

GROUNDED EXPERTISE

WML-C130139-DOG-GEO-RPT-002[0]

Report on Targeted Contamination Assessment

Brookvale Westfield - AVAC Sewer pump station

Warringah Mall, 145 Condamine Street, Brookvale NSW

Prepared for Scentre Design & Construction Pty Ltd

Project 71015.55

10 July 2024

Document History

Details

Project No.	71015.55
Document Title	Report on Targeted Contamination Assessment
Site Address	Warringah Mall, 145 Condamine Street, Brookvale NSW
Report Prepared For	Scentre Design & Construction Pty Ltd
Filename	71015.55.R.001.Rev0

Status and Review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Kurt Plambeck	Paul Gorman	10 July 2024

Distribution of Copies

Status	Issued to
Revision 0	Scentre Design & Construction Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature		Date
Author	KA	10 July 2024
Reviewer	P. Jorman	10 July 2024

Table of Contents

			Page No
1.	Intro	oduction	1
2.	Prop	oosed development	2
3.	Sco	pe of work	2
4.	Site	information	
5.	Envi	ironmental setting	4
6.	Sum	nmary and discussion of previous investigations	5
	6.1	Investigation of chlorinated ethene groundwater plume	
	6.2	Stage 2 Warringah Mall redevelopment works	6
7.	Prel	iminary conceptual site model	7
8.	Sam	pling plan	10
	8.1	Data quality objectives	
	8.2	Soil sampling rationale	10
	8.3	Groundwater sampling rationale	10
	8.4	Acid sulfate soil field and laboratory testing	
9.	Site	assessment criteria	
	9.1	Site contamination	
	9.2	Waste classification	
	9.3	Acid sulfate soils	
10.	Res	ults	
	10.1	Field work results	
	10.2	Laboratory analytical results	
11.	Disc	cussion	
	11.1	Soils	
	11.2	Acid sulfate soils	
	11.3	Preliminary waste classification	
	11.4	Groundwater	
	11.5	Data quality assurance and quality control	
12.	Con	clusions and recommendations	
13.	Refe	erences	
14.	Lim	itations	

APPENDICES

Appendix A:	Drawings
Appendix B:	About This Report
Appendix C:	Data Quality Objectives
Appendix D:	Fieldwork Results
Appendix E:	Site Acceptance Criteria
Appendix F:	Results Summary Tables
Appendix G:	Fieldwork Methodology
Appendix H:	Laboratory Certificates
Appendix I:	Quality Assurance / Quality Control Report

Report on Targeted Contamination Assessment Brookvale Westfield - AVAC Sewer pump station Warringah Mall, 145 Condamine Street, Brookvale NSW

1. Introduction

This report prepared by Douglas Partners Pty Ltd (Douglas) presents the results of a Targeted Contamination Assessment undertaken for the proposed AVAC Sewer Pump Station (the site) at Westfield, Warringah Mall, 145 Condamine St, Brookvale NSW. The investigation was commissioned by email instruction to proceed dated 30 July 2023 from Micha Hinden of Scentre Design & Construction Pty Ltd and was undertaken in accordance with Douglas' proposal 71015.54.P.001.Rev2, dated 7 May 2024.

The objective of the targeted contamination assessment is to assess the suitability of the site for the proposed development, provide a preliminary in situ waste classification and acid sulfate soil assessment.

This report must be read in conjunction with all appendices including the notes provided in Appendix A.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013);
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020); and
- Waste Classification Guidelines, Part 1: Classifying Waste. NSW Environment Protection Authority (NSW EPA, 2014a).

The following key guidelines were consulted in the preparation of the acid sulfate soil assessment:

- Acid Sulfate Soil Management Advisory Committee (ASSMAC), Acid Sulfate Soil Manual (Stone, Ahern, & Blunden, 1998);
- QLD Department of Resources, QLD Department of Environment and Science, Acid Sulfate Soil Technical Manual: Soil Management Guidelines, Version 5 (Dear, et al., 2023);
- Department of Agriculture and Water Resources (DAWR), National Acid Sulfate Soils Guidance: National acid sulfate soils identification and laboratory methods manual (Sullivan, et al, 2018a); and
- DAWR, National Acid Sulfate Soils guidance: National acid sulfate soils sampling and identification methods manual (Sullivan, et al, 2018b).

2. Proposed development

It is proposed to construct a new vacuum pump station to replace the existing temporary system. The design of the new system is still in development but is understood include an above ground sewer pump station and an underground holding tank with associated service connections. It is understood that the connection between the new system and existing sewer may involve trenches or possibly an under bore extending from the proposed tank location. The inground tank is understood to be about 2.4 m by 3.0 m in plan dimensions and up to 6 m depth. Based on this, the maximum excavation depth for the development expected to be about 6 m.

The proposed development is located in the vicinity of a number of large stormwater culverts which cross the greater Warringah Mall site in a roughly northwest to southeast orientation. The provided drawings (SDC-42.0001, RevA and SDC-42.1001, RevA, Dated 06/06/24) and high-Level mark-up (CAR-060111, Rev6, dated22/11/2016) are included in Appendix E.

Figure 1 below shows an extract from the high-level mark-up provided.

Figure 1: Extract of Sewer Pump Configuration from high level mark-up provided by Scentre Group

3. Scope of work

The investigation was undertaken concurrently with a geotechnical investigation, the results of which are report in *Report on Geotechnical Investigation, Westfield, Warringah Mall - AVAC Sewer Pump Station, Warringah Mall,* 145 Condamine St, Brookvale NSW (Douglas, 2024).

The scope of work for the contamination assessment comprised:

- Review of the relevant previous contamination assessment report/s;
- Collection of additional soil samples from the geotechnical boreholes (BH1 and BH2);
- Non-Destructive Digging (NDD) was required at both locations using a vacuum truck to a depth of 1.5 m due to the presence of services and therefore the recovery of fill samples was significantly limited;
- Screening of soil samples for volatile contaminants using a photo-ionisation detection (PID) instrument;
- Installation of a groundwater monitoring well at BH2;
- Development and sampling of the monitoring well at BH2 and previously installed groundwater monitoring well BH510;
- Despatch of selected soil and groundwater samples to a NATA accredited laboratory for analysis of:
 - o TRH total petroleum hydrocarbon;
 - o BTEX benzene, toluene, ethylbenzene, xylene;
 - PAH polycyclic aromatic hydrocarbons;
 - o PCB polychlorinated biphenyls;
 - o OCP organochlorine pesticides;
 - o OPP organophosphorus pesticides;
 - o VOC volatile organic compounds;
 - o PFAS per- and poly-fluoroalkyl substances;
 - o Asbestos (AFFA, soil only);
 - o Iron (total and dissolved); and
 - o Total dissolved and suspended solids (TDS and TSS, groundwater only).
- Analysis of replicate samples, rinsate samples (groundwater), trip spikes and trip blanks for QA / QC purposes;
- TCLP (PFAS) for waste classification purposes;
- Screening of samples for acid sulfate soil assessment followed by analysis of the chromium reducible suite; and
- Provision of this report.

4. Site information

Site address	Part of Warringah Mall, 145 Condamine Street, Brookvale NSW
Legal description	Part of Lot 103 Deposited Plan 1247294
Area	Approximately 200 m ²
Zoning	Zone E2 Commercial Centre

Local Council Area	Northern Beaches Council
Site Description	At the time of the investigation, the site was generally occupied by on-grade, asphaltic concrete (AC) carpark within the Warringah Mall Shopping Centre, adjacent to the multi-storey shopping mall buildings and associated multi-level parking structures to the west. The proposed sewer pump station and tank will underlie the existing AC carpark and concrete pedestrian traffic island.

The approximate site boundary is shown on Figure 2 and on Drawing 1, Appendix A.

Figure 2: Site location

5. Environmental setting

Site topography	The ground surface level is at approximately RL 9 m relative to the Australian Height Datum (AHD).
Soil landscape	The Sydney 1:100,000 Soil Landscape Sheet indicates that the site is underlain by disturbed terrain. Disturbed terrain can comprise fill soils of unknown origin and consistency.
Geology	Reference to the Sydney 1:100 000 Geology Series Sheet indicates that the subject site is underlain by stream alluvium and estuarine deposits comprising silty to peaty quartz sand, silt and clay with ferruginous and humic cementation in places and

	common shell layers. The alluvial deposits are underlain by Hawkesbury Sandstone.
Acid sulfate soils	Reference to the Acid Sulfate Soil Risk mapping (data supplied by NSW Department of Environment and Climate Change based on published 1:25,000 Acid Sulfate Soil Risk Mapping, 1994-1998) indicates that the subject site is underlain by soil with "low probability of occurrence" of acid sulphate soil (ASS).
	Reference to the Northern Beaches Council "Warringah Acid Sulfate Soils Map WLEP 2000" indicates the site in located in an area of "Class 4" Acid Sulfate soil risk, as shown in Figure 4 below. Class 4 indicates Acid sulfate soils are likely to be found beyond 2 metres below the natural ground surface.
Groundwater and Surface water	Brookvale Creek crosses through the Warringah Mall property (via a culvert), and surfaces in the Warringah Golf Course 50 m east of the property.
	Surface water and groundwater at the site is expected to discharge to Brookvale Creek and then Manly Lagoon.
	Groundwater levels have previously been measured at the property, indicating that the groundwater surface is near-level to gently sloping towards Brookvale Creek with groundwater levels varying from RL 5 m AHD to 12 m AHD.
	Several registered groundwater bores are located in the region. Of note are three "domestic" bores located approximately 350 m east and south-east of the site and one domestic well 350 m south-west of the site. The purpose of these wells is unknown but may include irrigation or drinking purposes.

6. Summary and discussion of previous investigations

6.1 Investigation of chlorinated ethene groundwater plume

Douglas has completed a number of previous investigations at the Warringah Mall Property (the property) which includes the site. The property was used primarily for market gardening and agricultural purposes and remained vacant up until the early 1960s when the shopping centre and some commercial / industrial properties were constructed. Extensions to the shopping centre and carpark have occurred over the past forty to fifty years. A dry cleaner (Littles Drycleaning) is located approximately 400 m west of the site at the western boundary of the Warringah Mall property.

Previous investigations have identified a chlorinated solvent groundwater plume below the Warringah Mall property. The plume has previously been identified beneath Littles Drycleaner and the shopping centre as well as the Ships Wheel, Starfish and Warringah Mall ChildCare Centre car parks. The concentrations of perchloroethene (PCE) and the daughter products trichloroethene (TCE), dichloroethene (DCE) and vinyl chloride (VC) within the plume vary laterally and vertically.

Douglas undertook routine monitoring of the groundwater plume at the property between 2011 and 2014. The final round of groundwater monitoring under this programme was reported in Douglas *Report on Annual Groundwater Monitoring of July 2013, Warringah Mall, Old Pittwater Road, Brookvale*, Project 71015.29, dated October 2014 (Douglas, 2014).

The groundwater investigation included the installation of a number of groundwater wells throughout the Warringah Mall property to track the groundwater plume along its eastern trajectory from Littles Drycleaner approximately 400 m west of the current site (where PCE has been detected in groundwater a concentration of up to 6100 μ g/L).

Approximately 150 m east of Little Drycleaner along the glide path of the plume the majority of the chlorinated ethene mass was in the form of Cis DCE with a concentration of up to 1500 μ g/L (the result of natural attenuation) with little or no PCE present at that distance.

Sentry wells along the eastern boundary of the property were installed as part of the monitoring programme. The purpose of the sentry wells was to assess the potential advancement of the chlorinated ethene plume and whether the contaminated groundwater was close to migrating off site. Historically the leading edge of the chlorinated solvent plume was observed approximately 80 m west of the current site at monitoring well 512 (where VC was typically detected at a range of 5 to 48 μ g/L and cis DCE at 3 to 14 μ g/L).

The monitoring concluded that the plume was (and would continue) to attenuate naturally and therefore no active remediation of the groundwater plume was considered to be necessary at the time.

The sentry wells included previous groundwater well 510 (as shown on Drawing 1, Appendix B) located approximately 10 m south of the current site. PCE, TCE, DCE and VC were not detected at this location during the 3 year monitoring period. Therefore, there was no evidence to suggest that the chlorinated ethene plume had migrated to this location (and to the current site). It is noted however that further migration of the plume along its eastern trajectory towards the site may have occurred since the completion of the monitoring programme and / or proposed (or previous) dewatering activities could have drawn the plume further east.

Therefore, as part of this targeted investigation groundwater samples were collected from the groundwater well installed as part of this investigation (at BH2) and from the previous installed groundwater well at 510 to determine if there was evidence that the chlorinated ethene plume had reached the site.

6.2 Stage 2 Warringah Mall redevelopment works

In addition to the investigations related to the groundwater plume, Douglas has undertaken a contamination investigation for the Stage 2 Warringah Mall redevelopment works reported in *Phase 2 Contamination Assessment, Proposed Stage 2 Warringah Mall Redevelopment, Corner Condamine Street & Old Pittwater Road, Brookvale* (Douglas, 2018).

The Stage 2 redevelopment area covered an irregularly shaped area of approximately 2.2 ha at Warringah Mall and includes: the Red car park (previously the Sand Castle) and Purple car park (previously the Crab car park); and southern portions of Dale Street and Green Street as well as adjacent vehicle access car parks and a loading dock, works which included two test locations within the current site (test locations 757 and 755, refer to Drawing 1, Appendix B).

The relevant borehole logs from Douglas (2018) are presented in Appendix D. The relevant results of contamination testing from Douglas (2018) is presented in Tables F1 and F2 (Appendix F).

The conditions encountered in test locations 757 and 755 was described as:

Asphalt: to depths of 0.05 to 0.07 m bgl;

- Fill: grey sand roadbase underlain by grey and brown sand with sandstone gravel to a depth of 0.7 m to 1.7 m bgl; underlain by
- Sand: brown and grey sand to a depth of 3.0 m (borehole completion).

Groundwater was noted in borehole 755 at a depth of 2.7 m during augering.

Soil samples were collected and analysed for heavy metals, TRH, BTEX, PAH, OCP, PCB and asbestos ID. The results of the testing are discussed in Sections 11.1 and 11.3.

7. Preliminary conceptual site model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

Based on the previous reports, the following potential sources of contamination and associated contaminants of potential concern (CoPC) have been identified and summarised in Table 1.

Table 1: Summary of potential sources

Potential sources and associated CoPC		
On-site sources		
S1: Fill: Associated with levelling, demolition of former buildings on the site and potential burying of waste as evidenced in the site's environment protection licences.		
CoPC include metals, PFAS, TRH, BTEX, PAH, PCB, OCP, phenols and asbestos.		
S2: Former buildings.		
CoPC include asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB.		
Note: previous investigations did not identify a significant risk from the previous agricultural land use.		
Therefore this is not considered to be a potential contaminant source with respect to the current site.		
Off-site sources (broader Brookvale Mall property and / or surrounding land use)		
S3: Commercial / Industrial land use at the Brookvale Mall property and surrounding area		
CoPC include metals, VOC, TRH, BTEX, PAH, PFAS		
S4: Dry cleaner (up-gradient)		
CoPC include drycleaning solvents and its daughter products (e.g. PCE, TCE, DCE and VC)		

The following potential human and environmental receptors, along with relevant potential pathways, have been identified and summarised in Table 2.

Table 2: Summary of potential receptors and pathways

Potential human receptors
HRI: Current users [commercial (retail)]
HR2: Construction and maintenance workers
HR3: End users [commercial (retail)]
HR4: Adjacent site users [commercial industrial and recreational – Warringah Golf Course]
Potential environmental receptors
ER1: Surface water [Brookvale Creek and then Manly Lagoon]
ER2: Groundwater
ER3: Terrestrial ecosystems
Potential pathways to human receptors
HP1: Ingestion and dermal contact
HP2: Inhalation of dust and/or vapours
Potential pathways to environmental receptors
EPI: Surface water run-off
EP2: Leaching of contaminants and vertical migration into groundwater
EP3: Lateral migration of groundwater providing base flow to water bodies
EP4: Inhalation, ingestion and absorption

Summary of potentially complete exposure pathways

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S4) and receptors are provided in below Table 3.

Table 3: Summary of potentially complete exposure pathways

Source and CoPC	Exposure pathway	Receptor	Risk management action
 S1: Fill: metals, PFAS, TRH, BTEX, PAH, PCB, OCP, phenols and asbestos S2: Former buildings: asbestos, synthetic 	HP1: Ingestion and dermal contact HP2: Inhalation of dust and/or vapours	 HR1: Current users [commercial (retail)] HR2: Construction and maintenance workers HR3: End users [commercial (retail)] 	An intrusive investigation is recommended to assess possible contamination from the

Source and CoPC	Exposure pathway	Receptor	Risk management action
mineral fibres (SMF), lead (in paint) and PCB	HP2: Inhalation of dust and/or vapours	HR4: Adjacent site users commercial / industrial and recreational – Warringah Golf Course]	identified sources, including testing of the soils and groundwater.
	EP1: Surface water run-off		groundwater.
	EP3: Lateral migration of groundwater providing base flow to water bodies	ER1: Surface water (Brookvale Creek)	Due to the use of NDD supplementary
	EP2: Leaching of contaminants and vertical migration into groundwater	ER2: Groundwater	testing of fill soils is recommended to provide a final waste
	EP4: Inhalation, ingestion and absorption	ER3: Terrestrial ecosystems	classification
S3: Commercial / Industrial land use at the	HP1: Ingestion and dermal contact	HR2: Construction and maintenance workers	
Brookvale Mall property and surrounding area CoPC include metals, VOC, TRH, BTEX, PAH,		HR4: Adjacent site users commercial / industrial and recreational – Warringah Golf Course]	
PFAS	HP2: Inhalation of dust and/or vapours	HR1: Current users [commercial (retail)]	
S4: Dry cleaner (up- gradient)		HR2: Construction and maintenance workers	
		HR3: End users [commercial (retail)]	
		HR4: Adjacent site users [commercial / industrial and recreational (Warringah Golf Course]	
	EP3: Lateral migration of groundwater providing base flow to water bodies	HR4: Adjacent site users [commercial / industrial and recreational (Warringah Golf Course]	
		ER1: Surface water ER3: Terrestrial ecosystems	

8. Sampling plan

8.1 Data quality objectives

The investigation was devised with reference to the seven-step data quality objectives (DQO) process which is provided in Appendix B Schedule B2, NEPC (2013). The data quality objective process is outlined in Appendix C.

8.2 Soil sampling rationale

Based on the CSM and DQO the following sampling rationale was adopted.

A judgemental sampling strategy to determine borehole locations, to supplement the previous locations discussed in Section 6, was adopted to target the proposed location of the AVAC system with consideration to site access restrictions, underground service risks, and traffic management. Borehole locations are shown on Drawing 1, in Appendix B. Fieldwork comprised:

- Service scanning to clear the borehole locations of buried services, undertaken by personnel engaged by Scentre Group;
- Non-Destructive Digging (NDD) at two boreholes (BH1 and BH2), using a vacuum truck together to depth of 1.5 m below existing ground surface;
- The boreholes were then extended to weathered rock at depths between 5.35 m (BH1) to 6 m (BH2), using a bobcat mounted drilling rig and using solid flight augers;
- BH1 and BH2 were then extended to depths between 9.0 m to 9.6 m below ground level respectively using NMLC diamond coring equipment to recover continuous rock core samples; and
- Installation of one groundwater monitoring well in a second location drilled next to BH2.

Limited sample recovery was possible in the top 1.5 m due to the use of NDD methods. Consequently, only one sample of fill could be recovered from BH2 at a depth of 0.35 to 0.5 m. Soil samples were collected between 1.5 m bgl and the top of weathered bedrock at regular intervals.

The general sampling methods are described in the field work methodology, included in Appendix G.

Soil samples were analysed for the identified contaminants of concern (VOC, metals, PAH, TRH, BTEX, OCP, OPP, PCB, phenols, asbestos and PFAS). It is noted that the necessary used of NDD limited the recovery of fill samples and therefore sample selection was informed by the samples that could be recovered which included one fill sample and underlying natural soils, including samples at the observed water table (where the risk of VOC, chlorinated ethenes associated with the groundwater plume was greatest). Due to the limited recovery of fill samples, the analysis of the fill was supplemented with previous data from (fill sampling) from Douglas (2018).

8.3 **Groundwater sampling rationale**

In order to assess the current groundwater contamination status at the site and evaluate whether historical / current / off-site land uses have impacted on groundwater, sampling from two monitoring wells (BH2 and 510) was undertaken.

The locations were selected based on the following rationale:

- BH2 is located within the proposed AVAC system footprint to determine groundwater levels within the proposed works area and assess potential contaminants in groundwater with respect to potential dewatering activities; and
- Previous groundwater well 510 which is located 10 m south of the current site. BH510 was installed to act as a sentry well in relation to the chlorinated ethene plume identified at the site. Sampling of this location was undertaken to assess if there was evidence that the groundwater plume had migrated with the potential to impact upon the proposed AVAC system.

The general sampling methods are described in the field work methodology, included in Appendix G. It is noted that on the field sheets and laboratory certificates BH2 is incorrectly identified as BH1, however the groundwater well and subsequent samples were installed / collected at BH2.

8.4 Acid sulfate soil field and laboratory testing

8.4.1 Rationale

Sullivan, et al. (2018b) recommends for the anticipated disturbance of ASS, a minimum of two boreholes to be drilled within the proposed disturbance area to a depth 1 m beyond proposed disturbance depth. Accordingly, the sampling rationale that was adopted is two boreholes with sampling undertaken to the top of weathered bedrock within the area of the proposed disturbance.

8.4.2 Field work methodology

Field work comprised:

- Collection of soil samples for ASS screening of at least one sample for every change in strata observed; and
- Placement of samples immediately into zip-lock plastic bags after minimising air content and potential for moisture loss and immediately place on ice in a cooled, insulated and sealed container for transport to the laboratory.

8.4.3 Field and laboratory testing

Based on the field screen results, S_{Cr} suite tests was undertaken on representative (including 'worst case' – low pH_F/pH_{Fox} or high pH drop between pH_F and pH_{Fox}) samples. Laboratory testing was undertaken by a NATA accredited laboratory. The number of samples tested, as recommended by Sullivan, et al (2018b), is summarised in the table below.

Test method	Number of tests	
Field screen (test): pH_F and pH_{Fox}	9	
Chromium reducible sulfur (S _{cr}) method)	5	

Table 4: Summary of testing frequency

9. Site assessment criteria

9.1 Site contamination

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 7) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic commercial / industrial land use scenario. The derivation of the SAC is included in Appendix E and the adopted SAC are listed on the summary analytical results tables in Appendix F.

9.2 Waste classification

The waste classification was prepared with reference to:

- NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (NSW EPA, 2014a).
- NSW EPA Waste Classification Guidelines, Part 2: Immobilisation of Waste (NSW EPA, 2014).
- NSW EPA Waste Classification Guidelines, Part 4: Acid Sulfate Soils (NSW EPA, 2014b).
- NSW EPA Addendum to the Waste Classification Guidelines (2014) Part 1: Classifying Waste (NSW EPA, 2016).

9.3 Acid sulfate soils

The ASS pH_F and pH_{Fox} screening test results were assessed for the possible presence of ASS conditions. It should be noted that ASS screening tests are a qualitative screening test which provides a preliminary indication of the presence of ASS conditions. The results of which were used to guide the selection of samples for laboratory analysis.

Acid base accounting (ABA) via the S_{Cr} test, is a quantitative measurement and takes precedence over the screening test results when evaluating the presence or absence of ASS. The S_{Cr} results can also be used to correlate with the pH_F and pH_{Fox} screening test results.

The relevant assessment criteria from Sullivan, et al. (2018a), are summarised in Table 5 below (and the summary results table in Appendix F, Table F3). The anticipated disturbance of ASS is less than 1000 tonnes and this volume, along with the anticipated soil type (sand), was considered in the derivation of the action criterion.

Table 5: Assessment criteria

Assessment criteria and associated test	Units	Threshold
Screening test assessment criteria	pH⊧	<41
pH_F and pH_{Fox}	рН _{FOX}	<3 ²
	∆pH⊧	>]
Action criterion: S_{Sr} net acidity / sulphur trail (%)<1000 tonnes	$\% S_{Oxidisable}$	≥0.03
Sands to loamy sands		

Notes: pH_F = non-oxidised pH

pH_{FOX} = oxidised pH

 $\Delta pH_F = pH_F minus pH_{FOX}$

¹ Indicative value only for actual acid sulfate soil (AASS)

² Indicative value only for potential acid sulfate soil (PASS)

10. Results

10.1 Field work results

The borehole logs for this assessment are included in Appendix D. The logs recorded the following general sub-surface profile:

Pavement / Fill	Generally comprised 60 mm of asphaltic concrete (AC) or, 150 mm of concrete pavement over 200 mm of AC pavement overlying fill comprising cemented road base and silty clay with trace sandstone and ironstone gravels to depths of up to 1.4 m.
Alluvial Soil:	Very loose and loose organic clayey and peaty sand, with occasional quartz gravel, encountered to depth of between 5.4 m and 4.0 m.
	Very soft clay with peat and sand encountered below the alluvial sands in BH2 only at 4.0 m to a depth of 5.2 m.
Extremely Weathered Sandstone:	Very dense fine to coarse grained clayey sand and possibly very low strength rock encountered below the alluvial soils to depth of about 6 m.
Sandstone:	Fine to coarse grained, slightly to moderately weathered Hawkesbury Sandstone encountered at depths between 5.9 m to 6.0 m and extending to the maximum investigation depth of 9.6 m. Initially very low to low strength, improving to medium strength from about 7.9 m to 8.2 m.

No visual or olfactory evidence (e.g., staining, odours, free phase product) was observed during the field investigations to suggest the presence of contamination within the soils or groundwater at the site.

The PID screening recorded values of less than 5 ppm suggesting the absence, or very low concentrations, of VOC in the samples tested.

Groundwater seepage was noted at about 2.6 m in BH2 completion of augering. The necessary use of water as a drilling fluid precluded the observation of groundwater during coring.

After installation, the groundwater monitoring well installed within BH2 and the previous investigation borehole BH510 were purged of drilling fluid and water using a submersible pump and digital data loggers were installed to monitor recharge of the groundwater. A summary of the well construction details and groundwater measurements taken following installation of the groundwater wells are presented in Table 6 below.

BH Ref	Ground surface level (m AHD)	Filter zone depth (m)	Depth of water (m bgl)	Groundwater level (m AHD)	Filter zone material
BH2	8.9	2.2 – 5.5	2.52	6.38	Alluvial soil
BH510	8.6	3.0 - 6.0	3.86	4.74	Alluvial soil

Table 6: Well construction details and groundwater levels

Notes: *Surveyed by dGPS AHD – Australian Height Datum SWL – standing water level bgl – below ground level Groundwater levels measured on 5 June 2024

Based on the groundwater level measurements and previous Douglas investigations, groundwater is interpreted to be flowing to the west towards Brookvale Creek and Manly Lagoon. Brookvale Creek runs below the site (in a culvert) and surfaces 50 m south-east of Warringah Mall in Warringah Golf Course. The creek flows into Manly Lagoon.

The stabilised groundwater field parameters recorded prior to sampling are shown on the groundwater field sheets included in Appendix D and summarised below.

Physical parameters were measured whilst sampling (where possible) and are summarised in Table 7.

Well / Sample ID	Temp. (°C)	DO (ppm)	EC (µS/cm)	рН	Redox (mV)	Turbidity (ntu)
BH2	21.7	0	1157	6.15	-110.7	870
510	20.5	0	511	5.75	-187.7	21

Table 7: Summary of field parameters (groundwater 5 June 2024)

The dissolved oxygen levels indicated generally anaerobic conditions. The pH was slightly acidic. The electrical conductivity values are typical of fresh water. Redox potential (Eh) indicates slightly reducing conditions.

No light non-aqueous phase liquid (LNAPL) was observed whilst sampling and no LNPAL or dense phase non-aqueous phase liquid (LNAPL) was detected by the interface probe.

10.2 Laboratory analytical results

The results of laboratory analysis are summarised in the following tables in Appendix F:

- Table F1: Summary of results of soil analysis;
- Table F2: Waste Classification Assessment;
- Table F3: Summary of Acid Sulfate Soil Results; and
- Table F4: Summary of Groundwater Results.

The laboratory certificates of analysis together with the chain of custody and sample receipt information are provided in Appendix H.

11. Discussion

11.1 **Soils**

The analytical results for all contaminants tested / contaminant(s) from the current investigation and relevant test locations of Douglas (2018), locations 755 and 757 were all within the adopted site assessment criteria.

It is noted that the current investigation included limited testing of the fill (due to the use of NDD methods). However, Douglas (2018) did include analysis of two samples of fill from the site, which bolsters the data set and therefore it is considered that risk of significant soil contamination within the site is low. That notwithstanding Douglas recommends further sampling and analysis of the fill for waste classification purposes upon excavation.

11.2 Acid sulfate soils

Based on the testing and the lithology observed at the site, the following is noted for the field screening results:

- pH_F was within the threshold criterion (<4 pH units, indicative of actual ASS) in all samples, ranging from 6.6 to 7.6 pH units;
- pH_{FOX} was below the threshold criterion (<3.0 pH units, indicative of potential ASS) in eight of the nine samples tested with a range of 2.1 to 3.0 pH units; and
- All samples exceeded the threshold criterion for the drop in pH_F (>1 pH units), ranging from 3.6 to 5.0 pH units.

The S_{cr} test results indicated that four of the five samples exceeded the action criterion for net acidity of >0.03% S. The exceedances ranged from 0.041% S to 0.084% S.

Taking into consideration the ASS results and cross-referencing of borehole logs, the S_{Cr} results suggest that ASS is present at the site at depths of between 1.4 m bgl and 6.0 m bgl (the top of bedrock) and is likely to be associated with the alluvial deposits across the site. It is noted that due to the use of NDD which precluded the collection of samples from the fill for acid sulfate soil testing it is recommended that a precautionary approach be adopted and the fill be treated as potential ASS and managed accordingly. If the fill can be segregated from the underlying natural soils it may be possible to undertake additional confirmatory testing on the fill upon excavation to confirm the presence or absence of potential ASS.

Given that the proposed development requires the excavation of soils, ASS will be encountered (excavated) during the proposed works.

