

Report on Preliminary Site Investigation with Limited Sampling

Proposed Nursery

10-12 Boondah Road, Warriewood NSW

Prepared for Henroth Investments Pty Ltd

Project 85749.04

28 May 2024

Document History

Details

Project No.	85749.04
Document Title	Report on Preliminary Site Investigation with Limited Sampling
Site Address	10-12 Boondah Road, Warriewood NSW
Report Prepared For	Henroth Investments Pty Ltd
Filename	85749.04.R001.Rev0.docx

Status and Review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Kurt Plambeck	J. M. Nash	29 February 2024
Revision 1	Kurt Plambeck	J. M. Nash	28 May 2024

Distribution of Copies

Status	Issued to
Revision 0	Henroth Investments Pty Ltd
Revision 1	Henroth Investments Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signatur	9	Date
Author	K fran	28 May 2024
Reviewer	PP perform	28 May 2024

Douglas Partners acknowledges Australia's First Peoples as the Traditional Owners of the Land and Sea on which we operate. We pay our respects to Elders past and present and to all Aboriginal and Torres Strait Islander peoples across the many communities in which we live, visit and work. We recognise and respect their ongoing cultural and spiritual connection to Country.

Executive summary

Douglas Partners Pty Ltd (DP) was engaged by Henroth Investments Pty Ltd to complete this Preliminary Site Investigation with Limited Sampling (PSI) for a proposed nursery development at 10-12 Boondah Road, Warriewood (the site).

The objective of the investigation was to assess the suitability of the site for the proposed development and whether further investigation and/or management is required. It is understood that the report will be used to support development application for the proposed development.

It is understood that the proposed development will comprise a commercial nursery with a single storey retail space, parking and footpaths and external plant displays. The concept plans are presented in Appendix A.

The investigation included the review of a previous preliminary site investigation and intrusive investigation and laboratory testing at 15 locations. The site history indicated that the site was formerly a market garden / orchard prior to its current land use. Off-site sources of contamination were also identified including a sewage treatment plant and legacy landfills.

Based on the site walkover and observed features the main areas of environmental concern included imported fill, soil stockpiles, hazardous building materials from current and former buildings at the site, a number of abandoned vehicles and household refuse and a areas used to commercially cut and store firewood.

The analytical results for in all samples were below the SAC with the exception of:

- various TPH fractions at TP09/0-0.1 which exceeded a number of the adopted SAC; and
- asbestos was detected in sample BH04/0-0.1 (500 ml sample) with the AF / FA concentration
 of 0.0015% which exceeds the adopted HIL of 0.001%. In addition, asbestos was also detected
 in sample TP15/0-0.1, however the AF / FA concentration was <0.001%. Also, during the site
 inspection in 2019 suspected ACM was observed at the surface near TP07 as noted on
 Drawing 1. Moreover, the site history and site conditions suggest that asbestos may be more
 widespread and accordingly a detailed asbestos assessment is recommended once the site
 is cleared of vegetation, buildings and waste materials.

The fill materials are provisionally waste classified as follows:

- fill in the vicinity of TP09 is provisionally classified as Restricted Solid Waste;
- fill in the vicinity of BH04, TP07 and TP15 is provisionally classified as Special Waste (asbestos) and General Solid Waste; and
- fill at the remainder of the site is provisionally classified as General Solid Waste.

Acid sulfate soil investigations and more detailed site investigations are considered necessary to confirm the waste classification and disposal requirements of both the fill and natural soils.

Based on the findings of the previous and current investigation it is recommended that the following be undertaken:

- the site should be cleared of overgrowth, and the abandoned vehicles and general refuse
- removed to a facility legally able to accept these wastes;
 a hazardous building materials inspection is undertaken of the existing structures on the site.
- a hazardous building materials inspection is undertaken of the existing structures on the site. Once the structures are removed a site clearance inspection by an occupation hygienist is also recommended, including a detailed site walkover and visual inspection to assess the potential for asbestos debris contamination of the site surface;
- further investigations into the nature of the legacy landfills at Boondah Reserve is recommended. If putrescible waste was disposed in these locations a preliminary landfill gas assessment may be recommended as part of the detailed contamination assessment;
- in addition, a detailed site investigation (DSI) is recommended and should include both asbestos assessment and groundwater investigation. The investigation should include an intrusive acid sulfate soil assessment and supplementary waste classification. as well as delineation testing of the identified asbestos impacts at BH04, TP07 and TP15 and TPH impacts TP09 and TP10, and soil stockpile testing to determine their suitability to be reused on site or otherwise disposed off-site; and
- preparation of a remediation action plan (RAP) to address the identified TPH and asbestos contamination and any additional contamination identified during the above additional investigations.

Based on the results of the investigation it is considered that the site can be made suitable for the proposed nursery development subject to implementation of the recommendations above.

Table of Contents

1.	Intro	oduction	1
2.	Prop	posed development	1
3.	Scop	pe of work	2
4.	Site	information	2
5.	Envi	ronmental setting	3
	5.1	Topography	3
	5.2	Site geology and soils	4
	5.3	Surface water and groundwater	4
6.	Prev	vious investigations and site history	5
	6.1	Previous reports	5
7.	Preli	iminary conceptual site model	9
8.	Sam	pling plan	13
	8.1	Data quality objectives	13
	8.2	Soil sampling rationale	13
9.	Site	assessment criteria	14
10.	Resu	ults	14
	10.1	Field work results	14
	10.2	Laboratory analytical results	15
11.	Disc	ussion	15
	11.1	Soils	15
	11.2	Preliminary waste classification	16
	11.3	Data quality assurance and quality control	17
12.	Cond	clusions and recommendations	17
13.	Refe	erences	18
14.	Limi	tations	18

Appendices

- Appendix A: Drawings
- Appendix B: About this Report
- Appendix C: Data Quality Objectives
- **Appendix D:** Fieldwork Methods
- Appendix E: Site Acceptance Criteria
- Appendix F: Fieldwork Results
- Appendix G: Results Summary Tables
- Appendix H: Laboratory Certificates, Chain of Custody and Sample Receipt
- Appendix I: Quality Assurance / Quality Control

Douglas Partners acknowledges Australia's First Peoples as the Traditional Owners of the Land and Sea on which we operate. We pay our respects to Elders past and present and to all Aboriginal and Torres Strait Islander peoples across the many communities in which we live, visit and work. We recognise and respect their ongoing cultural and spiritual connection to Country.

Report on Preliminary Site Investigation with Limited Sampling Proposed Nursery 10-12 Boondah Road, Warriewood NSW

1. Introduction

Douglas Partners Pty Ltd (DP) was engaged by Henroth Investments Pty Ltd to complete this preliminary site investigation with limited sampling (DSI) for a proposed commercial nursery development at 10-12 Boondah Road, Warriewood (the site). The site is shown on Drawing 1, Appendix A.

The investigation was undertaken in accordance with DP's proposal 85749.02.P.001.Rev1 dated 11 March 2022 and dated 14 February 2024.

The objective of the investigation was to assess the suitability of the site for the proposed development and whether further investigation and/or management is required. It is understood that the report will be used to support development application for the proposed development.

This report must be read in conjunction with all appendices including the notes provided in Appendix B. This report must be read in conjunction with all appendices including the notes provided in Appendix B.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

DP has previously prepared a preliminary site investigation entitled 'Report on Preliminary Site Investigation (for Contamination), Proposed Apartments and Playing Fields. 10-12 Boondah Road and 6 Jacksons Road, Warriewood, December 2019 (DP, 2019) and provided factual results on groundwater levels in a series of memoranda, (DP, 2016).

2. Proposed development

It is understood that the proposed development will comprise a commercial nursery with a single storey retail space, parking and footpaths and external plant displays. The concept plans are presented in Appendix A.

3. Scope of work

The scope of work included:

- a review of the previous investigation report;
- collection of soil samples from 15 test locations using a combination of excavator dug test pits and hand augured boreholes;
- collection of soil samples at regular depth intervals and upon signs of contamination;
- screening for volatile contaminants using a photo-ionisation detection (PID) instrument;
- analysis of selected soil samples at a NATA accredited analytical laboratory for the following:
 - o priority metals and metalloids (As, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn);
 - o total recoverable hydrocarbons (TRH);
 - o monocyclic aromatic hydrocarbons (benzene, toluene, ethylbenzene and xylene BTEX);
 - o polycyclic aromatic hydrocarbons (PAH);
 - o phenols;
 - o polychlorinated biphenyls (PCB);
 - o organochlorine pesticides (OCP);
 - o nitrate and phosphate;
 - o herbicides;
 - o asbestos (in 40g soil samples);
 - o asbestos (in 500 ml samples);
 - cation exchange capacity (CEC) and pH testing to determine ecological investigation levels;
 - toxicity characteristic leaching procedure (TCLP) for heavy metals for waste classification purposes;
 - o quality assurance / quality control (QA / QC) sample: replicates, trip spike and trip blank samples; and
 - preparation of PSI with limited sampling report.

4. Site information

Site address	10-12 Boondah Road, Warriewood
Legal description	Lot 4, DP 26902 Lot 9, DP 806132
Area	20,500 m ²
Zoning	RU2 Rural Landscape
Local Council Area	Northern Beaches Council
Current use	Rural Residential and commercial

Surrounding uses	North - residential (apartments)
East - Boondah Road and Sewerage treatment plant	
	South - Rural residential and Warriewood Shopping Centre
	West - Warriewood Wetlands

The site boundary is shown on **Figure 1**.

Figure 1: Site location

5. Environmental setting

5.1 Topography

The site is relatively flat with a surface level of approximately RL 2-4 m relative to Australian Height Datum (AHD). The site generally slopes towards the south (Narrabeen Creek) and east (Warriewood Wetland). Local relief can vary and in places the site slopes towards Boondah Road to the east.

5.2 Site geology and soils

Quaternary alluvial and estuarine sediment comprising peaty quartz sand, silt, and clay. The geological map information was confirmed by the (DP 2016) which identified deep sands interbedded with clay bands and underlain by bedrock at approximately 20 m to 35 m depth.

DP prepared a preliminary geotechnical memorandum for the site dated 14 December 2016 based on desktop assessment and the groundwater measurement assessment referenced in Section 5.3. Based on the inspection of the site and from DP's general understanding of the local geological conditions it was anticipated that the geotechnical model for the site may include:

- filling to depths of 1-2 m; over
- very loose to loose sand with clayey bands to depths of 4-8 m; over
- soft to stiff clay to depths of 10-15 m; over
- dense to very dense sand to depths of 15-20 m; over
- bedrock at depths of about 20-35 m; and
- a shallow groundwater table at depths of about 1-1.5 m (RL0.7 m to RL1.1 m) over most of the site and rising slightly to about RL1.5 m on the slightly elevated northern end of the site. Groundwater levels will fluctuate and may temporarily rise by at least 1 m (or higher and up to flood levels) following prolonged rainfall. Further monitoring would be required to assess fluctuations in groundwater levels.

The acid sulfate soil risk map indicates that the site is Class 3 acid sulfate soil, i.e., that there is a high probability of containing acid sulfate soils (ASS) between 1-3 m depth.

The Atlas of Australian Acid Sulfate Soils and Salinity identifies the site as being in an area categorised as Ae(p-), acid sulfate soils may be present in floodplains.

The Sydney 1:100,000 Soils Landscape Sheet indicates that the site is underlain by disturbed terrain. Disturbed terrain is described as level plain to hummocky terrain, extensively disturbed by human activity, including complete disturbance, removal, or burial of soil. Land fill includes soil, rock, building and waste materials. Turfed fill areas commonly capped with up to 40 cm of sandy loam or up to 60 cm of compacted clay over fill or waste materials.

5.3 Surface water and groundwater

DP completed a groundwater measurement investigation for Henroth reported in a series of memoranda in 2016 (DP 2016). The investigation included the drilling of four boreholes and installation of groundwater wells within the vicinity of the site (one within the site and three within a distance of approximately 500 m of the site). The measured groundwater levels varied from 0.8 m AHD to 1.4 m AHD (1.2 to 2.7 m bgl), rising to the north. The water levels were remeasured in 2019 (8 August 2019) with groundwater levels observed at a depth of 0.7 to 1.3 m AHD (1.0 to 2.9 m bgl). It was anticipated that groundwater below the site will discharge to either Narrabeen Creek 130 m to the south of the site or to Warriewood Wetlands to the west of the site. The aquifer at the site is classified as a surficial sediment aquifer (porous media - unconsolidated).

the time of completion of this report.

A search of the Department of Primary Industries Water registered groundwater bore database was completed for DP (2019). There are four registered bores within 100 m of the site. Within 500 m of the site there are a further 12 household and monitoring bores. The details of the bores within 100 m are summarised in Table 1. No additional registered bores were in the records as of

Bore ID authorised purpose completion year status	Location relative to site	Final depth (m)	Standing water level (m bgl)
GW113171 Monitoring 2013	28 m west (Warriewood Square Shopping Centre)	4.5	1.53
GW113169 Monitoring 2013	34 m west (Warriewood Square Shopping Centre)	4.8	1.52
GW113170 Monitoring 2013	47 m west (Warriewood Square Shopping Centre)	5.5	1.2
GW110259 Recreational 2008	96 m south-west (playing field)	5	2

Table 1: Summary of available information from nearby registered groundwater bores

6. Previous investigations and site history

6.1 **Previous reports**

DP completed a preliminary site investigation (PSI) at the site (DP (2019). The investigation included a site walkover and site history assessment. The key findings of the site history assessment included:

- the site was formerly a market garden / nursery / orchard;
- a number of small structures and greenhouses have periodically been constructed and demolished at the site; and
- potential off-site sources of contamination were identified including the Warriewood Sewage Treatment Plant to the east of the site and potential legacy landfills at Boondah Reserve located 50 to 100 m east and south of the site.

DP conducted a Site Walkover on 10 December 2019. Based on the site walkover and the features the main areas of environmental concern were broadly categorised into the following categories:

- raised areas that that appear to have fill;
- stockpiles of soil that were present at the site;

- building materials in existing structures which may have impacted surficial soils. Potential asbestos containing materials were noted on the ground surface in two locations; and
- areas where vehicles, general refuse, (including oil drums) and building materials had been abandoned on site.; and an area which was being used to store and cut firewood (commercially).

At the time of the current investigation (29 March 2022) the site had not changed substantially however some of the vehicles previously stored at the site had been removed. In addition, a portion of the site was being used as a storage yard by an electrician. It appeared that this area was primarily being used to store vehicles and temporary soil storage (a small stockpile). Access to the electrician's yard was not possible during the investigation.

DP has not conducted any further site inspections after 29 March 2022. DP's observations on the site condition and subsequent contamination risk were current as of 29 March 2022. DP cannot comment on the current site condition.

The site features observed in 2019 and 2022 are noted on Drawing 1. The detailed site description is provided in Table 2.

Area	Observations
	The north-eastern portion of 10 Boondah Road is a residential property that is separated from the rest of 10 Boondah Road by a fence.
North-Eastern Portion No. 10 Boondah	The house at 10 Boondah appears to be constructed from timber, steel, and fibro. The building was in very poor condition. The roof was weighed down by several tyres. At the rear to the house there was a small pile (approximately 12-15) of used tyres.
	The front yard of house had a lawn with parked cars and a boat that appears to be functional.
	A disused outhouse is present at the rear of the house which is connected to a septic system. There are several gas cylinders in this area.
	There are several motor bikes on the south-western side of the house. The bikes are in varying condition and there are several bike parts, oil cans and general refuse amongst the bikes.
	There is a corrugated iron and timber shed on the western side of the house. The shed is in poor condition and is occupied by various items including a motor bike, furniture, white goods, oxyacetylene tanks, oil drums, electrical goods, and general refuse.
	The western portion of this section of the site is occupied by several abandoned vehicles including cars, vans, utes. In 2022 several of the vehicles had been removed however a few still remained.

Table 2: Site observations – 29 March 2022

Area	Observations
	A septic tank is present at the rear of the house.
Part No. 10 Boondah	Most of the southern portion of No. 10 Boondah Road and this area is occupied by horse paddock/s. The paddocks are generally covered in grass, however there are a couple of areas of exposed soil (grey, brown sand).
	A wooden and corrugated steel structure is present in the centre of the paddock.
	The north-western corner of No. 10 was occupied by several caravans in 2019 that appear to be in working order which had been removed by 2022. There is also a shipping container which is attached to a timber and steel shed.
	The south-western corner of No. 12 is accessed via the north-western corner of No. 10.
	The western fringe of the area is occupied by thick trees and shrubs bordering the Warriewood Wetlands.
	No significant change was noted between 2019 and 2022.
	The south-western portion of No. 12 is slightly elevated, relative to the adjacent land (by 0.5-1.0 m) indicating that there is possible fill in this area.
	This area is occupied by several cars, caravans, and sheds. The vehicles appear to be in reasonable condition.
Southern Portion of 12 Boondah Road	There is some general refuse in the south-west portion of the site including a few small bundles of fibre cement sheeting.
	The north-east corner of No. 12 is occupied by several bundles of timber, other building materials and scaffolding materials. Minor amounts of general refuse are also present in this area.
	No significant change was apparent in this area between 2019 and 2022.
	The central area is occupied by a large pile of freshly chopped wood, a backhoe, and a work shed / shipping container. There is evidence of previous firewood stockpiling / production in this area. There were also small stockpiles of general refuse (household items and waste) in this area including discarded building materials, oil drums and other household items.
	A large stockpile is present in the central western portion of No. 12. The stockpile appeared to be in the order of 3 to 4 m high by 20 m x 20 m. The actual volume and composition of the stockpile was difficult to gauge due to the presence of thick vegetation covering the stockpile. The observed composition including some soil, concrete,

Area	Observations
	building materials, plastic, metal, oil containers and general household refuse. No significant change was apparent in this area between 2019 and 2022.
Central, East Portion of 12 Boondah Road	The central eastern portion of No. 12 is accessed by a separate gate. This area is occupied by two shipping containers, a small soil stockpile and general household wastes. No significant change was apparent in this area between 2019 and 2022.
South-East Portion of 12 Boondah Road	The south-east corner of 12 Boondah Road was occupied by an electrician company in 2022. A number of commercial vehicles were present, shipping containers and a small soil stockpile which appeared to be a temporary store for soil (possibly resulting from excess materials generated from in ground works completed by the electricians on their project sites). In 2019 this area was occupied with non-commercial vehicles but otherwise did not appear to be occupied.
Northern Portion – 12 Boondah Road	The northern portion of 12 Boondah Road is occupied by a rural residential property. The main features are described below. The site slopes up from the entrance to the rear of the site by approximately 1 m. The eastern portion of the area is occupied by a densely vegetated area on one side of the dirt drive and a horse paddock. The central northern area is used for storage of building materials and scaffolding. The western part of the area has several sheds, a shipping container, abandoned truck, tractor, building materials and general refuse.

Area	Observations
	A small residence is present which appears to be a demountable structure attached to a gazebo and Portaloo. A charcoal pit was present in this area.
	There is a small brick structure with an unknown function in the centre of No. 12.
	There is a brick outhouse in the north-eastern portion of No. 12.

It was considered that the risk of significant contamination associated with the current and historical land use is moderate. Accordingly based on the findings of the PSI, it was considered that the site can be made suitable for the proposed development subject a series of recommendations for more detailed investigations. These recommendations are provided in Section 12 with updated recommendations based on the findings of the current investigation.

7. Preliminary conceptual site model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e. it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

Based on the current investigation/previous reports, the following potential sources of contamination and associated contaminants of potential concern (CoPC) have been identified and summarised in Table 3.

Table 3: Summary of potential sources

Potential sources and associated CoPC					
On-site sources					
S1 - Filling (applies to whole site) and demolition rubble (applies primarily to 10 and 12 Boondah Road): Associated with levelling, and site formation and demolition of previous buildings at the site.					
Several stockpiles were also noted during the site inspection. The location of the observed stockpiles and the locations where it was apparent that fill was likely (due to the ground being elevated relative to the surrounds) are noted on Drawing 1. It is noted that fill may extend beyond these areas.					
COPC include metals, total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), organophosphate pesticides (OPP) volatile organic compounds (VOC), phenols, asbestos and synthetic mineral fibres (SMF).					
S2 - Historical market gardens (applies to the entire site).					
COPC include metals, nitrates, herbicides, OCP and OPP.					
S3 - Abandoned Cars, Refuse and Existing Structures.					

COPC include metals, TRH, BTEX, PAH, VOC, asbestos.

Potential sources and associated CoPC

On-site sources

The areas where significant refuse and abandoned vehicles were observed during the site inspection are noted on Drawing 1, Appendix A. It is however possible that these may extend to other areas that were not visible during the inspection due to the dense vegetation in parts of the site, or that they have moved during the course of time.

Off-site Sources

S4 - Off-site sources No. 1 - Market Gardens land use at adjacent and nearby properties (including two cement batching plants).

COPC include metals, TPH, BTEX, PAH, PCB, OCP, OPP, VOC, and phenols.

S5 - Off-site sources No. 2 - Legacy Landfills and Sewage Treatment Plant

COPC include nitrates, organic acids, sulphides, landfill gas (such as methane, carbon dioxide), metals, TPH, BTEX, PAH, PCB, OCP, OPP, VOC, phenols, and fluoride.

The following potential human and environmental receptors, along with relevant potential pathways, have been identified and summarised in Table 3.

Table 4: Summary of potential receptors and pathways

Potential human receptors

- **HR1** Construction and maintenance workers
- HR2 Current and future users (workers and customers at nursery)
- HR3 Adjacent users (residential, public open space, Warriewood Square Shopping Centre)

Potential environmental receptors

- **ER4 -** Groundwater
- ER5 Surface water (Narrabeen Creek and Warriewood Wetlands)
- **ER6 -** Terrestrial ecology

Potential pathways to human receptors

HP1 - Ingestion and dermal contact

HP2 - Inhalation of dust, vapours or landfill gas (and explosive risk from landfill gas)

Potential pathways to environmental receptors

EP3 - Leaching of contaminants and vertical mitigation into groundwater

EP4 - Lateral migration of groundwater providing baseflow to watercourses (Narrabeen Creek and Warriewood Wetland)

EP5 - Contact with terrestrial ecology.

Summary of potentially complete exposure pathways

GROUNDED EXPERTISE

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human, water or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (complete pathways). The possible pathways between the above sources and receptors are provided in Table 5..

Table 5: Summary of potentially complete exposure pathways

Source and CoPC	Exposure pathway	Receptor	Risk management action
S1 - Filling (applies to whole site) and demolition rubble.	HP1: Ingestion and dermal contact HP2: Inhalation of dust, vapours, or landfill gas	HR1: Construction and maintenance workers HR2: Current and future users	
COPC include metals, TRH, BTEX, PAH, OCP, OPP, PCB, phenols, VOC, and asbestos. S3 – Abandoned Cars Refuse and existing buildings / structures (applies to 10 and 12 Boondah Road). COPC include metals, TRH, BTEX, PAH, VOC, asbestos.	 EP3 - Leaching of contaminants and vertical mitigation into groundwater EP4 - Lateral migration of groundwater providing baseflow to watercourses (Narrabeen Creek and Warriewood Wetland) EP5 - Contact with terrestrial ecology. 	HR2: Current and future users ER4 - Groundwater ER5 - Surface water (Narrabeen Creek and Warriewood Wetlands) ER6 - Terrestrial ecology	A detailed site investigation for contamination is recommended to better characterise the contamination
	HP1: Ingestion and dermal contact HP2: Inhalation of dust, vapours, or landfill gas	HR1: Construction and maintenance workers HR2: Current and future users	risk. Further details on the recommended investigations is provided in Section 12.
S2 – Historical market gardens and S4 off-site Market Gardens COPC include metals, nitrates, herbicides, OCP and OPP.	 EP3 - Leaching of contaminants and vertical mitigation into groundwater EP4 - Lateral migration of groundwater providing baseflow to watercourses (Narrabeen Creek and Warriewood Wetland) EP5 - Contact with terrestrial ecology. 	ER4 - Groundwater ER5 - Surface water (Narrabeen Creek and Warriewood Wetlands) ER6 - Terrestrial ecology	Further investigation into the type and nature of the landfill present at Boondah Reserve and putrescible landfill is considered possible conduct land fill gas assessment.
S5 – Off-site sources No. 2 – Legacy Landfills COPC include nitrates, organic acids, sulphides, landfill gas (methane, carbon dioxide, hydrogen sulphide), metals, TPH, BTEX, PAH, PCB, OCP, OPP, VOC, phenols and fluoride.	 HP2: Inhalation of dust, vapours, or landfill gas (and potential explosive risk from landfill gas) EP3 - Leaching of contaminants and vertical mitigation into groundwater 	HR1: Construction and maintenance workers HR2: Current and future users HR3 - Adjacent users	

8. Sampling plan

8.1 Data quality objectives

The PSI with limited sampling was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The data quality objective process is outlined in Appendix C.

8.2 Soil sampling rationale

Based on the CSM and data quality objectives (DQO) the following sampling rationale was adopted.

Table A of NSW EPA (1995) recommends a minimum of 30 sampling points for a site of 2.0 ha for site characterisation based on the detection of circular hot spots using a systemic grid sampling pattern. Given the preliminary nature of the investigation and the limited access to parts of the site a total of 15 test locations were therefore positioned across accessible areas of the site.

A judgemental sampling strategy to determine borehole/test pit locations was adopted. Locations were based on site history information and the CSM with the rationale provided below. Borehole/test pit locations are shown on Drawing 1, in Appendix A.

Boreholes BH01 to BH03	Area currently used as a horse paddock and former market garden
Borehole BH04	Residential house
Test Pits TP05 to TP07	Suspected fill area and former vehicle storage area
Test Pit TP09 and TP10	Suspected fill area and firewood area
Test Pit TP11 to TP13	Suspected fill area, vehicle storage area, general refuse
Test Pits TP08, TP14 and 15	Site coverage

Soil samples were collected from each borehole / test pit at depths of approximately 0.15 m, 0.5 m, 1.0 m and every 0.5 m thereafter, and changes in lithology or signs of contamination.

The general sampling methods are described in the field work methodology, included in Appendix D.

9. Site assessment criteria

The Site Assessment Criteria (SAC) applied in the current investigation are informed by the CSM (Section 7) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic residential land use scenario. The derivation of the SAC is included in Appendix E and the adopted SAC are listed in Appendix E.

10. Results

10.1 Field work results

The borehole and test pit logs for this assessment are included in Appendix F. The logs recorded the following general sub-surface profile:

Southern Portion of 10 Boondah Road (Horse Paddock) - BH01, BH02 and BH03

Fill Grey, brown silty sand to a depth of 0.2 to 0.3 m blg

Sand Fine to medium grained grey sand.

Groundwater was encountered at a depth of 0.5 m to 0.8 m bgl during drilling.

Northern Side of 10 Boondah Road (Residential House) - BH04, TP05 and TP06

Fill	Dark grey clayey silt, brown sand 0.2 to 0.5 m blg.
	Refusal in fill encountered in BH04 at a depth of 0.3 m.
	Terracotta tiles noted in BH05.

Sand Fine to medium grained grey and brown sand.

Groundwater was encountered at a depth of 0.4 m to 0.8 m bgl during test pitting in TP05 and TP06.

Deep Fill Area (Western Side of 12 Boondah Road) - TP07, TP09 to TP13

Fill Dark grey clayey sand and brown sand with shale and sandstone, orange sand and clayey sand (crushed sandstone).

Refusal in fill encountered in TP09, TP10 and TP11 at a depth of 0.2 to 0.5 m on sandstone boulders in the fill or possible concrete.

