

Hydrogeology Assessment and Groundwater Dewatering Management Plan

1-3 Gondola Road, North Narrabeen, NSW

Final Report

P2310036JR05V01 August 2024 Prepared For Brett Crowther

environmental science & engineering

Project Details

Report Title	Hydrogeology Assessment and Groundwater Dewatering Management Plan: 1-3 Gondola Road, North Narrabeen, NSW
Client	Brett Crowther
Document	P2310036JR05V01
Director	Daniel Martens
Manager	Gray Taylor
Principal Author	Trystan Richards

Document History

Issue	Issue Date	Status	Description / Comment	Author	Reviewer	Approved
1	12/08/2024	Final	For development application	TR	BM	GT

© Copyright Martens & Associates Pty Ltd Suite 201, 20 George St, Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 P +61-2-9476-9999 | mail@martens.com.au | www.martens.com.au

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

Contents

1	Introdu	action6
	1.1	Overview6
	1.2	Proposed Development6
	1.2.1	Overview
	1.2.2	Basement Extent
	1.3	Scope6
	1.3.1	Hydrogeological Assessment (HA)6
	1.3.2	Groundwater Dewatering Management Plan (GDMP)7
	1.4	Other Assessments7
2	Hydrog	eological Assessment
	2.1	Site Details8
	2.2	Fieldworks8
	2.2.1	Well Installation and Development
	2.2.2	Collection of Groundwater Samples9
	2.3	Groundwater Monitoring9
	2.3.1	Monitoring Methodology
	2.3.2	Monitoring Results
	2.4	Groundwater Quality Testing11
	2.4.1	Testing Methodology
	2.4.2	Testing Results
	2.5	Hydraulic Conductivity12
3	Ground	lwater Dewatering Management Plan13
	3.1	Collection of Groundwater13
	3.2	Anticipated Extent of Groundwater Interception13
	3.3	Dewatering Volume14
	3.4	Anticipated Offsite Impacts15
	3.5	Dewatering Management15
	3.5.1	Treatment Requirements
	3.5.2	Licensing Requirements
	3.5.3	Monitoring Requirements
	3.6	Comments16
4	Referei	nces
Ар	pendix A	– Mapset
Ар	pendix B	- Site Survey and Architectural Plans
Ар	pendix C	- Borehole Logs
Ар	pendix D	– Dewatering Modelling

Appendix F – Laboratory Summary Table	42
Appendix G – Laboratory Analytical Documentation	49

Tables

Table 1: Site detail summary.	8
Table 2: 'Dip' groundwater measurement summary.	9
Table 3: Monitoring data summary (7/03/2024 – 5/07/2024).	
Table 4: Summary of pH, EC and Cl results.	11

Figures

Figure 1: Plot of groundwater level data.	.10
Figure 2: Expected mean groundwater level	. 14

1 Introduction

1.1 Overview

This report documents a Hydrogeology Assessment (**HA**) and Groundwater Dewatering Management Plan (**GDMP**) completed by Martens and Associates Pty Ltd (**MA**) on behalf of Brett Crowther (the **Client**), for proposed new three storey mixed use development with basement carpark with bulk excavation up to approximately 1.1mAHD at 1-3 Gondola Road, North Narrabeen, NSW (the **Site**).

This report has been prepared to support a development application (**DA**) to Northern Beach Council (**NBC**).

1.2 Proposed Development

1.2.1 Overview

MA understands from provided architectural plans that the development will include construction of a new three storey mixed-use building. The development will include one level of basement carpark with bulk excavation to approximately 1.1 mAHD with a lift well base level of approximately -0.1 mAHD.

1.2.2 Basement Extent

The proposal includes a single level basement with a finished floor level of 1.4 mAHD, equivalent to a bulk excavation of up to approximately 1.2 m below existing ground level (**mbgl**) to allow for a 300 mm slab to be constructed. The eastern portion of the basement contains a garage ramp from Minarto Lane, grading from a proposed level of 2 mAHD to the basement finished floor level at 1.4 mAHD. Two lifts are proposed as part of the development are expected to have lift well base levels of approximately -0.1 mAHD.

From review of preliminary structural plans provided by Mackenzie Architects International the ultimate basement construction is to include an OSD. Final structural details and methodology of OSD will be provided by the project structural engineer at the detailed design stage.

Development plans and the approximate extent of the proposed basement is shown in Appendix B.

1.3 Scope

1.3.1 Hydrogeological Assessment (HA)

The scope of the HA is noted as:

1. Undertake a desktop review of available site information including topography, geology, soil landscape and acid sulfate soils (**ASS**) risk.

- 2. Site inspection to assess the serviceability and condition of existing monitoring well (**MW01**).
- 3. Installation of one groundwater monitoring well (**MW02**) in conjunction with a geotechnical investigation.
- 4. Purging and development of installed monitoring wells approximately one week following Site inspection.
- 5. Collection of one groundwater sample from each monitoring well and subsequent laboratory analysis to assess groundwater quality.
- 6. Assessment of aquifer permeability characteristics through the completion of slug tests.
- 7. Manual measurement of groundwater levels in each monitoring well using an electronic dip meter, and monitoring of groundwater level using a data logger for a period of approximately one month.

1.3.2 Groundwater Dewatering Management Plan (GDMP)

The scope of the GDMP is as follows:

- 1. Assessment of anticipated groundwater interception by the proposed development
- 2. Calculation of predicted groundwater infiltration rates and dewatering volumes during basement and lift well construction (based on assumed timeframes).
- 3. Provide a monitoring plan for the duration of the construction dewatering in accordance with current Water NSW requirements.

1.4 Other Assessments

The following relevant assessments have been completed by MA for the Site:

- a. Geotechnical, Hydrogeological and Acid Sulfate Soil Assessment: 3 Gondola Road, North Narrabeen, NSW. Report ref: P2108694JR02V03 (**MA, 2022**).
- b. *Site Contamination Assessment: 1-3 Gondola Road, North Narrabeen NSW.* Report ref P2310036JR01V01 (**MA, 2024a**).
- c. *Geotechnical And Acid Sulfate Soil Assessment: 1 3 Gondola Road, North Narrabeen, NSW.* Report ref P2310036JR02V01 (**MA, 2024b**).
- d. *Acid Sulfate Management Plan: 1 3 Gondola Road, North Narrabeen, NSW.* Report ref P2310036JR04V01 (**MA, 2024c**).

Where required in this report, reference has been made to the findings of the above reports.

2 Hydrogeological Assessment

2.1 Site Details

A summary of Site details is provided in Table 1, with site locality plan provided in Appendix A.

 Table 1: Site detail summary.

ltem	Description
Site address	1-3 Gondola Road, North Narrabeen, NSW
Legal identifier	Lot 187 and 188 DP 16719 (Six Maps)
Surveyed area	1289.3 m ² (C & A Surveyors, 2024)
Topography	The Site is relatively flat with grades < 5%.
	3 Gondola Rd elevation ranges from 5.61 mAHD in the centre to 1.95 mAHD along the northern boundary (C & A Surveyors, 2024).
	1 Gondola Rd elevations range from 1.91 mAHD in the northeast corner to 2.15 mAHD at the centre of the western boundary (C & A Surveyors, 2024).
Geology	The Sydney 1:100,000 Geological Sheet 9030 (Herbert, 1983) describes site geology as silty peaty quartz sand, silt and clay. Ferruginous and humic cementation in places. Common shell layers
Soil landscape	The NSW Environment and Heritage eSPADE website identifies the site as having soils of the Warriewood landscape having soils of deep, well sorted, sandy humus podzols and dark, mottled siliceous sands, overlying buried acid peats in depressions; deep podzols and pale siliceous sands on sandy rises
Acid sulfate soils	The Pittwater Local Environment Plan 2014, Acid Sulfate Soil Map (Sheet ASS – 019), the site is located within Class 3 ASS risk

2.2 Fieldworks

2.2.1 Well Installation and Development

Site inspection and installation of groundwater wells was undertaken over two separate events on 14 July 2023 and 7 March, 2024, in conjunction with geotechnical and ASS investigations at the Site. The following works were undertaken:

- Detailed Site walkover inspection.
- Drilling of 10 boreholes (BH101 BH102 and BH201 BH208) to a maximum investigation depth of 10.00 mbgl.
- Installation of two groundwater monitoring wells (MW01 MW02) at each BH201(part of previous works at 3 gondola road) and BH202, with flush mounted gatic covers.

- Development of each groundwater well.
- Installation of data logger in MW02 for continuous monitoring of groundwater levels and barometric pressure.

2.2.2 Collection of Groundwater Samples

Subsequent inspection of the Site was undertaken on 11 April 2024. The following works were undertaken:

- Manual measurement of groundwater levels in each monitoring well using an electronic dip meter.
- Field screening of groundwater quality parameters using a water quality meter at each monitoring well.
- Collection of representative groundwater samples from each monitoring well location for laboratory analysis.
- Installation of data logger in MW01 for continuous monitoring of groundwater levels.

2.3 Groundwater Monitoring

2.3.1 Monitoring Methodology

Groundwater monitoring was undertaken at MW02 between 7 March 2024 and 5 July, 2024 and MW01 between 11 April 2024 – 5 July 2024. Works undertaken included:

- Continuous monitoring using a data logger at 15 minute recording intervals.
- Manual dip meter measurements taken at the beginning and end of the continuous monitoring period.
- Efforts to perform rising and falling slug tests in each monitoring well for calculation of hydraulic conductivity (*k*) across the Site.

2.3.2 Monitoring Results

Dip meter measurements and continuous data logger recordings are summarised in Table 2 and Table 3 respectively, and a graphical plot of collected groundwater level data is provided in Figure 1.

Date	Groundwater levels				
	MW01		М	W02	
	mbgl	mAHD	mbgl	mAHD	
4 April, 2024	1.31	0.69	1.52	0.48	

 Table 2: 'Dip' groundwater measurement summary.

Date	Groundwater levels				
	MW01		Μ	W02	
	mbgl	mAHD	mbgl	mAHD	
11 April 2024	1.13	0.87	1.4	0.6	
13 May 2024	1.15	0.85	1.45	0.55	
13 June 2024	1.29	0.71	1.54	0.46	
5 July 2024	1.19	0.81	1.41	0.59	

Table 3: Monitoring data summary (7/03/2024 - 5/07/2024).

Monitoring	Surface Level	Groundv	Dange (m)		
Well	(mAHD)	Minimum	Mean	Maximum	Range (m)
MW01 ¹	2.00	-1.43 / 0.57	-1.22 / 0.78	-1.00 / 1.00	0.43
MW02	2.00	-1.78 / 0.22	-1.54 / 0.47	-1.01 / 0.99	0.78
1. Note M	W01 was only mon	itored hetween 11	April 2024 – 5 July 2	024	

Note: MW01 was only monitored between 11 April 2024 - 5 July 2024.

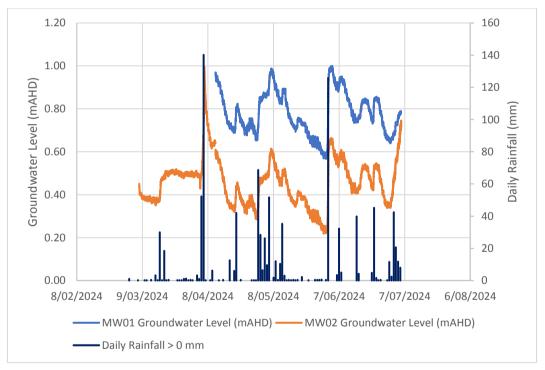


Figure 1: Plot of groundwater level data.

Some amount of groundwater level variation was recorded throughout the monitoring period. Rapid groundwater level response was observed during heavy or prolonged rainfall with increases in groundwater levels closely reacting to rainfall recharge. It is noted that the monitoring period was conducted during a period of consistent and at times heavy rainfall which is likely the reason for observed groundwater level variance. During dry periods with little to no rainfall, Site groundwater levels would be expected to remain generally stable.

The groundwater gradient across the Site was observed to be relatively flat with a slight gradient to the east (noting only two monitoring wells).

2.4 Groundwater Quality Testing

2.4.1 Testing Methodology

Groundwater was sampled from each monitoring well to allow initial data assessment of groundwater quality in accordance with NSW DPIE (2022). All wells were sampled during Site inspection on 11 April, 2024.

Each well was purged using low flow peristaltic pump, with water quality parameters continually assessed through a flow cell unit until pH, EC, DO, turbidity and temperature measurements stabilised. Field screening of parameters was undertaken and groundwater samples were collected in laboratory supplied bottles with appropriate preservations.

Two groundwater samples were submitted to a NATA accredited laboratory (Envirolab Pty Ltd) and tested for the following:

- Ionic Balance (Ca, K, Mg, Na, OH, CO3, HCO3, total alkalinity, Cl, SO4)
- Nutrients (N, NOx, NH3, P, PO4)
- TOC
- Microbes (faecal coliforms, enterococci, E. coli)
- Hydrocarbons (BTEX, TRH, PAH)
- Physical Parameters (pH, EC, DO, SAR, TDS, TSS, turbidity)
- Heavy metals (aluminium, antimony, arsenic barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, uranium, vanadium, zinc, silicon).