11.3 Preliminary waste classification

The following Table 9 presents the results of the six-step procedure outlined in NSW EPA (2014) for determining the type of waste and the waste classification. This process applies to the fill at the site, noting however the limited sampling to date.

No.	ltem	Comment	Rationale
1.	Is the waste special waste?	No	No asbestos-containing materials (ACM), clinical or related waste, or waste tyres were observed in the boreholes. Asbestos was not detected by the analytical laboratory.
2.	Is the waste liquid waste?	No	The fill comprised a soil matrix.
3.	Is the waste "pre-classified"?	No	The fill is not pre-classified with reference to NSW EPA (2014).
4.	Does the waste possess hazardous waste characteristics?	No	The fill was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.
5.	Determining a wastes classification using chemical assessment.	Conducted	Refer to attached Table F3, Appendix F
6.	Is the waste putrescible or non- putrescible? ¹	Putrescible / Non- putrescible	The fill does not contain material considered to be putrescible.

Table 9: Six step classification procedure

Notes:

1. Wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forestry and crop materials, and natural fibrous organic and vegetative materials (NSW EPA, 2014).

As shown in Table F2, Appendix F, all contaminant concentrations for the analysed fill samples were below the contaminant thresholds (CTI) for general solid waste.

Therefore, the fill at the site is provisionally classified as General Solid Waste (non-putrescible). Due to the limited sample recovery of the fill during the current investigation due to the use of NDD methods further *ex situ* assessment is required to confirm the classification prior to disposal.

The following Table 10 presents the results of the assessment of natural soil at the site with reference to the virgin excavated natural material (VENM) definition in the POEO Act and the <u>EPA</u> <u>website</u>. The below classification does not apply to the bedrock underlying the site which has not been assessed as part of this investigation.

No.	ltem	Comment	Rationale
1.	ls the material natural?	Yes	Natural soil logged in the test bores (refer to Section 10.1). These materials underlie the fill at the site.
2.	Are manufactured chemicals or process residues present?	No	There were no visual or olfactory indicators of chemical contamination of the materials in the test bores. Concentrations of contaminants were considered to be typical of background concentrations (Table A1).
3.	Are sulfidic ores or soils present?	Yes	Refer to Section 11.2
4.	Are there current or previous land uses that have (or may have) contaminated the materials?	No	Previous land uses may have impacted on surface soils overlying the materials. Low chemical concentrations indicate no likely impact on the natural materials.

Table 10: VENM classification procedure

As shown in the attached Table F2, all contaminant concentrations for the analysed natural soil samples were generally within the typical background concentrations. However, PCB was detected in sample BH02/1.4-1.6 at a concentration of 0.2 mg/kg.

Furthermore, potential acid sulfate soil was detected in the natural alluvial soils. Therefore, the alluvial soils from a depth of 1.5 m bgl to a depth of up to 6.0 m bgl cannot be classified as VENM. The alluvial soil will require treatment (liming) and validation in accordance with an acid sulfate soil management plan (ASSMP) prior to disposal. Upon successful treatment of acid sulfate soils it is likely that the natural soil would be classifiable as general solid waste.

11.3.1 Conditions

This preliminary classification is not to be used for waste disposal. Further work is required before a formal classification suitable for waste disposal can be provided. The waste classification is to be confirmed by a qualified environmental consultant including visual and analytical assessments.

If any fill / soil / rock is encountered which is different to that sampled and tested or exhibit signs of potential contamination (e.g., anthropogenic inclusions, staining or odours) this waste classification does not apply and the advice of a qualified environmental consultant should be sought.

Both the receiving site and the site disposing of the fill / soil / rock should satisfy the requirements of the licence of the receiving site before disposal of the fill / soil / rock is undertaken. Note that appropriate prior arrangement with the receiving site/relevant authorities should be obtained prior to the disposal of any fill / soil / rock off site. The receiving site should check to ensure that the fill / soil / rock received matches the description provided in this report and contains no cross contamination. The handling, transport and disposal of the waste should be conducted in accordance with regulatory and statutory requirements.

11.4 Groundwater

As shown in Table F4, Appendix F, all analyte concentration were below the SAC, with the exception of:

- Iron in sample BH2, total (24,000 μ g/L) and dissolved (16,000 μ g/L) exceeded the ADWG health and irrigation screening levels. ANZG (2018) states that there is insufficient data at this stage to derive a reliable trigger value for iron but recommends that the current Canadian guideline level (of 300 μ g/L) can used as an interim indicative working level. Iron was also in excess of the working level;
- PFOS (0.008 $\mu g/L),$ in sample BH2 exceeded the HEPA 99% protection level (0.000238 $\mu g/L);$ and
- A number of analytes (PAHs, OPPs and VOCs) had laboratory detection limits that exceeded some of the adopted screening levels however these are not considered to be significant.

Chlorinated ethenes (PCE, TCE, DCE and VC) were below the laboratory detection limit. Therefore, is it considered that there is no evidence that the chlorinated ethene plume has migrated to the proposed site of the AVAC system.

It is noted that dewatering has the potential to draw the chlorinated ethene plume towards the site of the AVAC system. Therefore, it is recommended that routine groundwater monitoring be undertaken during the dewatering process (at BH2 and 510, or new wells if these wells cannot be retained during dewatering) to monitoring potential impacts.

The concentrations of iron, PFOS and TSS do not warrant the need for remediation of groundwater, however, prior to disposal of groundwater, treatment will be required, particularly if groundwater is disposed to stormwater.

Typical treatment options may include the use of a settling tank or filtration tank (including activated carbon for PFAS) and the application of a flocculating agent.

The analytical results suggest that groundwater beneath the site has not been significantly impacted by organic contaminants TRH, PAH, OCP, OPP, PCB, phenol or BTEX.

11.5 **Data quality assurance and quality control**

The data quality assurance and quality control (QA / QC) results are included in Appendix I. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

12. Conclusions and recommendations

Based on the results of the targeted contamination assessment it is considered that the site is suitable for the proposed AVAC system subject to implementation of the following recommendations:

- Further *ex situ* waste classification of fill excavated during the works to confirm the classification prior to disposal;
- Preparation of an unexpected finds protocol be prepared to address potential unexpected contamination finds during redevelopment such as asbestos;
- Preparation and implementation of an acid sulfate soil management plan (ASSMP). The ASSMP will outline the necessary protocols to treat (e.g., lime-dose) and manage the ASS upon excavation to mitigate the acid generating potential of the soils:
 - Post-treatment verification testing requirements will be outlined in the ASSMP and successfully treated soils can typically be re-used on site. Any off-site disposal of treated ASS is subject to the requirements of NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (NSW EPA, 2014a) and NSW EPA Waste Classification Guidelines, Part 4: Acid Sulfate Soils (NSW EPA, 2014b).
- Appropriate treatment of groundwater extracted during dewatering to iron and PFAS prior to disposal. It is recommended that a dewatering management plan be prepared (per the recommendations of the geotechnical report (Douglas 2024) that outlines an appropriate monitoring plan to monitor the potential draw the chlorinated ethene plume towards the site. The dewatering plan should also consider the requirements of acid sulfate soil management (minimising the zone of influence to minimise the potential for acid sulfate soil generation) outside the excavation area).

13. References

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene*. Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

Dear, S. E., Williams, K. M., McElnea, A. E., Ahern, C. R., Dobos, S. K., Moore, N. G., & O'Brien, L. E. (2023). *Queensland acid sulfate soil technical manual : soil management guidelines version 5.* Department of Resources and the Department of Environment and Science.

Douglas. (2014). Report on Annual Groundwater Montoring of July 2014, Warringah Mall , Old Pittwater Road, Brookvale. Project 71015.29 October 2014.

Douglas. (2018). Phase 2 Contamination Assessment, Proposed Stage 2 Warringah Mall Redevelopment, Corner Condamine Street & Old Pittwater Road, Brookvale. Project 71015.18.Rev1 dated 16 August 2018.

Douglas. (2024). Report on Geotechnical Investigation, Westfield, Warringah Mall - AVAC Sewer Pump Station, Warringah Mall, 145 Condamine St, Brookvale NSW. Report 71015.54.R.001 dated 1 July 2024.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (2014). Waste Classification Guidelines, Part 2: Immobilisation of Waste. NSW Environment Protection Authority.

NSW EPA. (2014a). Waste Classification Guidelines, Part 1: Classifying Waste. NSW Environment Protection Authority.

NSW EPA. (2014b). *Waste Classification Guidelines, Part 4: Acid Sulfate Soils*. NSW Environment Protection Authority.

NSW EPA. (2016). Addendum to the Waste Classification Guidelines (2014) - Part 1: Classifying Waste. NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land*. Contaminated Land Guidelines: NSW Environment Protection Authority.

NSW EPA. (2022). Contaminated Sites, Sampling Design Guidelines. NSW Environment Protection Authority.

Phase 2 Contamination Assessment, Proposed Stage 2 Warringah Mall Redevelopment, Corner Condamine Street & Old Pittwater Road, Brookvale . (2018). Project 71015.18.Rev1 dated 16 August 2018.

Stone, Y., Ahern, C. R., & Blunden, B. (1998). *Acid Sulfate Soil Manual*. Acid Sulfate Soil Management Committee (ASSMAC).

Sullivan, et al. (2018a). National Acid Sulfate Soils Guidance: National Acid Sulfate Soils Identification and Laboratory Methods Manual. Canberra ACT CC BY 4.0: Sullivan, L; Ward, N; Toppler, N; Lancaster, G, Department of Agriculture and Water Resources.

Sullivan, et al. (2018b). *National Acid Sulfate Soils Guidance: National Acid Sulfate Soils Sampling and Identification Methods Manual.* Canberra ACT CC BY 4.0: Sullivan, L; Ward, N; Toppler, N; Lancaster, G, Department of Agriculture and Water Resources.

14. Limitations

Douglas Partners Pty Ltd (Douglas) has prepared this report for this project at Warringah Mall, 145 Condamine St, Brookvale NSW in accordance with Douglas' proposal 71015.54.P.001.Rev2, dated 7 May 2024 and acceptance received from Micha Hinden dated 30 July 2023. The work was carried out under contract No.: 14635, dated 15 May 2024). This report is provided for the exclusive use of Scentre Design & Construction Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of Douglas, does so entirely at its own risk and without recourse to Douglas for any loss or damage. In preparing this report Douglas has necessarily relied upon information provided by the client and / or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after Douglas' field testing has been completed.

Douglas' advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by Douglas in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and / or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the (geotechnical / environmental / groundwater) components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

Asbestos has not been detected by observation or by laboratory analysis, either on the surface of the site, or in fill materials at the test locations sampled and analysed. The use of NDD methods limited the sampling and observation of the fill during. Fill was observed to a depth of up to 1.4 and asbestos has previously been detected in other parts of the Warringah Mall the risk of asbestos in previous below-ground fill cannot be ruled out.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection/sampling [where appropriate], or to vegetation preventing visual inspection and reasonable access [where appropriate]. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. Douglas cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by Douglas. This is because this report has been written as advice and opinion rather than instructions for construction.

Appendix A

Drawings

Appendix B

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at

the time of construction as are indicated in the report; and

• The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

continued next page

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

intentionally blank

Appendix C

Data Quality Objectives

1. Data quality objectives

The DSI has been devised broadly in accordance with the seven-step data quality objectives (DQO) process which is provided in Appendix B, Schedule B2 of NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

Table 1: Data quality objectives

Step	Summary
	The objective of the investigation is to assess the contamination status of the site with respect to the proposed land use, provide an <i>in situ</i> waste classification, and assess acid sulphate soil conditions. The site shall remain a commercial shopping centre. The proposed development will comprise the construction of a new vacuum pump station.
1: State the problem	A preliminary conceptual site model (CSM) has been prepared (Section 7) for the proposed development.
	The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager and field staff.
2: Identify the	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 7). The CSM identifies the associated contaminants of potential concern (CoPC) and the likely impacted media. The site assessment criteria (SAC) for each of the CoPC are detailed in Appendix E.
decisions / goal of the study	The decision is to establish whether or not the results fall below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective will be derived and a decision made on whether (or not) further assessment and / or remediation will be required.
3: Identify the	Inputs will be the analytical results for the CoPC (identified in the CSM, Section 7) from NATA accredited laboratories and methods, where possible. The SAC for each of the CoPC are detailed in Appendix E.
information inputs	A photo-ionisation detector (PID) was used on-site to screen soils for VOC. PID readings were used to inform sample selection for laboratory analysis.
4: Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing I, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field works were undertaken. Constraints to the assessment are identified and discussed in the conclusions of the report.

Step	Summary
	The decision rule is to compare all analytical results with the SAC (Appendix E, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.
5: Develop the	Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s).
analytical approach (or decision rule)	Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPD values should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix I.
	Baseline condition: Contaminants at the site exceed the human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis).
6: Specify the performance or acceptance criteria	Alternative condition: Contaminants at the site comply with the human health and environmental SAC and as such, do not pose a potentially unacceptable risk to receptors (alternative hypothesis).
	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.
7: Optimise the design for obtaining data	As the purpose of the investigation is to assess the contamination status of the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas. The sampling program was more opportunistic than optimum, and therefore a recommendation for further testing is provided in the report. Further details regarding the proposed sampling plan are presented in Section 8.

2. References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix D

Fieldwork Results

Terminology, Symbols and Abbreviations

Introduction to Terminology, Symbols and Abbreviations

Douglas Partners' reports, investigation logs, and other correspondence may use terminology which has quantitative or qualitative connotations. To remove ambiguity or uncertainty surrounding the use of such terms, the following sets of notes pages may be attached Douglas Partners' reports, depending on the work performed and conditions encountered:

- Soil Descriptions;
- Rock Descriptions; and
- Sampling, insitu testing, and drilling methodologies

In addition to these pages, the following notes generally apply to most documents.

Abbreviation Codes

Site conditions may also be presented in a number of different formats, such as investigation logs, field mapping, or as a written summary. In some of these formats textual or symbolic terminology may be presented using textual abbreviation codes or graphic symbols, and, where commonly used, these are listed alongside the terminology definition. For ease of identification in these note pages, textual codes are presented in these notes in the following style XW. Code usage conforms with the following guidelines:

- Textual codes are case insensitive, although herein they are generally presented in upper case; and
- Textual codes are contextual (i.e. the same or similar combinations of characters may be used in different contexts with different meanings (for example `PL` is used for plastic limit in the context of soil moisture condition, as well as in `PL(A)` for point load test result in the testing results column)).

Data Integrity Codes

Subsurface investigation data recorded by Douglas Partners is generally managed in a highly structured database environment, where records "span" between a top and bottom depth interval. Depth interval "gaps" between records are considered to introduce ambiguity, and, where appropriate, our practice guidelines may require contiguous data sets. Recording meaningful data is not always appropriate (for example assigning a "strength" to a concrete pavement) and the following codes may be used to maintain contiguity in such circumstances.

Term	Description	Abbreviation Code
Core loss	No core recovery	KL
Unknown	Information was not available to allow classification of the property. For example, when auguring in loose, saturated sand auger cuttings may not be returned.	UK
No data	Information required to allow classification of the property was not available. For example if drilling is commenced from the base of a hole predrilled by others	ND
Not Applicable	Derivation of the properties not appropriate or beyond the scope of the investigation. For example providing a description of the strength of a concrete pavement	NA

<u>Graphic Symbols</u>

Douglas Partners' logs contain a "graphic" column which provides a pictorial representation of the basic composition of the material. The symbols used are directly representing the material name stated in the adjacent "Description of Strata" column, and as such no specific graphic symbology legend has been provided in these notes.

intentionally blank

Introduction

All materials which are not considered to be "in-situ rock" are described in general accordance with the soil description model of AS 1726-2017 Part 6.1.3, and can be broken down into the following description structure:

The "classification" comprises a two character "group symbol" providing a general summary of dominant soil characteristics. The "name" summarises the particle sizes within the soil which most influence its behaviour. The detailed description presents more information about composition, condition, structure, and origin of the soil.

Classification, naming and description of soils require the relative proportion of particles of different sizes within the whole soil mixture to be considered.

Particle size designation and Behaviour Model

Solid particles within a soil are differentiated on the basis of size.

The engineering behaviour properties of a soil can subsequently be modelled to be either "fine grained" (also known as "cohesive" behaviour) or "coarse grained" ("non cohesive" behaviour), depending on the relative proportion of fine or coarse fractions in the soil mixture.

Particle Size	Particle	Behavi	our Model
Designation	Size (mm)	Behaviour	Approximate Dry Mass
Boulder	>200	Excluded fro	om particle
Cobble	63 - 200	behaviour n "oversize"	nodel as
Gravel ¹	2.36 - 63	Caaraa	
Sand ¹	0.075 - 2.36	Coarse	>65%
Silt	0.002 - 0.075	Fine	>35%
Clay	<0.002		

refer grain size subdivision descriptions below

The behaviour model boundaries defined above are not precise, and the material behaviour should be assumed from the name given to the material (which considers the particle fraction which dominates the behaviour, refer "component proportions" below), rather than strict observance of the proportions of particle sizes. For example, if a material is named a "Sandy CLAY", this is indicative that the material exhibits fine grained behaviour, even if the dry mass of coarse grained material may exceed 65%.

Component proportions

The relative proportion of the dry mass of each particle size fraction is assessed to be a "primary", "secondary", or "minor" component of the soil mixture, depending on its influence over the soil behaviour.

Component	Component Definition ¹		roportion
Proportion Designation		In Fine Grained Soil	In Coarse Grained Soil
Primary	The component (particle size designation, refer above) which dominates the engineering behaviour of the soil	The clay/silt component with the greater proportion	The sand/gravel component with the greater proportion
Secondary	Any component which is not the primary, but is significant to the engineering properties of the soil	Any component with greater than 30% proportion	Any granular component with greater than 30%; or Any fine component with greater than 12%
Minor ²	Present in the soil, but not significant to its engineering properties	All other components	All other components

¹ As defined in AS1726-2017 6.1.4.4

² In the detailed material description, minor components are split into two further sub-categories. Refer "identification of minor components" below.

Composite Materials

In certain situations, a lithology description may describe more than one material, for example, collectively describing a layer of interbedded sand and clay. In such a scenario, the two materials would be described independently, with the names preceded or followed by a statement describing the arrangement by which the materials co-exist. For example, "INTERBEDDED Silty CLAY AND SAND".

Soil Descriptions

Classification

The soil classification comprises a two character group symbol. The first character identifies the primary component. The second character identifies either the grading or presence of fines in a coarse grained soil, or the plasticity in a fine grained soil. Refer AS1726-2017 6.1.6 for further clarification.

Soil Name

For most soils, the name is derived with the primary component included as the noun (in upper case), preceded by any secondary components stated in an adjective form. In this way, the soil name also describes the general composition and indicates the dominant behaviour of the material.

Component	Prominence in Soil Name	
Primary	Noun (eg "CLAY")	
Secondary	Adjective modifier (eg "Sandy")	
Minor	No influence	

¹ – for determination of component proportions, refer component proportions on previous page

For materials which cannot be disaggregated, or which are not comprised of rock or mineral fragments, the names "ORGANIC MATTER" or "ARTIFICIAL MATERIAL" may be used, in accordance with AS1726-2017 Table 14.

Commercial or colloquial names are not used for the soil name where a component derived name is possible (for example "Gravelly SAND" rather than "CRACKER DUST").

Materials of "fill" or "topsoil" origin are generally assigned a name derived from the primary/secondary component (where appropriate). In log descriptions this is preceded by uppercase "FILL" or "TOPSOIL". Origin uncertainty is indicated in the description by the characters (?), with the degree of uncertainty described (using the terms "probably" or "possibly" in the origin column, or at the end of the description).

Identification of minor components

Minor components are identified in the soil description immediately following the soil name. The minor component fraction is usually preceded with a term indicating the relative proportion of the component.

Minor Component	Relative Proportion		
Proportion Term	In Fine Grained Soil	In Coarse Grained Soil	
With	All fractions: 15-30%	Clay/silt: 5-12%	
		sand/gravel: 15-30%	
Trace	All fractions: 0-15%	Clay/silt: 0-5%	
		sand/gravel: 0-15%	

The terms "with" and "trace" generally apply only to gravel or fine particle fractions. Where cobbles/boulders are encountered in minor proportions (generally less than about 12%) the term "occasional" may be used. This term describes the sporadic distribution of the material within the confines of the investigation excavation only, and there may be considerable variation in proportion over a wider area which is difficult to factually characterise due to the relative size of the particles and the investigation methods.

Soil Composition

Plasticity			<u>Grain Siz</u>	e		
Descriptive	Laboratory liq	uid limit range		Туре		Particle size (mm)
Term	Silt	Clay	Gravel	Coarse		19 - 63
Non-plastic	Not applicable	Not applicable		Mediur	n	6.7 - 19
materials				Fine		2.36 – 6.7
Low	≤50	≤35	Sand	Coarse		0.6 - 2.36
plasticity				Mediur	n	0.21 - 0.6
Medium	Not applicable	>35 and ≤50		Fine		0.075 - 0.21
plasticity						
High	>50	>50	<u>Grading</u>			
plasticity			Gradin	g Term		Particle size (mm)
			W/ell		Δα	ood representation of all

Note, Plasticity descriptions generally describe the plasticity behaviour of the whole of the fine grained soil, not individual fine grained fractions.

Grading	
Grading Term	Particle size (mm)
Well	A good representation of all particle sizes
Poorly	An excess or deficiency of particular sizes within the specified range
Uniformly	Essentially of one size
Сар	A deficiency of a particular size or size range within the total range

Note, AS1726-2017 provides terminology for additional attributes not listed here.

Soil Condition

<u>Moisture</u>

The moisture condition of soils is assessed relative to the plastic limit for fine grained soils, while for coarse grained soils it is assessed based on the appearance and feel of the material. The moisture condition of a material is considered to be independent of stratigraphy (although commonly these are related), and this data is presented in its own column on logs.

Applicability	Term	Tactile Assessment	Abbreviation code
Fine	Dry of plastic limit	Hard and friable or powdery	w <pl< td=""></pl<>
	Near plastic limit	Can be moulded	w=PL
	Wet of plastic limit	Water residue remains on hands when handling	w>PL
	Near liquid limit	"oozes" when agitated w=LL	
	Wet of liquid limit	"oozes"	w>LL
Coarse	Dry	Non-cohesive and free running	D
	Moist	Feels cool, darkened in colour, particles may M stick together	
	Wet	Feels cool, darkened in colour, particles may W stick together, free water forms when handling	

The abbreviation code NDF, meaning "not-assessable due to drilling fluid use" may also be used. Note, observations relating to free ground water or drilling fluids are provided independent of soil moisture condition.

Consistency/Density/Compaction/Cementation/Extremely Weathered Material

These concepts give an indication of how the material may respond to applied forces (when considered in conjunction with other attributes of the soil). This behaviour can vary independent of the composition of the material, and on logs these are described in an independent column and are generally mutually exclusive (i.e. it is inappropriate to describe both consistency and compaction at the same time). The method by which the behaviour is described depends on the behaviour model and other characteristics of the soil as follows:

- In fine grained soils, the "consistency" describes the ease with which the soil can be remoulded, and is generally correlated against the materials undrained shear strength;
- In granular materials, the relative density describes how tightly packed the particles are, and is generally correlated against the density index;
- In anthropogenically modified materials, the compaction of the material is described qualitatively;
- In cemented soils (both natural and anthropogenic), the cemented "strength" is described qualitatively, relative to the difficulty with which the material is disaggregated; and
- In soils of extremely weathered material origin, the engineering behaviour may be governed by relic rock features, and expected behaviour needs to be assessed based the overall material description.

Quantitative engineering performance of these materials may be determined by laboratory testing or estimated by correlated field tests (for example penetration or shear vane testing). In some cases, performance may be assessed by tactile or other subjective methods, in which case investigation logs will show the estimated value enclosed in round brackets, for example (VS).

Consistency Term	Tactile Assessment	Undrained Shear Strength (kPa)	Abbreviation Code
Very soft	Extrudes between fingers when squeezed	<12	VS
Soft	Mouldable with light finger pressure	>12 - ≤25	S
Firm	Mouldable with strong finger pressure	>25 - ≤50	F
Stiff	Cannot be moulded by fingers	>50 - ≤100	St
Very stiff	Indented by thumbnail	>100 - ≤200	VSt
Hard	Indented by thumbnail with difficulty	>200	Н
Friable	Easily crumbled or broken into small pieces by hand	-	Fr

Consistency (fine grained soils)

Relative Density (coarse grained soils)

Relative Density Term	Density Index	Abbreviation Code
Very loose	<15	VL
Loose	>15 - ≤35	L
Medium dense	>35 - ≤65	MD
Dense	>65 - ≤85	D
Very dense	>85	VD

Note, tactile assessment of relative density is difficult, and generally requires penetration testing, hence a tactile assessment guide is not provided.

Soil Descriptions

Compaction	anthrono	aonically	modified soil)	
Compaction	lancinopoi	gerncany	mounieu sonj	

Compaction Term	Abbreviation Code
Well compacted	WC
Poorly compacted	PC
Moderately compacted	MC
Variably compacted	VC

Cementation (natural and anthropogenic)

Cementation Term	Abbreviation Code
Moderately cemented	MOD
Weakly cemented	WEK

Extremely Weathered Material

AS1726-2017 considers weathered material to be soil if the unconfined compressive strength is less than 0.6 MPa (i.e. less than very low strength rock). These materials may be identified as "extremely weathered material" in reports and by the abbreviation code XWM on log sheets. This identification is not correlated to any specific qualitative or quantitative behaviour, and the engineering properties of this material must therefore be assessed according to engineering principles with reference to any relic rock structure, fabric, or texture described in the description.

Soil Origin

Term	Description	Abbreviation Code
Residual	Derived from in-situ weathering of the underlying rock	RS
Extremely weathered material	Formed from in-situ weathering of geological formations. Has strength of less than 'very low' as per as1726 but retains the structure or fabric of the parent rock.	XWM
Alluvial	Deposited by streams and rivers	ALV
Fluvial	Deposited by channel fill and overbank (natural levee, crevasse splay or flood basin)	FLV
Estuarine	Deposited in coastal estuaries	EST
Marine	Deposited in a marine environment	MAR
Lacustrine	Deposited in freshwater lakes	LAC
Aeolian	Carried and deposited by wind	AEO
Colluvial	Soil and rock debris transported down slopes by gravity	COL
Slopewash	Thin layers of soil and rock debris gradually and slowly deposited by gravity and possibly water	SW
Topsoil	Mantle of surface soil, often with high levels of organic material	TOP
Fill	Any material which has been moved by man	FILL
Littoral	Deposited on the lake or seashore	LIT
Unidentifiable	Not able to be identified	UID

Cobbles and Boulders

The presence of particles considered to be "oversize" may be described using one of the following strategies:

- Oversize encountered in a minor proportion (when considered relative to the wider area) are noted in the soil description; or
- Where a significant proportion of oversize is encountered, the cobbles/boulders are described independent of the soil description, in a similar manner to composite soils (described above) but qualified with "MIXTURE OF".

intentionally blank

Terminology Symbols Abbreviations

Sampling and Testing

A record of samples retained, and field testing performed is usually shown on a Douglas Partners' log with samples appearing to the left of a depth scale, and selected field and laboratory testing (including results, where relevant) appearing to the right of the scale, as illustrated below:

<u>Sampling</u>

The type or intended purpose for which a sample was taken is indicated by the following abbreviation codes.

Sample Type	Code
Auger sample	A
Acid Sulfate sample	ASS
Bulk sample	В
Core sample	C
Disturbed sample	D
Environmental sample	ES
Gas sample	G
Piston sample	P
Sample from SPT test	SPT
Undisturbed tube sample	∩ U ¹
Water sample	W
Material Sample	MT
Core sample for unconfined	UCS
compressive strength testing	

¹ – numeric suffixes indicate tube diameter/width in mm

The above codes only indicate that a sample was retained, and not that testing was scheduled or performed.

Field and Laboratory Testing

A record that field and laboratory testing was performed is indicated by the following abbreviation codes.

Test Type	Code
Pocket penetrometer (kPa)	PP
Photo ionisation detector (ppm)	PID
Standard Penetration Test	SPT
x/y = x blows for y mm	
penetration	
HB = hammer bouncing	
HW = fell under weight of	
hammer	
Shear vane (kPa)	
Unconfined compressive	UCS
strength, (MPa)	

Field and laboratory testing (continued)

Tost Type	Code
Test Type	
Point load test, (MPa),	PLT(_)
axial (A) , diametric (D) ,	
irregular (I)	
Dynamic cone penetrometer,	DCP/150
followed by blow count	
penetration increment in mm	
(cone tip, generally in	
accordance with AS1289.6.3.2)	
Perth sand penetrometer,	PSP/150
followed by blow count	
penetration increment in mm	
(flat tip, generally in accordance	
with AS1289.6.3.3)	

Groundwater Observations

\triangleright	seepage/inflow
$\overline{\nabla}$	standing or observed water level
NFGWO	no free groundwater observed
OBS	observations obscured by drilling
	fluids

Drilling or Excavation Methods/Tools

The drilling/excavation methods used to perform the investigation may be shown either in a dedicated column down the left-hand edge of the log, or stated in the log footer. In some circumstances abbreviation codes may be used.