Fill > 1.5 m in TP07, TP12, TP13 (limit of investigation)

Terracotta fragments noted in TP07 and TP10. Firewood fragments noted in TP07.

Groundwater was encountered at a depth of 0.9 m to 1.0 m bgl during test pitting.

Eastern side of 12 Boondah Road, TP08, TP14 and TP15

- Fill Grey, brown silty sand and sand to a depth of 0.1 to 0.2 m blg in TP14 and TP5.
 - Terracotta tiles and bricks in TP08. Test pit TP08 discontinued at 0.1 m in fill due to test pit collapse (saturated soils).
- Sand Fine to medium grained dark grey and brown sand.

Groundwater was encountered at a depth of 0.8 m bgl during test pitting at TP14 and TP15. Saturated soils in TP08 at 0.1 m (possible surface water drainage point).

It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time. Anecdotal information provided by the resident at the property indicated that the property periodically floods, including during the week that the investigation was undertaken with water levels in lower lying parts of the site of approximately 0.3 to 0.5 m above the surface.

There were no other apparent records of visual or olfactory evidence (e.g., staining, odours, free phase product) to suggest the presence of contamination within the soils or groundwater observed in the investigation.

The PID screening indicated that the sub-surface conditions were generally absent of VOC with all recorded values of less than 1 ppm.

10.2 Laboratory analytical results

The results of laboratory analysis are summarised in the following tables in Appendix G:

- table G1: Summary of Results of Soil Analysis; and
- table G2: Summary of Waste Classification Assessment.

The laboratory certificate(s) of analysis together with the chain of custody and sample receipt information are provided in Appendix H.

11. Discussion

11.1 **Soils**

The analytical results for in all samples were below the SAC with the exception of:

- at TP09/0-0.1:
 - TPH (F1, C6-C10)- BTEX) was detected at a concentration of 340 mg/kg which exceeded the adopted HSL (260 mg/kg), ESL (215 mg/kg);
 - TPH (>C10-C16) was detected at a concentration of 1200 mg/kg which exceeded the adopted ESL (170 mg/kg) and management limit (1000 mg/kg);

- TPH (F3 >C16-C34) was detected at a concentration of 17,000 mg/kg) which exceeded the adopted EIL (1700 mg/kg), management limit (10000 mg/kg);
- o a silica clean-up was undertaken on this sample to confirm the presence of petroleum hydrocarbons. The concentration of F2 (710 mg/kg) exceeded the ESL and the F3 concentration (8600 mg/kg) exceeded the EIL and management limit confirming the presence of petroleum hydrocarbons; and
- it is noted that shallow refusal was encountered at TP9 at 0.5 m on a possible sandstone boulder or concrete. Therefore, further investigations on the extent of the TPH impacts is recommended. Following the confirmation of the extent of TPH impacts remedial works will be required to remove or manage the associated TPH impacts.
- asbestos was detected in sample BH04/0-0.1 (500 ml sample) with the AF / FA concentration
 of 0.0015% which exceeds the adopted HIL of 0.001%. In addition, asbestos was detected in
 sample TP15/0-0.1, however in this case the AF / FA concentration was <0.001%. Also, during
 the site inspection in 2019 suspected ACM was observed at the surface near TP07 as noted
 on Drawing 1. Given the site history and observed site conditions it is considered quite likely
 that asbestos is more widespread and accordingly a detailed asbestos assessment would be
 warranted once the site is cleared of vegetation, buildings and surficial waste materials; and
- in addition, it is noted that herbicides, OPP and OCP were below detection limits. Furthermore, nitrate had a maximum concentration of 0.8 mg/kg and phosphate had a maximum concentration of 8.9 mg/kg indicating that significant impacts from pesticides, herbicides and fertilisers from previous market gardens and orchards is low. It is also noted that market gardening operations are understood to have ceased at the property no less than 30 years ago and therefore pesticides and herbicides would have largely been expected to have degraded (if present).

Note: The ESLs adopted for the assessment of the site for a commercial land use (nursery) may not necessarily be protective of the adjacent Warriewood wetland. Further investigation would be required (groundwater assessment) to demonstrate that there is no off-site risk.

11.2 Preliminary waste classification

The results of the preliminary soil testing were all within the criteria for general solid waste with the following exceptions:

- TPH C10-C36 exceeded the SCC1 criteria of 10,000 mg/kg in sample TP09/0-0.1 (18,000 mg/kg) and the silica clean-up of the same sample (10,010 mg/kg); and
- asbestos was detected in samples BH04/0-0.1 and TP15/0-0.1. Suspected ACM was also noted in 2019 on the surface near test pit TP07 (refer to Drawing 1).

It is also noted that lead exceeded the CTI criteria in sample BH4/0-0.1 (110 mg/kg) however the TCLP result was 0.6 mg/kg and therefore the lead concentration was within the SCCI and TCLPI criteria for general solid waste.

Therefore, the fill is provisionally classified as follows:

- fill in the vicinity of TP09 is provisionally classified as Restricted Solid Waste;
- fill in the vicinity of BH04, TP07 and TP15 is provisionally classified as Special Waste (asbestos) and General Solid Waste; and
- fill at the remainder of the site is provisionally classified as General Solid Waste.

Note: acid sulfate soil investigations and more detailed site investigations are required to confirm the classification and disposal requirements of both the fill and natural soils.

11.3 Data quality assurance and quality control

The data quality assurance and quality control (QA / QC) results are included in Appendix I. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

12. Conclusions and recommendations

Based on the findings of the previous and current investigation it is recommended that the following be undertaken:

- the site should be cleared of overgrowth, and the abandoned vehicles and general refuse removed to a facility legally able to accept these wastes;
- a hazardous building materials inspection is undertaken of the existing structures on the site. Once the structures are removed a site clearance inspection by an occupation hygienist is also recommended, including a detailed site walkover and visual inspection to assess the potential for asbestos debris contamination of the site surface;
- further investigations into the nature of the legacy landfills at Boondah Reserve is recommended. If putrescible waste was disposed in these locations a preliminary landfill gas assessment may be recommended as part of the detailed contamination assessment;
- in addition, a detailed site investigation (DSI) is recommended and should include both asbestos assessment and groundwater investigation. The investigation should include an intrusive acid sulfate soil assessment and supplementary waste classification, as the DSI should include a suitable asbestos assessment involving delineation testing of the identified asbestos impacts at BH04, TP07 and TP15 as well as TPH impacts around TP09. Stockpile testing will also be required to determine the suitability of soils to be reused on site or otherwise classification for disposal off-site;
- the preliminary assessment did not include an assessment of potential per and polyfluoroalkyl substances (PFAS). It is recommended that the DSI include an assessment of PFAS risk; and
- preparation of a remediation action plan (RAP) to address the identified TPH and asbestos contamination and any additional contamination identified during the above additional investigations.

Based on the results of the investigation it is considered that the site can be made suitable for the proposed nursery development subject to implementation of the recommendations above.

13. References

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene*. Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

DP. (2016). *Groundwater Measurements, Memorandums 1 to 4, 3-12 Boondah Road, Warriewood,.* Project 85749.00, 2016 to 2019: Douglas Partners Pty Ltd.

DP. (2019). Report on Preliminary Site Investigation (for Contamination), Proposed Apartments and Playing Fields, 10-12 Boondah Road and 6 Jacksons Road Warriewood. Project 85479.01.R.01.rev0 December 2019: Douglas Partners Pty Ltd.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land*. Contaminated Land Guidelines: NSW Environment Protection Authority.

NSW EPA. (2022). Contaminated Sites, Sampling Design Guidelines. NSW Environment Protection Authority.

14. Limitations

Douglas Partners (Douglas) has prepared this report for this project at 10-12 Boondah Road, Warriewood NSW in accordance with Douglas proposal 85749.02.P.001.Rev0 dated 11 March 2022 proposal dated 14 February 2024. and acceptance received from Uday Bin Singh dated 14 February 2024. The work was carried out under Douglas' Engagement Terms. This report is provided for the exclusive use of Henroth Investments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and / or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during the investigations and advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and / or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

DP personnel are not licenced or accredited surveyors. Any quantities quoted in this report are provided for general guidance only and should not be relied upon. The services of a licenced / accredited surveyor should be engaged if reliable quantities are required.

Asbestos has been detected by observation and by laboratory analysis. Building demolition materials, such as concrete and brick, were also observed and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Appendix A

Drawings

Douglos Dortmore	
Douglas Partners Geotechnics Environment Groundwater	
Geotechnics Environment Groundwater	

CLIENT:	Henroth Group		TITLE:	Si
OFFICE:	Sydney	DRAWN BY: KDP		Pi
SCALE:	1:1437 @ A3	DATE: 29.04.2022		10

Site Location and Location of Tests Proposed Residential Redevelopment 10-12 Bondah Road Warriewood

WARRIEWOOD NURSERY 10-12 BOONDAH ROAD, WARRIEWOOD, NSW 2102

Rev.	Date	Description	lss. Appr
1	17/01/2024	DRAFT	RW
2	02/02/2024	DRAFT	KD
3	28/02/2024	DRAFT	RW
4	06/03/2024	DRAFT	RW
5	27/03/2024	DRAFT	RW
6	22/05/2024	DRAFT	SU

WAR-BUC-AZ-DR-AR-DA-AMP - 0001

SHEET NUMBER	SHEET NAME	Current Revision
AMP - 0001	COVER SHEET	6
AMP-0002	EXISTING ENVIRONMENT	6
AMP-0003	EXISTING AERIAL	6
AMP-0004	LAND ZONING MAP	6
AMP-0101	SITE PLAN	6
AMP-0111	SHADOW DIAGRAMS-SUMMER SOLSTICE	6
AMP-0112	SHADOW DIAGRAMS-WINTER SOLSTICE	6
AMP-2001	LEVEL G	6
AMP-2002	ROOF PLAN	6
AMP-2101	FLOOR PLANS	6
AMP-4001	ELEVATIONS	6
AMP-4002	SECTIONS	6
AMP-9901	3D VIEWS-SHEET -01	6

Revision

6

1. SITE

2. ADJOINING RESIDENTIAL DEVELOPMENT

3. ADJOINING RESIDENTIAL DEVELOPMENT

4. NEAR-BY PLAYING FIELDS

WARRIEWOOD

10-12 Boondah Rd, Warriewood, New South Wales 2102

5. ADJOINING SHOPPING CENTRE (WARRIEWOOD SQUARE)

6. NEAR-BY B-LINE BUS STOP (PITTWATER ROAD)

Rev.	Date	Description	lss.	Appr.
1	17/01/2024	DRAFT	RW	
2	02/02/2024	DRAFT	KD	
3	28/02/2024	DRAFT	RW	
4	06/03/2024	DRAFT	RW	
5	27/03/2024	DRAFT	RW	
6	22/05/2024	DRAFT	SU	

7. NEAR-BY BUS STOPS (JACKSONS ROAD)

Sydney Studio + 61 2 9566 1611 / buchan.au

Revision

6

Scale

WARRIEWOOD 10-12 Boondah Rd, Warriewood, New South Wales 2102

Rev.	Date	Description	Iss. Appr.
1	17/01/2024	DRAFT	RW
2	02/02/2024	DRAFT	KD
3	28/02/2024	DRAFT	RW
4	06/03/2024	DRAFT	RW
5	27/03/2024	DRAFT	RW
6	22/05/2024	DRAFT	SU

Drawing Number AMP-0003

Sydney Studio + 61 2 9566 1611 / buchan.au

Scale

Revision
6

 \setminus

WARRIEWOOD 10-12 Boondah Rd, Warriewood, New South Wales 2102

Rev.	Date	Description	lss.	Appr.	Drawing Number
1	17/01/2024	DRAFT	RW		
2	02/02/2024	DRAFT	KD		
3	28/02/2024	DRAFT	RW		
4	06/03/2024	DRAFT	RW		
5	27/03/2024	DRAFT	RW		
6	22/05/2024	DRAFT	SU		Nominated Architect: Anthony Palamara NSW ARN 7274 Do not scale this drawing. Verify all dimensions on site befor any work. Copyright © 2024Buchan. This drawing remains I The Buchan Group Australia Pty Ltd. Reproduction in whole

Do not scale this drawing. Verify all dimensions on site before commencing any work. Copyright © 2024Buchan. This drawing remains the property of The Buchan Group Australia Pty Ltd. Reproduction in whole or in part without prior consent is forbidden.

Scale

- A Residential Zone Medium Density Residential
- B1 Neighbourhood Centre
- B2 Local Centre
- B3 Commercial Core
- B4 Mixed Use
- C Business Zone Business Park
- C2 Environmental Conservation; C2, Environmental Management
- C4 Environmental Living
- D Business Zone Mixed Use
- E1 Local Centre
- E2 Commercial Centre
- EM Employment
- EP Employment
- ENP Environment Protection
- R1 General Residential
- R2 Low Density Residential
- R3 Medium Density Residential
- RE1 Public Recreation
- RE2 Private Recreation
- RU2 Rural Landscape
- RU3 Forestry
- RU4 Primary Production Small Lots
- RU6 Transition
- SP1 Special Activities
- SP2 Infrastructure
- SP3 Tourist

Revision

6

Room Sch	edule
Name	Area
GARDEN CENTRE	353 m ²
MALE	15 m ²
DIS. ROOM	6 m ²
FEMALE	12 m ²
STORAGE	47 m ²
PLANT RM	20 m ²
Grand total: 6	452 m ²

Site Plan 1 SCALE 1:500

WARRIEWOOD

10-12 Boondah Rd, Warriewood, New South Wales 2102

Rev.	Date	Description	Iss. Appr.
1	17/01/2024	DRAFT	RW
2	02/02/2024	DRAFT	KD
3	28/02/2024	DRAFT	RW
4	06/03/2024	DRAFT	RW
5	27/03/2024	DRAFT	RW
6	22/05/2024	DRAFT	SU

Drawing Number AMP-0101

Nominated Architect: Anthony Palamara NSW ARN 7274 Do not scale this drawing. Verify all dimensions on site before commencing any work. Copyright © 2024Buchan. This drawing remains the property of The Buchan Group Australia Pty Ltd. Reproduction in whole or in part without prior consent is forbidden.

WARRIEWOOD 10-12 Boondah Rd, Warriewood, New South Wales 2102

5 21ST DEC 1 PM SCALE 1:1000

6 21ST DEC 2 PM - SCALE 1:1000

Rev.	Date	Description	Iss. Appr.
1	17/01/2024	DRAFT	RW
2	02/02/2024	DRAFT	KD
3	28/02/2024	DRAFT	RW
4	06/03/2024	DRAFT	RW
5	27/03/2024	DRAFT	RW
6	22/05/2024	DRAFT	SU

Drawing Number AMP-0111

0 1<u>0 2</u>0 4<u>0 60</u>M

WARRIEWOOD

10-12 Boondah Rd, Warriewood, New South Wales 2102

06 21ST JUNE 2 PM SCALE 1:1000

WARRIEWOOD

10-12 Boondah Rd, Warriewood, New South Wales 2102

Rev.	Date	Description	lss. Appr
1	17/01/2024	DRAFT	RW
2	02/02/2024	DRAFT	KD
3	28/02/2024	DRAFT	RW
4	06/03/2024	DRAFT	RW
5	27/03/2024	DRAFT	RW
6	22/05/2024	DRAFT	SU

Drawing Number AMP-2001

Nominated Architect: Anthony Palamara NSW ARN 7274 Do not scale this drawing. Verify all dimensions on site before commencing any work. Copyright © 2024Buchan. This drawing remains the property of The Buchan Group Australia Pty Ltd. Reproduction in whole or in part without prior consent is forbidden.

WARRIEWOOD

10-12 Boondah Rd, Warriewood, New South Wales 2102

Rev.	Date	Description	lss. Appr.
1	17/01/2024	DRAFT	RW
2	02/02/2024	DRAFT	KD
3	28/02/2024	DRAFT	RW
4	06/03/2024	DRAFT	RW
5	27/03/2024	DRAFT	RW
6	22/05/2024	DRAFT	SU

Drawing Number AMP-2002

Nominated Architect: Anthony Palamara NSW ARN 7274 Do not scale this drawing. Verify all dimensions on site before commencing any work. Copyright © 2024Buchan. This drawing remains the property of The Buchan Group Australia Pty Ltd. Reproduction in whole or in part without prior consent is forbidden.

Rev.	Date	Description	lss. Appr.	Drawing Number
1	17/01/2024	DRAFT	RW	
2	02/02/2024	DRAFT	KD	
3	28/02/2024	DRAFT	RW	
4	06/03/2024	DRAFT	RW	
5	27/03/2024	DRAFT	RW	
6	22/05/2024	DRAFT	SU	Nominated Architect: Ant
				Do not scale this drawing any work. Copyright © 20 The Buchan Group Austr

Nominated Architect: Anthony Palamara NSW ARN 7274 Do not scale this drawing. Verify all dimensions on site before commencing any work. Copyright © 2024Buchan. This drawing remains the property of The Buchan Group Australia Pty Ltd. Reproduction in whole or in part without prior consent is forbidden.

Room Schedule			
Name	Area		
GARDEN CENTRE	353 m ²		
MALE	15 m ²		
DIS. ROOM	6 m ²		
FEMALE	12 m ²		
STORAGE	47 m ²		
PLANT RM	20 m ²		
Grand total: 6	452 m ²		

0 2 4 8 12M

Scale

WARRIEWOOD

10-12 Boondah Rd, Warriewood, New South Wales 2102

Rev.	Date	Description	lss. Appr.	AMP-4001
1	17/01/2024	DRAFT	RW	
2	02/02/2024	DRAFT	KD	
3	28/02/2024	DRAFT	RW	
4	06/03/2024	DRAFT	RW	
5	27/03/2024	DRAFT	RW	
6	22/05/2024	DRAFT	SU	Nominated Architect: A Do not scale this drawi any work. Copyright © The Buchan Group Au

Rev.	Date	Description	lss.	Appr
1	17/01/2024	DRAFT	RW	
2	02/02/2024	DRAFT	KD	
3	28/02/2024	DRAFT	RW	
4	06/03/2024	DRAFT	RW	
5	27/03/2024	DRAFT	RW	
6	22/05/2024	DRAFT	SU	

Drawing Number AMP-4002

KEY PLAN

0 2.5 5 10 <u>15</u>M Revision
6 Scale 1 : 250 @A1

WARRIEWOOD 10-12 Boondah Rd, Warriewood, New South Wales 2102

Rev.	Date	Description	lss.	Appr.
1	17/01/2024	DRAFT	RW	
2	02/02/2024	DRAFT	KD	
3	28/02/2024	DRAFT	RW	
1	06/03/2024	DRAFT	RW	
5	27/03/2024	DRAFT	RW	
6	22/05/2024	DRAFT	SU	

Drawing Number AMP-9901

Nominated Architect: Anthony Palamara NSW ARN 7274 Do not scale this drawing. Verify all dimensions on site before commencing any work. Copyright © 2024Buchan. This drawing remains the property of The Buchan Group Australia Pty Ltd. Reproduction in whole or in part without prior consent is forbidden.

Appendix B

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at

the time of construction as are indicated in the report; and

• The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

continued next page

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

intentionally blank

Appendix C

Data Quality Objectives

1. Data quality objectives

The PSI has been devised broadly in accordance with the seven-step data quality objectives (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013).

Table 1: Data quality objectives

Step	Summary
1: State the	The objective of the investigation is to confirm the contamination status of the site with respect to the proposed land use. The report is being undertaken as the land proposed to be redeveloped as a commercial nursery. The requirements of the regulator, Northern Beaches Council, will also be considered by consulting their Development Control Plan (DCP), Local Environment Plan (LEP) and any other requirements based on our recent experience with Council on similar sites.
problem	A preliminary conceptual site model (CSM) has been prepared (Section 7) for the proposed development.
	The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, field staff.
2: Identify the decisions / goal of	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 7). The CSM identifies the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Appendix E.
the study	The decision is to establish whether or not. On this basis, an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and / or remediation will be derived.
3: Identify the information inputs	Inputs to the investigation will be the results of analysis of samples to measure the concentrations of COPC identified in the CSM (Section 7) at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the COPC are detailed in Appendix E.
	A photoionization detector (PID) was used on-site to screen soils for VOC. PID readings were used to inform sample selection for laboratory analysis.
4: Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing I, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken. Constraints to the assessment are identified and discussed in the conclusions of the report, Section 12.
5: Develop the analytical approach (or decision rule)	The decision rule is to compare all analytical results with SAC (Appendix E, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.

Step	Summary			
	Where a sample result exceeded the adopted criterion, a further site-specific assessment has been made as to the risk posed by the presence of that contaminant(s).			
	Initial comparisons were with individual results then, where required, using summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL)) to assess potential risks posed by the site contamination. Quality control results were assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates, and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix I.			
	• baseline condition: Contaminants at the site exceed human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis).			
6: Specify the performance or acceptance criteria	• alternative condition: Contaminants at the site comply with human health and environmental SAC and as such, do not pose a potentially unacceptable risk to receptors (alternative hypothesis).			
	• unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.			
7: Optimise the design for obtaining data	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.			
	Further details regarding the proposed sampling plan are presented in Section 8.			

2. References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix D

Fieldworks Methods

1. Guidelines

The following key guidelines were consulted for the field work methodology:

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

2. Soil sampling

Soil sampling was carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprised:

- collect soil samples directly from the excavator bucket at the nominated sample depth/hand auger;
- transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- collect replicate samples in zip-lock bags for PID screening;
- collect ~500 ml samples for FA and AF analysis;
- collect ~40 g to 50 g samples in zip-lock bags for asbestos (presence / absence) analysis;
- wear a new disposable nitrile glove for each sample point thereby minimising potential for cross-contamination;
- collect 10% replicate samples for QC purposes;
- label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- use chain of custody documentation.

2.1 Field testing

Field testing was carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprised:

PID Field Test

- calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- allow the headspace in the PID zip-lock bag samples to equilibrate; and
- screen using the PID.

3. **References**

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix E

Site Acceptance Criteria

1. Introduction

1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and / or derivation of the SAC:

- land use: residential / recreational / commercial / industrial;
 - o corresponding to land use category 'D', commercial / industrial such as shops, offices, factories, and industrial sites.; and
- soil type: sand.

2. Soils

2.1 Health investigation and screening levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and Table 2.

Contaminant	HIL-D	
Metals		
Arsenic	3000	
Cadmium	900	
Chromium (VI)	3600	
Copper	240 000	
Lead	1500	
Mercury (inorganic)	730	
Nickel	6000	

Table 1: Health investigation levels (mg/kg)

Contaminant	HIL-D
Zinc	400 000
РАН	
B(a)P TEQ	40
Total PAH	4000
Phenols	
Phenol	240 000
Pentachlorophenol	660
ОСР	
DDT+DDE+DDD	3600
Aldrin and dieldrin	45
Chlordane	530
Endosulfan	2000
Endrin	100
Heptachlor	50
НСВ	80
Methoxychlor	2500
ОРР	
Chlorpyrifos	2000
РСВ	
РСВ	7
Herbicides	
2,4,5-T	5000
2,4-D	9000
МСРА	5000
МСРВ	5000
Mecoprop	5000
Picloram	35000

Table 2: Health screening levels (mg/kg)

Contaminant	HSL-D	HSL-D
SAND	0 m to <1 m	1 m to <2 m
Benzene	3	3

Contaminant	HSL-D	HSL-D
Toluene	NL	NL
Ethylbenzene	NL	NL
Xylenes	230	NL
Naphthalene	NL	NL
TRH FI	260	370
TRH F2	NL	NL

Notes: TRH F1 is TRH C6-C10 minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene.

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Contaminant	DC HSL-D	DC HSL-IMW
Benzene	430	1100
Toluene	99 000	120 000
Ethylbenzene	27 000	85 000
Xylenes	81 000	130 000
Naphthalene	11 000	29 000
TRH FI	26 000	82 000
TRH F2	20 000	62 000
TRH F3	27 000	85 000
TRH F4	38 000	120 000

Table 3: Health screening levels for direct contact (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX TRH F2 is TRH > C_{10} - C_{16} minus naphthalene IMW intrusive maintenance worker

2.2 Asbestos in soil

Based on the CSM and / or current site access limitations, a detailed asbestos assessment was not considered to be warranted at this stage. However, due to the history of widespread use of ACM products across Australia, ACM can be encountered unexpectedly and sporadically at a site. Therefore, the presence or absence of asbestos at a limit of reporting of 0.1 g/kg (AS:4964) has been adopted for this investigation / assessment as an initial screen.

Where 500 ml soil samples were recovered The HSL for asbestos is adopted which are based on likely exposure levels for different scenarios published in NEPC (2013) for the following forms of asbestos:

- bonded asbestos containing material (ACM); and
- fibrous asbestos and asbestos fines (FA and AF).

The HSL are in Table 4.

Table 4: Health screening levels for asbestos

Form of asbestos	HSL-D
ACM	0.05%
FA and AF	0.001%
FA and AF and ACM	No visible asbestos for surface soil *

Notes: Surface soils defined as top 10 cm.

* Based on site observations at the sampling points and the analytical results of surface samples.

2.3 **Ecological investigation levels**

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 6, with inputs into their derivation shown in Table 5.

Table 5: Inputs to the derivation of the ecological investigation levels

Variable	Input	Rationale
Age of contaminants	"Aged" (>2 years)	Potential sources > 2 years old
рН	6.97	Site measured
CEC	14.2 cmolc/kg	Site measured
Clay content	5%	Assumed conservative value
Traffic volumes	high	
State / Territory	NSW	

Table 6: Ecological investi	gation levels (mg/kg)

Contaminant	EIL-D
Metals	
Arsenic	160
Copper	320
Nickel	370
Chromium III	680
Lead	1800
Zinc	950
РАН	
Naphthalene	370
OCP	
DDT	640

Notes: EIL-D commercial and industrial

2.4 **Ecological screening levels**

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 7.

Contaminant	Soil Type	ESL-D								
Benzene	Coarse	75								
Toluene	Coarse	135								
Ethylbenzene	Coarse	165								
Xylenes	Coarse	180								
TRH F1	Coarse/ Fine	215*								
TRH F2	Coarse/ Fine	170*								
TRH F3	Coarse	1700								
TRH F4	Coarse	3300								

Table 7: Ecological screening levels (mg/kg)

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH >C10-C16 including naphthalene

ESL- D commercial and industrial

2.5 Management limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- formation of observable light non-aqueous phase liquids (LNAPL);
- fire and explosion hazards; and
- effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

The adopted management limits are in Table 8.

