laboratory										
Pert	h Laboratory - N	IATA Site # 237	36	1							
23	BH2/1.5	Aug 06, 2020		Soil	S20-Au11664	Х					
24	BH2/1.9	Aug 06, 2020		Soil	S20-Au11665	Х					
25	BH2A/2.5	Aug 06, 2020		Soil	S20-Au11666	Х					
26	BH2A/4.0	Aug 06, 2020		Soil	S20-Au11667	Х					
27	BH2A/5.5	Aug 06, 2020		Soil	S20-Au11668	Х					
28	BH2A/6.0	Aug 06, 2020		Soil	S20-Au11669	Х					
29	BH3/1.0	Aug 07, 2020		Soil	S20-Au11670	Х					
30	QA2	Aug 06, 2020		Soil	S20-Au11671	Х					
31	UNLABELLED	Aug 06, 2020		Soil	S20-Au11672	Х					
Test	Counts					20	1	11	1	4	5

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	1 3 3				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	mg/ng	1100	100	1 400	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene		< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	t		+	
Fluorene Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5 0.5	Pass Pass	
	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Mark at Plants	mg/kg	< 0.5	0.5	Pass	
Method Blank				T	
Heavy Metals	m = //- =	1.2		Desa	
Arsenic	mg/kg	< 2	2	Pass	
Characium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	-
Copper	mg/kg	< 5	5	Pass	-
Lead	mg/kg	< 5	5	Pass	-
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Organochlorine Pesticides				<u> </u>	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene		< 1	1	Pass	
·	mg/kg	<u> </u>		rass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos			0.2	Pass	
	mg/kg	< 0.2			
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	