Method	Abbreviation Code
Direct Push	DP
Solid flight auger. Suffixes:	AD ¹
/T = tungsten carbide tip,	
/V = v-shaped tip	
Air Track	AT
Diatube	DT ¹
Hand auger	HA ¹
Hand tools (unspecified)	HAND
Existing exposure	Х
Hollow flight auger	HSA ¹
HQ coring	HQ3
HMLC series coring	HMLC
NMLC series coring	NMLC
NQ coring	NQ3
PQ coring	PQ3
Predrilled	PD
Push tube	PT ¹
Ripping tyne/ripper	R
Rock roller	RR ¹
Rock breaker/hydraulic	EH
hammer	
Sonic drilling	SON ¹
Mud/blade bucket	MB ¹
Toothed bucket	TB ¹
Vibrocore	VC ¹
Vacuum excavation	VE
Wash bore (unspecified bit	WB1
type)	

¹ – numeric suffixes indicate tool diameter/width in mm

Westfield Design and Construction Pty Ltd

Contamination Assessment

LOCATION: Warringah Mall, Brookvale

CLIENT:

PROJECT:

SURFACE LEVEL: 8.74 AHD **EASTING:** 339548.41 **NORTHING:** 6262248.54 **DIP/AZIMUTH:** 90°/--

BORE No: 755 PROJECT No: 71015.18 DATE: 30/4/2013 SHEET 1 OF 1

				DIF			H: 90°/		SHEET 1 OF 1
		Description	ji		Sam		& In Situ Testing	L.	Well
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0.05	Strata				ů			Details
	0.00	ASPHALT // FILLING - brown, sandy gravel filling (roadbase)		2					-
	0.5		\bigotimes	E	0.4 0.5		PID<1 ppm		-
		FILLING - grey, sand filling with trace roots		>					-
E	- 1			E_	0.9 1.0		PID<1 ppm		-1
									-
				E	1.4 1.5		PID<1 ppm		-
	1.7	CLAY - soft, dark brown, clay with trace silt, moist	\overrightarrow{V}		10				
	2			E	1.9 2.0		PID<1 ppm		-2
	2.2	SAND - brown and grey, medium grained sand with trace clay, moist to wet							- - -
-9		- saturated from 2.7m		_ 	2.9		PID<1 ppm	₽	
	-3 3.0	Bore discontinued at 3.0m - target depth reached	<u>, `</u> `		2.9		יוועץ וי טו י		3
									-
-2-									
Ē	- 4								-4
									-
									-
-4	_								-
	- 5								-5
									-
	- 6								-6
~									
	-7								-7
	- 8								-8
-0	0								
	- 9								-9
-									

RIG: Bobcat

DRILLER: S. Gregor

LOGGED: DW

CASING: Uncased

 TYPE OF BORING:
 100mm diameter solid flight auger

 WATER OBSERVATIONS:
 Free groundwater observed at 2.7m whilst drilling

 REMARKS:
 100mm diameter solid flight auger

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

Westfield Design and Construction Pty Ltd

Contamination Assessment

LOCATION: Warringah Mall, Brookvale

CLIENT:

PROJECT:

SURFACE LEVEL: 8.59 AHD **EASTING:** 339542.89 **NORTHING:** 6262225.44 **DIP/AZIMUTH:** 90°/-- BORE No: 757 PROJECT No: 71015.18 DATE: 30/4/2013 SHEET 1 OF 1

Depth of Strata Sampling & h Stur Testing Mell Strata 0.07 -07 -07 -07 -07 -07 -07 -07 -07 -07 -	_								H: 90 /		
0.07 ASPHALT 20 20 0.000 1 FLLING- byth brown, sradelling (roadbase) 0 0 PD<1 ppm		_		Description	ic		Sam		& In Situ Testing		Well
0.07 ASPHALT 20 20 0.000 1 FLLING- byth brown, sradelling (roadbase) 0 0 PD<1 ppm	R	De (n	pth		aph Log	е	oth	ple	Results &	Vate	
0.7 ASPHALT FLLING - brown, gravely sand filing with some sandstone 0.4 0.3 FLLING - light brown, sand filing with some sandstone 0.7 1 SAND - dark brown, fine to medium grained sand with trace day, humd E 1.5 1.2 CLAY: SAND - brown, fine to medium grained sand, with trace sand, moist 1.9 PID<1 ppm		(Strata	ō	Tyi	Dep	Sam	Comments	>	Details
103 FILLING-light brown, sand filling with some sandstone 03 PID-1 ppm 1 SAND - dark brown, fine to medium grained sand with trace day, hund 0 PID-1 ppm 1 CLAVY SAND - brown, fine to medium grained sand with trace day, hund 0 PID-1 ppm 1 CLAVY SAND - brown, fine to medium grained sand, with trace day, hund 0 PID-1 ppm 1 CLAVY SAND - brown, fine to medium grained sand, damp 0 PID-1 ppm 2 SAND - brown, medium grained sand, damp 0 PID-1 ppm 2 SAND - brown, medium grained sand, damp 0 0 2 SAND - brown, medium grained sand, damp 0 0 2 SAND - brown, medium grained sand, damp 0 0 2 SAND - brown, medium grained sand, damp 0 0 4 4 4 4			0.07 -	ASPHALT							-
Pict IMS- light brown, fand tung with some sandstore Pict part SAND - dark brown, fine to medium grained sand with E 1 CLAYES SAND - brown, fine to medium grained dayey 1 CLAYES soft, brown day with trace sand, molst 2 SAND - dark brown, fine to medium grained dayey 1 CLAYES soft, brown day with trace sand, molst 2 SAND - brown, medium grained sand, damp 2 SAND - brown, medium grained sand, damp 3 Bore discontinued at 3.0m -1 - brown and under the sand damp -2 - brown, medium grained sand, damp -3 - brown, medium grained sand, damp -4 brown, medium grained sand, damp -5 brown, medium grained sand, damp -6 brown, medium grained sand, damp			0.5				0.4				-
12 Used CLAY SAND - brown, fine to medium grained clayey 14 15 PID-1 ppm 2 13 CLAY - soft, brown clay with trace sand, most 15 PID-1 ppm 2 23 SAND - brown, medium grained sand, damp 20 PID-1 ppm 2 30 Bore discontinued at 3.0m 2.0 PID-1 ppm 3 -1 arget depth reached 30 FID-1 ppm 3 -6 -5 -6 -7 -8 -8				\fragments (ripped sandstone)		E	0.7				-
CLAYE'S SAND - brown, fine to medium grained clayey CLAY - soft, brown clay with trace sand, moist CLAY - soft, brown medium grained sand, damp CLAY - soft, brown, medium grained sand, damp Bore discontinued at 3.0m - target depth reached - 4 - 5 - 6 - 7 - 7 - 7 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8		-1	12-	SAND - dark brown, fine to medium grained sand with trace clay, humid		E	0.9 1.0		PID<1 ppm		-1
CLAY - soft, brown clay with trace sand, moist 2 23 SAND - brown, medium grained sand, damp E 29 Bore discontinued at 3.0m - target depth reached 4 4 6 4 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				CLAYEY SAND - brown, fine to medium grained clayey sand, damp		Ē	1.4 1.5		PID<1 ppm		-
SAND - brown, medium grained sand, damp			1.6	CLAY - soft, brown clay with trace sand, moist	1//						
SAND - brown, medium grained sand, damp E 29 PD<1 ppm 9 - target depth reached - target depth reach		-2				_E_	1.9 2.0		PID<1 ppm		-2
			2.3	SAND - brown, medium grained sand, damp							-
	-9-						2.0				-
- target depth reached - a - a - a - a - a - a - a - a - a -		- 3	3.0	Bore discontinued at 3.0m		E	-2.9 3.0		PID<1 ppm	-	3
	ŀ										-
	-2-										
											-
		-4									-4
											-
	4										
											-
	Ē	- 5									- 5
		- 6									- 6
	-0-										
		-7									-7
											-
											-
	Ē										
		ŏ									
											-
	-0										
		-9									-9
											[

RIG: Bobcat

DRILLER: S. Gregor

LOGGED: DW

CASING: Uncased

 TYPE OF BORING:
 100mm diameter solid flight auger

 WATER OBSERVATIONS:
 No free groundwater observed whilst drilling

 REMARKS:
 100mm diameter solid flight auger

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shard ard penetration test

Scentre Design & Construction Pty Ltd

PROJECT: Brookvale Westfield - AVAC Sewer pump station

SURFACE LEVEL: 9.1 AHD COORDINATE: E:339537.4, N:6262232.9 PROJECT No: 71015.54 LOCATION: Warringah Mall, 145 Condamine St, Brookvale, NSW 21 DATUM/GRID: MGA2020 Zone 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: BH1 DATE: 27/05/24 - 28/05/24 SHEET: 1 of 2

CONDITIONS ENCOUNTERED SAMPLE **TESTING AND REMARKS** DENSITY. **GROUNDWATER** CONSIS.^(*) Ē MOISTURE DEPTH (m) **FEST TYPE** RESULTS REMARKS INTERVAL GRAPHIC AND DEPTH DESCRIPTION TYPE REMARKS RL (m) OF STRATA 0.06 ASPHALTIC CONCRETE PAVEMENT: 60 mm thick. FILL / Silty Gravelly SAND: grey-brown; fine to medium; low plasticity silt; fine to medium, ND ND FILL blue metal gravel. Cemented road base. 1.40 1.40 PID --2.5ppm PFAS A/ES Clayey SAND, trace gravel; fine to coarse; low 150 plasticity clay; fine to medium, quartz gravel. ALV 190 - PID 🛶 1.6ppm 2 FS From 1.40m: Organic odour 235 240 1 pid 4 м ES Peaty SAND, with silt, trace gravel: dark grey; W, PID 1.3ppm 2.50 fine to coarse; coarse, quartz gravel. SP SPT 2,2,3 N=5 -290 -0ppm 3 PID ES W 3.40 PID _0ppm ES W. ALV PID -0ppm 3.90 4.00 ES ∖1.2ppm PID SPT SPT 1,0,1 N=1 VI W 5 5 ŚЩ, 5.10m: Very low 'TC' bit resistance ŵ, 2/0 (HB) 5.35 Continued as rock 6 6 Generated with CORE-GS by Geroc - Split Soil-Rock Log 8 8 9 9 NOTES *Soil origin is "probable" unless otherwise stated. "Consistency/Relative density shading is for visual reference only - no correlation between coh esive and granular materials is implied. PLANT: Bobcat OPERATOR: Ground Test (JJ) LOGGED: CSY METHOD: DT to 1.4m, VE to 1.5m, AD/T to 5.35m, NMLC to 9.00m CASING: HWT to 5.5m **REMARKS:**

CLIENT:

SURFACE LEVEL: 9.1 AHD

Scentre Design & Construction Pty Ltd PROJECT: Brookvale Westfield - AVAC Sewer pump station

CLIENT:

COORDINATE: E:339537.4, N:6262232.9 PROJECT No: 71015.54 LOCATION: Warringah Mall, 145 Condamine St, Brookvale, NSW 21 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: BH1 DATE: 27/05/24 - 28/05/24 SHEET: 2 of 2

CORE PHOTO LOG

CLIENT: Scentre Design & Construction Pty Ltd **PROJECT:** Brookvale Westfield - AVAC Sewer pump station LOCATION: Warringah Mall, 145 Condamine St, Brookvale, NSW 21 DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 9.1 AHD COORDINATE: E:339537.4, N:6262232.9 PROJECT No: 71015.54 DIP/AZIMUTH: 90°/---°

LOCATION ID: BH1 DATE: 27/05/24 - 28/05/24 SHEET: 1 of 1

SURFACE LEVEL: 8.9 AHD

COORDINATE: E:339542.0, N:6262232.8 PROJECT No: 71015.54 LOCATION: Warringah Mall, 145 Condamine St, Brookvale, NSW 21 DATUM/GRID: MGA2020 Zone 56

LOCATION ID: BH2 DATE: 28/05/24 - 29/05/24 SHEET: 1 of 2

-		CONDITIONS ENCOUNTERED			r r		SA	MPLE					RS
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^{#)}		MOISTURE	REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS	BACKFILL
ł	0.15	CONCRETE PAVEMENT: 150 mm thick.			ND	ND				-			0.0
F	0.35 0.50	ASPHATIC CONCRETE PAVEMENT: 200 mm thick.		FILLS	(MC)	w=PL		ES	$\left \right $	- 0.35 - - 0.50 -	PID -	2.7ppm	000
8	1	FILL / Silty CLAY, trace gravel: red-brown mottled brown; medium to high plasticity; fine to medium, sandstone and ironstone gravel.		FILL	ND	ND				- - - 1 -	-		ိုလုံတို့ Ocave
-	1.40	road base.						ES		- 1.40 - - 1.60 -	PID -	—2.1ppm	(ie)
	2	Clayey SAND, with silt, trace gravel: dark grey; fine to medium; low plasticity clay; fine to medium, quartz gravel.				м		ES	<	- 1.80 - - 2.00 -	-	—0ppm	Bentoni
5/24.01:00	-			ALV	L			ES SPT	>	- 2.30 - - 2.50 -		—Oppm 1,3,3 N=6	000000
	3							ES	\geq	- 2.80 - - 3.00 -	+ -	Oppm	00°0°
								ES	K	- - 3.50 - - - 3.80 -	PID -	Oppm	vel) _o O, ^o (lev
20	4.Ó0	CLAY, with peat, with sand: dark grey; low						ES	$\left \right\rangle$	- 3.80 - - 3.90 - - 4.00 -	PID -	0ppm 0	O Gra
-		plasticity; fine to coarse sand; Strong organic odour.		ALV	VS	W		SPT A/ES	\sum	4.30 - 4.50 -	PID	1 blow sunk > 450 mm Oppm	00,000
4	5							ES	$\left \right $	- 4.80 - - 5.00 -		Oppm	00,0,000
	5.20 5.50	Clayey SAND, with silt: pale grey; fine to coarse; low plasticity clay. Continued as rock	<u>III</u>	хwм	(D)			ES SPT		- 5.20 - - 5.30 - - 5.41 -		—Oppm 18/110 (HB)	0000
2	6									- - - 6 -	- - - - -		
2	7										- - - - - - - -		
	8									 - 8 -			
	9									 - - - 9 -	- - - - - - -		
										- - - - -	- - - - - -		
 FES: (#	Soil ori	 gin is "probable" unless otherwise stated. "Consistency/Relative densit	y shading i	l s for visua	al referenc	e only - no	correlation	betweer	l n cohes	ive and g] granula	l r materials is implied.	

CLIENT: Scentre Design & Construction Pty Ltd

PROJECT: Brookvale Westfield - AVAC Sewer pump station

DIP/AZIMUTH: 90°/---°

SURFACE LEVEL: 8.9 AHD

COORDINATE: E:339542.0, N:6262232.8 PROJECT No: 71015.54

LOCATION ID: BH2 DATE: 28/05/24 - 29/05/24

~	CONDITIONS ENCOUNTERED										SAMPLE TESTING					;			
GROUNDWATER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	RS HW MW SW FR	DEPTH (m)	ML ML		RECOVERY (%)	RQD	ERACTURE SPACING (m)	DEFECTS & REMARKS	SAMPLE REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS	BACKFILL
		-															-		000
		-																	Gravel Q.0
	00	1														- 1 -	-		ပိုင်ပိုင်
																			:°0
	_																		tonite
	-	2														2	-		Ber
00:10	-																		000
illing 7 27/05/24 01:00	9																-		ိုင္လံုိ
ger dril		3														3			00°0°
n of au	•	-																	000000
npletic	<u>س</u>	4														4	-		Gravel
an cor																			00000
Observed on completion of auger drilling 27/05/2		-															-		0°0°°
ō	4	5														_ 5 _			00,000
												5.50m: , Ur stated belo	lless otherwise ww, rock is				-		000°0
		-	Continued from soil	$\mathbf{\mathbf{x}}$	\searrow	- 5.50 -	\triangleright	$\overline{\langle}$				fractured a stained, pla dipping at degrees.	along rough, anar bedding 0 -15						
			Clayey SAND, with silt: pale grey ; fine to coarse; low		SOIL	- 5.85 - - 6.00 -	•	DIL	50	0	SOIL					6	PLT		ИРа
		-	plasticity clay. SANDSTONE: pale grey,]								— 6.19m DS, (0°, 40mm				-		
	2	-	fine to coarse grained, massive; with occasional					/L				— 6.60m DS,	15°, 20mm						
	-		extremely weathered and iron-indurated seams, undulated at 0 - 15 degrees.		мм		• •	to L								7	- PLT	PL(A)=0.1MF	Pa
		-							94	91		— 7.40m:,0°	, 15mm				-		
	-					- 7.90 -		-				— 7.80m: VN,	40mm				PIT.		Pa
		8_				- 8.28 -		-				- 8.23m : IS, 0)°, 15mm			8_			
	•	-	SANDSTONE: pale grey with purple and orange-			3.20						8.26m DS, 8.46m : B, 4 bedding	40mm 45mm, Cross-						
	0		brown striations, fine to medium grained, bedded, 0 to 10°; distinctly cross		SW		•	м				– 8.77m DS, 8.93m CS,	0°,10mm			9	- PLT	PL(A)=0.4MI	Pa
			bedded, with occasional extremely weathered						100	95		\ 8.97m: DS,	5°, 20mm				-		
_	•	-	seams Borehole discontinued at					•				— 9.42m : DS, > 9.51m : DS, 2					PLT	PL(A)=0.6MI	Pa
NOTE	- - -	-	9.60m depth. Target Depth Reached. gin is "probable" unless otherwise stated.																
			bbcat						OPE	RA	OR: Gr	ound Tes	st (JJ)		LC	OGGE	D: (SY	

Refer to explanatory notes for symbol and abbreviation definitions

REMARKS:

CLIENT: Scentre Design & Construction Pty Ltd

PROJECT: Brookvale Westfield - AVAC Sewer pump station LOCATION: Warringah Mall, 145 Condamine St, Brookvale, NSW 21 DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

SHEET: 2 of 2

CORE PHOTO LOG

CLIENT: Scentre Design & Construction Pty Ltd PROJECT: Brookvale Westfield - AVAC Sewer pump station LOCATION: Warringah Mall, 145 Condamine St, Brookvale, NSW 21 DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 8.9 AHD COORDINATE: E:339542.0, N:6262232.8 PROJECT No: 71015.54 DIP/AZIMUTH: 90°/---°

LOCATION ID: BH2 DATE: 28/05/24 - 29/05/24 SHEET: 1 of 1

Douglas Partners Geotechnics | Environment | Groundwater

Groundwater (GW) Field Sheet

Project and Bore Installation Deta		Brooksala Mal	AVAC Sustam		Drainat Number	71015.55
Project Name / Site Location		Brookvale Mall		1	Project Number	/1015.55
Well Construction Details	Well ID		Drilling Method		Hole Diameter (m)	
	Well Depth (m bgl)		Screened (m bgl)		Stick Up (m)	
Survey Information	Easting		Northing		Elevation RL	
GW Level During Drilling		m bgl				
Contaminants/Comments						
Well Development Details						-
Date / Time / Weather Conditions					Purged B	у
Purge Method / Equipment						
Product observed / Thickness		mm	Confirmed with	n Bailer? (Y / N)		
GW Level (pre-purge)		m bgl	Obser	ved Well Depth		m bgl
Height of Water Column (H)		m bgl		d Bore Volume*		L
GW Level (post-purge)		m bgl	Total Vo	olume Purged**		L.
Appearance/Comments						
Sampling Details						
Date / Time / Weather Conditions	5/6124	12:	53pm Clo	indy	Sampled B	у
Sampling Method / Equipment	210100	12.)	L Construction of C.	.1
VQM Model	-		WQM C	Calibration Date		
Product observed / Thickness	-	mm	Confirmed with	Bailer? (Y / N)	1	
GW Level (pre-micropurge)	2.52	m bgl		ved Well Depth		m bgl
Height of Water Column	2.96	m bgl		Bore Volume*		L
GW Level (post sample)	2.61	m bgl	Total Volume o	of Micro-Purged	24	L
Water Quality Parameters	1 2.01		1		~ P	
Time Cumulative Volume (L) Temp (°C)	DO (mg/L)#	EC (µS or mS/cm)	pH	Redox (mV)	Turbidity
Stabilisation Target (3 readings)	0.2	+/- 10%	+/- 5%	+/- 0.1	+/- 10 mV	+/- 10%
0	3/10-21.7	113	1157	6.05	-8.0	126,15
1	21.9	0.03	1159	6.05	_47.7	265.9
7	219	-0.02	1151	6.07	66.3	352.8
3	21.9	-0.05	1162	6.09	-85.9	11.37.0
	210	-0.04	1167	6.12	-104.5	206.08
5	219	-0.04	1157	615	104.5	869.6
5	21.1	-0.04	112/	6.12	10.1	069.6
	-					-
			1	-		-
	-			-		
			1.			-
		-				1
						-
			1			
Votes: # Considered stabilised if	three DO values are less than 0.	5 mg/L	^ Considered stabilised if	hree Turbidity values	are less than 5 NTU	
Sample Details			Between	J		
Sampling Depth (rationale)	4.0-4.5	m bgl,	the way	fer colu	uny	
Sample Observations (e.g. colour,	Golaure					
sediment, sheen, odour)	Odour					_
Sample ID	BHI			-	1	-
QAQC Samples	Replicate	1	Triplicate		Other	
Sample Containers	Amber glass	1	Plastic		PFAS (no teflon)	1
Quantity / Preservation / Filtration	Metals (F/UF) (HNO3)	2	Phenols/COD/NH3 (H2SO4)		Vials (HCI)	
	Ferrous/Ferric Iron (HCI)	1	Cyanides/Chromium (NaOH)	1	Other	
Commonte			(indon)			-
Comments						
Estimated Well Volume = H * F	Std. Drilling Diameter (m)	NMLC (0.075)	HQ (0.096)	PQ (0.1226)	SFA (0.125)	HFA (0.194
**Purge Target: min 3 well volumes	Eactor (E):	2.0	37	52	5.4	11.1

11.1 **Purge Target: min. 3 well volumes Factor (F): 5.2 5.4 2.8 3.7

Douglas Partners Geotechnics | Environment | Groundwater

	(GW) Field Sheet ore Installation Detai	ile			4		
Project Name /		1	Brookvale Mall	AVAC System		Project Number	71015.55
Tojeet Name /	One Eddalori	Well ID	BH510	Drilling Method	[Hole Diameter (m)	7 10 10.00
Vell Constructi	on Details	Well Depth (m bgl)		Screened (m bgl)		Stick Up (m)	
Survey Informat	lion	Easting		Northing		Elevation RL	
GW Level Durir			m bgl				
Contaminants/C	Comments		···· ····				
Vell Developn	nent Details						_
Date / Time / W	eather Conditions					Purged By	/
urge Method /	Equipment	-	.			p. 7 () ()	
	ed / Thickness		mm	Confirmed with			
SW Level (pre-			m bgi		ed Well Depth		m bgl
leight of Water	r Column (H)		m bgl		Bore Volume*		L
GW Level (post			m bgl	Total Vol	ume Purged**		<u> </u>
ppearance/Co	mments						
ampling Deta	ils						
Date / Time / W	eather Conditions	516124	15:25am	Cloudy		Sampled By	JL
	od / Equipment						
VQM Model					alibration Date		
	ed / Thickness	.8950+	mm	Confirmed with	· · · · · · · · · · · · · · · · · · ·		
GW Level (pre-		3.86	m bgi		ed Well Depth	5.92	m bgl
leight of Wate	r Column	2.06	m bgi	Estimated	Bore Volume*	NID46	L
GW Level (post	t sample)	4.08	m bgl	Total Volume of	Micro-Purged	~4	L
Vater Quality	Parameters						
Time	Cumulative Volume (L)	Temp (°C)	DO (mg/L) [#]	EC (µS or mS/cm)	рН	Redox (mV)	Turbidity
	Target (3 readings)	0.2	+/- 10%	+/- 5%	+/- 0.1	+/- 10 mV	+/- 10%
0	1 1 2	20:1	-0.25	513	5.80	-182.6	29.67
and a second		20.5	-0.30	513	5.83	-1912.1	34.48
2		20.5	-0.31	512	5.82	-192.2	28.94
3		20.5	- 9.31	SIL	5.80	-190.3	66.01
4		20.5	-0.32	211	5.75	-187.7	21,28
					1		
Notes:	# Considered stabilised if th	nree DO values are less than	0.5 mg/L	^ Considered stabilised if t	hree Turbidity value	s are less than 5 NTU	
Sample Detail	2						
Sampling Deptl		4.0-4.5	m bgl,	Between n	alor m	(MINN)	
1 0 1	ations (e.g. colour,		1		<u>(</u>)	ξ.ω. · · ·	
sediment, shee	n, odour)	Odour					
Sample ID		BH 510				F	
QAQC Sample		Replicate		Triplicate		Other	
Sample Contair		Amber glass	 	Plastic	1	PFAS (no teflon)	Narrow I
Quantity / Pres	ervation / Filtration	Metals (F/UF) (HNO3)	.2	Phenols/COD/NH3 (H2SO4)	(Vials (HCI)	Land
		Ferrous/Ferric Iron (HCI)	l	Cyanides/Chromium (NaOH)	Į	Other	
				jinaon)		1	
Comments							
Comments							

Appendix E

Site Acceptance Criteria

1. Introduction

1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).
- HEPA PFAS National Environmental Management Plan (NEMP) (HEPA, 2020).
- ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018).
- NHMRC Guidelines for Managing Risks In Recreational Water (NHMRC, 2008).
- NHMRC, NRMMC Australian Drinking Water Guidelines 6 2011, Version 3.2 (NHMRC, NRMMC, 2022).
- ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000).

1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: commercial / industrial.
 - Corresponding to land use category 'D', commercial / industrial such as shops, offices, factories and industrial sites.
- Soil type: sand / silt / clay.

2. **Soils**

2.1 Health investigation and screening levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and Table 2.

Table 1: Health investigation levels (mg/kg)

Contaminant	HIL-D	
Metals		
Arsenic	3000	
Cadmium	900	
Chromium (VI)	3600	
Copper	240 000	
Lead	1500	
Mercury (inorganic)	730	
Nickel	6000	
Zinc	400 000	
РАН		
B(a)P TEQ	40	
Total PAH	4000	
Phenols		
Phenol	240 000	
Pentachlorophenol	660	
ОСР		
DDT+DDE+DDD	3600	
Aldrin and dieldrin	45	
Chlordane	530	
Endosulfan	2000	
Endrin	100	
Heptachlor	50	
НСВ	80	
Methoxychlor	2500	
ОРР		
Chlorpyrifos	2000	
РСВ		
РСВ	7	
VOC (various analytes)	-	

Contaminant	HSL-D	HSL-D	HSL-D	HSL-D
SAND	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	3	3	3	3
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	230	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TRH FI	260	370	630	NL
TRH F2	NL	NL	NL	NL

Table 2: Health screening levels (mg/kg)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C $_{10}$ -C $_{16}$ minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Table 3: Health screening levels for direct contact (mg/kg)

Contaminant	DC HSL-D	DC HSL-IMW
Benzene	430	1100
Toluene	99 000	120 000
Ethylbenzene	27 000	85 000
Xylenes	81 000	130 000
Naphthalene	11 000	29 000
TRH FI	26 000	82 000
TRH F2	20 000	62 000
TRH F3	27 000	85 000
TRH F4	38 000	120 000

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX TRH F2 is TRH > C_{10} - C_{16} minus naphthalene IMW intrusive maintenance worker

2.2 Health investigation levels for per- and poly-fluoroalkyl substances in soil

The laboratory analytical results for per- and poly-fluoroalkyl substances (PFAS) in soil have been assessed against HIL published in HEPA (2020). The HIL represent a nationally-agreed suite that should be used to inform site investigations. The HIL are intentionally conservative, and an exceedance of these criteria may not constitute a risk if other exposure pathways are controlled. An exceedance of the HIL should trigger further investigations, such as a site-specific risk assessment. At the time of this investigation, screening values were available only for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS).

The HIL derived from Table 2 of HEPA (2020) are in Table 4.

Table 4: Health investigation levels (mg/kg)

Contaminant	HIL-D
PFOS and PFHxS *	20
PFOA	50

Notes: * Includes PFOS only, PFHxS only and the sum of the two.

2.3 Asbestos in soil

The HSL for asbestos in soil are based on likely exposure levels for different scenarios published in NEPC (2013) for the following forms of asbestos:

- Bonded asbestos containing material (ACM); and
- Fibrous asbestos and asbestos fines (FA and AF).

The HSL are in Table 5.

Table 5: Health screening levels for asbestos

Form of asbestos	HSL-D	
ACM	0.05%	
FA and AF	0.001%	
FA and AF and ACM	No visible asbestos for surface soil *	

Notes: Surface soils defined as top 10 cm.

* Based on site observations at the sampling points and the analytical results of surface samples.

2.4 **Ecological investigation levels**

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 7, with inputs into their derivation shown in Table 6.

Table 6: Inputs to the derivation of the ecological investigation levels

Variable	Input	Rationale
Age of contaminants	"Aged" (>2 years)	
рН	6.1	Site measured
CEC	10 cmol _c /kg	assumed
Clay content	5 %	assumed
Traffic volumes	high	
State / Territory	NSW	

Table 7: Ecological investigation levels (mg/kg)

Contaminant	EIL-D
Metals	
Arsenic	160
Copper	540
Nickel	290
Chromium III	540
Lead	1800
Zinc	750
РАН	
Naphthalene	370
ОСР	
DDT	640

Notes: EIL-D – commercial / industrial

2.5 **Ecological screening levels**

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 8.

Table 8: Ecological screening levels (mg/kg)

Contaminant	Soil Type	ESL-D
Benzene	Coarse	75
Toluene	Coarse	135
Ethylbenzene	Coarse	165
Xylenes	Coarse	180
TRH F1	Coarse/ Fine	215*

Contaminant	Soil Type	ESL-D
TRH F2	Coarse/ Fine	170*
TRH F3	Coarse	1700
TRH F4	Coarse	3300
B(a)P	Coarse	1.4

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH $>C_{10}-C_{16}$ including naphthalene

2.6 **Ecological soil guideline values**

The interim ecological soil guideline values (EGV) derived from Table3 of HEPA (2020) are in Table 9.

Table 9: Ecological soil guideline values (mg/kg) – all land uses

Contaminant	Direct exposure	Indirect exposure
PFOS	1	0.01
PFOA	10	NC
PFHxS	NC	NC

Notes: NC no criterion

2.7 Management limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services.

The adopted management limits are in Table 10.

Table 10: Management limits (mg/kg)

Contaminant	Soil type	ML-D
TRH FI	Coarse	700
TRH F2	Coarse	1000
TRH F3	Coarse	3500
TRH F4	Coarse	10 000

Notes: TRH F1 is TRH C6-C10 including BTEX

TRH F2 is TRH > C_{10} - C_{16} including naphthalene

ML-A-B-C residential, parkland and public open space

3. Groundwater

3.1 Introduction

The groundwater investigation levels (GIL) used for interpretation of the groundwater data (as a Tier 1 assessment) have been selected based on the potential risks posed from contamination sourced from the site to receptors at or down-gradient of the site, as identified by the conceptual site model (CSM). The receptors, exposure points and pathways are summarised in Table 11.

