

Job No: 13787/1 Our Ref: 13787/1-AA 3 August 2016 ABN 64 002 841 063

J+G Knowles and Associates Pty Ltd 346 South Road HAMPTON EAST VIC 3189 Email: <u>Dennis.Hogan@knowlesgroup.com.au</u>

Attention: Mr D Hogan

Dear Sir

re: Proposed Development 23-27 Warriewood Road, Warriewood Geotechnical Investigation

This report provides the results of a geotechnical investigation carried out at 23-17 Warriewood Road, Warriewood, hereafter referred to as the site.

We understand that the proposed development at the above site includes the construction of the following:

- A residential aged care facility (RACF) building in the southern portion of the site. This building will have three storeys above the ground and one level of basement car park. The basement excavation will be about 3.0m deep.
- Townhouses, dual occupancies and residential flat buildings to the northern portion of the site. These buildings will have ground floors at about existing ground surface.

A geotechnical investigation is required to assess subsurface conditions across the site in order to provide geotechnical recommendations for the design of basement excavation, retaining structures, floor slabs and footings.

Background Information

Based on our experience at 53 Warriewood Road, Warriewood, the subsurface profile in the western portion of the site (adjacent to the creek) is anticipated to comprise significant thickness of very soft alluvial deposit. However, bedrock may be encountered at shallow depth in the eastern portion.

Review of Geological Map of Sydney (scale 1:100,000) indicates the following:

- The subsurface profile in the eastern portion of the site belongs to the Narrabeen Group comprising interbedded laminite, shale and sandstone with minor clays.
- The subsurface profile in the western portion of the site includes stream alluvium and/or estuarine deposit, comprising silty to peaty quartz sand, silt and clay, ferruginous and humic at places, with shell layers.

Review of the Soil Landscape Map of Sydney (scale 1:100,000) indicates the following:

- The landscape in the eastern portion of the site belongs to Watagan Group, which is characterised by rolling to very steep hills on fine grained Narrabeen Group sediments, with local relief of 60m to 120m, ground slopes in excess of 25%, narrow crests and ridges, steep colluvial side slopes and occasional sandstone boulders and benches. There is likely to be occasional rock outcrops with sandy soils on sandstone and clayey soils on shale. The group is susceptible to mass movement and erosion hazard.
- The landscape in the western portion of the site belongs to Warriewood Group, which is characterised by level to gently undulating swales, depressions and in filled lagoons on Quaternary sand, with local relief of less than 10m, ground slopes of less than 3%, depth to water table of less than 2.0m. Soils in this group comprise sandy humus, sand and peaty, with thickness exceeding 1.5m. This landscape has high watertable and is subjected to flooding.

Review of the Acid Sulphate Soil Risk Map (Edition 2, scale 1:25,000) of Hornsby/Mona Vale prepared by Department of Land and Water Conservation the following:

- There are no known occurrences of acid sulphate soil materials within the soil profiles in most portions of the site and acid sulphate soil materials are not expected in most portions of the site.
- In the western portion of the site, adjacent to Narrabeen Creek, there is low probability of occurrence of acid sulphate soil materials within the soil profile at depths exceeding 3.0m.

Field Work

Field work for the geotechnical investigation was carried out during 13, 15 and 19 July 2016 and consisted of the following:

- A walkover survey to assess general site conditions.
- Review services plans obtained from "Dial Before You Dig" to ascertain the locations of underground services across the site.
- Scanning proposed borehole locations for underground services to ensure that the investigation works would not damage existing underground services. We engaged a specialist services locator for this purpose.
- Drilling eight boreholes (BH1 to BH8) using a truck mounted drilling rig fully equipped for geotechnical investigation. Boreholes were uniformly distributed in accessible portions of the site. Boreholes were initially drilled using V-bit or TC-bit refusal in bedrock at depths of 6.0m to 11.2m from existing ground surface. Then five boreholes were continued into bedrock for depths of about 1.8m to 2.7m using rock coring technique. Approximate borehole locations are indicated on the attached Drawing No 13787/1-AA1. Borehole logs and core photographs along with explanatory notes are also attached.
- Carry out Standard Penetration Tests (SPT) in the boreholes at regular depth intervals to assess the strength characteristics of the sub-surface soils. SPT test results are included in appropriate borehole logs.
- Recover representative soil samples and rock cores from the boreholes for visual classification and laboratory tests.
- Measure depths to groundwater level in boreholes, if encountered.

Field work was supervised by a team of two Field Engineers from this company, who were responsible for nominating the borehole locations, supervising SPT tests, sampling and preparation of field logs.

Site Conditions

The site is of irregular shape measuring approximately 2.533ha in plan area. The following observations were made during field work:

- The site is bound by Warriewood Road, Warriewood to the east, Narrabeen Creek to the west, a vacant residential lot to the north and Macpherson Street to the south.
- The site is vacant and grass covered.
- The natural ground surface across the site dips from the east towards the west at about 2 to 5 degrees. However, the buildings for the propose development will be located at least 50.0m away from the Narrabeen Creek, where ground surface is dipping at about 4 to 5 degrees.

Sub-surface profiles encountered in the boreholes are detailed in the attached borehole logs and summarised below in Table 1.

Borehole No	Ground Surface RL (m, AHD)	Termination Depth* (m)	Depth Range for Topsoil/Fill (m)	Depth Range for Alluvium (m)	Depth to Bedrock (m)	Depth to Groundwater (m)
BH1	3.2	11.9	0.0-0.3	0.0-9.5	9.5	4.3
BH2	8.1	7.8	0.0-0.4	0.4-6.0	6.0	4.5
BH3	4.6	10.3	0.0-0.2	0.2-10.3	10.3	7.9
BH4	4.0	8.9	0.0-0.3	0.3-7.0	7.0	>8.9
BH5	12.0	11.7	0.0-0.2	0.2-7.0	7.0	>11.7
BH6	8.8	11.9	0.0-0.5	0.5-6.6	6.6	4.4
BH7	6.5	14.4	0.0-0.3	0.3-7.2	7.2	4.4
BH8	5.7	8.9	0.0-0.3	0.3-7.0	7.0	4.5

Table 1 – Sub-surface Profiles at Borehole Locations

RL are Approximate only.

Table 1 indicates that the sub-surface profile across the site comprises a sequence of topsoil/fill and alluvial soils underlain by bedrock. The thickness of topsoil/fill varies from about 0.2m to 0.5m and the depth to bedrock varies from about 6.0m to 10.3m from existing ground surface.

Topsoil/fill included sandy silt of low plasticity and fine to medium grained silty sand with some roots. Alluvial soils included layers of fine to medium grained sand, clayey sand and silty sand and low to high plasticity silty clay and sandy clay with ironstone. It is possible that a layer of clayey soil overlying bedrock in some borehole locations was residual soil not alluvium. Bedrock to borehole termination depth was predominantly sandstone but localised claystone was also encountered.

Groundwater level was encountered in all boreholes except two boreholes BH4 and BH5 at depths ranging from 4.3m to 7.9m from existing ground surface. No groundwater level was encountered in borehole BH4 and BH5 up to their termination depths of 8.9m and 11.7m respectively. Therefore, we anticipate the depth to groundwater level across the building site to be more than 4.0m from existing ground surface. It should however be noted that the depth to groundwater level could be affected by rainfall and other factors not evident during investigation.

Laboratory Testing

Representative soil samples recovered from the boreholes were tested in the NATA accredited laboratory of SGS Environmental Services to determine the chemical properties to assess the following:

- Salinity of soil in terms of Electrical Conductivity (EC)
- Aggressivity of soil in terms of pH, chloride, sulphate and resistivity
- Acid sulphate soils in terms of of pH_{KCI}, pH_{ox}(pH after oxidation), TPA (Total Potential Acidity), TAA (Total Actual Acidity), TSA (Total Sulphidic Acidity), S_{POS}% (Percent Peroxide Oxidisable Sulfur) and S_{cr} (Chromium Reducible Sulphur).

Detailed laboratory test results are attached and summaries are presented in the following Tables 2 to 4:

Borehole No	Depth (m)	EC (μS/cm)	Borehole No	Depth (m)	EC (μS/cm)
BH1	0.5-0.95	37	BH6	0.5-0.95	220
BH1	2.0-2.45	61	BH6	1.5-1.95	140
BH1	3.5-3.95	49	BH6	3.0-3.45	76
BH1	5.0-5.45	85	BH6	4.5-4.95	94
BH1	6.5-6.95	170	BH6	6.0-6.45	120
BH1	8.0-8.45	180	BH6	7.5-7.95	85
BH4	1.0-1.45	74	BH8	3.0-3.5	47
BH4	3.0-3.45	65	BH8	5.0-5.5	47
BH4	5.0-5.45	160	BH8	8.9-9.0	100
BH4	6.5-6.95	86			

Table 2 – Results of Electrical Conductivity Tests

Table 3 – Results of Soil Aggressivity Tests

Borehole No	Depth (m)	рН	Chloride (mg/kg)	Sulphate (mg/kg)	Resistivity (ohm-cm)
BH1	0.5-0.95	6.7	5.9	20	17000
BH1	2.0-2.45	4.6	6.0	46	14000
BH1	3.5-3.95	4.6	7.5	50	15000
BH1	5.0-5.45	4.9	15	87	8100
BH1	6.5-6.95	4.6	110	100	3700
BH1	8.0-8.45	4.8	130	89	4000
BH6	1.5-1.95	4.8	61	100	5000
BH6	3.0-3.45	4.9	21	100	8200
BH6	4.5-4.95	4.9	19	100	6900
BH6	6.0-6.45	4.7	22	140	6000
BH6	7.5-7.95	5.1	24	89	7800
BH8	3.0-3.5	5.1	2.5	46	18000
BH8	5.0-5.5	5.1	7.7	48	17000
BH8	8.9-9.0	5.0	25	120	6900

Borehole No	Depth (m)	рН _{ксі}	pH _{ox}	TPA (pH6.5)	TAA (pH6.5)	TSA (pH6.5)	S _{POS} (% w/w)	Scr (% w/w)
BH2	2.0-2.45	4.0	4.5	65	65	<5	<0.005	<0.005
BH3	0.5-0.95	5.9	6.0	<5	6	<5	<0.005	<0.005
BH3	2.5-2.95	4.0	5.1	57	57	<5	<0.005	<0.005
BH3	5.5-5.95	3.8	4.9	87	82	<5	<0.005	<0.005
BH3	8.0-8.45	3.8	5.1	90	87	<5	<0.005	<0.005
BH5	7.0-7.5	3.8	5.0	112	102	10	<0.005	<0.005

Table 4	– Results	of Acid	Sulphate	Soil Tests
	- 11630113	UI ACIU	Suprate	

Notes

 $pH_{KCI} = pH$ of filtered 1:20, 1M K_{CI} extract, overnight shake $pH_{ox} = pH$ of filtered 1:20, 1M K_{CI} after peroxide digestion

TPA = Total Potential Acidity (mol H⁺/tonne)

TAA = Total Actual Acidity (mol H⁺/tonne)

TSA = Total Sulphidic Acidity (mol H⁺/tonne)

S_{POS} = Peroxide Oxidisable Sulphur (%w/w)

S_{cr} = Chromium Reducible Sulphur (% w/w)

Limit of Reporting for TAA, TPA and TSA is 5 moles H⁺/tonne, and for S_{POS} is 0.005% w/w.

Rock cores obtained from selected boreholes were photographed and tested at regular depth intervals for determination of Point Load Strength Index (I_{s50}). The point load strength indices for the rock cores and the assessed rock strengths, in accordance with Australian Standard AS1726-1993 (Reference 1), are summarised in the following Table 5.

Borehole No	Depth (m)	Diametral I _{s(50)} (MPa)	Axial I _{s(50)} (MPa)	Assessed Diametral Strength	Assessed Axial Strength
BH1	9.55	0.61	1.33	Medium	High
BH1	10.35	0.23	0.56	Low	Medium
BH1	11.20	0.91	1.03	Medium	High
BH1	11.85	0.07	0.59	Very Low	Medium
BH2	6.10	0.75	1.60	Medium	High
BH2	7.35	0.11	0.10	Low	Very Low
BH4	7.27	0.79	1.53	Medium	High
BH4	7.70	0.11	0.04	Low	Very Low
BH4	8.50	0.21	0.25	Low	Low
BH4	8.85	1.02	1.00	High	High
BH6	10.40	0.13	0.14	Low	Low
BH6	11.70	0.20	1.19	Low	High
BH7	11.90	1.78	1.60	High	High
BH7	12.80	1.47	1.21	High	High
BH7	13.60	0.53	0.83	Medium	Medium

It should however be noted that Point Load Strength tests could only be carried out on intact (stronger) portions of rock cores. Therefore, strength assessments presented in Table 5 indicate the upper limits of rock strengths.

Based on rock strengths (Table 5) and rock discontinuities shown in the borehole logs, bedrock from the proposed development site is classified for foundation design in accordance with Pells et al (Reference 2) in the following Table 6.

Assessed Rock Class	Depth Range in BH1* (m)	Depth Range in BH2* (m)	Depth Range in BH4* (m)	Depth Range in BH6* (m)	Depth Range in BH7* (m)			
Sandstone - Class V	NE	6.0-7.6	7.0-8.0	6.6-10.5	7.2->11.5			
Sandstone - Class IV	NE	7.6->7.8	NE	10.5-11.5	NE			
Sandstone – Class III	>9.5	NE	>8.0	>11.5	NE			

Table 6 – Rock Classification for Foundation Design

* Approximate only from existing ground surface

NE=Not Encountered

Table 6 indicates that the rock classification for bedrock across the site vary significantly both in the plan and depth.