Test	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Tokuthion	mg/kg	< 0.2		0.2	Pass	
Trichloronate	mg/kg	< 0.2		0.2	Pass	
LCS - % Recovery		•				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	84		70-130	Pass	
TRH C10-C14	%	88		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	99		70-130	Pass	
Toluene	%	96		70-130	Pass	
Ethylbenzene	%	97		70-130	Pass	
m&p-Xylenes	%	98		70-130	Pass	
o-Xylene	%	100		70-130	Pass	
Xylenes - Total*	%	99		70-130	Pass	
LCS - % Recovery	70	1 00		70 100	1 455	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	83		70-130	Pass	
TRH C6-C10	%	83		70-130	Pass	
TRH >C10-C10	%	93		70-130	Pass	
	70	93		70-130	rass	
LCS - % Recovery		T				
Polycyclic Aromatic Hydrocarbons	0/	00		70.400	Dana	
Acenaphthene	%	98		70-130	Pass	
Acenaphthylene	%	95		70-130	Pass	
Anthracene	%	99		70-130	Pass	
Benz(a)anthracene	%	89		70-130	Pass	
Benzo(a)pyrene	%	93		70-130	Pass	
Benzo(b&j)fluoranthene	%	94		70-130	Pass	
Benzo(g.h.i)perylene	%	94		70-130	Pass	
Benzo(k)fluoranthene	%	95		70-130	Pass	
Chrysene	%	97		70-130	Pass	
Dibenz(a.h)anthracene	%	85		70-130	Pass	
Fluoranthene	%	96		70-130	Pass	
Fluorene	%	99		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	85		70-130	Pass	
Naphthalene	%	96		70-130	Pass	
Phenanthrene	%	97		70-130	Pass	
Pyrene	%	98		70-130	Pass	
LCS - % Recovery			1			
Heavy Metals						
Arsenic	%	110		80-120	Pass	
Cadmium	%	112		80-120	Pass	
Chromium	%	112		80-120	Pass	
Copper	%	110		80-120	Pass	
Lead	%	114		80-120	Pass	
Mercury	%	105		80-120	Pass	
Nickel	%	113		80-120	Pass	
Zinc	%	107		80-120	Pass	
LCS - % Recovery						
Organochlorine Pesticides						
Chlordanes - Total	%	83		70-130	Pass	
4.4'-DDD	%	78		70-130	Pass	
4.4'-DDE	%	87		70-130	Pass	
4.4'-DDT	%	88		70-130	Pass	
a-BHC	%	84		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Aldrin			%	86		70-130	Pass	
b-BHC			%	84		70-130	Pass	
d-BHC			%	86		70-130	Pass	
Dieldrin			%	91		70-130	Pass	
Endosulfan I			%	86		70-130	Pass	
Endosulfan II			%	84		70-130	Pass	
Endosulfan sulphate			%	79		70-130	Pass	
Endrin			%	86		70-130	Pass	
Endrin aldehyde			%	90		70-130	Pass	
Endrin ketone			%	84		70-130	Pass	
g-BHC (Lindane)			%	85		70-130	Pass	
Heptachlor			%	83		70-130	Pass	
Heptachlor epoxide			%	76		70-130	Pass	
Hexachlorobenzene			%	81		70-130	Pass	
Methoxychlor			%	84		70-130	Pass	
LCS - % Recovery			/0	, 07		70-100	1 1 433	
Organophosphorus Pesticides								
Diazinon		T	%	99		70-130	Pass	
			%	99		70-130		
Dimethoate							Pass	
Ethion			%	114		70-130	Pass	
Fenitrothion			%	117		70-130	Pass	
Methyl parathion			%	128		70-130	Pass	
Mevinphos			%	106		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T	<u> </u>			
Total Recoverable Hydrocarbons -		i i		Result 1			_	
TRH C6-C9	W20-Au12600	NCP	%	71		70-130	Pass	
TRH C10-C14	W20-Au12605	NCP	%	73		70-130	Pass	
Spike - % Recovery				T	1			
ВТЕХ		1 1		Result 1				
Benzene	W20-Au12600	NCP	%	93		70-130	Pass	
Toluene	W20-Au12600	NCP	%	89		70-130	Pass	
Ethylbenzene	W20-Au12600	NCP	%	91		70-130	Pass	
m&p-Xylenes	W20-Au12600	NCP	%	94		70-130	Pass	
o-Xylene	W20-Au12600	NCP	%	97		70-130	Pass	
Xylenes - Total*	W20-Au12600	NCP	%	95		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1				
Naphthalene	W20-Au12600	NCP	%	94		70-130	Pass	
TRH C6-C10	W20-Au12600	NCP	%	75		70-130	Pass	
TRH >C10-C16	W20-Au12605	NCP	%	75		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	·			Result 1				
Acenaphthene	S20-Au07169	NCP	%	89		70-130	Pass	
Acenaphthylene	S20-Au07169	NCP	%	98		70-130	Pass	
Anthracene	S20-Au07169	NCP	%	85		70-130	Pass	
Benz(a)anthracene	S20-Au08000	NCP	<u> </u>	87		70-130	Pass	
Benzo(a)pyrene	S20-Au07169	NCP	<u> </u>	77		70-130	Pass	
Benzo(b&j)fluoranthene	S20-Au07169	NCP	%	81		70-130	Pass	
	S20-Au07169 S20-Au07169	NCP	<u>%</u> %	80		70-130		
Benzo(g.h.i)perylene		1		+			Pass	
Benzo(k)fluoranthene	\$20-Au07169	NCP	%	92		70-130	Pass	
Chrysene	S20-Au07169	NCP	%	84		70-130	Pass	
Dibenz(a.h)anthracene	S20-Au08000	NCP	%	77		70-130	Pass	
Fluoranthene	S20-Au07169	NCP	%	101		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Fluorene	S20-Au07169	NCP	%	88	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-Au07169	NCP	%	73	70-130	Pass	
Naphthalene	S20-Au07169	NCP	%	98	70-130	Pass	
Phenanthrene	S20-Au07169	NCP	%	91	70-130	Pass	
Pyrene	S20-Au07169	NCP	%	96	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S20-Au11993	NCP	%	97	75-125	Pass	
Cadmium	S20-Au11993	NCP	%	99	75-125	Pass	
Chromium	S20-Au11993	NCP	%	115	75-125	Pass	
Copper	S20-Au11993	NCP	%	101	75-125	Pass	
Lead	S20-Au11993	NCP	%	93	75-125	Pass	
Mercury	S20-Au11993	NCP	%	113	75-125	Pass	
Nickel	S20-Au11993	NCP	%	99	75-125	Pass	<u> </u>
Zinc	S20-Au11993	NCP	//	101	75-125	Pass	
Spike - % Recovery	320-Au11433	INCF	70	101	75-125	Fass	
				Decult 1		I	
Organochlorine Pesticides	COO A4.4424	NCD	0/	Result 1	70.400	Dana	
Chlordanes - Total	S20-Au14431	NCP	%	72	70-130	Pass	-
a-BHC	S20-Au14431	NCP	%	76	70-130	Pass	
Dieldrin	S20-Au14431	NCP	%	81	70-130	Pass	
Endosulfan I	S20-Au14431	NCP	%	73	70-130	Pass	
Endrin	S20-Au14431	NCP	%	70	70-130	Pass	-
Heptachlor	S20-Au14431	NCP	%	86	70-130	Pass	
Hexachlorobenzene	S20-Au14431	NCP	%	82	70-130	Pass	
Spike - % Recovery				T T		T	
Organophosphorus Pesticide				Result 1			
Diazinon	S20-Au14431	NCP	%	72	70-130	Pass	
Ethion	S20-Au14431	NCP	%	102	70-130	Pass	
Fenitrothion	S20-Au14431	NCP	%	130	70-130	Pass	
Mevinphos	S20-Au14431	NCP	%	71	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	S20-Au17953	NCP	%	93	70-130	Pass	
4.4'-DDE	S20-Au09816	NCP	%	72	70-130	Pass	
4.4'-DDT	S20-Au17953	NCP	%	87	70-130	Pass	
Aldrin	S20-Au09816	NCP	%	71	70-130	Pass	
b-BHC	S20-Au17953	NCP	%	95	70-130	Pass	
d-BHC	S20-Au17953	NCP	%	100	70-130	Pass	
Endosulfan II	S20-Au09816	NCP	%	71	70-130	Pass	
Endosulfan sulphate	S20-Au17953	NCP	%	91	70-130	Pass	
Endrin aldehyde	S20-Au09816	NCP	%	82	70-130	Pass	
Endrin ketone	S20-Au17953	NCP	%	91	70-130	Pass	
g-BHC (Lindane)	S20-Au17953	NCP	<u> </u>	96	70-130	Pass	
Heptachlor epoxide	S20-Au17953	NCP	<u> </u>	91	70-130	Pass	
- I			<u>%</u> %	79			
Methoxychlor	S20-Au17953	NCP	70	19	70-130	Pass	
Spike - % Recovery				Doguit 4			
Organophosphorus Pesticide		l Non I		Result 1			
Dimethoate	S20-Au07910	NCP	%	101	70-130	Pass	-
Methyl parathion	S20-Au07910	NCP	%	107	70-130	Pass	<u> </u>