Receptor	Location	Exposure point	Exposure pathway
Surface water aquatic ecosystem	Brookvale Creek within and down-gradient from site.	Receiving surface water body at the groundwater discharge point.	Exposure to contaminants.
Occupants of buildings	On site and down-gradient from site.	Enclosed buildings (retail and commercial).	Inhalation of VOC (including TRH and BTEX) overlying VOC impacted groundwater via the vapour intrusion pathway.
Human recreation (e.g. swimming)	Down-gradient from site.	Receiving surface water body at the groundwater discharge point.	Ingestion / dermal absorption of contaminants during recreational activities (e.g. swimming).
Human consumption	On site and down-gradient from site.	Domestic groundwater bores present in area with unknown use, potentially irrigation or drinking water	Ingestion of contaminants in water used for drinking water supply.
Irrigation	Potential off-site irrigation of golf course with groundwater in the region	Domestic groundwater bores present in area with unknown use, potentially irrigation or drinking water. Potential irrigation bores in Warringah Golf Course	Toxicity to certain agricultural crops via uptake of water.

Table 11: Summar	v of	potential	receptors	and	potential risks
	, .	potentiai	receptors	und	potential lisks

The rationale for the selection of GIL is in Table 12.

Table 12: Groundwater investigation level rationale

Receptor / beneficial use	GIL	Source	Comments / rationale
Aquatic ecosystem	DGV	ANZG (2018)	Freshwater 99% LOP for bioaccumulative contaminants 95% LOP for non-bioaccumulative contaminants
Aquatic ecosystem	DGV	НЕРА (2020)	Freshwater 99% LOP as recommended for potential bioaccumulation

Receptor / beneficial use	GIL	Source	Comments / rationale
			Screening values were only available for PFOS and PFOA at the time of this investigation.
Building occupants (vapour intrusion)	HSL	NEPC (2013)	2 m to <4 m
Recreational waters	GV	NHMRC (2008)	Based on the NHMRC (2022) values x10 (lower limit of recommended 10-20x) to account for ingestion of water whilst undertaking recreational activities. PFAS GV adopted as per NHMRC (2019) guidance note
Drinking water	GV	NHMRC (2022)	Health and aesthetic-based GV
Irrigation	LTV / STV	ANZECC (2000)	Generally applicable to particular crops and should be interpreted with caution in this regard.

Notes: DGV default guideline value % LOP percentage level of protection of species HSL health screening level GV guideline value LTV long term value (up to 100 years)

STV short term value (up to 20 years)

3.2 Groundwater investigation levels for aquatic ecosystems

The DGV for the protection of aquatic ecosystems derived from ANZG (2018) are in Table 13.

Table 13: Groundwater investigation levels for protection of aquatic ecosystems (µg/L)

Contaminant	Freshwater DGV 95% LOP	Notes
Metals / metalloids		
Arsenic	24 / 13	Levels provided for As III / As IV respectively. Moderate reliability.
Cadmium	0.2	Very high reliability.
Chromium (VI)	1	Chromium VI levels adopted as initial screen for total chromium. Very high reliability.
Copper	1.4	Very high reliability.
Lead	3.4	Moderate reliability.
Mercury (inorganic)	0.06	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.
Nickel	11	Low reliability.
Zinc	8	Very high reliability.

Contaminant	Freshwater DGV 95% LOP	Notes
BTEX		
Benzene	950	Moderate reliability.
Ethylbenzene	80	Unknown reliability.
m-Xylene	75	Unknown reliability.
o-xylene	350	Low reliability.
p-Xylene	200	Low reliability.
Toluene	180	Unknown reliability.
РАН		
Anthracene	0.01	99% LOP adopted as recommended due to potential for bioaccumulation. Unknown reliability.
Benzo(a)pyrene	0.1	99% LOP adopted as recommended due to potential for bioaccumulation. Unknown reliability.
Fluoranthene	1	99% LOP adopted as recommended due to potential for bioaccumulation. Unknown reliability.
Naphthalene	16	Low reliability.
Phenanthrene	0.6	99% LOP adopted as recommended due to potential for bioaccumulation. Unknown reliability.
Phenols		
Phenol	320	Moderate reliability.
Pentachlorophenol	3.6	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.
2,4,6-Trichlorophenol	3	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.
ОСР		
Aldrin	0.001	Unknown reliability and LOP.
Chlordane	0.03	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.
DDT	0.006	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.
Dieldrin	0.01	Unknown reliability and LOP.
Endosulfan	0.03	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.
Endrin	0.01	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.

Contaminant	Freshwater DGV 95% LOP	Notes
Heptachlor	0.01	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.
Methoxychlor	0.005	Unknown reliability and LOP.
ОРР		
Chlorpyrifos	0.01	Moderate reliability.
Diazinon	0.01	Moderate reliability.
Dimethoate	0.15	Low reliability.
Fenitrothion	0.2	Moderate reliability.
Malathion	0.05	Moderate reliability.
Parathion	0.004	Moderate reliability.
РСВ		
Aroclor 1242	0.3	99% LOP adopted as recommended due to potential for bioaccumulation. Low reliability.
Aroclor 1254	0.01	99% LOP adopted as recommended due to potential for bioaccumulation. Moderate reliability.
voc		
Tetrachloroethene (PCE)	70	Unknown reliability.
Trichloroethene (TCE)	330	Unknown reliability.
cis-1,2-dichloroethene (DCE)	700	Unknown reliability.
Chloroethene (vinyl chloride / VC)	100	Unknown reliability.
Tetrachloromethane (carbon tetrachloride / CT)	240	Unknown reliability.
Trichloromethane (chloroform / TCM)	370	99% LOP adopted as recommended to protect key species from chronic toxicity. Unknown reliability.

Notes: 95% LOP for non-bioaccumulative contaminants

99% LOP for bioaccumulative contaminants

The DGV for the protection of aquatic ecosystems derived from HEPA (2020) are in Table 14.

Table 14: Groundwater investigation levels for protection of aquatic ecosystems (µg/L)

Contaminant / LOP	Freshwater DGV
PFOS 99% LOP	0.00023
PFOA 99% LOP	19

3.3 Health screening levels for vapour intrusion

The HSL to evaluate potential vapour intrusion risks derived from NEPC (2013) are in Table 15.

Contaminant	HSL-D	Solubility limit
SAND	2 m to <4 m	-
Benzene	5000	59 000
Toluene	NL	61 000
Ethylbenzene	NL	3900
Xylenes	NL	21 000
Naphthalene	NL	170
TRH FI	6000	9000
TRH F2	NL	3000

Table 15: Groundwater health screening levels for vapour intrusion (µg/L)

Notes: TRH F1 is TRH C6-C10 minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

3.4 Groundwater investigation levels for recreational water

The GV for recreational water derived from NHMRC (2008) are in Table 16.

Table 16: Groundwater investigation levels for protection of recreational waters (µg/L)

Contaminant	Recreational water guideline values	
Metals / metalloids		
Arsenic	100	
Cadmium	20	
Chromium (VI)	500	
Copper	20000	
Lead	100	
Manganese	5000	
Mercury (inorganic)	10	
Nickel	200	
Zinc	30000 (aesthetic only)	
ВТЕХ		
Benzene	10	

Contaminant	Recreational water guideline values
Ethylbenzene	3000
Xylenes	6000
Toluene	8000
РАН	
Benzo(a)pyrene	0.1
Phenols	
Pentachlorophenol	100
ОСР	
Aldrin + Dieldrin	3
Chlordane	20
DDT	90
Endosulfan	200
Heptachlor	3
Methoxychlor	3000
OPP	
Chlorpyrifos	100
Diazinon	40
Dimethoate	70
Fenitrothion	70
Malathion	700
Parathion	200
PFAS	
PFOS + PFHxS*	2
PFOA	10
voc	
Tetrachloroethene (PCE)	500
cis-1,2-dichloroethene (DCE)	300
Chloroethene (vinyl chloride / VC)	3
Tetrachloromethane (carbon tetrachloride / CT)	30
Trichloromethane (chloroform / TCM)	2500
Physical properties / aesthetics	

Notes: * Includes PFOS only, PFHxS only and the sum of the two.

3.5 **Groundwater investigation levels for drinking water**

The GV for the drinking water derived from NHMRC, NRMMC (2022) are in Table 17.

Table 17: Groundwater investigation levels for drinking water (µg/L)

Contaminant	Drinking water guideline values
Metals / metalloids	L
Arsenic	10
Cadmium	2
Chromium (VI)	50
Copper	2000
Lead	10
Mercury (inorganic)	1
Nickel	20
Zinc	3000 (aesthetic only)
BTEX	
Benzene	1
Ethylbenzene	300
Xylenes	600
Toluene	800
РАН	
Benzo(a)pyrene	0.01
Phenols	
Pentachlorophenol	10
ОСР	
Aldrin + Dieldrin	0.3
Chlordane	2
DDT	9
Endosulfan	20
Heptachlor	0.3
Methoxychlor	300
ОРР	
Chlorpyrifos	10
Diazinon	4
Dimethoate	7

Contaminant	Drinking water guideline values
Fenitrothion	7
Malathion	70
Parathion	20
PFAS	
PFOS + PFHxS*	0.07
PFOA	0.56
voc	
Tetrachloroethene (PCE)	50
cis-1,2-dichloroethene (DCE)	30
Chloroethene (vinyl chloride / VC)	0.3
Tetrachloromethane (carbon tetrachloride / CT)	3
Trichloromethane (chloroform / TCM)	250
Iron	300 (aesthetic only)
рН	6.5-8.5 (aesthetic only) <4 and >11 (potential health impacts)
Total dissolved solids	600 mg/L (aesthetic only)

Notes: * Includes PFOS only, PFHxS only and the sum of the two.

3.6 Groundwater investigation levels for irrigation

The GV for irrigation derived from ANZECC (2000) are in Table 18.

Table 18: Groundwater investigation levels for irrigation (µg/L)

Contaminant	Short term irrigation value	Long term irrigation value
Metals / metalloids		
Arsenic	2000	100
Cadmium	50	10
Chromium (VI)	1000	100
Copper	-	200
Iron	5000	200
Lead	5000	2000
Mercury (inorganic)	2	2
Nickel	2000	200
Zinc	5000	2000

Contaminant	Short term irrigation value	Long term irrigation value
Nutrients / pH		
рН	6 - 8.5	6 – 8.5

Notes: Irrigation values are often based on specific crops, sensitive to the contaminant. Refer to guideline for further information.

4. References

ANZECC. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australia and New Zealand Environment and Conservation Council.

ANZG. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Canberra, ACT: Australian and New Zealand Governments and Australian state and territory governments.

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater*. Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NHMRC. (2008). Guidelines for Managing Risks In Recreational Water.

NHMRC. (2019). *Guidance on Per and Polyfluoroalkyl (PFAS) in Recreational Water*. National Health and Medical Research Council.

NHMRC, NRMMC. (2022). *Australian Drinking Water Guidelines 6 2011, Version 3.7.* Canberra: National Health and Medical Research Council, National Resource Management Ministerial Council.

Warne, M., Batley, G., van Dam, R., Chapman, J., Fox, D., Hickey, C., & Stauber, J. (2018). *Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants.* Canberra: Australian Government Department of Agriculture and Water Resources.

Appendix F

Results Summary Tables

Ø	Douglas
---	---------

Table F1: Summary of Soil Results

							Priority	metals					Priori	ty PAH				Priori	ity TRH			т	RH		В	TEX				
				Total Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Naphthalene ^b	Benzo(a) pyrene (B(a)P)	Benzo(a) pyrene TEQ (B(a) P TEQ)	Total PAH	TRH C6 - C10	ТКН -<00-С16	FI ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	TRH C6 - C9	TRH CIO-C36	Benzene	Toluene	Ethylbenzene	Total Xylenes	גן (ון tetrachloroethan e	1,1,1- trichloroethane	1,1,2,2-
			PQL	4	0.4	1	1	1	0.1	1	1	1	0.05	0.5	0.05	25	50	25	50	100	100	25	50	0.2	0.5	1	1	1	1	
Sample ID	Depth		Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg
	HIL D N	EPC 2013	1	3,000	900	3,600	240,000	1,500	730	6,000	400,000	-	-	40	4,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	HSL D (2-4 r	m) NEPC 2013		-	-	-	-	-	-	-	-	NL	-	-	-	-	-	370	-	-	-	-	-	3	NL	NL	NL	-	-	
	HSL D Direct Co	ontact NEPC 2013		-	-	-	-	-	-	-	-	11,000	-	-	-	-	-	26,000	20,000	27,000	38,000	-	-	430	99,000	27,000	81,000	-	-	
	HSL D Intrusive M	aintenance Work	ker	-		-	-	-	-	-	-	29,000	-	-	-	-	-	82,000	62,000	85,000	1,200,000	-	-	1,100	120,000	85,000	130,000	-	-	
	EIL D / ESL D	O NEPC (2013)		160	-	540	310	1,800	-	290	750	370	1	-	-	-	170	215	-	1,700	3,300	-	-	75	135	165	180	-	-	
	HEPA 2	020 HILD		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
HEPA 2	2020 EIL (direct exp	posure / indirect (exposure)	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Manager	nent Limit		-	-	-	-	-	-	-	-		-	-	-	700	7,000	-	-	3,500	10,000	-	-	-	-	-	-	-	-	
																														-
BH01	1.4 - 1.5 m	Sand	29/05/24	<4	<0.4	19	4	9	<0.1	3	12	<]	< 0.05	<0.5	< 0.05	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<]	<]	<]	<1	<
BH01	1.9 - 2 m	Sand	29/05/24	<4	<0.4	7	5	13	<0.1	2	18	<1	0.08	<0.5	0.2	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<]	<1	<]	<1	<
BH01	2.9 - 3 m	Sand	29/05/24	<4	<0.4	12	3	16	<0.1	4	12	<1	< 0.05	<0.5	<0.05	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<1	<1	
BH01	3.4 - 3.5 m	Sand	29/05/24	<4	<0.4	10	3	12	<0.1	3	6	<1	<0.05	<0.5	<0.05	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<1	<1	
BD1	0 m	Sand	28/05/24	<4	<0.4	1	<1	1	<0.1	<1	1	<1	-	-	-	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	-	-	
BH02	0.35 - 0.5 m	Fill	28/05/24	<8	<0.4	57	<1	4	<0.1	4	5	<1	<0.05	<0.5	<0.05	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<1	<1	-
		Sand	28/05/24	<4	<0.4	14	13	16	<0.1	9	19	<1	<0.05	<0.5	<0.05	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<1	<1	-
BH02	1.4 - 1.6 m			<4	<0.4	13	2	13	<0.1	4	15	<1	<0.05	<0.5	<0.05	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<1	<1	-
BH02	2.3 - 2.5 m	Sand	28/05/24		÷ (2	< 0.1	5	19	<1	< 0.05	<0.5	< 0.05	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<1	<1	1
	2.3 - 2.5 m 5.2 - 5.3 m	Sand	28/05/24	<4	<0.4	2	27			-					1															
BH02 BH02	2.3 - 2.5 m			<4 <4	<0.4 <0.4	2	5	10	<0.1	3	16		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
BH02 BH02 BH01 -	2.3 - 2.5 m 5.2 - 5.3 m	Sand	28/05/24		<0.4				<0.1	3		-	-		-	-	-	-			-			-		-		-		
BH02 BH02 BH01 -	2.3 - 2.5 m 5.2 - 5.3 m	Sand	28/05/24							3	16 7	-	- <0.05	- <0.5	- <1.55	-	-	- <25	- <50	- <100	- <100	- <25	- <250	- <0.2	- <0.5	-	- 3	-	-	

Lab result
HIL/HSL value EIL/ESL/EGV valu

📕 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📓 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance Red = EGV-indirect exceedance HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Not limiting NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level EGV = Environmental Guideline Value ML = Management Limit DC = Direct Contact HSL

Notes:

a QA/QC replicate of sample listed directly below the primary sample

- b Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL
- c EIL criteria applies to DDT only

Site Assessment Criteria (SAC):

DC

SAC based on generic land use thresholds for Commercial/ industrial D

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:									
HIL	HIL-D (NEPC, 2013 or HEPA, 2020 (PFAS only))	EGV							
HSL (vapour intrusion)	HSL-D (NEPC, 2013)	ESL							

- HSL-D (NEPC, 2013) ESL Commercial and Industrial (NEPC, 2013) Direct contact HSL D Commercial/Industrial (CRC CARE, 2011) ML Commercial and Industrial (NEPC, 2013)
 - EGV-Indir EGV, all land uses, Indirect exposure (HEPA, 2020)

EGV, all land uses, direct exposure (HEPA, 2020)

	1,1,2,2- tetrachloroethan e	1,1,2- trichloroethane	
	1	1	
	mg/kg	mg/kg	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
	ব	<1	
	<1	<1	
	<1	<1	
_	<1	<1	
	-	-	
_	<1	<1	
	<1	<1	

Table F1: Summary of Soil Results

1																										VOC									
				1,1- dichloroethane	1,1- Dichloroethene	1,1- dichloropropene	1,2,3- trichlorobenzene	1,2,3- trichloropropane	12,4- trichlorobenzene	1,2,4-trimethyl benzene	1,2-dibromo-3- chloropropane	1,2- dibromoethane	1,2- dichlorobenzene	1,2- dichloroethane	1,2- dichloropropane	1,3,5-trimethyl benzene	1,3- dichlorobenzene	1,3- dichloropropane	1,4- dichlorobenzene	2,2- dichloropropane	2-ch lorotol uene	4-chlorotoluene	4-isopropyl toluene	Bromobenzene	Bromochloromet hane	Bromodichlorom ethane	Bromoform	Bromomethane	carbon tetrachloride	Monochlorobenz ene	Chloroethane	Chloroform	Chloromethane	cis-1,2- dichloroethene	cis-1,3- dichloropropene
			PQL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sample ID	Depth		Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	HIL D NE	EPC 2013		-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	HSL D (2-4 m)	n) NEPC 2013		-	-		-					-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	HSL D Direct Con	ntact NEPC 2013		-	-		-					-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	HSL D Intrusive Mai	aintenance Worke	r	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	EIL D / ESL D I	NEPC (2013)		-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	HEPA 202	20 HILD		-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HEPA	2020 EIL (direct expo	osure / indirect ex	:posure)	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Manageme	nent Limit		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH01	1.4 - 1.5 m	Sand																																	
BH01			29/05/24	<]	<]	<1	<1	<]	<]	<]	<]	<]	<1	<1	<1	<1	<1	<1	<1	<1	<1	<]	<]	<1	<1	<1	<1	<1	<1	<1	<1	ব	<1	<1	<1
	1.9 - 2 m	Sand	29/05/24 29/05/24	<1 <1	ব ব	<1 <1	<1 <1	<1 <1	ব ব	ব ব	ব ব	ব ব	ব ব	া ব	ব ব	<1 <1	ব ব	<1	ব ব	ব ব	ব ব	ব ব	ব ব	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	ব ব	ব ব	ব ব	ব ব	ব ব	<1	ব ব
BH01	1.9 - 2 m 2.9 - 3 m																																		
BH01 BH01		Sand	29/05/24	<1	<1	<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH01 BD1	2.9 - 3 m 3.4 - 3.5 m 0 m	Sand Sand Sand Sand	29/05/24 29/05/24 29/05/24 28/05/24	ব ব ব -	ন ব ব ব	ব ব ব -	ন ব ব -	ব ব ব -	ব ব ব -	ব ব ব -	ন ন ন ন	ा रा रा -	ব ব ব -	া া া -	ন ব ব -	<1 <1 <1 -	ব ব ব -	ব ব ব -	ব ব ব -	ব ব ব -	ব ব ব -	ন ন ন -	ন ন ন -	<1 <1 <1 -	ব ব ব -	ব ব ব -	<1 <1 <1 -	ব ব ব -	ব ব ব -	ব ব ব -	ব ব ব -	ন ব ব ব -	ন ব ব ব -	ব ব ব -	ব ব ব -
BH01 BD1 BH02	2.9 - 3 m 3.4 - 3.5 m 0 m 0.35 - 0.5 m	Sand Sand Sand Sand Fill	29/05/24 29/05/24 29/05/24 28/05/24 28/05/24	ব ব ব - ব	ন ব ব - - ব	ব ব - - ব	ব ব ব ব - ব	ব ব ব - ব	ব ব ব - ব	ব ব ব - ব	ব ব ব	ন ব ব	ব ব ব - ব	ব ব ব - ব	ন ব ব -	ব ব ব - ব	ব ব ব - -	ব ব ব - ব	ব ব ব - ব	ব ব ব -	ব ব - -	ব ব ব - ব	ন ব ব - ব	ব ব ব - ব	ব ব ব - ব	ব ব ব - ব	ব ব ব - ব	ব ব ব -	ব ব ব - ব	ব ব ব - ব	ব ব ব - ব	।	ন ব ব	ব ব ব - ব	ব ব ব - ব
BH01 BD1 BH02 BH02	2.9 - 3 m 3.4 - 3.5 m 0 m 0.35 - 0.5 m 1.4 - 1.6 m	Sand Sand Sand Sand Fill Sand	29/05/24 29/05/24 29/05/24 28/05/24 28/05/24 28/05/24	ব ব ব - ব ব ব	ব ব ব - - - - - - - - - - - - - - - - -	ব ব ব - ব ব	ন ব ব ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব	ব ব ব - ব ব ব	। 	त	ব ব ব - ব ব	ব ব ব - ব ব ব	े त त - - - - - - - - - - - - - -	ব ব ব - ব ব	ব ব ব - ব ব ব	4 4 4 - 4 4 4	ব ব ব - ব ব	ব ব ব - ব ব	ব ব ব - ব ব	ব ব ব - ব ব ব ব	य य य - य य य	ব ব ব - ব ব ব	ব ব ব - ব ব	ব ব ব - ব ব ব	ব ব ব - ব ব ব	ব ব ব - ব ব ব	ব ব ব - ব ব	ব ব ব - ব ব ব	<1		- - - - -	ব ব ব - ব ব ব	ব ব ব - ব ব
BH01 BD1 BH02 BH02 BH02	2.9 - 3 m 3.4 - 3.5 m 0 m 0.35 - 0.5 m 1.4 - 1.6 m 2.3 - 2.5 m	Sand Sand Sand Fill Sand Sand	29/05/24 29/05/24 29/05/24 28/05/24 28/05/24 28/05/24 28/05/24 28/05/24	ব ব ব - ব ব ব ব	ব ব ব ব ব ব ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব ব - ব ব ব ব	<1	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	र र र र र र र र	े त त न - त त	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব ব	े - - - - - - - - - - - - - - - - - - -	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	4 4 4 - 4 4 4 4	ব ব ব - ব ব ব ব	ব ব ব - - - - - - - - - - - - - - - - -	ব ব ব - ব ব ব ব	ব ব ব ব - - - - - - - - - - - - - - - -	त त त - - - - - - - - - - - - - - - - -	ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	<1	<1		- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	ব ব ব - - ব ব ব ব ব	ব ব ব - ব ব ব
BH01 BD1 BH02 BH02	2.9 - 3 m 3.4 - 3.5 m 0 m 0.35 - 0.5 m 1.4 - 1.6 m 2.3 - 2.5 m 5.2 - 5.3 m	Sand Sand Sand Fill Sand Sand Sand Sand	29/05/24 29/05/24 29/05/24 28/05/24 28/05/24 28/05/24 28/05/24 28/05/24 28/05/24	ব ব ব - ব ব ব	ব ব ব - - - - - - - - - - - - - - - - -	ব ব ব - - - - - - - - - - - - - - - - -	ন ব ব ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব	ব ব ব - ব ব ব	। 	त	ব ব ব - ব ব	4 4 - 4 4 4 4 4 4		4 4 - 4 4 4 4 4	<td< td=""><td>4 4 - 4 - 4 - 4 4 4 4 4 4 4</td><td>4 4 - 4 - 4 4 4 4 4</td><td><td< td=""><td><td< td=""><td>- - <t< td=""><td>4 4 4 4 4 4 4 4 4</td><td><1</td> <1</t<></td> <1</td<></td> <1</td<></td> <1</td<>	4 4 - 4 - 4 - 4 4 4 4 4 4 4	4 4 - 4 - 4 4 4 4 4	<td< td=""><td><td< td=""><td>- - <t< td=""><td>4 4 4 4 4 4 4 4 4</td><td><1</td> <1</t<></td> <1</td<></td> <1</td<>	<td< td=""><td>- - <t< td=""><td>4 4 4 4 4 4 4 4 4</td><td><1</td> <1</t<></td> <1</td<>	- - <t< td=""><td>4 4 4 4 4 4 4 4 4</td><td><1</td> <1</t<>	4 4 4 4 4 4 4 4 4	<1	4 4 - 4 4 4 4 4		ব ব ব - ব ব ব	<td< td=""><td>4 4 - 4 4 4 4 4 4</td><td>ব ব ব - ব ব ব</td><td><1</td> <1</td<>	4 4 - 4 4 4 4 4 4	ব ব ব - ব ব ব	<1		4 4	- -	4 4 - 4 4 4 4 4
BH01 BD1 BH02 BH02 BH02 BH02 BH02	2.9 - 3 m 3.4 - 3.5 m 0 m 0.35 - 0.5 m 1.4 - 1.6 m 2.3 - 2.5 m	Sand Sand Sand Fill Sand Sand	29/05/24 29/05/24 29/05/24 28/05/24 28/05/24 28/05/24 28/05/24 28/05/24	ব ব ব - ব ব ব ব	ব ব ব ব ব ব ব ব ব ব	ব ব ব - ব ব ব ব	े त त - - - - - - - - - - - - - - - - -	<1	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	र र र र र र र र	े त त न - त त	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব ব	े - - - - - - - - - - - - - - - - - - -	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	4 4 4 - 4 4 4 4	ব ব ব - ব ব ব ব	ব ব ব - - - - - - - - - - - - - - - - -	ব ব ব - ব ব ব ব	ব ব ব ব - - - - - - - - - - - - - - - -	त त त - - - - - - - - - - - - - - - - -	ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব ব	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	<1	<1		- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	ব ব ব - - ব ব ব ব ব	ব ব ব - ব ব ব
BH01 BD1 BH02 BH02 BH02 BH02 BH01-	2.9 - 3 m 3.4 - 3.5 m 0 m 0.35 - 0.5 m 1.4 - 1.6 m 2.3 - 2.5 m 5.2 - 5.3 m	Sand Sand Sand Fill Sand Sand Sand Sand	29/05/24 29/05/24 29/05/24 28/05/24 28/05/24 28/05/24 28/05/24 28/05/24 28/05/24	ব ব ব - ব ব ব ব	ব ব ব ব ব ব ব ব ব ব	ব ব ব - ব ব ব ব	े त त - - - - - - - - - - - - - - - - -	<1	ব ব ব - ব ব ব ব	ব ব ব - ব ব ব ব	र र र र र र र र	े त त न - त त	ব ব ব - ব ব ব ব	4 4 - 4 4 4 4 4 4		4 4 - 4 4 4 4 4	<td< td=""><td>4 4 - 4 - 4 - 4 4 4 4 4 4 4</td><td>4 4 - 4 - 4 4 4 4 4</td><td><td< td=""><td><td< td=""><td>- - <t< td=""><td>4 4 4 4 4 4 4 4 4</td><td><1</td> <1</t<></td> <1</td<></td> <1</td<></td> <1</td<>	4 4 - 4 - 4 - 4 4 4 4 4 4 4	4 4 - 4 - 4 4 4 4 4	<td< td=""><td><td< td=""><td>- - <t< td=""><td>4 4 4 4 4 4 4 4 4</td><td><1</td> <1</t<></td> <1</td<></td> <1</td<>	<td< td=""><td>- - <t< td=""><td>4 4 4 4 4 4 4 4 4</td><td><1</td> <1</t<></td> <1</td<>	- - <t< td=""><td>4 4 4 4 4 4 4 4 4</td><td><1</td> <1</t<>	4 4 4 4 4 4 4 4 4	<1	4 4 - 4 4 4 4 4		ব ব ব - ব ব ব ব ব	<td< td=""><td>4 4 - 4 4 4 4 4 4</td><td><1</td> <1</td<>	4 4 - 4 4 4 4 4 4	<1	<1		4 4	- -	4 4 - 4 4 4 4 4

Lab result
HIL/HSL value EIL/ESL/EGV value

🗧 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📓 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance Red = EGV-indirect exceedance HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Not limiting NAD = No Asbestos detected

HL = Health investigation level HSL = Health screening level (excluding DC) EL = Ecological investigation level ESL = Ecological screening level EGV = Environmental Guideline Value ML = Management Limit DC = Direct Contact HSL

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL
- C EIL criteria applies to DDT only

Site Assessment Criteria (SAC):

SAC based on generic land use thresholds for Commercial/industrial D

HIL	HIL-D (NEPC, 2013 or HEPA, 2020 (PFAS only))	EGV	EGV, all land uses, direct exposure (HEPA, 2020)
HSL (vapour intrusion)	HSL-D (NEPC, 2013)	ESL	Commercial and Industrial (NEPC, 2013)
DC	Direct contact HSL D Commercial/Industrial (CRC CARE, 2011)	ML	Commercial and Industrial (NEPC, 2013)
		EGV-Indir	EGV, all land uses, Indirect exposure (HEPA, 2020)