Contaminant	Soil type	ML-D
TRH F1	Coarse	700
TRH F2	Coarse	1000
TRH F3	Coarse	3500
TRH F4	Coarse	10 000

Table 8: Management limits (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} including BTEX TRH F2 is TRH $>C_{10}$ - C_{16} including naphthalene. ML-D Commercial and Industrial

3. References

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater*. Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix F

Fieldwork Results

BOREHOLE LOG

 SURFACE LEVEL:
 2.3 AHD

 EASTING:
 342262

 NORTHING:
 6270514

 DIP/AZIMUTH:
 90°/-

BORE No: BH01 PROJECT No: 85749.02 DATE: 29/3/2022 SHEET 1 OF 1

									1
	Donth	Description	hic				& In Situ Testing	ъ	VWP
묍	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
	, ,	Strata	G	Ту		San	Comments	-	Details
		FILL: grey-brown, medium to coarse silty sand, trace	\boxtimes		0.0				
		roots, moist	\mathbb{X}	Е			PID<1		
╞┝					0.1				-
			\bigotimes						
	0.2								-
		SAND: fine to medium, dark grey, moist, loose							
-01-									
╞╞					0.4				-
				Е			PID<1		
					0.5				-
t †									
		Below 0.65m: dark grey-orange							
╞┝									-
								Ţ	-
		Below 0.8m: saturated						-22	
								29-03-22	
t t					0.9			CN	
				E			PID<1		
╞┝	1 1.0	Bore discontinued at 1.0m due to collapse	1		-1.0-				1
╞┝									-
									-
$\lfloor ight angle$									
									†
$\left \right $									F
									ļ
									† I
							CASING		

RIG: Hand Auger to 1.0m D

CLIENT:

PROJECT:

Henroth Investments Ltd

LOCATION: 10-12 Boondah Road, Warriewood

Proposed Bulky Goods Store

DRILLER: VV

LOGGED: VV

CASING: Uncased

TYPE OF BORING: Hand Tools WATER OBSERVATIONS: Groundwater observed at 0.8m REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	١.					
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)						
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

BOREHOLE LOG

SURFACE LEVEL: 2.3 AHD **EASTING:** 342244 **NORTHING:** 6270492 DIP/AZIMUTH: 90°/--

BORE No: BH02 PROJECT No: 85749.02 DATE: 29/3/2022 SHEET 1 OF 1

Sampling & In Situ Testing VWP Description Graphic Water Depth Log Sample 뭅 Construction of Depth Type Results & Comments (m) Details Strata 0.0 FILL: grey-brown, medium to coarse silty sand, trace roots, moist E* PID<1 0.1 0.2 SAND: fine to medium, dark grey, moist, loose 0.4 Е PID<1 0.5 Below 0.65m: dark grey-orange Ţ Below 0.8m: saturated 29-03-22 0.9 Е PID<1 1.0 1.0 1 Bore discontinued at 1.0m Target depth reached

RIG: Hand Auger to 1.0m DRILLER: VV TYPE OF BORING: Hand Tools WATER OBSERVATIONS: Groundwater observed at 0.8m REMARKS: *Field Replicate BD01 taken at 0.0-0.1m

A Auger sample B Bulk sample BLK Block sample

CDE

CLIENT:

PROJECT:

LOCATION:

Henroth Investments Ltd

Proposed Bulky Goods Store

10-12 Boondah Road, Warriewood

LOGGED: VV

CASING: Uncased

DIP/AZ						ING:	342203 6270457 H: 90°/	PROJECT No: 85749.02 DATE: 29/3/2022 SHEET 1 OF 1		
RL	Depth	Description of	Graphic Log				& In Situ Testing	Water	VWP Construction	
Ľ	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	Ň	Details	
		FILL: grey-brown, medium to coarse silty sand, rootlets, moist		E	0.0		PID<1		-	
	0.3	SAND: fine to medium, dark grey		, , ,	0.4					
				Е			PID<1			
	0.5	Bore discontinued at 0.5m due to collapse			-0.5-			29-03-22		

DRILLER: VV **RIG:** Hand Auger to 0.5m

CLIENT:

Henroth Investments Ltd

LOGGED: VV

CASING: Uncased

TYPE OF BORING: Hand Tools WATER OBSERVATIONS: Groundwater observed at 0.5m **REMARKS:**

BOREHOLE LOG

SURFACE LEVEL: 1.8 AHD EASTING: 342203

BORE No: BH03 PRO IECT No: 85749.02

LOCATION: 10-12 Boondah Road, Warriewood							6270533 H: 90°/	DATE: 29/3/2022 SHEET 1 OF 1		
Description .9					Sam		& In Situ Testing	VWP		
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
-	- 0.3	FILL: dark grey-black, clayey silt, with roadbase gravel, moist		E	0.0		PID<1			
-	-	Bore discontinued at 0.3m Auger Refusal in fill								
-	-								-	
-	- 1 -								-1	
-	-								-	
	-								-	
	-								-	

RIG: Hand Auger to 0.3m TYPE OF BORING: Hand Tools

CLIENT:

PROJECT:

Henroth Investments Ltd

Proposed Bulky Goods Store

DRILLER: VV

LOGGED: VV

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed **REMARKS:** SAMPLING & IN SITU TESTING LEGEND

BOREHOLE LOG

SURFACE LEVEL: 2.6 AHD EASTING: 342253

BORE No: BH04 **PROJECT No: 85749.02** DATE: 20/2/2022

		BORE	EHC	C	ΕL	-0	G		
CLIENT: PROJECT: LOCATION:		1 5 -			STIN RTH	G: ING:	EVEL: 4.1 AHD 342185 6270586 H: 90°/		BORE No: TP11 PROJECT No: 8574 DATE: 30/3/2022 SHEET 1 OF 1
Γ		Description			San	npling	& In Situ Testing	<u>ب</u>	VWP
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
		FILL/SANDY Silt: dark grey, with terracotta, brick and tiles, moist	\bigotimes	E*	0.0		PID<1		
-4					0.1				-
Ī	- 0.2	Bore discontinued at 0.2m	K A A						
1		Refusal on possible sandstone boulder						1	

ILL/SANDY Silt: dark grey, with terracotta, brick and tiles, noist	E*	0.1	PID<1
Bore discontinued at 0.2m Refusal on possible sandstone boulder			

-1 -1

RIG: Hand Auger to 0.2m DRILLER: VV TYPE OF BORING: Hand Tools

LOGGED: VV

CASING: Uncased

49.02

WATER OBSERVATIONS: No free groundwater observed **REMARKS:** *Field Replicate BD03 taken at 0.0-0.1m

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 U
 Tube sample (x mm dia.)
 PL(D) Point load dametral test Is(50) (MPa)

 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 mple
 ¥
 Water level
 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

SURFACE LEVEL: 3.1 AHD EASTING: 342221 NORTHING: 6270510 PIT No: TP05 PROJECT No: 85749.02 DATE: 29/3/2022 SHEET 1 OF 1

Depth	Description	hic		Sam		In Situ Testing	<u> </u>	Dynam	nic Pene	etromete	er Test
(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water			etromete per mm)	
	FILL: dark grey-brown, sandy silt, roots and rootlets, moist			0.0	ő	PID<1		5	10	15	20
			Е								
		\otimes		0.1					÷		÷
									-	-	i
0.2	2 Fill: fine to medium, sand, orange-brown, trace	K						÷	÷	÷	÷
	Fill: fine to medium, sand, orange-brown, trace terracotta, plastic and tiles	\boxtimes							÷	÷	÷
		\otimes						÷	÷	÷	÷
		\boxtimes							÷	÷	
		\otimes		0.4		PID<1		÷	÷	÷	÷
		\mathbb{K}	Е					-	÷		ł
0.9	5 SAND: fine to medium, dark grey-brown, moist	K X X		0.5					-	-	-
									÷	÷	-
								-	÷		ł
								÷	÷	÷	÷
								-	÷	-	
									-		
	Below 0.8m: grey-brown, saturated						▼ 				
							29-03-22				
				0.9		PID<1					
			Е								
• 1				1.0				1			
	Below 1.3m: pale grey										
			-	1.4		PID<1					
1.5	5		E	-1.5-							
1.3	Pit discontinued at 1.5m			-1.5-							
	Target depth reached								÷	÷	
								÷	÷	÷	÷
								:	÷	:	÷
								÷	÷	÷	÷

RIG: 3.5 T Excavator with 450mm wide bucket

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Groundwater observed at 0.8m

REMARKS:

CLIENT:

PROJECT:

Henroth Investments Ltd Proposed Bulky Goods Store

LOCATION: 10-12 Boondah Road, Warriewood

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Biock sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 W
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 2.0 AHD **EASTING:** 342200 **NORTHING:** 6270492 PIT No: TP06 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

\square		Description	0		San	npling &	& In Situ Testing				
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic (b	: Penetron lows per n	neter Test nm)
	()	Strata	Ū	Ty		San		>	5	10 15	
~		FILL: orange-brown, medium to coarse sand, roots and rootlets	\times		0.0		PID<1				
		rootlets		E*						: :	
-	.				0.1				- :		
										: :	
	- 0.2								-		
		SAND: fine to medium, dark grey, moist									
									:	: :	
										: :	
								_		-	
ł	-	Below 0.4m: pale grey, saturated			0.4		PID<1	Ţ	-		
		Below 0.4m. pare grey, saturated		Е				3-22			
	- 0.5				-0.5-			30-03-22			
	0.0	Pit discontinued at 0.5m			0.0						•
		Target depth reached									•
F	-								t i	: :	
										÷ ÷	
-	-								-		
										: :	
$\left \right $	-										
										: :	
	-1								-1	: :	
Ē	-										
										:	
-	-								-		
										: :	
	_									: :	•
											•
t	•								t i	: :	
										: :	
$\left \right $.								ł		
											•
											•
											•
	.								† :		
										: :	
	.								- :	: :	•
											•
	-										
										:	•
									L	: :	

RIG: 3.5 T Excavator with 450mm wide bucket

CLIENT:

PROJECT:

Henroth Investments Ltd Proposed Bulky Goods Store

LOCATION: 10-12 Boondah Road, Warriewood

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Groundwater observed at 0.4m

REMARKS: *Field Replicate BD02 taken at 0.0-0.1m

SURFACE LEVEL: 2.8 AHD EASTING: 342179 NORTHING: 6270528 PIT No: TP07 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

\square		Description	<u>ں</u>		San	npling &	& In Situ Testing					
RL	Depth (m)	of	Graphic Log	e	-			Water	Dynami (t	c Pene	tromete er mm)	r Test
	(11)	Strata	л С Ц	Type	Depth	Sample	Results & Comments	1	5	10	15	20
_	-	FILL: dark grey-black, clayey silt, terracotta, roots and rootlets, trace sandstone fragments		E	0.0	0,	PID<1	-				
	- 0.2 -	FILL/SAND: fine to medium, pale-grey, with shale gravel, moist			0.4		PID<1	-				
-	-			E	0.4		FIDAT				• • • • • • • • •	
2	-	Below 0.8m: saturated						-				
	- 1			E	0.9		PID<1	30-03-22	1		• • • • • • • • • • • • • •	
	-	Dalay 4 2m dadi amy bladi passible sekuri						-				
-	-	Below 1.3m: dark grey-black, possible natural		E	1.4		PID<1	-		•		
	- 1.5 - - -	Pit discontinued at 1.5m Target depth reached		<u> </u>	-1.5-			-				
	-											
		Executor with 450mm wide bucket										

RIG: 3.5 T Excavator with 450mm wide bucket

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Groundwater observed at 0.9m

REMARKS:

CLIENT:

PROJECT:

Henroth Investments Ltd Proposed Bulky Goods Store

LOCATION: 10-12 Boondah Road, Warriewood

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 2.8 AHD EASTING: 342230 NORTHING: 6270580 PIT No: TP08 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

		Deceminting	0		Sam	plina 8	& In Situ Testing						
RL	Depth	Description of	Graphic Log	a)				Water	Dy	namic F (blo	Penetro	meter	Test
Ľ	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	Ŵ				15 15	20
		FILL/SANDY Silt: dark grey-brown, trace terracotta, brick, roots and rootlets	\otimes	-	0.0		PID<1						
		roots and rootlets		Е									
	0.1	Pit discontinued at 0.1m due to test pit collapse (saturated soils)	· · · ·		-0.1-				-			:	÷
		solis)											
									-	:			:
									-				÷
										:		-	-
$\left \right $									-				÷
										•		:	
} }									-				
	.								-			:	
	.								_	:		:	
												:	:
-~										:			
										:		:	:
										•			
									-				
												-	
ŀ	-1								-1	:			
$\left \right $.								-	:		:	
-									-			:	
										:		:	÷
	.								-				
												:	-
									_			-	
										:			
									-	:		:	
												:	:
	.								-	:		:	
$\left \right $.								-				
												:	
	.								-				
										:			-
	.								-				
										:		-	

RIG: 3.5 T Excavator with 450mm wide bucket

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Henroth Investments Ltd

LOCATION: 10-12 Boondah Road, Warriewood

Proposed Bulky Goods Store

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U_x
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 3.9 AHD **EASTING:** 342200 **NORTHING:** 6270550 PIT No: TP09 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

Benchmark Description Benchmark Benchmark Benchmark Dynamic Description Stata Stata Stata Stata Stata Stata Dynamic Description PILLISANDY Sitt dark thrown and grey, with fine wood Stata Stata Pill Stata Pill PILLISANDY Sitt dark thrown and grey, with fine wood Stata Stata Pill Stata Pill PILL: pale grey, sand, trace wood, dry Stata Stata Stata Stata Pill PIL Pill Stata Stata Stata Stata Pill PIL Pill Stata Stata Stata Stata PIL Pill Stata Stata Stata Stata	\square		Description	0		San	npling &	& In Situ Testing					
Image: PLL/SANDY Sit: dark brown and grey, with fine wood fragments and mulch Image: PLL/SANDY Sit: dark brown and grey, with fine wood fragments and mulch Image: PLL/SANDY Sit: dark brown and grey, with fine wood fragments and mulch 0.2 FILL: pale grey, sand, trace wood, dry Image: PLL/SANDY Sit: dark brown and grey, with fine wood fragments and mulch Image: PLL/SANDY Sit: dark brown and grey, with fine wood fragments and mulch Image: PLL/SANDY Sit: dark brown and grey, with fine wood fragments and mulch Image: PLL/SANDY Sit: dark brown and grey, with fine wood fragments and mulch 0.2 FILL: pale grey, sand, trace wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry 0.3 Pit discontinued at 0.5m Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry 1 Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry 1 Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry 1 Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry Image: PLL/SANDY Sit: dark brown and grey wood, dry 1 Image: PLL/SANDY Sit: dark brown and grey wood, dry	٦	Depth		aphic	е				ater	Dyi	namic Pe		r Test
FILLISANDY Stit dark brown and grey, with fine wood fragments and mulch 1 02 FILL: pale grey, sand, trace wood, dry FILL: pale grey, sand, trace wood, dry FIL: pale grey		(m)		С С С	Type	Dept	amp	Results & Comments	×				
	\square						0	PID<1				:	:
			fragments and mulch		Е								
PILL: pale grey, sand, trace wood, dry 0.5 Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder	$\left \right $	-				0.1				-			
PILL: pale grey, sand, trace wood, dry 0.5 Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder												÷	
PILL: pale grey, sand, trace wood, dry 0.5 Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder		- 0.2								-			
E 0.5 Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder			FILL: pale grey, sand, trace wood, dry									÷	
E 0.5 Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder		_											
E 0.5 Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder													
E 0.5 Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder													
0.5 Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder						0.4		PID<1					
Pit discontinued at 0.5m Terminated on possible concrete or sandstone boulder					E								
Image: Image		- 0.5				-0.5-			+			:	
												i	
	$\left \right $	-								-			
												:	
	-	-								-			
		-								-			
												:	
												:	
	T I	-1								-1		÷	
	ŀ	-								-			
$ \left[\begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$													
	-	-								-			
	-	-								-			
		-								-			
												:	
													-
		-								t i			
												i	÷
		-								-		÷	
	$\left \right $	-								-		÷	
	-~	-										÷	

RIG: 3.5 T Excavator with 450mm wide bucket

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

LOCATION:

Henroth Investments Ltd

Proposed Bulky Goods Store

10-12 Boondah Road, Warriewood

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 W
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 3.9 AHD EASTING: 342200 NORTHING: 6270550 PIT No: TP09A PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

		Description	U		Sam	pling &	& In Situ Testing				
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample		Water	Dynamic I (blo	Penetromete ws per mm)	r Test
	(,	Strata	Ū	Ту		Sam	Results & Comments	>		10 15	20
-	-	FILL/SANDY Silt: dark brown and grey, with fine wood fragments and mulch		E	0.0		PID<1		-		
-	- 0.2	FILL: pale grey, sand, trace wood and concrete gravel, dry		E	0.2		PID<1		-		
-	- 0.4	Pit discontinued at 0.4m	KXX								
-	-	Terminated on possible concrete or sandstone boulder			0.5						
-	-										
-	-								-		
-m	-								-		
-	- 1								-1		• • • • •
-	-										
-	-								-		
-	~										• • • • •
-	-										•
-	-										
-	-										
~~	-								-		

RIG: 3.5 T Excavator with 450mm wide bucket

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Henroth Investments Ltd Proposed Bulky Goods Store

LOCATION: 10-12 Boondah Road, Warriewood

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp

 D
 Disturbed sample
 V
 Water seep
 S

 E
 Environmental sample
 ¥
 Water level
 V

 SURFACE LEVEL:
 3.9 AHD

 EASTING:
 342196

 NORTHING:
 6270574

PIT No: TP10 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

\square		Description	0		San	npling a	& In Situ Testing					
RL	Depth (m)	of	Graphic Log	эс	-			Water	Dynam (ic Peneti blows pe	rometer r mm)	Test
	()	Strata	Ū	Type	Depth	Sample	Results & Comments	>	5	10	15	20
	-	FILL/Sandy SILT: grey-brown, root and rootlets, with wood and mulch, moist		E	0.0		PID<1	-	-			
-	- 0.2 -	Fill: fine to medium, sand, grey and orange, trace terracotta, moist.			0.3		PID<1	-			•	
				E					:	-	÷	÷
	- 0.4+ -	Pit discontinued at 0.4m Refusal on possible sandstone boulder			-0.4-			-				
3-	- 1							-	-1			
-	-							-	-			
-	-											
	-								-			
-2-	-											

RIG: 3.5 T Excavator with 450mm wide bucket

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

Henroth Investments Ltd

LOCATION: 10-12 Boondah Road, Warriewood

Proposed Bulky Goods Store

CLIENT: PROJECT:

REMARKS:

A Auger sample G Gas sample PID Photo ioniaxiation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U_x Tube sample (x mm dia.) PL(D) Point load diametria test Is(50) (MPa) C Core drilling W Water sample pp Pocket penetrometer (kPa) D Discuted campeto N Water sample pp Pocket penetrometer (kPa)		SAM	PLINC	3 & IN SITU TESTING	LEGE	ND
BLK Block sample U _x Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa C Core drilling W Water sample pp Pocket penetrometer (kPa)	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
C Core drilling W Water sample pp Pocket penetrometer (kPa)			Р			
	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
D Disturbed cample D Water coop S Standard ponetration text			Ŵ		pp	
	D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample 📱 Water level V Shear vane (kPa)	E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 4.1 AHD EASTING: 342181 NORTHING: 6270617 PIT No: TP12 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

	Depth	Description	hic				& In Situ Testing	er –	Dynamic	Pene	tromete	r Test
2	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic (b			
		FILL: medium gravel, moist	\boxtimes		0.0	ő	PID<1		5	10	15	20
		-		Е						÷		
4 -	0.1	FILL/CLAY: orange and pale grey, trace terracotta, moist	\bigotimes		0.1					÷		
					0.2		PID<1			÷	÷	
				Е								
+	0.3	FILL/SAND: fine to medium, dark grey-brown, trace	\bigotimes		0.3					÷	:	
		terracotta										
F					0.4		PID<1		-			
				Е	0.5							
ſ					0.5							
-									-	-		
-									-	÷		
										÷		
Ī		Below 0.8m: grey-orange, possible natural								:		
					0.9					:		
				Е	0.0							
-	1				1.0			Ţ	-1			
								30-03-22		÷		
~-								30	-			
Ī												
									_			
-									-			
										÷		
ł	1.5	Pit discontinued at 1.5m	<u>KXXI</u>									
		Target depth reached										
										÷		÷
-									-	į		
										:	:	:
$\left \right $									-			
										:		
ł									-			
										-		

RIG: 3.5 T Excavator with 450mm wide bucket

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Groundwater observed at 1.0m

Henroth Investments Ltd

LOCATION: 10-12 Boondah Road, Warriewood

Proposed Bulky Goods Store

CLIENT: PROJECT:

REMARKS:

	SAM	PLING	3 & IN SITU TESTING	LEGE	END
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 4.3 AHD EASTING: 342164 NORTHING: 6270620 PIT No: TP13 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

\square		Description	<u>.</u>		San	npling &	& In Situ Testing					
R	Depth (m)	of	Graphic Log	эс				Water	Dynamic (bl	Penetro ows per	meter T mm)	est
	(,	Strata	Ū	Type	Depth	Sample	Results & Comments	>	5			0
		FILL/SAND: medium to coarse, dark grey, roots and rootlets		Е	0.0		PID<1		•			
	-				0.1				_			
					0.1				•			
	- 0.2									÷	:	
	0.2	FILL/SAND: medium to coarse, orange-grey, with sandstone gravel, moist										
-4	-								-			•
									•			
	-	Bolow 0.4m; dark grav brown			0.4		PID<1	-	-	:		
		Below 0.4m: dark grey-brown		Е					•	:		
	-				0.5							
										-		
$\left \right $	-								-			•
									•	:		
	-							-	-			
	- 0.8	FILL/CLAY: dark grey and orange, clayey sand, trace										
		sandstone gravel, moist							•			
	-			_	0.9		PID<1		-	:		
	- 1			E	1.0			Ţ	-1			
					1.0			3-22	'	-		
	-							30-03-22				
									•			
	-								-			
-0	-											
									•			•
	- 1.4	FILL/CLAY: orange and pale grey, moist	\rightarrow		1.4		PID<1					
				Е					•			
	- 1.5	Pit discontinued at 1.5m	\sim		-1.5-							
		Target depth reached							•			
	-											
									•			
	-								-			
									•			
	-								-	:		
	_								_	-		
									•			
									-			
		Executor with 150mm wide bucket						eu DV				

RIG: 3.5 T Excavator with 450mm wide bucket

LOGGED: VV

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Groundwater observed at 1.0m

REMARKS:

CLIENT:

PROJECT:

Henroth Investments Ltd Proposed Bulky Goods Store

LOCATION: 10-12 Boondah Road, Warriewood

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Biock sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 W
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 3.7 AHD EASTING: 342184 NORTHING: 6270631 PIT No: TP14 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

Π		Description	. <u>0</u>		San		& In Situ Testing		_		
님	Depth (m)	of	Graphic Log	e	Ę	Sample	Results &	Water	Dynamic I (blo	Penetromet	er Test)
	(,	Strata	<u>5</u>	Type	Depth	Sam	Results & Comments	>		10 15	20
		FILL/SAND: fine to medium, grey-brown, roots and		-	0.0		PID<1				
		rootlets		E*							
	-				0.1						
	- 0.2	SAND: fine to medium, dark grey-brown, moist									
	-								-		
ŀ	-				0.4		PID<1		1	: :	:
				Е							
$\left \right $	-				0.5				-		
$\left \right $	-								-		
-ო	-								-		
	-							T	- :	: :	:
		Below 0.8m: saturated						30-03-22			
	-				0.9		PID<1	30-0	-		
				Е							
	-1 1.0				-1.0-				-1	<u> </u>	
		Pit discontinued at 1.0m due to collapse in saturated soils									
	-								-		
	-								-		
	_								-		
	_										
											÷
	-									:	į
											į
	-										÷
										: :	
	-										÷
											÷
Ш							<u> </u>			: :	:

RIG: 3.5 T Excavator with 450mm wide bucket

CLIENT:

PROJECT:

Henroth Investments Ltd Proposed Bulky Goods Store

LOCATION: 10-12 Boondah Road, Warriewood

 $\textbf{LOGGED: } \forall \forall$

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Groundwater observed at 0.8m

REMARKS: *Field Replicate BD04 taken at 0.0-0.1m

TEST PIT LOG

SURFACE LEVEL: 3.2 AHD **EASTING:** 342208 **NORTHING:** 6270619 PIT No: TP15 PROJECT No: 85749.02 DATE: 30/3/2022 SHEET 1 OF 1

$\left[\right]$		Description	Graphic Log		Sam		& In Situ Testing					
R	Depth (m)	of		Type Depth Sample		Sample	Results & Comments	Water	Dynamic Pe (blow	Dynamic Penetrometer Test (blows per mm)		
	· · /	Strata	G	Тy	De	San		-	5 10	15	20	
		FILL/SAND: fine to medium, dark grey-brown, moist	\otimes	E*	0.0		PID<1					
 	- 0.1-	SAND: fine to medium, dark grey, moist		E	• 0.1		PID<1		-			
		Below 0.8m: pale grey			0.5			30-03-22 i	-			
	- - 1 1.0 -	Pit discontinued at 1.0m due to collapse						30	-			
-0-									-			
									-			
									-			
	-								-			

RIG: 3.5 T Excavator with 450mm wide bucket

CLIENT:

PROJECT:

Henroth Investments Ltd Proposed Bulky Goods Store

LOCATION: 10-12 Boondah Road, Warriewood

 $\textbf{LOGGED: } \forall \forall$

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Groundwater observed at 0.8m

REMARKS: *Field Replicate BD05 taken at 0.0-0.1m

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

Terminology, Symbols and Abbreviations

Introduction to Terminology, Symbols and Abbreviations

Douglas Partners' reports, investigation logs, and other correspondence may use terminology which has quantitative or qualitative connotations. To remove ambiguity or uncertainty surrounding the use of such terms, the following sets of notes pages may be attached Douglas Partners' reports, depending on the work performed and conditions encountered:

- Soil Descriptions;
- Rock Descriptions; and
- Sampling, insitu testing, and drilling methodologies

In addition to these pages, the following notes generally apply to most documents.

Abbreviation Codes

Site conditions may also be presented in a number of different formats, such as investigation logs, field mapping, or as a written summary. In some of these formats textual or symbolic terminology may be presented using textual abbreviation codes or graphic symbols, and, where commonly used, these are listed alongside the terminology definition. For ease of identification in these note pages, textual codes are presented in these notes in the following style XW. Code usage conforms with the following guidelines:

- Textual codes are case insensitive, although herein they are generally presented in upper case; and
- Textual codes are contextual (i.e. the same or similar combinations of characters may be used in different contexts with different meanings (for example `PL` is used for plastic limit in the context of soil moisture condition, as well as in `PL(A)` for point load test result in the testing results column)).

Data Integrity Codes

Subsurface investigation data recorded by Douglas Partners is generally managed in a highly structured database environment, where records "span" between a top and bottom depth interval. Depth interval "gaps" between records are considered to introduce ambiguity, and, where appropriate, our practice guidelines may require contiguous data sets. Recording meaningful data is not always appropriate (for example assigning a "strength" to a concrete pavement) and the following codes may be used to maintain contiguity in such circumstances.

Term	Description	Abbreviation Code
Core loss	No core recovery	KL
Unknown	Information was not available to allow classification of the property. For example, when auguring in loose, saturated sand auger cuttings may not be returned.	UK
No data	Information required to allow classification of the property was not available. For example if drilling is commenced from the base of a hole predrilled by others	ND
Not Applicable	Derivation of the properties not appropriate or beyond the scope of the investigation. For example providing a description of the strength of a concrete pavement	NA

Graphic Symbols

Douglas Partners' logs contain a "graphic" column which provides a pictorial representation of the basic composition of the material. The symbols used are directly representing the material name stated in the adjacent "Description of Strata" column, and as such no specific graphic symbology legend has been provided in these notes.

intentionally blank

Introduction

All materials which are not considered to be "in-situ rock" are described in general accordance with the soil description model of AS 1726-2017 Part 6.1.3, and can be broken down into the following description structure:

The "classification" comprises a two character "group symbol" providing a general summary of dominant soil characteristics. The "name" summarises the particle sizes within the soil which most influence its behaviour. The detailed description presents more information about composition, condition, structure, and origin of the soil.

Classification, naming and description of soils require the relative proportion of particles of different sizes within the whole soil mixture to be considered.

Particle size designation and Behaviour Model

Solid particles within a soil are differentiated on the basis of size.

The engineering behaviour properties of a soil can subsequently be modelled to be either "fine grained" (also known as "cohesive" behaviour) or "coarse grained" ("non cohesive" behaviour), depending on the relative proportion of fine or coarse fractions in the soil mixture.