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				ı	1		T		
Heavy Metals		1		Result 1	Result 2	RPD			
Arsenic	S20-Au11007	NCP	mg/kg	7.6	3.3	79	30%	Fail	Q15
Cadmium	S20-Au11007	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-Au11007	NCP	mg/kg	21	17	23	30%	Pass	
Copper	S20-Au11007	NCP	mg/kg	53	55	4.0	30%	Pass	
Lead	S20-Au11007	NCP	mg/kg	15	14	12	30%	Pass	
Mercury	S20-Au11007	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S20-Au11007	NCP	mg/kg	7.4	7.2	4.0	30%	Pass	
Zinc	S20-Au11007	NCP	mg/kg	34	37	8.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Au11432	NCP	%	10	9.3	11	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S20-Au11644	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-Au11644	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S20-Au11644	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate			<u> </u>						
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S20-Au11644	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-Au11644	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S20-Au11644	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	- C207/011011	<u> </u>	mg/ng	1 100	1 100		0070	1 400	
Polycyclic Aromatic Hydrocarbon	18			Result 1	Result 2	RPD			
Acenaphthene	S20-Au11644	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-Au11644	CP		< 0.5		<1	30%	Pass	
Benzo(b&j)fluoranthene		CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
\	S20-Au11644	CP	mg/kg	i e	< 0.5				
Benzo(g.h.i)perylene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Au11644		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-Au11644	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate		-					1		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		_	
TRH C6-C9	S20-Au11645	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				D	D	555			
BTEX	T and 1			Result 1	Result 2	RPD	0.5		
Benzene	S20-Au11645	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-Au11645	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-Au11645	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-Au11645	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-Au11645	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-Au11645	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	1

Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NFPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-Au11645	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-Au11645	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	62071011040	01	i iig/itg	1 20	\ 20		0070	1 400	
Organochlorine Pesticides				Result 1	Result 2	RPD		T	
Chlordanes - Total	S20-Au11219	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S20-Au11219	NCP		< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
		NCP	mg/kg				30%		
Dieldrin Endosulfan I	S20-Au11219		mg/kg	< 0.05	< 0.05	<1		Pass	
	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S20-Au11219	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				Ι	I I		1		
Organophosphorus Pesticides	1	1		Result 1	Result 2	RPD			
Azinphos-methyl	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S20-Au11219	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S20-Au11219	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S20-Au11219	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Officialogic									
Phorate	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Pyrazophos	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S20-Au11219	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Toxaphene	S20-Au17952	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S20-Au11652	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S20-Au11652	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S20-Au11652	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S20-Au11652	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S20-Au11652	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S20-Au11652	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-Au11652	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Q15

Alena Bounkeua Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY RECORD Eurofine | Environment Teeling ABN 50 005 085 521

☑ Sydney Laboratory
Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com

☐ Brisbane Laboratory Unit 1 21 Smallwood Place Murarrie QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com ☐ Perth Laboratory Unit 2 91 Leach Highway Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com ☐ Melbourne Laboratory 6 Monterey Road Dandenong South VIC 3175 03 8564 5000 EnviroSampleVic@eurofins.com