2.4.2 **Testing Results**

Laboratory results for pH, electrical conductivity (EC) and chloride (Cl) are summarised in Table 4.

Table 4: Summary of pH, EC and Cl results.

Monitoring well	рН	EC (μS / cm)	Chloride (mg / L)
MW01	7.0	12,000	3,900
MW02	7.2	2,300	420

Based on the above results, groundwater at the Site is brackish, and neutral.

Groundwater sampled for Site Contamination Assessment (MA, 2024a) were assessed against the ANZG (2018) marine water 95% guideline, based on the closest major water way from the Site being South Creek, which drains from Narrabeen Lagoon into the Pacific Ocean. To assess potential vapour risk from the adjacent service station (which may present an offsite risk to Site groundwater), results were also compared to health screening levels (**HSL**) provided in NEPM (2013). Laboratory results found concentrations of all COPC to meet the adopted testing criteria for all analytes.

All groundwater results were found to be below the adopted guideline criteria. Of note, contamination associated with services station use were reported below the laboratory detection limit.

A detailed table of results showing individual contaminant concentrations compared to adopted testing criteria is provided in Appendix E, and chain of custody documentation and laboratory certificates are provided in Appendix F.

2.5 Hydraulic Conductivity

Rising and falling head slug tests were attempted on MW01 and MW04 on 11 April and 13 May 2024. Slug tests were unable to provide reliable hydraulic conductivity (k) data for the Site. Therefore, using values taken from E. Scott Bair and Lahm, 2006 hydraulic conductivity of medium sand was estimated to be of the order 5 - 15 m / day.

3 Groundwater Dewatering

Management Plan

3.1 Collection of Groundwater

Groundwater seepage into the basement excavation is expected to be collected via appropriately located spoon drains and sump(s). A submersible pump in the sump(s) shall direct water to Council stormwater provided baseline data confirmation (Section 2.4.2). During warmer / dry weather, evaporate loss may result in less groundwater being collected during construction.

3.2 Anticipated Extent of Groundwater Interception

Groundwater level data collected during the primary monitoring period (Section 2.3) indicate that the average groundwater level across the Site ranged from approximately 0.46 mAHD and 0.76 mAHD with upper bound levels in order of 0.99 mAHD and 1.00 mAHD.

Based on Site construction plans, bulk excavation for construction of the basement will be across the Site is to be taken to 1.1 mAHD, with excavation of lift wells expected to be to -0.1 mAHD. Analysis of rainfall and groundwater levels indicated bulk excavation is only expected to intercept groundwater with occurrences of high rainfall with groundwater quickly returning to Site averages in the following days (Figure 1). Excavation of lift wells is expected to intercept approximately 0.73 m into the groundwater table.

A diagram showing approximate mean groundwater elevations across the Site is provided in Figure 2.

Figure 2: Expected mean groundwater level.

3.3 Dewatering Volume

Dewatering is only expected to be required during the lift well construction works, including construction of lift wells slab and perimeter walling (including tanking). We anticipate that the dewatering timeframe will likely be in the order of one month. In light of this, we expect total construction dewatering volumes to be approximately 0.63 ML over the one month dewatering timeframe.

Groundwater dewatering volume calculations are provided in Appendix D. The following is noted:

- An inflow rate of approximately 7.52 ML / year is estimated for a maximum predicted groundwater take in the order of 0.63 ML over the dewatering timeframe of up to one month.
- Predicted volumes may depend somewhat on the rate of excavation progress and adjustment of groundwater profiles beyond the excavation as well as evaporation rates.
- Monitoring was completed following a period of significant rainfall; it is likely that actual groundwater table at the time of dewatering may be lower than predicted.

• Due to difficulties encountered during slug test attempts, hydraulic conductivity for medium sands are assumed and not Site specific.

3.4 Anticipated Offsite Impacts

Anticipated offsite impacts of groundwater dewatering have been assessed as follows:

- 1. Groundwater flow impacts including mounding and flow diversion are likely to be minimal given the scale of the proposed basement, local flat hydraulic gradient and the permeability of underlying sand.
- 2. A review of the Bureau of Meteorology (2019) *Groundwater Dependent Ecosystems Atlas* indicates that there are groundwater dependent ecosystems (GDE) within 100 m of the Site. Due to the minimal nature of the proposed dewatering and, partial cut off walls such as diaphragm walls or secant pile walls noted in MA, 2024b impact on nearby GDEs are expected to be negligible.
- 3. Two acid sulfate soils (ASS) assessments were undertaken for the Site and documented in MA 2022 and MA 2024b. Based on laboratory testing of Site soils, ASS indicators (acid / sulfur trails) were identified in soils collected from depths below 1.2 mbgl. Given the temporary nature of the proposed dewatering and cut off walls noted in MA 2024b, anticipated dewatering to a level of approximately 0.1 mAHD, risk to actual or potential ASS from dewatering is considered minimal. Any material and groundwater collected during excavation and dewatering process is to be managed in accordance with Site ASS Management Plan (MA, 2024c).
- 4. Assessment of settlement as a result of dewatering has been documented in the geotechnical and acid sulfate soils assessment (MA, 2024b). Impacts are considered acceptable, subject to recommendations provided in MA (2024b).

3.5 Dewatering Management

3.5.1 Treatment Requirements

On the basis of the groundwater sampling undertaken (which indicates that groundwater is brackish, neutral and meets ANZG (2018) guidelines) the following options for disposal of groundwater from the dewatering process will need to be considered:

- 1. Discharge to stormwater.
- 2. Discharge of groundwater to sewer under a trade waste license.

We note resampling of all groundwater wells at the Site be taken to confirm groundwater characterisation, noting only one round of sampling has been completed to date.

3.5.2 Licensing Requirements

Under Section 92 of the Water Management Act (2000), a Water Supply Works (**WSW**) approval will be required for the construction works given the proposal will intercept the groundwater table.

As total groundwater take is expected to be less than 3 ML over dewatering timeframe of up to one month, a Water Access License (**WAL**) will not be required from WaterNSW under the Water Management Act (2000).

Applications for a WSW approval are to be submitted to WaterNSW for approval prior to construction dewatering being undertaken.

3.5.3 Monitoring Requirements

Monitoring of groundwater levels, groundwater discharge quality and groundwater take will be required to be undertaken in accordance with NSW DPIE (2022) requirements. The scope of monitoring will be contingent on the type of treatment and disposal that is implemented in light of our recommendations in Section 3.5.1. Monitoring requirements shall be included as part of the final dewatering management plan which will be required to be submitted to WaterNSW for the Water Supply Work approval.

3.6 Comments

Further works will need to be undertaken following development approval but prior to construction to meet the requirements of WaterNSW and NSW DPIE (2022) and to inform a WSW approval. This will include, but may not be limited to:

- 1. Appropriate monitoring and sampling of at least three monitoring wells prior to the commencement of construction works in accordance with NSW DPIE (2022) requirements.
- 2. Determination of baseline data.
- 3. Preparation of a detailed dewatering management and monitoring plan.

4 References

- Bureau of Meteorology (2019) *Groundwater Dependent Ecosystems Atlas.* <u>http://www.bom.gov.au/water/groundwater/gde/map.shtml</u>. Accessed July 2024.
- C & A Surveyors (2024) Detail & Boundary Identification Survey of Lot 187 & 188 in DP 16719, Located at No. 1-3 Gondola Road, North Narrabeen
- E. Scott Bair and Lahm, T.D. (2006). Practical Problems in Groundwater Hydrology. Prentice Hall.
- Herbert C (1983) Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney.
- Mackenzie Architects International (2024) Multi Residential Development: 1 3 Gondola Rd North Narrabeen 2101
- Martens and Associates (2022) Geotechnical, Hydrogeological and Acid SUlfate Soil Assessment: 3 Gondola Road, North Narrabeen NSW (ref: P2108694JR02V03).
- Martens and Associates (2024a) *Site Contamination Assessment: 1-3 Gondola Road, North Narrabeen NSW* (ref P2310036JR01V01).
- Martens and Associates (2024b) Geotechnical and Acid Sulfate Soil Assessment: 1 3 Gondola Road, North Narrabeen, NSW (ref P2310036JR02V01).
- Martens and Associates (2024c) *Acid Sulfate Management Plan:* 1 3 *Gondola Road, North Narrabeen, NSW* (ref P2310036JR04V01).
- NSW Department of Environment & Heritage (eSPADE, NSW soil and land information), www.environment.nsw.gov.au. Accessed 26/04/2024.
- NSW Department of Planning, Industry & Environment (2022) *Minimum requirements for building site groundwater investigations and reporting.* Referred to as NSW DPIE (2022)
- Water Quality Australia (2018) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Referred to as ANZG (2018).