DISCUSSION AND RECOMMENDATIONS

Soil Salinity

Salinity refers to the presence of excess salt in the environment, either in soil or water. Salinity is a serious problem for any development due to the many environmental, economic and social impacts.

Soil salinity is generally assessed by measuring Electrical Conductivity (EC) of a soil sample made up of 1:5 soil water suspension. Thus, determined Electrical Conductivity (EC) is multiplied by a factor varying from 6 to 23, based on the texture of the soil sample, to obtain Corrected Electrical Conductivity designated as ECe (Reference 3). Alternatively, ECe may be directly measured in soil saturation extracts. Soils are classified as saline if ECe of the saturated extracts exceed 4.0dS/m.

The criteria for assessment of soil salinity classes are shown in the following Table 7 (Reference 3):

Classification	EC _e (dS/m)	Comments				
Non-saline	<2	Salinity effects mostly negligible				
Slightly saline	2 – 4	Yields of very sensitive crops may be affected				
Moderately saline	4 – 8	Yields of many crops affected				
Very saline	8 – 16	Only tolerant crops yield satisfactorily				
Highly saline	>16	Only a few tolerant crops yield satisfactorily				

Table 7 - Criteria for Soil Salinity Classification

Electrical Conductivity (EC) values for 19 representative soil samples are summarised in Table 2. For sandy soils encountered across the site multiplying factors of 12 to 14 are considered appropriate. But for clayey soils multiplying factors of 8 to 10 are considered appropriate. Even if multiplying factor is 14, estimates of ECe values for representative samples vary from about 0.5dS/m to 3.1dS/m.

Therefore, it is our assessment that the soils likely to be disturbed or excavated during proposed development works are non-saline. That also means that the excavation and disturbance of the soils during proposed development works can be carried out without a specific saline soil management plan.

Soil Aggressivity

Aqueous solution of chlorides causes corrosion of iron and steel, including steel reinforcements in concrete. The aggressivity classifications of soil and groundwater applicable to iron and steel, in accordance with Australian Standard AS2159 (Reference 4), are given below in Table 8.

Ch	loride	pН	Resistivity	Soil Condition	Soil Condition
In Soil (ppm)	In Water (ppm)	рп	(ohm cm)	A*	B#
<5000	<1000	>5.0	>5000	Non-aggressive	Non-aggressive
5000-20000	1000-10000	4.0-5.0	2000-5000	Mild	Non-aggressive
20000-50000	10000-20000	3.0-4.0	1000-2000	Moderate	Mild
>50000	>20000	<3.0	<1000	Severe	Moderate

	Oleasification for Oteal/Inc.
I able 8 – Soli Aggressivity	Classification for Steel/Iron

*Soil Condition A = high permeability soils (e.g. sands and gravels) which are below groundwater #Soil Condition B = low permeability soils (e.g. silts and clays) and all soils above groundwater

The aggressivity classifications of soil and groundwater applicable to concrete, in accordance with Reference 4 are given below in Table 9.

Sulphate	expressed as SO ₄	лЦ	Chloride in	Soil Condition	Soil Condition
In Soil (ppm)	In Groundwater (ppm)	рН	Water (ppm)	Α	В
<5000	<1000	>5.5	<6000	Mild	Non-aggressive
5000-10000	1000-3000	4.5-5.5	6000-12000	Moderate	Mild
10000-20000	3000-1000	4.0-4.5	12000-30000	Severe	Moderate
>20000	>10000	<4.0	>30000	Very Severe	Severe

Table 9 - Soil Aggressivity	/ Classification for Concrete
-----------------------------	-------------------------------

Approximately 100ppm of $SO_4 = 80ppm$ of SO_3

Results of aggressivity tests on 14 representative soil samples are summarised in Table 3. The soils likely to be encountered during proposed development works are assessed to be predominantly clayey with low permeability. But sandy soils with high permeability are also present. Therefore, results of aggressivity tests indicate the following:

- The pH value of soils vary from 4.6 to 6.7, indicating that the site is non-aggressive to mildly moderately aggressive to steel/iron but mildly to moderately aggressive to concrete.
- Chloride contents in soils vary from 2.5 to 130.0ppm, indicating the site is non-aggressive to steel but mildly aggressive to concrete.
- Sulphate contents in soils vary from 420.0 to 140.0 ppm, indicating the site is mildly to moderately aggressive to concrete.
- Resistivity of soil varies from 3700.0 to 18000 ohm-cm, indicating the site is non-aggressive to mildly moderately aggressive to steel/iron.

Based on the laboratory test results and the assumption that soils are predominantly sandy, the site is assessed to be mildly aggressive towards steel/iron and moderately aggressive towards concrete. Therefore, we recommend use of construction materials, such as concrete and steel that are appropriate to assessed aggressivity.

Acid Sulphate Soil Assessment

Review of existing information and site assessment indicated the following:

• The Acid Sulphate Soil Risk Map of Hornsby/Mona Vale indicates there are no known occurrences of acid sulphate soil materials in most portions of the site. However, there is a low probability of occurrence of acid sulphate soil materials in the western portion of the site adjacent to the Narrabeen Creek.

- Buildings for the proposed development will be constructed at least 50.0m away from the Narrabeen Creek (buffer zone), where ground surface elevation is at 5.0m AHD or higher. The ground surface within the proposed building area is dipping gently (2 to 3 degrees) towards the west. Therefore, ground surface elevation and geomorphology of the site indicate that acid sulphate or potentially acid sulphate soils are unlikely to be encountered across the site.
- The sub-surface profile across the site comprises a sequence of topsoil/fill and alluvial soil underlain by sandstone. Topsoil/fill as well as alluvial soils likely to be disturbed or excavated during construction of the proposed residence could be acid sulphate or potentially acid sulphate soils.
- Groundwater level is likely to be deeper than the base of proposed excavation. Although the level of groundwater might fluctuate due to variations in rainfall and/or other factors not evident during drilling, it is unlikely that proposed development works will lower the groundwater level to expose the acid sulphate or potentially acid sulphate soils to atmosphere.

The above assessments based on review of available information indicate acid sulphate or potentially acid sulphate soils are unlikely to be encountered at the proposed development site. Despite that representative soil samples obtained from various depths were tested for acid sulphate or potentially acid sulphate soils. The laboratory test results summarised in Table 4 indicate the following:

- The pH_{kcl} (field pH) values are in range of 3.8 to 5.9, indicating actual acid sulphate soils are absent at the site, but does not give an indication whether potential acid sulphate soils are present or not.
- The pH_{ox} values (pH after oxidation) of samples are in range of 4.5 to 6.0. The pH_{ox} values of all samples are higher than the pH_{kcl} values, indicating that oxidation of soils is unlikely to produce any acid.
- Peroxide Oxidisable Sulphur content in the soil samples is lower than 0.03% and hence oxidation of soils is unlikely to produce any significant acid.
- Chromium Reducible Sulphur content in the soil samples is lower than 0.03% and hence oxidation of soils is unlikely to produce any significant acid.

Assessments of laboratory test results indicate soils across the site are unlikely to be acid sulphate or potentially acid sulphate soils.

Acid sulphate soils are a problem because they produce significant acid (sulphuric acid) by oxidation when exposed to oxygen, which might occur during excavation or disturbance of soils containing iron sulphides/oxidisable sulphur. Lowering the groundwater level might also encourage oxidation.

The New South Wales Acid Sulphate Soils Management Advisory Committee (Reference 5) recommends "Action Criteria" (Table 10) based on results of acid sulphate soils analysis for three broad texture categories. Works in soils that exceed these "Action Criteria" must be carried out in accordance with an approved Acid Sulphate Soils Management Plan.

Type of Ma	aterial	Action 1-1000 tonnes of		Action Criteria More than 1000 tonnes of soil is disturbed			
Texture Range	Approximate Clay Content <0.002mm (%)	Sulphur Trail % S oxidisable (S _{TOS} or S _{POS})	Acid Sulphate Trail mol H ⁺ /tonne (TPA or TSA)	Sulphur Trail % S oxidisable (S _{TOS} or S _{POS})	Acid Sulphate Trail mol H ⁺ /tonne (TPA or TSA)		
Coarse Texture Sands to loamy sands	≤5	0.03	18	0.03	18		
Medium Texture Sandy loams to light clays	5-40	0.06	36	0.03	18		
Fine Texture Medium to heavy clays and silty clays	≥40	0.10	62	0.03	18		

Table	10 _	Action	Criteria	for Acid	Sulphate Soils	
I able	10 -	ACTION	Cillena	IUI ACIU	Sulphale Solis	

The borehole logs indicate both clayey and sandy soils likely to be disturbed or excavated during the proposed development. Therefore, appropriate texture is assessed to be "Fine to Medium".

Laboratory test results presented in Table 4 shows that the oxidisable sulphur (S_{POS}) for all samples are less than instrument detectable limit of 0.005%. Likewise, Total Sulphidic Acidity (TSA) for all samples is less than 18.0mol H⁺/tonne. In fact five of six samples show TSA value of lower than instrument detectable limit of 5.0mol H⁺/tonne. Therefore, even if volume of soils to be disturbed or excavated during the proposed development works is more than 1000 tonnes, the Action Criteria for both Sulphur Trail and Acid Trail presented in Table 10 show that the excavations and disturbance of soils during the proposed development works may be carried out without an approved "Acid Sulphate Soils Management Plan".

Excavation Condition

It is anticipated that the proposed development across the site will involve up to about 3.0m deep basement excavation. Therefore, materials to be excavated are anticipated to comprise topsoil, fill and alluvial soils. No rock excavation is anticipated. It is our assessment that excavation of topsoil, fill and alluvial soils can be achieved using conventional earthmoving equipment such as excavators and dozers.

Observation during borehole drilling indicated that the depth to groundwater level is likely to be in range of 4.3m to 7.9m from existing ground surface. Although fluctuations in the level of groundwater and/or seepage might occur due to variations in rainfall and/or other factors not observed during field work day, it is our assessment that the proposed basement excavation to depth of about 3.0m is unlikely to encounter significant groundwater inflow. Minor groundwater inflow, if any, could be managed by a conventional sump and pump method. However, we suggest that a specialist contractor is engaged to design an appropriate dewatering system if significant groundwater inflow is encountered during basement excavation.

Fill Placement

We anticipate site preparation for the proposed development works will involve removal of weak alluvial soils and replacement with controlled fill. The following procedures are recommended for placement of controlled fill, where required.

- Strip topsoil and existing fill materials and stockpile separately for possible future uses or dispose off the site. Topsoils may be used in landscaping and fill materials may be selectively used in controlled fill.
- Undertake proof rolling (using an 8 to 10 tonnes roller) of the exposed alluvial soils to detect potentially weak spots (ground heave). Excavate areas of localised heaving to depth of about 300mm and replace with crushed sandstone, compacted as described below.
- Undertake proof rolling of soft spots backfilled with crushed sandstone, as described above. If the backfilled area shows movement during further proof rolling, this office should be contacted for further recommendations. The additional works may include removal of additional alluvial soils or construction of a Geogrid reinforced bridging layer.
- Place controlled fill over compacted surface of alluvial soil or Geogrid reinforced bridging layer. The controlled fill should comprise at least 0.5m thick crushed sandstone layer overlain by crushed sandstone and/or a mixture of crushed sandstone and alluvial soils obtained from excavations within the site. Particle size of crushed sandstone should not exceed 75mm.
- Controlled fill should be placed in horizontal layers of 200mm to 250mm maximum loose thickness and compacted to a Minimum Dry Density Ratio (MDDR) of 98% Standard at moisture content within 2% of Optimum Moisture Content (OMC) for cohesive soils or Minimum Density Index of 75% for sandy soils.
- Fill placement should be supervised to ensure that material quality, layer thickness, testing frequency and compaction criteria conform to the specifications. We recommend "Level 1" supervision, in accordance with Australian Standard AS3798- (Reference 6). It should be noted that a Geotechnical Inspection and Testing Authority will generally provide certification on quality of compacted fill only if Level 1 supervision and testing is carried out.

Batter Slopes and Retaining Structures

It is anticipated that the proposed development works will involve up to about 3.0m deep excavation. The excavation will occur within alluvial soils. Some minor fill placement might also be required. Cut and fill slopes during and after development works should be battered for stability or retained by engineered retaining structures. If battering is the preferred option, we recommended the following batter slopes.

- Batter slope for short term stability = 1 vertical to 2 horizontal
- Batter slope for long term stability = 1 vertical to 4 horizontal

Surface protection of the batter slopes can be provided by shotcreting. It is also recommended that batter slopes are provided with adequate surface and sub-surface drainage and the crest of the batter slope is at least 1.5m away from the site boundaries and existing structure, if any.