Company	Metech Consulting		Project	Ne	EP14	17				Project Manager	Michelle Batt	tam			Samp	ler(s)		Me	elissa N	<i>l</i> loyce		
Address	Level 1, 29 Kiora Road		Project N	lame	Broo	kvale (Mi	itchell Rd)		EDD Format ESdat, EQuIS etc				Н	inded	over	by	Me	elissa N	loyce	-	
143	Miranda, NSW 2228		lerad".											En	nail for	Іпуо	ice	<u>ac</u>	nimt	@me	etech-consult.c	com
Contact Name	Mel Moyce		ecity "Total" or "Filte act SULTE pricing.											En	nail for	Resu	Its				ech.consulting ; ech.consulting	
Phone №	0424 394 490														Change	{ contail	Conta ner type	iners e & size if	f necess:	ary.	Required Turn Default will be	around Time (TAT) 5 days if not ticked.
Special Directions			Analyses requested, please st le must be used to att		(8)	PP, Metals (8)											60			uidelines)		◆Surcharge will apply porting by 9am)◆
Purchase Order	-		metals are SUITE cod		Metals (, OCP, C	1							lastic	lastic	lastic	er Glas	A vial	S Bottle	64. WA G	□ 2 days ◆	□ 3
Quote ID №	•		Where	TEXN	CN, PAH,	XN, PAH	<u>م</u>	(N, PAH						500mL Plastic	250mL Plastic	125mL Plastic	200mL Amber Glass	40mL VOA vial	500mL PFAS Bottle Jar (Glass or HDPE)	stos AS49	☐ 5 days (Stand))
No	Client Sample ID	Sampled Date/Time dd/mm/yy hb mm	Matrix Solid (S) Water (W)	B1: TRH and BTEXN	B7: TRH, BTEXN, PAH, Metals (8)	B10: TRH, BTEXN, PAH, OCP, OPP, Metals (8)	B14: OCP, OPP	B4: TRH, BTEXN, PAH									200		oc al	Other (Asbestos AS4964, WA Guidelines)	Sample / Dangerous Goo	Comments ods Hazard Warning
1	MW1/0.6	6/08/20	s		×														1			
2	MW1/1.0	6/08/20	s																1			
3	MW1/2.0	6/08/20	s					X											1			
4	MW1/2.7	6/08/20	s																1			
5	MW1/3.5	6/08/20	S																1			
6	MW1/4.0	6/08/20	s																1			
7	MW2/1.0	6/08/20	s		×														1			
8	MW2/2,0	6/08/20	s													T			1			
9.	MW2/3,0	6/08/20	s					X						H	T				1			
10	MW2/3.9	6/08/20	s																1			
139	FIRSI	Total Cou	ınts		2			2							1				10			
Jethod or Shipment	☐ Courier (#) 🗆 Ha	nd Delivered		Pos	tal	Nam	ie			Signature		1.		Dat	е	1		1	1	Time	
Laboratory Use On	Received By Gra	ne Turke	4	SYD BNE	MEL	PER A	DL NTL	DRW	Signature	A		Date	718		Tim	е		5	:41		Temperature	737
, 230 011	Received By			SYD BNE	MEL	PER A	DL NTL	DRW	Signature	9		Date			Tim	0	1				Report No	736726

Eurofins | Environment Testing ABN 50 005 085 521

Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins.com

Unit 1 21 Smallwood Place Murarrie QLD 4172
07 3902 4600 EnviroSampleQLD@eurofins.com

Perth Laboratory
Unit 2 91 Leach Highway Kewdale WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com

Melbourne Laboratory
6 Monterey Road Dandenong South VIC 3175
03 8564 5000 EnviroSampleVic@eurofins.com

Company	Metech Consulting		Proje	ct Nº	EP1	47				Project Manager	Michelle Bat	tam			Samp	ler(s)	-	Me	lissa M	loyce		
Address	Level 1, 29 Kiora Road		Project	Name	Bro	okvale (M	itchell Rd	1)		EDD Format ESdat, EQuIS etc				На	anded	over	by	Me	lissa M	loyce		
	Miranda, NSW 2228		(ered*.											En	nail for	Invo	ice	ac	imin@	@me	etech-consult.c	:om
Contact Name	Mel Moyce		 ecify "Total" or "Filk act SUITE pricing.											En	nail for	Resu	its				ch.consulting;	
Phone №	0424 394 490		6.5												Change	(contai	Contair ner type 8	ers	necessa		Required Turn	around Time (TAT) 5 days if not ticked.
Special Directions			Analyses Analyses e requested, please s de must be used to at		(8)	OPP Metals (8)											69			(Asbestos AS4964, WA Guidelines)		◆Surcharge will apply
Purchase Order			metals an SUITE αα		Metals	J OCE							lastic	lastic	lastic	er Glas	A vial	S BOTTLE	M, WA G	□ 2 days ◆	□ 3	
Quote ID №	4.		Where	TEXN	(N, PAH,	KN, PAH	_	IN, PAH						500mL Plastic	250mL Plastic	125mL Plastic	200mL Amber Glass	40mL VOA vial	Jar (Glass or HDPE)	tos AS49	☐ 5 days (Stand	ard)
Na	Client Sample ID	Sampled Date/Time dd/mm/yy hh.mm	Matrix Solid (S) Water (W)	B1: TRH and BTEXN	B7: TRH, BTEXN, PAH, Metals (8)	B10: TRH, BTEXN, PAH, OCP, OPP, Metals (8)	B14: OCP, OPP	B4: TRH, BTEXN, PAH									200	4	ouc Jar	Other (Asbes	Sample	Comments ods Hazard Warning
11	MW2/5.0	6/08/20	s															Ī	1			
12	BH1A/0.5	6/08/20	s				×												1			
13	BH1A/1.0	6/08/20	s		×													T	1			
14	BH1A/2.0	6/08/20	s														1		1			
15	BH1A/3.0	6/08/20	s					×						H				T	1			
16	BH1A/3.9	6/08/20	s													1			1			
17.	BH1A/3.9	6/08/20	s																1			
18	BH1A/4.5	6/08/20	s								-							+	1			
19	BH1A/5.4	6/08/20	s																1			
20	BH2/0.9	6/08/20	s		×														1			
		Total Cou	nts		2		1	1								1		1	10			1000
lethod of Shipment	□ Courier (#) \square Han	nd Delivered		□ Pos	tal :	Nam	10			Signature				Date	e					Time	
Laboratory Use O	Received By G	are Turk	en	SYD BI	NE MEL	PER A	DL NTL	DRW	Signature	a a		Date	716		Time	е		5	41		Temperature	7.37
the state of	Received By	1-12		SYD BI	NE MEL	PER A	DL NTL	DRW	Signature	4		Date	110		Time		1 200	-	1	3	Report №	736776