Appendix A – Mapset

Project No: P2310036 Map Set: MS03-R01

EPSG: 7856

Associates Pty Ltd

Martens &

1:500 @ A4

Viewport A

0

Image: Nearmap (2024) Data Source: ELVIS DEM

6

12

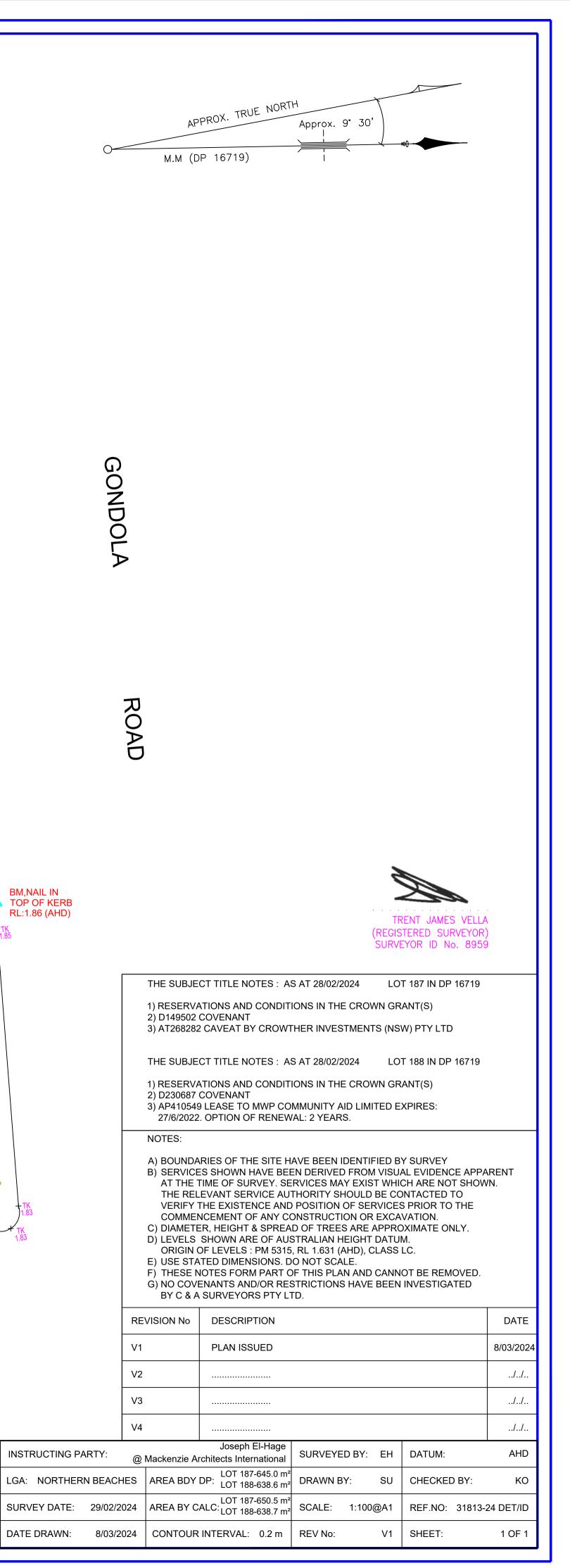
18

24

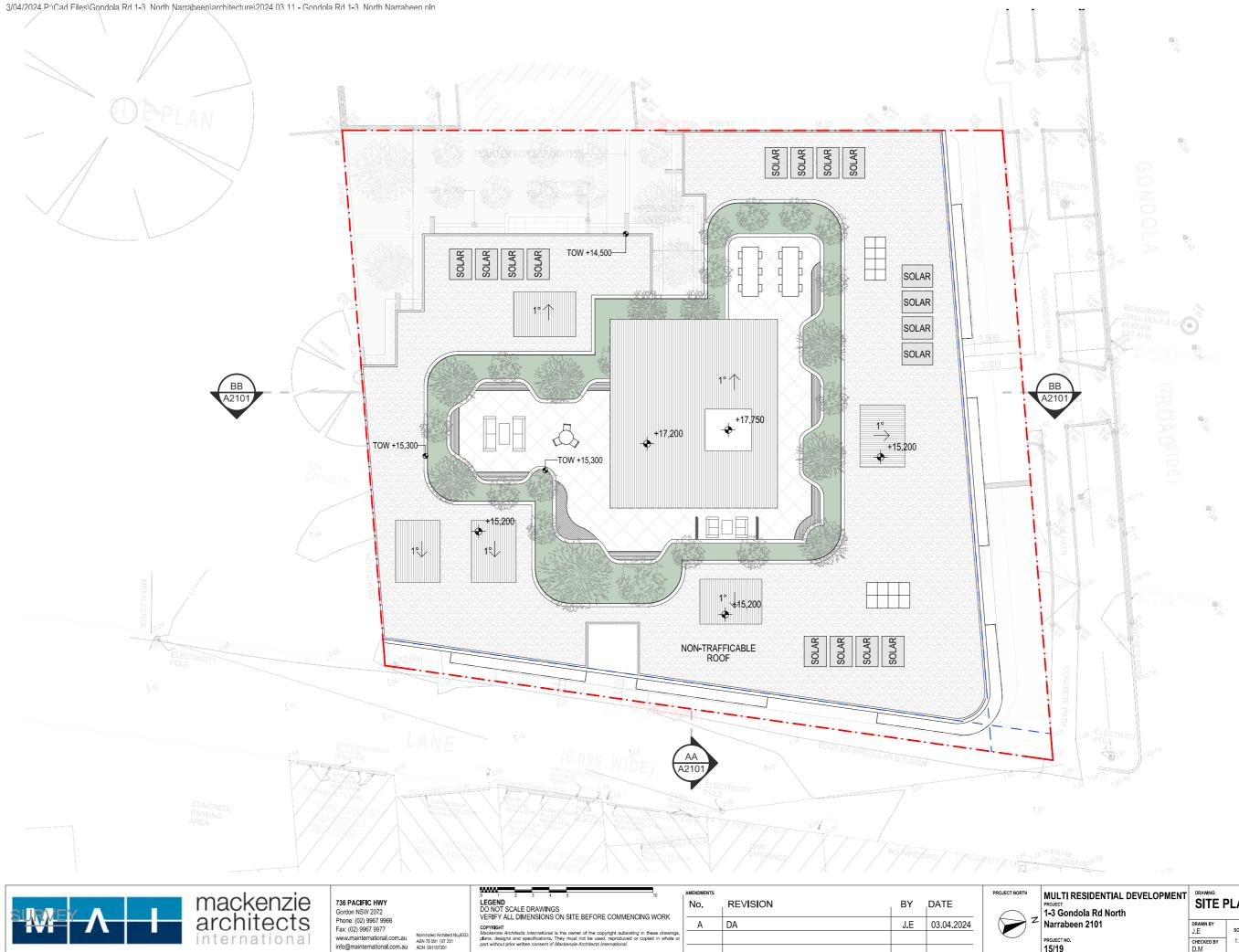
30 m

Map 01 1-3 Gondola Road, North Narrabeen, NSW Mixed Use Development Hydrogeological Assessment Brett Crowther 08/07/2024

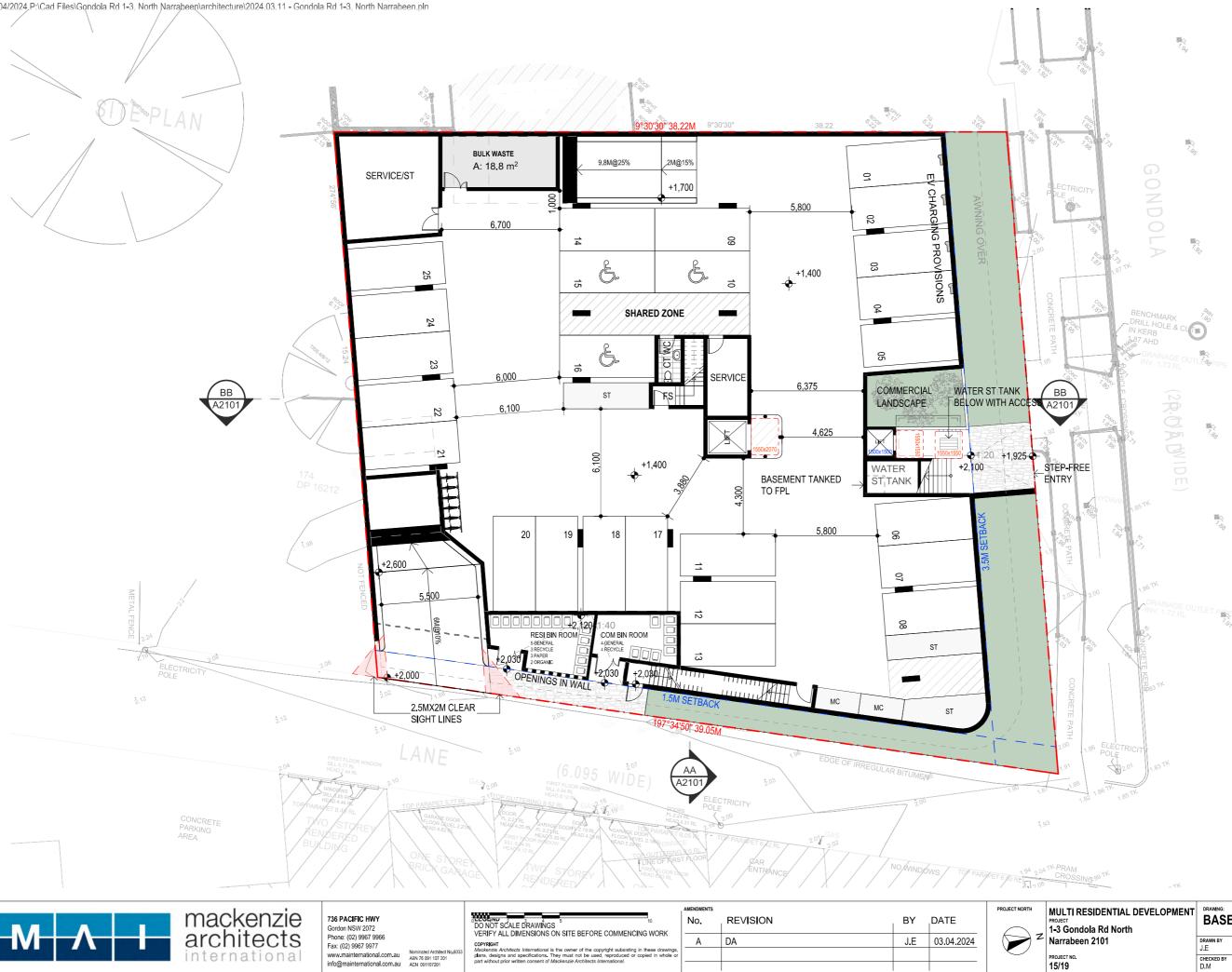
Мар Site Project Sub-Project Client Date



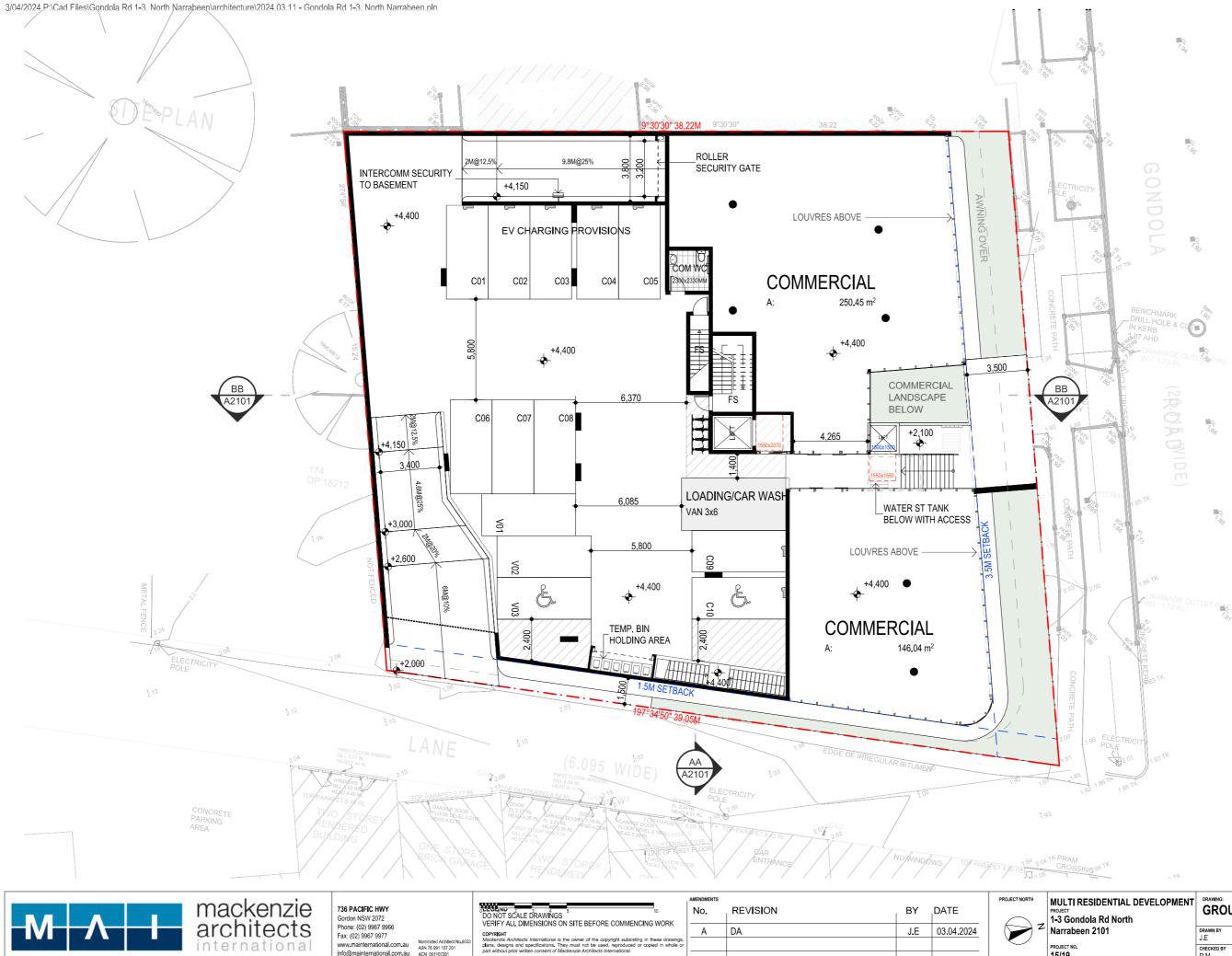
Appendix B – Site Survey and


Architectural Plans

🗉 HYDRANT WATER METER



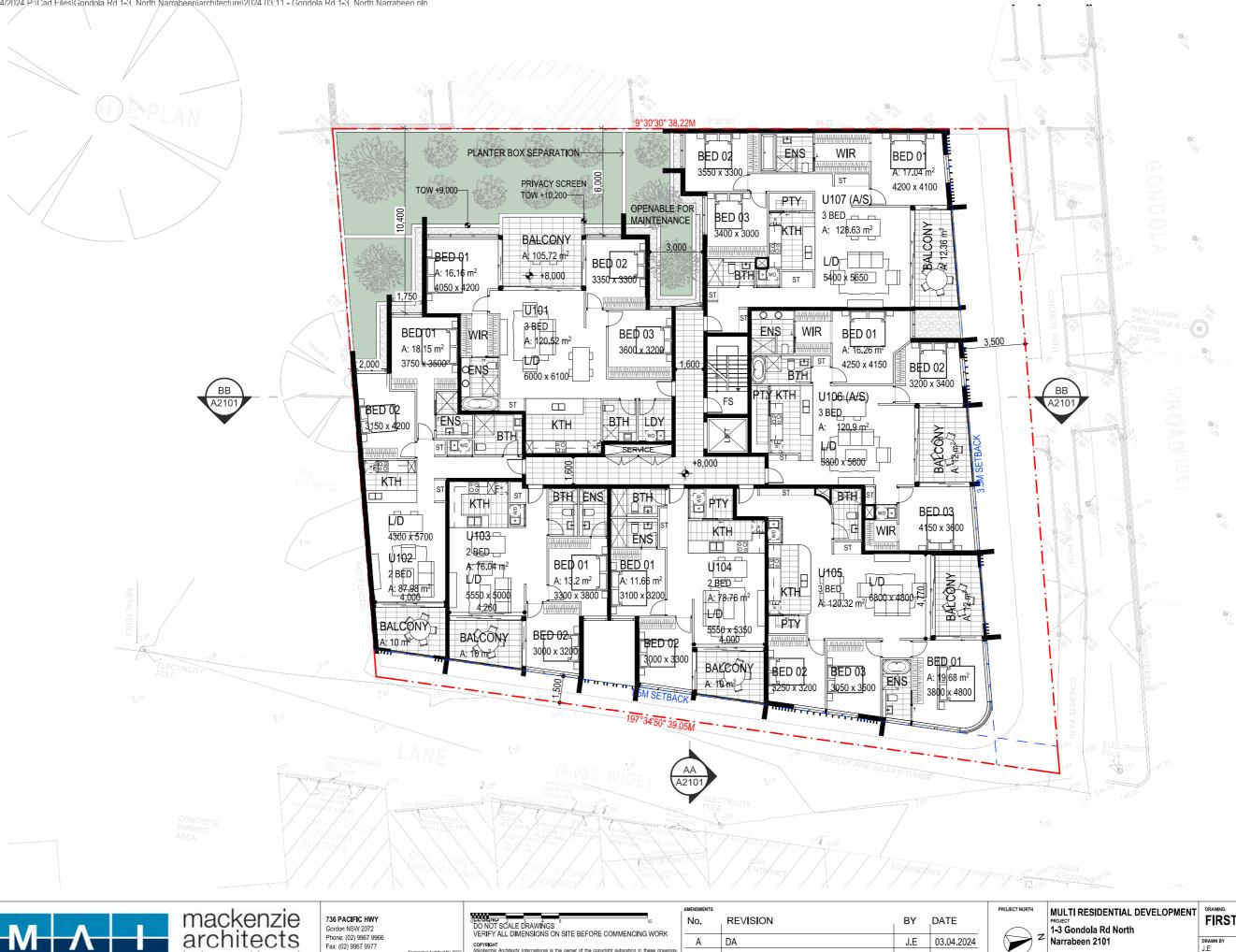
international


MULTI RESIDENTIAL DEVELOPMEN PROJECT 1-3 Gondola Rd North	DRAWING:	PLAN			
Narrabeen 2101	DRAWN BY J.E	SCALE:	DRAWING NO.:	ISSUE:	
PROJECT NO.	CHECKED BY D.M	1:200@A3	A0005	Α	