As the materials in the excavation faces are anticipated to comprise predominantly sandy soils, it is unlikely that steep slopes could be maintained in these materials. This is especially the case if groundwater is encountered during basement excavation. Therefore, excavation faces may preferably be retained by engineered retaining structures. Appropriate retaining structures for the proposed excavation would comprise contiguous bored pier walls installed before excavation is commenced or cantilever walls or gravity walls installed after excavation is completed. Secant pile walls may be required if groundwater level is shallower than the base of excavation unless a pumping system is installed to maintain the groundwater level below the base of excavation permanently. The pressure distribution on such walls is assumed to be triangular in shape and estimated as follows:

 $p_h = \gamma k H$

If the retaining walls are anchored or strutted, the active pressure distribution on such retaining structures is assumed to be rectangular and estimated as follows:

 $p_h = 0.3\gamma H$

Where,

 p_h = Horizontal active pressure (kN/m²)

 γ = Total density of materials to be retained (say 18.0kN/m³)

k = Coefficient of earth pressure $(k_a \text{ or } k_o)$

H = Retained height (m)

Distribution of passive pressure, if retaining walls are embedded below the base of excavation, may also be assumed triangular and estimated as follows:

$$p_p = \gamma_1 k_p h$$

Where,

 p_p = Horizontal passive pressure (kN/m²)

 γ_1 = Total density of materials below base of excavation (say 18.0kN/m³)

k_p = Coefficient of passive earth pressure

h = Wall embedment depth below base of excavation (m)

For design of flexible retaining structures, where some lateral movement is acceptable, an active earth pressure coefficient (k_a =0.45) is recommended. If it is critical to limit the horizontal deformation of a retaining structure, use of an earth pressure coefficient at rest (k_0 =0.60) should be considered. To estimate passive resistance, we recommend use of k_p = 2.8. These coefficients are based on the assumption that ground level behind the retaining structure is horizontal and the retained material is effectively drained. Additional earth pressures resulting from surcharge loads (existing structures, traffic etc) and groundwater pressure should also be considered in designing the retaining structures.

The design of any retaining structure should also be checked for bearing capacity, overturning, sliding and overall stability of the slope.

Floor Slabs and Footings

Floor slabs for the proposed buildings may be designed as suspended slabs supported by footings founded in appropriate foundation materials or ground bearing slabs bearing on controlled fill placed in accordance with the recommendation presented in this report.

For design of floor slabs bearing on controlled fill, we recommend a Modulus of Subgrade Reaction Value of 15kPa/mm.

Exact loadings from the proposed structures are not known at this stage. However, we anticipate appropriate footings for the proposed buildings would comprise; (1) shallow footings (pad or strip footings) founded on controlled fill or alluvial soils at depths of about 0.5m to 1.5m from the existing ground surface, (2) shallow footings founded at the base of about 3.0m deep basement excavation or (3) Deep footings (screw piles, bored piers, grout injected piles etc) founded in alluvial soils at depths exceeding 5.0m from existing ground surface or bedrock. Screw piles or grout injected piles would be preferable if footings are founded at depths lower than groundwater level. Deep footings may also be desirable if footings are required to withstand lateral and uplift loads. The recommended allowable bearing pressures for design of shallow and deep footings are presented in Table 11:

Founding Materials	Founding Depth from Ground Surface* (m)	Allowable End Bearing Pressure (kPa)	Allowable Shaft Adhesion (kPa)
Controlled Fill/ Alluvial Soils	0.5-1.5	100.0	Ignore
Alluvial Soils	3.0-5.0	200.0	Ignore
Alluvial Soils	5.0-11.0	350.0	5.0
Sandstone V	6.0-10.0	900.0	50.0
Sandstone IV or better	>10.0	1200.0	100.0

Table 11 – Recommended Allowable Bearing Pressure	es
---	----

*Approximate only.

Allowable shaft adhesion values presented in Table 11 are for compressive loads. For uplift loads, allowable shaft adhesion values may be assumed to be halves of those presented in Table 11.

The depths to alluvial soils and bedrock sandstone with recommended allowable bearing pressures are expected to vary across the site. The ranges of founding depths provided in Table 11 were based on measurements at borehole locations and should be considered an indicative only. Therefore, founding level at a specific location will have to be confirmed by an experienced Geotechnical Engineer on the basis of assessment made during footing excavation or pier hole drilling. The engineer should ensure that the design strength of soil and rock is achieved.

Design of footings (both shallow and deep) should be based on allowable bearing pressures for the foundation materials and acceptable total and differential footing settlements. For footings founded in controlled fill and alluvial soils, total settlement is anticipated to be 2.5% of minimum footing dimension or pier diameter. However, for deep footings founded in bedrock, total settlement is estimated to be about 1.0% of footing diameter. The differential settlements for both shallow and deep footings are estimated to be about halves of the estimated total settlements.

General

Assessments and recommendations presented in this report are based on site observation and information from only eight boreholes distributed across the site. Although we believe that the subsurface profile presented in this report is indicative of the general profile across the site, it is possible that the sub-surface profile across the site could differ from those encountered in boreholes. Likewise, comments on depth to groundwater level are based observation during field work. Therefore, we recommend that this company is contacted for further advice if actual site conditions encountered during construction differ from those presented in this report.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

INDRA JWORCHAN Principal Geotechnical Engineer

Attached Drawing No 13787/1-AA1 – Borehole Location Plan Borehole Logs & Explanatory Notes Laboratory Test Results

References

- 1. Australian Standard, Geotechnical Site Investigation, AS1726-1993.
- Pells, P J N, Mostyn, E and Walker, B F, Foundations on Sandstone and Shale in the Sydney Region, Australian Geomechanics Journal, Dec 1998.
- 3. Lillicrap, A and McGhie, S., Site Investigation for Urban Salinity, Department of Land and Water Conservation, 2002.
- 4. Standard Australia- AS2159-1995, Piling Design and Installation, 1995.
- 5. New South Wales, Acid sulphate Soil Management Advisory Committee, 1988 Acid sulphate Soil Manual.
- 6. Australian Standard AS3798-2007, Guidelines on Earthworks for Commercial and Residential Developments, 2007.

engineering log - borehole

	Client : J & G Knowles & Associates Pty Ltd Job No. : 13787/1 Project : Aged Care Facility Borehole No. : 1 Location : 23-27 Warriewood Road, Warriewood Date : 13/07/2016 Logged/Checked by: SM SM													
						ing :	Н	ydro-F	Powered Scout, Truck Mountslope :	de	eg.	R.L. sı	Irface: 3.2	
	ho	le di	amet	er :	125	n	nm		bearing : deg.	dat	um :	i	AHD	
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
						0			TOPSOIL/FILL: Sandy Silt, brown				Brick pieces	
				DS	N=7 4,4,3			SP	SAND, fine to medium grained, pale grey	Μ	MD		Alluvium	
						1— — —		CI	Sandy CLAY, medium plasticity, yellow-red- grey	M≥PL	St	-		
				DS	N=10 3,4,6	2 2 		CL	Silty CLAY, low plasticity, red-brown, yellow- brown, grey	M≥PL	St	-		
					N=11	3		SC	Clayey SAND, fine to medium grained, grey, red	М	MD	-		
-	V			DS	4,6,5	4 		SM	Silty SAND, fine to medium grained, grey	W	MD	-		
V-Bit				DS	N=12 6,5,7	5		SC	Clayey SAND, fine to medium grained, grey	W	MD	-	-	
						6 — 		CL-CI	Sandy CLAY, low to medium plasticity, red,	M⊵PL	VSt	-	Ironstone with minor	
				DS	N=29 5,11,18	7			yellow, grey, ironstone pieces				cementation	
				DS	N=48	8			Transitioning to low plasticity, harder, more red				Increase in ironstone content	
					10,24,24	9								
									Refer to cored borehole					

engineering log cored borehole

form no. 003 version 03 - 09/10

	Clien Proje Locat	ct:	А	& G Knowles & Associates Pty Ltd ged Care Facility 3-27 Warriewood Road, Warriewood	B D	Job No.: 13787/1 Borehole No.: 1 Date: 13/07/2016 Logged/Checked by: SM											
┝	drill n	nodel	and	mounting : Hydro-Powered S	cout,	Fruc	k	slo	pe :		nec eg.		.2				
	core						b	earir	1g :	d	eg.	datum : AH	ID				
		Ŀ		CORE DESCRIPTION			nc	oint lo	he			DEFECT DETAILS					
barrel lift	water Ioss/level	depth of R.L. in meters	graphic log	rock type, grain characteristics, colour, structure, minor components.	s. weathering strength			index trengt IS(50)	h	defect spacing (mm) اور اور اور اور اور اور اور اور اور اور	9	DESCRIPTION type, inclination, thickness, planarity, roughness, coating. Specific Gene					
		 10		Commenced coring at 9.5m SANDSTONE, medium to coarse grained, grey-red	DW	M-H			×			- ⁻ 9.8m: Jo,PI,sn – 9.9m: Jo,PI,Ro,sn					
		-			SW DW	H M		×		: : :		- - 10.4m: Jo,55°,PI,Ro - 10.6m: Bp,5°,PI,Ro - 10.7m: Jo,Un,Ro					
		11 —				M-H)	×			_ 10.9m: Jo,75°,PI,Ro,sn 11.0m: Bp,PI,SI					
		_		CLAYSTONE, low plasticity, grey	<u>DW</u> F	M H-						-					
_				SANDSTONE, fine to medium grained, grey Borehole No.1 terminated at 11.9m		 _∨H		×				-					
												-					
		-										-					
		13 —										-					
												-					
												-					
												-					
		_										-					
												-					
		_										-					
		_										-					
		 16										-					
		_										-					
		_										-					
		17 —										-					
		_										-					
												-					
		18										-					
		_										-					
		_										-					
		19										_					

engineering log - borehole

	Pro	ent : oject catio	t:	A	ged C	Care Fa	acilit woo	ty od Roa	d, Warriewood Date	No.: ^ hole N : 13/ ed/Che	lo. : 2 07/201	2 6	
						ing :		ydro-F	Powered Scout,Truck Mount slope :		-	R.L. sı	Irface: 8.1
	ho	le di	ame	<u> </u>	125		nm	-	bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						0 _			TOPSOIL/FILL: Sandy Silt, brown	М			
				DS	N=2 1,1,1			SM	Silty SAND, fine grained, brown	W	VL		Alluvium
				DS	N=14 5,6,8	2 		CI-CH	Sandy CLAY, medium to high plasticity, red, grey transitioning to a clayey sand and more grey in colour	M≥PL	F-St	-	-
V-Bit						3							-
	V					4 —— — — — 5 ——		SW	SAND, fine to medium grained, grey	м	MD		
				DS	N=19 4,8,11				Defer to coved barehole				
							-		Refer to cored borehole				
						7							
						8							
						9							

engineering log cored borehole

form no. 003 version 03 - 09/10

	Clien Proje Locat	ct:	23-27 Warriewood Road, WarriewoodDate : 13/07/2016													
			Logged/Checked by : SM													
	drill n	nodel	and	mounting : Hydra Pow	vered Scout,	truck	slope	e: deg	R.L. surface :	8.1						
	core	size:		50mm			bearing	: deg	datum :	AHD						
		Ľ		CORE DESCRIPTIO			point load		DEFECT DETAILS							
barrel lift	water Ioss/level	depth of R.L. in meters	graphic log	rock type, grain characteristi colour, structure, minor compor	cs, eathering w	strength	index strength IS(50)	defect spacing (mm)	DESCRIPTIC type, inclination, thick planarity, roughness, o Specific	kness,						
				Commenced coring at 6.0m CLAYSTONE, grey-red, with siltston	e bands EW	L	×		 6.1m: Jo,PI,SI 6.2m: Jo,Cu,SI Bp,PI,Sm 7.1m: Jo,50°,PI,Sm,sn 7.5m: Jo,PI,Sm,sn 7.6m: Jo,PI,Sm,sn 							
		8 —		Borehole No. 2 terminated at 7.8m												

engineering log - borehole

	Client : J & G Knowles & Associates Pty Ltd Job No. : 13787/1 Project : Aged Care Facility Borehole No. : 3 Location : 23-27 Warriewood Road, Warriewood Date : 15/07/2016 Logged/Checked by: AJP Irill model and mounting : Hydro-Powered Scout, Truck Mountslope : deg. R.L. surfation													
						-		ydro-F	Powered Scout,Truck Mount slope :		-	R.L. sı	urface : 4.6	
	groundwater OU	euv samples	PID reading (ppm)	Geo samples		depth or R.L. in meters	graphic log	classification symbol	bearing : deg.		consistency m density index :	hand penetrometer kPa	AHD Remarks and additional	
method	grour	env s	PID re (ppm	geo s	field test	depth in me	graph	class syr	soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	considensi	hand penei kPa	observations	
						0		SP	TOPSOIL: Silty Sand, medium grained, dark- brown, with root fibres // Silty SAND, medium grained, pale brown	М	MD		Alluvium	
				DS	N=9 2,4,5	_		CL	Sandy CLAY, low plasticity, orange-brown and grey mottled	M≤PL	St			
						1			Becoming red-brown and grey mottled				-	
						_								
						_								
						2								
				D 2	N=13	-		CL	Sandy CLAY, low plasticity, orange-brown, becoming grey, with ironstone bands	M≤PL	VSt			
				DS	4,6,7	3								
						_								
						_								
						4								
						_								
						5								
< D;;														
				DS	N=14 4,6,8									
						6								
						-								
						7								
	_					_				M>PL	VSt	-		
	V					8			Decemine red brown method many with	IVI>PL	vət			
				DS	N=19 6,9,10				Becoming red-brown mottled grey, with ironstone bands					
						_								
						9								
						_								
							Ø							