Eurofins | Environment Testing ABN 50 005 085 521

Sydney Laboratory
Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066
02 9900 8400 EnviroSampleNSW@eurofins.com

Unit 1 21 Smallwood Place Murarrie QLD 4172
07 3902 4600 EnviroSampleQLD@eurofins.com

Perth Laboratory
Unit 2 91 Leach Highway Kewdale WA 6105
08 9251 9600 EnviroSampleWA@eurofins.com

Melbourne Laboratory
6 Monterey Road Dandenong South VIC 31/5
03 8584 5000 EnviroSampleVic@eurofins.com

Company	Metech Consulting		Proj	ect №	EP*	147				Project Manager	Michelle Ba	ttam			Sampl	er(s)		Mei	lissa M	loyce		
Address	Level 1, 29 Kiora Road		Projec	t Name	Bro	okvale (N	litchell Ro	i)		EDD Format ESdat, EQuiS etc				На	ınded (ver b	,	Mei	lissa M	loyce		
	Miranda, NSW 2228		(ered"											Em	ail for	Invoic	е	ad	lmin(@me	etech-consult.c	com
Contact Name	Mel Moyce		sity "Total" or "F!) at SUITE pricing											Err	nail for !	Result	\$	mm	юусе@ attam@	gmete Ometr	ech.consulting ; ech.consulting	
Phone Na	0424 394 490		spei st												Change		ontaine r type &	ers	necessar	1	Required Turn	naround Time (TAT) e 5 days if not boked,
Special Directions			Analyse requested, please must be used to a			P, Metals (8)												I		delines)		◆Surcharge will apply eporting by 9am)◆
Purchase Order			netals are i		Aetals (8	OCP, OF								stic	stic	stic	Sias Sias	Dafelo	HOPE)	WA Guit	□ Same day ◆ □ 2 days ◆	□ 1 day ◆ □ 3
Quote ID №	·		Where r	NZ ZZ	V, PAH, P	N, PAH,		Y, PAH						500mL Plastic	250mL Plastic	125mL Plastic	40mL VOA vial	500ml DEAS Rottle	Jar (Glass or HDPE)	(Asbestos AS4864, WA Guidelines)	☐ 5 days (Stand	dard)
Ne	Client Sample ID	Sampled Date/Time dd/mm/yy hh.mm	Matrix Solid (S) Water (W)	B1: TRH and BTEXN	B7: TRH, BTEXN, PAH, Metals (8)	B10: TRH, BTEXN, PAH, OCP, OPP, Metals (8)	B14: OCP, OPP	B4: TRH, BTEXN, PAH						- Ai	73	7	A0	5000	Jar (Other (Asbesto	Sample	e Comments ods Hazard Warning
21	BH2/1.5	6/08/20	s													Ī			1			
22	BH2/1.9	6/08/20	s																1			
23	BH2A/2.5	6/08/20	S																1			
24	BH2A/3,0	6/08/20	s					×							+	+	+		1			
25	BH2A/4.0	6/08/20	s												1	t	1		1			
26	BH2A/5.5	6/08/20	s															+	1			
27	BH2A/6.0	6/08/20	s													+	+	H	1			
28	BH3/0.5	7/8/20	s			X									+		-	-	1			
29	BH3/1.0	7/8/20	S																1			
30	QA1	6/08/20	s					×										-	1			
	10-10-	Total Co	unts			1		2							+	+	+		10			
isticolo/Sillement	Courier (#) 🗆 Ha	nd Delivered		D Pos	stal	Nam				Signature				Date				10		Time	
Laboratory Use Or	Received By	race Tucki	neud	SYD I B	NE MEL	PER A	DL NTL	DRW	Signature	48		Date	7/8		Time			5	4		Temperature	737
27.237, 003 01	Received By	-					DL NTL		Signature	9		Date			Time						Report №	736726

Eurofins | Environment Testing ABN 50 005 085 521

☑ Sydney Laboratory Unit F3 Bld,F 16 Mars Road Lane Cove West NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com

☐ Brisbane Laboratory Unit 1 21 Smallwood Place Murarrie QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com ☐ Perth Laboratory Unit 2 91 Leach Highway Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com

☐ Melbourne Laboratory 6 Monterey Road Dandenong South VIC 3175 03 8564 5000 EnviroSampleVic@eurofins.com