Particle Size	Particle	Behaviour Model		
Designation	Size (mm)	Behaviour	Approximate Dry Mass	
Boulder	>200	Excluded from particle		
Cobble	63 - 200	behaviour model as "oversize"		
Gravel ¹	2.36 - 63	Caaraa		
Sand ¹	0.075 - 2.36	Coarse	>65%	
Silt	0.002 - 0.075	Fine	>35%	
Clay	<0.002			

refer grain size subdivision descriptions below

The behaviour model boundaries defined above are not precise, and the material behaviour should be assumed from the name given to the material (which considers the particle fraction which dominates the behaviour, refer "component proportions" below), rather than strict observance of the proportions of particle sizes. For example, if a material is named a "Sandy CLAY", this is indicative that the material exhibits fine grained behaviour, even if the dry mass of coarse grained material may exceed 65%.

Component proportions

The relative proportion of the dry mass of each particle size fraction is assessed to be a "primary", "secondary", or "minor" component of the soil mixture, depending on its influence over the soil behaviour.

Component	Definition ¹	Relative P	roportion
Proportion Designation		In Fine Grained Soil	In Coarse Grained Soil
Primary	The component (particle size designation, refer above) which dominates the engineering behaviour of the soil	The clay/silt component with the greater proportion	The sand/gravel component with the greater proportion
Secondary	Any component which is not the primary, but is significant to the engineering properties of the soil	Any component with greater than 30% proportion	Any granular component with greater than 30%; or Any fine component with greater than 12%
Minor ²	Present in the soil, but not significant to its engineering properties	All other components	All other components

¹ As defined in AS1726-2017 6.1.4.4

² In the detailed material description, minor components are split into two further sub-categories. Refer "identification of minor components" below.

Composite Materials

In certain situations, a lithology description may describe more than one material, for example, collectively describing a layer of interbedded sand and clay. In such a scenario, the two materials would be described independently, with the names preceded or followed by a statement describing the arrangement by which the materials co-exist. For example, "INTERBEDDED Silty CLAY AND SAND".

Soil Descriptions

Classification

The soil classification comprises a two character group symbol. The first character identifies the primary component. The second character identifies either the grading or presence of fines in a coarse grained soil, or the plasticity in a fine grained soil. Refer AS1726-2017 6.1.6 for further clarification.

Soil Name

For most soils, the name is derived with the primary component included as the noun (in upper case), preceded by any secondary components stated in an adjective form. In this way, the soil name also describes the general composition and indicates the dominant behaviour of the material.

Component	Prominence in Soil Name
Primary	Noun (eg "CLAY")
Secondary	Adjective modifier (eg "Sandy")
Minor	No influence

¹ – for determination of component proportions, refer component proportions on previous page

For materials which cannot be disaggregated, or which are not comprised of rock or mineral fragments, the names "ORGANIC MATTER" or "ARTIFICIAL MATERIAL" may be used, in accordance with AS1726-2017 Table 14.

Commercial or colloquial names are not used for the soil name where a component derived name is possible (for example "Gravelly SAND" rather than "CRACKER DUST").

Materials of "fill" or "topsoil" origin are generally assigned a name derived from the primary/secondary component (where appropriate). In log descriptions this is preceded by uppercase "FILL" or "TOPSOIL". Origin uncertainty is indicated in the description by the characters (?), with the degree of uncertainty described (using the terms "probably" or "possibly" in the origin column, or at the end of the description).

Identification of minor components

Minor components are identified in the soil description immediately following the soil name. The minor component fraction is usually preceded with a term indicating the relative proportion of the component.

Minor Component	Relative Proportion			
Proportion Term	In Fine Grained Soil	In Coarse Grained Soil		
With	All fractions: 15-30%	Clay/silt: 5-12%		
		sand/gravel: 15-30%		
Trace	All fractions: 0-15%	Clay/silt: 0-5%		
		sand/gravel: 0-15%		

The terms "with" and "trace" generally apply only to gravel or fine particle fractions. Where cobbles/boulders are encountered in minor proportions (generally less than about 12%) the term "occasional" may be used. This term describes the sporadic distribution of the material within the confines of the investigation excavation only, and there may be considerable variation in proportion over a wider area which is difficult to factually characterise due to the relative size of the particles and the investigation methods.

Soil Composition

Plasticity	<u>Grain Size</u>						
Descriptive	Laboratory liquid limit range		Туре			Particle size (mm)	
Term	Silt	Clay	Gravel	Coarse		19 - 63	
Non-plastic	Not applicable	Not applicable		Mediur	n	6.7 - 19	
materials				Fine		2.36 – 6.7	
Low	≤50	≤35	Sand	Coarse		0.6 - 2.36	
plasticity				Medium		0.21 - 0.6	
Medium	Not applicable	>35 and ≤50		Fine		0.075 - 0.21	
plasticity							
High	>50	>50	Grading				
plasticity			Grading Term			Particle size (mm)	
			Well A good representation		ood representation of all		

Note, Plasticity descriptions generally describe the plasticity behaviour of the whole of the fine grained soil, not individual fine grained fractions.

Grading	
Grading Term	Particle size (mm)
Well	A good representation of all particle sizes
Poorly	An excess or deficiency of particular sizes within the specified range
Uniformly	Essentially of one size
Сар	A deficiency of a particular size or size range within the total range

Note, AS1726-2017 provides terminology for additional attributes not listed here.

Soil Condition

<u>Moisture</u>

The moisture condition of soils is assessed relative to the plastic limit for fine grained soils, while for coarse grained soils it is assessed based on the appearance and feel of the material. The moisture condition of a material is considered to be independent of stratigraphy (although commonly these are related), and this data is presented in its own column on logs.

Applicability	Term	Tactile Assessment	Abbreviation code
Fine	Dry of plastic limit	Hard and friable or powdery	w <pl< td=""></pl<>
	Near plastic limit	Can be moulded	w=PL
	Wet of plastic limit	Water residue remains on hands when handling	w>PL
	Near liquid limit	"oozes" when agitated	w=LL
	Wet of liquid limit	"oozes"	w>LL
Coarse	Dry	Non-cohesive and free running	D
	Moist	Feels cool, darkened in colour, particles may stick together	М
	Wet	Feels cool, darkened in colour, particles may stick together, free water forms when handling	W

The abbreviation code NDF, meaning "not-assessable due to drilling fluid use" may also be used. Note, observations relating to free ground water or drilling fluids are provided independent of soil moisture condition.

Consistency/Density/Compaction/Cementation/Extremely Weathered Material

These concepts give an indication of how the material may respond to applied forces (when considered in conjunction with other attributes of the soil). This behaviour can vary independent of the composition of the material, and on logs these are described in an independent column and are generally mutually exclusive (i.e. it is inappropriate to describe both consistency and compaction at the same time). The method by which the behaviour is described depends on the behaviour model and other characteristics of the soil as follows:

- In fine grained soils, the "consistency" describes the ease with which the soil can be remoulded, and is generally correlated against the materials undrained shear strength;
- In granular materials, the relative density describes how tightly packed the particles are, and is generally correlated against the density index;
- In anthropogenically modified materials, the compaction of the material is described qualitatively;
- In cemented soils (both natural and anthropogenic), the cemented "strength" is described qualitatively, relative to the difficulty with which the material is disaggregated; and
- In soils of extremely weathered material origin, the engineering behaviour may be governed by relic rock features, and expected behaviour needs to be assessed based the overall material description.

Quantitative engineering performance of these materials may be determined by laboratory testing or estimated by correlated field tests (for example penetration or shear vane testing). In some cases, performance may be assessed by tactile or other subjective methods, in which case investigation logs will show the estimated value enclosed in round brackets, for example (VS).

Consistency	Tactile Assessment	Undrained	Abbreviation
Term		Shear	Code
		Strength (kPa)	
Very soft	Extrudes between fingers when squeezed	<12	VS
Soft	Mouldable with light finger pressure	>12 - ≤25	S
Firm	Mouldable with strong finger pressure	>25 - ≤50	F
Stiff	Cannot be moulded by fingers	>50 - ≤100	St
Very stiff	Indented by thumbnail	>100 - ≤200	VSt
Hard	Indented by thumbnail with difficulty	>200	Н
Friable	Easily crumbled or broken into small pieces by hand	-	Fr

Consistency (fine grained soils)

Relative Density (coarse grained soils)

Relative Density Term	Density Index	Abbreviation Code
Very loose	<15	VL
Loose	>15 - ≤35	L
Medium dense	>35 - ≤65	MD
Dense	>65 - ≤85	D
Very dense	>85	VD

Note, tactile assessment of relative density is difficult, and generally requires penetration testing, hence a tactile assessment guide is not provided.

Soil Descriptions

Compaction	anthrono	aonically	modified soil)	
Compaction	lancinopoi	gerncany	mounieu sonj	

Compaction Term	Abbreviation Code
Well compacted	WC
Poorly compacted	PC
Moderately compacted	MC
Variably compacted	VC

Cementation (natural and anthropogenic)

Cementation Term	Abbreviation Code	
Moderately cemented	MOD	
Weakly cemented	WEK	

Extremely Weathered Material

AS1726-2017 considers weathered material to be soil if the unconfined compressive strength is less than 0.6 MPa (i.e. less than very low strength rock). These materials may be identified as "extremely weathered material" in reports and by the abbreviation code XWM on log sheets. This identification is not correlated to any specific qualitative or quantitative behaviour, and the engineering properties of this material must therefore be assessed according to engineering principles with reference to any relic rock structure, fabric, or texture described in the description.

Soil Origin

Term	Description	Abbreviation Code
Residual	Derived from in-situ weathering of the underlying rock	RS
Extremely weathered material	Formed from in-situ weathering of geological formations. Has strength of less than 'very low' as per as1726 but retains the structure or fabric of the parent rock.	XWM
Alluvial	Deposited by streams and rivers	ALV
Fluvial	Deposited by channel fill and overbank (natural levee, crevasse splay or flood basin)	FLV
Estuarine	Deposited in coastal estuaries	EST
Marine	Deposited in a marine environment	MAR
Lacustrine	Deposited in freshwater lakes	LAC
Aeolian	Carried and deposited by wind	AEO
Colluvial	Soil and rock debris transported down slopes by gravity	COL
Slopewash	Thin layers of soil and rock debris gradually and slowly deposited by gravity and possibly water	SW
Topsoil	Mantle of surface soil, often with high levels of organic material	TOP
Fill	Any material which has been moved by man	FILL
Littoral	Deposited on the lake or seashore	LIT
Unidentifiable	Not able to be identified	UID

Cobbles and Boulders

The presence of particles considered to be "oversize" may be described using one of the following strategies:

- Oversize encountered in a minor proportion (when considered relative to the wider area) are noted in the soil description; or
- Where a significant proportion of oversize is encountered, the cobbles/boulders are described independent of the soil description, in a similar manner to composite soils (described above) but qualified with "MIXTURE OF".

intentionally blank

Rock strength is defined by the unconfined compressive strength, and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $I_{s(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Unconfined Compressive Strength (MPa)	Point Load Index ¹ I _{s(50)} MPa	Abbreviation Code
Very low	0.6 - 2	0.03 - 0.1	VL
Low	2 - 6	0.1 - 0.3	L
Medium	6 - 20	0.3 - 1.0	М
High	20 - 60	1-3	Н
Very high	60 - 200	3 - 10	VH
Extremely high	>200	>10	EH

¹ Rock strength classification is based on UCS. The UCS to $I_{s(50)}$ ratio varies significantly for different rock types and specific ratios may be required for each site. The point load Index ranges shown above are as suggested in AS1726 and should not be relied upon without supporting evidence.

The following abbreviation codes are used for soil layers or seams of material "within rock" but for which the equivalent UCS strength is less than 0.6 MPa.

Scenario	Abbreviation Code
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The properties of the material encountered over this interval are described in the "Description of Strata" and soil properties columns.	SOIL
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The prominence of the material is such that it can be considered to be a seam (as defined in Table 22 of AS1726-2017) and the properties of the material are described in the defect column.	SEAM

Degree of Weathering

The degree of weathering of rock is classified as follows:

Weathering Term	Description	Abbreviation Code
Residual Soil ¹	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	RS
Extremely weathered ¹	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	XW
Highly weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.	HW
Moderately weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.	MW
Slightly weathered	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	SW
Fresh	No signs of decomposition or staining.	FR
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	DW

¹ The parent rock type, of which the residual/extremely weathered material is a derivative, will be stated in the description (where discernible).

Degree of Alteration

The degree of alteration of the rock material (physical or chemical changes caused by hot gasses or liquids at depth) is classified as follows:

Term	Description	Abbreviation Code
Extremely altered	Material is altered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	XA
Highly altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is changed by alteration. Some primary minerals are altered to clay minerals. Porosity may be increased by leaching or may be decreased due to precipitation of secondary materials in pores.	HA
Moderately altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.	MA
Slightly altered	Rock is slightly discoloured but shows little or no change of strength from fresh rock	SA
Note: If HA and	d MA cannot be differentiated use DA (see below)	
Distinctly altered	Rock strength usually changed by alteration. The rock may be highly discoloured, usually by staining or bleaching. Porosity may be increased by leaching or may be decreased due to precipitation of secondary minerals in pores.	DA

Degree of Fracturing

The following descriptive classification apply to the spacing of natural occurring fractures in the rock mass. It includes bedding plane partings, joints and other defects, but excludes drilling breaks. These terms are generally not required on investigation logs where fracture spacing is presented as a histogram, and where used are presented in an unabbreviated format.

Term	Description	
Fragmented	Fragments of <20 mm	
Highly Fractured	Core lengths of 20-40 mm with occasional fragments	
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections	
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm	
Unbroken	Core contains very few fractures	

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD %= cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e., drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

These terms may be used to describe the spacing of bedding partings in sedimentary rocks. Where used, these terms are generally presented in an unabbreviated format

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly	> 2 m
bedded	

Rock Descriptions

Defect Descriptions

Term	Abbreviation Code
Bedding plane	В
Cleavage	CL
Crushed seam	CS
Crushed zone	CZ
Drilling break	DB
Decomposed seam	DS
Drill lift	DL
Extremely Weathered seam	EW
Fault	F
Fracture	FC
Fragmented	FG
Handling break	HB
Infilled seam	IS
Joint	JT
Lamination	LAM
Shear seam	SS
Shear zone	SZ
Vein	VN
Mechanical break	MB
Parting	Ρ
Sheared Surface	S

Rock Defect Orientation

Term	Abbreviation Code
Horizontal	Н
Vertical	V
Sub-horizontal	SH
Sub-vertical	SV

Rock Defect Coating

Term	Abbreviation Code
Clean	CN
Coating	CT
Healed	HE
Infilled	INF
Stained	SN
Tight	TI
Veneer	VNR

Rock Defect Infill

Term	Abbreviation Code
Calcite	CA
Carbonaceous	CBS
Clay	CLAY
Iron oxide	FE
Manganese	MN
Pyrite	Py
Secondary material	MS
Silt	M
Quartz	Qz
Unidentified material	MU

Rock Defect Shape/Planarity

Term	Abbreviation Code
Curved	CU
Discontinuous	DIS
Irregular	IR
Planar	PR
Stepped	ST
Undulating	UN

Rock Defect Roughness

Term	Abbreviation Code
Polished	PO
Rough	RF
Smooth	SM
Slickensided	SL
Very rough	VR

Defect Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

Cone Penetration Testing

Introduction

The Cone Penetration Test (CPT) is a sophisticated soil profiling test carried out insitu. A special cone shaped probe is used which is connected to a digital data acquisition system. The cone and adjoining sleeve section contain a series of strain gauges and other transducers which continuously monitor and record various soil parameters as the cone penetrates the soils.

The soil parameters measured depend on the type of cone being used, however they always include the following basic measurements

i

- Cone tip resistance q_c
- Sleeve friction f_s
- Inclination (from vertical)
- Depth below ground z

Figure 1: Cone Diagram

The inclinometer in the cone enables the verticality of the test to be confirmed and, if required, the vertical depth can be corrected.

The cone is thrust into the ground at a steady rate of about 20 mm/sec, usually using the hydraulic rams of a purpose built CPT rig, or a drilling rig. The testing is carried out in accordance with the Australian Standard AS1289 Test 6.5.1.

Figure 2: Purpose built CPT rig

The CPT can penetrate most soil types and is particularly suited to alluvial soils, being able to detect fine layering and strength variations. With sufficient thrust the cone can often penetrate a short distance into weathered rock. The cone will usually reach refusal in coarse filling, medium to coarse gravel and on very low strength or better rock. Tests have been successfully completed to more than 60 m.

Types of CPTs

Douglas Partners (and its subsidiary GroundTest) owns and operates the following types of CPT cones:

Туре	Measures						
Standard	Basic parameters (qc, fs, i & z)						
Piezocone	Dynamic pore pressure (u) plus basic parameters. Dissipation tests estimate consolidation parameters						
Conductivity	Bulk soil electrical conductivity (^[]) plus basic parameters						
Seismic	Shear wave velocity (Vs), compression wave velocity (Vp), plus basic parameters						

Strata Interpretation

The CPT parameters can be used to infer the Soil Behaviour Type (SBT), based on normalised values of cone resistance (Qt) and friction ratio (Fr). These are used in conjunction with soil classification charts, such as the one below (after Robertson 1990)

www.douglaspartners.com.au

Figure 3: Soil Classification Chart

DP's in-house CPT software provides computer aided interpretation of soil strata, generating soil descriptions and strengths for each layer. The software can also produce plots of estimated soil parameters, including modulus, friction angle, relative density, shear strength and over consolidation ratio.

DP's CPT software helps our engineers quickly evaluate the critical soil layers and then focus on developing practical solutions for the client's project.

Engineering Applications

There are many uses for CPT data. The main applications are briefly introduced below:

Settlement

CPT provides a continuous profile of soil type and strength, providing an excellent basis for settlement analysis. Soil compressibility can be estimated from cone derived moduli, or known consolidation parameters for the critical layers (eg. from laboratory testing). Further, if pore pressure dissipation tests are undertaken using a piezocone, in-situ consolidation coefficients can be estimated to aid analysis.

Pile Capacity

The cone is, in effect, a small scale pile and, therefore, ideal for direct estimation of pile capacity. DP's in-house program ConePile can analyse most pile types and produces pile capacity versus depth plots. The analysis methods are based on proven static theory and empirical studies, taking account of scale effects, pile materials and method of installation. The results are expressed in limit state format, consistent with the Piling Code AS2159.

Dynamic or Earthquake Analysis

CPT and, in particular, Seismic CPT are suitable for dynamic foundation studies and earthquake response analyses, by profiling the low strain shear modulus G0. Techniques have also been developed relating CPT results to the risk of soil liquefaction.

Other Applications

Other applications of CPT include ground improvement monitoring (testing before and after works), salinity and contaminant plume mapping (conductivity cone), preloading studies and verification of strength gain.

Terminology Symbols Abbreviations

Sampling and Testing

A record of samples retained, and field testing performed is usually shown on a Douglas Partners' log with samples appearing to the left of a depth scale, and selected field and laboratory testing (including results, where relevant) appearing to the right of the scale, as illustrated below:

<u>Sampling</u>

The type or intended purpose for which a sample was taken is indicated by the following abbreviation codes.

Sample Type	Code
Auger sample	A
Acid Sulfate sample	ASS
Bulk sample	В
Core sample	C
Disturbed sample	D
Environmental sample	ES
Gas sample	G
Piston sample	P
Sample from SPT test	SPT
Undisturbed tube sample	∩ U ¹
Water sample	W
Material Sample	MT
Core sample for unconfined	UCS
compressive strength testing	

¹ – numeric suffixes indicate tube diameter/width in mm

The above codes only indicate that a sample was retained, and not that testing was scheduled or performed.

Field and Laboratory Testing

A record that field and laboratory testing was performed is indicated by the following abbreviation codes.

Test Type	Code
Pocket penetrometer (kPa)	PP
Photo ionisation detector (ppm)	PID
Standard Penetration Test	SPT
x/y = x blows for y mm	
penetration	
HB = hammer bouncing	
HW = fell under weight of	
hammer	
Shear vane (kPa)	\sim
Unconfined compressive	UCS
strength, (MPa)	

Field and laboratory testing (continued)

Test Type	Code
Point load test, (MPa),	PLT(_)
axial (A) , diametric (D) ,	
irregular (I)	
Dynamic cone penetrometer,	DCP/150
followed by blow count	
penetration increment in mm	
(cone tip, generally in	
accordance with AS1289.6.3.2)	
Perth sand penetrometer,	PSP/150
followed by blow count	
penetration increment in mm	
(flat tip, generally in accordance	
with AS1289.6.3.3)	

Groundwater Observations

\triangleright	seepage/inflow
$\overline{\nabla}$	standing or observed water level
NFGWO	no free groundwater observed
OBS	observations obscured by drilling
	fluids

Drilling or Excavation Methods/Tools

The drilling/excavation methods used to perform the investigation may be shown either in a dedicated column down the left-hand edge of the log, or stated in the log footer. In some circumstances abbreviation codes may be used.

Method	Abbreviation Code
Direct Push	DP
Solid flight auger. Suffixes:	AD ¹
/T = tungsten carbide tip,	
/V = v-shaped tip	
Air Track	AT
Diatube	DT ¹
Hand auger	HA ¹
Hand tools (unspecified)	HAND
Existing exposure	Х
Hollow flight auger	HSA ¹
HQ coring	HQ3
HMLC series coring	HMLC
NMLC series coring	NMLC
NQ coring	NQ3
PQ coring	PQ3
Predrilled	PD
Push tube	PT ¹
Ripping tyne/ripper	R
Rock roller	RR ¹
Rock breaker/hydraulic	EH
hammer	
Sonic drilling	SON ¹
Mud/blade bucket	MB ¹
Toothed bucket	TB ¹
Vibrocore	VC ¹
Vacuum excavation	VE
Wash bore (unspecified bit	WB1
type)	

¹ – numeric suffixes indicate tool diameter/width in mm

Appendix G

Results Summary Tables

Deart N E R S Table G1: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, Asbestos, Additional chemicals

	1	Metals TRH																			,				
				TRH						BI	TEX				Phenol										
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - CIO	TRH >CIO-CI6	FI ((С6-С10)-ВТЕХ)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs	Phenol
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	0.1	0.05	0.5	0.05	5
	LD		3000	900	3600	240000	1500	730	6000	400000													40	4000	660
			3000	300	3000	240000	1300	730	0000	400000			260	NL			3	NL	NL	230	NL		40	4000	000
	/ESL D		160		540	320	1800		370	950		170	215		1700	3300	75	135	165	180					
	LD										700	1000			3500	10000									
	IMW												26000	20000	27000	38000	430	99000	27000	81000	11000				
DC F	ISL D												82000	62000	85000	120000	1100	120000	85000	130000	29000				
							6																		
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH01	0 - 0.1 m	29/03/2022	<4	<0.4	4	10	12	<0.1	2	48	<25	<50	<25	<50	100	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	<0.5	< 0.05	<5
BH01	0.4 - 0.5 m	29/03/2022	<4	<0.4	3	4	6	<0.1	<1	12	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	<0.5	< 0.05	-
BH02	0 - 0.1 m 0 m	29/03/2022	<4 <5	<0.4	2 3	8	13 16	<0.1 <0.1	<1 <2	44	<25	<50 <50	<25	<50 <50	<100	<100	<0.2	<0.5	<1 <0.5	<1 <0.5	<0.1	<0.05	<0.5	< 0.05	<5
BD01 BH02	0.4 - 0.5 m	29/03/2022 29/03/2022	<4	<0.4	1	5	7	<0.1	<1	40	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.1	<0.05	<0.5	< 0.05	-
BH02 BH03	0.4 - 0.5 m	29/03/2022	<4	<0.4	<1	2	5	<0.1	<1	17	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	<0.5	<0.05	<5
BH04	0 - 0.1 m	29/03/2022	<4	<0.4	9	20	110	0.1	3	69	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	0.03	<0.5	1.2	<5
TP05	0 - 0.1 m	30/03/2022	<4	<0.4	5	6	24	<0.1	1	70	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	0.09	<0.5	0.56	-
TP05	0.4 - 0.5 m	30/03/2022	<4	<0.4	8	8	36	<0.1	<]	47	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	< 0.5	< 0.05	<5
TP06	0 - 0.1 m	30/03/2022	15	<0.4	7	7	8	<0.1	2	36	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<]	<1	<0.1	< 0.05	<0.5	< 0.05	<5
BD02	0 m	30/03/2022	8	<0.4	4	4	5	<0.1	1	18	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	<0.5	< 0.05	-
TP07	0 - 0.1 m	30/03/2022	<4	<0.4	6	52	17	<0.1	7	61	<25	<50	<25	<50	180	<100	<0.2	<0.5	<]	<1	<0.1	0.56	0.7	4.2	<5
TP7	0.4 - 0.5 m	30/03/2022	<4	<0.4	3	2	4	<0.1	1	5	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	0.3	<0.5	1.7	-
TP07	1.4 - 1.5 m	30/03/2022	<4	<0.4	4	<]	6	<0.1	<]	1	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<]	<1	<0.1	< 0.05	<0.5	< 0.05	-
TP08	0 - 0.1 m	30/03/2022	<4	<0.4	5	12	87	<0.1	1	73	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<]	<]	<0.1	< 0.05	<0.5	<0.05	<5
TP9	0 - 0.1 m	30/03/2022	<4	<0.4	10	6	6	<0.1	2	29	350	1200	340	1200	17000	2400	<0.2	8	<]	7	5.8	< 0.05	<0.5	5.8	<5
TP09	0 - 0.1 m	silica	-	-	-	-	-	-	-	-	-	710	-	710	8600	1500	-	-	-	-	-	-	-	-	-
TP09	0.4 - 0.5 m	30/03/2022	<4	<0.4	7	29	39	0.2	3	51	<25	<50	<25	<50	880	270	<0.2	<0.5	<]	<]	<0.1	0.3	<0.5	2.2	-
TP10	0 - 0.1 m	30/03/2022	<4	<0.4	4	12	18	<0.1	2	88	<25	<50	<25	<50	1100	350	<0.2	<0.5	<]	<]	<0.1	< 0.05	<0.5	< 0.05	-
TP10	0.3 - 0.4 m	30/03/2022	4	<0.4	10	10	52	<0.1	4	52	<25	<50	<25	<50	170	<100	<0.2	<0.5	<]	<1	<0.1	0.08	<0.5	0.4	<5
TP11	0 - 0.1 m	30/03/2022	4	<0.4	6	8	21	<0.1	2	47	<25	<50	<25	<50	210	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	<0.5	< 0.05	<5
BD03	0 m	30/03/2022	<4	<0.4	4	4	17	<0.1	1	32	<25	<50	<25	<50	160	<100	<0.2	<0.5	<]	<]	<0.1	< 0.05	<0.5	< 0.05	-
TP12	0 - 0.1 m	30/03/2022	<4	<0.4	13 12	15	10 20	<0.1	9	24 26	<25	<50 <50	<25	<50 <50	220 <100	190 <100	<0.2 <0.2	<0.5	<1	<1	<0.1	0.59	0.7 <0.5	4.8 0.3	- <5
TP12 TP12	0.2 - 0.3 m 0.4 - 0.5 m	30/03/2022 30/03/2022	<4	<0.4	5	18	15	<0.1	<1	47	<25	<50	<25	<50	120	<100	<0.2	<0.5	<1	<1	<0.1	0.07	<0.5	2	-
TP12 TP13	0.4 - 0.5 m 0 - 0.1 m	30/03/2022	<4	<0.4	9	12	13	<0.1	4	92	<25	<50	<25	<50	120	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	-
TPI3	0.4 - 0.5 m	30/03/2022	<4	<0.4	8	13	15	<0.1	5	54	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	0.03	<0.5	1.7	<5
TP13	0.9 - 1 m	30/03/2022	<4	<0.4	5	3	6	<0.1	2	14	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<]	<]	<0.1	<0.05	<0.5	<0.05	<5
TP14	0-0.1 m	30/03/2022	<4	<0.4	8	4	12	<0.1	3	24	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	<0.5	< 0.05	<5
TP14	0.4 - 0.5 m	30/03/2022	<4	<0.4	<1	<]	1	<0.1	<]	12	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	<0.5	< 0.05	-
TP15	0 - 0.1 m	30/03/2022	6	<0.4	9	3	19	<0.1	<1	43	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	< 0.05	<0.5	< 0.05	<5
TP15	0.4 - 0.5 m	30/03/2022	<4	<0.4	2	1	9	<0.1	<]	9	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<]	<1	<0.1	< 0.05	<0.5	< 0.05	-