international

DRAWING: BASEMENT PLAN DRAWN BY J.E CHECKED BY D.M

	.AN	
SCALE:	DRAWING NO.:	ISSUE:
1:200@A3	A1001	Α

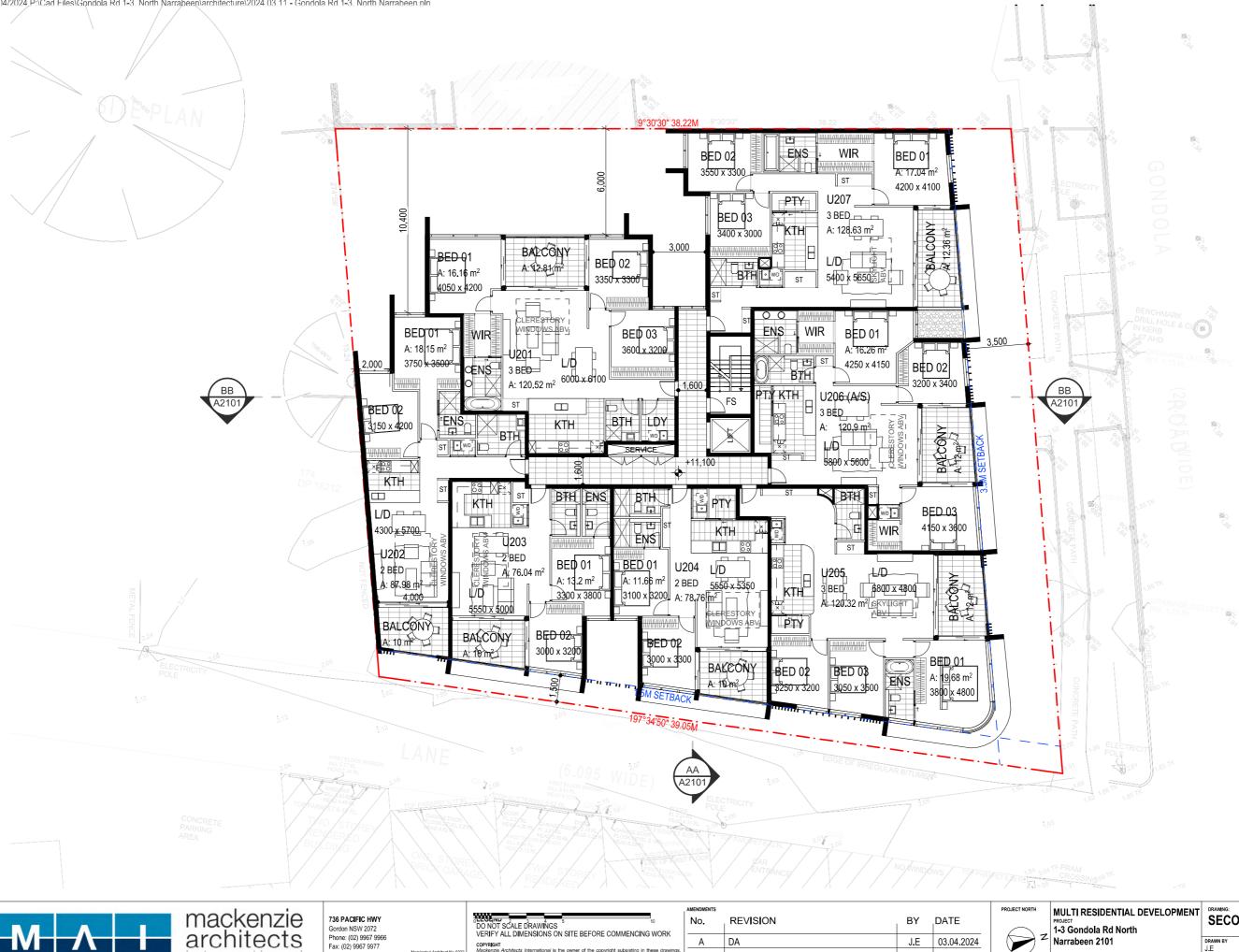

www.mainternational.com.au Nominated Architect No. ABN 76 091 107 201 ACN 091107201

international

PROJECT NO. 15/19

RESIDENTIAL DEVELOPMENT ndola Rd North		IND FLO	OR PLA
een 2101	drawn by J.E	SCALE:	DRAWING NO
).	CHECKED BY D.M	1:200@A3	A100

ROU	IND FLO	OR PLAN	
N BY	SCALE:	DRAWING NO.:	ISSUE:
KED BY	1:200@A3	A1002	Α

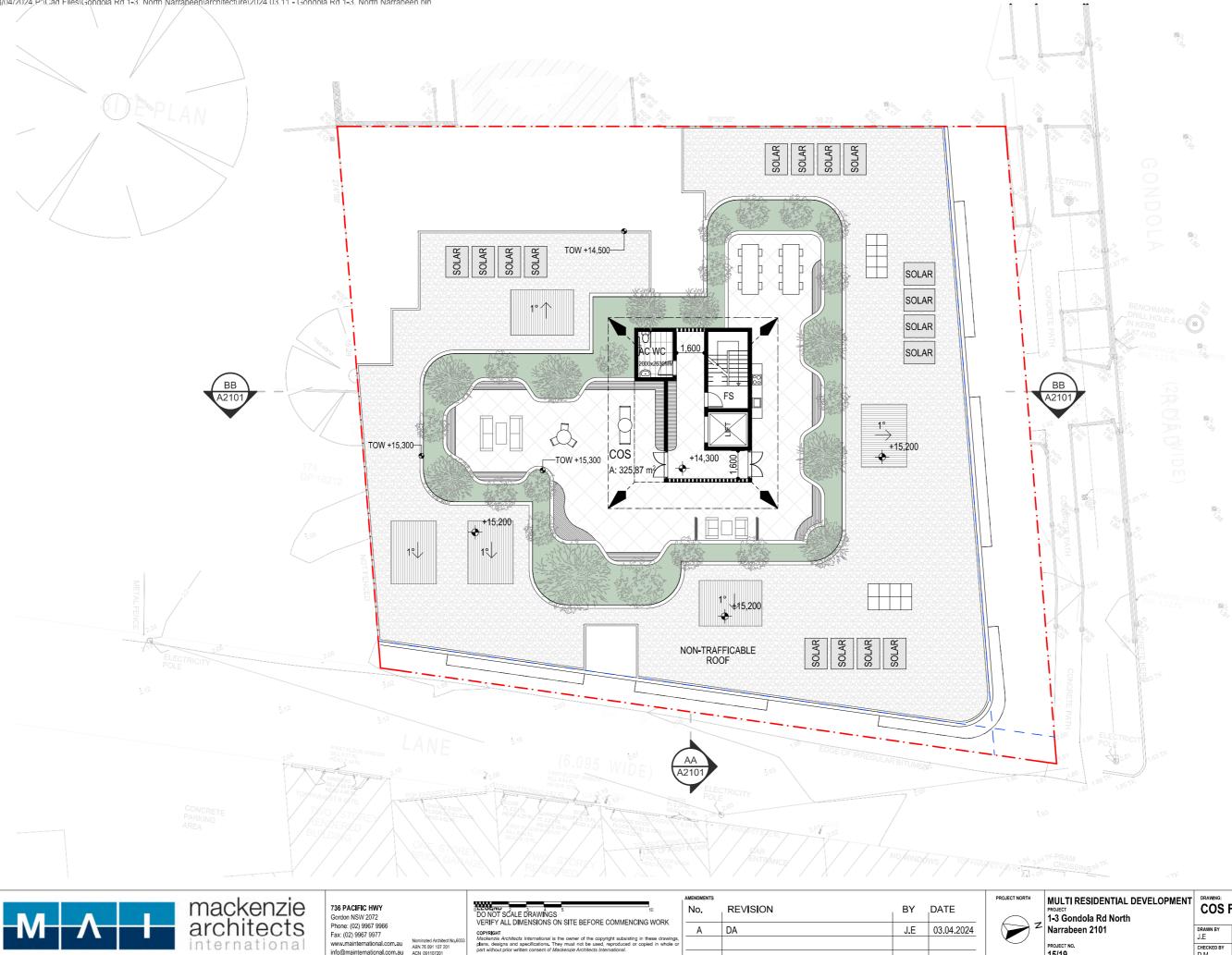


Gordon NSW 2072 Phone: (02) 9967 9966 Fax: (02) 9967 9977 www.mainternational.com.au Nominated Architect N ABN 76 091 107 201 ACN 091107201 internationa

COPYRIGHT Mackenzie Architects International is the owner of the copyright sub plans, designs and specifications. They must not be used, reproduc part without prior written consent of Mackenzie Architects Internationa

А DA J.E 03.04.2024 PROJECT NO. 15/19

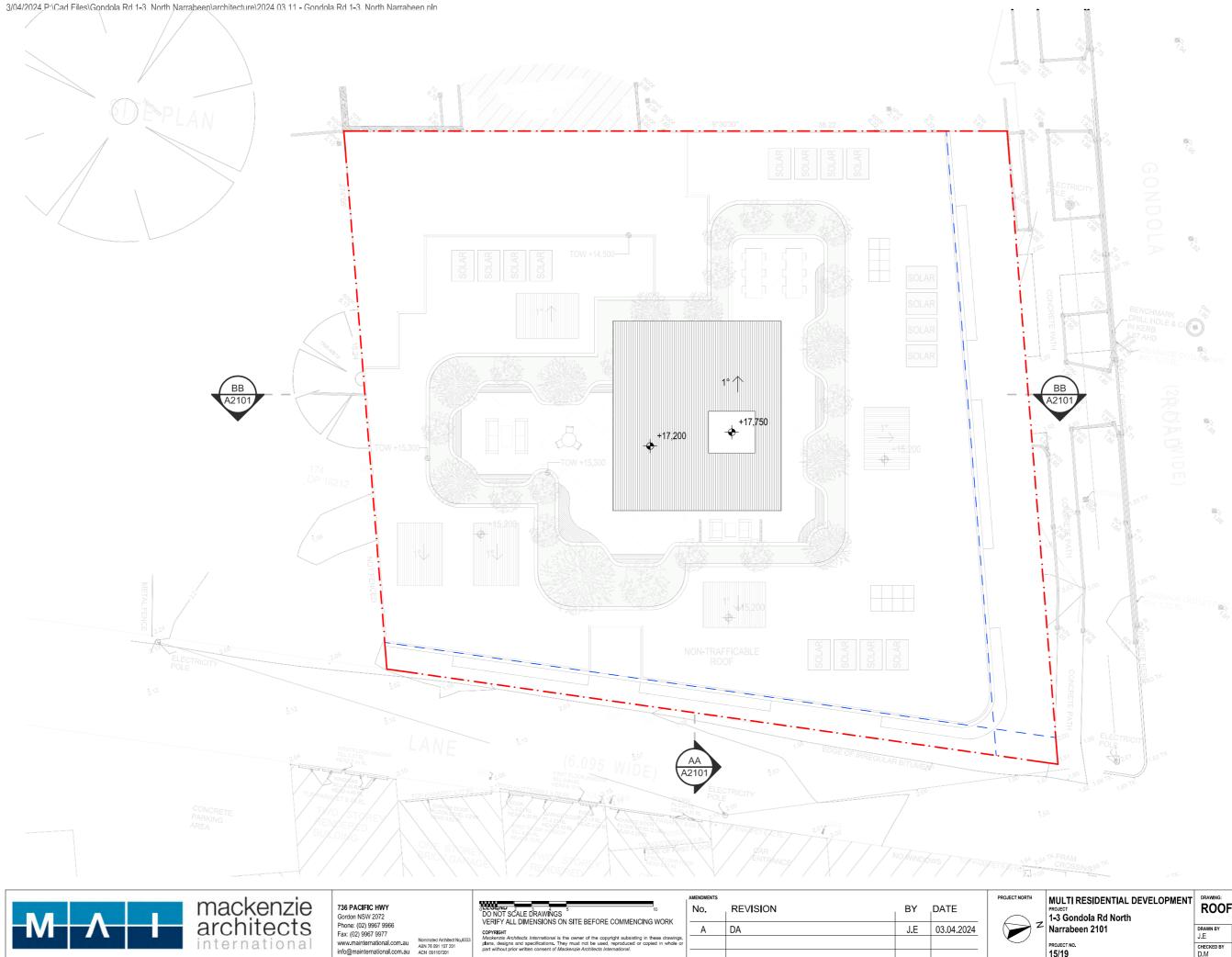
FIRST FLOOR PLAN Narrabeen 2101 DRAWN BY J.E SCALE: ISSUE: A1003 Α 1:200@A3 CHECKED BY D.M


Gordon NSW 2072 Phone: (02) 9967 9966 Fax: (02) 9967 9977 www.mainternational.com.au Nominated Architect N ABN 76 091 107 201 ACN 091107201

internationa

COPYRIGHT Mackenzie Architects International is the owner of the copyright sub plans, designs and specifications. They must not be used, reproduc part without prior written consent of Mackenzie Architects Internationa

А DA J.E 03.04.2024 PROJECT NO.