Company	Metech Consulting		Proje	ct №	EP1	47				Project Manager	Michelle Ba	ttam		1	Sam	oler(s		М	elissa	Моу	ce			
Address	Level 1, 29 Kiora Roa	d	Project	Name	Broo	okvale (M	litchell Ro	i)		EDD Format ESdat, EQuIS etc	•			Н	anded	over	by	M	elissa	Моу	ce			
	Miranda, NSW 2228		lered".											En	nail fo	r Invo	ice	<u>a</u>	dmir	1@r	nete	ech-consult.c	com	
Contact Name	Mel Moyce		otal" or "Fil											En	nail fo	Resi	ilts					.consulting ;		
Phone №	0424 394 490		specify "Ti												Chang	e conta	Contail ner type	ners	11	Ù		Required Turn	naround Time (TAT 5 5 days if not ticked.)
Special Directions			Anallyse requested, please emust be used to a		(8)	PP, Metals (8)															(delines)	□ Overnight (re	Surcharge will apply	
Purchase Order			metals are		Metals (8	ocP, o								astic	astic	astic	r Glass	ı vial	Bottle	HDPE)	, WA Gul	□ 2 days ◆	□ 3	
Quote ID №	•		Where r	EXN	N, PAH, I	'N, PAH,								500mL Plastic	250mL Plastic	125mL Plastic	200mL Amber Glass	40mL VOA vial	500mL PFAS Bottle	Jar (Glass or HDPE)		5 days (Stand □ Other(■ Ot	dard))
Ne	Client Sample ID	Sampled Date/Time dd/mm/yy hh.rum	Matrix Solid (S) Water (W)	B1: TRH and BTEXN	B7: TRH, BTEXN, PAH, Metals (8)	B10: TRH, BTEXN, PAH, OCP, OPP, Metals (8)	B14: OCP, OPP	Hold						2	2	1	2001	4	2001	Jar (<u>a</u>	Sample	Comments ods Hazard Warnin	ng
21	QA2	6/08/20	s					X											T.	1	ı			
22																		Ī		1	1			-
23																		1			1			
24																		+	+	+	+			
25																		-	+	+	-			
																		-		-	1			
Z6																								
27																								
28																								
29																		T		1				
30																1		1						
130	13.00	Total Co	ounts					1							1	1		+	1	+	1	7		
lethod of Shipment	☐ Courier (#) 🗆 Ha	and Delivered	E	□ Post	tal	Nam	10			Signature				Dat	e	+		1			Time		-
Laboratory Use Onl	Received By	Grae Tuck	en c	SYD BN	E MEL	PER A	DL NTL	J DRW	Signature	8	ACCUPATION OF THE PROPERTY OF	Date	718		Tim	е		5	:4	11		Temperature	7.37	
urofins Environment Testin	Received By			SYD BN	E MEL	PER A	DL NTL	DRW	Signature	1	- Non-o	Date			Tim	ө						Report №	73672	6

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 18217 Phone State Phone Phon

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: Metech Consulting Pty Ltd

Contact name: Melissa Moyce Project name: **BROOKVALE**

Project ID: EP147 Turnaround time: Overnight

Date/Time received: Aug 11, 2020 4:11 PM

Eurofins reference: 737123

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples, please contact your Analytical Sales Manager:

Alena Bounkeua on Phone : or by email: AlenaBounkeua@eurofins.com

Results will be delivered electronically via email to Melissa Moyce - mmoyce@metech.consulting.

Note: A copy of these results will also be delivered to the general Metech Consulting Pty Ltd email address.

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F Phone: +61 2 9900 8400

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

(02)9575 7755

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Metech Consulting Pty Ltd

Address:

PO Box 1184 Sutherland NSW 1499

Project Name:

BROOKVALE

Project ID:

EP147

Order No.: Report #:

NATA # 1261 Site # 18217

737123

Phone: Fax:

Eurofins Suite B7 (filtered metals)

Received: Aug 11, 2020 4:11 PM

Due: Aug 12, 2020 **Priority:** Overnight Melissa Moyce **Contact Name:**

Eurofins Analytical Services Manager: Alena Bounkeua

Sample Detail

Melbourne Laboratory - NATA Site # 1254 & 14271	
Sydney Laboratory - NATA Site # 18217	Х
Brisbane Laboratory - NATA Site # 20794	
Perth Laboratory - NATA Site # 23736	
Newcastle Laboratory	
External Laboratory	

LALC	iliai Laboratory					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	
1	MW1	Aug 11, 2020		Water	S20-Au15479	Х
2	MW2	Aug 11, 2020		Water	S20-Au15480	Х
3	QA3	Aug 11, 2020		Water	S20-Au15481	Х
Test	Counts					3

Metech Consulting Pty Ltd PO Box 1184 Sutherland NSW 1499

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Melissa Moyce

Report737123-WProject nameBROOKVALEProject IDEP147Received DateAug 11, 2020

Client Sample ID			MW1	MW2	QA3
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S20-Au15479	S20-Au15480	S20-Au15481
Date Sampled			Aug 11, 2020	Aug 11, 2020	Aug 11, 2020
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	1			
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1
BTEX	1				
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	123	121	116
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1
Polycyclic Aromatic Hydrocarbons		<u> </u>			
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzo(b&i)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001