Lab result

HIL/HSL exceedance EIL/ESL exceedance HIL/HSL and EIL/ESL exceedance ML exceedance ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Manageme-Limit DC = Direct Co-act H

HIL AF/FA Asbestos = 0.001 % w/w , ACM estimation = 0.01% w/w QA/QC replicate of sample listed directly below the primary sample

а b Reported naphthalene laboratory result obtained from BTEXN suite

c Criteria applies to DDT only

Site Assessme- Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Commercial D Land use

- HIL D Commercial and Industrial (NEPC, 2013)
- HSL D Commercial Industrial (vapour i-rusion) (NEPC, 2013)
- DC HSL D Direct co-act HSL D Commercial and Industrial (direct co-act) (CRC CARE, 2011)
- EIL/ESL Commercial and Industrial Ecological Screening and Investigation Levels (NEPC, 2013)
- MLD Commercial Manageme- Limit (NEPC, 2013)

Deart N E RS Table GI: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, Asbestos, Additional chemicals

									0	СР							ОРР	nitrate	phosphate	e Herbicides				
		G	DDT+DDE+DDD°	DDE	рот	Aldrin & Dieldrin	Endosulfan I	Total Chlordane	Endosulfan II	Endosulfan Sulphate	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzen e	Methoxychlor	Chlorpyriphos	nitrate	phosphate	MCPA	2-4-D	2,4,5-T	MCPB		
		PQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.5	0.5	0.5	
				7000			50	Site As	ssessme- Cr	riteria		100	2000	50	00	2500	2000			5000	0000	5000	500	
	L D			3600			56		530			100	2000	50	80	2500	2000			5000	9000	5000	500	
	/ESL D																							
	LD																							
	IMW																							
DC F	ISL D																							
	T				1	1		1		1	1	1	1	1	1	1	1	1			1			
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/	
BH01	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	0.6	6.4	<0.5	<0.5	<0.5	<0	
BH01	0.4 - 0.5 m	29/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH02	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	
BD01	0 m	29/03/2022	<0.05	< 0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.2	-	-	-	-	-	-	-	
BH02	0.4 - 0.5 m	29/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
BH03	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.5	8.9	<0.5	<0.5	<0.5	<0	
BH04	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-		
TP05	0 - 0.1 m 0.4 - 0.5 m	30/03/2022 30/03/2022	- <0.1	- <0.1	<0.1	<0.1	<0.1	<0.1	- <0.1	- <0.1	- <0.1	- <0.1	-	- <0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	
TP05 TP06	0.4 - 0.5 m 0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	0.8	0.6	-	-			
BD02	0 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TP07	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	0.7	0.5	<0.5	<0.5	<0.5	<0	
TP7	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
TP07	1.4 - 1.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TP08	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	
TP9	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	
TP09	0 - 0.1 m	silica	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TP09	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TP10	0 - 0.1 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	0.7	<0.5	<0.5	<0.5	<0	
TP10	0.3 - 0.4 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	
TPII	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	
BD03	0 m	30/03/2022 30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- <0.5	- <0.5	- <0.5	- <0.5	- <0.5		
TP12 TP12	0 - 0.1 m 0.2 - 0.3 m	30/03/2022	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1						-	
TP12 TP12	0.2 - 0.3 m 0.4 - 0.5 m	30/03/2022	-	-				-0.1	-	-	-	-	-		-0.1	-0.1	-0.1	-	-	-	-	-	-	
TP12 TP13	0 - 0.1 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TP13	0.4 - 0.5 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	
TP13	0.9 - 1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	
TP14	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	0.6	0.6	-	-	-	-	
TP14	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TP15	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	-	-	-	-	
TP15	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Lab result

HIL/HSL exceedance ELL/ESL exceedance HIL/HSL and ELL/ESL exceedance ML exceedance ML and HIL/HSL or ELL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HLL = Health investigation level HSL = Health screening level (excluding DC) ELL = Ecological investigation level ESL = Ecological screening level ML = Manageme- Limit DC = Direct Co-act H

HIL AF/FA Asbestos = 0.001 % w/w, ACM estimation = 0.01% w/w QA/QC replicate of sample listed directly below the primary sample

а b Reported naphthalene laboratory result obtained from BTEXN suite

c Criteria applies to DDT only

Site Assessme- Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Commercial D Land use

- HIL D Commercial and Industrial (NEPC, 2013)
- HSL D Commercial Industrial (vapour i-rusion) (NEPC, 2013)
- DC HSL D Direct co-act HSL D Commercial and Industrial (direct co-act) (CRC CARE, 2011)

EIL/ESL Commercial and Industrial Ecological Screening and Investigation Levels (NEPC, 2013)

ML D Commercial Manageme- Limit (NEPC, 2013)

МСРВ	Picloram
0.5	0.5
5000	35000
ng/kg	mg/kg
<0.5	<0.5
-	-
-	-
-	-
-	-
<0.5	<0.5
-	-
-	-
-	-
-	-
-	-
<0.5	<0.5
-	-
-	-
-	-
-	-
-	-
< 0.5	< 0.5
-0.5	-0.5
-	-
-	-
<0.5	<0.5
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-

Deart N E RS Table G1: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, Asbestos, Additional chemicals

r	1 1		-								A shared								
						PC	в					in 40 gram nple				Asbestos			
			Arochlor 1016	Total PCB	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Aroclor 1260	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Total asbestos
		PQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1								<0.001	0.1
	LD			7															
HS				/														0.001	
	/ESL D																	0.001	
	LD																		
	IMW																		
DC F	ISL D																		
								1				1							
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	-	-	-	g	g	%(w/w)	g/kg
BH01	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	NAD	NAD	NAD	NAD	NAD	<0.001	NAD
BH01	0.4 - 0.5 m	29/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-	-	-	-
BD01	0 m	29/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02	0.4 - 0.5 m	29/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-	-	-	-
BH04	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	NAD	NAD	AD	NAD	0.0105	0.0105	NAD
TP05	0 - 0.1 m	30/03/2022	-	-	-	-	-	-	-	-	NAD	NAD	-	-	-	-	-	-	-
TP05	0.4 - 0.5 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	NAD	NAD	NAD	NAD	NAD	<0.001	NAD
TP06	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-	-	-	-
BD02	0 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP07	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	NAD	NAD	NAD	NAD	NAD	<0.001	NAD
TP7	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	NAD NAD	NAD NAD	-	-	-	-	-	-	-
TP07	1.4 - 1.5 m	30/03/2022	- <0.1	-	-	-	- <0.1	- <0.1	- <0.1	- <0.1	NAD	NAD	- NAD	- NAD	-	-	-	-	-
TP08	0 - 0.1 m	30/03/2022 30/03/2022	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	NAD	- NAD	NAD	NAD	NAD	< 0.001	NAD
TP9 TP09	0 - 0.1 m 0 - 0.1 m	silica	-	-		-	-	-	-	-	NAD -	NAD -	-	-	-	-	-	-	-
TP09 TP09	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	NAD	NAD	NAD	NAD	NAD	<0.001	NAD
TPI0	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	NAD	NAD	NAD	NAD	NAD	< 0.001	NAD
TPI0	0.3 - 0.4 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-	-		- NAD
TPI	0.3 - 0.4 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-	-	-	-
BD03	0 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP12	0 - 0.1 m	30/03/2022	-	-	-	-	-	-	-	-	NAD	NAD	-	-	-	-	-	-	-
TP12	0.2 - 0.3 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	NAD	NAD	NAD	NAD	NAD	<0.001	NAD
TP12	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	NAD	NAD	-	-	-	-	-	-	-
TP13	0 - 0.1 m	30/03/2022	-	-	-	-	-	-	-	-	NAD	NAD	-	-	-	-	-	-	-
TP13	0.4 - 0.5 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	NAD	NAD	NAD	NAD	NAD	<0.001	NAD
TP13	0.9 - 1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-	-	-	-
TP14	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-	-	-	-
TP14	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	NAD	NAD	-	-	-	-	-	-	-
TP15	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	NAD	NAD	AD	NAD	0.0013	<0.001	NAD
TP15	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	NAD	NAD	-	-	-	-	-	-	-

Lab result

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Manageme- Limit DC = Direct Co-act H

HIL AF/FA Asbestos = 0.001 % w/w . ACM estimation = 0.01% w/w QA/QC replicate of sample listed directly below the primary sample

а b Reported naphthalene laboratory result obtained from BTEXN suite

c Criteria applies to DDT only

Site Assessme- Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Commercial D Land use

- HIL D Commercial and Industrial (NEPC, 2013)
- HSL D Commercial Industrial (vapour i-rusion) (NEPC, 2013)
- DC HSL D Direct co-act HSL D Commercial and Industrial (direct co-act) (CRC CARE, 2011)

EIL/ESL Commercial and Industrial Ecological Screening and Investigation Levels (NEPC, 2013)

ML D Commercial Manageme- Limit (NEPC, 2013)

Table G2: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, Additional chemicals

							Metals							TRH					BT	TEX			P	АН	Phenol	or	CP
			Arsenic	Cadmium	Total Chromium	Copper	Lead	TCLP Lead	Mercury (inorganic)	Nickel	Zinc	ТКН С6 - С9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xyle ne	Xylenes (total)	Benzo(a)pyrene (BaP)	Total PAHs	Phenol	Total Endosulfan	Total Analysed OCP
		PQL	4	0.4	1	1	1		0.1	1	1	25	50	100	100	50	0.2	0.5	1	2	1	1	0.05	0.05	5	0.05	0.1
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH01	0 - 0.1 m	29/03/2022	<4	<0.4	4	10	12		<0.1	2	48	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5		<0.1
BH01	0.4 - 0.5 m	29/03/2022	<4	<0.4	3	4	6		<0.1	<1	12	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	-	-	-
BH02	0 - 0.1 m	29/03/2022	<4	<0.4	2	8	13	-	<0.1	<1	44	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5	-	<0.1
BD01	0 m	29-Mar-22 15:00	<5	<1	3	8	16	-	<0.1	<2	48	<10	<50	<100	<100	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.05	<0.05
BH02	0.4 - 0.5 m	29/03/2022	<4	<0.4	1	5	7	-	<0.1	<1	17	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	-	-	-
BH03	0 - 0.1 m	29/03/2022	<4	<0.4	<1	2	5	-	<0.1	<1	13	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5	-	<0.1
BH04	0 - 0.1 m	29/03/2022	<4	<0.4	9	20	110	0.6	0.1	3	69	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	0.2	1.2	<5	-	<0.1
TP05	0 - 0.1 m	30/03/2022	<4	<0.4	5	6	24	-	<0.1	1	70	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	0.09	0.56	-	-	-
TP05	0.4 - 0.5 m	30/03/2022	<4	<0.4	8	8	36	-	<0.1	<1	47	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5	-	<0.1
TP06	0 - 0.1 m	30/03/2022	15	<0.4	7	7	8	-	<0.1	2	36	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5	-	<0.1
BD02	0 m	30/03/2022	8	<0.4	4	4	5		<0.1	1	18	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	-	-	
TP07	0 - 0.1 m	30/03/2022	<4	<0.4	6	52	17	-	<0.1	7	61	<25	<50	100	110	210	<0.2	<0.5	<1	<2	<1	<1	0.56	4.2	<5	-	<0.1
TP07	0.4 - 0.5 m	30/03/2022	<4	<0.4	3	2	4	-	<0.1	1	5	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	0.3	1.7	-	-	
TP07	1.4 - 1.5 m	30/03/2022	<4	<0.4	4	<1	6	-	<0.1	<1	1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	-	-	
TP08	0 - 0.1 m	30/03/2022	<4	<0.4	5	12	87	•	<0.1	1	73	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5	•	<0.1
TP09	0 - 0.1 m	30/03/2022	<4	<0.4	10	6	6	•	<0.1	2	29	47	1500	12000	5300	18000	<0.2	8	<1	4	3	7	<0.05	5.8	<5	•	<0.1
TP09	0-0.1	silica	-	•			-						910	5400	3700	10010			•	•	· ·	•		-			-
TP09 TP10	0.4 - 0.5 m 0 - 0.1 m	30/03/2022 30/03/2022	<4	<0.4	7 4	29 12	39 18		0.2 <0.1	3	51 88	<25 <25	<50 <50	430	580 710	1000	<0.2	<0.5	<1	<2 <2	<1	<1	0.3 <0.05	2.2 <0.05	-	-	•
TP10	0.3 - 0.4 m	30/03/2022	<4	<0.4	4	12	52		<0.1	4	52	<25	<50	530 <100	120	1200	<0.2	<0.5		<2			<0.05 0.08	<0.05 0.4	- <5		<0.1
TP10 TP11	0.3 - 0.4 m	30/03/2022	4	<0.4	6	8	21		<0.1	2	52 47	<25	<50	<100	120	120	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5	· ·	<0.1
BD03	0 m	30/03/2022	<4	<0.4	4	4	17		<0.1	1	32	<25	<50	<100	140	120	<0.2	<0.5	<1	~	<1	<1	<0.05	<0.05			-
TP12	0 - 0.1 m	30/03/2022	<4	<0.4	13	15	10		<0.1	9	24	<25	<50	110	120	280	<0.2	<0.5	<1	<2	<1	<1	0.59	4.8			
TP12	0.2 - 0.3 m	30/03/2022	<4	<0.4	12	18	20		<0.1	6	26	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	0.07	0.3	<5		<0.1
TP12	0.4 - 0.5 m	30/03/2022	<4	<0.4	5	12	15		<0.1	<1	47	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	0.3	2		-	
TP13	0 - 0.1 m	30/03/2022	<4	<0.4	9	13	19	-	<0.1	4	92	<25	<50	<100	120	120	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	-	-	-
TP13	0.4 - 0.5 m	30/03/2022	<4	<0.4	8	11	17		<0.1	5	54	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	0.2	1.7	<5		<0.1
TP13	0.9 - 1 m	30/03/2022	<4	<0.4	5	3	6		<0.1	2	14	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5		<0.1
TP14	0 - 0.1 m	30/03/2022	<4	<0.4	8	4	12		<0.1	3	24	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5	-	<0.1
TP14	0.4 - 0.5 m	30/03/2022	<4	<0.4	<1	<1	1		<0.1	<1	12	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	-		-
TP15	0 - 0.1 m	30/03/2022	6	<0.4	9	3	19		<0.1	<1	43	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	<5		<0.1
TP15	0.4 - 0.5 m	30/03/2022	<4	<0.4	2	1	9		<0.1	<1	9	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1	<0.05	<0.05	-		-
																							Wa	ste Classification C	riteria ^f		
	CT1		100	20	100	NC	100	N/A	4	40	NC	650	NC	NC	NC	10000	10	288	600	NC	NC	1000	0.8	200	288	60	<50
	SCC1		500	100	1900	NC	1500	N/A	50	1050	NC	650	NC	NC	NC	10000	18	518	1080	NC	NC	1800	10	200	518	108	<50
	TCLP1		N/A	N/A	N/A	NC	N/A	5	N/A	N/A	NC	N/A	NC	NC	NC	N/A	N/A	N/A	N/A	NC	NC	N/A	N/A	N/A	N/A	N/A	N/A
	CT2		400	80	400	NC	400	N/A	16	160	NC	2600	NC	NC	NC	40000	40	1152	2400	NC	NC	4000	3.2	800	1152	240	<50
	SCC2		2000	400	7600	NC	6000	N/A	200	4200	NC	2600	NC	NC	NC	40000	72	2073	4320	NC	NC	7200	23	800	2073	432	<50
	TCLP2		N/A	N/A	N/A	NC	N/A	20	N/A	N/A	NC	N/A	NC	NC	NC	N/A	N/A	N/A	N/A	NC	NC	N/A	N/A	N/A	N/A	N/A	N/A

📕 CT1 exceedance 📕 TCLP1 and/or SCC1 exceedance 📙 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection - = Not tested NL = Non limiting NC = No criteria NA = Not applicable

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Total chromium used as initial screen for chromium(VI).
- c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen
- f All criteria are in the same units as the reported results
- PQL Practical qua-itation limit
- CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific co-amina- concertation (SCC) for classification without TCLP: General solid waste
- SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concertation (TCLP) and specific co-amina- concertation (SCC) when used together: General solid waste
- TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable conce-ration (TCLP) and specific co-amina- conce-ration (SCC) when used together: General solid waste
- CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific co-amina- conce-ration (SCC) for classification without TCLP: Restricted solid waste
- SC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable conce-ration (TCLP) and specific co-amina- conce-ration (SCC) when used together: Restricted solid waste
- TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable conce-ration (TCLP) and specific co-amina- conce-ration (SCC) when used together: Restricted solid waste

Table G2: Summary of Laboratory Results – Metals, TRH, BTEX, PAH, Phenol, OCP, OPP, PCB, Asbestos, Additional chemicals

			OPP				P	СВ				Asbestos in	n 40 g sample			Asl	bestos in 500 ml Sa	imple				Phenoxy Ac	id herbicides		Nitrate	Phosphate
			fotal Analysed OPP	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arocior 1260	Total PCB	Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos ID in soil >0.1g/kg	Asbestos ID in soil <0.1g/kg	Trace Analysis	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Total Asbestos#1	2,4-D [(2,4- Dichlorophenoxy) acetic acid]	Picioram	Triclopyr	Total	phosphate	nitrate
		PQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1								<0.001	<0.1	0.5	0.5	0.5		0.1	0.1
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					-	g	g	%(w/w)	g/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH01	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			NAD	NAD	NAD	NAD		<0.001	<0.1	<0.5	<0.5	<0.5	<2	0.6	1
BH01	0.4 - 0.5 m	29/03/2022	-		-			-		-				· .				-	-		-	-				
BH02	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	· .			· .		-	-		· ·			-	
BD01	0 m	29-Mar-22 15:00	-		-	-	-	-		-	-	-				-		-	-	-	-	-	-	-	-	-
BH02	0.4 - 0.5 m	29/03/2022	-		-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-
BH03	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD			-					<0.5	<0.5	<0.5	<2	8.9	<0.5
BH04	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			NAD	AD	NAD	NAD	0.0105	0.0015	<0.1						-
TP05	0 - 0.1 m	30/03/2022				-						NAD	NAD		-					-						-
TP05	0.4 - 0.5 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			NAD	NAD	NAD	NAD		<0.001	<0.1			-	-	-	-
TP06	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD		-	-		-	-	-	-	-	-	-	0.6	0.8
BD02	0 m	30/03/2022	-		-	-	-	-		-	-	-			-	-			-	-	-	-	-		-	-
TP07	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-		NAD	NAD	NAD	NAD	-	<0.001	<0.1	<0.5	<0.5	<0.5	<2	0.5	0.7
TP07	0.4 - 0.5 m	30/03/2022	-		-	-	-	-		-	-	NAD	NAD			-	-	-	-	-	-	-	-	-	-	-
TP07	1.4 - 1.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	NAD	NAD	-	-	-	-	-	-	-	-	-	-	-	-	-
TP08	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	NAD	NAD	NAD	NAD	-	<0.001	<0.1	-	-	-	-	-	-
TP09	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-	-	-	-	-	-	-	-	-	-
TP09	0-0.1	silica	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP09	0.4 - 0.5 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	NAD	NAD	NAD	NAD		<0.001	<0.1	-	-	-	-	-	-
TP10	0 - 0.1 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	NAD	NAD	NAD	NAD	-	<0.001	<0.1	<0.5	<0.5	<0.5	<2	0.7	<0.5
TP10	0.3 - 0.4 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-	-	-	-		-	-	-	-	-	-	-	-
TP11	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD	-		-	-	-	-	-	-	-	-	-	-	
BD03	0 m	30/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
TP12	0 - 0.1 m	30/03/2022	-		-	-	-	-	-	-	-	NAD	NAD	-		-	-	-	-	-	-	-	-	-	<0.5	<0.5
TP12	0.2 - 0.3 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	· ·	NAD	NAD	NAD	NAD	-	<0.001	<0.1	<0.5	<0.5	<0.5	<2	-	-
TP12	0.4 - 0.5 m	30/03/2022				-						NAD	NAD						-	-						-
TP13	0 - 0.1 m	30/03/2022				-						NAD	NAD												-	-
TP13	0.4 - 0.5 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			NAD	NAD	NAD	NAD	· ·		<0.1					-	
TP13	0.9 - 1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD												-	-
TP14	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	NAD		•	-	· ·				<0.5	<0.5	<0.5	<2	0.6	0.6
TP14	0.4 - 0.5 m	30/03/2022				-	-					NAD	NAD		-			-		-					-	-
TP15	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	•	•	NAD	AD	NAD	NAD	0.0013	<0.001	<0.1					<0.5	<0.5
TP15	0.4 - 0.5 m	30/03/2022										NAD	NAD						-						-	-
	CT1																									
	SCC1		4	NC	NC	NC	NC	NC	NC	NC	<50	NC	NC	NC	NC	NC	NC	NC	NC	NC	200	60	40	NC	NC	NC
	TCLP1		7.5	NC	NC	NC	NC	NC	NC	NC	<50	NC	NC	NC	NC	NC	NC	NC	NC	NC	10	110	75	NC	NC	NC
	CT2		N/A 16	NC	NC	NC	NC	NC	NC	NC	N/A	NC	NC	NC	NC	NC	NC	NC	NC	NC	N/A	N/A	N/A	NC	NC	NC
	SCC2		16 30	NC NC	NC NC	NC	NC	NC NC	NC NC	NC NC	<50	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	800	240 440	160 300	NC NC	NC NC	NC NC
	TCLP2		30 N/A	NC NC	NC	NC	NC	NC	NC NC	NC	<50 N/A	NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	1440 N/A	440 N/A	300 N/A	NC NC	NC	NC
	TULP2		N/A	NG	NG	NG	NG	NG	NG	NG	N/A	NG	NG	NG	NG	NG	NG	NG	NG	NG	N/A	N/A	N/A	NG	NG	NG

📕 CT1 exceedance 📕 TCLP1 and/or SCC1 exceedance 🧧 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection - = Not tested NL = Non limiting NC = No criteria NA = Not applicable

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Total chromium used as initial screen for chromium(VI).
- c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen
- f All criteria are in the same units as the reported results
- PQL Practical qua-itation limit
- CT1
- NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific co-amina- conce-ration (SCC) for classification without TCLP: General solid waste
- SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable conce-ration (TCLP) and specific co-amina- conce-ration (SCC) when used together: General solid waste
- TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concertation (TCLP) and specific co-amina- concertation (SCC) when used together: General solid waste
- CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific co-amina- conce-ration (SCC) for classification without TCLP: Restricted solid waste
- SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable conce-ration (TCLP) and specific co-amina- conce-ration (SCC) when used together: Restricted solid waste
- TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable conce-ration (TCLP) and specific co-amina- conce-ration (SCC) when used together: Restricted solid waste

Appendix H

Laboratory Certificates, Chain of Custody and Sample Receipt

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 292364

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	85749.02, Warriewood
Number of Samples	32 Soil
Date samples received	31/03/2022
Date completed instructions received	31/03/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

08/04/2022

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date of Issue

Date results requested by

08/04/2022

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Panika Wongchanda, Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Greta Petzold, Senior Report Coordinator Hannah Nguyen, Metals Supervisor Josh Williams, Organics and LC Supervisor Liam Timmins, Chemist Lucy Zhu, Asbestos Supervisor Priya Samarawickrama, Senior Chemist Thomas Beenie, Lab Technician Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		292364-1	292364-2	292364-3	292364-4	292364-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	29/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	91	89	90	83	92
			1			
vTRH(C6-C10)/BTEXN in Soil			1			
vTRH(C6-C10)/BTEXN in Soil Our Reference		292364-6	292364-7	292364-8	292364-9	292364-10
	UNITS	292364-6 BH4	292364-7 TP5	292364-8 TP5	292364-9 TP6	292364-10 TP7
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH4	TP5	TP5	TP6	TP7
Our Reference Your Reference Depth	UNITS	BH4 0-0.1	TP5 0-0.1	TP5 0.4-0.5	TP6 0-0.1	TP7 0-0.1
Our Reference Your Reference Depth Date Sampled	UNITS -	BH4 0-0.1 29/03/2022	TP5 0-0.1 30/03/2022	TP5 0.4-0.5 30/03/2022	TP6 0-0.1 30/03/2022	TP7 0-0.1 30/03/2022
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH4 0-0.1 29/03/2022 Soil	TP5 0-0.1 30/03/2022 Soil	TP5 0.4-0.5 30/03/2022 Soil	TP6 0-0.1 30/03/2022 Soil	TP7 0-0.1 30/03/2022 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022	TP5 0-0.1 30/03/2022 Soil 04/04/2022	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022	TP6 0-0.1 30/03/2022 Soil 04/04/2022	TP7 0-0.1 30/03/2022 Soil 04/04/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH4 0-0.1 29/03/2022 Soil 04/04/2022 06/04/2022	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 06/04/2022 <25	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$	- - mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 06/04/2022 <25 <25	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <0.2	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <0.2	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C $_6$ - C $_9$ TRH C $_6$ - C $_{10}$ vTPH C $_6$ - C $_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 <25 <25 <25 <25 <25 <0.2 <0.2	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_10$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	TP5 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	TP6 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP7 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		292364-11	292364-12	292364-13	292364-14	292364-15
Your Reference	UNITS	TP7	TP7	TP8	TP9	TP9
Depth		0.4-0.5	1.4-1.5	0-0.1	0-0.1	0.4-0.5
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	47	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	350	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	340	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	8	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	4	<2
o-Xylene	mg/kg	<1	<1	<1	3	<1
Naphthalene	mg/kg	<1	<1	<1	4	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	7	<1
Surrogate aaa-Trifluorotoluene	%	86	87	83	88	85
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		292364-16	292364-17	292364-18	292364-19	292364-20
Your Reference	UNITS	TP10	TP10	TP11	TP12	TP12
Depth		0-0.1	0.3-0.4	0-0.1	0-0.1	0.2-0.3
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
		<1	<1	<1	<1	<1
Naphthalene	mg/kg					
Naphthalene Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		292364-21	292364-22	292364-23	292364-24	292364-25
Your Reference	UNITS	TP12	TP13	TP13	TP13	TP14
Depth		0.4-0.5	0-0.1	0.4-0.5	0.9-1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	87	95	96	107
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		292364-26	292364-27	292364-28	292364-29	292364-30
	UNITS	292364-26 TP14	292364-27 TP15	292364-28 TP15	292364-29 Spike	292364-30 Blank
Our Reference	UNITS					
Our Reference Your Reference	UNITS	TP14	TP15	TP15		
Our Reference Your Reference Depth	UNITS	TP14 0.4-0.5	TP15 0-0.1	TP15 0.4-0.5	Spike -	Blank -
Our Reference Your Reference Depth Date Sampled	UNITS -	TP14 0.4-0.5 30/03/2022	TP15 0-0.1 30/03/2022	TP15 0.4-0.5 30/03/2022	Spike - 30/03/2022	Blank - 30/03/2022
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	TP14 0.4-0.5 30/03/2022 Soil	TP15 0-0.1 30/03/2022 Soil	TP15 0.4-0.5 30/03/2022 Soil	Spike - 30/03/2022 Soil	Blank - 30/03/2022 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022	TP15 0-0.1 30/03/2022 Soil 04/04/2022	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022	Spike - 30/03/2022 Soil 04/04/2022	Blank - 30/03/2022 Soil 04/04/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022	Spike - 30/03/2022 Soil 04/04/2022 06/04/2022	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25	Spike - 30/03/2022 Soil 04/04/2022 06/04/2022 [NA]	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$	- - mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25	Spike - 30/03/2022 Soil 04/04/2022 06/04/2022 [NA]	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25	Spike - 30/03/2022 Soil 04/04/2022 06/04/2022 [NA] [NA]	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <0.2	Spike - 30/03/2022 Soil 04/04/2022 (NA] [NA] [NA] [NA] 101%	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2	Spike - 30/03/2022 Soil 04/04/2022 (NA] (NA] (NA] 101% 105%	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_10$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <0.2 <0.2 <0.5	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	Spike - 30/03/2022 Soil 04/04/2022 06/04/2022 [NA] [NA] [NA] 101% 105% 102%	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 (06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25	Spike - 30/03/2022 Soil 04/04/2022 06/04/2022 (NA) (NA) (NA) 101% 102% 100%	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022 <25
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	TP15 0-0.1 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 06/04/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	Spike - 30/03/2022 Soil 04/04/2022 06/04/2022 (NA) (NA) (NA) (NA) (NA) (NA) (NA) (NA)	Blank - 30/03/2022 Soil 04/04/2022 06/04/2022 <25