Table F1: Summary of Soil Results

																					Priority phenol					Priority OCP				
				Cyclohexane	dibromochlorom ethane	Dibromethan e	Dichlorodifluoro methane	hexachlorobutadi ene	Isopropylbenzene (cumene)	n-butyl benzene	n-propyl benzene	sec-butyl benzene	Styrene (vinylbenzene)	Tert-butyl benzene	tetrachloroethen e	trans-1,2- dichloroethene	trans-1,3- dichloropropene	1,1,2- trichloroethylene	Trichlorofluorom ethane	Vinyl Chloride	Total Phenolics	DDT+DDE+DDD ^C	Aldrin + Dieldrin	Total Chlordane	Total Endosulfan	Endrin	Heptachlor	Hexachlorobenze ne	Methoxychlor	
			PQL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Sample ID	Depth		Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
	HIL D N	IEPC 2013		-	-	-	-	-	-	-	-		-	-	-		-		-	-	660	3,600	45	530	2,000	100	50	80	2,500	
	HSL D (2-4 r	m) NEPC 2013		-			-		-	-	-		-	-	-		-	-	-	-		-	-		-	-	-	- 1	-	
	HSL D Direct Co	ontact NEPC 2013		-	-	-	-	-	-	-	-		-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	
F	ISL D Intrusive M	aintenance Work	er	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	
	EIL D / ESL D	D NEPC (2013)		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	640	-	-	-	-	-	-	-	
	HEPA 2	020 HILD		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
HEPA 20	020 EIL (direct exp	posure / indirect of	exposure)	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Manager	ment Limit		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
							Re	sults																						
							Current In	vestigation																						
BH01	1.4 - 1.5 m	Sand	29/05/24	<]	<1	<]	<1	<]	<]	<1	<1	<]	<1	<1	<1	<]	<1	<1	<1	<1	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
BH01	1.9 - 2 m	Sand	29/05/24	<]	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	-	-	-	-	-	-	-	-	
BH01	2.9 - 3 m	Sand	29/05/24	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		-	-		-	-	-	· ·	-	
BH01	3.4 - 3.5 m	Sand	29/05/24	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		-	-	-	-	-	-		-	
BD1	0 m	Sand	28/05/24	-	-		-	•	-	•	-	•	-	-	•	•	-	-	-	-	•	-	-	-	-	-	-	-	-	
BH02	0.35 - 0.5 m	Fill	28/05/24	্য ব	ব	ব	ব	ব	ব	ব	ব	ব	<1	<1	ব	ব	ব ব	ব	ব ব	ব	<5 <5	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	-
BH02 BH02	1.4 - 1.6 m 2.3 - 2.5 m	Sand	28/05/24 28/05/24	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<	<1	<1	<1	<1	<1	-	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	-
BH02 BH02	5.2 - 5.3 m	Sand	28/05/24	<	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	1	<1	<1	-	-	-	-	-	-	-		-	-
BH01 - [TRIPLICATE]	1.4 - 1.5 m	Sand	29/05/24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
						1	Douglas 2	018 Results	1																				.1	
755	0.9-1	Fill	2/05/2013	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<5	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	
			-			1		1	1	1	1								1							-		+/	<0.1	1

Lab result /HSL value EIL/ESL/EGV value

🗧 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

📕 Indicates that asbestos has been detected by the lab, refer to the lab report 📕 Blue = DC exceedance Red = EGV-indirect exceedance 🗌 HSL 0-41 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Not limiting NAD = No Asbestos detected

HL= Health investigation level HSL= Health screening level (excluding DC) EIL= Ecological investigation level ESL= Ecological screening level EGV= Environmental Guideline Value ML= Management Limit DC = Direct Contact HSL

а

QA/QC replicate of sample listed directly below the primary sample Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL EIL criteria applies to DDT only b

с

Site Assessment Criteria (SAC):

SAC based on generic land use thresholds for Commercial/ industrial D Refer to the S

the SAC	section of report for information of SAC sources and r	ationale. Summary information as follows:		
	HIL	HIL-D (NEPC, 2013 or HEPA, 2020 (PFAS only))	EGV	EGV, all land uses, direct exposure (HEPA, 2020)
	HSL (vapour intrusion)	HSL-D (NEPC, 2013)	ESL	Commercial and Industrial (NEPC, 2013)
	DC	Direct contact HSL D Commercial/Industrial (CRC CARE, 2011)	ML	Commercial and Industrial (NEPC, 2013)

EGV-Indir EGV, all land uses, Indirect exposure (HEPA, 2020)

Mirex	
0.1	
mg/kg	
100	
-	
-	
-	
-	
-	
-	
-	
<0.1	
-	
-	
-	
-	
<0.1	
<0.1	
-	
-	
<0.1	1
<0.1	

			ults																							
						0	СР			Priority OPP								OPP								PC
				Heptachlor Epoxide	Endrin Aldehyde	alpha-BHC	beta-BHC	delta-BHC	Lindane	Chlorpyriphos	Azinphos methyl (Guthion)	Bromophos-ethyl	Chlorpyriphos- methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Ronnel (fenchlorphos)	Fenitrothion	Fenthion	Malathion	Parathion	Parathion-methyl	Methidathion	Fenamiphos	Total DCB
			PQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	C
Sample ID	Depth	1	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	m
	HIL D N	EPC 2013	I	-	-	-	-	-	-	2,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
HSL D (2-4 m) NEPC 2013				- 1		-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	
HSL D Direct Contact NEPC 2013						-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	
HSL D Intrusive Maintenance Worker			er	-	-	-	-	-	-	-	-					-	-	-	-	-	-	-	-	-	-	
EIL D / ESL D NEPC (2013)				-	-	-	-	-	-	-	-					-	-	-	-	-	-	-	-	-	-	
HEPA 2020 HILD				-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	
HEPA 2020 EIL (direct exposure / indirect exposure)			exposure)	-	-	-	-	-	-		-	-		-		-	-	-	-	-	-	-	-	-	-	
Management Limit					-	-	-	-	-	-	-					-	-	-	-	-	-	-	-	-	-	
BH01 BH01 BH01 BH01 BD1 BH02 BH02	1.4-1.5 m 1.9-2 m 2.9-3 m 3.4-3.5 m 0.35-0.5 m	Sand Sand Sand Sand Sand Fill	29/05/24 29/05/24 29/05/24 29/05/24 28/05/24 28/05/24 28/05/24	<0.1 - - - - - - - - - - - - -	<0.1 - - - - - - - - - - - - -	<0.1 - - - - - - - - - - - - - - - - - - -																				
BH02 BH02	1.4 - 1.6 m	Sand	28/05/24 28/05/24	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	
BHU2	2.3 - 2.5 m 5.2 - 5.3 m	Sand	28/05/24	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
BH02		Sand	29/05/24	-	-	-	-	-	-	-	-					-	-	-	-	-	-		-		-	
BH01 -	1.4 - 1.5 m																									
BH01 -	1.4 - 1.5 m		1		ı																					
BH02 BH01 - RIPLICATE1 755	1.4 - 1.5 m 0.9-1	Fill	2/05/2013		-	-	-	-	-	· · ·	-					-	-	-	-	-	-	-	-	-	-	

Lab result HSL value EIL/ESL/EGV value

📒 HIL/HSL exceedance 📕 EIL/ESL exceedance 📒 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

📕 Indicates that asbestos has been detected by the lab, refer to the lab report 📕 Blue = DC exceedance Red = EGV-indirect exceedance 🗌 HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Not limiting NAD = No Asbestos detected

HIL = Health investigation level H5L = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level EGV = Environmental Guideline Value ML = Management Limit DC = Direct Contact H5L

- QA/QC replicate of sample listed directly below the primary sample а
- b Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL
- с EIL criteria applies to DDT only

Site Assessment Criteria (SAC):

SAC based on generic land use thresholds for Commercial/industrial D

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:										
	HIL	HIL-D (NEPC, 2013 or HEPA, 2020 (PFAS only))	EGV	EGV, all land uses, direct exposure (HEPA, 2020)						
	HSL (vapour intrusion)	HSL-D (NEPC, 2013)	ESL	Commercial and Industrial (NEPC, 2013)						
	DC	Direct contact HSL D Commercial/Industrial (CRC CARE, 2011)	ML	Commercial and Industrial (NEPC, 2013)						

- Commercial and Industrial (NEPC, 2013) ESL ML Commercial and Industrial (NEPC, 2013)
- EGV-Indir EGV, all land uses, Indirect exposure (HEPA, 2020)
| | | | | Priority PFAS | | | PF | AS | Abestos in 4 | 40 g Sample | | | | Å | Asbestos (FA/A | F) | | | | pH, EC a | and CEC | Add | ditional PhysCh | iem |
|--|-----------------|------------------------|---------|---------------|---------|---------|---------|---------|---------------------------------|------------------------|---------------------|------------------------|-------------------------|-------------------------|---------------------------------|---------------------------------|--------------------------|------------------|---------------------|------------------|---|--------------------|-----------------|----------|
| | | Total Positive
PFAS | PFOA | PFOS + PFHXS | PFOS | PFHXS | 62 FTS | 8.2 FTS | Asbestos ID in
soll >0.1g/kg | Trace Analysis
(AS) | Asb_Sample_mas
s | ACM >7mm
Estimation | FA and AF
Estimation | FA and AF
Estimation | Asbestos ID in
soll >0.1g/kg | Asbestos ID in
soll <0.ìg/kg | Trace Analysis
(NEPC) | Total Asbestos#1 | Asbestos
Summary | pH 1:5 soliwater | Electrical
Conductivity 1:5
soll:wate r | Moisture | Chloride | Sulphate |
| | PQL | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | | | | | | 0.001 | | | | 0.1 | 0.1 | | 1 | 1000 | 10 | 10 |
| ample ID Depth | Sample Date | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | - | - | g | g | g | %(w/w) | - | - | - | g/kg | | pH Units | µs/cm | mg/kg | mg/kg | mg/k |
| HIL D NEPC 2013 | | - | | - | | | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - |
| HSL D (2-4 m) NEPC 20 | 13 | - | - | - | | - | - | - | - | - | - | - | - | 0.001 | - | - | - | - | - | | - | - | - | - |
| HSL D Direct Contact NEP | 2013 | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - |
| HSL D Intrusive Maintenance | Worker | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| EIL D / ESL D NEPC (20 | 3) | - | - | - | | - | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - |
| HEPA 2020 HILD | | - | 50 | 20 | - | - | - | - | - | - | | | - | - | - | - | - | - | - | - | - | - | - | - |
| HEPA 2020 EIL (direct exposure / inc | irect exposure) | - | 10 / NC | - | 1/0.01 | NC/ NC | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Management Limit | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| BH01 1.4 - 1.5 m San | | - | - | - | - | - | - | - | - | - | 820.84 | - | - | <0.001 | NAD | NAD | NAD | <0.1 | - | 6.7 | 58 | 200,000 | <10 | 2 |
| BH01 1.9 - 2 m San | | - | - | - | - | - | - | - | - | - | 334.65
474.4 | - | - | <0.001 | NAD
NAD | NAD
NAD | NAD | <0.1 | - | - | - | 190,000
390,000 | - | |
| BH01 2.9 - 3 m San
BH01 3.4 - 3.5 m San | | - | - | - | - | - | - | - | - | - | 138.71 | - | - | <0.001 | NAD | NAD | NAD | <0.1 | - | 6.4 | 81 | 390,000 | 10 | 7 |
| BD1 0 m San | | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 180,000 | - | |
| BH02 0.35 - 0.5 m Fill | | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0002 | NAD | NAD | - | - | - | - | - | - | - | - | - | - | - | 180,000 | - | |
| BH02 1.4 - 1.6 m San | 28/05/24 | - | - | - | - | - | - | - | - | - | 699.96 | - | - | <0.001 | NAD | NAD | NAD | <0.1 | - | - | - | 230,000 | - | |
| BH02 2.3 - 2.5 m San | i 28/05/24 | - | - | - | - | - | - | - | - | - | 562.14 | - | - | <0.001 | NAD | NAD | NAD | <0.1 | - | - | - | 320,000 | - | |
| BH02 5.2 - 5.3 m San | a 28/05/24 | - | - | - | - | - | - | - | - | - | 203.8 | - | - | <0.001 | NAD | NAD | NAD | <0.1 | - | 5.3 | 190 | 160,000 | <10 | 3 |
| | 29/05/24 | | - | 1 | | | | | | | | | | | | | | | | | | | | 1 |

Lab result HIL/HSL value EIL/ESL/EGV value

🗧 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📓 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

📕 Indicates that asbestos has been detected by the lab, refer to the lab report 📕 Blue = DC exceedance Red = EGV-indirect exceedance 🗌 HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Not limiting NAD = No Asbestos detected

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level EGV = Environmental Guideline Value ML = Management Limit DC = Direct Contact HSL

Notes:

a QA/QC replicate of sample listed directly below the primary sample

- b Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL
- c EIL criteria applies to DDT only

Site Assessment Criteria (SAC):

SAC based on generic land use thresholds for Commercial/ industrial D

Refer to the SAC	section of report for information of SAC sources and	rationale. Summary information as follows:		
	HIL	HIL-D (NEPC, 2013 or HEPA, 2020 (PFAS only))	EGV	EGV, all land uses, direct exposure (HEPA, 2020)
	HSL (vapour intrusion)	HSL-D (NEPC, 2013)	ESL	Commercial and Industrial (NEPC, 2013)
	DC	Direct contact HSL D Commercial/Industrial (CRC CARE, 2011)	ML	Commercial and Industrial (NEPC, 2013)

ML	Commercial and Industrial (NEPC, 2013)
EGV-Indir	EGV, all land uses, Indirect exposure (HEPA, 2020)

Table F2: Summary of Laboratory Results - Waste Classification

						Met	als			т	RH		В	TEX		P	AH	Phenols		c	CP		OPP	РСВ
				Total Arsenic	Cadmium	Total Chromium	Lead	Mercury (inorganic)	Nickel	ТКН С6 - С9	TRH CIO-C36	Benzene	Toluene	Ethylbenzene	Total Xylenes	Benzo(a)pyrene (B(a)P)	Total PAH	Total Phenolics	Scheduled Chemical Waste (standard)	Total Endosulfan	Total Analysed OCP	Mirex	Total Analysed OPP	Total PCB
			PQL	4	0.4	1	1	0.1	1	25	50	0.2	0.5	1	1	0.05	0.05	5	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID	Depth		Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH01	1.4 - 1.5 m	Sand	29/05/24	<4	<0.4	19	9	<0.1	3	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	0.2
BH01 BH01	1.4 - 1.5 m 1.9 - 2 m	Sand	29/05/24	<4	<0.4	7	13	<0.1	2	<25	<50	<0.2	<0.5	<1	<1	0.08	0.03	-	-	-	-	-		-
BH01	2.9 - 3 m	Sand	29/03/24	<4	<0.4	12	16	<0.1	4	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	-	-	-	-	-
BH01	3.4 - 3.5 m	Sand	29/05/24	<4	<0.4	10	12	<0.1	3	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	-	-	-	-	-
BD1	0 m	Sand	28/05/24	<4	<0.4	1	1	<0.1	<]	<25	<50	<0.2	<0.5	<]	<]	-	-	-	-	-	-	-	-	-
BH02	0.35 - 0.5 m	Fill	28/05/24	<8	<0.4	57	4	<0.1	4	<25	<50	<0.2	<0.5	<1	<1	< 0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH02	1.4 - 1.6 m	Sand	28/05/24	<4	<0.4	14	16	<0.1	9	<25	<50	<0.2	<0.5	<]	<]	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	0.4
BH02	2.3 - 2.5 m	Sand	28/05/24	<4	<0.4	13	13	<0.1	4	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	-	-	-	-	-
BH02	5.2 - 5.3 m	Sand	28/05/24	<4	<0.4	2	2	<0.1	5	<25	<50	<0.2	<0.5	<]	<]	<0.05	<0.05	-	-	-	-	-	-	-
BH01 - [TRIPLICATE]	1.4 - 1.5 m	Sand	29/05/24	<4	<0.4	9	10	<0.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
755	0.9-1	Fill	2/05/2013	6	<0.4	6	3	<0.1	2	<25	<250	<0.2	<0.5	<]	<3	<0.05	<1.55	-	-	<0.3	<2	<0.1	-	<0.7
757	0.5-0.7	Fill	2/05/2013	<4	<0.4	20	13	<0.1	6	<25	<250	<0.2	<0.5	<]	<3	0.06	0.06	-	-	<0.3	<2	<0.1	-	<0.7
	CT	п		100	20	100	100	4	40	650	10,000	10	288	600	1000	0.8	200	288	<50	60	-	-	4	<50
	SC	C1		500	100	1,900	1,500	50	1,050	650	10,000	18	518	1,080	1,800	10	200	518	<50	108	-	-	7.5	<50
	TCL	_P1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	CT	12		400	80	400	400	16	160	2,600	40,000	40	1,152	2,400	4,000	3.2	800	1,152	<50	240	-	-	16	<50
	SC	C2		2,000	400	7,600	6,000	200	4,200	2,600	40,000	72	2,073	4,320	7,200	23	800	2,073	<50	432	-	-	30	<50
	TCL	P2		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	NEPC	(1999)		1-50	1	5-1000	2-200	0.03	5-500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ANZECO	C (1992)		0.2-30	0.04-2	0.5-110	<2-200	0.001-0.1	2-400	-	-	0.05 - 1	0.1 - 1	-	-	-	0.95-5	0.03-0.5	-	-	<0.001-<0.97	-	-	0.02-0.1
	ANZECC	2 (2000)		1-53	0.016-0.78	2.5-673	2-81		1-517	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

🗌 CTI exceedance 🔲 TCLP1 and/or SCC1 exceedance 🗌 CT2 exceedance 🔲 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection

- = Not tested, no criteria or not applicable NAD = no asbestos detected

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Total chromium used as initial screen for chromium(VI).
- c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen
- f NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste
- PQL Practical quantitation limit
- CTI Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste
- SCC1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- TCLP1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- CT2 Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste
- SCC2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
- TCLP2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

											voc									PF	AS		Asbestos in	40 g Sample
				carbon tetrachloride	Monochlorobenz ene	Chloroform	1,2- dichlorobenzene	1,4- dichlorobenzene	1,2- dichloroethane	ן,ו Dichloroethene	Styrene (vinylbenzene)	ו,ו,ו,2- tetrachloroethan e	1,1,2,2- tetrachloroethan e	tetrachloroethen e	1,1,1- trichloroethane	1,1,2- trichloroethane	1,1,2- trichloroethylene	Vinyl Chloride	PFOA	TCLP PFOA	PFOS + PFHxS	TCLP PFOS + PFHXS	Asbestos ID in soil >0.1g/kg	Trace Analysis (AS)
			PQL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.0001	0.00001	0.0001	0.00001		
Sample ID	Depth		Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/L	-	-
					1	Current Result	ts	1		1	1	1		1						L	1			
BH01	1.4 - 1.5 m	Sand	29/05/24	<]	<1	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<1	<1	<]	-	-	-	-	-	-
BH01	1.9 - 2 m	Sand	29/05/24	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	-	-	-	-	-	-
BH01	2.9 - 3 m	Sand	29/05/24	<]	<]	<]	<]	<]	<1	<1	<]	<1	<]	<1	<]	<1	<]	<1	-	-	-	-	-	-
BH01	3.4 - 3.5 m	Sand	29/05/24	<]	<]	<1	<1	<]	<1	<1	<]	<1	<1	<1	<1	<1	<1	<]	-	-	-	-	-	-
BD1	0 m	Sand	28/05/24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02	0.35 - 0.5 m	Fill	28/05/24	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<0.0001	<0.00001	<0.0001	<0.00001	NAD	NAD
BH02	1.4 - 1.6 m	Sand	28/05/24	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	-	-	-	-	-	-
BH02	2.3 - 2.5 m	Sand	28/05/24	<]	<]	<1	<]	<]	<]	<1	<1	<1	<]	<1	<]	<]	<]	<1	-	-	-	-	-	-
BH02	5.2 - 5.3 m	Sand	28/05/24	<]	<]	<]	<]	<]	<1	<1	<1	<1	<]	<1	<]	<1	<]	<1	-	-	-	-	-	-
BH01 - [TRIPLICATE]	1.4 - 1.5 m	Sand	29/05/24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					Do	uglas 2018 Res	ults																	
755	0.9-1	Fill	2/05/2013	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NAD	NAD
757	0.5-0.7	Fill	2/05/2013	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NAD	NAD
					Waste	Classification (Criteria ^f	1			1	1					·		1	1		1		
	CT			10	2,000	120	86	150	10	14	60	200	26	14	600	24	10	4	-	-	-	-	-	-
	SC			18	3,600	126	155	270	18	25	108	360	46.8	25.2	1,080	43.2	18	7.2	18	-	1.8	-	-	-
	TCL			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.5	-	0.05	-	-
	CT			40	8,000	480	344	600	40	56	240	800	104	56	2,400	96	40	16	-	-	-	-	-	-
	SCO			72	14,400	864	620	1,080	72	100	432	1,440	187.2	100.8	4,320	172.8	72	28.8	72	-	7.2	-	-	-
	TCL	.PZ		-	- Backer	- ound Ranges f		-	-	-	-	-	-	-	-	-	-	-	-	2	-	0.2	-	-
	NEPC ((1000)			Backgr	ound Ranges f		-	-	-	-			-		-	-	-	-	-	-	-		-
	ANZECC	· ,		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ANZECC	. ,		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	,	(_300)		•	-	-		-	-	-	-	-		-		-		-	-	-	-	-	-	

🗌 CTI exceedance 📕 TCLPI and/or SCCI exceedance 🗌 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection

- = Not tested, no criteria or not applicable NAD = no asbestos detected

Notes:

a QA/QC replicate of sample listed directly below the primary sample

b Total chromium used as initial screen for chromium(VI).

c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)

d Criteria for scheduled chemicals used as an initial screen

e Criteria for Chlorpyrifos used as initial screen

f NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste

PQL Practical quantitation limit

CTI Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

SCCI Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

TCLP1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

CT2 Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste

SCC2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

TCLP2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Table F2: Summary of Laboratory Results - Waste Classification

							Asbe	stos in 500 ml	AFFA			
				Asbestos ID in soil >0.1g/kg	Asbestos ID in soil <0.1g/kg	Trace Analysis (NEPC)	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Total Asbestos#1	Asbestos Comment	Asbestos Summary
			PQL						0.001	0.1		0.001
Sample ID	Depth		Sample Date	-	-	-	g	g	%(w/w)	g/kg	-	
BH01	1.4 - 1.5 m	Sand	29/05/24	NAD	NAD	NAD	-	-	<0.001	<0.1	Nil	-
BH01	1.9 - 2 m	Sand	29/05/24	NAD	NAD	NAD	-	-	<0.001	<0.1	Nil	-
BH01	2.9 - 3 m	Sand	29/05/24	NAD	NAD	NAD	-	-	<0.001	<0.1	Nil	-
BH01	3.4 - 3.5 m	Sand	29/05/24	NAD	NAD	NAD	-	-	<0.001	<0.1	Nil	-
BD1	0 m	Sand	28/05/24	-	-	-	-	-	-	-	-	-
BH02	0.35 - 0.5 m	Fill	28/05/24	-	-	-	-	-	-	-	Nil	-
BH02	1.4 - 1.6 m	Sand	28/05/24	NAD	NAD	NAD	-	-	<0.001	<0.1	Nil	-
BH02	2.3 - 2.5 m	Sand	28/05/24	NAD	NAD	NAD	-	-	<0.001	<0.1	Nil	-
BH02	5.2 - 5.3 m	Sand	28/05/24	NAD	NAD	NAD	-	-	<0.001	<0.1	Nil	-
BH01 - [TRIPLICATE]	1.4 - 1.5 m	Sand	29/05/24	-	-	-	-	-	-	-	-	-
755	0.9-1	Fill	2/05/2013	-	-	-	-	-	-	-	-	-
757	0.5-0.7	Fill	2/05/2013	-	-	-	-	-	-	-	-	-
	C	П		-	-	-	-	-	-	-	-	-
	SC	C1		-	-	-	-	-	-	-	-	-
	TCI			-	-	-	-	-	-	-	-	-
	CT	2		-	-	-	-	-	-	-	-	-
	SC	C2		-	-	-	-	-	-	-	-	-
	TCL	.P2		-	-	-	-	-	-	-	-	-
	NEPC	(1999)		-	-	-	-	-	-	-	-	-
	ANZECO	. ,		-	-	-	-	-	-	-	-	-

CTI exceedance TCLP1 and/or SCC1 exceedance CT2 exceedance TCLP2 and/or SCC2 exceedance Asbestos detection
- = Not tested, no criteria or not applicable NAD = no asbestos detected

-

-

-

-

-

-

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Total chromium used as initial screen for chromium(VI).
- C Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen

ANZECC (2000)

- f NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste
- PQL Practical quantitation limit
- CTI Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

-

SCCI Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

-

-

- TCLP1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- CT2 Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste
- SCC2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
- TCLP2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Table F3: Summary of results - acid sulfate soils

Project No: Project Name: Location:

			Sampl	e Information			Screen	ing Test Results				Laborat	ory Analysi	s Results (A	Acid Base A	ccounting)	
Location ID	Depth from (m)	Depth to (m)	(AHD)	Sample Description	Adopted Texture	pH _F (pH units)	pH _{FOX} (pH units)	Reaction Strength	pH change (pH units)	pH _{kci} (pH units)	Skci (%S)	S _{HCI} (%S)	Scr (%S)	TAA (%S)	S _{NAS} (%S)	ANC _{BI} (%S)	ANC Corroborated (Y/N)	Net Acidity (%S)
				Assessment Criteria (pH	units)	<4	<3	-	1.0	Action Cr	iteria (%S)	Coarse tex	ture: sands	to loamy s	ands and	peats		0.03
BH01	1.40	1.50	7.70 to 7.60	Clayey sand	С	5.9	2.1	Medium reaction	3.8	5.1	NT	NT	0.009	0.030	NT	NT	N	0.041
BH01	1.90	2.00	7.20 to 7.10	Clayey sand	С	6.8	2.1	Medium reaction	4.7	-	-	-	-	-	-	-	N	-
BH01	2.40	2.50	6.70 to 6.60	Peaty sand	С	6.7	2.3	Medium reaction	4.4	4.6	NT	NT	0.010	0.050	NT	NT	N	0.066
BH01	2.50	2.95	6.60 to 6.15	Peaty sand	С	6.7	2.2	Medium reaction	4.5	4.7	NT	NT	0.030	005	NT	NT	N	0.084
BH01	2.80	3.00	6.30 to 6.10	Peaty sand	С	6.6	3.0	Medium reaction	3.6	-	-	-	-	-	-	-	Ν	-
BH01	3.40	3.50	5.70 to 5.60	Peaty sand	С	7.0	2.5	Medium reaction	4.5	5.6	NT	NT	0.040	<0.01	NT	NT	N	0.050
BH01	3.90	4.00	5.20 to 5.10	Peaty sand	С	7.0	2.8	Medium reaction	4.2	-	-	-	-	-	-	-	N	-
BH01	4.00	4.45	5.10 to 4.65	Peaty sand	С	6.9	2.7	Medium reaction	4.2	5.8	NT	NT	<0.005	<0.01	NT	NT	N	< 0.005
BH02	4.30	4.60	4.60 to 4.30	Clay with peat	С	7.6	2.6	Medium reaction	5.0	-	-	-	-	-	-	-	N	-
			-															
			-															
			-															
			-															
			-															
			-															
			-															
			-															
			-															
			-															
			-															
			-															
			-															
Notes:			-															

Notes:

Adopted texutre - C = coarse, M = medium, F = fine

pH_F - Soil pH in water

pH_{FOX} - Soil pH in peroxide

Reaction strength: L - Low, M - Medium, H - High, X - Extreme, V - Volcanic, F - Frothing (indicative of organic material)

pH change = $pH_F - pH_{FOX}$

pH_{KCL} - KCl extractable pH

S_{KCI} - KCI extractable sulfur

S_{HCI} - HCI extractable sulfur

S_{cr} - potential sulfidic acidity

TAA - titratable actual acidity (reported if pH_{KCL}<6.5)

S_{NAS} – retained acidity (reported if pHkCl < 4.5) ANC_{BT} – acid neutralising capacity (reported if $pH_{KCI} \ge 6.5$)

NT - Not tested

Blue depths indicate where samples have been collected at or below the groundwater table Bold results are indicators of ASS conditions, noting:

- Assessment criteria are considered a reasonable initial screening for AASS or PASS

- pH_F<4 is indicative of the presence of Actual ASS (AASS), although it is not conclusive of ASS on its own as naturally occurring non ASS soils can have pH_F<5 - pH_{FCK}<5 or pH Change ≥1 may indicate potential ASS (PASS), although exception apply. Laboratory testing required to confirm presence of Reduced Inorganic Sulfur (RIS)

- Refer to Table 5.1, A2, A3 of Sullivan,L et al (2018) for further details

Shaded results trigger action (i.e. equal to or exceed the action criteria). Criteria is specific for soil texture and anticpated tonnage of soil disturbed.

Net Acidity can only include the measured ANC where the ANC has been corroborated by other data (for example slab incubation data) that demonstrates the soil material does not experience acidification during complete exidation under field conditions.

a - Action criterion for disturbance of 1-1000 tonnes of material

b - Action criterion for disturbance of more than 1000 tonnes of material

The action criteria apply only to ASS materials and not to other acidic soils such as acidic peatlands and coastal heaths.

		Metals					Metals - Dissolved	b					т	RH				BI	ΈX								
		Iron (total)	Total Arsenic	Cad mium	Total Chromium	Copper	Iron	Lead	Mercury (inorganic)	Nickel	Zinc	FI ((C6-C10)-BTEX)	F2 (>CIO-C16 less Naphthalene)	F3 (>CI6-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene	Total Xylenes	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthrace ne	Naphthalene	Benzo(a)pyrene (B(a)P)
	PQL	10	1	0.1	1	1	10	1	0.05	1	1	10	50	100	100	1	1	1	1	2	1	0.1	0.1	0.1	0.1	1	0.1
NHMRC (2018) AD	WG Health	300	10	2		2,000		10	1	20						1	800	300			600						0.01
NHMRC (2012) Rec	creation		100	20		20,000		100	10	200						10	8,000	3,000			6,000						0.1
NEPC (2013) HSL 2	-4m											6,000	NL			5,000	NL	NL			NL					NL	
ANZG (2018) 95% L	OP Fresh		13	0.2	1	1.4		3.4	0.06	11	8					950	180	80	350	75				0.01		16	0.1
HEPA (2020) 99% l	LOP Fresh																										
ANZECC (2000) Irr	igation Long Term Trigger Va	200	100	10	100	200	200	2,000	2	200	2,000																
ANZECC (2000) Irr	igation Short Term Trigger Va	10,000	2,000	50	1000	5,000	10,000	5,000	2	2,000	5,000																
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
BH2	05/06/24	24,000	<1	<0.1	<1	<1	16,000	<1	<0.05	<1	5	<10	<50	<100	<100	<]	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<1	<0.1
BD1/20240506	05/06/24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<]	<]	<]	<]	<2	<]	-	-	-	-	-	-
BH510	05/06/24	-	<1	<0.1	<1	<1	-	<1	<0.05	<1	2	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<1	<0.1

Notes:

- No criterion / not defined / not tested / not applicable

* QA/QC replicate of sample listed directly below the primary sample

NL Not limiting

PQL Practical quantitation limit

Shaded cell is exceedance of guideline value

Where one or more guideline value is exceeded, the cell is shaded to the colour of the highest guideline value exceeded

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 2-4m

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 95% level of protection of species for Fresh aquatic ecosystems [NB: 99% level of protection adopted for bioaccumulative chemicals]

HEPA (2018) PFAS National Environmental Management Plan, Version 2 99% level of protection for Fresh water aquatic ecosystems

NHMRC (2018) Australian Drinking Water Guidelines 6 2011, drinking water aesthetic-based criteria

NHMRC (2008) Guidelines for Managing Risk in Recreational Water

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Short Term Trigger Values

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Long Term Trigger Values

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, orange text is 'unknown' level of protection

Underlining of ANZG (2018) criteria indicates a criteria with an 'unknown' level of protection.