Client Sample ID Sample Matrix Eurofins Sample No.			MW1 Water S20-Au15479	MW2 Water S20-Au15480	QA3 Water S20-Au15481
Date Sampled			Aug 11, 2020	Aug 11, 2020	Aug 11, 2020
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	INT	INT	INT
p-Terphenyl-d14 (surr.)	1	%	121	137	125
Heavy Metals					
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	0.008	0.005
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	0.19	0.008

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 11, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Aug 11, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 11, 2020	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 11, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 11, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8 filtered	Sydney	Aug 11, 2020	28 Days

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ABN: 50 005 085 521 web; www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name: Metech Consulting Pty Ltd

> PO Box 1184 Sutherland

> > NSW 1499

Project Name:

BROOKVALE

Project ID:

Address:

EP147

Order No.: Report #:

Phone:

Fax:

Eurofins Suite B7 (filtered metals)

737123

Brisbane

1/21 Smallwood Place

NATA # 1261 Site # 20794

Murarrie QLD 4172

(02)9575 7755

Received: Due:

Aug 11, 2020 4:11 PM Aug 12, 2020

Priority: Overnight **Contact Name:** Melissa Moyce

Eurofins Analytical Services Manager: Alena Bounkeua

Sample Detail

Melbourne Laboratory - NATA Site # 1254 & 14271	
Sydney Laboratory - NATA Site # 18217	Х
Brisbane Laboratory - NATA Site # 20794	
Double Laboratory, NATA Site # 22726	

Perth Laboratory - NATA Site # 23736 Newcastle Laboratory

External Laboratory

No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID	
1	MW1	Aug 11, 2020		Water	S20-Au15479	Χ
2	MW2	Aug 11, 2020		Water	S20-Au15480	Χ
3	QA3	Aug 11, 2020		Water	S20-Au15481	Χ
Test	Counts					3

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&i)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	88	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	107	70-130	Pass	
LCS - % Recovery							
BTEX							
Benzene			%	101	70-130	Pass	
Toluene			%	94	70-130	Pass	
Ethylbenzene			%	92	70-130	Pass	
m&p-Xylenes			%	94	70-130	Pass	
o-Xylene			%	96	70-130	Pass	
Xylenes - Total*			%	95	70-130	Pass	
LCS - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fracti	ions					
Naphthalene			%	83	70-130	Pass	
TRH C6-C10			%	87	70-130	Pass	
TRH >C10-C16			%	94	70-130	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbons	<u> </u>						
Acenaphthene			%	87	70-130	Pass	
Acenaphthylene			%	101	70-130	Pass	
Anthracene			%	110	70-130	Pass	
Benz(a)anthracene			%	119	70-130	Pass	
Benzo(a)pyrene			%	96	70-130	Pass	
Benzo(b&j)fluoranthene			%	116	70-130	Pass	
Benzo(g.h.i)perylene			%	103	70-130	Pass	
Benzo(k)fluoranthene			%	108	70-130	Pass	
Chrysene			%	101	70-130	Pass	
Dibenz(a.h)anthracene			%	113	70-130	Pass	
Fluoranthene			%	108	70-130	Pass	
Fluorene			%	103	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	94	70-130	Pass	
Naphthalene			%	83	70-130	Pass	
Phenanthrene			%	107	70-130	Pass	
Pyrene			%	111	70-130	Pass	
LCS - % Recovery			,,,			. 455	
Heavy Metals							
Arsenic (filtered)			%	105	80-120	Pass	
Cadmium (filtered)			%	103	80-120	Pass	
Chromium (filtered)			%	106	80-120	Pass	
Copper (filtered)			%	107	80-120	Pass	
Lead (filtered)			%	102	80-120	Pass	
Mercury (filtered)			%	109	80-120	Pass	
Nickel (filtered)			%	109	80-120	Pass	
Zinc (filtered)			%	107	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		Jource			Lillits	Lilling	Code
Total Recoverable Hydrocarbons -	1999 NEDM Fracti	ione		Result 1			
TRH C10-C14	S20-Au06600	NCP	%	108	70-130	Pass	
Spike - % Recovery	J20-A000000	INCF	/0	100	10-130	1 055	
Total Recoverable Hydrocarbons -	2013 NEDM Front	ione		Result 1			
TRH >C10-C16	S20-Au06600	NCP	%	94	70-130	Pass	
	320-AU00000	INCP	70	94	10-130	F 455	
Spike - % Recovery Heavy Metals				Popult 1			
Arsenic (filtered)	S20. Au15404	СР	%	Result 1	75-125	Pass	
, ,	S20-Au15481			1			
Chromium (filtered)	S20-Au15481	CP	%	86	75-125 75-125	Pass	
Chromium (filtered)	S20-Au15481	CP	%	90	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Copper (filtered)	S20-Au15481	CP	%	90			75-125	Pass		
Lead (filtered)	S20-Au15481	CP	%	87			75-125	Pass	s	
Mercury (filtered)	S20-Au15481	CP	%	90			75-125	Pass		
Nickel (filtered)	S20-Au15481	CP	%	92			75-125	Pass		
Zinc (filtered)	S20-Au15481	CP	%	91			75-125	Pass	;	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Duplicate					, , ,					
Total Recoverable Hydrocarb	otal Recoverable Hydrocarbons - 1999 NEPM Fractions									
TRH C6-C9	S20-Au10057	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass		
TRH C10-C14	S20-Au06610	NCP	mg/L	20	21	5.0	30%	Pass		
TRH C15-C28	S20-Au06610	NCP	mg/L	11	11	6.0	30%	Pass		
TRH C29-C36	S20-Au06610	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass		
Duplicate										
BTEX				Result 1	Result 2	RPD				
Benzene	S20-Au10057	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Toluene	S20-Au10057	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Ethylbenzene	S20-Au10057	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
m&p-Xylenes	S20-Au10057	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass		
o-Xylene	S20-Au10057	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Xylenes - Total*	S20-Au10057	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass		
Duplicate										
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	Result 1	Result 2	RPD						
Naphthalene	S20-Au10057	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass		
TRH C6-C10	S20-Au10057	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass		
TRH >C10-C16	S20-Au06610	NCP	mg/L	21	22	5.0	30%	Pass		
TRH >C16-C34	S20-Au06610	NCP	mg/L	3.8	4.0	5.0	30%	Pass		
TRH >C34-C40	S20-Au06610	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass		
Duplicate										
Heavy Metals				Result 1	Result 2	RPD				
Arsenic (filtered)	S20-Au15479	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Cadmium (filtered)	S20-Au15479	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass		
Chromium (filtered)	S20-Au15479	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Copper (filtered)	S20-Au15479	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Lead (filtered)	S20-Au15479	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Mercury (filtered)	S20-Au15479	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass		
Nickel (filtered)	S20-Au15479	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass		
Zinc (filtered)	S20-Au15479	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass		