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		292364-31	292364-32
Your Reference	UNITS	BD02	BD03
Depth		-	-
Date Sampled		30/03/2022	30/03/2022
Type of sample		Soil	Soil
Date extracted	-	04/04/2022	04/04/2022
Date analysed	-	06/04/2022	06/04/2022
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C6 - C10	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
Naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	104

svTRH (C10-C40) in Soil						
Our Reference		292364-1	292364-2	292364-3	292364-4	292364-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	29/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	100	<50	<50	<50	<50
Surrogate o-Terphenyl	%	103	93	98	93	92
svTRH (C10-C40) in Soil						
Our Reference		292364-6	000004 7	292364-8	292364-9	292364-10
		232304-0	292364-7	232304-0	2020010	292304-10
Your Reference	UNITS	BH4	292364-7 TP5	TP5	TP6	292364-10 TP7
Your Reference Depth	UNITS					
	UNITS	BH4	TP5	TP5	TP6	TP7
Depth	UNITS	BH4 0-0.1	TP5 0-0.1	TP5 0.4-0.5	TP6 0-0.1	TP7 0-0.1
Depth Date Sampled	UNITS -	BH4 0-0.1 29/03/2022	TP5 0-0.1 30/03/2022	TP5 0.4-0.5 30/03/2022	TP6 0-0.1 30/03/2022	TP7 0-0.1 30/03/2022
Depth Date Sampled Type of sample	UNITS - -	BH4 0-0.1 29/03/2022 Soil	TP5 0-0.1 30/03/2022 Soil	TP5 0.4-0.5 30/03/2022 Soil	TP6 0-0.1 30/03/2022 Soil	TP7 0-0.1 30/03/2022 Soil
Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022	TP5 0-0.1 30/03/2022 Soil 04/04/2022	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022	TP6 0-0.1 30/03/2022 Soil 04/04/2022	TP7 0-0.1 30/03/2022 Soil 04/04/2022
Depth Date Sampled Type of sample Date extracted Date analysed	-	BH4 0-0.1 29/03/2022 Soil 04/04/2022 07/04/2022	TP5 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022	TP6 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022	TP7 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 07/04/2022 <50	TP5 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP6 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP7 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP5 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP6 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP7 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 100
Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	BH4 0-0.1 29/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100	TP5 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100	TP5 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100	TP6 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP7 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 100 110

mg/kg

mg/kg

mg/kg % <100

<100

<50

97

<100

<100

<50

95

<100

<100

<50

93

<100

<100

<50

93

TRH >C16 -C34

TRH >C34 -C40

Total +ve TRH (>C10-C40)

Surrogate o-Terphenyl

180

<100

180

101

svTRH (C10-C40) in Soil						
Our Reference		292364-11	292364-12	292364-13	292364-14	292364-15
Your Reference	UNITS	TP7	TP7	TP8	TP9	TP9
Depth		0.4-0.5	1.4-1.5	0-0.1	0-0.1	0.4-0.5
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
TRH C10 - C14	mg/kg	<50	<50	<50	1,500	<50
TRH C15 - C28	mg/kg	<100	<100	<100	12,000	430
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	5,300	580
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	18,000	1,000
TRH >C10 -C16	mg/kg	<50	<50	<50	1,200	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	1,200	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	17,000	880
TRH >C34 -C40	mg/kg	<100	<100	<100	2,400	270
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	20,000	1,100
Surrogate o-Terphenyl	%	91	96	93	#	97
svTRH (C10-C40) in Soil						
Our Reference		292364-16	292364-17	292364-18	292364-19	292364-20
	UNITS	292364-16 TP10	292364-17 TP10	292364-18 TP11	292364-19 TP12	292364-20 TP12
Our Reference	UNITS					
Our Reference Your Reference	UNITS	TP10	TP10	TP11	TP12	TP12
Our Reference Your Reference Depth	UNITS	TP10 0-0.1	TP10 0.3-0.4	TP11 0-0.1	TP12 0-0.1	TP12 0.2-0.3
Our Reference Your Reference Depth Date Sampled	UNITS	TP10 0-0.1 30/03/2022	TP10 0.3-0.4 30/03/2022	TP11 0-0.1 30/03/2022	TP12 0-0.1 30/03/2022	TP12 0.2-0.3 30/03/2022
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	TP10 0-0.1 30/03/2022 Soil	TP10 0.3-0.4 30/03/2022 Soil	TP11 0-0.1 30/03/2022 Soil	TP12 0-0.1 30/03/2022 Soil	TP12 0.2-0.3 30/03/2022 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	TP10 0-0.1 30/03/2022 Soil 04/04/2022	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022	TP11 0-0.1 30/03/2022 Soil 04/04/2022	TP12 0-0.1 30/03/2022 Soil 04/04/2022	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	TP10 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022 07/04/2022	TP11 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022	TP12 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022 07/04/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	TP10 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP11 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP12 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022 07/04/2022 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	TP10 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 530	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP11 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP12 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 110	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	TP10 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 530 710	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 120	TP11 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 140	TP12 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 110 170	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	TP10 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 530 710 1,200	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 120 120	TP11 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 140 140	TP12 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 110 170 280	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36) TRH >C ₁₀ -C ₁₆	- - mg/kg mg/kg mg/kg mg/kg mg/kg	TP10 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 120 120 120 <50	TP11 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 140 140 140 <50	TP12 0-0.1 30/03/2022 Soil 04/04/2022 <07/04/2022 <50 110 170 280 <50	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} - C_{16}TRH >C_{10} - C_{16} less Naphthalene (F2)	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP10 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 120 120 <50 <50 <50	TP11 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 140 140 <50 <50 <50	TP12 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 110 170 280 <50 <50 <50	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50 <50 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} - C_{16}TRH >C_{10} - C_{16} less Naphthalene (F2)TRH >C_{16} -C_{34}	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP10 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 530 710 1,200 <50	TP10 0.3-0.4 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP11 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP12 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 110 170 280 <50 <50 <50 220	TP12 0.2-0.3 30/03/2022 Soil 04/04/2022 07/04/2022 <50

svTRH (C10-C40) in Soil									
Our Reference		292364-21	292364-22	292364-23	292364-24	292364-25			
Your Reference	UNITS	TP12	TP13	TP13	TP13	TP14			
Depth		0.4-0.5	0-0.1	0.4-0.5	0.9-1	0-0.1			
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022			
Type of sample		Soil	Soil	Soil	Soil	Soil			
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022			
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022			
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50			
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100			
TRH C ₂₉ - C ₃₆	mg/kg	<100	120	<100	<100	<100			
Total +ve TRH (C10-C36)	mg/kg	<50	120	<50	<50	<50			
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50			
TRH >C16 -C34	mg/kg	120	130	<100	<100	<100			
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100			
Total +ve TRH (>C10-C40)	mg/kg	120	130	<50	<50	<50			
Surrogate o-Terphenyl	%	92	97	88	95	91			
svTRH (C10-C40) in Soil	1	1	1						
svTRH (C10-C40) in Soil Our Reference		292364-26	292364-27	292364-28	292364-31	292364-32			
	UNITS	292364-26 TP14	292364-27 TP15	292364-28 TP15	292364-31 BD02	292364-32 BD03			
Our Reference	UNITS								
Our Reference Your Reference	UNITS	TP14	TP15	TP15					
Our Reference Your Reference Depth	UNITS	TP14 0.4-0.5	TP15 0-0.1	TP15 0.4-0.5	BD02 -	BD03 -			
Our Reference Your Reference Depth Date Sampled	UNITS	TP14 0.4-0.5 30/03/2022	TP15 0-0.1 30/03/2022	TP15 0.4-0.5 30/03/2022	BD02 - 30/03/2022	BD03 - 30/03/2022			
Our Reference Your Reference Depth Date Sampled Type of sample		TP14 0.4-0.5 30/03/2022 Soil	TP15 0-0.1 30/03/2022 Soil	TP15 0.4-0.5 30/03/2022 Soil	BD02 - 30/03/2022 Soil	BD03 - 30/03/2022 Soil			
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted		TP14 0.4-0.5 30/03/2022 Soil 04/04/2022	TP15 0-0.1 30/03/2022 Soil 04/04/2022	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022	BD02 - 30/03/2022 Soil 04/04/2022	BD03 - 30/03/2022 Soil 04/04/2022			
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022	TP15 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022	BD02 - 30/03/2022 Soil 04/04/2022 07/04/2022	BD03 - 30/03/2022 Soil 04/04/2022 07/04/2022			
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP15 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50	BD02 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50	BD03 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50			
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP15 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	BD02 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100	BD03 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100			
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100	TP15 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100	BD02 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100	BD03 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 120			
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50	TP15 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50	BD02 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50	BD03 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 120 120			
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C ₁₀ -C ₁₆	- - mg/kg mg/kg mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50 <50 <50	TP15 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50	BD02 - 30/03/2022 Soil 04/04/2022 07/04/2022 < 07/04/2022 < 07/04/2022 < 07/04/2022 < 07/04/2022 < 07/04/2022 < 07/04/2022 < 07/04/2022	BD03 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 120 120 50			
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 - C16TRH >C10 - C16 less Naphthalene (F2)	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	TP14 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <50 <50 <50 <50	TP15 0-0.1 30/03/2022 Soil 04/04/2022 07/04/2022 <50	TP15 0.4-0.5 30/03/2022 Soil 04/04/2022 07/04/2022 <50	BD02 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 <100 <100 <50 <50 <50 <50	BD03 - 30/03/2022 Soil 04/04/2022 07/04/2022 <50 <100 120 120 <50 <50 <50			

%

87

90

87

88

Surrogate o-Terphenyl

94

PAHs in Soil						
Our Reference		292364-1	292364-2	292364-3	292364-4	292364-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	29/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	07/04/2022	05/04/2022	07/04/2022	05/04/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	105	101	93	99	90

PAHs in Soil						
Our Reference		292364-6	292364-7	292364-8	292364-9	292364-10
Your Reference	UNITS	BH4	TP5	TP5	TP6	TP7
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0-0.1
Date Sampled		29/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	07/04/2022	05/04/2022	05/04/2022	05/04/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	0.2	<0.1	<0.1	0.4
Pyrene	mg/kg	0.2	0.2	<0.1	<0.1	0.5
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	0.4
Chrysene	mg/kg	0.1	0.1	<0.1	<0.1	0.3
Benzo(b,j+k)fluoranthene	mg/kg	0.3	<0.2	<0.2	<0.2	0.9
Benzo(a)pyrene	mg/kg	0.2	0.09	<0.05	<0.05	0.56
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5
Total +ve PAH's	mg/kg	1.2	0.56	<0.05	<0.05	4.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.7
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.8
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.8
Surrogate p-Terphenyl-d14	%	95	103	93	96	93

PAHs in Soil						
Our Reference		292364-11	292364-12	292364-13	292364-14	292364-15
Your Reference	UNITS	TP7	TP7	TP8	TP9	TP9
Depth		0.4-0.5	1.4-1.5	0-0.1	0-0.1	0.4-0.5
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	5.8	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4
Pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	0.4
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	0.3	<0.2	<0.2	<0.2	0.3
Benzo(a)pyrene	mg/kg	0.3	<0.05	<0.05	<0.05	0.3
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.7	<0.05	<0.05	5.8	2.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	93	104	99	133	108

PAHs in Soil						
Our Reference		292364-16	292364-17	292364-18	292364-19	292364-20
Your Reference	UNITS	TP10	TP10	TP11	TP12	TP12
Depth		0-0.1	0.3-0.4	0-0.1	0-0.1	0.2-0.3
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	05/04/2022	06/04/2022	07/04/2022	06/04/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	0.9	0.1
Pyrene	mg/kg	<0.1	0.1	<0.1	1	0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	0.4	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.7	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.08	<0.05	0.59	0.07
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Total +ve PAH's	mg/kg	<0.05	0.4	<0.05	4.8	0.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	0.7	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	0.8	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	0.8	<0.5
Surrogate p-Terphenyl-d14	%	112	98	99	100	101

PAHs in Soil						
Our Reference		292364-21	292364-22	292364-23	292364-24	292364-25
Your Reference	UNITS	TP12	TP13	TP13	TP13	TP14
Depth		0.4-0.5	0-0.1	0.4-0.5	0.9-1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	06/04/2022	06/04/2022	06/04/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1
Chrysene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.5	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.3	<0.05	0.2	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	0.2	<0.1	<0.1
Total +ve PAH's	mg/kg	2.0	<0.05	1.7	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	100	106	97	83	98

PAHs in Soil						
Our Reference		292364-26	292364-27	292364-28	292364-31	292364-32
Your Reference	UNITS	TP14	TP15	TP15	BD02	BD03
Depth		0.4-0.5	0-0.1	0.4-0.5	-	-
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	06/04/2022	07/04/2022	07/04/2022	07/04/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	97	103	100	98	98

Organochlorine Pesticides in soil						
Our Reference		292364-1	292364-3	292364-5	292364-6	292364-8
Your Reference	UNITS	BH1	BH2	BH3	BH4	TP5
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	100	98	99	100

Organochlorine Pesticides in soil						
Our Reference		292364-9	292364-10	292364-13	292364-14	292364-17
Your Reference	UNITS	TP6	TP7	TP8	TP9	TP10
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.3-0.4
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	07/04/2022	07/04/2022	05/04/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	94	99	96	100

Organochlorine Pesticides in soil						
Our Reference		292364-18	292364-20	292364-23	292364-24	292364-25
Your Reference	UNITS	TP11	TP12	TP13	TP13	TP14
Depth		0-0.1	0.2-0.3	0.4-0.5	0.9-1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.2	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	94	92	78	97
Organochlorine Pesticides in soil						
-----------------------------------	-------	------------				
Our Reference		292364-27				
Your Reference	UNITS	TP15				
Depth		0-0.1				
Date Sampled		30/03/2022				
Type of sample		Soil				
Date extracted	-	04/04/2022				
Date analysed	-	06/04/2022				
alpha-BHC	mg/kg	<0.1				
НСВ	mg/kg	<0.1				
beta-BHC	mg/kg	<0.1				
gamma-BHC	mg/kg	<0.1				
Heptachlor	mg/kg	<0.1				
delta-BHC	mg/kg	<0.1				
Aldrin	mg/kg	<0.1				
Heptachlor Epoxide	mg/kg	<0.1				
gamma-Chlordane	mg/kg	<0.1				
alpha-chlordane	mg/kg	<0.1				
Endosulfan I	mg/kg	<0.1				
pp-DDE	mg/kg	<0.1				
Dieldrin	mg/kg	<0.1				
Endrin	mg/kg	<0.1				
Endosulfan II	mg/kg	<0.1				
pp-DDD	mg/kg	<0.1				
Endrin Aldehyde	mg/kg	<0.1				
pp-DDT	mg/kg	<0.1				
Endosulfan Sulphate	mg/kg	<0.1				
Methoxychlor	mg/kg	<0.1				
Total +ve DDT+DDD+DDE	mg/kg	<0.1				
Surrogate TCMX	%	98				

Organophosphorus Pesticides in Soil						
Our Reference		292364-1	292364-3	292364-5	292364-6	292364-8
Your Reference	UNITS	BH1	BH2	BH3	BH4	TP5
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	100	98	99	100

Organophosphorus Pesticides in Soil					_	
Our Reference		292364-9	292364-10	292364-13	292364-14	292364-17
Your Reference	UNITS	TP6	TP7	TP8	TP9	TP10
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.3-0.4
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	07/04/2022	07/04/2022	05/04/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	94	99	96	100

Organophosphorus Pesticides in Soil					_	
Our Reference		292364-18	292364-20	292364-23	292364-24	292364-25
Your Reference	UNITS	TP11	TP12	TP13	TP13	TP14
Depth		0-0.1	0.2-0.3	0.4-0.5	0.9-1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	94	92	78	97

Organophosphorus Pesticides in Soil		
Our Reference		292364-27
Your Reference	UNITS	TP15
Depth		0-0.1
Date Sampled		30/03/2022
Type of sample		Soil
Date extracted	-	04/04/2022
Date analysed	-	06/04/2022
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	98

PCBs in Soil						
Our Reference		292364-1	292364-3	292364-5	292364-6	292364-8
Your Reference	UNITS	BH1	BH2	BH3	BH4	TP5
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	100	98	99	100

PCBs in Soil						
Our Reference		292364-9	292364-10	292364-13	292364-14	292364-17
Your Reference	UNITS	TP6	TP7	TP8	TP9	TP10
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.3-0.4
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	07/04/2022	07/04/2022	05/04/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	94	99	96	100

PCBs in Soil						
Our Reference		292364-18	292364-20	292364-23	292364-24	292364-25
Your Reference	UNITS	TP11	TP12	TP13	TP13	TP14
Depth		0-0.1	0.2-0.3	0.4-0.5	0.9-1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	94	92	78	97

PCBs in Soil		
Our Reference		292364-27
Your Reference	UNITS	TP15
Depth		0-0.1
Date Sampled		30/03/2022
Type of sample		Soil
Date extracted	-	04/04/2022
Date analysed	-	06/04/2022
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	98

Acid Extractable metals in soil						
Our Reference		292364-1	292364-2	292364-3	292364-4	292364-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	29/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	4	3	2	1	<1
Copper	mg/kg	10	4	8	5	2
Lead	mg/kg	12	6	13	7	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	<1	<1	<1	<1
Zinc	mg/kg	48	12	44	17	13

Acid Extractable metals in soil						
Our Reference		292364-6	292364-7	292364-8	292364-9	292364-10
Your Reference	UNITS	BH4	TP5	TP5	TP6	TP7
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0-0.1
Date Sampled		29/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
Arsenic	mg/kg	<4	<4	<4	15	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	5	8	7	6
Copper	mg/kg	20	6	8	7	52
Lead	mg/kg	110	24	36	8	17
Mercury	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	1	<1	2	7
Zinc	mg/kg	69	70	47	36	61

Acid Extractable metals in soil						
Our Reference		292364-11	292364-12	292364-13	292364-14	292364-15
Your Reference	UNITS	TP7	TP7	TP8	TP9	TP9
Depth		0.4-0.5	1.4-1.5	0-0.1	0-0.1	0.4-0.5
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	4	5	10	7
Copper	mg/kg	2	<1	12	6	29
Lead	mg/kg	4	6	87	6	39
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Nickel	mg/kg	1	<1	1	2	3
Zinc	mg/kg	5	1	73	29	51

Acid Extractable metals in soil						
Our Reference		292364-16	292364-17	292364-18	292364-19	292364-20
Your Reference	UNITS	TP10	TP10	TP11	TP12	TP12
Depth		0-0.1	0.3-0.4	0-0.1	0-0.1	0.2-0.3
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
Arsenic	mg/kg	<4	4	4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	4	10	6	13	12
Copper	mg/kg	12	10	8	15	18
Lead	mg/kg	18	52	21	10	20
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	4	2	9	6
Zinc	mg/kg	88	52	47	24	26

Acid Extractable metals in soil						
Our Reference		292364-21	292364-22	292364-23	292364-24	292364-25
Your Reference	UNITS	TP12	TP13	TP13	TP13	TP14
Depth		0.4-0.5	0-0.1	0.4-0.5	0.9-1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	9	8	5	8
Copper	mg/kg	12	13	11	3	4
Lead	mg/kg	15	19	17	6	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	4	5	2	3
Zinc	mg/kg	47	92	54	14	24

Acid Extractable metals in soil						
Our Reference		292364-26	292364-27	292364-28	292364-31	292364-32
Your Reference	UNITS	TP14	TP15	TP15	BD02	BD03
Depth		0.4-0.5	0-0.1	0.4-0.5	-	-
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	07/04/2022	07/04/2022	07/04/2022	07/04/2022	07/04/2022
Arsenic	mg/kg	<4	6	<4	8	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	<1	9	2	4	4
Copper	mg/kg	<1	3	1	4	4
Lead	mg/kg	1	19	9	5	17
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	1	1
Zinc	mg/kg	12	43	9	18	32

Misc Soil - Inorg						
Our Reference		292364-1	292364-3	292364-5	292364-6	292364-8
Your Reference	UNITS	BH1	BH2	BH3	BH4	TP5
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Nisc Soil - Inorg						
Our Reference		292364-9	292364-10	292364-13	292364-14	292364-17
Your Reference	UNITS	TP6	TP7	TP8	TP9	TP10
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.3-0.4
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/202
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/202
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/202
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Dur Reference		292364-18	292364-20	292364-23	292364-24	292364-25
/our Reference	UNITS	TP11	TP12	TP13	TP13	TP14
Depth		0-0.1	0.2-0.3	0.4-0.5	0.9-1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/202
Гуре of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/202
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/202
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		292364-27				
Your Reference	UNITS	TP15				

Our Reference		292364-27
Your Reference	UNITS	TP15
Depth		0-0.1
Date Sampled		30/03/2022
Type of sample		Soil
Date prepared	-	05/04/2022
Date analysed	-	05/04/2022
Total Phenolics (as Phenol)	mg/kg	<5

Moisture						
Our Reference		292364-1	292364-2	292364-3	292364-4	292364-5
Your Reference	UNITS	BH1	BH1	BH2	BH2	BH3
Depth		0-0.1	0.4-0.5	0-0.1	0.4-0.5	0-0.1
Date Sampled		29/03/2022	29/03/2022	29/03/2022	29/03/2022	29/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Moisture	%	26	17	18	18	17
Moisture						
Our Reference		292364-6	292364-7	292364-8	292364-9	292364-10
Your Reference	UNITS	BH4	TP5	TP5	TP6	TP7
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0-0.1
Date Sampled		29/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Moisture	%	26	21	13	16	15
Moisture						
Our Reference		292364-11	292364-12	292364-13	292364-14	292364-15
Your Reference	UNITS	TP7	TP7	TP8	TP9	TP9
Depth		0.4-0.5	1.4-1.5	0-0.1	0-0.1	0.4-0.5
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Moisture	%	12	21	17	48	20
Moisture						
Our Reference		292364-16	292364-17	292364-18	292364-19	292364-20
Your Reference	UNITS	TP10	TP10	TP11	TP12	TP12
Depth		0-0.1	0.3-0.4	0-0.1	0-0.1	0.2-0.3
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Moisture	%	43	20	16	12	14

Moisture						
Our Reference		292364-21	292364-22	292364-23	292364-24	292364-25
Your Reference	UNITS	TP12	TP13	TP13	TP13	TP14
Depth		0.4-0.5	0-0.1	0.4-0.5	0.9-1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/04/2022	04/04/2022	04/04/2022	04/04/2022	04/04/2022
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Moisture	%	16	24	10	15	19
Moisture						
Our Reference		292364-26	292364-27	292364-28	292364-31	292364-32
Our Reference Your Reference	UNITS	292364-26 TP14	292364-27 TP15	292364-28 TP15	292364-31 BD02	292364-32 BD03
	UNITS					
Your Reference	UNITS	TP14	TP15	TP15	BD02	BD03
Your Reference Depth	UNITS	TP14 0.4-0.5	TP15 0-0.1	TP15 0.4-0.5	BD02 -	BD03 -
Your Reference Depth Date Sampled	UNITS -	TP14 0.4-0.5 30/03/2022	TP15 0-0.1 30/03/2022	TP15 0.4-0.5 30/03/2022	BD02 - 30/03/2022	BD03 - 30/03/2022
Your Reference Depth Date Sampled Type of sample		TP14 0.4-0.5 30/03/2022 Soil	TP15 0-0.1 30/03/2022 Soil	TP15 0.4-0.5 30/03/2022 Soil	BD02 - 30/03/2022 Soil	BD03 - 30/03/2022 Soil

Asbestos ID - soils						
Our Reference		292364-3	292364-5	292364-7	292364-9	292364-11
Your Reference	UNITS	BH2	BH3	TP5	TP6	TP7
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.4-0.5
Date Sampled		29/03/2022	29/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Sample mass tested	g	Approx. 30g	Approx. 40g	Approx. 35g	Approx. 25g	Approx. 45g
Sample Description	-	Grey sandy soil & rocks	Grey sandy soil & rocks	Grey sandy soil & rocks	Brown sandy soil & rocks	Beige sandy soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Asbestos ID - soils						
Our Reference		292364-12	292364-14	292364-17	292364-18	292364-19
Your Reference	UNITS	TP7	TP9	TP10	TP11	TP12
Depth		1.4-1.5	0-0.1	0.3-0.4	0-0.1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Sample mass tested	g	Approx. 20g	Approx. 5g	Approx. 45g	Approx. 45g	Approx. 50g
Sample Description	-	Grey sandy soil & rocks	Brown mulch	Grey sandy soil & rocks	Brown sandy soil & rocks	Beige coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected Synthetic mineral fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils						
Our Reference		292364-21	292364-22	292364-24	292364-25	292364-26
Your Reference	UNITS	TP12	TP13	TP13	TP14	TP14
Depth		0.4-0.5	0-0.1	0.9-1	0-0.1	0.4-0.5
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 45g	Approx. 45g	Approx. 45g
Sample Description	-	Grey sandy soil & rocks	Grey sandy soil & rocks	Brown coarse- grained soil & rocks	Beige coarse- grained soil & rocks	Grey sandy soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils

Our Reference		292364-28
Your Reference	UNITS	TP15
Depth		0.4-0.5
Date Sampled		30/03/2022
Type of sample		Soil
Date analysed	-	06/04/2022
Sample mass tested	g	Approx. 40g
Sample Description	-	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected

Asbestos ID - soils NEPM						
Our Reference		292364-1	292364-6	292364-8	292364-10	292364-13
Your Reference	UNITS	BH1	BH4	TP5	TP7	TP8
Depth		0-0.1	0-0.1	0.4-0.5	0-0.1	0-0.1
Date Sampled		29/03/2022	29/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Sample mass tested	g	653.38	704.94	1,128.82	1,035.85	1,170.45
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	Chrysotile Amosite	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
			Crocidolite			
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	0.0105	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	0.0015	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM						
Our Reference		292364-15	292364-16	292364-20	292364-23	292364-27
Your Reference	UNITS	TP9	TP10	TP12	TP13	TP15
Depth		0.4-0.5	0-0.1	0.2-0.3	0.4-0.5	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	05/04/2022	05/04/2022	05/04/2022	05/04/2022	05/04/2022
Sample mass tested	g	798.06	451.68	925.47	1,037.75	1,013.93
Sample Description	-	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	Amosite			
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	0.0013
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Misc Inorg - Soil						
Our Reference		292364-1	292364-5	292364-9	292364-10	292364-16
Your Reference	UNITS	BH1	BH3	TP6	TP7	TP10
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		29/03/2022	29/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Nitrate as N in soil	mg/kg	1	<0.5	0.8	0.7	<0.5
Phosphate as P in soil	mg/kg	0.6	8.9	0.6	0.5	0.7
pH 1:5 soil:water	pH Units	6.4	[NA]	[NA]	7.1	[NA]

Misc Inorg - Soil				
Our Reference		292364-20	292364-25	292364-27
Your Reference	UNITS	TP12	TP14	TP15
Depth		0.2-0.3	0-0.1	0-0.1
Date Sampled		30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil
Date prepared	-	06/04/2022	06/04/2022	06/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022
Nitrate as N in soil	mg/kg	<0.5	0.6	<0.5
Phosphate as P in soil	mg/kg	<0.5	0.6	<0.5
pH 1:5 soil:water	pH Units	7.4	[NA]	[NA]

CEC				
Our Reference		292364-1	292364-10	292364-20
Your Reference	UNITS	BH1	TP7	TP12
Depth		0-0.1	0-0.1	0.2-0.3
Date Sampled		29/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil
Date prepared	-	08/04/2022	08/04/2022	08/04/2022
Date analysed	-	08/04/2022	08/04/2022	08/04/2022
Exchangeable Ca	meq/100g	8.2	9.4	22
Exchangeable K	meq/100g	0.4	0.2	0.3
Exchangeable Mg	meq/100g	1.1	0.8	1.1
Exchangeable Na	meq/100g	<0.1	<0.1	0.1
Cation Exchange Capacity	meq/100g	9.7	10	23

Phenoxy Acid Herbicides in Soil						
Our Reference		292364-1	292364-5	292364-10	292364-16	292364-20
Your Reference	UNITS	BH1	BH3	TP7	TP10	TP12
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.2-0.3
Date Sampled		29/03/2022	29/03/2022	30/03/2022	30/03/2022	30/03/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Date analysed	-	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022
Clopyralid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
o-chlorophenoxy acetic acid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-CPA	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dicamba	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРР	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРА	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorprop	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Bromoxynil	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Triclopyr	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-TP	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,5-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
МСРВ	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dinoseb	mg/kg	<1	<1	<1	<1	<1
2,4-DB	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
loxynil	mg/kg	<1	<1	<1	<1	<1
Picloram	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
DCPA (Chlorthal) Diacid	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acifluorfen	mg/kg	<2	<2	<2	<2	<2
2,4,6-T	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-D	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate 2.4- DCPA	%	100	100	100	110	110

Phenoxy Acid Herbicides in Soil		
Our Reference		292364-25
Your Reference	UNITS	TP14
Depth		0-0.1
Date Sampled		30/03/2022
Type of sample		Soil
Date extracted	-	06/04/2022
Date analysed	-	06/04/2022
Clopyralid	mg/kg	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5
o-chlorophenoxy acetic acid	mg/kg	<0.5
4-CPA	mg/kg	<0.5
Dicamba	mg/kg	<0.5
МСРР	mg/kg	<0.5
МСРА	mg/kg	<0.5
Dichlorprop	mg/kg	<0.5
2,4-D	mg/kg	<0.5
Bromoxynil	mg/kg	<0.5
Triclopyr	mg/kg	<0.5
2,4,5-TP	mg/kg	<0.5
2,4,5-T	mg/kg	<0.5
МСРВ	mg/kg	<0.5
Dinoseb	mg/kg	<1
2,4-DB	mg/kg	<0.5
loxynil	mg/kg	<1
Picloram	mg/kg	<0.5
DCPA (Chlorthal) Diacid	mg/kg	<0.5
Acifluorfen	mg/kg	<2
2,4,6-T	mg/kg	<0.5
2,6-D	mg/kg	<0.5
Surrogate 2.4- DCPA	%	110

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Ext-054	Analysed by MPL Envirolab
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.

Method ID	Methodology Summary
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	292364-3
Date extracted	-			04/04/2022	1	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			06/04/2022	1	06/04/2022	06/04/2022		06/04/2022	06/04/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	102	89
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	102	89
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	104	96
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	112	92
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	93	82
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	101	88
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	83	71
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	97	1	91	89	2	96	86

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	292364-22
Date extracted	-			[NT]	10	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			[NT]	10	06/04/2022	06/04/2022		06/04/2022	06/04/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	10	<25	<25	0	104	92
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	10	<25	<25	0	104	92
Benzene	mg/kg	0.2	Org-023	[NT]	10	<0.2	<0.2	0	115	96
Toluene	mg/kg	0.5	Org-023	[NT]	10	<0.5	<0.5	0	109	92
Ethylbenzene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	94	89
m+p-xylene	mg/kg	2	Org-023	[NT]	10	<2	<2	0	101	91
o-Xylene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	83	75
Naphthalene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	10	91	98	7	101	92

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	04/04/2022	04/04/2022			[NT]
Date analysed	-			[NT]	21	06/04/2022	06/04/2022			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	21	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	21	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	21	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	21	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	21	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	21	101	94	7		[NT]

QUALITY CON	TROL: vTRH	(C6-C10)	BTEXN in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	31	04/04/2022	04/04/2022			[NT]
Date analysed	-			[NT]	31	06/04/2022	06/04/2022			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	31	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	31	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	31	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	31	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	31	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	31	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	31	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	31	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	31	96	93	3		[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	292364-3
Date extracted	-			04/04/2022	1	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			07/04/2022	1	07/04/2022	07/04/2022		07/04/2022	07/04/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	97	96
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	98	104
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	121	115
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	97	96
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	100	130	26	98	104
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	121	115
Surrogate o-Terphenyl	%		Org-020	102	1	103	103	0	104	98

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	292364-22
Date extracted	-			[NT]	10	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			[NT]	10	07/04/2022	07/04/2022		07/04/2022	07/04/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	10	<50	<50	0	69	89
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	10	100	<100	0	60	100
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	10	110	<100	10	103	#
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	10	<50	<50	0	70	89
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	10	180	100	57	60	100
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	10	<100	<100	0	103	#
Surrogate o-Terphenyl	%		Org-020	[NT]	10	101	96	5	87	97

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	04/04/2022	04/04/2022			
Date analysed	-			[NT]	21	07/04/2022	07/04/2022			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	21	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	21	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	21	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	21	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	21	120	<100	18		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	21	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	21	92	90	2	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	31	04/04/2022	04/04/2022			[NT]
Date analysed	-			[NT]	31	07/04/2022	07/04/2022			[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	31	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	31	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	31	<100	<100	0		[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	31	<50	<50	0		[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	31	<100	<100	0		[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	31	<100	<100	0		[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	31	88	86	2	[NT]	[NT]

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	292364-3
Date extracted	-			04/04/2022	1	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			05/04/2022	1	05/04/2022	05/04/2022		05/04/2022	05/04/2022
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	92
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	89
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	103
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	94
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	96
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	101
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	91
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	110	106
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	101	1	105	99	6	99	86

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	292364-22
Date extracted	-			[NT]	10	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			[NT]	10	05/04/2022	05/04/2022		05/04/2022	07/04/2022
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	92	101
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	10	0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	91	95
Fluorene	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	105	101
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	10	0.1	<0.1	0	98	104
Anthracene	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	10	0.4	0.3	29	98	102
Pyrene	mg/kg	0.1	Org-022/025	[NT]	10	0.5	0.4	22	103	109
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	10	0.4	0.3	29	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	10	0.3	0.2	40	89	93
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	10	0.9	0.6	40	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	10	0.56	0.4	33	106	134
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	10	0.4	0.2	67	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	10	0.5	0.3	50	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	10	93	86	8	90	101

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			[NT]	21	04/04/2022	04/04/2022		04/04/2022	
Date analysed	-			[NT]	21	07/04/2022	07/04/2022		07/04/2022	
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	99	
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	21	0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	97	
Fluorene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	97	
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	106	
Anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	21	0.1	<0.1	0	98	
Pyrene	mg/kg	0.1	Org-022/025	[NT]	21	0.2	0.1	67	101	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	21	0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	[NT]	21	0.2	<0.1	67	95	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	21	0.5	0.3	50	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	21	0.3	0.2	40	110	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	21	0.2	<0.1	67	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	21	0.2	0.1	67	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	21	100	101	1	99	

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	31	04/04/2022	04/04/2022			[NT]
Date analysed	-			[NT]	31	07/04/2022	07/04/2022			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	31	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	31	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	31	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	31	98	97	1		[NT]

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	292364-3
Date extracted	-			07/04/2022	1	04/04/2022	04/04/2022		07/04/2022	04/04/2022
Date analysed	-			07/04/2022	1	05/04/2022	05/04/2022		07/04/2022	05/04/2022
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	90
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	131	92
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	85
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	97
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	96
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	95
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	98
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	100
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	102
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	84
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	86	1	108	101	7	88	93

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-				10	04/04/2022	04/04/2022		04/04/2022	
Date analysed	-				10	05/04/2022	05/04/2022		07/04/2022	
alpha-BHC	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	92	
НСВ	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	96	
gamma-BHC	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	107	
delta-BHC	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	105	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	106	
gamma-Chlordane	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	96	
Dieldrin	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	90	
Endrin	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	92	
Endosulfan II	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	110	
Endrin Aldehyde	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	104	
Methoxychlor	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025		10	94	90	4	85	

QUALITY CON	ITROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				23	04/04/2022	04/04/2022			[NT]
Date analysed	-				23	06/04/2022	06/04/2022			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025		23	<0.2	<0.2	0		[NT]
Endrin	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025		23	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		23	92	76	19		[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	292364-3
Date extracted	-			04/04/2022	1	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			05/04/2022	1	05/04/2022	05/04/2022		05/04/2022	05/04/2022
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	120
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	91
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	130	132
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	122
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	104
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	121
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	119
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	87	1	108	101	7	94	93

QUALITY CONTROL: Organophosphorus Pesticides in Soil						Du	Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-				10	04/04/2022	04/04/2022		04/04/2022	
Date analysed	-				10	05/04/2022	05/04/2022		07/04/2022	
Dichlorvos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	112	
Dimethoate	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Ronnel	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	101	
Fenitrothion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	121	
Malathion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	122	
Chlorpyriphos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	116	
Parathion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	105	
Bromophos-ethyl	mg/kg	0.1	Org-022		10	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	129	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025		10	94	90	4	85	

QUALITY CONTROL: PCBs in Soil						Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	292364-3	
Date extracted	-			07/04/2022	1	04/04/2022	04/04/2022		07/04/2022	04/04/2022	
Date analysed	-			07/04/2022	1	05/04/2022	05/04/2022		07/04/2022	05/04/2022	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	98	100	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-021	86	1	108	101	7	88	93	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	Duplicate Spike Reco			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			[NT]	10	04/04/2022	04/04/2022		04/04/2022	
Date analysed	-			[NT]	10	05/04/2022	05/04/2022		07/04/2022	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	101	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	[NT]	10	94	90	4	85	[NT]

QUALITY CONTROL: Acid Extractable metals in soil						Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	292364-3
Date prepared	-			04/04/2022	1	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			07/04/2022	1	07/04/2022	07/04/2022		07/04/2022	07/04/2022
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	99	96
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	101	91
Chromium	mg/kg	1	Metals-020	<1	1	4	4	0	98	92
Copper	mg/kg	1	Metals-020	<1	1	10	10	0	92	92
Lead	mg/kg	1	Metals-020	<1	1	12	14	15	98	91
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	120	115
Nickel	mg/kg	1	Metals-020	<1	1	2	2	0	97	91
Zinc	mg/kg	1	Metals-020	<1	1	48	48	0	99	89

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	292364-22
Date prepared	-			[NT]	10	04/04/2022	04/04/2022		04/04/2022	04/04/2022
Date analysed	-			[NT]	10	07/04/2022	07/04/2022		07/04/2022	07/04/2022
Arsenic	mg/kg	4	Metals-020	[NT]	10	<4	<4	0	97	100
Cadmium	mg/kg	0.4	Metals-020	[NT]	10	<0.4	<0.4	0	98	93
Chromium	mg/kg	1	Metals-020	[NT]	10	6	5	18	95	88
Copper	mg/kg	1	Metals-020	[NT]	10	52	57	9	90	92
Lead	mg/kg	1	Metals-020	[NT]	10	17	19	11	95	93
Mercury	mg/kg	0.1	Metals-021	[NT]	10	<0.1	<0.1	0	126	121
Nickel	mg/kg	1	Metals-020	[NT]	10	7	3	80	94	90
Zinc	mg/kg	1	Metals-020	[NT]	10	61	64	5	96	84

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	04/04/2022	04/04/2022		[NT]	
Date analysed	-			[NT]	21	07/04/2022	07/04/2022		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	21	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	21	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	21	5	5	0	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	21	12	14	15	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	21	15	19	24	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	21	<0.1	0.2	67	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	21	<1	<1	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	21	47	55	16	[NT]	[NT]
QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
------------------	-------------	-----------	------------------	-------	----	------------	------------	-----	----------	----------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	31	04/04/2022	04/04/2022			
Date analysed	-			[NT]	31	07/04/2022	07/04/2022			
Arsenic	mg/kg	4	Metals-020	[NT]	31	8	8	0		
Cadmium	mg/kg	0.4	Metals-020	[NT]	31	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	31	4	4	0		
Copper	mg/kg	1	Metals-020	[NT]	31	4	4	0		
Lead	mg/kg	1	Metals-020	[NT]	31	5	5	0		
Mercury	mg/kg	0.1	Metals-021	[NT]	31	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	31	1	1	0		
Zinc	mg/kg	1	Metals-020	[NT]	31	18	17	6		

QUALITY	CONTROL	Misc Soi	il - Inorg			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	292364-3
Date prepared	-			05/04/2022	1	05/04/2022	05/04/2022		05/04/2022	05/04/2022
Date analysed	-			05/04/2022	1	05/04/2022	05/04/2022		05/04/2022	05/04/2022
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	102	96
QUALITY	CONTROL	: Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
QUALITY Test Description	CONTROL: Units	Misc Soi	il - Inorg Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re [NT]	covery % [NT]
				Blank [NT]	# 10			RPD	· · · · · · · · · · · · · · · · · · ·	, í
Test Description	Units					Base	Dup.	RPD	[NT]	[NT]

QUALITY	CONTROL:	Misc Ino	rg - Soil		Duplicate Spike Recove							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]		
Date prepared	-			06/04/2022	[NT]		[NT]	[NT]	06/04/2022			
Date analysed	-			06/04/2022	[NT]		[NT]	[NT]	06/04/2022			
Nitrate as N in soil	mg/kg	0.5	Inorg-055	<0.5	[NT]		[NT]	[NT]	105			
Phosphate as P in soil	mg/kg	0.5	Inorg-060	<0.5	[NT]		[NT]	[NT]	102			
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	99			

QU.	ALITY CONT	ROL: CE	C			Duj	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			08/04/2022	20	08/04/2022	08/04/2022		08/04/2022	[NT]
Date analysed	-			08/04/2022	20	08/04/2022	08/04/2022		08/04/2022	[NT]
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	20	22	17	26	115	[NT]
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	20	0.3	0.3	0	113	[NT]
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	20	1.1	1.3	17	119	[NT]
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	20	0.1	0.1	0	130	[NT]

QUALITY CON	ky Acid H	erbicides in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	292364-1
Date extracted	-			06/04/2022	5	06/04/2022	06/04/2022		06/04/2022	06/04/2022
Date analysed	-			06/04/2022	5	06/04/2022	06/04/2022		06/04/2022	06/04/2022
Clopyralid	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	78	94
3,5-Dichlorobenzoic acid	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
o-chlorophenoxy acetic acid	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
4-CPA	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
Dicamba	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
MCPP	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
MCPA	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
Dichlorprop	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
2,4-D	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	66	81
Bromoxynil	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
Triclopyr	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
2,4,5-TP	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
2,4,5-T	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	88	98
МСРВ	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
Dinoseb	mg/kg	1	Ext-054	<1	5	<1	<1	0	[NT]	[NT]
2,4-DB	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
loxynil	mg/kg	1	Ext-054	<1	5	<1	<1	0	[NT]	[NT]
Picloram	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
DCPA (Chlorthal) Diacid	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
Acifluorfen	mg/kg	2	Ext-054	<2	5	<2	<2	0	[NT]	[NT]
2,4,6-T	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
2,6-D	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]
Surrogate 2.4- DCPA	%		Ext-054	100	5	100	100	0	98	102

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 292364-6; Chrysotile, Amosite and Crocidolite asbestos identified in 0.0131g of fibrous matted material

Sample 292364-27; Amosite asbestos identified in 0.0013g of loose fibre bundles

Phenoxy Acid Herbicides analysed by Envirolab Services Melbourne. Report No. 30746

TRH Soil C10-C40 NEPM - # Percent recovery for the surrogate / matrix spike is not possible to report as the high concentration of analytes in sample 292364-14,22 have caused interference.

OC's in Soil - The PQL has been raised due to interferences from analytes (other than those being tested) in sample 292364-23.

۰.

CHAIN OF CUSTODY DESPATCH SHEET

Projec	et No:	85749.0	2		Suburk):	Warriev	wood							To:	Envirola	ab Serv	ices				
	ct Manager:	Kurt Plai				Number:				•	Samp	ler:				12 Ash	ley St, C	Chatswood	NSW 20	067		
Email				louglaspart			-			<u>.</u>					Attn:	Sample	Receip	ot				
	round time:				48 hour			Same da	-) samplere			com.au	
Prior	Storage: 🗌 F	ridge 📋	Freezer	Shelf		nples cor	ntain 'r	otenti	al' HBN	1? 📋	No [Yes	(If YES	6, then h	andle, trans	sport and	store in a	accordance	with FPM	HAZID)		
	Sa	mple ID		pled	Sample Type	Container Type						Analyte	es			_						
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	combo 8a	Combo 3a	nitrate and phosphate	· herbicides	asbestos 500 ml	CEC pH	втех	combo 8	combo 3			Notes/		vation/ A irements	Additiona s	· _
	BH1	0	0.1	29/03/22					x	x	×	х		x								
٢	BH1	0.4	0.5	29/03/22						ŀ					x							
3	BH2		0.1	29/03/22			Х															
۲	BH2	(0.9	1)	29/03/22											x							
5	BH3 '	0.	. 0.1	29/03/22			Х	_	x	X												
Q.	BH4	0	0.1	29/03/22						۹	x			x								
7	TP5	0	0.1	30/03/22				х												•	*	
¥:8;	TP5	0.4	0.5	30/03/22							x			x								
- 5	TP6	0	0.1	30/03/22			х		x		, ,											
()	,TP7	0	0.1	30/03/22	-		i.		X	×	<u>.</u> *	х		x							<u> </u>	
χ^{+}_{1}	TP7	0,4	0.5	30/03/22			نوبر مربور	х	0	ʻ. ʻ								-				
.12	м, тр7	1.4	1.5	30/03/22				, X			. 62				<u> </u>							
13:	· TP8	0	0.1	30/03/22				·			X			x	Ĝ							
M	TP9	0	0.1	30/03/22			х								<u> </u>			<u> </u>				
Metals	s to analyse:	•									- •				LAB R	ÈCEIP	Ţ		20	127	<u>Yok</u>	
Numb	er of sample	s in con	tainer:			Transpo	rted to	labor	atory by	<u>/:</u>					Lab Re							
	results to;	*Douglas													Receiv			EL	<u></u>			
Addre				West Ryde			(02) 98	09 0666				• -			Date &				<u> </u>	133	2-018	겈
Reline	quished by:		·			Date:			ĸ	Signe	d:	- <u>k</u> .	<u> </u>		Signed	<u> </u>	$- \zeta$	J	_ر			<u> </u>
	·					r		-				•	•				/				2	
	•					, r		, - '									~	-				

.

بليد الجسد

÷.

2

() Douglas Partners Geolechnics | Environment | Groundwater י י

CHAIN OF CUSTODY DESPATCH SHEET

15	ſ	20	29	32	27	H	7.5-	24	22	F	2	2-	19	18	5	ιb	55	ID ID	5	Project Mai	Drainat
	BD02	blank	spike	TP15	TP15	TP14	TP14	TP13	TP13	TP13	TP12	TP12	TP12	TP11	TP10	. TP10	TP9	Location / Other ID	San	nager:	20
				0.4	0	0.4	0.	0.9	0.4	0	0.4	0.2	0	0	0.3	0	0.4	Depth From	Sample ID	Kurt Plambeck	857/0 0
				0.5	0.1	0.5	0.1	1 .	0.5	0.1	0.5	0.3	0.1	0.1	0.4	0.1	0.5	Depth To		nbeck	
	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	Date Sam	pled		
																		S - soil W - water	Sample Type	Order N	Suhurh
					/													G - glass P - plastic	Container Type	Order Number:	•
					ŕ		×	x						×	×		_	combo 8a		vv at tewood	Warriou
				×		×				×	×		×					Combo 3a			501
					×		×					×				×		nitrate and phosphate		Dispatch date:	
							×					×				×		herbicides		ch dat	
					×				×			×				×	×	asbestos 500 ml			
		•										×						CEC pH	Analytes		
			_									_						BTEX	S		
					×				×			×						combo 8			
<	х	1														×	×	combo 3			T 2
		×	×															BTEX		12 Ashley St, Chat	Envirola
																				y St, C	h Senvi
	192-24C								Ìs.									Notes/ Preservation/ Additional Requirements		12 Ashley St, Chatswood NSW 2067	500

•

Page 2 of 2

- ,

۶ ۲

÷

FPM - ENVID/Form COCO

Rev5/February 2021

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck

Sample Login Details	
Your reference	85749.02, Warriewood
Envirolab Reference	292364
Date Sample Received	31/03/2022
Date Instructions Received	31/03/2022
Date Results Expected to be Reported	08/04/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	32 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst							
Phone: 02 9910 6200	Phone: 02 9910 6200							
Fax: 02 9910 6201	Fax: 02 9910 6201							
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au							

Analysis Underway, details on the following page:

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Asbestos ID - soils NEPM	Misc Inorg - Soil	CEC	Phenoxy Acid Herbicidesin Soil
BH1-0-0.1	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
BH1-0.4-0.5	\checkmark	✓	\checkmark				✓						
BH2-0-0.1	\checkmark	✓	✓	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark				
BH2-0.4-0.5	✓	✓	✓				\checkmark						
BH3-0-0.1	✓	✓	✓	✓	✓	\checkmark	✓	✓	✓		\checkmark		✓
BH4-0-0.1	\checkmark	✓	✓	✓	✓	✓	✓	✓		\checkmark			
TP5-0-0.1	✓	✓	✓				✓		✓				
TP5-0.4-0.5	\checkmark	✓	✓	\checkmark	\checkmark	✓	✓	✓		\checkmark			
TP6-0-0.1	\checkmark	✓	✓	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark		✓		
TP7-0-0.1	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓		\checkmark	✓	\checkmark	\checkmark
TP7-0.4-0.5	\checkmark	✓	✓				✓		\checkmark				
TP7-1.4-1.5	\checkmark	✓	\checkmark				✓		\checkmark				
TP8-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
TP9-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
TP9-0.4-0.5	\checkmark	\checkmark	\checkmark				\checkmark			\checkmark			
TP10-0-0.1	\checkmark	\checkmark	\checkmark				\checkmark			\checkmark	\checkmark		\checkmark
TP10-0.3-0.4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark				
TP11-0-0.1	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark				
TP12-0-0.1	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark				
TP12-0.2-0.3	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
TP12-0.4-0.5	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark				
TP13-0-0.1	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark				
TP13-0.4-0.5	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓		\checkmark			
TP13-0.9-1	\checkmark	✓	\checkmark	✓	\checkmark	✓	\checkmark	✓	\checkmark				
TP14-0-0.1	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark		\checkmark		✓
TP14-0.4-0.5	✓	✓	\checkmark				✓		\checkmark				
TP15-0-0.1	✓	✓	✓	✓	\checkmark	\checkmark	✓	✓		\checkmark	\checkmark		
TP15-0.4-0.5	✓	\checkmark	\checkmark				✓		\checkmark				
Spike	✓												
Blank	✓												
BD02	✓	✓	✓				✓						
BD03	✓	✓	✓				✓						

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 292364-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>85749.02, Warriewood</u>
Number of Samples	additional analysis
Date samples received	31/03/2022
Date completed instructions received	11/04/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	20/04/2022				
Date of Issue	14/04/2022				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 292364-A Revision No: R00

Page | 1 of 8

sTPH in Soil (C10-C40)-Silica		
Our Reference		292364-A-14
Your Reference	UNITS	TP9
Depth		0-0.1
Date Sampled		30/03/2022
Type of sample		Soil
Date extracted	-	13/04/2022
Date analysed	-	13/04/2022
TPH C10 - C14	mg/kg	910
TPH C15 - C28	mg/kg	5,400
TPH C ₂₉ - C ₃₆	mg/kg	3,700
TPH >C ₁₀ -C ₁₆	mg/kg	710
TPH >C ₁₆ -C ₃₄	mg/kg	8,600
TPH >C ₃₄ -C ₄₀	mg/kg	1,500
Surrogate o-Terphenyl	%	102

Metals from Leaching Fluid pH 2.9 or 5		
Our Reference		292364-A-6
Your Reference	UNITS	BH4
Depth		0-0.1
Date Sampled		29/03/2022
Type of sample		Soil
Date extracted	-	12/04/2022
Date analysed	-	12/04/2022
pH of soil for fluid# determ.	pH units	7.6
pH of soil TCLP (after HCl)	pH units	1.6
Extraction fluid used		1
pH of final Leachate	pH units	5.0
Lead	mg/L	0.60

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

QUALITY CONT	QUALITY CONTROL: sTPH in Soil (C10-C40)-Silica								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			13/04/2022	[NT]		[NT]	[NT]	13/04/2022	
Date analysed	-			13/04/2022	[NT]		[NT]	[NT]	13/04/2022	
TPH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	83	
TPH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	82	
TPH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	94	
TPH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	83	
TPH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	82	
TPH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	94	
Surrogate o-Terphenyl	%		Org-020	98	[NT]		[NT]	[NT]	83	

QUALITY CONTROL	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			12/04/2022	[NT]		[NT]	[NT]	12/04/2022	[NT]
Date analysed	-			12/04/2022	[NT]		[NT]	[NT]	12/04/2022	[NT]
Lead	mg/L	0.03	Metals-020	<0.03	[NT]	[NT]	[NT]	[NT]	106	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Ming To

Subject:

FW: Results for Registration 292364 85749.02, Warriewood

292364A 7A7: Standard Due: 20/04/2022 M7.

al conserve an internet for the first here with

292364-A

From: Kurt Plambeck < <u>kurt.plambeck@douglaspartners.com.au</u>> Sent: Monday, 11 April 2022 10:48 AM To: Nick Sarlamis <<u>NSarlamis@envirolab.com.au</u>> Cc: Simon Song <<u>SSong@envirolab.com.au</u>> Subject: RE: Results for Registration 292364 85749.02, Warriewood

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Nick.