engineering log - borehole

P L		ct : ion :	A(23	ged C 3-27 \	Knowle Care Fa Warrie	acilit woo	Bore Date Logg	Job No. : 13787/1 Borehole No. : 3 Date : 15/07/2016 Logged/Checked by: AJP						
		odel ar					ydro-F	Powered Scout, Truck N	-		eg. R.L. surface : 4.6			
h	ole d	liamet	er:	125		nm		bearing :	deg.	dat	um :		AHD	
method aroundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESC soil type, plasticity or partic colour, secondary and mine	cle characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations	
					10 —									
					_	-		SANDSTONE, red-brown ar strength, extremely weather	nd grey, very low ed				Bedrock	
								Borehole No. 3 terminated a refusal in sandstone bedrock						

engineering log - borehole

	nol		lel an	Client : J & G Knowles & Associates Pty Ltd Job No. : 13787/1 Project : Aged Care Facility Borehole No. : 4 Location : 23-27 Warriewood Road, Warriewood Date : 15/07/2016 Logged/Checked by: AJP Low from the method and mean times and barriers of Case Truck Magnetolene and the partners of Case Truck Magn													
		e di	drill model and mounting :Hydro-Powered Scout, Truck Mountslope :deg.R.L. surface :4.0hole diameter :125mmbearing :deg.datum :AHD														
method	dwater		amet	er :	125	n	nm		bearing : deg.	dat			AHD				
	groun	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations				
						0 		SP	TOPSOIL: Silty Sand, fine to medium grained, dark brown, with root fibres Silty SAND, medium grained, pale brown	M-W	MD		Alluvium				
				DS	N=11 3,5,6	 1		CL	Sandy CLAY, low plasticity, orange-brown and grey mottled	M≤PL	VSt	-					
						2			Becoming red-brown and grey mottled				 				
V-Bit																	
Bit				DS	N=16 5,7,9	3			Presence of ironstone bands								
						4		CI-CH	Silty CLAY, medium to high plasticity, grey, with	M≤PL	VSt	-					
					N=20	 5			ironstone bands				 				
				DS	5,8,12			CL	Sandy CLAY, low plasticity, grey, with ironstone bands				5.8-6.2m: Ironstone band				
TC-Bit				DS	-	6 — — — —							approximately 400mm thick 				
┢┼╴						7			Refer to cored borehole								
						8							-				
						9											

engineering log cored borehole

form no. 003 version 03 - 09/10

	Clien Proje Locat	ct:	A	& G Knowles & Associates ged Care Facility 3-27 Warriewood Road, W	-		B	ob No.: 13 Borehole No Date: 15/07	9.: 4 7/2016	
	drill n	nodel	and	mounting : Hydra Po	owered Scout,	truck			ked by : AJP R.L. surface :	4.0
	core			50mm	,		bearing :	-		AHD
		;		CORE DESCRIPT	ON		-		DEFECT DETAILS	
barrel lift	water Ioss/level	depth of R.L. in meters	graphic log	rock type, grain characteri colour, structure, minor comp		strength	point load index strength IS(50) EL ^{VL} L M H VH	defect spacing (mm)	DESCRIPTIO type, inclination, thick planarity, roughness, c Specific	iness,
				Commenced coring at 7.0m SANDSTONE, medium to coarse brown and grey	grained, red-		×		7.1m: Bp,PI,Ro,sn 7.2m: Jo,Un,Ro,sn 7.25m: Jo,5°,PI,Ro,sn 7.3m: Jo,5mm,Ro,sn 7.45m: Fr,90°,5mm,Ro,sn	
		9					*		8.6m: Jo,PI,Ro,sn 8.75m: Jo,PI,Ro,sn 4.8.9m: Jo,PI,Ro,sn	
				Borehole No. 4 terminated at 8.95						

engineering log - borehole

h method		e dia				ing :		ydro-F	Powered Scout,Truck Mount slope :		-	R.L. sı	Irface : 12.0
method	water		amet	er :	125	n	nm		bearing : deg.	dat	um :		AHD
	ground	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						0		SP	TOPSOIL: Silty Sand, fine to medium grained, dark brown, with root fibres / Silty SAND, fine to medium grained, grey	М	MD		Alluvium
								CL	Silty CLAY, low plasticity, yellow-brown and grey mottled	M≤PL	St	-	
				DS		1							
									Becoming red-brown mottled yellow-brown				
				DS	N=17 4,7,10	2				M≤PL	VSt		
										IVI≥r″L	vət		
						3			Becoming red-brown mottled grey				
				DS									
				-		4							
									Becoming grey, with ironstone bands				
				DS	N=16 5,7,9	5							
				03	5,7,9								
						6							
						7							
				DS									
						8							

engineering log - borehole

	Pro Lo	ent : oject catio	:: on:	Ag 23	ged C 3-27 \	Care Fa Narrie	acilit woo	ty od Roa	ciates Pty Ltd d, Warriewood	Borel Date Logge	No.: 1 hole N : 15/(ed/Che	o. : {)7/201 cked b	5 6 y: AJP	
C			lel ar amet			ing : r	H nm	ydro-F	owered Scout,Truck Mo bearing :	ount slope : deg.	de dati	eg. ∣ um:	R.L. sı	Irface : 12.0 AHD
method	vater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRI soil type, plasticity or particle colour, secondary and minor	PTION e characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
W TC-Bit				90	fie				SANDSTONE, medium to coa brown and grey, extremely low extremely to distinctly weather Borehole No. 5 terminated at 7 refusal	arse grained, red- v to low strength, red				Bedrock
						 19	-							

engineering log - borehole

	Pro Lo	ent : oject catio	: : on :	Ag 23	ged C 3-27 V	Care Fa Warrie	acilit woo	ty od Roa	d, Warriewood Date Log	No.: ´ ehole N e: 19/ ged/Che	l o. : (07/201 cked b	6 6 y: SM	
d					ount	ing :	G	eopro	be 6600 slope :	de	eg.	R.L. su	Irface : 8.8
	ho	e di	amet	er :	125	n	nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						0		014	FILL: Silty Sand, fine to medium grained, brown, with brick pieces	M	VL		Alluvium
				DS	-			SM CI	Silty SAND, fine grained, grey Sandy CLAY, medium plasticity, red-brown, yellow-brown	M M≥PL	F	-	Aluvum
				DS	N=12 4,5,7				Becoming red-brown	M <pl< td=""><td>VSt</td><td></td><td>-</td></pl<>	VSt		-
						2							-
				DS	N=16 6,9,7	3			Introduction of ironstone bands Becoming more grey				
TC-Bit	V			DS	N=21 6,8,13	4 — 			Becoming more sandy	M>PL	VSt-H		Extremely weathered sandstone?
				DS	N=23 5,9,14				Becoming red				 Residual?
						7			SANDSTONE, fine to medium grained, grey, extremely weathered				Bedrock
				DS	N=20 5,9,11	8							
						 9							
									Refer to cored borehole				

engineering log cored borehole

form no. 003 version 03 - 09/10

	Clien Proje Locat	ct:	A	& G Knowles & Associates Pty Ltd ged Care Facility 3-27 Warriewood Road, Warriewoo	d				B D	ore	eho e :	ole 19	• N o 9/0	3787/1 o.: 6 7/2016 :ked by: SM	
	drill n	nodel	and	mounting : Geoprobe	6600			slo					eg.		.8
	core	size:		NMLC			b	earir	ng :			d	eg	datum : AH	ID
		Ŀ	_	CORE DESCRIPTION			n	oint loa	be					DEFECT DETAILS	
barrel lift	water Ioss/level	depth of R.L. in meters	graphic log	rock type, grain characteristics, colour, structure, minor components.	weathering	strength	s	index trengt IS(50) └ ∟ ^M ⊦	h		def spac (m	cing m)	9	DESCRIPTION type, inclination, thickness, planarity, roughness, coating Specific Ge	g. neral
				Commenced coring at 9.3m CORE LOSS	-									-	
		 10		CLAYSTONE, grey, red, with siltstone band	s EW	L								- - - 10.23m: Cs,2mm,PI,SI	
		 11						×						- - - 10.75m: Cs,5mm,PI,SI -	
		-		SANDSTONE, fine to medium grained, grey- red	SW	M-H		>	<					- 11.16m: Bp,Ir,Ro,sn - 11.45m: Jo,Ir,Ro,sn - 11.67m: Jo,5°,PI,Ro	
				Borehole No. 6 terminated at 11.9m											

	GEC	DTECHNIQUE PTY LTD											
Job N	Job No 13787/1 BH6 Started Coring at 9.3m												
9.0m	9.3m	Core Loss											
10.0m	10.0m Core Loss												
11.0m													
BH6 terminated at 11.9m													

engineering log - borehole

		catio	lel ar							e: 19/0 jed/Che de	cked b	y: SM	urface : 6.5
			amet			-	nm	copio	bearing : deg.		.9. um :	I.L. 30	AHD
Т	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	<u>,</u>	•	1	ů,		0		0	FILL: Silty Sand, fine grained, brown, with brick		VL		
								SM	Silty SAND, fine grained, grey	M	VS		Alluvium
				DS	N=6 2,3,3	_							
						1		CI	Sandy CLAY, medium plasticity, grey-red	M≤PL	VSt		
				DS	N=13 3,6,7								
						2			Becoming red				
						_							
						3 —			Becoming grey, increase in sand content				
				DS	N=18 6,7,11								
						_							
						4							
	▼												
				DS	N=21		111						
					6,8,13	5				M>PL	н	1	
						_							
						6	(1) (1) (1)		Introduction of ironstone bands				
				DS	N=24 6,10,14								
						7							
						'			SANDSTONE, fine to medium grained, grey,				Bedrock
									extremely weathered, with ironstone bands				
				DS	N=24 6,9,15								
						8							
						_							
	- 1					9				1		1	1

engineering log - borehole

	Pro	ent : oject catio		Ag	ged C	Care Fa	acilit	y	ciates Pty Ltd d, Warriewood	Bore Date	No.: 1 hole N : 19/(ed/Che	l o. : 07/201	7 6	
c						ing :	G	eoprol	be 6600	slope :	de	eg.	R.L. sı	Irface : 6.5
	ho	le di	amet	er :	125	n	nm		bearing :	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCR soil type, plasticity or particl colour, secondary and mino	le characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
									Refer to cored borehole					
						_								_

engineering log cored borehole

	Clien			& G Knowles & Associates	Pty Ltd								3787/1		
	Proje Locat			ged Care Facility 3-27 Warriewood Road, Wa	arriewood).: 7 7/2016		
	LUCA		2.		amewood								ked by: SM		
	drill n	nodel	and	mounting : Ge	oprobe 66	00		:	slope	:	d	eg.	R.L. surface :	6.5	5
	core	size:		NMLC				be	aring	:	d	eg.	datum :	AHI	D
		Ŀ		CORE DESCRIPTI	ON			noir	t load				DEFECT DETAILS		
Ĕ	ive	of R. ers	ic log	rock type, grain characteris	stics	ering	ţ	in	dex		efect acing		DESCRIPTIO		
barrel lift	water loss/level	depth of R.L. in meters	graphic log	colour, structure, minor comp		weathering	strength	le	ength (50) . ^м н ^{∨н}	(mm) ខ្លួ ខ្លួ ខ្		type, inclination, thick planarity, roughness, co	bating	
<u>ם</u>	>	=. 0	5	Commenced coring at 11.7m		> DW	v VL		. т. н. от.	20	30 50	20	Specific	Gen	neral
		12		SANDSTONE, medium grained, re ironstaining	ed-grey, with	Fr	H-		×				-		
		_				DW	VH VL						12.2m: Jo,80°,PI,SI		
		_				SW	L						-		
		13 —				-	Н		×				12.7m: Jo,80°,PI,SI 12.8m: Jo,PI,Ro,sn		
						EW SW	EL H						12.84m: Jo,50°,PI,Ro,sn 13.18m: Ds,3mm,PI,SI		
		_											13.2m: Bp,PI,SI 13.31m: Jo,75°,PI,Ro,sn - 13.5m: Is,10mm,PI,SI		
		_				EW	VL						-		
		14 —											-		
				Borehole No. 7 terminated at 14.4	m								14.25m: Jo,80°,PI,Ro,sn		
		_											-		
		15											_		
		_											-		
		_											-		
		16											-		
		_											-		
		_											-		
		_											-		
		17 —											-		
		_											-		
													-		
		18 ——											_		
													-		
		_											-		
		19 —											_		
		_											-		
		_											-		
		20											-		
													-		
													-		
		_											-		
		21 —											-		

engineering log - borehole

		oject catio				Care Fac Warriew			d, Warriewood Date	h ole N : 19/(ed/Che	07/201	6	
d	rill	mod	lel an	nd m	ount	ing :	G	eopro	be 6600 slope :	de	eg.	R.L. sı	irface: 5.
	hol	le di	amet	er :	125	m	m		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						0	\otimes		FILL: Silty Sand, fine to medium grained, brown, with brick pieces	М	VL		
								SM	Silty SAND, fine to medium grained, grey	М	VS		Alluvium
								CI	Sandy CLAY, medium plasticity, grey-red	M≥PL	F		
				DS		3 3 3 3			Becoming red	M <pl< td=""><td>VSt</td><td></td><td></td></pl<>	VSt		
-	V					4				M>PL	H	_	
				DS		5 — 6 —		SP	Silty Clayey SAND, fine to medium grained, grey	Μ	VL		
										W	D		
TC-Bit						8			SANDSTONE, fine to medium grained, grey- red, extremely weathered, with ironstone bands				Bedrock
				DS		9 			Borehole No. 8 terminated at 8.9m				