ANZG (2018) DGV adopted for most conservative species of following analytes: DGV for xylene (m) adopted for xylene (m+p); DGV for CrVI adopted for total chromium; DGV for AsV adopted for total arsenic

ANZG (2018) DCV adopted for aluminium in freshwater is for receiving waters with pH >6.5. For receiving waters with pH <6.5 suitability of the more conservative, low reliability DCV of unknown LOP should be considered

			PA	ΔH																		0	CP					
		Benzo(bj+k)fluora nthene	Benzo(g,h,i)peryle ne	Chrysen e	Dibenzo(a,h)anthr acene	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Phenanthrene	Pyrene	Sum of detected PAH	DDE	DDT	QQQ	Aldrin	Dieldrin	Aldrin + Dieldrin (calculated)	alpha-chlordane	gamma- Chlordane	Endosulfan I	Endosulfan II	Endosulfan Sulphate	Endrin	Endrin Aldehyde	Heptachlor	Heptachlor Epoxide	Hexachlorobenze ne	Methoxychlor
	PQL	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001
NHMRC (2018) AD	WG Health												9				0.3								0.3			
NHMRC (2012) Rec	reation												90				3								3			
NEPC (2013) HSL 2-	-4m																											
ANZG (2018) 95% L	OP Fresh					1			0.6				0.006		<u>0.001</u>	0.01							0.01		0.01		0.1	0.005
HEPA (2020) 99% L	OP Fresh																											
ANZECC (2000) Irri	igation Long Term Trigger Va																											
ANZECC (2000) Irri	igation Short Term Trigger Va																											
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
BH2	05/06/24	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
BD1/20240506	05/06/24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH510	05/06/24	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note

- No criterion / not defined / not tested / not applicable

* QA/QC replicate of sample listed directly below the primary sample

NL Not limiting

PQL Practical quantitation limit

Shaded cell is exceedance of guideline value

Where one or more guideline value is exceeded, the cell is shaded to the colour of the highest guideline value exceeded

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 2-4m

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 95% level of protection of species for Fresh aquatic ecosystems [NB: 99% level of protection adopted for bioaccumulative chemicals]

HEPA (2018) PFAS National Environmental Management Plan, Version 2 99% level of protection for Fresh water aquatic ecosystems

NHMRC (2018) Australian Drinking Water Guidelines 6 2011, drinking water aesthetic-based criteria

NHMRC (2008) Guidelines for Managing Risk in Recreational Water

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Short Term Trigger Values

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Long Term Trigger Values

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, orange text is 'unknown' level of protection

Underlining of ANZG (2018) criteria indicates a criteria with an 'unknown' level of protection.

ANZG (2018) DGV adopted for most conservative species of following analytes: DGV for xylene (m) adopted for xylene (m+p); DGV for CrVI adopted for total chromium; DGV for AsV adopted for total arsenic

ANZG (2018) DGV adopted for aluminium in freshwater is for receiving waters with pH >6.5. For receiving waters with pH <6.5 suitability of the more conservative, low reliability DGV of unknown LOP should be considered

															OPP												P	РСВ
		alpha-BHC	beta-BHC	delta-BHC	Lindane	Sum of detected OCP	Azinphos methyl (Guthion)	Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos- methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Ron nel (fen ch lorp hos)	Fenitrothion	Fenthion	Malathion	Parathion	Parathion-methyl	Methidathion	Fenamiphos	Sum of detected Opp	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248
	PQL	0.001	0.001	0.001	0.001	0.001	0.02	0.05	0.009	0.05	0.01	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.004	0.05	0.05	0.05	0.004	0.01	0.01	0.01	0.01	0.01
NHMRC (2018) AD	WG Health				10		30	10	10		4	5	7	4		7	7	70	20	0.7	6	0.5						
NHMRC (2012) Rec	reation				100		300	100	100		40	50	70	40		70	70	700	200	7	60	5						1 /
NEPC (2013) HSL 2	-4m																											
ANZG (2018) 95% L	.OP Fresh				0.2		0.02		0.00004		0.01		0.15			0.2		0.05	0.004								0.3	
HEPA (2020) 99% l	_OP Fresh																											
ANZECC (2000) Irr	igation Long Term Trigger Va																											
ANZECC (2000) Irr	igation Short Term Trigger Va																											
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
BH2	05/06/24	<0.001	<0.001	<0.001	<0.001	<0.001	<0.02	<0.05	<0.009	<0.05	<0.01	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.004	<0.05	<0.05	<0.05	<0.004	<0.01	<0.01	<0.01	<0.01	<0.01
BD1/20240506	05/06/24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH510	05/06/24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Note

- No criterion / not defined / not tested / not applicable

* QA/QC replicate of sample listed directly below the primary sample

NL Not limiting

PQL Practical quantitation limit

Shaded cell is exceedance of guideline value

Where one or more guideline value is exceeded, the cell is shaded to the colour of the highest guideline value exceeded

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 2-4m

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 95% level of protection of species for Fresh aquatic ecosystems [NB: 99% level of protection adopted for bioaccumulative chemicals]

HEPA (2018) PFAS National Environmental Management Plan, Version 2 99% level of protection for Fresh water aquatic ecosystems

NHMRC (2018) Australian Drinking Water Guidelines 6 2011, drinking water aesthetic-based criteria

NHMRC (2008) Guidelines for Managing Risk in Recreational Water

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Short Term Trigger Values

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Long Term Trigger Values

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, orange text is 'unknown' level of protection

Underlining of ANZG (2018) criteria indicates a criteria with an 'unknown' level of protection.

ANZG (2018) DGV adopted for most conservative species of following analytes: DGV for xylene (m) adopted for xylene (m+p); DGV for CrVI adopted for total chromium; DCV for AsV adopted for total arsenic

ANZG (2018) DGV adopted for aluminium in freshwater is for receiving waters with pH >6.5. For receiving waters with pH <6.5 suitability of the more conservative, low reliability DGV of unknown LOP should be considered

		Arochlor 1254	Aroclor 1260	Sum of detected PCB	ג,ר,ר, tetrachloroethane	ղ,յ- trichloroethane	ון. tetrachloroethane	tetrachloroethene	ג (ג). trichloroethane	ןן 1,1,2- trichloroethylene	1,1-dichloroethane	1,1-Dichloroethene	1,1- dich loropropene	1,2,3- trichlorobenzene	1,2,3- trichloropropane	1,2,4- trichlorobenzene	1,2,4-trimethyl benzen e	1,2-di bromo-3- chloropropa ne	1,2- dichlorobenzene	1,2-dichloroethane	1,2- dichloropropane	1,3,5-trimethyl benzene	1,3- dichlorobenzene	1,3- dich loropropane	1,4- dichlorobenzene	2,2- dichloropropane	2-chlorotoluene	4-chlorotoluene
	PQL	0.01	0.01	0.01	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
NHMRC (2018) AD	WG Health							50				30							1,500	3					40			
NHMRC (2012) Rec	reation							500				300							15,000	30					400			
NEPC (2013) HSL 2	-4m																											
ANZG (2018) 95% L	.OP Fresh	0.01				270	400	70	6,500	330		700		3		85			160	1,900	900		260	1,100	60			
HEPA (2020) 99% L	LOP Fresh																											
ANZECC (2000) Irr	igation Long Term Trigger Va																											
ANZECC (2000) Irr	igation Short Term Trigger Va																											
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
BH2	05/06/24	<0.01	< 0.01	<0.01	<]	<]	<]	<]	<1	<]	<1	<]	<1	<]	<]	<1	<]	<1	<1	<1	<]	<1	<]	<1	<]	<1	<]	<]
BD1/20240506	05/06/24	-	-	-	<]	<1	<]	<1	<1	<]	<1	<]	<1	<]	<]	<1	<]	<]	<]	<1	<]	<]	<1	<1	<]	<1	<]	<1
BH510	05/06/24	-	-	-	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<1	<]	<1	<1	<1	<1	<1	<1	<1	<1	<1

Notes:

No criterion / not defined / not tested / not applicable

QA/QC replicate of sample listed directly below the primary sample

NL Not limiting

PQL Practical quantitation limit

Shaded cell is exceedance of guideline value

Where one or more guideline value is exceeded, the cell is shaded to the colour of the highest guideline value exceeded

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 2-4m

ANZC (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 95% level of protection of species for Fresh aquatic ecosystems [NB: 99% level of protection adopted for bioaccumulative chemicals]

HEPA (2018) PFAS National Environmental Management Plan, Version 2 99% level of protection for Fresh water aquatic ecosystems

NHMRC (2018) Australian Drinking Water Guidelines 6 2011, drinking water aesthetic-based criteria

NHMRC (2008) Guidelines for Managing Risk in Recreational Water

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Short Term Trigger Values

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Long Term Trigger Values

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, orange text is 'unknown' level of protection

Underlining of ANZG (2018) criteria indicates a criteria with an 'unknown' level of protection.

ANZG (2018) DGV adopted for most conservative species of following analytes: DGV for xylene (m) adopted for xylene (m+p); DGV for CrVI adopted for total chromium; DGV for AsV adopted for total arsenic

ANZG (2018) DGV adopted for aluminium in freshwater is for receiving waters with pH >6.5. For receiving waters with pH <6.5 suitability of the more conservative, low reliability DGV of unknown LOP should be considered

				VOC (exclu	iding BTEX)																						
		4-isopropyl toluene	Bromobenzene	Bromochloromet hane	Bromodichlorome thane	Bromoform	carbon tetrachloride	Chloroethane	Vinyl Chloride	Chloroform	Chloromethane	cis-1,2- dichloroethene	cis-1,3 dichloropropene	lsopropylbenzen e (cumene)	Cyclohexane	d ibromochlorome than e	Dibromomethane	Dichlorodifluorom ethane	1,2- dibromoethane	hexachlorobutadi ene	Bromomethane	Monochlorobenze ne	n-butyl benzene	n-propyl benzene	sec-butyl benzene	Styrene (vinylben zene)	Tert-butyl ben zene
	PQL	1	1	1	1	1	1	10	10	1	10	1	1	1	1	1	1	10	1	1	10	1	1	1	1	1	1
NHMRC (2018) AD\	WG Health						3		0.3										1	0.7	1	300				30	
NHMRC (2012) Rec	reation						30		3										10	7	10	3,000				300	
NEPC (2013) HSL 2-	-4m																										
ANZG (2018) 95% L	.OP Fresh						240		100	770				30								55					
HEPA (2020) 99% L	_OP Fresh																										
ANZECC (2000) Irri	igation Long Term Trigger Va																										
ANZECC (2000) Irri	igation Short Term Trigger Va																										
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
BH2	05/06/24	<]	<1	<1	<1	<1	<1	<10	<10	<]	<10	<1	<]	<1	<]	<1	<1	<10	<1	<1	<10	<1	<1	<1	<1	<1	<1
BD1/20240506	05/06/24	<]	<]	<]	<]	<1	<]	<10	<10	<]	<10	<]	<]	<]	<]	<]	<]	<10	<1	<]	<10	<1	<]	<]	<]	<1	<1
BH510	05/06/24	<]	<1	<]	<1	<1	<]	<10	<10	<]	<10	<1	<]	<1	<]	<1	<1	<10	<1	<]	<10	<1	<1	<1	<1	<1	<1

Note

- No criterion / not defined / not tested / not applicable

* QA/QC replicate of sample listed directly below the primary sample

NL Not limiting

PQL Practical quantitation limit

Shaded cell is exceedance of guideline value

Where one or more guideline value is exceeded, the cell is shaded to the colour of the highest guideline value exceeded

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 2-4m

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 95% level of protection of species for Fresh aquatic ecosystems [NB: 99% level of protection adopted for bioaccumulative chemicals]

HEPA (2018) PFAS National Environmental Management Plan, Version 2 99% level of protection for Fresh water aquatic ecosystems

NHMRC (2018) Australian Drinking Water Guidelines 6 2011, drinking water aesthetic-based criteria

NHMRC (2008) Guidelines for Managing Risk in Recreational Water

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Short Term Trigger Values

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Long Term Trigger Values

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, orange text is 'unknown' level of protection

Underlining of ANZG (2018) criteria indicates a criteria with an 'unknown' level of protection.

ANZG (2018) DGV adopted for most conservative species of following analytes: DGV for xylene (m) adopted for xylene (m+p); DGV for CrVI adopted for total chromium; DGV for AsV adopted for total arsenic

ANZG (2018) DGV adopted for aluminium in freshwater is for receiving waters with pH >6.5. For receiving waters with pH <6.5 suitability of the more conservative, low reliability DGV of unknown LOP should be considered

								PF	AS			Ph	ysical Paramet
		trans-1,2- dichloroethene	trans-1,3- dichloropropene	Trichlorofluorome thane	Sum of detected VOC	PFOS	PFOA	PFHxS	6:2 FTS	8.2 FTS	Sum of detected PFAS	Total Suspened Solids	Total dissolved solids
	PQL	1	1	10	1	0.001	0.001	0.001	0.001	0.002	0.001		5,000
NHMRC (2018) ADWG Health						0.07	0.56	0.07				600,000	
NHMRC (2012) Recreation							10						
NEPC (2013) HSL 2-4m													
ANZG (2018) 95% I	LOP Fresh												
HEPA (2020) 99%	LOP Fresh					0.00023	19						
ANZECC (2000) Irr	rigation Long Term Trigger Va												
ANZECC (2000) Irrigation Short Term Trigger Va													
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
BH2	05/06/24	<1	<1	<10	<1	0.008	0.016	0.004	<0.001	<0.002	0.028	110,000	530,000
BD1/20240506	05/06/24	<1	<1	<10	<1	-	-	-	-	-	-	-	-
BH510	05/06/24	<]	<1	<10	<]	-	-	-	-	-	-	-	-

Notes:

No criterion / not defined / not tested / not applicable

QA/QC replicate of sample listed directly below the primary sample

NL Not limiting

PQL Practical quantitation limit

Shaded cell is exceedance of guideline value

Where one or more guideline value is exceeded, the cell is shaded to the colour of the highest guideline value exceeded

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 2-4m

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 95% level of protection of species for Fresh aquatic ecosystems [NB: 99% level of protection adopted for bioaccumulative chemicals]

HEPA (2018) PFAS National Environmental Management Plan, Version 2 99% level of protection for Fresh water aquatic ecosystems

NHMRC (2018) Australian Drinking Water Guidelines 6 2011, drinking water aesthetic-based criteria

NHMRC (2008) Guidelines for Managing Risk in Recreational Water

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Short Term Trigger Values

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, irrigation water Long Term Trigger Values

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, orange text is 'unknown' level of protection

Underlining of ANZG (2018) criteria indicates a criteria with an 'unknown' level of protection.

ANZG (2018) DGV adopted for most conservative species of following analytes: DCV for xylene (m) adopted for xylene (m+p); DGV for CrVI adopted for total chromium; DGV for AsV adopted for total arsenic

ANZG (2018) DGV adopted for aluminium in freshwater is for receiving waters with pH >6.5. For receiving waters with pH <6.5 suitability of the more conservative, low reliability DGV of unknown LOP should be considered

Appendix G

Fieldwork Methodology

1. Guidelines

The following key guidelines were consulted for the field work methodology:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- HEPA PFAS National Environmental Management Plan (NEMP) (HEPA, 2020).

2. Soil sampling

Soil sampling was carried out in accordance with Douglas' standard operating procedures. The general sampling and sample management procedures comprised:

- Collection of soil samples directly from t at the nominated sample depth from the SPT sample tube / solid flight auger;
- Transfer of samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Transfer of samples in laboratory-prepared container (specific for PFAS) by hand, capping immediately and minimising headspace within the sample jar;
- Collection of replicate samples in zip-lock bags for photoionisation detector (PID) screening;
- Collection of ~500 ml samples for fibrous asbestos and asbestos fines (FA and AF) analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for cross-contamination;
- Collect 10% replicate samples for quality control (QC) purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory;
- Collection of soil samples for acid sulfate soils analysis at every 0.5 m depth interval or at least one sample for every change in strata observed. Samples were Placed immediately into ziplock plastic bags after minimising air content and potential for moisture loss and immediately place on ice in a cooled, insulated and sealed container for transport to the laboratory. Once in the laboratory place the samples in a freezer; and
- Use chain of custody documentation.

Reference was made to HEPA (2020) for requirements specific to PFAS.

2.1 Field testing

Field testing is carried out in accordance with Douglas' standard operating procedures. The general sampling and sample management procedures comprise:

PID field test

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen using the PID.

3. Groundwater sampling

3.1 Monitoring well installation

Monitoring wells are constructed using class 18 uPVC machine slotted screen and blank sections with screw threaded joints. The screened section of each well is backfilled with a washed sand filter pack to approximately 0.5 m above the screened interval. Each well is completed with a hydrated bentonite plug of at least 0.5 m thick and then bentonite to the surface, finished as a with s cast iron road-box.

3.2 Monitoring well development

Groundwater monitoring wells are developed as soon as practicable following well installation. The purpose of well development is to remove sediments and/or drilling fluid introduced to the well during drilling and to facilitate connection of the monitoring well to the aquifer. The wells are developed by pumping / bailing to remove a minimum of five well volumes, or until dry.

3.3 Groundwater sampling

Groundwater sampling was carried out in accordance with Douglas' standard operating procedures. Groundwater samples are collected using a low flow peristaltic pump via the micropurge (minimal drawdown) method. The sampling method is described as follows:

- Measurement of the static water level using an electronic interface probe and record the thickness of any LNAPL (if encountered);
- Decontamination of the interface probe and cable between monitoring wells by rinsing in a diluted Decon-90 / Liquinox solution and then rinsing in demineralised water;
- Lowering of the the well-dedicated tubing into the well then clamped at a level estimated to be 1 m below the top of the water column (provided the depth of the pump is within the screened section) or to the approximate mid-point of the well screen;
- The pump was set at the lowest rate possible to minimise drawdown of the water column;
- Physical parameters were measured by continuously passing the purged water through a flow cell; and
- Following stabilisation of the field parameters, samples were collected in laboratoryprepared bottles minimising headspace within the sample bottle and cap immediately.

Sample handling, all methods

The general groundwater sample handling and management procedures comprise:

- Collection of 10% replicate samples for QC purposes;
- Labelling of sample containers with individual and unique identification details, including project number and sample location;
- Placement of the sample jars into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

4. References

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix H

Laboratory Certificates

CERTIFICATE OF ANALYSIS 352938

Client Details	
Client	Douglas Partners Pty Ltd
Attention	James Connaughton
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details							
Your Reference	71015.54, Brookvale						
Number of Samples	9 Soil						
Date samples received	03/06/2024						
Date completed instructions received	03/06/2024						

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	11/06/2024						
Date of Issue	07/06/2024						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By Jenny He, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		352938-1	352938-2	352938-3	352938-4	352938-5
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH01
Depth		1.4-1.5	1.9-2	2.4-2.5	2.5-2.95	2.8-3
Date Sampled		28/05/2024	28/05/2024	28/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/06/2024	03/06/2024	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
pH⊧ (field pH test)	pH Units	5.9	6.8	6.7	6.7	6.6
pHFOX (field peroxide test)	pH Units	2.1	2.1	2.3	2.2	3.0
Reaction Rate*	-	Medium reaction				

sPOCAS field test					
Our Reference		352938-6	352938-7	352938-8	352938-9
Your Reference	UNITS	BH01	BH01	BH01	BH02
Depth		3.4-3.5	3.9-4	4-4.45	4.3-4.6
Date Sampled		28/05/2024	28/05/2024	28/05/2024	27/05/2024
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	03/06/2024	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024
pH⊧ (field pH test)	pH Units	7.0	7.0	6.9	7.6
pH _{FOX} (field peroxide test)	pH Units	2.5	2.8	2.7	2.6
Reaction Rate*	-	Medium reaction	Medium reaction	Medium reaction	Medium reaction

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.

QUALITY	CONTROL:	sPOCAS		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			03/06/2024	[NT]		[NT]	[NT]	03/06/2024	
Date analysed	-			04/06/2024	[NT]		[NT]	[NT]	04/06/2024	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	99	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	99	

Result Definiti	ons								
NT	ot tested								
NA	Test not required								
INS	nsufficient sample for this test								
PQL	Practical Quantitation Limit								
<	Less than								
>	Greater than								
RPD	Relative Percent Difference								
LCS	Laboratory Control Sample								
NS	Not specified								
NEPM	National Environmental Protection Measure								
NR	Not Reported								

Quality Contro	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 71015.54															To: Envirolab Services				
	ct Manager	James	Connaug	hton	Order Number: Sampler: CSY										12 Ashley St, Chatswood NSW 2067				
mail		James.	connaug	hton@dou											Attn: Sample Receipt (02) 9910 6200 samplereceipt@envirolab.co				
					48 hour	48 hour 24 hour Same day											samplereceipt@envirolab.		
rior S	Storage _F	ridge 🗌	Freezer	Esky	_	-	contain	otential' HB	M?		No	()/fe¥E	S, hand	le, trans	port, sto	re in acc	cordance with FPM HAZID) [*]		
	San	nple ID		oled	Sample Type	Container Type				A	nalyte	s		1	1				
_ab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	ASS Screening										Notes/ Preservation/ Additional Requiremen		
1	BHOI	1.4	1.5	28/05/24	S		x												
2	BH01	1.9	2	28/05/24	s		x												
3	BH01	2.4	2.5	28/05/24	S		×												
ų	BH01	2.5	2.95	28/05/24	S		×												
5	BH01	2.8	3	28/05/24	S		×										Envirolab Services		
6	BH01	3.4	3.5	28/05/24	s		×								؛ 		3 12 Ashley St Chatswood NSW 2007 514 (02) 0310 6200		
7	BH01	3.9	4	28/05/24	5		x									l <u>ob No:</u>	352938		
8	BH01	4	4.45	28/05/24	S		x									<u>lime Rec</u>			
9	BH02	4.3	4.6	27/05/24	S		x	•							۹ ۲	eceived.	ay: LW		
															;	ooling: Id	a Cepack 2°C		
-+																			
letal:	s to analys	,∟ ∋:	1	L	<u>.</u>	L	<u></u>		<u> </u>			•	·		RECE		<u> </u>		
lumb	per of samp results to:	les in c				Transpor	ted to	boratory b	by:					Lab F	tef. No	: 35° V: 1/2	2938		
ddre		-		nd, West Ryd	e NSW 2114		(02) 98	9 0666						Date & Time 3/6/24 1340					
elind	uished by:	KDP				Date:	3/06/20	4	Signed	i:			Signed:				/		

. .

J.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	James Connaughton

Sample Login Details	
Your reference	71015.54, Brookvale
Envirolab Reference	352938
Date Sample Received	03/06/2024
Date Instructions Received	03/06/2024
Date Results Expected to be Reported	11/06/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	9 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Sample received labelled BH02/1.4-1.6 - assumed as BH02/4.3-4.6 (#9)

Please direct any queries to:

Aileen Hie	Jacinta Hurst				
Phone: 02 9910 6200	Phone: 02 9910 6200				
Fax: 02 9910 6201	Fax: 02 9910 6201				
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au				

Analysis Underway, details on the following page:

Sample ID	sPOCAS field test
BH01-1.4-1.5	\checkmark
BH01-1.9-2	✓
BH01-2.4-2.5	\checkmark
BH01-2.5-2.95	✓
BH01-2.8-3	\checkmark
BH01-3.4-3.5	\checkmark
BH01-3.9-4	\checkmark
BH01-4-4.45	\checkmark
BH02-4.3-4.6	\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 352938-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	71015.54, Brookvale
Number of Samples	Additional CrS analysis
Date samples received	03/06/2024
Date completed instructions received	11/06/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	18/06/2024		
Date of Issue	18/06/2024		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By Jenny He, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

Chromium Suite						
Our Reference		352938-A-1	352938-A-3	352938-A-4	352938-A-6	352938-A-8
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH01
Depth		1.4-1.5	2.4-2.5	2.5-2.95	3.4-3.5	4-4.45
Date Sampled		28/05/2024	28/05/2024	28/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/06/2024	03/06/2024	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	12/06/2024	12/06/2024	12/06/2024	12/06/2024	12/06/2024
рН ксі	pH units	5.1	4.6	4.7	5.6	5.8
s-TAA pH 6.5	%w/w S	0.03	0.05	0.05	<0.01	<0.01
TAA pH 6.5	moles H ⁺ /t	20	32	32	<5	<5
Chromium Reducible Sulfur	%w/w	0.009	0.01	0.03	0.04	<0.005
a-Chromium Reducible Sulfur	moles H ⁺ /t	6	9	21	27	<3
SHCI	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
Skci	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
Snas	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
ANC _{BT}	% CaCO ₃	[NT]	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.041	0.066	0.084	0.050	<0.005
a-Net Acidity	moles H+ /t	26	41	52	31	<5
Liming rate	kg CaCO₃ /t	2	3	4	2	<0.75
a-Net Acidity without ANCE	moles H+ /t	26	41	52	31	<5
Liming rate without ANCE	kg CaCO₃ /t	1.9	3.1	3.9	2.4	<0.75
s-Net Acidity without ANCE	%w/w S	0.041	0.066	0.084	0.050	<0.005

Method ID	Methodology Summary
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity.
	Net acidity including ANC has a safety factor of 1.5 applied. Neutralising value (NV) of 100% is assumed for liming rate.
	The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL result. However, it has been applied in the SNAS calculation: SNAS % = (SHCL-SKCL)x2

QUALITY CONTROL: Chromium Suite						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			03/06/2024	1	03/06/2024	03/06/2024		03/06/2024		
Date analysed	-			12/06/2024	1	12/06/2024	12/06/2024		12/06/2024		
pH _{kcl}	pH units		Inorg-068	[NT]	1	5.1	5.1	0	95		
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	1	0.03	0.03	0	[NT]		
TAA pH 6.5	moles H+/t	5	Inorg-068	<5	1	20	21	5	94		
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	1	0.009	0.008	12	97		
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	1	6	5	18	[NT]		
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	1		[NT]		[NT]		
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	1		[NT]		[NT]		
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	1		[NT]		[NT]		
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	<0.05	1		[NT]		[NT]		
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	1		[NT]		[NT]		
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	1	0.041	0.042	2	[NT]		
a-Net Acidity	moles H*/t	5	Inorg-068	<5	1	26	26	0	[NT]		
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	2	2	0	[NT]		
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-068	<5	1	26	26	0	[NT]		
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	1	1.9	2.0	5	[NT]		
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	1	0.041	0.042	2	[NT]		

Result Definiti	Result Definitions			
NT	Not tested			
NA	Test not required			
INS	Insufficient sample for this test			
PQL	Practical Quantitation Limit			
<	Less than			
>	Greater than			
RPD	Relative Percent Difference			
LCS	Laboratory Control Sample			
NS	Not specified			
NEPM	National Environmental Protection Measure			
NR	Not Reported			

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Anna Bui

From:	Kurt Plambeck <kurt.plambeck@douglaspartners.com.au></kurt.plambeck@douglaspartners.com.au>
Sent:	Tuesday, 11 June 2024 4:49 PM
То:	Stuart Chen
Cc:	Samplereceipt
Subject:	RE: Results for Registration 352938 71015.54, Brookvale

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Stuart,

Can you please run the following samples for the chromium reducible sulphur suite

BH01 depths 1.4-1.5 m, 3 4 6 2.4-2.5 m 2.5-2.95, 3.4-3.5 and 4-4.45

Kurt Plambeck | Senior Associate/Environmental Scientist

😰 02 9809 0666 🐛 +61 402 057 147 🔖 kurt.plambeck@douglaspartners.com.au 96 Hermitage Road, West Ryde 🛞 www.douglaspartners.com.au 🔮 NSW 2114 | Wallumedegal Country PO Box 472, West Ryde, NSW 1685 Douglas GROUNDED EXPERTISE

Click here to learn about our awards and achievements.