Can you please run the following additional analysis

TP9/0-0.1 silica clean up TPH BH4/0-0.1 TCLP Lead

Thanks

Kurt Plambeck | Senior Associate/Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: +61 402 057 147 | E: <u>kurt.plambeck@douglaspartners.com.au</u>

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

If you are not the intended recipient of this email, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited.

- -

.. ...

From: Nick Sarlamis <<u>NSarlamis@envirolab.com.au</u>>

Sent: Friday, 8 April 2022 5:29 PM

To: Kurt Plambeck <kurt.plambeck@douglaspartners.com.au> Subject: Results for Registration 292364 85749.02, Warriewood

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck

Sample Login Details	
Your reference	85749.02, Warriewood
Envirolab Reference	292364-A
Date Sample Received	31/03/2022
Date Instructions Received	11/04/2022
Date Results Expected to be Reported	20/04/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	additional analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	sTPH in Soil (C10-C40)-Silica	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead	On Hold
BH1-0-0.1							\checkmark
BH1-0.4-0.5							\checkmark
BH2-0-0.1							✓ ✓
BH2-0.4-0.5							✓
BH3-0-0.1							✓
BH4-0-0.1		✓	✓	✓	✓	✓	
TP5-0-0.1							✓
TP5-0.4-0.5							✓
TP6-0-0.1							✓ ✓ ✓ ✓ ✓ ✓
TP7-0-0.1							✓
TP7-0.4-0.5							✓
TP7-1.4-1.5							
TP8-0-0.1							✓
TP9-0-0.1	✓						
TP9-0.4-0.5							✓
TP10-0-0.1							✓
TP10-0.3-0.4							 <
TP11-0-0.1							✓
TP12-0-0.1							✓
TP12-0.2-0.3							✓
TP12-0.4-0.5							✓
TP13-0-0.1							
TP13-0.4-0.5							✓
TP13-0.9-1							✓
TP14-0-0.1							✓
TP14-0.4-0.5							✓
TP15-0-0.1							✓
TP15-0.4-0.5							✓
Spike							✓
Blank							 ✓ ✓
BD02					L		\checkmark
BD03							✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS

Work Order	ES2211362	Page	: 1 of 6
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR KURT PLAMBECK	Contact	: Sepan Mahamad
Address	: 96 HERMITAGE ROAD WEST RYDE NSW, AUSTRALIA 2114	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 9809 0666	Telephone	: +61 2 8784 8555
Project	: 85749.02	Date Samples Received	: 31-Mar-2022 17:20
Order number	:	Date Analysis Commenced	: 04-Apr-2022
C-O-C number	:	Issue Date	08-Apr-2022 12:19
Sampler	:		NATA
Site	: Warriewood		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 6 Work Order : ES2211362 Client : DOUGLAS PARTNERS PTY LTD Project : 85749.02

Analytical Results

Sub-Matrix: SOIL			Sample ID	BD01	 	
(Matrix: SOIL)						
		Samplii	ng date / time	29-Mar-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2211362-001	 	
				Result	 	
EA055: Moisture Content (Dried @	0 105-110°C)					
Moisture Content		1.0	%	18.1	 	
EG005(ED093)T: Total Metals by I	CP-AES					
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	3	 	
Copper	7440-50-8	5	mg/kg	8	 	
Lead	7439-92-1	5	mg/kg	16	 	
Nickel	7440-02-0	2	mg/kg	<2	 	
Zinc	7440-66-6	5	mg/kg	48	 	
EG035T: Total Recoverable Merco	ury by FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP068A: Organochlorine Pesticid						
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	

Page : 4 of 6 Work Order : ES2211362 Client : DOUGLAS PARTNERS PTY LTD Project : 85749.02

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD01	 	
		Samplii	ng date / time	29-Mar-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2211362-001	 	
				Result	 	
EP068A: Organochlorine Pesticide	s (OC) - Continued					
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP075(SIM)B: Polynuclear Aromati	c Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocar	bons	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydro	carbons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hyd	rocarbons - NEPM <u>201</u>	3 Fractio	1S			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	 	

Page : 5 of 6 Work Order : ES2211362 Client : DOUGLAS PARTNERS PTY LTD Project : 85749.02

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD01	 	
		Sampli	ng date / time	29-Mar-2022 00:00	 	
Compound	CAS Number	LOR	Unit	ES2211362-001	 	
				Result	 	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued			
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes		0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP068S: Organochlorine Pesticide Su	irrogate					
Dibromo-DDE	21655-73-2	0.05	%	65.6	 	
EP068T: Organophosphorus Pesticide	e Surrogate					
DEF	78-48-8	0.05	%	84.7	 	
EP075(SIM)S: Phenolic Compound Su	ırrogates					
Phenol-d6	13127-88-3	0.5	%	98.1	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	96.1	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	76.6	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	95.3	 	
Anthracene-d10	1719-06-8	0.5	%	97.6	 	
4-Terphenyl-d14	1718-51-0	0.5	%	86.9	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	87.1	 	
Toluene-D8	2037-26-5	0.2	%	102	 	
4-Bromofluorobenzene	460-00-4	0.2	%	97.4	 	

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	/ Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate	e		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surro	gate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogate	es		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QUALITY CONTROL REPORT

Work Order	: ES2211362	Page	: 1 of 9	
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division	Sydney
Contact	: MR KURT PLAMBECK	Contact	: Sepan Mahamad	
Address	: 96 HERMITAGE ROAD WEST RYDE NSW, AUSTRALIA 2114	Address	277-289 Woodpark Roa	ad Smithfield NSW Australia 2164
Telephone	: +61 02 9809 0666	Telephone	: +61 2 8784 8555	
Project	: 85749.02	Date Samples Received	: 31-Mar-2022	
Order number	:	Date Analysis Commenced	: 04-Apr-2022	
C-O-C number	:	Issue Date	08-Apr-2022	
Sampler				Hac-MRA INAIA
Site	: Warriewood			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	:1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
EG005(ED093)T: Tot	tal Metals by ICP-AES	6 (QC Lot: 4269469)							
ES2211028-004	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	2	3	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	9	15	53.6	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	6	14	74.7	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	25	45	56.1	No Limit
ES2211489-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	95	99	4.0	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	76	68	9.9	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	27	24	10.4	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	10	12	19.3	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	33	28	17.6	No Limit
EA055: Moisture Co	ntent (Dried @ 105-11	10°C) (QC Lot: 4269474)							
ES2211292-001	Anonymous	EA055: Moisture Content		0.1	%	57.0	57.3	0.5	0% - 20%
ES2211489-010	Anonymous	EA055: Moisture Content		0.1	%	17.7	18.2	2.7	0% - 50%
EG035T: Total Reco	overable Mercury by F	FIMS (QC Lot: 4269470)							
ES2211028-004	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2211489-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP068A: Organochl	orine Pesticides (OC)	(QC Lot: 4262373)							
ES2211380-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	< 0.05	0.0	No Limit

Page	: 3 of 9
Work Order	: ES2211362
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 85749.02

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP068A: Organochl	orine Pesticides (OC)	(QC Lot: 4262373) - continued								
ES2211380-001	Anonymous	EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit	
EP075(SIM)B: Polyn	uclear Aromatic Hydr	ocarbons (QC Lot: 4262371)								
ES2211380-006	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	0.6	0.7	16.8	No Limit	
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	0.6	0.8	17.2	No Limit	
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	0.5	0.6	24.7	No Limit	
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	0.6	0.0	No Limit	
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	1.7	2.7	45.5	No Limit	
		hydrocarbons								
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	0.7	27.6	No Limit	
					~ ~					

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%		
P075(SIM)B: Poly	nuclear Aromatic Hydr	ocarbons (QC Lot: 4262371) - continued									
ES2211380-001	Anonymous	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
			205-82-3								
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		hydrocarbons									
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
P080/071: Total P	etroleum Hydrocarbon	s (QC Lot: 4262372)									
S2211380-006	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
.32211300-000 AHUI	, ,	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
S2211380-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
	, ,	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
P080/071. Total P	etroleum Hydrocarbon										
S2211489-001	Anonymous			10	ma/ka	<10	<10	0.0	No Limit		
ES2211489-001	,	EP080: C6 - C9 Fraction		10	mg/kg mg/kg	<10	<10	0.0	No Limit		
	Anonymous	EP080: C6 - C9 Fraction		10	iiig/kg	<10	<10	0.0	NO LIITIIL		
		ons - NEPM 2013 Fractions (QC Lot: 4262372)									
ES2211380-006	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
S2211380-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit		
P080/071: Total R	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 4265678)									
S2211489-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		
S2211489-020	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit		

Page	5 of 9
Work Order	: ES2211362
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 85749.02

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC	Lot: 4265678)								
ES2211489-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2211489-020	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR Unit		Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES(QC	CLot: 4269469)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	102	88.0	113	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	104	70.0	130	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	120	68.0	132	
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	107	89.0	111	
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	104	82.0	119	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	108	80.0	120	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	97.2	66.0	133	
EG035T: Total Recoverable Mercury by FIMS	(QCLot: 4269470)								
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	87.9	70.0	125	
EP068A: Organochlorine Pesticides (OC) (QC	Lot: 4262373)								
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	84.1	69.0	113	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	81.0	65.0	117	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	89.5	67.0	119	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	87.1	68.0	116	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	83.6	65.0	117	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.8	67.0	115	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	86.0	69.0	115	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	91.0	62.0	118	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	91.0	63.0	117	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.2	66.0	116	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	64.0	116	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	91.2	66.0	116	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	88.0	67.0	115	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	77.5	67.0	123	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	92.5	69.0	115	
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.3	69.0	121	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	96.0	56.0	120	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.1	62.0	124	
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	78.2	66.0	120	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	92.8	64.0	122	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	77.8	54.0	130	
EP075(SIM)B: Polynuclear Aromatic Hydrocar	bons (QCLot: 4262371)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	98.5	77.0	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	98.1	72.0	124	

Page : 7 of 9 Work Order : ES2211362 Client : DOUGLAS PARTNERS PTY LTD Project : 85749.02

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbor	ns (QCLot: 4262371) - cor	tinued							
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	99.5	73.0	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	102	72.0	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	102	75.0	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	91.2	77.0	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	96.6	73.0	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	95.8	74.0	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	106	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	107	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	97.8	68.0	116	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	96.3	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	96.2	70.0	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	102	61.0	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	103	62.0	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	96.5	63.0	121	
EP080/071: Total Petroleum Hydrocarbons (QCL	ot: 4262372)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	103	75.0	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	111	77.0	131	
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	108	71.0	129	
EP080/071: Total Petroleum Hydrocarbons (QCL	ot: 4265678)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	80.8	68.4	128	
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Fractions (QCLc	ot: 4262372)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	98.5	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	109	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	101	63.0	131	
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2013 Eractions (OCL o	ot: 4265678)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	83.4	68.4	128	
EP080: BTEXN (QCLot: 4265678)		-	5.5					-	
EP080: BTEAN (QCL01: 4265676) EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	98.8	62.0	116	
EP080: Benzene EP080: Toluene	108-88-3	0.5	mg/kg	<0.2	1 mg/kg	104	67.0	110	
EP080: Toldene EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	100	65.0	117	
EP080: Ethylbenzene EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	100	66.0	118	
	106-42-3	0.0			2		00.0		
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	101	68.0	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	91.4	63.0	119	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL					atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4269469)						
ES2211028-004	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	80.8	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	75.8	70.0	130
		EG005T: Copper	7440-50-8	250 mg/kg	83.5	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	76.4	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	70.0	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	73.1	66.0	133
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 426947)))					
ES2211028-004	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	91.6	70.0	130
	nlorine Pesticides (OC) (QCLot: 4262373)	200001. Morodry		- 3 3			
			50.00.0		00.0		100
ES2211380-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	82.6	70.0	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	77.3	70.0	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	80.8	70.0	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	82.0	70.0	130
		EP068: Endrin	72-20-8	2 mg/kg	80.9	70.0	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	83.4	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 42	(62371)					
ES2211380-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	115	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	105	70.0	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 4262372)						
ES2211380-001	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	104	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	114	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	118	52.0	132
ED090/074, Total D	vetroleum Hydrocarbons (QCLot: 4265678)						
				00 5 4	00.0		100
ES2211489-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	89.3	70.0	130
EP080/071: Total F	ecoverable Hydrocarbons - NEPM 2013 Frac	ctions (QCLot: 4262372)					
ES2211380-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	97.2	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	118	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	124	52.0	132
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Frac	ctions (QCLot: 4265678)					
ES2211489-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	37.5 mg/kg	90.2	70.0	130
			00_010	or to marka			100
EP080: BTEXN (Q	,						
ES2211489-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	87.3	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	91.4	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	91.6	70.0	130

Page	: 9 of 9
Work Order	: ES2211362
Client	: DOUGLAS PARTNERS PTY LTD
Project	85749.02

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	pikeRecovery(%) Acceptable Limits (%	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (Q	CLot: 4265678) - continued						
ES2211489-001	Anonymous	EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	90.9	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	90.8	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	81.3	70.0	130

	QA/QC Compliance Assessment to assist with Quality Review									
Work Order	: ES2211362	Page	: 1 of 4							
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney							
Contact	: MR KURT PLAMBECK	Telephone	: +61 2 8784 8555							
Project	: 85749.02	Date Samples Received	: 31-Mar-2022							
Site	: Warriewood	Issue Date	: 08-Apr-2022							
Sampler	:	No. of samples received	:1							
Order number	:	No. of samples analysed	: 1							

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	n: × = Holding time	breach ; ✓ = With	n holding tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) BD01	29-Mar-2022				05-Apr-2022	12-Apr-2022	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) BD01	29-Mar-2022	06-Apr-2022	25-Sep-2022	1	06-Apr-2022	25-Sep-2022	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) BD01	29-Mar-2022	06-Apr-2022	26-Apr-2022	1	06-Apr-2022	26-Apr-2022	✓
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068) BD01	29-Mar-2022	04-Apr-2022	12-Apr-2022	1	06-Apr-2022	14-May-2022	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) BD01	29-Mar-2022	04-Apr-2022	12-Apr-2022	1	06-Apr-2022	14-May-2022	~
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) BD01	29-Mar-2022	04-Apr-2022	12-Apr-2022	1	04-Apr-2022	12-Apr-2022	~
Soil Glass Jar - Unpreserved (EP071) BD01	29-Mar-2022	04-Apr-2022	12-Apr-2022	~	05-Apr-2022	14-May-2022	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) BD01	29-Mar-2022	04-Apr-2022	12-Apr-2022	1	04-Apr-2022	12-Apr-2022	~
Soil Glass Jar - Unpreserved (EP071) BD01	29-Mar-2022	04-Apr-2022	12-Apr-2022	~	05-Apr-2022	14-May-2022	~
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BD01	29-Mar-2022	04-Apr-2022	12-Apr-2022	1	04-Apr-2022	12-Apr-2022	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

CHAIN OF CUSTODY DESPATCH SHEET

Proje	ct No:	85749.02	2		Suburb	:	Warriev	wood							To: ALS	
Proie	ct Manager:	Kurt Plan				Number:					Samp	er:				
Email				ouglaspart											Attn:	
	round time:				48 hour		ur 📋	Same da	у						Contact:	
	Storage: 🗌 Fi			Shelf	Do sam	ples cor	ntain 'p	ootentia	al' HBN	/?	No [Yes	(If YES, th	hen ha	ndle, transport and s	tore in accordance with FPM HAZID)
		mple ID		bed		Container Type	-					Analyte	es			
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	8 metals	BTEX	РАН	ткн	ось					Notes/ Preservation/ Additional Requirements
	BD01			29/3/22.			х	X	х	Х	х					
Num	is to analyse: ber of sample results to:	es in con	itainer:	Pty Ltd		Transpo	orted t	olabor	atory k	by:					LAB RECEIP Lab Ref. No: Received by:	Environmental Division Sydney Work Order Reference ES2211362 Telephone : + 61-2-8784 8555 T
Addr	ess:	96 Hermi	itage Road	, West Ryde	NSW 211	Phone:	(02) 9	809 0666	3						Date & Time:	3173122 (+20
Relin	quished by:	KP.	31/3 1am			Date:				Signe	ed:				Signed:	-Sayn AUS 7-E

Appendix I

Quality Assurance / Quality Control

1. Field and laboratory data quality assurance and quality control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included in the summary results QA1 to QA2.

ltem	Evaluation / Acceptance Criteria	Compliance				
Analytical laboratories used	NATA accreditation	С				
Holding times	Various based on type of analysis	С				
Intra-laboratory replicates	5% 10% of primary samples;	PC				
Table QA1	<30% RPD	С				
Inter-laboratory replicates						
Table QA2	<30% RPD	С				
Trip Spikes	1 per sampling event; 60-140% recovery	С				
Table QA3	1 per sampling event; <pql< td=""><td>С</td></pql<>	С				
Trip Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С				
Table QA4	1 per lab batch; As laboratory certificate	С				
Laboratory / Reagent Blanks	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С				
Laboratory Duplicate	All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics)	С				
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С				
Surrogate Spikes	Surrogate Spikes Adopting SOP for all aspects of the sampling field work					
Control Samples	NATA accreditation	PC				
Standard Operating Procedures (SOP)	Various based on type of analysis	С				

Table 1: Field and laboratory quality control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, with the exception of those indicated in Tables QA1 and QA2. The exceedances are not, however, considered to be of concern given that:

- the typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred;
- the replicate pairs being collected from fill soils which by its nature is heterogeneous;
- replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater variability can be expected;
- most of the recorded concentrations being relatively close to the PQL;
- the majority of RPDs within a replicate pair being within the acceptable limits; and
- all other QA / QC parameters met the DQIs.

		BD02	TP6			BD03	TPII		
		0 m	0 - 0.1 m	Difference	RPD	0 m	0 - 0.1 m	Difference	RPD
	Arsenic	8	15	7	61 %	<4	4	0	0%
	Cadmium	<0.4	<0.4	0	0%	<0.4	<0.4	0	0%
	Total Chromium	4	7	3	3 55%		6	2	40 %
Matala	Copper	4	7	3	55%	4	8	4	67 %
Metals	Lead	5	8	3	46 %	17	21	4	21%
	Mercury (inorganic)	<0.1	<0.1	0	0%	<0.1	<0.1	0	0%
	Nickel	1	2	1	67 %	1	2	1	67 %
	Zinc	18	36	18	67 %	32	47	15	38%
	TRH C6 - C10	<25	<25	0	0%	<25	<25	0	0%
	TRH >C10-C16	<50	<50	0	0%	<50	<50	0	0%
	F1 ((C6-C10)- BTEX)	<25	<25	0	0%	<25	<25	0	0%
TRH	F2 (>C10-C16 less Naphthalene)	<50	<50	0	0%	<50	<50	0	0%
	F3 (>C16-C34)	<100	<100	0	0%	160	210	50	27%
	F4 (>C34-C40)	<100	<100	0	0%	<100	<100	0	0%
	Benzene	<0.2	<0.2	0	0%	<0.2	<0.2	0	0%
BTEX	Toluene	<0.5	<0.5	0	0%	<0.5	<0.5	0	0%
	Ethylbenzene	<]	<]	0	0%	<]	<]	0	0%

Table QA1: Intra-laboratory duplicates

		BD02 TP6 0 m 0 - 0.1 m Diffe				BD03	TPII		
				Difference	RPD	0 m	0 - 0.1 m	Difference	RPD
	Total Xylenes	<]	<]	0	0%	<]	<]	0	0%
	Naphthalene ^b	<0.1	<0.1	0	0%	<0.1	<0.1	0	0%
РАН	Benzo(a)pyrene (BaP)	<0.05	<0.05	0	0%	<0.05	<0.05	0	0%
	Benzo(a)pyrene TEQ	<0.5	<0.5	0	0%	<0.5	<0.5	0	0%
	Total PAHs	<0.05	<0.05	0	0%	<0.05	<0.05	0	0%

Table QA2: Inter-laboratory duplicates

		Sample ID	BD01	BH2		
		Depth	0 m	0 - 0.1 m		
		Sample Date	29- Mar- 22 15:00	29/03/2022	Difference	RPD
	Arsenic	mg/kg	<5	<4	1	22%
	Cadmium	mg/kg	<]	<0.4	0	0%
	Total Chromium	mg/kg	3	2	1	40%
Metals	Copper	mg/kg	8	8	0	0%
Metals	Lead	mg/kg	16	13	3	21%
	Mercury (inorganic)	mg/kg	<0.1	<0.1	0	0%
	Nickel	mg/kg	<2	<]	0	0%
	Zinc	mg/kg	48	44	4	9%
	TRH C6 - C10	mg/kg	<10	<25	0	0%
	TRH >C10-C16	mg/kg	<50	<50	0	0%
	F1 ((C6-C10)-BTEX)	mg/kg	<10	<25	0	0%
TRH	F2 (>C10-C16 less Naphthalene)	mg/kg	<50	<50	0	0%
	F3 (>C16-C34)	mg/kg	<100	<100	0	0%
	F4 (>C34-C40)	mg/kg	<100	<100	0	0%
BTEX	Benzene	mg/kg	<0.2	<0.2	0	0%

		Sample ID	BD01	BH2		
		Depth	0 m	0 - 0.1 m		
		Sample Date	29- Mar- 22 15:00	29/03/2022	Difference	RPD
	Toluene	mg/kg	<0.5	<0.5	0	0%
	Ethylbenzene	mg/kg	<0.5	<]	0	0%
	Total Xylenes	mg/kg	<0.5	<]	0	0%
	Naphthalene ^b	mg/kg	<]	<0.1	0	0%
PAH	Benzo(a)pyrene (BaP)	mg/kg	<0.5	<0.05	0	0%
	Benzo(a)pyrene TEQ	mg/kg	<0.5	<0.5	0	0%
	DDD	mg/kg	<0.05	<0.1	0	0%
	DDT+DDE+DDD °	mg/kg	<0.05	<0.1	0	0%
	DDE	mg/kg	<0.05	<0.1	0	0%
	DDT	mg/kg	<0.2	<0.1	0	0%
	Aldrin & Dieldrin	mg/kg	<0.05	<0.1	0	0%
	Endosulfan I	mg/kg	<0.05	<0.1	0	0%
OCP	Total Chlordane	mg/kg	<0.05	<0.1	0	0%
	Endosulfan II	mg/kg	<0.05	<0.1	0	0%
	Endosulfan Sulphate	mg/kg	<0.05	<0.1	0	0%
	Total Endosulfan	mg/kg	<0.05	NT	-	-
	Heptachlor	mg/kg	<0.05	<0.1	0	0%
	Hexachlorobenzene	mg/kg	<0.05	<0.1	0	0%
	Methoxychlor	mg/kg	<0.2	<0.1	0	0%

Table QA3: Trip spike

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
Spike	101	105	102	103	100

Table QA4: Trip blank

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
Blank	<0.2	<0.5	<]	<]	<2

2. Data quality indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- completeness: a measure of the amount of usable data from a data collection activity;
- comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- representativeness: the confidence (qualitative) of data representativeness of media presents on-site;
- precision: a measure of variability or reproducibility of data; and
- accuracy: a measure of closeness of the data to the 'true' value.

Table 2: Data quality indicators

Data quality indicator	Method(s) of achievement
Completeness	Systematic and selected target locations sampled.
	Preparation of borehole logs, test pit logs, sample location plan and chain of custody records.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).
	Completion of chain of custody (COC) documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced sampler(s) used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.
	Samples were extracted and analysed within holding times.
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures.
	Acceptable RPD between original samples and replicates.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQI have been generally complied with.

3. Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

4. References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Table QA3: Trip Spike Results – Soils (% Recovery)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
Spike	101	105	102	103	100

Table QA2: Trip Blank Results - Soils (mg/kg)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
Blank	<0.2	<0.5	<1	<1	<2

Table QA1: Relative Percentage Difference Results - Intra-laboratory Replicates

						Me	etals						т	RH				BTE	EX .		PAH Pheno				Phenol						
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (Inorganic)	Nickel	Zinc	ТКН С6 - С10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (≽C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Napithalene ^b	Benzo(a)pyrene (BaP)	Berizo(a)pyrene TEQ	Total PAHs	Phenol	QQQ	DDT+DDE+DDD ^C	DDE	DDT	Aldrin & Dieldrin	Endosulfan I
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BD01	0 m	29-Mar-22 15:00	<5	<1	3	8	16	<0.1	<2	48	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<1	<0.5	<0.5	NT	NT	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05
BH2	0 - 0.1 m	29/03/2022	<4	<0.4	2	8	13	<0.1	<1	44	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	1	0.6	1	0	3	0	1	4	15	0	15	0	0	0	0	0	0.5	0.5	0.9	0.45	0	-	-	0.05	0.05	0.05	0.1	0.05	0.05
		RPD	22%	86%	40%	0%	21%	0%	67%	9%	86%	0%	86%	0%	0%	0%	0%	0%	67%	67%	164%	164%	0%	-	-	67%	67%	67%	67%	67%	67%
BD02	0 m	30/03/2022	8	<0.4	4	4	5	<0.1	1	18	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	NT	NT	NT	NT	NT	NT	NT
TP6	0 - 0.1 m	30/03/2022	15	<0.4	7	7	8	<0.1	2	36	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	7	0	3	3	3	0	1	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-
		RPD	61%	0%	55%	55%	46%	0%	67%	67%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	-	-	-	-	-	-
BD03	0 m	30/03/2022	<4	<0.4	4	4	17	<0.1	1	32	<25	<50	<25	<50	160	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	NT	NT	NT	NT	NT	NT	NT
TP11	0 - 0.1 m	30/03/2022	4	<0.4	6	8	21	<0.1	2	47	<25	<50	<25	<50	210	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
		Difference	0	0	2	4	4	0	1	15	0	0	0	0	50	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-
		RPD	0%	0%	40%	67%	21%	0%	67%	38%	0%	0%	0%	0%	27%	0%	0%	0%	0%	0%	0%	0%	0%	0%					-		-

Table QA1: Relative Percentage Difference Results - Intra-laboratory Replicates

			0	CP							OPP				P	СВ					Asbestos					Asbestos				Additional chemicals
			Total Chlordane	Endosulfan II	Endosulfan Sulphate	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzen e	Methoxychlor	Chlorpyriphos	Arochlor 1016	Total PCB	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Aroclar 1260	Asbestos ID in soli >0.1g/kg	Trace Analysis	Asbestos (50 g)	Asbestos ID in soil ⊳0.1g/kg	Trace Analysis	Asbestos ID in soll ≺0.1g/kg	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Asbestos (500 ml)	Total Asbestos#1
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg							g	g	%(w/w)	-	g/kg
			•			•	•	•							•							•								
BD01	0 m	29-Mar-22 15:00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	NT	NT	NT	NT	NT	NT	NT	NT	NT	-	-	-		-	-	-	-	-		-
BH2	0 - 0.1 m	29/03/2022	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	AD	AD	AD	-	-	-	-	-	-	-	-
		Difference	0.05	0.05	0.05	0.05	-	0.05	0.05	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		RPD	67%	67%	67%	67%	-	67%	67%	67%	-		-		-	-	-	-	-	-	-	-		-		-	-	-	-	-
BD02	0 m	30/03/2022	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-	-	-	-	-	-	-	-	-	-	-
TP6	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	AD	AD	AD	-	-	-	-	-	-	-	-
		Difference	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		RPD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BD03	0 m	30/03/2022	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-	-	-	-	-	-	-	-	-	-	-
TP11	0 - 0.1 m	30/03/2022	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	AD	AD	AD	-	-	-	-	-	-	-	-
		Difference	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
		RPD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-