SECOND FLOOR PLAN Narrabeen 2101 drawn by J.E SCALE: ISSUE: A1004 Α 1:200@A3 CHECKED BY D.M

www.mainternational.com.au Nominated Architect N ABN 76 091 107 201 ACN 091107201

international

COS FLOOR PLAN DRAWN BY J.E CHECKED BY D.M SCALE: DRAWING NO. ISSUE: PROJECT NO. 15/19 A1005 1:200@A3 Α

project no. 15/19

ROOF PLAN DRAWN BY J.E CHECKED BY D.M SCALE: DRAWING NO. ISSUE: A1006 1:200@A3 Α

national is the owner of the copyright subs cations. They must not be used, reproduce

COPYRIGHT Mackenzie Architects Internat plans, designs and specificati part without prior written conse

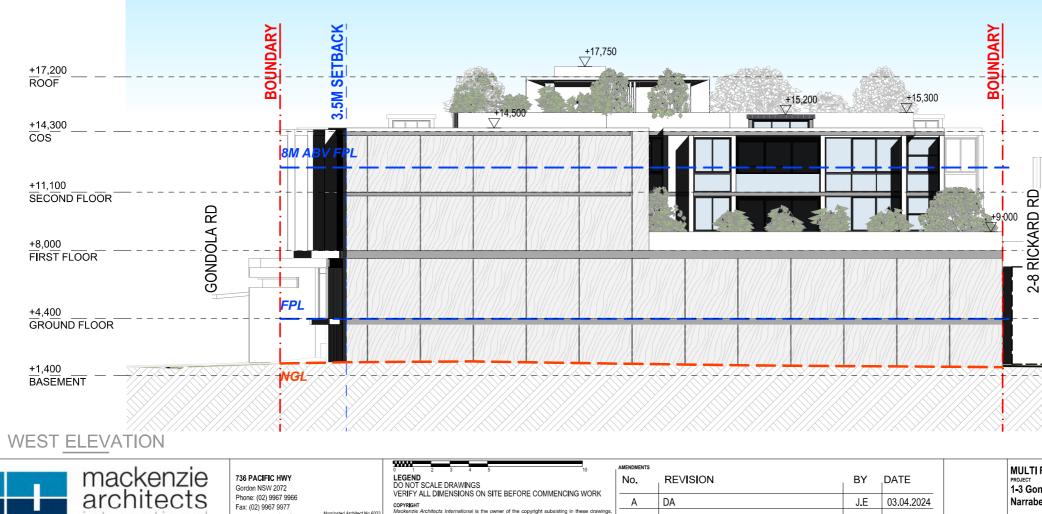
Fax: (02) 9967 9977

nternationa

www.mainternational.com.au Nominated Architect N ABN 76 091 107 201 ACN 091107201

А

DA


$= - + \frac{+17,200}{ROOF}$ $= - + \frac{+14,300}{COS}$ $= - + \frac{+14,300}{SECOND FLOOR}$ $= - + \frac{+8,000}{FIRST FLOOR}$ $= - + \frac{+4,400}{BASEMENT}$ $= - + \frac{+1,400}{ROOF}$ $= - + \frac{+17,200}{ROOF}$	
	+ <u>17,200</u> ROOF
SECOND FLOOR +8,000 FIRST FLOOR +4,400 GROUND FLOOR - +1,400 BASEMENT +17,200 ROOF +17,200 ROOF +14,300 COS +14,300 COS +14,300 COS +14,300 COS +14,300 COS +14,400 SECOND FLOOR +4,400 GROUND FLOOR	
FIRST FLOOR +4,400 GROUND FLOOR 	+ <u>11,100</u> SECOND FLOOR
GROUND FLOOR 	
	<u>+1</u> ,400 BASEMENT
ROOF ROOF 	
ROOF ROOF 	
	+ <u>17,200</u> ROOF
GROUND FLOOR	<u>+8,000</u> FIRST FLOOR
— <u>+1,400</u> BASEMENT	GROUND FLOOR
	— — <u>+1,400</u> BASEMENT

J.E 03.04.2024

MULTI RESIDENTIAL DEVELOPME PROJECT 1-3 Gondola Rd North		H & EAS	T ELEVATIO	DNS
Narrabeen 2101	DRAWN BY J.E	SCALE:	DRAWING NO.:	ISSUE
PROJECT NO. 15/19	CHECKED BY D.M	1:200@A3	A2001	Α

ational is the owner of the copyright sub ations. They must not be used, reprodu-

COPYRIGHT Mackenzie Architects Internat plans, designs and specificati part without prior written conse


Fax: (02) 9967 9977

nternationa

www.mainternational.com.au Nominated Architect N ABN 76 091 107 201 ACN 091107201

——————————————————————————————————————				
 MULTI RESIDENTIAL DEVELOPMENT PROJECT 1-3 Gondola Rd North	DRAWING:	H & WES	T ELEVATIO	ONS
Narrabeen 2101	DRAWN BY J.E	SCALE:	DRAWING NO.	ISSUE:
PROJECT NO. 15/19	CHECKED BY D.M	1:200@A3	A2002	Α

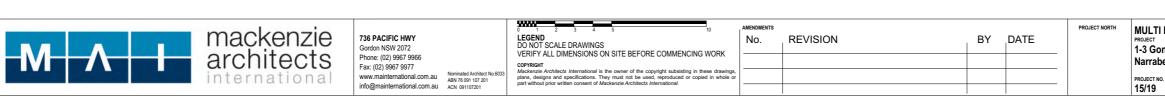
	+17,200 ROOF
	+ <u>+14,300</u> COS
ח ח ח	+11,100 SECOND FLOOR
2-8 RICKARD	<u>+8,000</u> FIRST FLOOR
Ň 	+4,400 GROUND FLOOR

SECTION AA

SECTION BB

Э	736 PACIFIC HWY Gordon NSW 2072	LEGEND DO NOT SCALE DRAWINGS VERIFY ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK	AMENDMENTS NO.	REVISION	BY	DATE	MULTI RESIDENTIAL DEVELOPMENT PROJECT 1-3 Gondola Rd North	
S	Phone: (02) 9967 9966 Fax: (02) 9967 9977	VENIET ALL DIVIENSIONS ON SITE DEFORE COMMENCING WORK COPYRIGHT Mackenzie Architects International is the owner of the copyright subsisting in these drawings,	А	DA	J.E	03.04.2024	Narrabeen 2101	DF
al	www.mainternational.com.au Nominated Architect No.6033 ABN 76 091 107 201 ACN 091107201	Head and the second					PROJECT NO. 15/19	CH D