From: Stuart Chen <SChen2@envirolab.com.au> Sent: Friday, June 7, 2024 5:41 PM To: James Connaughton < james.connaughton@douglaspartners.com.au>; Kurt Plambeck <kurt.plambeck@douglaspartners.com.au> Subject: Results for Registration 352938 71015.54, Brookvale

ELS REF: 352938-A TAT: OTANDARD DVE: 18/6/24 AR-

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

Enquiries should be made directly to: customerservice@envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck

Sample Login Details	
Your reference	71015.54, Brookvale
Envirolab Reference	352938-A
Date Sample Received	03/06/2024
Date Instructions Received	11/06/2024
Date Results Expected to be Reported	18/06/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	Additional CrS analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst			
Phone: 02 9910 6200	Phone: 02 9910 6200			
Fax: 02 9910 6201	Fax: 02 9910 6201			
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au			

Analysis Underway, details on the following page:

Sample ID	Chromium Suite	On Hold
BH01-1.4-1.5	✓	
BH01-1.9-2		\checkmark
BH01-2.4-2.5	✓	
BH01-2.5-2.95	✓	
BH01-2.8-3		\checkmark
BH01-3.4-3.5	✓	
BH01-3.9-4		\checkmark
BH01-4-4.45	✓	
BH02-4.3-4.6		\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 353314

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	71015.55 Brookvale
Number of Samples	6 Water
Date samples received	06/06/2024
Date completed instructions received	06/06/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	14/06/2024		
Date of Issue	14/06/2024		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Loren Bardwell, Development Chemist Nancy Zhang, Laboratory Manager, Sydney Sean McAlary, Chemist (FAS)

<u>Authorised By</u> Nancy Zhang, Laboratory Manager

VOCs in water					
Our Reference		353314-1	353314-2	353314-3	353314-6
Your Reference	UNITS	BH1	BH510	BD1/20240506	Rinsate
Date Sampled		05/06/2024	05/06/2024	05/06/2024	05/06/2024
Type of sample		Water	Water	Water	Water
Date Extracted	-	07/06/2024	07/06/2024	07/06/2024	07/06/2024
Date Analysed	-	11/06/2024	11/06/2024	11/06/2024	11/06/2024
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1	<1
Chloroform	µg/L	<1	<1	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1
Benzene	µg/L	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1
VOCs in water					
--------------------------------	-------	------------	------------	--------------	------------
Our Reference		353314-1	353314-2	353314-3	353314-6
Your Reference	UNITS	BH1	BH510	BD1/20240506	Rinsate
Date Sampled		05/06/2024	05/06/2024	05/06/2024	05/06/2024
Type of sample		Water	Water	Water	Water
Bromoform	µg/L	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2
Styrene	µg/L	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1
o-xylene	µg/L	<1	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	114	115	113	113
Surrogate Toluene-d8	%	99	98	99	99
Surrogate 4-Bromofluorobenzene	%	95	97	97	97

vTRH(C6-C10)/BTEXN in Water					
Our Reference		353314-1	353314-2	353314-4	353314-5
Your Reference	UNITS	BH1	BH510	TS	тв
Date Sampled		05/06/2024	05/06/2024	05/06/2024	05/06/2024
Type of sample		Water	Water	Water	Water
Date extracted	-	07/06/2024	07/06/2024	07/06/2024	07/06/2024
Date analysed	-	11/06/2024	11/06/2024	11/06/2024	11/06/2024
TRH C ₆ - C ₉	µg/L	<10	<10	[NA]	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	[NA]	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	[NA]	<10
Benzene	µg/L	<1	<1	99%	<1
Toluene	µg/L	<1	<1	99%	<1
Ethylbenzene	µg/L	<1	<1	100%	<1
m+p-xylene	µg/L	<2	<2	99%	<2
o-xylene	µg/L	<1	<1	100%	<1
Naphthalene	µg/L	<1	<1	[NA]	<1
Surrogate Dibromofluoromethane	%	114	115	114	114
Surrogate Toluene-d8	%	99	98	99	100
Surrogate 4-Bromofluorobenzene	%	95	97	99	96

svTRH (C10-C40) in Water			
Our Reference		353314-1	353314-2
Your Reference	UNITS	BH1	BH510
Date Sampled		05/06/2024	05/06/2024
Type of sample		Water	Water
Date extracted	-	07/06/2024	07/06/2024
Date analysed	-	08/06/2024	08/06/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50
TRH >C10 - C16	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100
Total +ve TRH (>C10-C40)	µg/L	<50	<50
Surrogate o-Terphenyl	%	62	96

PAHs in Water			
Our Reference		353314-1	353314-2
Your Reference	UNITS	BH1	BH510
Date Sampled		05/06/2024	05/06/2024
Type of sample		Water	Water
Date extracted	-	11/06/2024	11/06/2024
Date analysed	-	13/06/2024	12/06/2024
Naphthalene	µg/L	<0.1	<0.1
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	80	112

OCPs in Water - Trace Level		
Our Reference		353314-1
Your Reference	UNITS	BH1
Date Sampled		05/06/2024
Type of sample		Water
Date extracted	-	11/06/2024
Date analysed	-	13/06/2024
alpha-BHC	μg/L	<0.001
НСВ	μg/L	<0.001
beta-BHC	μg/L	<0.001
gamma-BHC	μg/L	<0.001
Heptachlor	μg/L	<0.001
delta-BHC	µg/L	<0.001
Aldrin	μg/L	<0.001
Heptachlor Epoxide	µg/L	<0.001
gamma-Chlordane	μg/L	<0.001
alpha-Chlordane	μg/L	<0.001
Endosulfan I	μg/L	<0.002
pp-DDE	µg/L	<0.001
Dieldrin	μg/L	<0.001
Endrin	µg/L	<0.001
Endosulfan II	μg/L	<0.002
pp-DDD	µg/L	<0.001
Endrin Aldehyde	μg/L	<0.001
pp-DDT	µg/L	<0.001
Endosulfan Sulphate	µg/L	<0.001
Methoxychlor	µg/L	<0.001
Surrogate 4-Chloro-3-NBTF	%	61

OP in water LL ANZECCF/ADWG		
Our Reference		353314-1
Your Reference	UNITS	BH1
Date Sampled		05/06/2024
Type of sample		Water
Date extracted	-	11/06/2024
Date analysed	-	13/06/2024
Dichlorvos	µg/L	<0.05
Mevinphos	µg/L	<0.05
Phorate	µg/L	<0.05
Dimethoate	µg/L	<0.1
Diazinon	µg/L	<0.01
Disulfoton	µg/L	<0.05
Chlorpyriphos-methyl	µg/L	<0.05
Parathion-Methyl	µg/L	<0.05
Ronnel	µg/L	<0.05
Fenitrothion	µg/L	<0.05
Malathion	µg/L	<0.05
Chlorpyriphos	µg/L	<0.009
Fenthion	µg/L	<0.05
Parathion	µg/L	<0.004
Bromophos ethyl	µg/L	<0.05
Methidathion	µg/L	<0.05
Fenamiphos	µg/L	<0.05
Ethion	µg/L	<0.05
Phosalone	µg/L	<0.05
Azinphos-methyl (Guthion)	µg/L	<0.02
Coumaphos	µg/L	<0.05
Surrogate 4-Chloro-3-NBTF	%	61

PCBs in Water - Trace Level		
Our Reference		353314-1
Your Reference	UNITS	BH1
Date Sampled		05/06/2024
Type of sample		Water
Date extracted	-	11/06/2024
Date analysed	-	13/06/2024
Aroclor 1016	µg/L	<0.01
Aroclor 1221	µg/L	<0.01
Aroclor 1232	µg/L	<0.01
Aroclor 1242	µg/L	<0.01
Aroclor 1248	µg/L	<0.01
Aroclor 1254	µg/L	<0.01
Aroclor 1260	μg/L	<0.01
Surrogate 2-Fluorobiphenyl	%	64

PFAS in Water LOW LEVEL Short		
Our Reference		353314-1
Your Reference	UNITS	BH1
Date Sampled		05/06/2024
Type of sample		Water
Date prepared	-	11/06/2024
Date analysed	-	11/06/2024
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.004
Perfluorooctanesulfonic acid PFOS	µg/L	0.008
Perfluorooctanoic acid PFOA	μg/L	0.016
6:2 FTS	µg/L	<0.001
8:2 FTS	μg/L	<0.002
Surrogate ¹³ C ₈ PFOS	%	105
Surrogate ¹³ C ₂ PFOA	%	96
Extracted ISTD ¹⁸ O ₂ PFHxS	%	85
Extracted ISTD ¹³ C ₄ PFOS	%	82
Extracted ISTD ¹³ C ₄ PFOA	%	89
Extracted ISTD ¹³ C ₂ 6:2FTS	%	107
Extracted ISTD ¹³ C ₂ 8:2FTS	%	90
Total Positive PFHxS & PFOS	µg/L	0.012
Total Positive PFOA & PFOS	µg/L	0.023
Total Positive PFAS	µg/L	0.028

HM in water - dissolved			
Our Reference		353314-1	353314-2
Your Reference	UNITS	BH1	BH510
Date Sampled		05/06/2024	05/06/2024
Type of sample		Water	Water
Date prepared	-	11/06/2024	11/06/2024
Date analysed	-	11/06/2024	11/06/2024
Arsenic-Dissolved	μg/L	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	µg/L	<1	<1
Lead-Dissolved	μg/L	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1
Zinc-Dissolved	µg/L	5	2
Iron-Dissolved	µg/L	16,000	[NA]

HM in water - total		
Our Reference		353314-1
Your Reference	UNITS	BH1
Date Sampled		05/06/2024
Type of sample		Water
Date prepared	-	11/06/2024
Date analysed	-	11/06/2024
Iron-Total	µg/L	24,000

Miscellaneous Inorganics		
Our Reference		353314-1
Your Reference	UNITS	BH1
Date Sampled		05/06/2024
Type of sample		Water
Date prepared	-	12/06/2024
Date analysed	-	12/06/2024
Total Suspended Solids	mg/L	110
Total Dissolved Solids (grav)	mg/L	530

Method ID	Methodology Summary
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALIT	Y CONTROL	.: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date Extracted	-			07/06/2024	1	07/06/2024	11/06/2024		07/06/2024	
Date Analysed	-			11/06/2024	1	11/06/2024	12/06/2024		11/06/2024	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Vinyl Chloride	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Bromomethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Chloroethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	1	<10	<10	0	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1-dichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	109	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chloroform	μg/L	1	Org-023	<1	1	<1	<1	0	108	
2,2-dichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	105	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	1	<1	<1	0	109	
1,1-dichloropropene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	110	
Dibromomethane		1	Org-023	<1	1	<1	<1	0		
	µg/L		Org-023						[NT]	
1,2-dichloropropane	µg/L	1	, , , , , , , , , , , , , , , , , , ,	<1	1	<1	<1	0	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	109	
Bromodichloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	100	
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	107	
1,3-dichloropropane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Dibromochloromethane	µg/L	1	Org-023	<1	1	<1	<1	0	108	
1,2-dibromoethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	1	<1	<1	0	112	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	110	
Bromoform	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	111	
Styrene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	

QUALIT	Y CONTROI	.: VOCs in	n water			Du	ıplicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	110	
1,2,3-trichloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Bromobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-propyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
2-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Tert-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Sec-butyl benzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
4-isopropyl toluene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
n-butyl benzene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	111	1	114	115	1	104	
Surrogate Toluene-d8	%		Org-023	99	1	99	99	0	100	
Surrogate 4-Bromofluorobenzene	%		Org-023	95	1	95	98	3	102	

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			07/06/2024	1	07/06/2024	11/06/2024		07/06/2024		
Date analysed	-			11/06/2024	1	11/06/2024	12/06/2024		11/06/2024		
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	110		
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	110		
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	110		
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	107		
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	110		
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	111		
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	110		
Naphthalene	µg/L	1	Org-023	<1	1	<1	<1	0	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	111	1	114	115	1	104		
Surrogate Toluene-d8	%		Org-023	99	1	99	99	0	100		
Surrogate 4-Bromofluorobenzene	%		Org-023	95	1	95	98	3	102		

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			07/06/2024	[NT]		[NT]	[NT]	07/06/2024	
Date analysed	-			08/06/2024	[NT]		[NT]	[NT]	08/06/2024	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	112	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	106	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	112	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	106	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	114	
Surrogate o-Terphenyl	%		Org-020	84	[NT]		[NT]	[NT]	117	

QUALIT	Y CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			11/06/2024	[NT]		[NT]	[NT]	11/06/2024		
Date analysed	-			12/06/2024	[NT]		[NT]	[NT]	12/06/2024		
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102		
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104		
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98		
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96		
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94		
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98		
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86		
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94		
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	89	[NT]		[NT]	[NT]	109		

QUALITY CO	NTROL: OCP	s in Wate	r - Trace Level			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted				11/06/2024	[NT]		[NT]	[NT]	11/06/2024	
Date analysed	-			12/06/2024	[NT]		[NT]	[NT]	12/06/2024	
alpha-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96	
НСВ	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
beta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	100	
gamma-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Heptachlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	94	
delta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Aldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	92	
Heptachlor Epoxide	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	102	
gamma-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
alpha-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
pp-DDE	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	92	
Dieldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	88	
Endrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	102	
Endosulfan II	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
pp-DDD	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96	
Endrin Aldehyde	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
pp-DDT	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	94	
Methoxychlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	91	[NT]		[NT]	[NT]	106	

QUALITY CONT	ROL: OP in w	ater LL A	NZECCF/ADWG			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			11/06/2024	[NT]		[NT]	[NT]	11/06/2024	
Date analysed	-			12/06/2024	[NT]		[NT]	[NT]	12/06/2024	
Dichlorvos	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	100	
Mevinphos	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Phorate	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Dimethoate	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	µg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Disulfoton	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Parathion-Methyl	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	80	
Fenitrothion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	90	
Malathion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	96	
Chlorpyriphos	µg/L	0.009	Org-022/025	<0.009	[NT]		[NT]	[NT]	94	
Fenthion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Parathion	µg/L	0.004	Org-022/025	<0.004	[NT]		[NT]	[NT]	92	
Bromophos ethyl	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Methidathion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Fenamiphos	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	98	
Phosalone	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Azinphos-methyl (Guthion)	µg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Coumaphos	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	91	[NT]		[NT]	[NT]	106	

QUALITY CON	TROL: PCBs	in Water	- Trace Level			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			11/06/2024	[NT]		[NT]	[NT]	11/06/2024		
Date analysed	-			12/06/2024	[NT]		[NT]	[NT]	12/06/2024		
Aroclor 1016	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Aroclor 1221	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Aroclor 1232	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Aroclor 1242	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Aroclor 1248	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Aroclor 1254	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	111		
Aroclor 1260	µg/L	0.01	Org-021/022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	91	[NT]		[NT]	[NT]	104		

QUALITY CONTR	OL: PFAS in	Water L0	OW LEVEL Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			11/06/2024	[NT]		[NT]	[NT]	11/06/2024	
Date analysed	-			11/06/2024	[NT]		[NT]	[NT]	11/06/2024	
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	111	
Perfluorooctanesulfonic acid PFOS	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	105	
Perfluorooctanoic acid PFOA	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	101	
6:2 FTS	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	100	
8:2 FTS	μg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	105	
Surrogate ¹³ C ₈ PFOS	%		Org-029	106	[NT]		[NT]	[NT]	99	
Surrogate ¹³ C ₂ PFOA	%		Org-029	98	[NT]		[NT]	[NT]	96	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	86	[NT]		[NT]	[NT]	85	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	79	[NT]		[NT]	[NT]	81	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	102	[NT]		[NT]	[NT]	97	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	109	[NT]		[NT]	[NT]	127	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	117	[NT]		[NT]	[NT]	128	

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			11/06/2024	2	11/06/2024	11/06/2024		11/06/2024		
Date analysed	-			11/06/2024	2	11/06/2024	11/06/2024		11/06/2024		
Arsenic-Dissolved	µg/L	1	Metals-022	<1	2	<1	<1	0	90		
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	2	<0.1	<0.1	0	90		
Chromium-Dissolved	µg/L	1	Metals-022	<1	2	<1	<1	0	89		
Copper-Dissolved	µg/L	1	Metals-022	<1	2	<1	<1	0	88		
Lead-Dissolved	µg/L	1	Metals-022	<1	2	<1	<1	0	91		
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	2	<0.05	[NT]		103		
Nickel-Dissolved	µg/L	1	Metals-022	<1	2	<1	<1	0	90		
Zinc-Dissolved	µg/L	1	Metals-022	<1	2	2	2	0	91		
Iron-Dissolved	µg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	90		

QUALITY	CONTROL:	HM in wa	ter - total		Duplicate Spike Recov					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			11/06/2024	1	11/06/2024	11/06/2024		11/06/2024	[NT]
Date analysed	-			11/06/2024	1	11/06/2024	11/06/2024		11/06/2024	[NT]
Iron-Total	µg/L	10	Metals-022	<10	1	24000	24000	0	91	[NT]

QUALITY COI		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			12/06/2024	[NT]		[NT]	[NT]	12/06/2024	
Date analysed	-			12/06/2024	[NT]		[NT]	[NT]	12/06/2024	
Total Suspended Solids	mg/L	5	Inorg-019	<5	[NT]		[NT]	[NT]	96	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	[NT]		[NT]	[NT]	98	

Result Definiti	ons			
NT	Not tested			
NA	Test not required			
INS	nsufficient sample for this test			
PQL	Practical Quantitation Limit			
<	Less than			
>	Greater than			
RPD	Relative Percent Difference			
LCS	Laboratory Control Sample			
NS	Not specified			
NEPM	National Environmental Protection Measure			
NR	Not Reported			

Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CHAIN OF CUSTODY DESPATCH SHEET

Projec	ARTNERS -	71015.55	5		Suburb:		Brookv	/ale						To:	Lab na	ame		
Projec	ct Manager	Kurt Pla	mbeck		Order N	umber:				Samp	ler:	CSY			Labad			
Email		Kurt.Pla	mbeck@	douglaspa	artners.cor	n.au								Attn:	Name			
	round time			72 hour	48 hour	24 hour		Same da				_			Lab pl	none		Labemail
Prior	Storage Fi	ridge 🗋	Freezer	Esky	-	Do samples		'poten	tial' HB	M?		No](Nfektes, I	nandle, t	ranspor	t, store ir	n accord	dance with FPM HAZID)
	San	nple ID		oled	Sample Type	Container Type						Analyte	es	_	_			
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	TRH BTEX metals	PAH Low	OCP, OPP, PCB trace	PFAS short low	lron (total and dissolved)	voc	TDS	TSS		втех		Notes/ Preservation/ Additional Requirement
۱	BHI	_		5/06/24	w	G	x	х	×	x	х	X	x	x				
2	BH510			5/06/24	w	G	x	х				х						
3 1	BD1/20240506	5		5/06/24	w	G						X						
ч	TS			5/06/24	W .	G										x		
٢	ΤВ			5/06/24	w	G	-									x		
6	Rinsate			5/06/24	w	G						-		<u> </u>	x			
																		Envirolab Services 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200 D No: 35 3314
																	Τu	ate Received: 6/6/24
 																	- Te Co So	eceived By: KW * mp Cool/Ambient poling: Ice/Icepack ° C scurity: IntactBroken/None
-																		
Metal	s to analys	e:	<u> </u>	-	-											RECE		
	per of samp					Transpor	ted to	labora	atory I	by:						lef. No		3314
	results to:	-													11	ived b		ty ways
Addre Reline	ess: quished by:		nitage Roa	d, West Ryd	e NSW 2114	Phone: Date:	(02) 98 6/06/20		6	Signe	d:				Date Signe	& Time	6/6/	
						I	0,00,20								<u> </u>			

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck

Sample Login Details	
Your reference	71015.55 Brookvale
Envirolab Reference	353314
Date Sample Received	06/06/2024
Date Instructions Received	06/06/2024
Date Results Expected to be Reported	14/06/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst							
Phone: 02 9910 6200	Phone: 02 9910 6200							
Fax: 02 9910 6201	Fax: 02 9910 6201							
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au							

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	OCPs in Water - Trace Level	OP in water LL ANZECCF/ADWG	PCBs in Water - Trace Level	PFAS in Water LOW LEVEL Short	HM in water - dissolved	HM in water - total	Total Suspended Solids	Total Dissolved Solids(grav)
BH1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓
BH510	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark			
BD1/20240506	\checkmark											
TS		\checkmark										
ТВ		✓										
Rinsate	✓											

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 352943

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>71015.55, Brookvale</u>
Number of Samples	11 Soil
Date samples received	03/06/2024
Date completed instructions received	03/06/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by	11/06/2024	
Date of Issue	11/06/2024	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Sneha Shakya, Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu, Nyovan Moonean **Results Approved By** Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager

Jack Wallis, Chemist (FAS) Lucy Zhu, Asbestos Supervisor Nyovan Moonean, Asbestos Approved Identifier/Counter Sean McAlary, Chemist (FAS) Authorised By

Nancy Zhang, Laboratory Manager

VOCs in soil						
Our Reference		352943-1	352943-2	352943-3	352943-4	352943-5
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH02
Depth		1.4-1.5	1.9-2	2.9-3	3.4-3.5	0.35-0.5
Date Sampled		29/05/2024	29/05/2024	29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Extracted	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Date Analysed	-	11/06/2024	11/06/2024	11/06/2024	11/06/2024	11/06/2024
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
Bromochloromethane	mg/kg	<1	<1	<1	<1	<1
Chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-Dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-Dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
Carbon Tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-Dichloropropane	mg/kg	<1	<1	<1	<1	<1
Trichloroethene	mg/kg	<1	<1	<1	<1	<1
Bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-Dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-Dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropane	mg/kg	<1	<1	<1	<1	<1
Dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-Dibromoethane	mg/kg	<1	<1	<1	<1	<1
Tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-Tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
Chlorobenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		352943-1	352943-2	352943-3	352943-4	352943-5
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH02
Depth		1.4-1.5	1.9-2	2.9-3	3.4-3.5	0.35-0.5
Date Sampled		29/05/2024	29/05/2024	29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
Bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-Xylene	mg/kg	<2	<2	<2	<2	<2
Styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-Trichloropropane	mg/kg	<1	<1	<1	<1	<1
Isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
Bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-Propylbenzene	mg/kg	<1	<1	<1	<1	<1
2-Chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-Chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-Trimethylbenzene	mg/kg	<1	<1	<1	<1	<1
tert-Butylbenzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	mg/kg	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-Butylbenzene	mg/kg	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-Isopropyltoluene	mg/kg	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-Butylbenzene	mg/kg	<1	<1	<1	<1	<1
1,2-Dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	107	108	108	107	107
Surrogate aaa-Trifluorotoluene	%	90	97	96	92	82
Surrogate Toluene-d ₈	%	108	109	108	109	108
Surrogate 4-Bromofluorobenzene	%	94	93	94	94	94

VOCs in soil				
Our Reference		352943-6	352943-7	352943-8
Your Reference	UNITS	BH02	BH02	BH02
Depth		1.4-1.6	2.3-2.5	5.2-5.3
Date Sampled		28/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil
Date Extracted	-	04/06/2024	04/06/2024	04/06/2024
Date Analysed	-	11/06/2024	11/06/2024	11/06/2024
Dichlorodifluoromethane	mg/kg	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1
trans-1,2-Dichloroethene	mg/kg	<1	<1	<1
1,1-Dichloroethane	mg/kg	<1	<1	<1
cis-1,2-Dichloroethene	mg/kg	<1	<1	<1
Bromochloromethane	mg/kg	<1	<1	<1
Chloroform	mg/kg	<1	<1	<1
2,2-Dichloropropane	mg/kg	<1	<1	<1
1,2-Dichloroethane	mg/kg	<1	<1	<1
1,1,1-Trichloroethane	mg/kg	<1	<1	<1
1,1-Dichloropropene	mg/kg	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1
Carbon Tetrachloride	mg/kg	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2
Dibromomethane	mg/kg	<1	<1	<1
1,2-Dichloropropane	mg/kg	<1	<1	<1
Trichloroethene	mg/kg	<1	<1	<1
Bromodichloromethane	mg/kg	<1	<1	<1
trans-1,3-Dichloropropene	mg/kg	<1	<1	<1
cis-1,3-Dichloropropene	mg/kg	<1	<1	<1
1,1,2-Trichloroethane	mg/kg	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5
1,3-Dichloropropane	mg/kg	<1	<1	<1
Dibromochloromethane	mg/kg	<1	<1	<1
1,2-Dibromoethane	mg/kg	<1	<1	<1
Tetrachloroethene	mg/kg	<1	<1	<1
1,1,1,2-Tetrachloroethane	mg/kg	<1	<1	<1
Chlorobenzene	mg/kg	<1	<1	<1

VOCs in soil				
Our Reference		352943-6	352943-7	352943-8
Your Reference	UNITS	BH02	BH02	BH02
Depth		1.4-1.6	2.3-2.5	5.2-5.3
Date Sampled		28/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil
Ethylbenzene	mg/kg	<1	<1	<1
Bromoform	mg/kg	<1	<1	<1
m+p-Xylene	mg/kg	<2	<2	<2
Styrene	mg/kg	<1	<1	<1
1,1,2,2-Tetrachloroethane	mg/kg	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1
1,2,3-Trichloropropane	mg/kg	<1	<1	<1
Isopropylbenzene	mg/kg	<1	<1	<1
Bromobenzene	mg/kg	<1	<1	<1
n-Propylbenzene	mg/kg	<1	<1	<1
2-Chlorotoluene	mg/kg	<1	<1	<1
4-Chlorotoluene	mg/kg	<1	<1	<1
1,3,5-Trimethylbenzene	mg/kg	<1	<1	<1
tert-Butylbenzene	mg/kg	<1	<1	<1
1,2,4-Trimethylbenzene	mg/kg	<1	<1	<1
1,3-Dichlorobenzene	mg/kg	<1	<1	<1
sec-Butylbenzene	mg/kg	<1	<1	<1
1,4-Dichlorobenzene	mg/kg	<1	<1	<1
4-Isopropyltoluene	mg/kg	<1	<1	<1
1,2-Dichlorobenzene	mg/kg	<1	<1	<1
n-Butylbenzene	mg/kg	<1	<1	<1
1,2-Dibromo-3-chloropropane	mg/kg	<1	<1	<1
1,2,4-Trichlorobenzene	mg/kg	<1	<1	<1
Hexachlorobutadiene	mg/kg	<1	<1	<1
1,2,3-Trichlorobenzene	mg/kg	<1	<1	<1
Surrogate Dibromofluoromethane	%	105	106	106
Surrogate aaa-Trifluorotoluene	%	103	104	107
<i>Surrogate</i> Toluene-d ₈	%	108	106	108
Surrogate 4-Bromofluorobenzene	%	94	94	94

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		352943-1	352943-2	352943-3	352943-4	352943-5
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH02
Depth		1.4-1.5	1.9-2	2.9-3	3.4-3.5	0.35-0.5
Date Sampled		29/05/2024	29/05/2024	29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	11/06/2024	11/06/2024	11/06/2024	11/06/2024	11/06/2024
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	90	97	96	92	82
Surrogate aaa-Trifluorotoluene						
Surrogate aaa-Trifluorotoluene vTRH(C6-C10)/BTEXN in Soil		90	97	96	92	82
Surrogate aaa-Trifluorotoluene vTRH(C6-C10)/BTEXN in Soil Our Reference	%	90 352943-6	97 352943-7	96 352943-8	92 352943-9	82 352943-10
Surrogate aaa-Trifluorotoluene vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	%	90 352943-6 BH02	97 352943-7 BH02	96 352943-8 BH02	92 352943-9	82 352943-10
Surrogate aaa-Trifluorotoluene vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	%	90 352943-6 BH02 1.4-1.6	97 352943-7 BH02 2.3-2.5	96 352943-8 BH02 5.2-5.3	92 352943-9 BD1 -	82 352943-10 TS1 -
Surrogate aaa-Trifluorotoluene vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	%	90 352943-6 BH02 1.4-1.6 28/05/2024	97 352943-7 BH02 2.3-2.5 28/05/2024	96 352943-8 BH02 5.2-5.3 28/05/2024	92 352943-9 BD1 - 28/05/2024	82 352943-10 TS1 - 29/05/2024
Surrogate aaa-Trifluorotoluene VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	%	90 352943-6 BH02 1.4-1.6 28/05/2024 Soil	97 352943-7 BH02 2.3-2.5 28/05/2024 Soil	96 352943-8 BH02 5.2-5.3 28/05/2024 Soil	92 352943-9 BD1 - 28/05/2024 Soil	82 352943-10 TS1 - 29/05/2024 Soil
Surrogate aaa-Trifluorotoluene vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	%	90 352943-6 BH02 1.4-1.6 28/05/2024 Soil 04/06/2024	97 352943-7 BH02 2.3-2.5 28/05/2024 Soil 04/06/2024	96 352943-8 BH02 5.2-5.3 28/05/2024 Soil 04/06/2024	92 352943-9 BD1 - 28/05/2024 Soil 04/06/2024	82 352943-10 TS1 - 29/05/2024 Soil 04/06/2024
Surrogate aaa-Trifluorotoluene vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	% UNITS - -	90 352943-6 BH02 1.4-1.6 28/05/2024 Soil 04/06/2024 11/06/2024	97 352943-7 BH02 2.3-2.5 28/05/2024 Soil 04/06/2024 11/06/2024	96 352943-8 BH02 5.2-5.3 28/05/2024 Soil 04/06/2024 11/06/2024	92 352943-9 BD1 - 28/05/2024 Soil 04/06/2024 11/06/2024	82 352943-10 TS1 - 29/05/2024 Soil 04/06/2024 11/06/2024
Surrogate aaa-Trifluorotoluene VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	% UNITS - mg/kg	90 352943-6 BH02 1.4-1.6 28/05/2024 Soil 04/06/2024 11/06/2024 <25	97 352943-7 BH02 2.3-2.5 28/05/2024 Soil 04/06/2024 11/06/2024 <25	96 352943-8 BH02 5.2-5.3 28/05/2024 Soil 04/06/2024 11/06/2024 <25	92 352943-9 BD1 - 28/05/2024 Soil 04/06/2024 11/06/2024 <25	82 352943-10 TS1 - 29/05/2024 Soil 04/06/2024 11/06/2024 [NA]
Surrogate aaa-Trifluorotoluene vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	% UNITS - mg/kg mg/kg	90 352943-6 BH02 1.4-1.6 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25	97 352943-7 BH02 2.3-2.5 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25	96 352943-8 BH02 5.2-5.3 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25	92 352943-9 BD1 - 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25	82 352943-10 TS1 - 29/05/2024 Soil 04/06/2024 11/06/2024 [NA] [NA]
Surrogateaaa-TrifluorotolueneVTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTRH $C_6 - C_{10}$ less BTEX (F1)	% UNITS - mg/kg mg/kg mg/kg	90 352943-6 BH02 1.4-1.6 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25	97 352943-7 BH02 2.3-2.5 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25	96 352943-8 BH02 5.2-5.3 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25	92 352943-9 BD1 - 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25	82 352943-10 TS1 - 29/05/2024 Soil 04/06/2024 11/06/2024 [NA] [NA]
Surrogateaaa-TrifluorotolueneVTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTRH $C_6 - C_{10}$ less BTEX (F1)Benzene	% UNITS	90 352943-6 BH02 1.4-1.6 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25 <25 <25 <0.2	97 352943-7 BH02 2.3-2.5 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25 <25 <25 <0.2	96 352943-8 BH02 5.2-5.3 28/05/2024 Soil 04/06/2024 11/06/2024 11/06/2024 <25 <25 <25 <25 <25 <0.2	92 352943-9 BD1 - 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25 <25 <25 <0.2	82 352943-10 TS1 - 29/05/2024 Soil 04/06/2024 11/06/2024 [NA] [NA] [NA] 90%
Surrogateaaa-TrifluorotolueneVTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_{10}$ vTRH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	% UNITS	90 352943-6 BH02 1.4-1.6 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25 <25 <25 <0.2	97 352943-7 BH02 2.3-2.5 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25 <25 <0.2 <0.2	96 3352943-8 BH02 5.2-5.3 28/05/2024 Soil 04/06/2024 11/06/2024 <11/06/2024 <25 <25 <25 <25 <0.2	92 352943-9 BD1 - 28/05/2024 Soil 04/06/2024 11/06/2024 <25 <25 <25 <25 <0.2	82 352943-10 TS1 - 29/05/2024 Soil 04/06/2024 11/06/2024 [NA] [NA] [NA] 90% 92%

mg/kg

mg/kg

%

<1

<1

103

<1

<1

104

<1

<1

107

<1

<1

99

Naphthalene

Total +ve Xylenes

Surrogate aaa-Trifluorotoluene

91%
vTRH(C6-C10)/BTEXN in Soil		
Our Reference		352943-11
Your Reference	UNITS	TB1
Depth		-
Date Sampled		29/05/2024
Type of sample		Soil
Date extracted	-	04/06/2024
Date analysed	-	11/06/2024
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	109