Symbol Description KEY TO SYMBOLS Symbol Description												
Symbol	Description	Symbol	Description									
<u>Strata</u>	symbols		Claystone									
	Fill / Topsoil		Claystone / Mudstone									
	Sand		Core Loss									
1777 2757 1777	Sandy Clay medium plasticity	Misc. S	ymbols									
	Silty Clay low plasticity	\times	Point Load Strength									
	Clayey Sand	Descrip	tions of various line types (sol									
	Silty Sand		Profile change Gradual profile change									
	Sandy Clay low to medium plasticity											
	Sandy Clay medium to high plasticity											
	Topsoil											
	Sandy Clay low plasticity											
	Sandstone											
	Silty Clay medium to high plasticity											
	Fill											
	Silty Clayey Sand											

Notes:

- 1. Exploratory borings were drilled between 19/07/2016 and 19/07/2016 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

Log Column	Symbol/Value	Description						
Drilling Method	V-bit	Hardened steel 'V' shaped bit attached to auger						
0	TC-bit	Tungsten Carbide bit attached to auger						
	RR	Tricone (Rock Roller) bit						
	DB	Drag bit						
	BB	Blade bit						
Groundwater	Dry	Groundwater not encountered to the drilled or auger refusal depth						
		Groundwater level at depths shown on log						
		Groundwater seepage at depths shown on log						
Environment Sample	GP G	Glass bottle and plastic bag sample over depths shown on log Glass bottle sample over depths shown on log						
	P	Plastic bag sample over depths shown on log						
PID Reading	100	PID reading in ppm						
Geotechnical Sample	DS	Disturbed Small bag sample over depths shown on log						
	DB	Disturbed Bulk sample over depths shown on log						
<u> </u>	U ₅₀	Undisturbed 50mm tube sample over depths shown on log						
Field Test	N=10 3,5,5	Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per 150mm penetration.						
	N=R	'R' represents refusal to penetration in hard/very dense soils or in cobbles or						
	10,15/100	boulders.						
		The first number represents10 blows for 150mm penetration whereas the second						
		number represents 15 blows for 100mm penetration where SPT met refusal						
	DCP/PSP 5	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each						
		number represents blows per 100mm penetration. 'R/10' represents refusal after						
	6	10mm penetration in hard/very dense soils or in gravels or boulders.						
	R/10							
Classification	GP	Poorly Graded GRAVEL						
	GW	Well graded GRAVEL						
	GM	Silty GRAVEL						
	GC	Clayey GRAVEL						
	SP	Poorly graded SAND						
	SW	Well graded SAND						
	SM SC	Silty SAND Clayey SAND						
	ML	SILT / Sandy SILT / clayey SILT, low plasticity						
	ML	SILT / Sandy SILT / clayey SILT, medium plasticity						
	MH	SILT / Sandy SILT / clayey SILT, high plasticity						
	CL	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity						
	CI	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity						
	СН	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity						
Moisture Condition								
Cohesive soils	M <pl< td=""><td>Moisture content less than Plastic Limit</td></pl<>	Moisture content less than Plastic Limit						
	M=PL M>PL	Moisture content equal to Plastic Limit Moisture content to be greater than Plastic Limit						
	IVI>FL	Moisture content to be greater than Plastic Linit						
Cohesionless soils	D	Dry - Runs freely through hand						
	M	Moist - Tends to cohere						
	W	Wet - Tends to cohere						
Consistency		Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu)						
Cohesive soils	VS	Very Soft ≤12 <25						
	S	Soft >12 ≤25 25 - 50						
	F	Firm >25 ≤50 50 − 100						
	St	Stiff >50 ≤100 100 - 200						
	VSt H	Very Stiff >100 ≤200 200 – 400 Hard >200 >400						
Density Index		Term Density Index, I _D (%) SPT 'N' (blows/300mm)						
Cohesionless soils	VL	Very Loose ≤15 ≤5						
	L	Loose >15 ≤35 >5 ≤10						
	Μ	Medium Dense >35 ≤65 >10 ≤30						
	D	Dense >65 ≤85 >30 ≤50						
	VD	Very Dense >85 >50						
Hand Penetrometer	100	Unconfined compressive strength (q _u) in kPa determined using pocket						
Remarks	200	penetrometer, at depths shown on log Geological origin of soils						
Romana	Residual	Residual soils above bedrock						
	Alluvium	River deposited Alluvial soils						
	Colluvial	Gravity deposited Colluvial soils						
	Aeolian	Wind deposited Aeolian soils						

GEOTECHNIQUE PTY LTD

AS1726 – Unified Soil Classification System

Major Divisions Par		Particle size (mm)	Group Symbol	Typical Names	Field Ident	ifications Sand a	-				Laboratory classifie	ation	
	BOULDERS	200							% (2) < 0.075mm	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
	COBBLES	63						'su					
		Coarse 20	GW	Well-graded gravels, gravel-sand mixtures, little or no fines		rain size and subs te sizes, not enou o dry strength		or Divisions'	0-5	-	>4	between 1 and 3	1. Identify lines by the method given for fine grained soils
	GRAVELS (more than half of coarse fraction is		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	some intermedia	one size or range o ate sizes missing, arse grains, no dry	not enough	the criteria given in 'Major	0-5	-	Fails to co	mply with above	grained sons
COARSE GRAINED SOILS (more than half of	larger than 2.36mm)	Medium 6	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength			riteria giv	12-50	Below 'A' line or <i>I_p<4</i>	-	-	2. Borderline classifications occur when the percentage of
material less 63mm is larger than 0.075mm)		Fine 2.36	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	Q	<u>д</u>				fines (fraction smaller than 0.075mm size) is
SANDS (more than half of		Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines	Wide range in g of all intermedia coarse grains, n			-	>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications		
		Medium 0.2	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength			classification of fractions	0-5	-	Fails to comply with above		require the use of dual symbols e.g. SP-SM, GW- GC
	coarse fraction is smaller than 2.36mm)		SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	ification o	12-50	Below 'A' line or <i>l_p<</i> 4	-	-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	for	12-50	Above 'A' line of <i>I_p</i> >7	-	-	
			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Quick to slow	Toughness None	sing 63mm		Below 'A' line			
	SILTS & CLAYS (liqu	id limit < 50%)	CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	None to very slow	Medium	of material passing	Ē	Above 'A' line	40		
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	tion of ma	sing 0.075	Below 'A' line	230	c	
SOILS (more than half of material less than 63mm is smaller than			МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	Slow to none	Low to medium	the gradation	More than 50% passing 0.075mm	Below 'A' line	CL CL 200 000 000 000 000 000 000 00	CI NE	
0.075mm)			Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	vore than	Above 'A' line	- UI Dasticity Dasticity Last		OH or	
			ОН	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium		~	Below 'A' line		OL ar ML	МН
	HIGHLY ORGANIC S	OILS	Pt	Peat and highly organic soils	Identified by col generally by fibr	our, odour, spong ous texture	y feel and		Effervesco	es with H ₂ O ₂		20 30 40 50 Liquid Limit (W _L), perce	60 70 80 ent

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol	Description	с,
Core Size	NQ	Nominal Core Size (mm 47)
	NMLC	52	
Water Loss	HQ	63 Complete water loss	
		Partial water loss	
Weathering	FR	Fresh	Rock shows no sign of decomposition or staining
	SW	Slightly Weathered	Rock is slightly discoloured but shows little or no change of strength from fresh rock
	DW	Distinctly Weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by ironstaining. Porosity may be increased by leaching, or may be decreased by deposition of weathering products in pores
	EW	Extremely Weathered	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrate or can be remoulded, in water
	RS	Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but soil has not been significantly transported
Strength	-		Point Load Strength Index (I _{s50} , MPa)
	EL VL	Extremely Low	≤0.03 >0.03 ≤0.1
	L	Very Low Low	>0.1 ≤0.3
	M	Medium	>0.3 ≤1
	н	High	>1 ≤3
	VH	Very High	>3 ≤10
Defect Specing	EH	Extremely High	>10
Defect Spacing		Description Extremely closely space	d Spacing (mm) d <20
		Very closely spaced	20 to 60
		Closely spaced	60 to 200
		Medium spaced	200 to 600
		Widely spaced	600 to 2000
		Very widely spaced	2000 to 6000
Defect Description		Extremely widely spaced	d >6000
Defect Description Type	Вр	Bedding parting	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fp	Foliation parting	
	Jo	Joint	
	Sh	Sheared zone	
	Cs Ds	Crushed seam Decomposed seam	
	ls	Infilled seam	
Macro-surface geometry	St	Stepped	
	Cu Un	Curved Undulating	
	lr	Irregular	
	PI	Planar	
NF (
Micro-surface geometry	Ro Sm	Rough Smooth	
	SI	Slickensided	
	cn	clean	
Coating or infilling	sn	stained veneer	
	vn cg	coating	

Grain S	Size mm				Be	dded rock	s (mostly	sedimentary)			
More than 20	20		ain Size scription			At leas	st 50% of	grains are of car	bonate	At least 50% of grains are of fine-grained volcanic rock	
	6	RUD	DACEOUS	CONGLOMERATE Rounded boulders, cobbles and gravel cemented in a finer matrix Breccia Irregular rock fragments in a finer matrix			ш Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite	
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grai cemented by clay, calci Quartzite Quartz grains and silice Arkose Many feldspar grains Greywacke	te or iron minerals	-	LIMESTONE and DOLOMITE (undifferentiated)	Calcarenite		Cemented volcanic ash	Gypsum
	0.06 0.002 Less than 0.002	ARGII	LLACEOUS	Many rock chips MUDSTONE SHALE Fissile	SILTSTONE Mostly silt CLAYSTONE Mostly clay	Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF	-
Amorpho crypto-cry	us or			Flint: occurs as hands o Chert: occurs as nodule			calcareou	s sandstone			COAL LIGNITE
				Granular cemented – e:	Granular cemented – except amorphous rocks						_
				SILICEOUS CALCAREOUS SILICEOUS CARBONACEOU						CARBONACEOUS	
				Granular cemented rock specimens and is best	SEDIMENTARY ROCKS Granular cemented rocks vary greatly in strength, some sandstones are stronger than many Igneous rocks. Bedding may not show in hand specimens and is best seen in outcrop. Only sedimentary rocks, and some metamorphic rocks derived from them, contain fossils Calcareous rocks contain calcite (calcium carbonate) which effervesces with dilute hydrochloric acid						

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

liated rocks (mostly metamorphic)		Rocks with	Grain size (mm)				
		Grain size description	Pe	gmatite		Pyrosenite	More than 20
GNEISS	MARBLE					Peridorite	20
Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO		6
	Granulite	COARSE	phorphyritic and	are then described,			
Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2
SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
	Serpentine	MEDIUM			Dolerite		0.2
							0.06
PHYLLITE Slightly undulose foliation; sometimes 'spotted'			RHYOLITE	ANDESITE	DACALT		0.002
SLATE Well developed plane cleavage (foliation)		FINE			BASALI		Less than 0.002
Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
Ē			Pale<			>Dark	
	Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
Foliation in gneisses is best observed orphics are difficult to recognize exce d by contact metamorphism is describ ly somewhat stronger than the parent	d in outcrop. Non- pt by association. ed as 'hornfels' rock	Composed of	closely interlocking				
	GNEISS Well developed but often widely spaced foliation sometimes with schistose bands Migmatite Irregularly foliated: mixed schists and gneisses SCHIST Well developed undulose foliation; generally much mica PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite Found in fault zones, mainly in igneous and metamorphic areas E HIC ROCKS phic rocks are distinguished by foliation in gneisses is best observer orphics are difficult to recognize exceed dby contact metamorphism is describ y somewhat stronger than the parent	GNEISS MARBLE Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Migmatite Irregularly foliated: mixed schists and gneisses HORNFELS SCHIST Well developed undulose foliation; generally much mica Amphibolite PHYLLITE Slightly undulose foliation; sometimes 'spotted' Serpentine SLATE Well developed plane cleavage (foliation) Mylonite Found in fault zones, mainly in igneous and metamorphic areas E Mainly SILICEOUS	GNEISS MARBLE QUARTZITE QUARTZITE Spaced foliation sometimes with schistose bands Granulite COARSE Granulite Migmatite Granulite Irregularly foliated: mixed schists HORNFELS Amphibolite Amphibolite SCHIST Amphibolite Well developed undulose foliation; generally much mica Serpentine PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite FINE Found in fault zones, mainly in igneous and metamorphic areas IGNEOUS RC Composed of Mode of occu E Mainly IGNEOUS RC Composed of Mode of occu IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best observed in outcrop. Non-rophics are difficult to recegnize except by association. IGNEOUS RC Composed of Mode of occu Wold of occu is optical as thornfels' Mode of occu	GNEISS MARBLE Grain size description Pe GNEISS Well developed but often widely spaced foliation sometimes with schistose bands MARBLE GUARTZITE GRANITE Migmatite Granulite COARSE These rocks are phorphyritic and for example, as Migmatite HORNFELS Amphibolite Micorgranite SCHIST HORNFELS Amphibolite Micorgranite SCHIST Well developed undulose foliation; generally much mica Serpentine MEDIUM Micorgranite PHYLLITE Sightly undulose foliation; sometimes spotted' SLATE These rocks are phorphyritic and as porphyries SLATE Well developed plane cleavage (foliation) Obsidian Obsidian Functional in fault zones, mainly in igneous and metamorphic areas Obsidian Obsidian E Mainly IGNEOUS ROCKS Composed of closely interlocking Much quartz IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best origina event nock IGNEOUS ROCKS Pale Composed of closely interlocking Much quartz Mode of occurrence : 1 Batholith	GNEISS MARBLE Grain size description Pegmatite GNEISS Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Granuite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite Migmatite Irregularly foliated: mixed schists and gneises HORNFELS Micorgranite Microdiorite SCHIST HORNFELS Amphibolite Micorgranite Microdiorite SCHIST Amphibolite Micorgranite Microdiorite SCHIST Amphibolite Micorgranite Microdiorite Staft Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries Sightly undulose foliation; sometimes 'spotted' Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries SLATE Well developed plane cleavage (tolation; sometimes rights and metamorphic areas Obsidian Volcanic glass E Pale Pale Serpentine Obsidian Volcanic glass E Mainly SILCEOUS INTERMEDIATE Some quartz IC ROCKS Mainly Some quartz Some quartz Composed of closely interlocking mineral grains. Stron IC ROCKS Poliation in gneisses is best observed in outcrop. Non-rorphics ar	GNEISS MARBLE Grain size Pegmatile GNEISS QUARTZITE Granuite GRANITE Diorite GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite HORNFELS HORNFELS These rocks are sometimes Diorite GABBRO SCHIST Well developed undulose Amphibolite MEDIUM Micorgranite Microdiorite Dolerite SCHIST Well developed undulose foliation; generally much mica Serpentine MEDIUM These rocks are sometimes Dolerite StATE StATE Melnity Obsidian Volcanic glass BASALT Morite Supersprintic and are then described as porphyrite a	CNEISS MARBLE QUARTZITE Pegmatite Pegmatite Microson QUARTZITE QUARTZITE Granulite GRANITE Dionite GABBRO Migmatile Inregulary foliated: mixed schists Granulite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite GABBRO Peridonite Migmatile Inregulary foliated: mixed schists HORNFELS Amphibolite Micorgranite Micordonite SCHIST Weil developed undulose foliation; generally much mica Amphibolite Micorgranite Micordonite Dolerite Staff Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries Dolerite Dolerite Staff Weil developed plane cleavage (fdation) FINE RHYOLITE ANDESITE Dolerite Myorite Focand in fault zones, mainly in gneous and metamorphic areas Obsidian Volcanic glass E E E Mainly SLICEOUS ACID INTERMEDIATE BASIC ULTRA BASIC Mich or objection end the morphism is described as fourthely by conduct metamorphism is described as fourthely by sometwhat stronger than the parent rock GRIEOUS ROCKS Composed of closely interlocking m