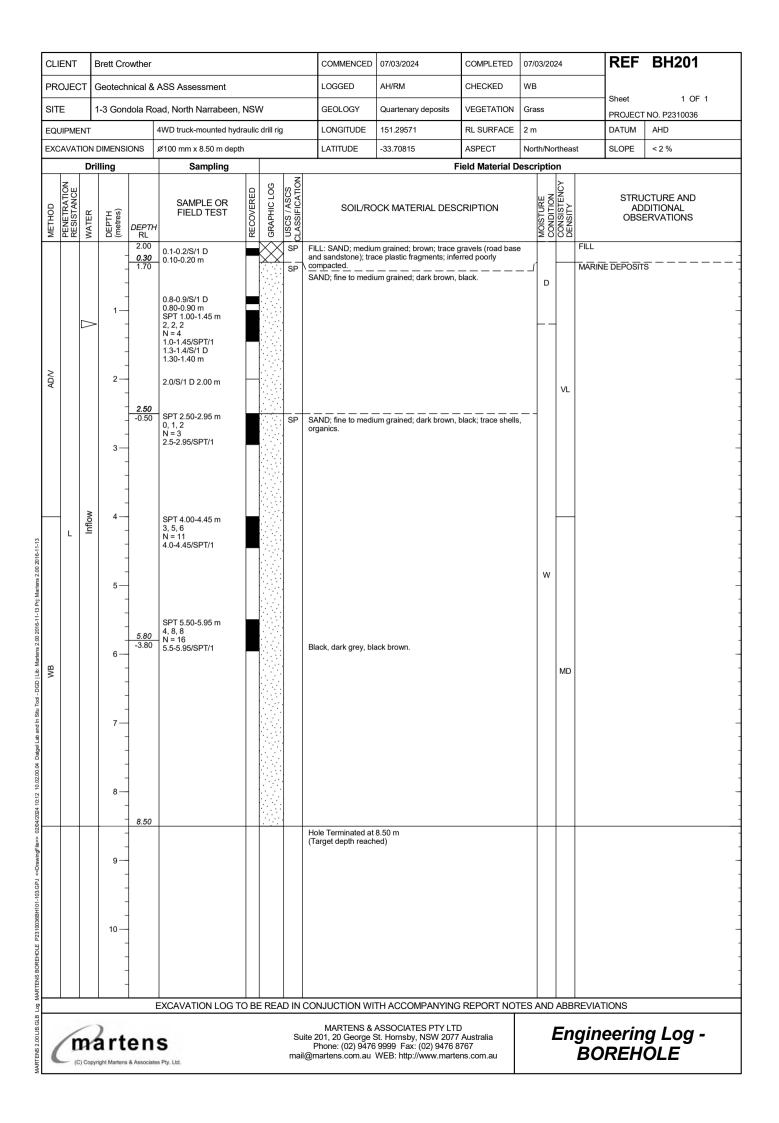
DRAWING: SECTIONS

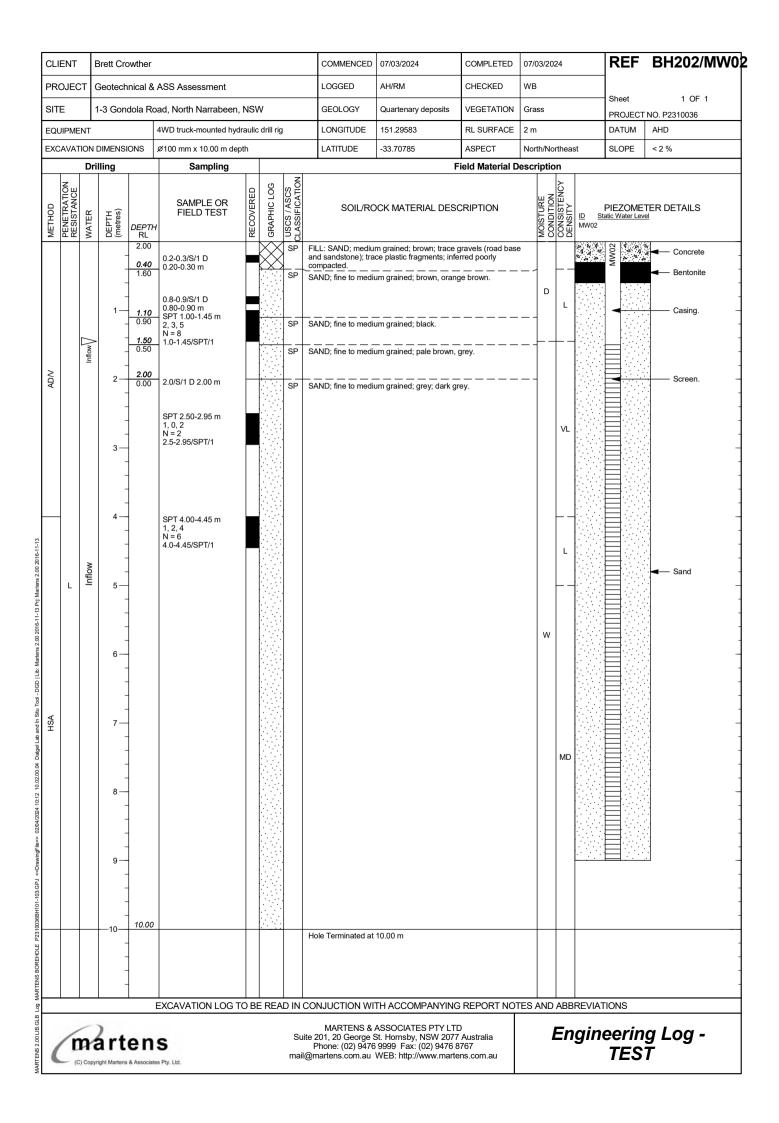

DRAWN BY J.E CHECKED BY D.M

SCALE: BY 1:200@A3

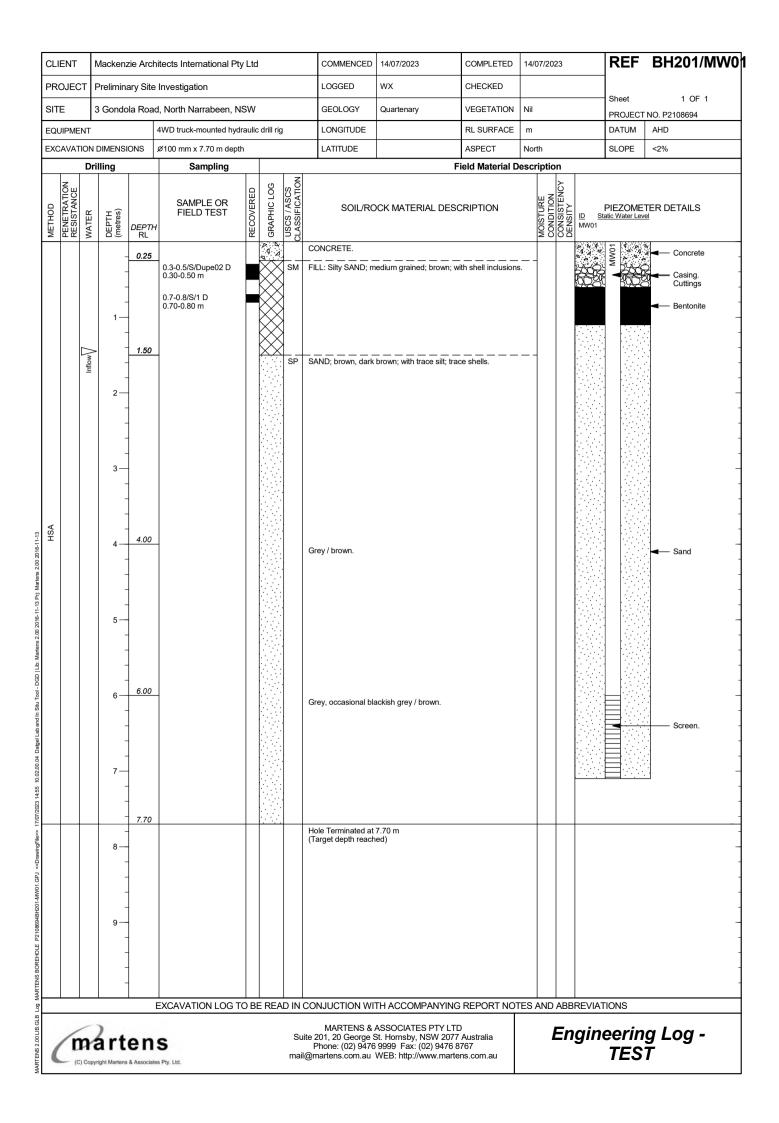
3

DRAWING NO.: A2101 ISSUE: A

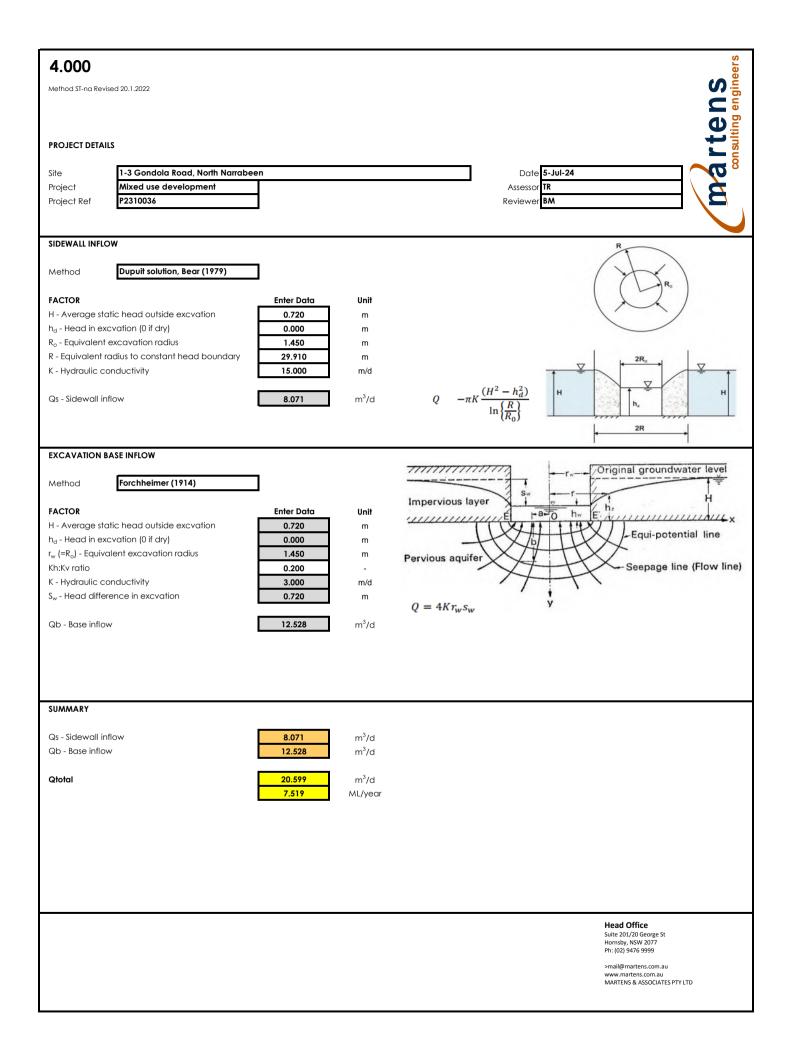



I RESIDENTIAL DEVELOPMENT	DRAWING:	ECTION		
been 2101	DRAWN BY J.E	SCALE:	DRAWING NO.:	ISSUE:
10.	CHECKED BY D.M	1:200@A3		

Appendix C – Borehole Logs



CLI	ENT		Brett Cro	owther					COMMENCED	07/03/2024	COMPLETED	07/0	03/20	24		REF	BH202
PRO	DJEC	т	Geotech	nical &	ASS Assessment				LOGGED	AH/RM	CHECKED	WB					4.05.4
SIT	Ξ	╡	1-3 Gond	dola Ro	ad, North Narrabeen	, NSV	V		GEOLOGY	Quartenary deposits	VEGETATION	Gra	SS			Sheet PROJEC1	1 OF 1 NO. P2310036
EQU	IPME	NT			4WD truck-mounted hy	draulic	drill rig	3	LONGITUDE	151.29583	RL SURFACE	2 m	1			DATUM	AHD
EXC	AVAT	ION	DIMENSI	ONS	ø100 mm x 10.00 m de	pth			LATITUDE	-33.70785	ASPECT	Nor	th/Nc	ortheas	st	SLOPE	< 2 %
_	Drilling Sampling							7		I	Field Material D		r <u> </u>	-			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	OCK MATERIAL DES	CRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
			-	2.00 0.40	0.2-0.3/S/1 D 0.20-0.30 m		\bigotimes	SP	FILL: SAND; mediu and sandstone); tra compacted.	m grained; brown; trace ce plastic fragments; inf	gravels (road bas erred poorly	e			FILL		
			-	1.60	0.8-0.9/S/1 D			SP		um grained; brown, oran	nge brown.		D	<u> </u>	MARIN	E DEPOSIT	s
			1	1.10 0.90	0.80-0.90 m - SPT 1.00-1.45 m 2, 3, 5			SP	SAND; fine to medi					L			
		\triangleright	-	1.50	N = 8 1.0-1.45/SPT/1			SP	SAND; fine to medi	um grained; pale brown,							
AD/V			2	2.00	2.0/S/1 D 2.00 m			SP	SAND: fine to modi				-				
			-						ט ווויש, ווויד ני meali	um grained; grey; dark g	µ-су.						
					SPT 2.50-2.95 m 1, 0, 2 N = 2									VL			
			3-		2.5-2.95/SPT/1												
			-														
			4		SPT 4.00-4.45 m												
			-		1, 2, 4 N = 6												
					4.0-4.45/SPT/1									L			
	L	Inflow	5-	5.00 -3.00										L			
			-	-3.00					Inferred medium de	nse.							
			-										w				
			6-														
			-														
			-														
HSA			7—														
			-											MD			
			-														
			8														
			-														
			9														
			-														
			-	10.00													
							<u></u>		Hole Terminated at (Target depth reach								
			-		EXCAVATION LOG							TES			RE\/!^1		
	1.2	/)			. 0 DI		<u>ب</u> ۱۱۷ ک		ASSOCIATES PTY LT		0 /					
1			art yright Martens						e 201, 20 George Phone: (02) 9476	St. Hornsby, NSW 207 9999 Fax: (02) 9476 WEB: http://www.mart	7 Australia 8767			En	gin BO	eerin REH	g Log - OLE


CLI	ENT		Brett Cro	wther					COMMENCED	07/03/2024	COMPLETED	07/0	03/20	24		REF	BH203
PRO	OJEC	т	Geotech	nical & /	ASS Assessment				LOGGED	AH/RM	CHECKED	WВ					
SIT	E		1-3 Gond	lola Ro	ad, North Narrabeen,	NS\	N		GEOLOGY	Quartenary deposits	VEGETATION	Gra	SS			Sheet PROJEC1	1 OF 1 NO. P2310036
EQL	JIPME	NT			4WD truck-mounted hyd	raulio	c drill rig	9	LONGITUDE	151.29586	RL SURFACE	2 m	I			DATUM	AHD
EXC	AVAT	ION	DIMENSI	ONS .	ø100 mm x 5.00 m dept	h			LATITUDE	-33.70801	ASPECT	Nor	th/No	ortheas	st	SLOPE	< 2 %
	_	Dr	illing		Sampling	—		z		I	Field Material D		r -				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DES			MOISTURE CONDITION	CONSISTENCY DENSITY		AD	ICTURE AND DITIONAL ERVATIONS
ADN		This		2.00 1.20 0.80 1.50 0.50 2.50 -0.50 4.00 -2.00 5.00	0.5/S/1 D 0.50 m 1.0/S/1 D 1.00 m 2.5/S/1 D 2.50 m 3.0/S/1 D 3.00 m 4.0/S/1 D 4.00 m 5.0/S/1 D 5.00 m			SP SP SP SP SP SP	and sandstone); tra compacted. SAND; fine to medii loose to loose. SAND; fine to medii organics; inferred v SAND; fine to medii inferred very loose to	um grained; brown, oran to loose. um grained; dark brown, rery loose to loose. 5.00 m	erred poorly	e	M		FILL	E DEPOSIT	S
				r	EXCAVATION LOG T	<u> </u> О Ві	 F RFA					TES			RE\/IA1	TIONS	
(art art	en	s			Suit	MARTENS & e 201, 20 George \$ Phone: (02) 9476	ASSOCIATES PTY LT St. Hornsby, NSW 2077 9999 Fax: (02) 9476 i WEB: http://www.marte	D 7 Australia 8767	0 /		En	gin		g Log - OLE

CLI	ENT	_			hitects International Pt	y Ltd		COMMENCED	14/07/2023	COMPLETED	14/07	7/2023		REF	BH201
PR	OJEC	TF	Prelimin	ary Site	e Investigation			LOGGED	wx	CHECKED				Sheet	1 OF 1
SIT	E	3	Gondo	ola Roa	d, North Narrabeen, N	ISW		GEOLOGY	Quartenary	VEGETATION	Nil				NO. P2108694
EQL	JIPME	NT			4WD truck-mounted hyd	Iraulic drill	rig	LONGITUDE		RL SURFACE	m			DATUM	AHD
EXC	AVAT	ION E	DIMENS	IONS	Ø100 mm x 7.70 m dept	h		LATITUDE		ASPECT	North			SLOPE	<2%
		Dril	ling		Sampling	\top	Z			Field Material D					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTI RL	SAMPLE OR FIELD TEST	RECOVERED		SOIL/RC	OCK MATERIAL D	ESCRIPTION		CONSISTENCY		AD OBSI	CTURE AND DITIONAL ERVATIONS
				0.25		P A		CONCRETE.					PAVE	MENT	
			-	-	0.3-0.5/S/Dupe02 D 0.30-0.50 m		X sм	FILL: Silty SAND; m	edium grained; brow	n; with shell inclusion	S.		FILL		
		Inflow	1		0.7-0.8/S/1 D 0.70-0.80 m		SP	SAND; brown, dark	brown; with trace silt	;; trace shells.			MARIN	IE DEPOSIT	<u>s</u> — — — — — — — — — — — — — — — — — — —
HSA			3 — - - 4 — - 5 —	4.00				Grey / brown.							
			- - - - - - - - - - - - - 7 —	- - - - - -	_			Grey, occasional bl	ackish grey / brown.						
			-	7.70				Hole Terminated at (Target depth reach							
			8 — - 9 — -												
				ı	EXCAVATION LOG T	OBER	EAD IN	CONJUCTION WI	TH ACCOMPANY	ING REPORT NO	TES A	ND AB	BREVIA	TIONS	
(ite 201, 20 George	9999 Fax: (02) 94	2077 Australia 76 8767		EI	ngin BO	eerin DREH	g Log - OLE