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Alena Bounkeua Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	•	Ġ	ħ,	è	
0	-	ø	Ų	P	
	ö	q	õ	١	١

Eurofins I Environment Testing ABN 50 005 085 52

✓ Sydney Laboratory

Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com ☐ Brisbane Laboratory

Unit 1 21 Smallwood Place Murarrie QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com Perth Laboratory

Unit 2 91 Leach Highway Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com Melbourne Laboratory

6 Monterey Road Dandenong South VIC 3175 03 8564 5000 EnviroSampleVic@eurofins.com

Company	mpany Metech Consulting			Project № EP147					Project	Project Manager					Sampler(s)			Mel Moyce					
Address Level 1, 29 Kiora Road Miranda, NSW 2228	Level 1, 29 Kiora Road			Name Brookvale				EDD Format ESdat, EQuIS etc					Handed over by			Mel Moyce							
		lered".												Ema	il for In	voice	ad	lmin@	met	ech-consult.co	<u>om</u>		
Contact Name	Mel Moyce		cify "Total" or "Fille												Ema	il for Re	sults				ch.consulting;		
Phone №	0424 394 490			s / PAHs												Conta Change container type			necessa	ıry.	Required Turnaround Time (TAT) Default will be 5 days if not ticked.		
Special Directions			Analyses requested, please spie must be used to attra	Suite B7: TRH / BTEXN / Metals / PAHs													88		E) e	Suidelines)	☐ Overnight (repo	☐ 1 day ◆	
Purchase Order			metals are	TRH/											Plastic	250mL Plastic	ber Gla	OA vial	or HDP	1964, WA	☐ 2 days ◆ ☐ 5 days (Standa		
Quote ID №	and the same		Where	Suite B7											500mL Plastic	250mL Plastic	200mL Amber Glass	40mL VOA vial	Jar (Glass or HDPE)	stos AS4	☐ Other()
Nº	Client Sample ID	Sampled Date/Time dd/mm/yy hh.mm	Matrix Solid (S) Water (W)														20		y e	Other (Asbe		Comments ds Hazard Warning	ON SCHOOL SERVICE
1	MW1	11/08/20	w	×													1	2					
2	MW2	11/8/20	w	×									Day.				1	2			Maria Ba		
3	QA3	11/8/20	w	×													1	2					
4						E																	
5																							
6																	83	DOTE N					
														1000			9 100 2 100						
																	100	888					4
8																							
9																							
10																							
		THE OWNER OF THE PERSON	Counts	3								111		1		1	3					1.42	
Method of Shipment							Mel Moyce Signature				1/Hold 1		Date			11/08/2020 Time		NAME AND ADDRESS OF THE OWNER, WHEN	2:00:00 PM				
Laboratory Use Only	that this pile comment was a second by	ne Tukne	4	SYD I BNE MEL PER ADL NTL DRW			Signature	1				Date 1118		Time						10.53			
	Received By	Received By		SYD BNE MEL PER ADL NTL DRW			Signature	Signature				Date		Time			Report № 7		73712	K			