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Indra Jworchan	Manager	Jon Dicker
Client	Geotechnique	Laboratory	SGS Cairns Environmental
Address	P.O. Box 880 NSW 2751	Address	Unit 2, 58 Comport St Portsmith QLD 4870
Telephone	02 8594 0400	Telephone	+61 07 4035 5111
Facsimile	02 8594 0499	Facsimile	+61 07 4035 5122
Email	au.environmental.sydney@sgs.com	Email	AU.Environmental.Cairns@sgs.com
Project	13787-1 23-27 Warriewood rd Warriewood	SGS Reference	CE122159 R0
Order Number	SE154900	Date Received	21 Jul 2016
Samples	6	Date Reported	27 Jul 2016

COMMENTS _

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

SIGNATORIES _____

Anthony Nilsson Operations Manager

Jon Dicker Manager Northern QLD

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 2 58 Comport St

t St Portsmith QLD 4870

Australia t +61 7 4035 5111 f +61 7 4035 5122

www.sgs.com.au

CE122159 R0

	Sa	nple Number Imple Matrix Sample Date ample Name	CE122159.001 Soil 18 Jul 2016 BH2 2.0-2.45	CE122159.002 Soil 18 Jul 2016 BH3 0.5-0.95	CE122159.003 Soil 18 Jul 2016 BH3 2.5-2.95	CE122159.004 Soil 18 Jul 2016 BH3 5.5-5.95
Parameter	Units	LOR				
Chromium Reducible Sulphur (CRS) Method: AN217 Tested	: 26/7/2016					
Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5	<5	<5
Moisture Content Method: AN002 Tested: 21/7/2016						
% Moisture	%w/w	0.5	14	16	14	14

TAA (Titratable Actual Acidity) Method: AN219 Tested: 26/7/2016

pH KCI	pH Units	-	4.0	5.9	4.0	3.8
Titratable Actual Acidity	kg H2SO4/T	0.25	3.2	0.31	2.8	4.0
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	65	6	57	82
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.10	0.01	0.09	0.13
Sulphur (SKCI)	%w/w	0.005	0.027	<0.005	0.013	0.020
Calcium (CaKCl)	%w/w	0.005	0.020	0.13	0.007	<0.005
Magnesium (MgKCI)	%w/w	0.005	0.023	0.024	0.024	0.021

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 26/7/2016

Peroxide pH (pH Ox)	pH Units	-	4.5	6.0	5.1	4.9
TPA as kg H ₂ SO₄/tonne	kg H2SO4/T	0.25	3.2	<0.25	2.8	4.3
TPA as moles H+/tonne	moles H+/T	5	65	<5	57	87
TPA as S % W/W	%w/w S	0.01	0.10	<0.01	0.09	0.14
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Titratable Sulfidic Acidity as kg H ₂ SO ₄ /tonne	kg H2SO4/T	0.25	<0.25	<0.25	<0.25	<0.25
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5	<5	<5
Sulphur (Sp)	%w/w	0.005	0.028	<0.005	0.014	0.023
Calcium (Cap)	%w/w	0.005	0.018	0.12	0.008	<0.005
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.023	0.023	0.022	0.022
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	0.072	-	0.020	0.008
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	45	-	13	5

CE122159 R0

	Sample Number Sample Matrix Sample Date Sample Name	CE122159.001 Soil 18 Jul 2016 BH2 2.0-2.45	CE122159.002 Soil 18 Jul 2016 BH3 0.5-0.95	CE122159.003 Soil 18 Jul 2016 BH3 2.5-2.95	CE122159.004 Soil 18 Jul 2016 BH3 5.5-5.95
Parameter	Units LOR				
HCI Extractable S, Ca and Mg in Soil ICP OES Method: AN014	Tested: 27/7/2016				
Acid Soluble Sulphur (SHCI)	%w/w 0.005	0.099	-	0.033	0.029

SPOCAS Net Acidity Calculations Method: AN220 Tested: 27/7/2016

s-Net Acidity	%w/w S	0.01	0.16	0.01	0.11	0.14
a-Net Acidity	moles H+/T	5	99	7	68	88
Liming Rate	kg CaCO3/T	0.1	7.4	NA	5.1	6.6
Verification s-Net Acidity	%w/w S	-20	0.00	0.00	0.00	0.00
a-Net Acidity without ANCE	moles H+/T	5	99	7	68	88
Liming Rate without ANCE	kg CaCO3/T	0.1	7.4	NA	5.1	6.6

		ample Number Sample Matrix Sample Date Sample Name	CE122159.005 Soil 18 Jul 2016 BH3 8.0-8.45	CE122159.006 Soil 18 Jul 2016 BH5 7.0-7.5
Parameter	Units	LOR		
Chromium Reducible Sulphur (CRS) Method: AN217 Tested	I: 26/7/2016			
Chromium Reducible Sulphur (Scr)	%	0.005	<0.005	<0.005
Chromium Reducible Sulphur (Scr)	moles H+/T	5	<5	<5
Moisture Content Method: AN002 Tested: 21/7/2016				
% Moisture	%w/w	0.5	15	14

TAA (Titratable Actual Acidity) Method: AN219 Tested: 26/7/2016

рН КСІ	pH Units	-	3.8	3.8
Titratable Actual Acidity	kg H2SO4/T	0.25	4.3	5.0
Titratable Actual Acidity (TAA) moles H+/tonne	moles H+/T	5	87	102
Titratable Actual Acidity (TAA) S%w/w	%w/w S	0.01	0.14	0.16
Sulphur (SKCI)	%w/w	0.005	0.013	0.016
Calcium (CaKCl)	%w/w	0.005	<0.005	<0.005
Magnesium (MgKCI)	%w/w	0.005	0.021	0.020

TPA (Titratable Peroxide Acidity) Method: AN218 Tested: 26/7/2016

Peroxide pH (pH Ox)	pH Units	-	5.1	5.0
TPA as kg H ₂ SO₄/tonne	kg H2SO4/T	0.25	4.4	5.5
TPA as moles H+/tonne	moles H+/T	5	90	112
TPA as S % W/W	%w/w S	0.01	0.14	0.18
Titratable Sulfidic Acidity as moles H+/tonne	moles H+/T	5	<5	10
Titratable Sulfidic Acidity as kg H₂SO₄/tonne	kg H2SO4/T	0.25	<0.25	0.49
Titratable Sulfidic Acidity as S % W/W	%w/w S	0.01	<0.01	0.02
ANCE as % CaCO ₃	% CaCO3	0.01	<0.01	<0.01
ANCE as moles H+/tonne	moles H+/T	5	<5	<5
ANCE as S % W/W	%w/w S	0.01	<0.01	<0.01
Peroxide Oxidisable Sulphur (Spos)	%w/w	0.005	<0.005	<0.005
Peroxide Oxidisable Sulphur as moles H+/tonne	moles H+/T	5	<5	<5
Sulphur (Sp)	%w/w	0.005	0.013	0.020
Calcium (Cap)	%w/w	0.005	<0.005	<0.005
Reacted Calcium (CaA)	%w/w	0.005	<0.005	<0.005
Reacted Calcium (CaA)	moles H+/T	5	<5	<5
Magnesium (Mgp)	%w/w	0.005	0.020	0.019
Reacted Magnesium (MgA)	%w/w	0.005	<0.005	<0.005
Reacted Magnesium (MgA)	moles H+/T	5	<5	<5
Net Acid Soluble Sulphur as % w/w	%w/w	0.005	<0.005	0.007
Net Acid Soluble Sulphur as moles H+/tonne	moles H+/T	5	<5	<5

		S	nple Number ample Matrix Sample Date Sample Name	CE122159.005 Soil 18 Jul 2016 BH3 8.0-8.45	CE122159.006 Soil 18 Jul 2016 BH5 7.0-7.5
Parameter		Units	LOR		
HCI Extractable S, Ca and Mg in Soil ICP OES	Method: AN014	Tested: 27	7/7/2016		
Acid Soluble Sulphur (SHCI)		%w/w	0.005	0.016	0.023

SPOCAS Net Acidity Calculations Method: AN220 Tested: 27/7/2016

s-Net Acidity	%w/w S	0.01	0.14	0.17
a-Net Acidity	moles H+/T	5	89	110
Liming Rate	kg CaCO3/T	0.1	6.7	8.1
Verification s-Net Acidity	%w/w S	-20	0.00	0.00
a-Net Acidity without ANCE	moles H+/T	5	89	110
Liming Rate without ANCE	kg CaCO3/T	0.1	6.7	8.1

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Chromium Reducible Sulphur (CRS) Method: ME-(AU)-[ENV]AN217

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Chromium Reducible Sulphur (Scr)	LB038118	%	0.005	<0.005	0%	89%
Chromium Reducible Sulphur (Scr)	LB038118	moles H+/T	5	<5		

TAA (Titratable Actual Acidity) Method: ME-(AU)-[ENV]AN219

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
pH KCI	LB038117	pH Units	-	5.9	0 - 2%	101%
Titratable Actual Acidity	LB038117	kg H2SO4/T	0.25	<0.25	0 - 4%	NA
Titratable Actual Acidity (TAA) moles H+/tonne	LB038117	moles H+/T	5	<5	0 - 4%	92%
Titratable Actual Acidity (TAA) S%w/w	LB038117	%w/w S	0.01	<0.01	0 - 4%	92%
Sulphur (SKCI)	LB038117	%w/w	0.005	<0.005	5 - 12%	87%
Calcium (CaKCl)	LB038117	%w/w	0.005	<0.005	1 - 6%	99%
Magnesium (MgKCI)	LB038117	%w/w	0.005	<0.005	0 - 3%	92%

TPA (Titratable Peroxide Acidity) Method: ME-(AU)-[ENV]AN218

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Peroxide pH (pH Ox)	LB038116	pH Units	-	6.3	0 - 2%	100%
TPA as kg H₂SO₄/tonne	LB038116	kg H2SO4/T	0.25	<0.25	0 - 4%	99%
TPA as moles H+/tonne	LB038116	moles H+/T	5	<5	0 - 4%	99%
TPA as S % W/W	LB038116	%w/w S	0.01	<0.01	0 - 4%	99%
ANCE as % CaCO ₃	LB038116	% CaCO3	0.01	<0.01	0%	
ANCE as moles H+/tonne	LB038116	moles H+/T	5	<5	0%	
ANCE as S % W/W	LB038116	%w/w S	0.01	<0.01	0%	
Sulphur (Sp)	LB038116	%w/w	0.005	<0.005	4 - 6%	102%
Calcium (Cap)	LB038116	%w/w	0.005	<0.005	0 - 3%	115%
Magnesium (Mgp)	LB038116	%w/w	0.005	<0.005	0 - 5%	107%

METHOD SUMMARY

 - METHOD	- METHODOLOGY SUMMARY
METHOD	METHODOLOGT SOMMART
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN014	This method is for the determination of soluble sulfate (SO4-S) by extraction with hydrochloric acid. Sulphides should not react and would normally be expelled. Sulfur is determined by ICP.
AN217	Dried pulped sample is mixed with acid and chromium metal in a rapid distillation unit to produce hydrogen sulfide (H2S) which is collected and titrated with iodine (I2(aq)) to measure SCR.
AN218	Soil samples are subjected to extreme oxidising conditions using hydrogen peroxide. Continuous application of heat and peroxide ensure all sulfide is converted to sulfuric acid. Excess peroxide is broken down by a copper catalyst prior to titration for acidity. Calcium, magnesium, and sulfur are determined by ICP-OES. Also included is a carbonate modification step which, depending on pH after the initial oxidation, gives a measure of ANC.
AN219	Dried pulped sample is extracted for 4 hours in a 1 M KCl solution. The ratio of sample to solution is 1:40. The extract is titrated for acidity. Calcium, magnesium, and sulfur are determined by ICP-AES.
AN220	SPOCAS Suite: Scheme for the calculation of net acidities and liming rates using a Fineness Factor of 1.5.