Appendix D – Dewatering Modelling

Appendix E – Laboratory Summary Table

			BTEX							TRH								
	Naphthalene (VOC)	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	C6-C10 Fraction (F1)	C6-C10 (F1 minus BTEX)	>C10-C16 Fraction (F2)	>C10-C16 Fraction (F2 minus Naphthalene)	>C16-C34 Fraction (F3)	>C34-C40 Fraction (F4)	>C10-C40 Fraction (Sum)	Benzo(b+j+k)fluoranth ene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene
	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L
EQL	0.001	1	1	1	2	1	10	10	50	50	100	100	50	0.0002	0.1	0.1	0.1	0.1
ANZG Marine Water Toxicant DGVs LOSP 95% (July 2023)	0.07	700	180	80													0.4	
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand		5,000 5,000 5,000						6,000 6,000 7,000										

MW01 11 Apr 2024 <0.001		1	
	<0.1	< 0.1	<0.1
MW02 11 Apr 2024 <0.001 <1 <1 <1 <2 <1 <10 <10 <50 <50 <100 <100 <50 <0.002 <0.1	<0.1	<0.1	<0.1

Statistics

Statistics																		
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Concentration	<0.001	<1	<1	<1	<2	<1	<10	<10	<50	<50	<100	<100	<50	<0.0002	<0.1	<0.1	<0.1	<0.1
Average Concentration *	0.0005	0.5	0.5	0.5	1	0.5	5	5	25	25	50	50	25	0.0001	0.05	0.05	0.05	0.05
Median Concentration *	0.0005	0.5	0.5	0.5	1	0.5	5	5	25	25	50	50	25	0.0001	0.05	0.05	0.05	0.05
Standard Deviation *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

				PAH											TPH		
	Benzo(a) pyrene	Benzo(g, h, i) perylene	Chrysene	Dibenz(a,h)anthracen e	Fluoranthene	Fluorene	indeno(1,2,3- c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ	PAHs (Sum of positives)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction	C10-C36 Fraction (Sum)
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0005	0.0001	10	50	100	100	50
ANZG Marine Water Toxicant DGVs LOSP 95% (July 2023)	0.2				1.4			70	2								
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand																	

Field ID	Location Code	Date																	
MW01		11 Apr 2024	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0005	<0.0001	<10	<50	<100	<100	<50
MW02		11 Apr 2024	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.0005	< 0.0001	<10	<50	<100	<100	<50

Statistics																	
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0005	<0.0001	<10	<50	<100	<100	<50
Average Concentration *	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.00025	0.00005	5	25	50	50	25
Median Concentration *	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.00025	0.00005	5	25	50	50	25
Standard Deviation *	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	•																·

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

		Biological														Inorg	anics		
	Faecal Coliforms	E. Coli	Enterococci	Hardness (filtered)	Electrical Conductivity (Non Compensated)	Reactive Silica	Alkalinity (Bicarbonate as CaCO3)	Alkalinity (Carbonate as CaCO3)	Alkalinity (Hydroxide) as CaCO3	Alkalinity (total) as CaCO3	Ammonia as N (filtered)	Chloride	Dissolved Oxygen (Lab)	Ionic Balance	Kjeldahl Nitrogen Total	Nitrate (as N) (filtered)	Nitrite (as N) (filtered)	Organic Nitrogen as N	Nitrogen (Total Oxidised)
	CFU/100mL	cfu/100 ml	org/100ml	mg/L	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	%	mg/L	mg/L	mg/L	mg/L	mg/L
EQL	1	1	1	3	1	0.1	5	5	5	5	0.005	1	0.1		0.1	0.005	0.005	0.2	0.005
ANZG Marine Water Toxicant DGVs LOSP 95% (July 2023)											0.91								
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand																			

MW01 11 Apr 2024 500 500 1,300 12,000 14 240 <5	Field ID	Location Code	Date																			
MW02 11 Apr 2024 <1.000 <1.000 <10 610 2.300 12 490 <5 <5 490 0.040 420 8.4 -3.0 0.4 8.0 0.036 0.4	MW01			500	500		1,300	12,000	14	240	<5	<5	240	0.21	3 400	8.3	0	6.0	1.4	0.052	5.8	1.5
	MW02		11 Apr 2024	<1,000	<1,000	<10	610	2,300	12	490	<5	<5	490	0.040	420	8.4	-3.0	0.4	8.0	0.036	0.4	8.1

Statistics																			
Number of Detects	1	1	0	2	2	2	2	0	0	2	2	2	2	2	2	2	2	2	2
Maximum Concentration	<1,000	<1,000	<10	1,300	12,000	14	490	<5	<5	490	0.21	3,900	8.4	0	6	8	0.052	5.8	8.1
Average Concentration *	500	500		955	7,150	13	365	2.5	2.5	365	0.12	2,160	8.4	-1.5	3.2	4.7	0.044	3.1	4.8
Median Concentration *	500	500	5	955	7,150	13	365	2.5	2.5	365	0.125	2,160	8.35	-1.5	3.2	4.7	0.044	3.1	4.8
Standard Deviation *	0	0		488	6,859	1.4	177	0	0	177	0.12	2,461	0.071	2.1	4	4.7	0.011	3.8	4.7

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

											Organic
	Nitrogen (Total)	pH (Lab)	Total Phosphorus (Organic Phosphate)	Reactive Phosphorus as P (Orthophosphate as P) (filtered)	Sodium (filtered)	Sodium Absorption Ratio	Sulphate	Total Dissolved Solids (Lab)	Total Suspended Solids (Lab)	Turbidity (Lab)	Total Organic Carbon
	mg/L	-	mg/L	mg/L	mg/L	-	mg/L	mg/L	mg/L	NTU	mg/L
EQL	0.1		0.05	0.005	0.5	0.01	1	5	5	0.1	1
ANZG Marine Water Toxicant DGVs LOSP 95% (July 2023)											
NEPM 2013 Table 1A(4) Comm/Ind HSL D GW for Vapour Intrusion, Sand											

Field ID	Location Code	Date											
MW01		11 Apr 2024	7.5	7.0	0.4	< 0.005	2,300	27	590	8,800	90	120	9
MW02		11 Apr 2024	8.5	7.2	1.4	0.11	230	3.9	94	1,800	120	210	15

Number of Detects	2	2	2	1	2	2	2	2	2	2	2
Maximum Concentration	8.5	7.2	1.4	0.11	2,300	27	590	8,800	120	210	15
Average Concentration *	8	7.1	0.9	0.056	1,265	15	342	5,300	105	165	12
Median Concentration *	8	7.1	0.9	0.05625	1,265	15.45	342	5,300	105	165	12
Standard Deviation *	0.71	0.14	0.71	0.076	1,464	16	351	4,950	21	64	4.2

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

				-							-	Me	tals	-			-		
	Aluminium (filtered)	Antimony (filtered)	Arsenic (filtered)	Barium (filtered)	Beryllium (filtered)	Boron (filtered)	Cadmium (filtered)	Chromium (III+VI) (filtered)	Cobalt (filtered)	Copper (filtered)	Iron (filtered)	Lead (filtered)	Lithium (filtered)	Manganese (filtered)	Mercury (filtered)	Molybdenum (filtered)	Nickel (filtered)	Selenium (filtered)	Silicon
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L
EQL	0.01	0.001	0.001	0.001	0.0005	0.02	0.0001	0.001	0.001	0.001	0.01	0.001	0.001	0.005	0.00005	0.001	0.001	0.001	200
ANZG Marine Water Toxicant DGVs LOSP 95% (July 2023)							0.0055		0.001	0.0013		0.0044			0.0004		0.07		

Field ID	Location Code	Date																			
MW01		11 Apr 2024	< 0.01	0.001	< 0.001	0.056	< 0.0005	0.52	< 0.0001	< 0.001	0.001	< 0.001	< 0.01	< 0.001	0.027	0.25	< 0.00005	0.003	< 0.001	< 0.001	3,900
MW02		11 Apr 2024	<0.01	0.002	0.005	0.023	< 0.0005	0.07	< 0.0001	<0.001	<0.001	0.001	0.02	< 0.001	0.007	0.01	< 0.00005	0.004	<0.001	<0.001	3,000

Number of Results	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Number of Detects	0	2	1	2	0	2	0	0	1	1	1	0	2	2	0	2	0	0	2
Minimum Detect	ND	0.001	0.005	0.023	ND	0.07	ND	ND	0.001	0.001	0.02	ND	0.007	0.01	ND	0.003	ND	ND	3,000
Maximum Concentration	<0.01	0.002	0.005	0.056	<0.0005	0.52	<0.0001	<0.001	0.001	0.001	0.02	<0.001	0.027	0.25	<0.00005	0.004	<0.001	<0.001	3,900
Maximum Detect	ND	0.002	0.005	0.056	ND	0.52	ND	ND	0.001	0.001	0.02	ND	0.027	0.25	ND	0.004	ND	ND	3,900
Median Concentration *	0.005	0.0015	0.00275	0.0395	0.00025	0.295	0.00005	0.0005	0.00075	0.00075	0.0125	0.0005	0.017	0.13	0.000025	0.0035	0.0005	0.0005	3,450
Standard Deviation *	0	0.00071	0.0032	0.023	0	0.32	0	0	0.00035	0.00035	0.011	0	0.014	0.17	0	0.00071	0	0	636

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

ANZG, July 2023, ANZG Marine Water Toxicant DGVs LOSP 95% (July 2023)

	(7	tered)	ered)	(filtered)	
	Silver (filtered)	Strontium (filt	Uranium (filter	Vanadium (fil	Zinc (filtered)
	mg/L	mg/L	μg/L	mg/L	mg/L
EQL	0.001	0.001	0.5	0.001	0.001
ANZG Marine Water Toxicant DGVs LOSP 95% (July 2023)	0.0014			0.1	0.008

Field ID	Location Code	Date					
MW01		11 Apr 2024	< 0.001	1.6	1.2	< 0.001	0.003
MW02		11 Apr 2024	< 0.001	1.5	3.2	0.012	< 0.001

Number of Results	2	2	2	2	2
Number of Detects	0	2	2	1	1
Minimum Detect	ND	1.5	1.2	0.012	0.003
Maximum Concentration	<0.001	1.6	3.2	0.012	0.003
Maximum Detect	ND	1.6	3.2	0.012	0.003
Median Concentration *	0.0005	1.55	2.2	0.00625	0.00175
Standard Deviation *	0	0.071	1.4	0.0081	0.0018

* A Non Detect Multiplier of 0.5 has been applied.

Environmental Standards

ANZG, July 2023, ANZG Marine Water Toxicant DGVs LOSP 95% (July 2023)

Appendix F – Laboratory Analytical

Documentation

CHAIN OF CUSTODY FORM

		3 ×	3 17	. N 0		Water Testing	3				· · ·		*1
Name	P2310036 -	- 1-3 Gond	ola Ro	ad, North Nan	rabe	een							
Martens Contact Officer	Trystan Rici	hards						Coñtac	t Email	trichar	ds@martens.com.	<u>au</u> .	
	Sample Da	ite	11/0	4/2024	Ű	Dispatch Date		11/04/2	024	Turnar	ound Time	standard	
Sampling and Shipping	Our Refere	nce	P231	0036COC03V	01	··· ·· _		Shippin	g Method (X)	Hand	d Pöst	Courie	r X
	On Ice (X)	· · ·	X	No Ice (X)	ļŕ	Other (X	<u>;</u>	,s		1	1 1	. . 	
	λ			- 		Laboratory	-	<u>`</u>			- - 	· · · · ·	2
Name	Envirol.ab	I		==									
Sample Delivery Address	12 Ashley	Street, Ch	natsw	ood									
Delivery Contact	Name			Phone	9	910 6200	Fax	K		Émail	samplereceipt@	envirolabservices.	com.au
						4 A 75	• ,		trichardsi@r	nartens.	com.au		·
Please Send Report By (X)	Post	Fo	ix	Email	x	Reporting Er	mail.	ddress	gtaylor@ma	artens.c	<u>om.au</u>		
		4							bmcgiffin@	<u>marten</u>	<u>s.com.au</u>		

Sample ID	Ionic Balance	Nutrient Suite	Microbiology suite	Dissolved HM*	IRH, BIEXN, PAH	Dissolved SIO2	TSS	TOC	Turbidity	IDS	рН	EC .	DÖ	SAR
MW01	x	x	x	x	x	x	x	×	x	x	x	· ×	×	x
MW02	x	x	x	×	x	x	x	x	x	x	x	×	x	x

Head Office

Suite 201, 20 George St

Hornsby NSW 2077, Australia

Ph 02 9476 9999 Fax 02 9476 8767

Note: *Please filter for HM from non-preservative bottles.