Our Reference		352943-1	352943-2	352943-3	352943-4	352943-5
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH02
Depth		1.4-1.5	1.9-2	2.9-3	3.4-3.5	0.35-0.5
Date Sampled		29/05/2024	29/05/2024	29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH > C_{10} - C_{16} less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	77	76	88	81	82

SVIRH (C10-C40) IN SOIL					
Our Reference		352943-6	352943-7	352943-8	352943-9
Your Reference	UNITS	BH02	BH02	BH02	BD1
Depth		1.4-1.6	2.3-2.5	5.2-5.3	-
Date Sampled		28/05/2024	28/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	05/06/2024	05/06/2024	05/06/2024	05/06/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	75	76	75	75

PAHs in Soil						
Our Reference		352943-1	352943-2	352943-3	352943-4	352943-5
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH02
Depth		1.4-1.5	1.9-2	2.9-3	3.4-3.5	0.35-0.5
Date Sampled		29/05/2024	29/05/2024	29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.08	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.2	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	93	99	99	97	100

PAHs in Soil				
Our Reference		352943-6	352943-7	352943-8
Your Reference	UNITS	BH02	BH02	BH02
Depth		1.4-1.6	2.3-2.5	5.2-5.3
Date Sampled		28/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil
Date extracted	-	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	96	94	99

Organochlorine Pesticides in soil				
Our Reference		352943-1	352943-5	352943-6
Your Reference	UNITS	BH01	BH02	BH02
Depth		1.4-1.5	0.35-0.5	1.4-1.6
Date Sampled		29/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil
Date extracted	-	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	84	86	81

Organophosphorus Pesticides in Soil				
Our Reference		352943-1	352943-5	352943-6
Your Reference	UNITS	BH01	BH02	BH02
Depth		1.4-1.5	0.35-0.5	1.4-1.6
Date Sampled		29/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil
Date extracted	-	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	84	86	81

PCBs in Soil				
Our Reference		352943-1	352943-5	352943-6
Your Reference	UNITS	BH01	BH02	BH02
Depth		1.4-1.5	0.35-0.5	1.4-1.6
Date Sampled		29/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil
Date extracted	-	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	0.1	<0.1	0.2
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	0.1	<0.1	0.2
Surrogate 2-Fluorobiphenyl	%	83	89	86

Acid Extractable metals in soil						
Our Reference		352943-1	352943-2	352943-3	352943-4	352943-5
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH02
Depth		1.4-1.5	1.9-2	2.9-3	3.4-3.5	0.35-0.5
Date Sampled		29/05/2024	29/05/2024	29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	06/06/2024	06/06/2024	06/06/2024	06/06/2024	06/06/2024
Arsenic	mg/kg	<4	<4	<4	<4	<8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	19	7	12	10	57
Copper	mg/kg	4	5	3	3	<1
Lead	mg/kg	9	13	16	12	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	2	4	3	4
Zinc	mg/kg	12	18	12	6	5

Acid Extractable metals in soil						
Our Reference		352943-6	352943-7	352943-8	352943-9	352943-12
Your Reference	UNITS	BH02	BH02	BH02	BD1	BH01 - [TRIPLICATE]
Depth		1.4-1.6	2.3-2.5	5.2-5.3	-	1.4-1.5
Date Sampled		28/05/2024	28/05/2024	28/05/2024	28/05/2024	29/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	06/06/2024	06/06/2024	06/06/2024	06/06/2024	06/06/2024
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	13	2	1	9
Copper	mg/kg	13	2	27	<1	5
Lead	mg/kg	16	13	2	1	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	4	5	<1	3
Zinc	mg/kg	19	15	19	1	16

Misc Soil - Inorg				
Our Reference		352943-1	352943-5	352943-6
Your Reference	UNITS	BH01	BH02	BH02
Depth		1.4-1.5	0.35-0.5	1.4-1.6
Date Sampled		29/05/2024	28/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil
Date prepared	-	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	04/06/2024	04/06/2024	04/06/2024
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5

Misc Inorg - Soil				
Our Reference		352943-1	352943-4	352943-8
Your Reference	UNITS	BH01	BH01	BH02
Depth		1.4-1.5	3.4-3.5	5.2-5.3
Date Sampled		29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil
Date prepared	-	03/06/2024	03/06/2024	03/06/2024
Date analysed	-	06/06/2024	06/06/2024	06/06/2024
pH 1:5 soil:water	pH Units	6.7	6.4	5.3
Electrical Conductivity 1:5 soil:water	µS/cm	58	81	190
Chloride, Cl 1:5 soil:water	mg/kg	<10	10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	21	78	320

Moisture					_	
Our Reference		352943-1	352943-2	352943-3	352943-4	352943-5
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH02
Depth		1.4-1.5	1.9-2	2.9-3	3.4-3.5	0.35-0.5
Date Sampled		29/05/2024	29/05/2024	29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	04/06/2024
Date analysed	-	05/06/2024	05/06/2024	05/06/2024	05/06/2024	05/06/2024
Moisture	%	20	19	39	38	18
Moisture						
Our Reference		352943-6	352943-7	352943-8	352943-9	
Your Reference	UNITS	BH02	BH02	BH02	BD1	
Depth		1.4-1.6	2.3-2.5	5.2-5.3	-	
Date Sampled		28/05/2024	28/05/2024	28/05/2024	28/05/2024	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	04/06/2024	04/06/2024	04/06/2024	04/06/2024	
Date analysed	-	05/06/2024	05/06/2024	05/06/2024	05/06/2024	
Moisture	%	23	32	16	18	

Asbestos ID - soils NEPM						
Our Reference		352943-1	352943-2	352943-3	352943-4	352943-6
Your Reference	UNITS	BH01	BH01	BH01	BH01	BH02
Depth		1.4-1.5	1.9-2	2.9-3	3.4-3.5	1.4-1.6
Date Sampled		29/05/2024	29/05/2024	29/05/2024	29/05/2024	28/05/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	07/06/2024	07/06/2024	07/06/2024	07/06/2024	07/06/2024
Sample mass tested	g	820.84	334.65	474.4	138.71	699.96
Sample Description	-	Grey coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected			
ACM >7mm Estimation*	g	_	_	-	-	_
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos comments	-	Nil	Nil	Nil	Nil	Nil

Asbestos ID - soils NEPM			
Our Reference		352943-7	352943-8
Your Reference	UNITS	BH02	BH02
Depth		2.3-2.5	5.2-5.3
Date Sampled		28/05/2024	28/05/2024
Type of sample		Soil	Soil
Date analysed	-	07/06/2024	07/06/2024
Sample mass tested	g	562.14	203.8
Sample Description	-	Grey coarse- grained soil & rocks	Grey coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-
FA and AF Estimation*	g	-	_
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001
Asbestos comments	-	Nil	Nil

Asbestos ID - soils		
Our Reference		352943-5
Your Reference	UNITS	BH02
Depth		0.35-0.5
Date Sampled		28/05/2024
Type of sample		Soil
Date analysed	-	11/06/2024
Sample mass tested	g	Approx. 25g
Sample Description	-	Orange clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	Nil
Trace Analysis	-	No asbestos detected

PFAS in Soils Short		
Our Reference		352943-5
Your Reference	UNITS	BH02
Depth		0.35-0.5
Date Sampled		28/05/2024
Type of sample		Soil
Date prepared	-	05/06/2024
Date analysed	-	05/06/2024
Perfluorohexanesulfonic acid - PFHxS	µg/kg	<0.1
Perfluorooctanesulfonic acid PFOS	µg/kg	<0.1
Perfluorooctanoic acid PFOA	µg/kg	<0.1
6:2 FTS	µg/kg	<0.1
8:2 FTS	µg/kg	<0.2
Surrogate ¹³ C ₈ PFOS	%	106
Surrogate ¹³ C ₂ PFOA	%	96
Extracted ISTD ¹⁸ O ₂ PFHxS	%	96
Extracted ISTD ¹³ C ₄ PFOS	%	95
Extracted ISTD ¹³ C ₄ PFOA	%	113
Extracted ISTD ¹³ C ₂ 6:2FTS	%	120
Extracted ISTD ¹³ C ₂ 8:2FTS	%	130
Total Positive PFHxS & PFOS	µg/kg	<0.1
Total Positive PFOS & PFOA	µg/kg	<0.1
Total Positive PFAS	µg/kg	<0.1

PFAS in TCLP Short		
Our Reference		352943-5
Your Reference	UNITS	BH02
Depth		0.35-0.5
Date Sampled		28/05/2024
Type of sample		Soil
Date prepared	-	05/06/2024
Date analysed	-	05/06/2024
pH of soil for fluid# determ.	pH units	7.9
pH of soil TCLP (after HCI)	pH units	1.8
Extraction fluid used		1
pH of final Leachate	pH units	4.9
Perfluorohexanesulfonic acid - PFHxS	µg/L	<0.01
Perfluorooctanesulfonic acid PFOS	µg/L	<0.01
Perfluorooctanoic acid PFOA	µg/L	<0.01
6:2 FTS	µg/L	<0.01
8:2 FTS	µg/L	<0.02
Surrogate ¹³ C ₈ PFOS	%	108
Surrogate ¹³ C ₂ PFOA	%	94
Extracted ISTD ¹⁸ O ₂ PFHxS	%	103
Extracted ISTD ¹³ C ₄ PFOS	%	100
Extracted ISTD ¹³ C ₄ PFOA	%	118
Extracted ISTD ¹³ C ₂ 6:2FTS	%	102
Extracted ISTD ¹³ C ₂ 8:2FTS	%	191
Total Positive PFHxS & PFOS	µg/L	<0.01
Total Positive PFOS & PFOA	µg/L	<0.01
Total Positive PFAS	µg/L	<0.01

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF relative to the sample mass tested)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.

Method ID	Methodology Summary
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of
	the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3. Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUAL	ITY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5
Date Extracted	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024
Date Analysed	-			11/06/2024	1	11/06/2024	11/06/2024		11/06/2024	11/06/2024
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
trans-1,2-Dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-Dichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	91	102
cis-1,2-Dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Bromochloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloroform	mg/kg	1	Org-023	<1	1	<1	<1	0	91	102
2,2-Dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-Dichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	78	89
1,1,1-Trichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	81
1,1-Dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Carbon Tetrachloride	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	72	84
Dibromomethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-Dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Trichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	72	86
Bromodichloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	76	89
trans-1,3-Dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
cis-1,3-Dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2-Trichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	90	100
1,3-Dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Dibromochloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	74	87
1,2-Dibromoethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Tetrachloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	84	95
1,1,1,2-Tetrachloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	76	89
Bromoform	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
m+p-Xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	76	89
Styrene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2,2-Tetrachloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]

QUALITY CONTROL: VOCs in soil							ıplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	75	88
1,2,3-Trichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
Isopropylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
Bromobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
n-Propylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
2-Chlorotoluene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
4-Chlorotoluene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,3,5-Trimethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
tert-Butylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,2,4-Trimethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,3-Dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
sec-Butylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,4-Dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
4-Isopropyltoluene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,2-Dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
n-Butylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,2-Dibromo-3-chloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,2,4-Trichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
Hexachlorobutadiene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
1,2,3-Trichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0		[NT]
Surrogate Dibromofluoromethane	%		Org-023	99	1	107	107	0	102	100
Surrogate aaa-Trifluorotoluene	%		Org-023	91	1	90	92	2	86	97
<i>Surrogate</i> Toluene-d ₈	%		Org-023	99	1	108	108	0	101	98
Surrogate 4-Bromofluorobenzene	%		Org-023	99	1	94	94	0	99	100

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5
Date extracted	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024
Date analysed	-			11/06/2024	1	11/06/2024	11/06/2024		11/06/2024	11/06/2024
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	80	90
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	80	90
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	72	84
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	90	100
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	76	89
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	76	89
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	75	88
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	91	1	90	92	2	86	97

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5
Date extracted	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024
Date analysed	-			05/06/2024	1	05/06/2024	05/06/2024		05/06/2024	05/06/2024
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	114	101
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	109	101
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	86	102
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	114	101
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	109	101
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	86	102
Surrogate o-Terphenyl	%		Org-020	81	1	77	77	0	85	82

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5		
Date extracted	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024		
Date analysed	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024		
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	80		
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	88		
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	84		
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	90		
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	92		
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	92		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	70		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	82	88		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	101	1	93	97	4	96	94		

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5	
Date extracted	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024	
Date analysed	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	86	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	88	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	88	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	94	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	98	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	88	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	98	98	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	94	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	98	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	82	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	89	1	84	87	4	91	101	

QUALITY CONTR	ROL: Organopł	nosphoru	s Pesticides in Soi			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5	
Date extracted	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024	
Date analysed	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	100	
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	98	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	98	
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	104	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	98	
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	94	
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	104	
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	89	1	84	87	4	91	101	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5
Date extracted	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024
Date analysed	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	1	0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	86	92
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	90	1	83	90	8	92	89

QUALITY CONT	QUALITY CONTROL: Acid Extractable metals in soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5
Date prepared	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024
Date analysed	-			06/06/2024	1	06/06/2024	06/06/2024		06/06/2024	06/06/2024
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	102	#
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	93	73
Chromium	mg/kg	1	Metals-020	<1	1	19	9	71	106	87
Copper	mg/kg	1	Metals-020	<1	1	4	6	40	98	88
Lead	mg/kg	1	Metals-020	<1	1	9	13	36	115	74
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	101	87
Nickel	mg/kg	1	Metals-020	<1	1	3	2	40	94	72
Zinc	mg/kg	1	Metals-020	<1	1	12	26	74	97	71

QUALITY	QUALITY CONTROL: Misc Soil - Inorg							Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	352943-5		
Date prepared	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024		
Date analysed	-			04/06/2024	1	04/06/2024	04/06/2024		04/06/2024	04/06/2024		
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	102	95		

QUALITY	QUALITY CONTROL: Misc Inorg - Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			03/06/2024	[NT]	[NT]	[NT]	[NT]	03/06/2024	
Date analysed	-			06/06/2024	[NT]	[NT]	[NT]	[NT]	06/06/2024	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	100	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	102	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	109	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	115	[NT]

QUALITY (CONTROL: F	PFAS in S	oils Short			Du	Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]		
Date prepared	-			05/06/2024	[NT]		[NT]	[NT]	05/06/2024			
Date analysed	-			05/06/2024	[NT]		[NT]	[NT]	05/06/2024			
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	99			
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	99			
Perfluorooctanoic acid PFOA	µg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	94			
6:2 FTS	µg/kg	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	99			
8:2 FTS	µg/kg	0.2	Org-029	<0.2	[NT]		[NT]	[NT]	95			
Surrogate ¹³ C ₈ PFOS	%		Org-029	101	[NT]		[NT]	[NT]	100			
Surrogate ¹³ C ₂ PFOA	%		Org-029	98	[NT]		[NT]	[NT]	99			
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	106	[NT]		[NT]	[NT]	102			
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	106	[NT]		[NT]	[NT]	107			
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	119	[NT]		[NT]	[NT]	116			
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	121	[NT]		[NT]	[NT]	120			
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	124	[NT]		[NT]	[NT]	138			

QUALITY C	ONTROL: F	FAS in T	CLP Short		Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date prepared	-			05/06/2024	[NT]		[NT]	[NT]	05/06/2024		
Date analysed	-			05/06/2024	[NT]		[NT]	[NT]	05/06/2024		
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	107		
Perfluorooctanesulfonic acid PFOS	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	95		
Perfluorooctanoic acid PFOA	μg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	107		
6:2 FTS	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	102		
8:2 FTS	μg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	117		
Surrogate ¹³ C ₈ PFOS	%		Org-029	99	[NT]		[NT]	[NT]	96		
Surrogate ¹³ C ₂ PFOA	%		Org-029	98	[NT]		[NT]	[NT]	98		
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	96	[NT]		[NT]	[NT]	98		
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	100	[NT]		[NT]	[NT]	103		
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	103	[NT]		[NT]	[NT]	99		
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	83	[NT]		[NT]	[NT]	93		
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	105	[NT]		[NT]	[NT]	114		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 352943-1 for Cr & Zn. Therefore a triplicate result has been issued as laboratory sample number 352943-12.

- # Low spike recovery was obtained for this sample. Sample matrix interference is suspected. However, an acceptable recovery was obtained for the LCS.

- The PQL(s) for 352943-5 has been raised for As due to the low spike recovery/recoveries. This may reflect other samples where similar in matrix and similar analytical interferences occur.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 352943-2, 4, 8 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to ASB-001 asbestos subsampling procedure. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab/MPL recommends supplying 40-60g or 500ml of sample in its own container.

Note: Sample 352943-5 was sub-sampled from jar provided by the client.

RV COC 3/6 15:15

.

í

CHAIN OF CUSTODY DESPATCH SHEET

Proje	ct No:	71015.55	5		Suburb:		Brook	vale						To:	Labina	me			
				Order N	Order Number: Sampler:							Lab address							
Email: Kurt.Plambeck@douglaspartners.co														Attn:	: Name				
	round time		,		48.hour	🗆 24 hour		Same day	-						Lab ph			Lab email	
Prior	Storage Fri	idge 🗆 I	Freezer	🗆 Esky 🛛		Do samples	contair	n 'poten	tiəl' HB	M?		No DY	(BSYES,	handle,	transpor	t, store i	n accor	dance with FPM HAZID)	
	Sample ID				Sample Type					Analytes									
Lab ID	Location / Other ID	Dépth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	8A	BAFFA	3AFFA	VOC	BTEX	PFAS (short total and TCLP)	HM BTEX	Aggresivity				Notes/ Preservation/ Additional Requirements	
(BH01	1.4	1.5	29/05/24	S	G/P		X		x				х					
_2	BHOI	1.9	2	29/05/24	S	G/P			X	x									
3	BH01	2.9	3	29/05/24	S	G/P			×	x								3'	
4	BH01	3.4	,3.5	29/05/24	S	G/P			×	×				X			EŃ	Envirolab Services 12 Ashley St Chatstocd NSW 2007	
2	BH02	0.35	0.5	28/05/24	S	G/P	x			. ×	·,	x						Ph: (02) 9910 6200	
6	BH02	1.4	1.6	28/05/24	s	G/P		×		×								352943 12. Barringt 3/6/295	
7	BH02	2.3	2.5	28/05/24	s	G/P		-	×	×						_	Tir	te Received:	
8	BH02	5.2	5.3	28/05/24	S	G/P			×	×.			_	×		٦.	Te	np Coci/Ambient	
٩	BD1			28/05/24	s	G		ļ					х				Co Se	oling: Ice/Icepack curity/Intact/Broken/None	
ι۵	TS1			29/05/24	S	G					x								
-11	TB1			29/05/24	S	G / j					×								
					·													2.	
					1.77														
Metals to analyse:														LAB RECEIPT					
	per of samp					Transported to laboratory by:									Lab Ref. No: 352943				
	results to:	-		-							Received by: Katy Ware								
Addre			nitage Roa	ad, West Ryd	ie NSW 2114										Date & Tim: 3/6/24 1340				
Reline	quished by:	KDP				Date:	Date: 03/06/2024 Signed:								Signed:				

£.

.

Rev 6/August 2022

ہ۔

1

ر در روی

CHAIN OF CUSTODY DESPATCH SHEET

Proje	Ct No:	71015.55	;		Suburb:		Brook	vale						To:	Lab nar	me				
Proje	ct Manager	Kurt Pla	ambeck		Order N	umber:				Samp	ler:	CSY			Lab add	dress				
Email				@douglaspa	artners.cor									Attn:		_				
	round time				48 hour	24 hour		Same da	-						Lab pho		Lab email			
Prior	Storage _{FI}	ridge 🗌	Freezer	Esky	-	Do samples	contair	n 'poten	tial' HB	M?		No)(Newes, I	handle, tr	ansport,	store in a	ccordance with FPM HAZID)			
	San	nple ID		oled	Sample Type	Container Type		.				Analyte								
Lab ID					S - soil W - water M - Material	C - glass P - plastic	84	8AFFA	ZAFFA	voc	втех	PFAS (short total and TCLP)	HM BTEX				Notes/ Preservation/ Additional Requirements			
	BH01	1.4	1.5	29/05/24	S	G/P		X		×										
	BH01	1.9	2	29/05/24	S	G/P			х	х		}								
	BHOI	2.9	3	29/05/24	S	G/P			x	х										
	BH01	3.4	3.5	29/05/24	S	G/P			x	x							#352943			
	BH02	0.35	0.5	28/05/24	s	G/P	х			х		x					#352943 provious coe			
	BH02	1.4	1.6	28/05/24	S	G/P		x		x										
	BH02	2.3	2.5	28/05/24	S	G/P			х	х										
	BH02	5.2	5.3	28/05/24	S	G/P			×	x							- <u></u>			
	BDI			28/05/24	S	G							×							
	TSI			29/05/24	S	G					X									
	TBI	 	 	29/05/24	s	G				·	×									
	ls to analys		ontain			Transport	od to	labor	ton	Ň.							<u>T</u>			
	ber of samp results to:						eu lu		atory I	·y					Lab Ref. No: Received by:					
Addre		-		ad, West Ryd	e NSW 2114	Phone:	(02) 98	309 066	6						Date 8	-				
	quished by:		-			I	3/06/2			Signe	d:				Signe	d:				

. . শ

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Kurt Plambeck

Sample Login Details	
Your reference	71015.55, Brookvale
Envirolab Reference	352943
Date Sample Received	03/06/2024
Date Instructions Received	03/06/2024
Date Results Expected to be Reported	11/06/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	11 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fay 02 9910 6201

ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	Asbestos ID - soils NEPM	Asbestos ID - soils	PFAS in Soils Short	PFAS in TCLP Short
BH01-1.4-1.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark			
BH01-1.9-2	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			✓			
BH01-2.9-3	\checkmark	\checkmark	\checkmark	✓				\checkmark			✓			
BH01-3.4-3.5	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark			
BH02-0.35-0.5	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
BH02-1.4-1.6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			
BH02-2.3-2.5	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			\checkmark			
BH02-5.2-5.3	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark			
BD1		\checkmark	\checkmark					\checkmark						
TS1		\checkmark												
TB1		✓												

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix I

Quality Assurance / Quality Control Report

1. Field and laboratory data quality assurance and quality control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included in at the end of this appendix.

ltem	Evaluation / acceptance criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates Tables QA1 and QA2	10% of primary samples; <30% RPD	PC
Trip Spikes Table QA4	1 per sampling event; 60-140% recovery	С
Trip Blanks Table QA3	1 per sampling event; <pql< td=""><td>С</td></pql<>	С
Rinsates Table QA3	1 per groundwater sampling event; <pql< td=""><td>С</td></pql<>	С
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Laboratory Duplicate	1 per lab batch; As laboratory certificate	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Table 1: Field and laboratory quality control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, with the exception of those indicated in Table QA1 (results in bold). The exceedances are not, however, considered to be of concern given that:

- The actual differences in the concentrations of the replicate pairs where RPD exceedances occurred were typically low;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater analytical variability between replicate pairs can be expected;
- Most of the recorded concentrations were relatively close to the PQL;
- The majority of RPD results from a replicate pair were within the acceptable limits; and
- All other QA / QC parameters met the data quality indicators.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

2. Data quality indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQI) as outlined in NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present on-site;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data quality indicator	Method(s) of achievement
Completeness	Target locations sampled, noting however recommendations for further soil testing for waste classification.
	Preparation of borehole logs, sample location plan and chain of custody records.
	Preparation of field groundwater sampling sheets.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern (COPC) identified in the conceptual site model (CSM).
	Completion of chain of custody (COC) documentation.

Table 2: Data quality indicators

Data quality indicator	Method(s) of achievement
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced samplers used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled, noting limitations to the sampling and testing of fill as documented in the report.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQO.
	Samples were extracted and analysed within holding times.
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures.
	Acceptable RPD between original samples and replicates.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQI have been generally complied with.

3. Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQI it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

4. References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Table QA1: Relative Percentage Difference Results - Soil Sampling

						Priority metals								Priority PAH			Priori	ty TRH			TF	RH		BTEX		
Lab Report No	Sample ID	Depth	Sample Date	Sample Type	Units	Total Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Naphthalene ^b	TRH C6 - C10	TRH >CIO-CI6	ы ((c6-с10)- втех)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	ткн с6 - с9	TRH CI0-C36	Benzene	Toluene	Ethylbenzene	Total Xylenes
352943	BH01	3.4 - 3.5 m	29/05/24	Soil	mg/kg	<4	<0.4	10	3	12	<0.1	3	6	<1	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1
352943	BD1	0 m	28/05/24	Soil	mg/kg	<4	<0.4	1	<]	1	<0.1	<1	1	<1	<25	<50	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<]
			Difference		mg/kg	0	0	9	2	11	0	2	5	0	0	0	0	0	0	0	0	0	0	0	0	0
			RPD		%	0%	0%	164%	100%	169%	0%	100%	143%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table QA2: Relative Percentage Difference Results - Water Sampling

		BTEX																								
Lab Report No	Sample ID	Sample Date	Sample Type	Units	Benzene	Toluene	Ethylbenze ne	o-Xylene	m+p- Xylene	Total Xylenes	1,1,1,2- tetrachloro ethane	1,1,1- trichloroet hane	1,1,2,2- tetrachloro ethane	tetrachloro ethene	1,1,2- trichloroet hane	1,1,2- trichloroet hylene	1,1- dichloroet hane	1,1- Dichloroet hene	1,1- dichloropr opene	1,2,3- trichlorobe nzene	1,2,3- trichloropr opane	1,2,4- trichlorobe nzene	1,2,4- trimethyl benzene	1,2- dibromo-3- chloroprop ane	1,2- dichlorobe nzene	1,2- dichloroet hane
353314	BH1	05/06/24	Water	µg/L	<]	<1	<1	<]	<2	<]	<]	<]	<1	<]	<1	<]	<1	<]	<]	<]	<1	<1	<1	<1	<]	<1
353314	BD1/2024050 6	05/06/24	Water	µg/L	<]	<]	<1	<]	<2	<1	<]	<1	<1	<]	<1	<]	<]	<]	<]	<]	<1	<1	<1	<]	<1	<1
		Difference		µg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD		%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table QA2: Relative Percentage Difference Results – Water Sampling

															VOC (exclu	uding BTEX)										
Lab Report No	Sample ID	Sample Date	Sample Type	Units	1,2- dichloropr opane	1,3,5- trimethyl benzene	1,3- dichlorobe nzene	1,3- dichloropr opane	1,4- dichlorobe nzene	2,2- dichloropr opane	2- chlorotolu ene	4- chlorotolu ene	4-isopropyl toluene	Bromoben zene	Bromochlo romethane	Bromodich Iorometha ne	Bromofor m	carbon tetrachlori de	Chloroetha ne	Vinyl Chloride	Chloroform	Chloromet hane	cis-1,2- dichloroet hene	cis-1,3- dichloropr opene	Isopropylb enzene (cumene)	Cyclohexa ne
						•								•				•								
353314	BH1	05/06/24	Water	µg/L	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<]	<10	<10	<]	<10	<]	<]	<]	<]
353314	BD1/2024050 6	05/06/24	Water	µg/L	<]	<1	<]	<]	<]	<1	<]	<1	<]	<1	<]	<1	<]	<1	<10	<10	<1	<10	<]	ব	<1	<]
		Difference		µg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD		%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table QA2: Relative Percentage Difference Results – Water Sampling

Lab Report No	Sample ID	Sample Date	Sample Type	Units	dibromoch lorometha ne	Dibromom ethane	Dichlorodif luorometh ane	1,2- dibromoet hane	hexachloro butadiene	Bromomet hane	Monochlor obenzene	n-butyl benzene	n-propyl benzene	sec-butyl benzene	Styrene (vinylbenz ene)	Tert-butyl benzene	trans-1,2- dichloroet hene	trans-1,3- dichloropr opene	Trichlorofi uorometha ne	Sum of detected VOC
353314	BH1	05/06/24	Water	µg/L	<]	<]	<10	<]	<1	<10	<]	<]	<1	<]	<1	<]	<1	<]	<10	<]
353314	BD1/2024050 6	05/06/24	Water	µg/L	<]	<]	<10	<]	<]	<10	<]	<]	<1	<]	<]	<]	<]	<]	<10	<]
		Difference		µg/L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		RPD		%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

	Sample Date	Media Being Sampled	Sample Type		Priority PAH	Priority TRH		TRH	BTEX			voc		
Sample ID					Naphthalene ^b	ТКН С6 - С10	F1 ((С6-С10)- ВТЕХ)	ТКН С6 - С9	Benzene	Toluene	Ethylbenzene	Total Xylenes		Lab Report No
TBI	29/05/24	Soil	Soil	mg/kg	<]	<25	<25	<25	<0.2	<0.5	<]	<1	-	352943
TS	5/6/224	groundwater	water	µg/L	<1	<10	<10	<10	<]	<]	<1	<1	-	353314
Rinsate	5/6/224	groundwater	water	µg/L	-	-	-	-	<]	<]	<]	<]	<]	353314

Table QA4: Trip Spike Results – Soil Sampling (% Recovery)

Sample ID	Sample Date	Media Being Sampled	Sample Type	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene	Lab Report No	
TSI	29/05/24	Soil	Soil	90	92	90	90	91	352943	
TS	5/624	groundwater	water	99	99	100	99	100	353314	