FOOTNOTES _

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the
	performance of this service.
**	Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance QFL QC result is below the lower tolerance
 - The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS					
Contact	Indra Jworchan	Manager	Huong Crawford					
Client	Geotechnique	Laboratory	SGS Alexandria Environmental					
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015					
Telephone	02 4722 2700	Telephone	+61 2 8594 0400					
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499					
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com					
Project Order Number Samples	13787-1 23-27 Warriewood Road Warriewood (Not specified) 19	SGS Reference Date Received Date Reported	SE155019 R0 20/7/2016 29/7/2016					

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

Kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Conductivity and TDS by Calculation - Soil [AN106] Tested: 28/7/2016

			BH1 0.5-0.95	BH1 2.0-2.45	BH1 3.5-3.95	BH1 5.0-5.45	BH1 6.5-6.95
			SOIL	SOIL	SOIL	SOIL	SOIL
						18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.001	SE155019.002	SE155019.003	SE155019.004	SE155019.005
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	37	61	49	85	170

			BH1 8.0-8.45	BH4 1.0-1.45	BH4 3.0-3.45	BH4 5.0-5.45	BH4 6.5-6.95
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				18/7/2016	18/7/2016	18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.006	SE155019.007	SE155019.008	SE155019.009	SE155019.010
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	180	74	65	160	86

			BH6 0.5-0.95	BH6 1.5-1.95	BH6 3.0-3.45	BH6 4.5-4.95	BH6 6.0-6.45
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/7/2016	- 18/7/2016	- 18/7/2016	- 18/7/2016	- 18/7/2016
PARAMETER	UOM	LOR	SE155019.011	SE155019.012	SE155019.013	SE155019.014	SE155019.015
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	220	140	76	94	120

			BH6 7.5-7.95	BH8 3.0-3.5	BH8 5.0-5.5	BH8 8.9-9.0
			SOIL	SOIL	SOIL	SOIL
			- 18/7/2016	- 18/7/2016	- 18/7/2016	- 18/7/2016
PARAMETER	UOM	LOR	SE155019.016	SE155019.017	SE155019.018	SE155019.019
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	85	47	47	100

pH in soil (1:2) [AN101] Tested: 28/7/2016

			BH1 0.5-0.95	BH1 2.0-2.45	BH1 3.5-3.95	BH1 5.0-5.45	BH1 6.5-6.95
			SOIL	SOIL	SOIL	SOIL	SOIL
						18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.001	SE155019.002	SE155019.003	SE155019.004	SE155019.005
pH (1:2)	pH Units	-	6.7	4.6	4.6	4.9	4.6

			BH1 8.0-8.45	BH6 1.5-1.95	BH6 3.0-3.45	BH6 4.5-4.95	BH6 6.0-6.45
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/7/2016	18/7/2016	18/7/2016	18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.006	SE155019.012	SE155019.013	SE155019.014	SE155019.015
pH (1:2)	pH Units	-	4.8	4.8	4.9	4.9	4.7

			BH6 7.5-7.95	BH8 3.0-3.5	BH8 5.0-5.5	BH8 8.9-9.0
			SOIL	SOIL	SOIL	SOIL
						-
						18/7/2016
PARAMETER	UOM	LOR	SE155019.016	SE155019.017	SE155019.018	SE155019.019
pH (1:2)	pH Units	-	5.1	5.1	5.1	5.0

Conductivity (1:2) in soil [AN106] Tested: 28/7/2016

			BH1 0.5-0.95	BH1 2.0-2.45	BH1 3.5-3.95	BH1 5.0-5.45	BH1 6.5-6.95
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/7/2016	18/7/2016	18/7/2016	18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.001	SE155019.002	SE155019.003	SE155019.004	SE155019.005
Conductivity (1:2) @25 C*	µS/cm	1	60	73	68	120	270
Resistivity (1:2)*	ohm cm	-	17000	14000	15000	8100	3700

			BH1 8.0-8.45	BH6 1.5-1.95	BH6 3.0-3.45	BH6 4.5-4.95	BH6 6.0-6.45
			SOIL	SOIL	SOIL	SOIL	SOIL
						18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.006	SE155019.012	SE155019.013	SE155019.014	SE155019.015
Conductivity (1:2) @25 C*	µS/cm	1	250	200	120	150	170
Resistivity (1:2)*	ohm cm	-	4000	5000	8200	6900	6000

			BH6 7.5-7.95	BH8 3.0-3.5	BH8 5.0-5.5	BH8 8.9-9.0
			SOIL	SOIL	SOIL	SOIL
			18/7/2016	18/7/2016	18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.016	SE155019.017	SE155019.018	SE155019.019
Conductivity (1:2) @25 C*	µS/cm	1	130	56	58	140
Resistivity (1:2)*	ohm cm	-	7800	18000	17000	6900

ANALYTICAL RESULTS

SE155019 R0

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography [AN245] Tested: 26/7/2016

			BH1 0.5-0.95	BH1 2.0-2.45	BH1 3.5-3.95	BH1 5.0-5.45	BH1 6.5-6.95
			SOIL	SOIL	SOIL	SOIL	SOIL
						18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.001	SE155019.002	SE155019.003	SE155019.004	SE155019.005
Chloride	mg/kg	0.25	5.9	6.0	7.5	15	110
Sulphate	mg/kg	0.5	20	46	50	87	100

			BH1 8.0-8.45	BH6 1.5-1.95	BH6 3.0-3.45	BH6 4.5-4.95	BH6 6.0-6.45
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.006	SE155019.012	SE155019.013	SE155019.014	SE155019.015
Chloride	mg/kg	0.25	130	61	21	19	22
Sulphate	mg/kg	0.5	89	100	100	100	140

Sulphate	mg/kg	0.5	89	46	48	120
Chloride	mg/kg	0.25	24	2.5	7.7	25
PARAMETER	UOM	LOR	- 18/7/2016 SE155019.016	- 18/7/2016 SE155019.017	- 18/7/2016 SE155019.018	- 18/7/2016 SE155019.019
			SOIL	SOIL	SOIL	SOIL
			BH6 7.5-7.95	BH8 3.0-3.5	BH8 5.0-5.5	BH8 8.9-9.0

Moisture Content [AN002] Tested: 26/7/2016

BH1 0.5-0.95 BH1 2.0-2.45 BH1 3.5-3.95 BH1 5.0-5.45 BH1 6.5-6.95 SOIL SOIL </th <th>% Moisture</th> <th>%w/w</th> <th>0.5</th> <th>11.4</th> <th>17.9</th> <th>15.0</th> <th>16.9</th> <th>20.1</th>	% Moisture	%w/w	0.5	11.4	17.9	15.0	16.9	20.1
SOIL SOIL SOIL SOIL SOIL SOIL	PARAMETER	UOM	LOR	SE155019.001	SE155019.002	SE155019.003	SE155019.004	SE155019.005
SOIL SOIL SOIL SOIL SOIL SOIL							18/7/2016	18/7/2016
BH1 0.5-0.95 BH1 2.0-2.45 BH1 3.5-3.95 BH1 5.0-5.45 BH1 6.5-6.95				SOIL	SOIL	SOIL	SOIL	SOIL
				BH1 0.5-0.95	BH1 2.0-2.45	BH1 3.5-3.95	BH1 5.0-5.45	BH1 6.5-6.95

			BH1 8.0-8.45	BH4 1.0-1.45	BH4 3.0-3.45	BH4 5.0-5.45	BH4 6.5-6.95
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.006	SE155019.007	SE155019.008	SE155019.009	SE155019.010
% Moisture	%w/w	0.5	22.2	14.2	16.2	17.0	9.7

			BH6 0.5-0.95	BH6 1.5-1.95	BH6 3.0-3.45	BH6 4.5-4.95	BH6 6.0-6.45
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.011	SE155019.012	SE155019.013	SE155019.014	SE155019.015
% Moisture	%w/w	0.5	18.6	14.7	17.9	14.7	14.8

			BH6 7.5-7.95	BH8 3.0-3.5	BH8 5.0-5.5	BH8 8.9-9.0
			SOIL	SOIL	SOIL	SOIL
			18/7/2016	18/7/2016	18/7/2016	18/7/2016
PARAMETER	UOM	LOR	SE155019.016	SE155019.017	SE155019.018	SE155019.019
% Moisture	%w/w	0.5	15.7	15.3	16.8	18.8

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:2 and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN106	Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.
AN245	Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL IS LNR

Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM LOR ¢↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Indra Jworchan	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13787-1 23-27 Warriewood Road Warriewood	SGS Reference	SE155019 R0
Order Number	(Not specified)	Date Received	20 Jul 2016
Samples	19	Date Reported	29 Jul 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	Conductivity (1:2) in soil	14 items
	Conductivity and TDS by Calculation - Soil	19 items
	pH in soil (1:2)	14 items
	Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography	14 items
Analysis Date	Conductivity (1:2) in soil	14 items
	Conductivity and TDS by Calculation - Soil	19 items

Sample counts by matrix	19 Soils	Type of documentation received	COC	
Date documentation received	22/7/16 @ 11.27am	Samples received in good order	Yes	
Samples received without headspace	N/A	Sample temperature upon receipt	16.8°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	None	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +6 Australia f +6

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	ME-(AU)-[ENV]A Analysed
3H1 0.5-0.95	SE155019.001	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H1 2.0-2.45	SE155019.002	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H1 3.5-3.95	SE155019.003	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H1 5.0-5.45	SE155019.004	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H1 6.5-6.95	SE155019.005	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H1 8.0-8.45	SE155019.006	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H6 1.5-1.95	SE155019.012	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H6 3.0-3.45	SE155019.013	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
BH6 4.5-4.95	SE155019.014	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
BH6 6.0-6.45	SE155019.015	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H6 7.5-7.95	SE155019.016	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
3H8 3.0-3.5	SE155019.017	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
3H8 5.0-5.5	SE155019.018	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H8 8.9-9.0	SE155019.019	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
onductivity and TDS by Ca	Iculation - Soil						Method:	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H1 0.5-0.95	SE155019.001	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H1 2.0-2.45	SE155019.002	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H1 3.5-3.95	SE155019.003	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H1 5.0-5.45	SE155019.004	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H1 6.5-6.95	SE155019.005	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H1 8.0-8.45	SE155019.006	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H4 1.0-1.45	SE155019.007	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H4 3.0-3.45	SE155019.008	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H4 5.0-5.45	SE155019.009	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H4 6.5-6.95	SE155019.010	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H6 0.5-0.95	SE155019.011	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H6 1.5-1.95	SE155019.012	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H6 3.0-3.45	SE155019.013	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H6 4.5-4.95	SE155019.014	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H6 6.0-6.45	SE155019.015	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H6 7.5-7.95	SE155019.016	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H8 3.0-3.5	SE155019.017	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
H8 5.0-5.5	SE155019.018	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016†
H8 8.9-9.0	SE155019.019	LB106404	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	25 Jul 2016	29 Jul 2016
pisture Content							Method:	ME-(AU)-[ENV]A
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H1 0.5-0.95	SE155019.001	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H1 2.0-2.45	SE155019.002	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H1 3.5-3.95	SE155019.002	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H1 5.0-5.45	SE155019.003	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H1 6.5-6.95	SE155019.004	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H1 8.0-8.45	SE155019.006	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H4 1.0-1.45	SE155019.007	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H4 3.0-3.45	SE155019.008	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H4 5.0-5.45	SE155019.009	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H4 6.5-6.95	SE155019.003	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H6 0.5-0.95	SE155019.011	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H6 1.5-1.95	SE155019.012	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
16 3.0-3.45	SE155019.013	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
16 4.5-4.95	SE155019.014	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
16 6.0-6.45	SE155019.015	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
16 7.5-7.95	SE155019.016	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
18 3.0-3.5	SE155019.017	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H8 5.0-5.5	SE155019.018	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016
H8 8.9-9.0	SE155019.019	LB106180	18 Jul 2016	20 Jul 2016	01 Aug 2016	26 Jul 2016	31 Jul 2016	29 Jul 2016