Envirolab Services 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200 Job No: 34 8 64 2

Date Received: 11/4/29 Time Received: 165 S Received By: ew Temp: CoolAmbient Cooling: Celcepack 11

> mail@martens.com.au > www.martens.com.au MARTENS & ASSOCIATES P/L ABN 85 070 240 850 ACN 070 240 890

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 348642

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Trystan Richards
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2310036 - 1-3 Gondola Road, North Narrabeen
Number of Samples	2 Water
Date samples received	11/04/2024
Date completed instructions received	11/04/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	18/04/2024	
Date of Issue	19/04/2024	
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.	
Accredited for compliance with IS	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Greta Petzold, Operation Manager Hannah Nguyen, Metals Supervisor Loren Bardwell, Development Chemist Nick Sarlamis, Assistant Operation Manager Timothy Toll, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water			
Our Reference		348642-1	348642-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date extracted	-	14/04/2024	14/04/2024
Date analysed	-	15/04/2024	15/04/2024
TRH C ₆ - C ₉	µg/L	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10
Benzene	µg/L	<1	<1
Toluene	µg/L	<1	<1
Ethylbenzene	µg/L	<1	<1
m+p-xylene	µg/L	<2	<2
o-xylene	µg/L	<1	<1
Naphthalene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	131	130
Surrogate Toluene-d8	%	114	114
Surrogate 4-Bromofluorobenzene	%	91	91

svTRH (C10-C40) in Water			
Our Reference		348642-1	348642-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date extracted	-	15/04/2024	15/04/2024
Date analysed	-	16/04/2024	16/04/2024
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
Total +ve TRH (C10-C36)	µg/L	<50	<50
TRH >C10 - C16	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100
Total +ve TRH (>C10-C40)	µg/L	<50	<50
Surrogate o-Terphenyl	%	93	86

PAHs in Water			
Our Reference		348642-1	348642-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date extracted	-	15/04/2024	15/04/2024
Date analysed	-	16/04/2024	16/04/2024
Naphthalene	µg/L	<0.1	<0.1
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	87	94

HM in water - dissolved			
Our Reference		348642-1	348642-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date prepared	-	17/04/2024	17/04/2024
Date analysed	-	17/04/2024	17/04/2024
Arsenic-Dissolved	µg/L	<1	5
Cadmium-Dissolved	µg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	µg/L	<1	1
Lead-Dissolved	µg/L	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1
Zinc-Dissolved	µg/L	3	<1

Metals in Waters - Acid extractable			
Our Reference		348642-1	348642-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date prepared	-	15/04/2024	15/04/2024
Date analysed	-	16/04/2024	16/04/2024
Phosphorus - Total	mg/L	0.4	1.4

Miscellaneous Inorganics			
Our Reference		348642-1	348642-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date prepared	-	11/04/2024	11/04/2024
Date analysed	-	11/04/2024	11/04/2024
Ammonia as N in water	mg/L	0.21	0.040
Nitrate as N in water	mg/L	1.4	8.0
Nitrite as N in water	mg/L	0.052	0.036
NOx as N in water	mg/L	1.5	8.1
Total Nitrogen in water	mg/L	7.5	8.5
TKN in water	mg/L	6.0	0.4
Phosphate as P in water	mg/L	<0.005	0.11
Organic Nitrogen as N	mg/L	5.8	0.4
Total Organic Carbon	mg/L	9	15
Total Suspended Solids	mg/L	90	120
Turbidity	NTU	120	210
Sodium Adsorption Ratio	-	27	3.9
Total Dissolved Solids (grav)	mg/L	8,800	1,800
рН	pH Units	7.0	7.2
Electrical Conductivity	μS/cm	12,000	2,300
Dissolved Oxygen*	mg/L	8.3	8.4
Silica (Reactive - SiO₂)	mg/L	14	12

Ion Balance			
Our Reference		348642-1	348642-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date prepared	-	11/04/2024	11/04/2024
Date analysed	-	11/04/2024	11/04/2024
Calcium - Dissolved	mg/L	150	180
Potassium - Dissolved	mg/L	76	7.3
Sodium - Dissolved	mg/L	2,300	230
Magnesium - Dissolved	mg/L	230	38
Hardness (calc) equivalent CaCO₃	mg/L	1,300	610
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	240	490
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5
Total Alkalinity as CaCO₃	mg/L	240	490
Sulphate, SO4	mg/L	590	94
Chloride, Cl	mg/L	3,900	420
Ionic Balance	%	0	-3.0

Microbiologocal Testing			
Our Reference		348642-1	348642-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date of testing	-	12/04/2024	12/04/2024
Faecal Coliforms	cfu/100mL	500	<1000
E. coli	cfu/100mL	500	<1000
Enterococci	cfu/100mL	30 A	<10

Method ID	Methodology Summary
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Inorg-112	Dissolved Oxygen using membrane electrode. Note this analysis should ideally be carried out immediately after sampling.
INORG-120	Reactive Silica (SiO2) determined colorimetrically. Waters samples are filtered on receipt prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Calcium and Magnesium analysed by ICP-AES and SAR calculated.
Metals-021	Determination of Mercury by Cold Vapour AAS.

Method ID	Methodology Summary
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determinined stoichiometrically from the base metal concentration.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONT	ROL: vTRH(C6-C10)/E	3TEXN in Water		Duplicate Spike Rec					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date extracted	-			14/04/2024	[NT]		[NT]	[NT]	14/04/2024	
Date analysed	-			15/04/2024	[NT]		[NT]	[NT]	15/04/2024	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	107	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	107	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	116	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	111	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	103	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	103	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	105	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	121	[NT]		[NT]	[NT]	107	
Surrogate Toluene-d8	%		Org-023	113	[NT]		[NT]	[NT]	100	
Surrogate 4-Bromofluorobenzene	%		Org-023	96	[NT]		[NT]	[NT]	94	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	348642-1
Date extracted	-			15/04/2024	[NT]		[NT]	[NT]	15/04/2024	15/04/2024
Date analysed	-			15/04/2024	[NT]		[NT]	[NT]	15/04/2024	16/04/2024
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	112	121
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	104	112
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	95
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	112	121
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	104	112
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	95
Surrogate o-Terphenyl	%		Org-020	91	[NT]	[NT]	[NT]	[NT]	90	93

QUALIT	Y CONTROL	.: PAHs ir	n Water		Duplicate Spike Recove					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	348642-1
Date extracted	-			15/04/2024	[NT]		[NT]	[NT]	15/04/2024	15/04/2024
Date analysed	-			16/04/2024	[NT]		[NT]	[NT]	16/04/2024	16/04/2024
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87	83
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	78	76
Fluorene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	80
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	75	74
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	78
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94	83
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	71
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	87
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	84	[NT]		[NT]	[NT]	99	92

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			17/04/2024	[NT]		[NT]	[NT]	17/04/2024	
Date analysed	-			17/04/2024	[NT]		[NT]	[NT]	17/04/2024	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	104	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	97	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	

QUALITY CONTROL: Metals in Waters - Acid extractable					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	348642-2	
Date prepared	-			15/04/2024	[NT]		[NT]	[NT]	15/04/2024	15/04/2024	
Date analysed	-			16/04/2024	[NT]		[NT]	[NT]	16/04/2024	16/04/2024	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]	[NT]	[NT]	[NT]	89	89	

QUALITY CO	ONTROL: Mis	cellaneou	us Inorganics			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			11/04/2024	1	11/04/2024	11/04/2024		11/04/2024	
Date analysed	-			11/04/2024	1	11/04/2024	11/04/2024		11/04/2024	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.21	[NT]		103	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	1.4	[NT]		99	
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.052	[NT]		101	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	1.5	[NT]		99	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	7.5	[NT]		87	
TKN in water	mg/L	0.1	Inorg-062	<0.1	1	6.0	[NT]		[NT]	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	[NT]		115	
Organic Nitrogen as N	mg/L	0.2	Inorg-055/062/127	<0.2	1	5.8	[NT]		[NT]	
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	9	[NT]		84	
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	90	83	8	97	
Turbidity	NTU	0.1	Inorg-022	<0.1	1	120	[NT]		100	
Sodium Adsorption Ratio	-	0.01	Metals-020	<0.01	1	27	[NT]		96	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	8800	[NT]		102	
рН	pH Units		Inorg-001	[NT]	1	7.0	[NT]		99	
Electrical Conductivity	µS/cm	1	Inorg-002	<1	1	12000	[NT]		100	
Dissolved Oxygen*	mg/L	0.1	Inorg-112	<0.1	1	8.3	[NT]		[NT]	
Silica (Reactive - SiO ₂)	mg/L	0.1	INORG-120	<0.1	1	14	[NT]		95	

QUALI	TY CONTRO)L: Ion Ba	lance		Duplicate Spike Red					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			11/04/2024	[NT]	[NT]	[NT]	[NT]	11/04/2024	
Date analysed	-			11/04/2024	[NT]	[NT]	[NT]	[NT]	11/04/2024	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	103	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	96	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	97	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	104	
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]	[NT]	[NT]	[NT]	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]	[NT]	[NT]	[NT]	[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]	[NT]	[NT]	[NT]	[NT]	
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	[NT]	[NT]	[NT]	[NT]	105	
Sulphate, SO4	mg/L	1	Inorg-081	<1	[NT]	[NT]	[NT]	[NT]	117	
Chloride, Cl	mg/L	1	Inorg-081	<1	[NT]	[NT]	[NT]	[NT]	114	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Microbiology analysed by Sonic Food & Water Testing. Report No. W2408699 & W2408700 A: Approximate

The time between collection and the commencement of testing should not exceed 24 hours. Samples tested outside this time may have their results compromised

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

CERTIFICATE OF ANALYSIS 348642-A

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Trystan Richards
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2310036 - 1-3 Gondola Road, North Narrabeen
Number of Samples	Additional analysis
Date samples received	11/04/2024
Date completed instructions received	26/04/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	03/05/2024					
Date of Issue	26/04/2024					
NATA Accreditation Number 290	NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with IS	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Hannah Nguyen, Metals Supervisor <u>Authorised By</u> Nancy Zhang, Laboratory Manager

All metals in water-dissolved			
Our Reference		348642-A-1	348642-A-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date prepared	-	17/04/2024	17/04/2024
Date analysed	-	17/04/2024	17/04/2024
Aluminium-Dissolved	µg/L	<10	<10
Antimony-Dissolved	µg/L	1	2
Arsenic-Dissolved	µg/L	<1	5
Barium-Dissolved	µg/L	56	23
Beryllium-Dissolved	µg/L	<0.5	<0.5
Boron-Dissolved	µg/L	520	70
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1
Cobalt-Dissolved	μg/L	1	<1
Copper-Dissolved	µg/L	<1	1
Iron-Dissolved	µg/L	<10	20
Lead-Dissolved	µg/L	<1	<1
Lithium-Dissolved	µg/L	27	7
Manganese-Dissolved	µg/L	250	10
Mercury-Dissolved	μg/L	<0.05	<0.05
Molybdenum-Dissolved	µg/L	3	4
Nickel-Dissolved	µg/L	<1	<1
Selenium-Dissolved	µg/L	<1	<1
Silver-Dissolved	µg/L	<1	<1
Strontium-Dissolved	µg/L	1,600	1,500
Uranium-Dissolved	µg/L	1.2	3.2
Vanadium-Dissolved	µg/L	<1	12
Zinc-Dissolved	µg/L	3	<1

Metals in Water - Dissolved			
Our Reference		348642-A-1	348642-A-2
Your Reference	UNITS	MW01	MW02
Date Sampled		11/04/2024	11/04/2024
Type of sample		Water	Water
Date digested	-	17/04/2024	17/04/2024
Date analysed	-	17/04/2024	17/04/2024
Silicon*- Dissolved	mg/L	3.9	3.0

Method ID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determinined stoichiometrically from the base metal concentration.

QUALITY CO	NTROL: All m	Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			17/04/2024	[NT]		[NT]	[NT]	17/04/2024	
Date analysed	-			17/04/2024	[NT]		[NT]	[NT]	17/04/2024	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	102	
Antimony-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Barium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	110	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	95	
Boron-Dissolved	μg/L	20	Metals-022	<20	[NT]		[NT]	[NT]	119	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	104	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	107	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	105	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Lithium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	106	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	97	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Selenium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	
Silver-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	82	
Strontium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Uranium-Dissolved	μg/L	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	99	
Vanadium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	

QUALITY CON	TROL: Meta	lls in Wat		Duj		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			17/04/2024	[NT]		[NT]	[NT]	17/04/2024	
Date analysed	-			17/04/2024	[NT]		[NT]	[NT]	17/04/2024	
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	[NT]	[NT]	[NT]	[NT]	98	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Trystan Richards

Sample Login Details	
Your reference	P2310036 - 1-3 Gondola Road, North Narrabeen
Envirolab Reference	348642
Date Sample Received	11/04/2024
Date Instructions Received	11/04/2024
Date Results Expected to be Reported	18/04/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	2 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	1
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Microbiology suite assumed as Faecal Coliforms, E.Coli, Enterococci as previous jobs

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	HM in water - dissolved	Metals in Waters -Acid extractable	Ammonia as N in water	Nitrate as N in water	Nitrite as N in water	NOx as N in water	Total Nitrogen in water	TKN in water	Phosphate as P in water	Organic Nitrogen as N	Total Organic Carbon	Total Suspended Solids	Turbidity	Sodium Adsorption Ratio	Total Dissolved Solids(grav)	Hq	Electrical Conductivity	Dissolved Oxygen*	Silica (Reactive - SiO2)	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hardness (calc) equivalent CaCO3	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, Cl	Ionic Balance	Microbiologocal Testing
MW01	1	\checkmark	\checkmark	 ✓ 	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	✓	✓	\checkmark
MW02	✓	\checkmark	\checkmark	✓	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark	✓	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.