29/7/2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:2) (continued)							Method: I	ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.5-0.95	SE155019.001	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH1 2.0-2.45	SE155019.002	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH1 3.5-3.95	SE155019.003	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH1 5.0-5.45	SE155019.004	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH1 6.5-6.95	SE155019.005	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH1 8.0-8.45	SE155019.006	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH6 1.5-1.95	SE155019.012	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH6 3.0-3.45	SE155019.013	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH6 4.5-4.95	SE155019.014	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH6 6.0-6.45	SE155019.015	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH6 7.5-7.95	SE155019.016	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH8 3.0-3.5	SE155019.017	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH8 5.0-5.5	SE155019.018	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
BH8 8.9-9.0	SE155019.019	LB106415	18 Jul 2016	20 Jul 2016	25 Jul 2016	28 Jul 2016†	29 Jul 2016	29 Jul 2016
Soluble Anions in Soil from 1:2	DI Extract by Ion Chr	omatography					Method: I	ME-(AU)-[ENV]AN245
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1 0.5-0.95	SE155019.001	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH1 2.0-2.45	SE155019.002	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH1 3.5-3.95	SE155019.003	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH1 5.0-5.45	SE155019.004	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH1 6.5-6.95	SE155019.005	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH1 8.0-8.45	SE155019.006	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH6 1.5-1.95	SE155019.012	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH6 3.0-3.45	SE155019.013	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH6 4.5-4.95	SE155019.014	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
BH6 6.0-6.45	05455040.045	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
	SE155019.015	ED100200						
BH6 7.5-7.95	SE155019.015 SE155019.016	LB106253	18 Jul 2016	20 Jul 2016	25 Jul 2016	26 Jul 2016†	23 Aug 2016	29 Jul 2016
				20 Jul 2016 20 Jul 2016	25 Jul 2016 25 Jul 2016	26 Jul 2016† 26 Jul 2016†	23 Aug 2016 23 Aug 2016	29 Jul 2016 29 Jul 2016
BH6 7.5-7.95	SE155019.016	LB106253	18 Jul 2016				•	

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE155019 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity (1:2) in soil			Method: ME-(AU)-[ENV]AN10
Sample Number Paramet	er Units	LOR	Result
LB106415.001 Conductiv	ty (1:2) @25 C* μS/cm	1	<1

Conductivity and TDS by Calculation - Soil			Met	nod: ME-(AU)-[ENV]AN106
Sample Number	Parameter	Units	LOR	l

Soluble Anions in Soil from 1:2 DI Extract by	/ Ion Chromatography		Meth	nod: ME-(AU)-[ENV]AN245
Sample Number	Parameter	Units	LOR	

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

pH (1:2)

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Conductivity (1:2) in soil

Conductivity (1:2) i	n soil					Metho	d: ME-(AU)-[ENVJAN106
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155019.006	LB106415.010	Conductivity (1:2) @25 C*	µS/cm	1	250	249	31	1
		Resistivity (1:2)*	ohm cm	-	4000)16.064257028	15	1
SE155019.019	LB106415.020	Conductivity (1:2) @25 C*	µS/cm	1	140	150	31	3
		Resistivity (1:2)*	ohm cm	-	6900	6700	15	3
Conductivity and T	DS by Calculation - Soil					Metho	d: ME-(AU)-[ENVJAN106
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155019.009	LB106404.014	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	160	53.285256222	31	5
SE155019.019	LB106404.025	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	100	03.590276243	32	2

Moisture Content

SE155019.019

Moisture Content						Meth	od: ME-(AU)-[ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155019.009	LB106180.011	% Moisture	%w/w	0.5	17.0	17.8	36	5
SE155019.019	LB106180.022	% Moisture	%w/w	0.5	18.8	18.7	35	1
SE155053.010	LB106180.033	% Moisture	%w/w	0.5	9.7944377267	9.5872170439	40	2
SE155053.025	LB106180.044	% Moisture	%w/w	0.5	10.223048327	19.4311377245	40	8
SE155053.027	LB106180.046	% Moisture	%w/w	0.5	0	0	200	0
pH in soil (1:2)						Meth	od: ME-(AU)-[ENVJAN101
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE155019.006	LB106415.010	pH (1:2)	pH Units	-	4.8	4.78	32	0

pH Units

5.0

-

5.0

32

1

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography

LB106415.020

Soluble Anions in S	Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography							Method: ME-(AU)-[ENV]AN245				
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %				
SE155019.006	LB106253.009	Chloride	mg/kg	0.25	130	35.862396856	30	4				
		Sulphate	mg/kg	0.5	89	96.1598428290	32	8				
SE155019.019	LB106253.018	Chloride	mg/kg	0.25	25	24.6655248618	31	2				
		Sulphate	mg/kg	0.5	120	19.582209944	32	2				

Method: ME-(AU)-[ENV]AN245

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity (1:2) in soil					N	lethod: ME-(A	U)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB106415.002	Conductivity (1:2) @25 C*	µS/cm	1	300	303	85 - 115	100

Conductivity and TDS by Calculation - Soil

Conductivity and TDS by Calculation	- Soil				N	lethod: ME-(A	U)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB106404.002	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	100

pH in soil (1:2)

pH in soil (1:2)					N	/lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB106415.003	pH (1:2)	pH Units	-	7.4	7.415	98 - 102	99

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB106253.002	Chloride	mg/kg	0.25	NA	40	70 - 130	92
	Sulphate	mg/kg	0.5	NA	40	70 - 130	96

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

course per ENS OFFICE_X585_20 1022204320 0000 3500 50 513019 COC 2217116 C211.27 ~

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

Lemko Place							4722 2700						
PENRITH NSW 2	2750			PENE	P O Box 880 RITH NSW 2751) 4722 6161 nfo@geotech					Deve	
TO:	SGS ENVIRON	IENTAL SE	ERVICES	FLINE	MIH N3W 2751	email. I	Sampling		AP	Job No:	13787/1	Page	1
	UNIT 16						Joannphilig	by.	AF	300 NO.	13/8//1		
	33 MADDOX ST						1			Project:	Propose	d Residential Aged Care Facility	
	ALEXANDRIA M	NSW 2015									•		
PH:	02 8594 0400			FAX:	02 8594 0499		Designed						
ATTN:	Ms Emily Yin			FAA.	02 0594 0499		Project Ma	inager:	IJ	Location:	23-27 Wa	arriewood Road, Warriewood	
The second se	Sampling de	tails								Results r	equired	d by:	
Location	Depth (m)	Soil	Water	EC(1:5)	Aggressivity		1					Notes	Keep Sam
BH1	0.5-0.95	DSP			v 1								Reep Sam
	2.0-2.45	DSP		1		-			_			Aggressivity test includes pH	
												chloride, sulphate and resistivity	
	3.5-3.95	DSP			~				_				
	5.0-5.45	DSP		~	×								
	6.5-6.95	DSP		✓	~								
	8.0-8.45	DSP		~	~								
5110												SGS AL	t
BH2	0.5-0.95 2.0-2.45	DSP DSP				-						SGS Alexandria Environment	
	5.0-5.45	DSP											
	3.0-3.43	DOF								_			1
BH3	0.5-0.95	DSP									<u> </u>		
	2.5-2.95	DSP									<u> </u>	SE155010 COO	
	5.5-5.95	DSP			-							SE155019 COC Received: 20-Jul-2016	-
	8.0-8.5	DSP										20-301-2016	
DUA	10115												
BH4	1.0-1.45 3.0-3.45	DSP DSP		~									
	5.0-5.45	DSP		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
	6.5-6.95	DSP		~		141 1-144							
	0.0 0.00	50,											
		Relin	nquished by					L			Receiv	ved by	
Nan			Si	gnature		Date		Name				Signature	
Indra Jw egend:						18-Jul-16		tions	in h		+14		20/7 200
VG	1977 - C. 1			USG	Undisturbed soil s	ample (glass	DSP	Disturbed	soil samn	le (small plastic	hag)	* Purge & Trap	1
VP					Disturbed soil sam			Test requ		ie (onian plastic	ug)	# Geotechnique Screen	

Form No 4.7F2-5 SGS

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

Lemko Place PENRITH NSW				PENR	P O Box 880 ITH NSW 2751		4722 6161 6@geotec	h.com.au				Page	2		
TO:	SGS ENVIRON	MENTAL SE	ERVICES				Sampling	By:	AP	Job No:	13787/1				
	33 MADDOX ST ALEXANDRIA									Project:	Propose	d Residential Aged Care Facility			
PH: ATTN:	02 8594 0400 Ms Emily Yin			FAX:	02 8594 0499		Project M	anager:	IJ	Location:	23-27 Wa	arriewood Road, Warriewood			
;	Sampling details				Results required by:										
Location	Depth (m)	Soil	Water	EC(1:5)	Aggressivity						1	Notes	Keep Samp		
BH5	1.0-1.45	DSP									1	Aggressivity test includes pH			
	2.5-2.95	DSP										chloride, sulphate and resistivity			
	3.5-4.0	DSP										chonde, subhate and resistivity			
	5.0-5.45	DSP													
								-							
	7.0-7.5	DSP													
BH6	0.5-0.95	DSP		~											
	1.5-1.95	DSP		~	~							-			
	3.0-3.45	DSP		\checkmark	~					· · · · · ·					
	4.5-4.95	DSP		\checkmark	~										
	6.0-6.45	DSP		\checkmark	\checkmark										
	7.5-7.95	DSP		~	~										
BH7	0.5-1.0	DSP													
5.11	1.5-1.95	DSP						-							
	3.0-3.45	DSP													
	4.5-4.95	DSP													
and a second second	6.0-6.45	DSP													
	7.5-7.95	DSP													
		Relin	nquished by								Receiv		1		
Na Indra Indra			Si	gnature		Date		Name				Signature			
Indra Jv .egend: VG	vorcnan			USG	Undisturbed soil s	18-Jul-16	DSP	Disturbed		ble (small plastic	bag)	+ Durge & Trep	20/7 800		
VP					Disturbed soil san			Test requ		ne (small plastic	bag)	* Purge & Trap # Geotechnique Screen			

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

	Lemko Place					P O Box 880		4722 2700 4722 6161						
	PENRITH NSW				PENR	RITH NSW 2751		fo@geotech	.com.au				Page	3
	TO:	SGS ENVIRON	VENTAL SE	RVICES				Sampling	By:	AP	Job No:	13787/1		
		UNIT 16 33 MADDOX ST ALEXANDRIA M									Project:	Proposed	d Residential Aged Care Facility	
	PH: ATTN:	02 8594 0400 Ms Emily Yin			FAX:	02 8594 0499		Project Ma	anager:	IJ	Location:		rriewood Road, Warriewood	
		Sampling de	etails								Results r	equired	l by:	
	Location	Depth (m)	Soil	Water	EC(1:5)	Aggresivity							Notes	Keep Sample
17	BH8	3.0-3.5	DSP		~	✓							Aggressivity test includes pH	
18		5.0-5.5	DSP		~	~							chloride, sulphate and resistivity	
19		8.9-9.0	DSP		✓	~								
		-												
											-			
									-					
										1				
			Reli	nquished by		1						Receiv		
	Na Indra Jv			S	ignature		Date 18-Jul-16		Name	ra la			Signature	20/7 220
	Legend: WG				USG	Undisturbed soil		DSP	1		e (small plastic	hag)	* Purge & Trap	cop i epin
	WP				DSG	Disturbed soil sa			Test requi		e (smail plastic	uay)	# Geotechnique Screen	
	VVI				030	Disturbed soll sa	inple (glass ja		restrequi	leu			# Geolechnique Screen	

SAMPLE RECEIPT ADVICE

CLIENT DETAILS	S	LABORATORY DETA	ILS	
Contact	Indra Jworchan	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project Order Number Samples	13787-1 23-27 Warriewood Road Warriewood (Not specified) 19	Samples Received Report Due SGS Reference	Wed 20/7/2016 Fri 29/7/2016 SE155019	

_ SUBMISSION DETAILS .

This is to confirm that 19 samples were received on Wednesday 20/7/2016. Results are expected to be ready by Friday 29/7/2016. Please quote SGS reference SE155019 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 19 Soils 22/7/16 @ 11.27am N/A SGS Yes None Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 16.8°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

18 soil samples, which were not marked for analyses on the COC, have been placed on hold.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique

Project 13787-1 23-27 Warriewood Road Warriewood

	OF ANALYSIS					
No.	Sample ID	Conductivity (1:2) in soil	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:2)	Soluble Anions in Soil
001	BH1 0.5-0.95	2	1	1	1	2
002	BH1 2.0-2.45	2	1	1	1	2
003	BH1 3.5-3.95	2	1	1	1	2
004	BH1 5.0-5.45	2	1	1	1	2
005	BH1 6.5-6.95	2	1	1	1	2
006	BH1 8.0-8.45	2	1	1	1	2
007	BH4 1.0-1.45	-	1	1	-	-
008	BH4 3.0-3.45	-	1	1	-	-
009	BH4 5.0-5.45	-	1	1	-	-
010	BH4 6.5-6.95	-	1	1	-	-
011	BH6 0.5-0.95	-	1	1	-	-
012	BH6 1.5-1.95	2	1	1	1	2
013	BH6 3.0-3.45	2	1	1	1	2
014	BH6 4.5-4.95	2	1	1	1	2
015	BH6 6.0-6.45	2	1	1	1	2
016	BH6 7.5-7.95	2	1	1	1	2
017	BH8 3.0-3.5	2	1	1	1	2
018	BH8 5.0-5.5	2	1	1	1	2
019	BH8 8.9-9.0	2	1	1	1	2

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .