

Report on Site Contamination Report (Contamination)

Proposed Residential Subdivision Development 20-22 MacPherson Street, Warriewood

> Prepared for Green Kingswood Pty Ltd

> > Project 207253.02 May 2023

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	207253.02	Document No.	R.001.Rev0	
Document title	DRAFT Report on	DRAFT Report on Site Contamination Report		
	Proposed Residential Subdivision Development			
Site address	20-22 MacPherson Street, Warriewood			
Report prepared for	Green Kingswood Pty Ltd			
File name	207253.02.R.001.	Rev0		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Draft A	Kurt Plambeck	Tim Wright	22 December 2021
Revision 0	Kurt Plambeck	Tim Wright	05 May 2023

Distribution of copies

Status	Electronic	Paper	Issued to
Draft A	1	-	Emma Nesbitt, Green Kingswood Pty Ltd
Revision 0	1	-	Emma Nesbitt, Green Kingswood Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author pp.	05 May 2023
Reviewer pp.	05 May 2023

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone: (02) 9809 0666

Executive Summary

Douglas Partners Pty Ltd (DP) has been engaged by BMN Properties Pty Ltd c/-- Jimbo & Co to complete this Site Contamination Assessment (Preliminary Site Investigation - PSI) for a proposed residential development at 20-22 MacPherson Street, Warriewood. The objective of the investigation is to assess the potential for contamination and contamination status of the site and whether further investigation and / or management is required with regard to the proposed development.

The investigation included a review of previous investigations undertaken at the site, a review of available site history, a site walkover, intrusive sampling from fifteen boreholes and three groundwater monitoring wells, laboratory analysis for contaminants of potential concern (COPC) and interpretation of results with reference to current NSW EPA endorsed guidelines. Supplementary site works were conducted in November 2022 including a supplementary round of groundwater monitoring and surface water monitoring followed by a revision to the original report from 2021.

A review of previous reports, site history and an interview with site personnel indicated that the site was used for agricultural purposes since at least 1920, then for indoor plant propagation and then as a plant nursey (current use) since *circa* 1976. At least some site buildings were constructed between 1951 and 1961. The surrounding land use is understood to have had a long history of horticulture use as well as residential and some commercial developments.

The SafeWork Records indicate that there was one AST and two USTs at the site however the detailed records were missing and therefore the location of these items is unknown. The SafeWork records provided indicate that the AST was used to store flammable gas.

Potential sources of contamination identified at the site included fill of unknown origin, the site's former agricultural and plant propagation (horticultural) land use, the site's current plant nursey / garden centre land use, former / disused underground petroleum storage tanks (USTs), an on-site diesel above ground storage tank (AST) and chemical storage, hazardous material from site buildings and off site up-gradient commercial land uses.

The current and previous site investigations encountered fill in all test locations to depths of between 0.3 m and 1.3 m below ground level. Signs of contamination identified in the fill included anthropogenic materials, including an asbestos fibre cement fragment in one location and a hydrocarbon odour in one location.

The results of the soil analytical testing for the current and previous site investigations detected potentially friable asbestos in fill at three locations (MW101, HA104 and BH4). Other chemical contaminants were within the Site Assessment Criteria (SAC) with the exception of TRH F3 and benzo(a)pyrene in one location, which exceeded the ecological screening values. These exceedances were not considered to be of concern for the proposed development for the reasons discussed herein. Additionally, an elevated concentration of arsenic was detected in one location. The result of the groundwater analytical testing for the current investigation detected concentrations of zinc and PFOS in exceedance of the SAC. Additionally, elevated concentrations of arsenic and DDT were detected in the two down-gradient wells. This may be associated with current and former land uses (i.e., pesticide application). Based on the currently available data the zinc and PFOS concentrations were considered to be consistent with urban background levels, however the DDT and arsenic were considered to potentially be associated with an on-site source.

The supplementary groundwater and surface water testing identified similar concentrations of PFAS and heavy metals in the groundwater and creek water, however, there was no evidence that the concentration of these contaminants tested increased from the up-stream to the down-stream locations.

The laboratory results indicated that ASS is likely to be present in all soils below the water table near the creek (i.e., the north-east site boundary) and in some horizons further away from the creek.

Based on the results of this assessment it is considered that the site can be rendered suitable for the proposed development subject to remediation of contamination issues at the site.

It is recommended that:

- A detailed site investigation be undertaken to assess data gaps at the site, including further assessment for the recorded USTs, characterisation of contamination in the existing building footprints when access becomes available and further groundwater assessment.
- A remediation action plan (RAP) is required to address the identified asbestos contamination and the former USTs as well any other contamination identified during further investigation or site works. The RAP should include an Unexpected Finds Protocol (UFP) and an Asbestos Finds Protocol describing how unexpected contamination and asbestos finds identified during constructions works will be managed. A detailed asbestos assessment may be required to inform the remediation decision. A validation assessment report will be required to validate the success of the remediation works recommended by the RAP.
- A hazardous building materials (HBM) assessment will be required for existing site buildings / structures prior to demolition. Hazardous materials will need to be removed in accordance with relevant legislation and guidelines prior to demolition and certified by a suitably qualified person.
- An acid sulfate soil management plan (ASSMP) is required to provide the methods by which acid sulfate soil (ASS) at the site are to be managed during the works. Delineation of ASS is difficult, and it is recommended it be assumed that all soils from beneath the water table are ASS for planning purposes.
- All soil disposed off-site will require classification in accordance with the POEO Act prior to disposal. Based on the results of this investigation the soils have been given a preliminary classification of general solid waste - asbestos waste. All soils containing ASS will require treatment prior to disposal.

Table of Contents

Page

1.	Introd	luction	1
2.	Scope	e of Works	1
3.	Site I	nformation	3
4.	Envir	onmental Setting	4
	4.1	Topography	
	4.2	Site Geology	5
	4.3	Acid Sulfate Soils	5
	4.4	Surface Water and Groundwater	5
5.	Previe	ous Reports and Site History	6
	5.1	DP (2004a)	6
	5.2	DP (2004b)	7
6.	Site H	listory	7
	6.1	Public Registers and Planning Records	7
	6.2	Site History Integrity Assessment	8
	6.3	Summary of Site History	8
7.	Site V	Valkover	9
	7.1	Observations	9
	7.2	Interview with Site Personnel	10
8.	Prelin	ninary Conceptual Site Model	11
9.	Samp	ling and Analysis Quality Plan	13
	9.1	Data Quality Objectives	13
	9.2	Soil Sampling Rationale	13
	9.3	Groundwater Sampling Rationale	14
	9.4	Creek Sampling	14
10.	Site A	ssessment Criteria	15
11.	Resu	ts	15
	11.1	Field Work Results	15
	11.2	Laboratory Analytical Results	17
12.	Discu	ssion	18
	12.1	Soils	18
	12.2	Preliminary Waste Classification	18

	12.3	Acid Sulfate Soils	20
	12.4	Groundwater	20
	12.5	Surface Water	21
	12.6	Data Quality Assurance and Quality Control	22
13.	Revis	ed Conceptual Site Model	22
14.	4. Conclusions		
15.	Recor	nmendations	24
16.	Refer	ences	25
17.	Limita	tions	26

Appendix A:	Notes About this Report
	Drawings
Appendix B:	SafeWork NSW Records
Appendix C:	Site Photographs
Appendix D:	Data Quality Objectives
Appendix E:	Site Assessment Criteria
Appendix F:	Field Work Methodology
Appendix G:	Borehole Logs
Appendix H:	Groundwater Field Sheets
Appendix I:	Laboratory Results Tables
Appendix J:	Laboratory Chain of Custody, Sample Receipt Advice and Certificate of Analysis Documentation
Appendix K:	Data Quality Assurance and Quality Control

DRAFT Report on Site Contamination Report (Contamination) Proposed Residential Subdivision Development 20-22 MacPherson Street, Warriewood

1. Introduction

Douglas Partners Pty Ltd (DP) has been engaged by BMN Properties Pty Ltd T/A Baz Family Trust to complete this site contamination report (contamination) (PSI) undertaken for a proposed residential subdivision development for the site at 20-22 MacPherson Street, Warriewood (the site). The site is shown on Drawing 1, Appendix A.

The investigation was undertaken in accordance with DP's proposal 207253.02.P.001.Rev0 dated 1 November 2021. The investigation was undertaken concurrently with a preliminary geotechnical assessment, reported separately¹.

The objective of the PSI is to assess the potential for contamination at the site based on past and present land uses and to comment on the need for further investigation and/ or management with regard to the anticipated residential land use. It is understood that the report will be used to support a due diligence assessment for the proposed development which is understood to involve the demolition of the existing site structures and construction of a subdivision consisting of 53 two and three storey residential dwellings with an internal access road. No basement excavations are anticipated.

This report must be read in conjunction with all appendices including the notes provided in Appendix A.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

2. Scope of Works

The scope of works was undertaken in two phases as below

Phase 1: September 2021

- Review of published topographical, geological, soil landscape, acid sulfate soil (ASS) and hydrogeological maps;
- Review of the NSW Department of Primary Industries groundwater database for registered groundwater bores in the vicinity of the site;

¹ DP, Report on Preliminary Geotechnical Assessment, Proposed Subdivision Development, 20-22 MacPherson Street, Warriewood, Reference 207253.00.R.001.Rev0, dated 30 September 2021.

- Review of DP's previous reports and existing data for the site;
- Review of records held by SafeWork NSW pertaining to the storage of hazardous good and chemicals;
- Review of the NSW EPA Register for notices issued under the *Contaminated Land Management Act 1997* (CSM Act) and the *Protection of the Environment Operations Act 1997*;
- Undertake a site walkover to observe site features and identify Potential Areas of Environmental Concern (PAEC);
- Development of a Preliminary Conceptual Site Model (CSM);
- Undertake a Dial-Before-You-Dig search and scanning of borehole locations for buried services;
- Drilling of eight boreholes using a drilling rig to a depth of at least 0.5 m into natural soils;
- Drilling of seven boreholes using a hand auger to a depth of 0.2 m into natural soils or prior refusal (whichever was lesser);
- Extension of four boreholes to a depth of 3.0 m or prior refusal to allow for the collection of ASS samples;
- Extension of three boreholes to a depth of between 4.0 m and 5.0 m and installation of groundwater monitoring wells;
- Logging of encountered soil materials and pertinent field information;
- Collection of soil samples from the near surface, every 0.5 m, changes in strata and at signs of contamination;
- Development of the monitoring wells by removing a minimum of three well volumes or purging until the well was dry and allowing wells to recharge for one week prior to sampling;
- Collection of groundwater samples from the monitoring wells using a low-flow pump. The physical parameters of pH, conductivity, dissolved oxygen, redox potential and turbidity were measured and recorded whilst sampling;
- Laboratory analysis of selected soil and groundwater samples by National Association of Testing Authorities (NATA) accredited laboratories for various combinations of the following contaminants/ analytes:
 - o Heavy metals (including As, Cd, Cr, Cu, Pb, Hg, Ni, Zn);
 - o Total recoverable hydrocarbons (TRH);
 - o Benzene, toluene, ethylbenzene and xylenes (BTEX);
 - o Polycyclic aromatic hydrocarbons (PAH);
 - o Organochlorine pesticides (OCP);
 - o Organophosphorus pesticides (OPP);
 - o Polychlorinated biphenyls (PCB);
 - o Herbicides;
 - o Total phenols (soil only);
 - o Per- and polyfluroalkyl substances (PFAS);
 - o Volatile organic compounds (VOC) (groundwater only);
 - o Asbestos (soil only); and
 - o ASS (soil only).

- Field sampling and laboratory analysis with reference to standard environmental protocols including 10% replicates, trip spikes and trip blanks, appropriate chain-of-custody procedures and in-house laboratory QA / QC testing; and
- Provision of this Due Diligence Assessment (PSI), including analysis of data with respect to NSW EPA guidelines for the proposed land use and provision of a preliminary waste classification.

Phase 2 Works – November 2022

- Collection of samples from each of the three pre-existing groundwater monitoring wells;
- Collection of water samples from Narrabeen Creek both upgradient and down-gradient of the site;
- Analysis of samples at a NATA accredited laboratory for:
 - Total and filtrable metals (including arsenic);
 - Organochlorine pesticide (OCP); and
 - Per- and polyfluroalkyl substances (PFAS).
- Data assessment; and
- Provision of this updated site contamination report.

3. Site Information

Site Address	20-22 MacPherson Street, Warriewood		
Legal Description	Lot 1, Deposited Plan 592091		
Area	20,000 m ²		
Zoning	Zone R3 Medium Density Residential		
Local Council Area	Northern Beaches Council		
Current Use	Retail Nursey		
Surrounding Uses	North - Narrabeen Creek		
	East - Residential		
	South - Residential		
	West - Commercial and Residential		

Figure 1: Site Location

The site is currently occupied by 'Flower Power' retail nursey and contains large buildings, greenhouses, external garden displays, an at grade carpark and ancillary areas. The majority of the site is sealed with either concrete slabs or asphalt hardstand.

4. Environmental Setting

4.1 Topography

Regional topography around the site generally slopes downwards in an easterly to south-easterly direction.

Based on preliminary information from a site survey conducted by Crag & Rhodes, as provided by the client, the site has an overall different in elevation of about 2.3 m from the south-western corner of the site which is at about RL 11.5 m relative to Australian Height Datum (AHD) to the north-eastern corner, which is at about RL 9.2 m AHD.

4.2 Site Geology

Published geological mapping indicates that the site is underlain by quaternary alluvial sediment comprising channel and flood plain alluvium, gravel, sand, silt and clay. The Quaternary sediments are underlain by the Newport Formation comprising interbedded laminite, shale and quartzitic to lithic quartz sandstone.

Published soils landscape mapping indicates that the site is underlain by swamp soils, generally comprising deep, well sorted sandy humus podzols and dark mottled siliceous sands overlying buried acid peats in depressions and deep podzols and pale siliceous sands on sandy rises.

4.3 Acid Sulfate Soils

Published ASS risk mapping indicates that the site is located in an area with low probability of ASS occurrence. It is noted, however, that localised occurrences may occur, and previous data indicates there is a risk of ASS occurrence at the site. Furthermore, swamp soils are often ASS.

The site is located approximately 260 m north-west of an area with a high probability of ASS occurrence.

4.4 Surface Water and Groundwater

The closest water course to the site is Narrabeen Creek, located approximately 5 m north-east [down-gradient] of the site.

A search of the publicly available registered groundwater bore indicated that there are five registered groundwater bores within 1 km of the site. The groundwater bores are summarised in Table 1.

Bore ID Authorised Purpose	Location Relative to Site	Final Depth (m)	Standing Water Level (m bgl)
GW108034 Test Bore	100 m south-east	2.5	0.9
GW106699 Test Bore	295 m south-east	2.5	0.9
GW106698 Monitoring Bore	310 m south-east	3	N/A
GW106697 Monitoring Bore	380 m south-east	3	N/A
GW108132 Recreational	775 m north	210	17.5

Table 1: Summary of Available Information from Nearby Registered Groundwater Bores

Based on the regional topography and the inferred flow direction of nearby water courses, the anticipated flow direction of groundwater beneath the site is to the north-east, towards Narrabeen Creek, the likely receiving surface water body for the groundwater flow path.

Given the local geology (i.e., alluvial sediments and sandstone), the groundwater in the fractured rock beneath the site is anticipated to be relatively fresh. Accordingly, potential beneficial uses could include irrigation or drinking water, although the future use of the groundwater for these purposes in the vicinity of the site is considered unlikely given the urban setting.

5. **Previous Reports and Site History**

DP has previously undertaken the following investigations at the site:

- DP, Preliminary Contamination Assessment, Sector 3, MacPherson Street, Warriewood Valley, Project No. 37273, dated November 2004 (DP, 2004a); and
- DP, Preliminary Geotechnical Assessment, Warriewood Valley Sector 3 Rezoning, MacPherson Street, Warriewood, Project No. 37274, dated December 2004 (DP, 2004b).

5.1 DP (2004a)

DP (2004a) was a Preliminary Contamination Assessment conducted on a larger site encompassing the current subject site and extending approximately 150 m east. The assessment included a review of site history, drilling and sampling from 15 boreholes (four of which were located on the current subject site) and laboratory analysis of selected samples. The test locations from DP (2004a) within the current subject site are shown on Drawing 1, Appendix A.

The site history review included historical aerial photographs and title deeds. The title deeds indicated that the site had a likely agricultural land use from at least 1920 (if not earlier) and a likely retail land use from circa 1976. The historical aerial photographs showed the site being used for agricultural purposes with greenhouses from at least 1947. The photographs also showed warehouse style buildings constructed at the site between 1951 and 1961 and a commercial nursey land use from between 1970 and 1986. Overall, the site history suggests an agricultural land use until the site was developed for its current retail nursey land use in the 1970's - 1980's.

Potential sources of contamination at the site identified from the history review included past and present land uses, placement of contaminated fill over the site and migration of contaminants from adjacent areas. Additionally, several buildings constructed of fibre cement were observed at the site and were considered to be a possible source of asbestos fragments / debris.

The field investigation encountered fill to depths of less than 1 m bgl across most of the site and to depths of greater than 1.5 m bgl at BH1. The fill comprised grey, brown and orange sands, silts and clays with varying proportions of gravel and anthropogenic materials. Fill soils were underlain by alluvial / estuarine sands and clays. Field observations and pH screening also indicated that ASS may be present on the site.

The results of laboratory analysis found that all contaminants in samples from the current subject site were within the adopted site assessment criteria (SAC) for a residential land use with the exception of asbestos in one location (BH4). Chrysotile asbestos fibres were detected in BH4 at 0.5 m bgl. It is noted that benzo(a)pyrene exceeded the ecological screening level (ESL) adopted for the current investigation in one location however this exceedance is not considered to be of concern for the reasons included in Section 12.1. Laboratory results are tabulated with the SAC derived for the current investigation in Table 1, Appendix H.

The results of ASS screening found that the oxidised pH value was lower than pH 3.5 in one sample from BH2 and the change in pH (field pH - oxidised pH) was greater than 1.0 in all samples tested from the current site, indicating the presence of possible ASS (PASS). The results of the ASS screening are included in Table 3, Appendix H.

The assessment recommended that a hazardous material assessment is conducted at the site. It also recommended that further investigation be undertaken to characterise the extent of asbestos contamination in fill and that it is appropriately remediated and validated.

5.2 DP (2004b)

DP (2004b) was a Preliminary Geotechnical Assessment conducted concurrently with DP (2004a). The assessment included six cone penetration tests (CPTs), two of which were located on the current subject site.

The CPTs identified variable subsurface conditions including fill to depths of between 0.3 m and 1.5 m bgl underlain by alluvial sediments. The alluvial sediments were found to be of variable composition between and within test locations. Groundwater was encountered at depths of 1.0 m bgl (CPT16) and 2.0 m bgl (CPT17).

6. Site History

6.1 Public Registers and Planning Records

EPA Notices available under Section 58 of the Contaminated Lands Management Act (CLM Act) There were no records of notices for the site or adjacent sites within a 1.5 km search radius.

Database searched 22 September 2021

1

Sites notified to EPA under Section 60 of the CLM Act Database searched 22 September 2021	 The site was not listed as a notified contaminated site. One site was notified as contaminated within a 1.5 km search radius: BP Service Station Mona Vale - 1721 Pittwater Road, Mana Vale - 1.03 km north-east - Service Station - Contamination regulated under the CLM Act. 		
Licences listed under Section 308 of the Protection of the Environment Operations Act 1997 (POEO Act) Database searched 22 September 2021	 There were no licences issued for the site. One site within a 1.5 km search radius was licenced: Warriewood Sewage Treatment System - Warriewood Road, Warriewood - 690 m south-east - Sewage Treatment - Licence issued 25 May 2000; and Mona Vale Hospital - Coronation Street, Mona Vale - 1.1 km east - Hazardous, Industrial or Group A Waste Generation or Storage - issued 21 June 2000. 		
SafeWork NSW	 A SafeWork NSW records search was completed on 21 October 2021. The response stated Unfortunately, the file 35/022954 matching your request is marked as 'missing' as per the Repository records, however I have at least attached a screen shot of the historical SCID database indicating 2 underground and 1 above-ground tanks. There is unfortunately no site sketch in the SCID database. The UST volumes were listed as being 12,000 L and 4,600 L. The location of the USTs is unknown. The AST (7,500 L) appears to be for a flammable gas. The response from SafeWork is included in Appendix B. 		

6.2 Site History Integrity Assessment

The information used to establish the history of the site was sourced from reputable and reliable reference documents, many of which were official records held by Government departments / agencies. The databases maintained by various Government agencies potentially can contain quality information, but some of these do not contain any data at all.

6.3 Summary of Site History

The site history information, including information obtained for DP (2004a), suggests that the site had a likely agricultural land use from at least 1920 and a likely commercial nursey site use from between 1970 and 1986 (estimated 1976). Warehouses and site structures were likely constructed in the 1950's.

At the time of the investigation, no EPA notices or licences were issued to the site. The SafeWork records indicated that there was one AST and two USTs at the site, however as the primary records were missing the locations of these items or further details were not available.

7. Site Walkover

7.1 Observations

A site walkover was undertaken by an experienced environmental scientist on 20 August 2021. The general site topography was consistent with that described in Section 4.1.

At the time of the site walkover the site was occupied by a 'Flower Power Garden Centre', with the following general layout:

- The main retail area in the north-west / west (internal and external areas);
- A plant nursery / propagation area in north-east/ east (mainly covered);
- Car parking in the south / south-west;
- A driveway and trade / bulk supplies areas through centre of the site (running north-east to southwest); and
- A storage / support area along the north-eastern boundary between the north-west boundary and the nursery area (internal and external areas).

Narrabeen Creek forms the north-east site boundary. A fence along the creek prevented access, however the site was estimated visually to be about 2 m above the creek. Some exposed soils and rubbish were observed in the bank between the site and the creek.

The following key site features pertinent to the PSI were observed (refer to photographs in Appendix C):

- The majority of the site was covered by asphalt or concrete hardstand, with some small areas of exposed soils;
- The retail area (photos 1 and 2) included:
 - o A main large building and adjacent covered area in the north, as well as ancillary structures;
 - o A café and a yoga studio;
 - o Stocked products including plants, home goods and gardening supplies; and
 - o An outdoor landscaped retail area to the south of the covered area; several cracks were observed in the pavement in this area.
- The plant nursery / propagation area in the north-east / east (photos 3 to 8) included:
 - o Several enclosed plant nurseries / greenhouses and a small external area in the north;
 - o Was an area partially covered by hardstand with some areas of exposed soil;
 - Structures constructed of fibre cement, with several asbestos danger signs and hazardous materials warning signs observed in this area marking the presence of asbestos (photos 5 and 6); and
 - A chemical store room in the south western portion of the nurseries, which was observed to contain small containers of 'Vertimec Pro' insecticide, 'Hasten' herbicide, 'DuPont Fontelis' fungicide, 'Tomcat 2' rodenticide, 'D-Ter' animal and bird repellent, 'ParaMite' miticide, 'Abamectin' insecticide / miticide, 'AzaMax' insecticide, moss killer, chlorine, 'Bunnybait' rabbit poison and chemical spraying containers (photo 7).
- The car parking area included (photo 8):
 - o A gravel surfaced car park in the southern corner (the 'staff carpark'); and

- o Asphalt surfaced car parking and roadways, with planted medium strip areas in the southwest.
- The central driveway / trade area (photos 9 and 10):
 - o Had areas of asphalt or concrete paving, and areas with gravel surface to the sites; and
 - o Contained areas of bulk supplies, including soil, mulch and aggregate (in product bays) and building supplies such as pavers, and bags of fertilisers.
- The northern storage / support area (photos 11 to 17) included:
 - o Indoor and outdoor areas;
 - o Storage areas for various items, including (at the time of inspection) being used for 'click and collect' storage, plants, piles of gardening materials, potting mix, mulch, etc. (photo 11);
 - o An above-ground diesel tank in the northern corner of the site along the boundary; the tank was located within a bund, and no signs of staining or spillage were observed (photo 12);
 - o Indoor storage areas and staff amenities;
 - o Some chemical storage including chlorine, possible petroleum (in small containers), and a 'hazardous material storage cupboard (not accessed); all observed chemical storage was on concrete, and in small closed container (photos 14 to 16); and
 - o A green storage drum labelled 'Bowen Chemicals White Petroleum Jelly' located along the north-east site boundary fence (within the site), raised on a pallet above the ground; no spillage of signs of leakage were observed (photo 17).

The site is located within a primarily residential area (photo 17), with a park across Narrabeen Creek to the north of the site.

7.2 Interview with Site Personnel

DP interviewed Mr John Sammut of Flower Power on 20 August 2021, with the following pertinent information obtained:

- The site has been occupied by Flower Power for approximately 40 years;
- The site was used for indoor plant propagation prior to commencement of the Flower Power operations;
- The surrounding area has a long history of horticulture use, including tomato production; and
- Insecticide and fungicides are applied as required by a Contractor, with the chemicals not stored on-site outside of the application times, and this approach has been adopted for approximately 20 - 25 years. Prior to that pest control was conducted by the site staff, and some on-site storage of chemicals is likely to have occurred.

8. Preliminary Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e., it enables an assessment of the potential source - pathway 0 receptor linkages (complete pathways).

Potential Sources

Based on the current investigation, the following potential sources of contamination and associated contaminants of potential concern (COPC) have been identified.

- S1: Fill: Associated with levelling for site formation purposes and demolition / degradation of former buildings.
 - o COPC include metals, TRH, BTEX, PAH, OCP, OPP, PCB, phenols and asbestos.
- S2: Former agricultural and plant propagation (horticultural) land use.
 - o COPC include metals, TRH, BTEX, PAH, OCP and OPP.
- S3: Current nursey / garden centre land use.
 - o COPC include metals, TRH, BTEX, OCP, OPP, VOC, PFAS, glyphosate, phenoxy acid herbicides and triazine herbicides.
- S4: On site above ground storage tank (AST) for diesel and chemical storage and two underground storage tanks indicated in the SafeWork records.
 - o COPC include TRH, BTEX, OCP, OPP, VOC, glyphosate, phenoxy acid herbicides and triazine herbicides.
- S5: Site buildings and structures.
 - o COPC include asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB.
- S6: Off-site, up-gradient commercial land use.
 - o COPC include metals, TRH, BTEX, VOC and PFAS.

Potential Receptors

The following potential human receptors have been identified:

- R1: Current users [commercial];
- R2: Construction and maintenance workers;
- R3: End users [residential]; and
- R4: Adjacent site users [residential and commercial].

The following potential environmental receptors have been identified:

- R5: Surface water [Narrabeen creek, freshwater];
- R6: Groundwater; and
- R7: Terrestrial ecology.

Potential Pathways

The following potential pathways have been identified:

- P1: Ingestion and dermal contact;
- P2: Inhalation of dust and / or vapours;
- P3: Surface water run-off;
- P4: Lateral migration of groundwater providing base flow to water bodies;
- P5: Leaching of contaminants and vertical migration into groundwater; and
- P6: Contact with terrestrial ecology.

Summary of Potentially Complete Exposure Pathways

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S6) and receptors (R1 to R7) are provided in below Table 2.

Source and COPC	Transport Pathway	Receptor	Risk Management Action
S1: Fill Metals, TRH, BTEX, PAH, PCB, OCP, OPP, phenols and asbestos. S2: Former	P1: Ingestion and dermal contact P2: Inhalation of dust and/ or vapours	R1: Current site users [commercial] R2: Construction and maintenance workers R3: End site users [residential]	An intrusive investigation of soils and groundwater to identify the
agricultural plant propagation (horticultural) land use Metals, TRH, BTEX, PAH, OCP and OPP. S3: Current site use as a plant nursey/ garden centre Metals, TRH, BTEX, OCP, OPP, VOC, PFAS, glyphosate,	P2: Inhalation of dust and/ or vapours	R4: Adjacent site users [residential and commercial].	presence and nature of fill and surface soils. An intrusive groundwater
	P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies	R5: Surface water [Narrabeen Creek]	investigation to obtain data on the contamination status of
	P5: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	groundwater entering and exiting the site [included in this investigation].
phenoxy acid herbicides and triazine herbicides.	P6: Contact with terrestrial ecology	R7: Terrestrial ecology	

Table 2: Summary of Potentially Complete Exposure Pathways

Source and COPC	Transport Pathway	Receptor	Risk Management Action
S4: On site AST for diesel and chemical storage and two underground storage tanks indicated in the SafeWork records.			
TRH, BTEX, OCP, OPP, VOC, glyphosate, phenoxy acid herbicides and triazine herbicides.			
S4: Site buildings and structures Asbestos, SMF, lead and PCB.	P1: Ingestion and dermal contact P2: Inhalation of dust and/ or vapours	 R1: Current and end users [commercial and recreational] R2: Construction and maintenance workers R3: Adjacent site users [commercial and recreational]. 	A hazardous building materials assessment is required for the existing buildings/ structures. Hazardous materials will need to be removed in
S5: Off site, up- gradient commercial land use Metals, TRH, BTEX, VOC and PFAS.	P5: Leaching of contaminants and vertical migration into groundwater	R5: Groundwater	accordance with relevant legislation and guidelines prior to demolition.

9. Sampling and Analysis Quality Plan

9.1 Data Quality Objectives

The DSI was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The DQO process is outlined in Appendix D.

9.2 Soil Sampling Rationale

Based on the CSM and DQO the following sampling rationale was adopted.

A systematic sampling strategy based on NSW EPA *Contaminated Sites, Sampling Design Guidelines* (NSW EPA, 1995) (the current guidelines at the time of the investigation) and NSW EPA *Guidelines for Assessing Former Orchards and Market Gardens* (NSW EPA, 1995) to determine borehole locations which was adapted based on areas of access. Borehole locations are shown on Drawing 1, in Appendix A.

Table A of NSW EPA (1995) recommends a minimum of 30 sampling points for a site of 2 ha for site characterisation based on the detection of circular hot spots using a systemic grid sampling pattern. Given the preliminary nature of the due-diligence investigation / PSI and the availability of some data from previous test locations, a total of 15 test locations were positions across accessible areas of the site.

Soil samples were collected from each borehole from the near surface (or directly beneath the concrete slab/ asphalt hardstand), 0.5 m, 1.0 m and every 0.5 m thereafter, and changes in lithology or signs of contamination.

Four boreholes (MW101, MW103, MW111 and BH115) were extended to a depth of at least 3.0 m bgl and below the water table to allow for collection of ASS samples from each quadrant of the site.

The general sampling methods are described in the field work methodology, included in Appendix E.

9.3 Groundwater Sampling Rationale

In order to assess the current groundwater contamination status at the site and evaluate whether historical/ current/ off site land uses have impacted on groundwater, sampling from three monitoring wells (MW101, MW103 and MW111) was undertaken in September 2021 and November 2022.

The locations were selected based on the following rationale:

- MW111 is positioned hydraulically up-gradient of the site and provides data on the concentration of contaminants in groundwater entering the site; and
- MW101 and MW103 are positioned hydraulically down-gradient and will provide data on the concentration of contaminants in groundwater exiting the site. The results from MW101 and MW103 will be used to evaluate whether historical land uses in the northern portion (MW101) and southern portion (MW103) of the site have impacted on groundwater quality.

The general sampling methods are described in the field work methodology, included in Appendix F.

9.4 Creek Sampling

In order to assess the potential impact of the contaminants detected in groundwater on surface water, samples were collected at two locations in November 2022, SW1 located up-stream of the site and SW2, located downstream of the site.

The general sampling methods are described in the field work methodology, included in Appendix F.

10. Site Assessment Criteria

The Site Assessment Criteria (SAC) applied in the current investigation are informed by the CSM (Section 8) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic residential land use scenario based on the proposed development (residential). The derivation of the SAC is included in Appendix E and the adopted SAC are listed on the summary analytical results tables in Appendix H.

11. Results

11.1 Field Work Results

The borehole logs for this assessment are included in Appendix G. The logs recorded the following general sub-surface profile:

Concrete Slab:	In MW101, HA102, MW103, BH106, HA110, HA112 and BH113. The slab included 2-20 mm aggregate and was 50-160 mm thick.		
Asphalt Hardstand:	To depths of between 0.02 m and 0.07 m bgl in BH109, MW111, BH114 and BH115.		
Fill/ Roadbase:	Medium to coarse gravel, dark grey, with sand. Encountered to 0.13 m bgl in HA102.		
Fill:	Fill comprising Silty Sand, Sand, Sandy Clay and Silty Clay with varying proportions of gravel (including igneous, ironstone, marble and sandstone) was encountered in all boreholes. Traces of anthropogenic material were observed in MW101 including plastic, brick fragments, wire, wood, glass, metal sheeting and an asbestos fibre cement fragment. Terracotta fragments were observed in HA104 and BH106 and brick fragments were observed in BH106. Possible ash was observed in MW111 and BH113. A hydrocarbon odour was observed in HA102. Fill was encountered to depths of between 0.3 m and 1.3 m bgl. HA104 was terminated in fill at 1.2 m bgl.		
Sandy Clay and Clay:	Low to medium plasticity, dark brown and grey, with varying proportions of fine sand, fine to medium gravel and rootlets, alluvial. Encountered to 2.6 m bgl MW101. Encountered to borehole termination depths in HA102, HA105 and HA107.		
Sand and Clayey Sand:	Medium grained, brown and grey, trace silt, alluvial. Encountered to depths of between 2.2 m and 3.5 m bgl in MW101, MW103, MW111 and BH115. Encountered to borehole termination depth in BH106, HA108, BH109, HA110, HA112, BH113 and BH114.		

Silty Clay and Sandy Clay:

Low to medium then medium to high plasticity, dark brown, pale grey and orange, medium grained sand, trace rootlets and wood fragments (MW101 only), alluvial. Encountered to borehole termination depth in MW101, MW103, MW111 and BH115.

No other visual or olfactory evidence was observed / recorded in the investigation (e.g., staining, odours, free phase product) to suggest the presence of contamination within the soils or groundwater apart from the anthropogenic materials in MW101, HA104, BH106, MW111 and BH113 and the hydrocarbon odour in HA102.

The fill was generally underlain by natural alluvial sands, although layers of natural silty clay and sandy clay were encountered in some boreholes, particularly those which were extended to greater depths to allow for ASS sampling or installation of monitoring wells. Some of the natural soil layers, particularly beneath the water table along the north-east site boundary, had a grey colour that may be indicative of ASS.

Fill was recorded to variable depths across the site although the deepest fill was generally encountered along the north-east site boundary (to depths of up to 1.3 m bgl). The fill in the south-west portion of the site was generally the shallowest (to depths of between 0.3 and 0.65 m bgl). This is consistent with previous investigations undertaken at the site (DP, 2004a and 2004b).

Free groundwater was observed during drilling at depths between 1.5 m and 3.0 m bgl. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time. Groundwater monitoring wells were installed in three locations (MW101, MW103 and MW111). Groundwater levels were gauged on 1 September 2021 using an electronic oil / water interface meter prior to developing the wells and again on 8 September 2017 prior to sampling. The measured water levels prior to sampling are shown in Table 3.

Well ID	Location of Monitoring Well	Ground Level * m (AHD)	SWL m (bgl)	SWL m (AHD)		
		8 September 2021				
MW101	Down-gradient	8.2	1.44	6.76		
MW103	Down-gradient	7.7	2.17	5.53		
MW111	Up-gradient	10.9	2.44	8.46		
	2 November 2021					
MW101	Down-gradient	8.2	1.2	7.0		
MW103	Down-gradient	7.7	2.15	5.55		
MW111	Up-gradient	10.9	1.78	9.12		

Table 3: Summary of Groundwater Leve	I Measurements on 8 September 2021
--------------------------------------	------------------------------------

Notes:

*Surveyed by dGPS

AHD – Australian Height Datum

SWL – standing water level

bgl - below ground level

Based on the groundwater level measurements, groundwater is interpreted to be flowing to the northeast towards Narrabeen Creek. This was expected given the topography and the location of the downgradient discharge point (i.e., Narrabeen Creek).

The stabilised groundwater field parameters recorded prior to sampling are shown on the groundwater field sheets included in Appendix H and summarised below.

Physical parameters were measured whilst sampling (where possible) and are summarised in Table 4.

Well / Sample ID	Temp. (°C)	DO (ppm)	TDS (ppm)	EC* (μS/cm)	рН	Redox (mV)
	8 September 2021					
MW101	16.6	0.09	261	336.6	5.85	-74
MW103	15.5	0.01	177	270.1	5.12	135.4
MW111	19.8	2.0	229	316.6	4.90	230
	8 September 2021					
MW101	18.7	0.9		266.5	3.34	219
MW103	16.3	0.2		249.1	4.75	451
MW111	20.1	3.9		266.3	11.7	223.5

Table 4: Summary of Field Parameters (Groundwater and Surface Water)

Notes:

*Calculated from TDS result

The dissolved oxygen levels indicated generally anoxic conditions. The pH was slightly acidic. The electrical conductivity values are typical of fresh water as would be expected of alluvial sediments. Redox potential (Eh) indicates slightly oxidising conditions in MW103 and MW111, and reducing conditions in MW101.

11.2 Laboratory Analytical Results

The results of laboratory analysis are summarised in the following tables in Appendix I:

- Table 1: Summary of Results of Soil Analysis;
- Table 2: Summary of Waste Classification Assessment;
- Table 3: Summary of ASS Assessment; and
- Table 4: Summary of Results of Groundwater Analysis.

The laboratory certificates of analysis together with the chain of custody and sample receipt information are provided in Appendix J.

12. Discussion

12.1 Soils

The analytical results for BTEX, phenol, OCP, OPP, PCB and herbicides were below the laboratory practical quantitation limit (PQL) and therefore the SAC for all samples tested. Concentrations of metals, TRH, PAH and PFAS were above the PQL in some samples, but within the SAC with the following exceptions:

- TRH F3 fraction in HA104/0-0.1 (370 mg/kg), which marginally exceeded the ESL of 300 mg/kg; and
- Benzo(a)pyrene (B(a)P) in HA104/0-0.1 (1.6 mg/kg) which exceeded the ESL of 0.7 mg/kg.

Asbestos was detected in MW101 and HA104. In MW101, a fragment of bonded asbestos containing material (ACM) was collected from 0.4 m. Additionally, bonded ACM was detected in MW101/1.4-1.5. Fibrous asbestos and asbestos fines (FA and AF) were detected in MW101/0.4-0.5 (0.0209%) and HA104/0-0.1 (0.0022%), exceeding the HSL of 0.001%.

It is noted that the B(a)P ESL is a low reliability value. Higher reliability screening levels have been published in CRC CARE *Risk-based Management and Remediation Guidance for Benzo(a)pyrene* (CRC CARE, 2017). The high reliability value of 33 mg/kg (or ranging from 21 mg/kg to 135 mg/kg) for fresh B(a)P suggests that the concentrations of B(a)P detected in HA104 is unlikely to pose an unacceptable risk to terrestrial ecology and therefore the exceedance is not considered to be of concern.

The 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL) for TRH F3 fraction was calculated from all near surface samples to be 169 mg/kg and was below the ESL. The exceedance within HA104 is therefore not considered to be of concern. The 95% UCL was calculated using USEPA ProUCL and the output is included in Appendix H.

It is noted that an elevated concentrations of arsenic above the PQL but below the SAC was detected in BH113 (91 mg/kg). The HIL and EIL for arsenic is 100 mg/kg and it is considered that there may be some localised fill soils with concentrations of arsenic in exceedance of the SAC.

12.2 Preliminary Waste Classification

In order to assess the potential waste classification for fill soils to be removed as part of the proposed development, a preliminary waste classification of fill soils in the boreholes was undertaken.

The NSW EPA (2014) *Waste Classification Guidelines* contains a six step procedure for determining the type of waste and the waste classification. Part of the procedure, for materials not classified as special waste or pre-classified waste, is a comparison of analytical data initially against contaminant threshold (CT) values specific to a waste category. Alternatively, the data can be assessed against specific contaminant concentration (SCC) thresholds when used in conjunction with TCLP thresholds. The CT, SCC, and TCLP values relevant to this preliminary waste classification are shown in the Table 2, Appendix H.

The following Table 5 presents the results of the six step procedure outlined in NSW EPA (2014) for determining the type of waste and the waste classification. This process applies to the fill (including surface soils) at the site.

Step	Comments	Rationale
1. Is the waste special waste?	Yes	Asbestos-containing materials (ACM) was observed in MW101.
		Asbestos was detected in fill by the analytical laboratory in MW101 between 0.4 and 1.5 m, HA104/0-0.1 m and BH4/0.5 m (from DP, 2004a).
2. Is the waste liquid waste?	No	The fill comprised a soil matrix.
3. Is the waste "pre-classified"?	No	The fill is not pre-classified with reference to NSW EPA (2014).
4. Does the waste possess hazardous waste characteristics?	No	The fill was not observed to contain or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances, corrosive substances, coal tar, batteries, lead paint or dangerous goods containers.
5. Determining a wastes classification using chemical assessment	Conducted	Refer to Table 2, Appendix H.
6. Is the waste putrescible or non- putrescible?	Non- putrescible	The fill does not contain materials considered to be putrescible ^a .

Table 5: Six Step Classification Procedure

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials (NSW EPA, 2014).

As shown in Table 2 (Appendix 1), all contaminant concentrations for the analysed fill samples from the current investigation were within the CT1s for GSW with the exception of nickel in BH109/0.02-0.1 and B(a)P in HA104/0-0.1. It is noted that BH1/0.5 m from DP (2004a) also recorded a B(a)P concentration in exceedance of the CT1.

Additional TCLP extract and analysis was conducted on the two samples with CT1 exceedances to gain an understanding of the leachable characteristics of the nickel and B(a)P. The results indicated low leaching characteristics in both samples and were within the contaminant thresholds SCC1 and TCLP1 for GSW.

Given the presence of asbestos in fill soils in three locations (including BH4 from DP, 2004a), the preliminary classification for the fill material across the site is **General Solid Waste – Special Waste Asbestos (GSW-A).** Any fill soils that contain ASS will require treatment under an ASS management plan prior to off-site disposal to meet the GSW requirements.

Note: The information provided in this section does not constitute a formal waste classification for offsite disposal purposes. Should soils require off-site disposal a formal waste classification assessment, utilising the information in this report and from subsequent testing, must be undertaken and reported.

12.3 Acid Sulfate Soils

The action criteria for ASS were sourced from Acid Sulfate Soils Management Advisory Committee Acid Sulfate Soils Assessment Guidelines, 1998 (ASSMAC 1998) and is included in Table 3, Appendix H.

The initial screening results indicated:

- pH_F results were between 4.5 and 7.1;
- pH_{FOX} values were between 1.6 and 5.0; and
- pH_{FOX} minus pH_F values were <-1 in all samples collected from MW101 and MW103 and in some of the samples collected from MW111 and BH115. The pH_{FOX} minus pH_F values were highest in MW101 and MW103.

Additional Chromium Reducible Sulfur (SCr) testing undertaken on four 'worst case samples' based on the initial screening (MW101/0.9-1.0, MW101/1.9-2.0, MW103/3.4-3.5 and BH115/2.9-3.0). All samples exceeded the ASSMAC (1998) screening criteria for the disturbance of >1,000 tonnes of material and all samples taken below the water table exceeded the ASSMAC (1998) screening criteria for the disturbance of 1-1000 tonnes of material.

The laboratory results indicate that ASS is likely to be present in all soils below the water table near the creek (i.e., the north-east site boundary) and in some horizons further away from the creek. The results from MW101 also indicate the potential for some ASS in clayey fill at and immediately above the groundwater level observed on site during fieldwork.

12.4 Groundwater

September 2021 Results

The analytical results for TRH, BTEX, PAH, OPP, herbicides, PCB and VOC were below the laboratory practical quantitation limit (PQL) and therefore the SAC for all samples tested. Concentrations of metals, OCP and PFAS were above the PQL in some samples, but within the SAC with the following exceptions:

- Zinc in MW101 (32 μg/L), replicate sample BD1/20210908 (27 μg/L) MW103 (36 μg/L) and MW111 (23 μg/L), which exceeded the hardness corrected groundwater investigation level (GIL) of 15 μg/L.
- PFOS in MW101 (0.002 μg/L), MW103 (0.0025 μg/L) and MW111 (0.002 μg/L), which exceeded the GIL of 0.00023 μg/L.
- It is also noted that the concentration of DDE was 0.002 μg/L, DDT was 0.004 μg/L (which was below the GIL of 0.006 μg/L and DDD was 0.002 μg/L.

The concentrations of zinc and PFOS in the three monitoring wells are considered to be within the normal range of background levels for urbanised areas of Sydney. Furthermore, similar concentrations of zinc and PFOS were detected in up and down gradient wells, suggesting site use has not added significantly to concentrations of those contaminants.

MW101 is positioned hydraulically down-gradient indicating that the DDT (and DDD and DDE) detected in MW101 may have been sourced from the site.

Additionally, elevated concentrations of arsenic above the PQL but below the SAC were detected in the two hydraulically down-gradient wells (MW101 and MW103), indicating a possible on-site arsenic source and which is consistent with current and former land uses.

November 2022 Results

The November 2022 monitoring round including analysis of OCP, PFAS and heavy metals.

Concentrations of metals, PFAS were above the PQL in some samples, but within the SAC with the following exceptions:

- Total zinc in MW101 (250 µg/L) which exceeded the hardness corrected groundwater investigation level (GIL) of 15 µg/;
- Total copper in MW101 (14 μg/L) which exceeded GIL of 1.4 μg/L;
- Dissolved copper in MMW103 (2 µg/L) which exceeded GIL of 2µg/L;
- Total lead in MW101 (24 μg/L) which exceeded GIL of 3.4 μg/L; and
- PFOS in MW101 (0.0024 μg/L), MW103 (0.0021 μg/L) and MW111 (0.0058 μg/L), which exceeded the GIL of 0.00023 μg/L. The concentration of PFOS was largely the same as the previous round of testing. It is noted that the highest concentration was recorded in the up-gradient sample.

The concentrations of OCP were below the detection limit (noting this was above the SAC).

12.5 Surface Water

The November 2022 monitoring round including analysis of OCP, PFAS and heavy metals in the surface water.

Concentrations of metals, PFAS were above the PQL in some samples, but within the SAC with the following exceptions:

- Total zinc in SW1 (15 μg/L) and SW2 (16 μg/L) which exceeded the GIL of 8 μg/L;
- Total copper in SW1 (2 μg/L) and SW2 (2 μg/L) which exceeded GIL of 1.4 μg/L;
- Dissolved copper in SW1 (4 µg/L) and SW2 (2 µg/L) which exceeded GIL of 1.4 µg/L;
- Dissolved zinc in SW1 (14 μ g/L) and SW2 (13 μ g/L) which exceeded GIL of 8 μ g/L; and
- PFOS in SW1 (0.0089 µg/L), and SW2 (0.0084 µg/L) which exceeded the GIL of 0.00023 µg/L. The concentration of in the creek was marginally higher in the creek than in the groundwater.

The concentration of OCP was below the detection limit (noting this was above the SAC).

There was no evidence that the concentrations of the contaminants tested increased from the up-stream to the down-stream locations.

12.6 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA / QC) results are included in Appendix J. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

13. Revised Conceptual Site Model

The data collected for this DSI has generally confirmed that certain potential contaminant sources outlined in the CSM outlined in Section 8 pose a potentially complete pathway to the identified receptors whilst others do not. No other sources of contamination have been identified as a result of the testing results. Groundwater data suggests that some contaminants (i.e., arsenic and DDT) likely to be derived from historical site activities may have migrated to groundwater. The CSM is summarised in Table 6.

Given the preliminary nature of the investigation, the potential for some contaminants to be present has not been ruled out even if all analytical results were within the SAC.

Source	Transport Pathway	Receptor	Further Investigation and/ or Remediation Action Required
S1: Fill Metals (i.e., arsenic in soil at BH113 and in groundwater at MW101 and MW103), TRH, BTEX, PAH and asbester (in MW/101	P1: Ingestion and dermal contact P2: Inhalation of dust and/ or vapours	R1: Current site users [commercial] R2: Construction and maintenance workers R3: End site users [residential]	A detailed site Investigation for contamination (DSI) including further investigation of DDT and arsenic in groundwater and intrusive sampling in existing building footprints.
asbestos (in MW101, HA104 and BH4, possibly more widespread given the presence of building	P2: Inhalation of dust and/ or vapours	R4: Adjacent site users [residential and commercial].	Preparation of a remediation action plan (RAP) to address asbestos contamination and possible arsenic and/or DDT
rubble in fill). S3: Current site use as a plant nursey/ garden centre and S4: On site above ground storage tank (AST) for diesel and	P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies	R5: Surface water [Narrabeen Creek]	contamination hotspot(s). Options for the management of ACM impacted fill include cap and contain, remediation of impacted soil and off-site disposal.

Table 6: Updated Summary of Potentially Complete Exposure Pathways (Proposed Residential Subdivision Development)

Source	Transport Pathway	Receptor	Further Investigation and/ or Remediation Action Required
chemical storage and two underground tanks Metals, TRH, BTEX, OCP (i.e., DDT in groundwater in MW101 and arsenic in	P5: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	A formal waste classification assessment for any soils requiring off-site disposal. ASS impacted soils will require treatment prior to off-site
groundwater in MW101 and MW103)	P6: Contact with terrestrial ecology	R7: Terrestrial ecology	disposal.
S5: Site buildings and structures Asbestos, SMF, lead and PCB.	P1: Ingestion and dermal contact P2: Inhalation of dust and/ or vapours	R1: Current site users [commercial] R2: Construction and maintenance workers R3: End site users [residential]	A hazardous building materials assessment (HBMA) is required for the existing buildings/ structures. Hazardous materials will need to be removed in accordance with relevant legislation and guidelines prior to demolition and certified by a suitably qualified person.
S6: Off site, up-gradient commercial land use Metals and PFAS (i.e., zinc and PFOS detected in groundwater at MW101, MW103 and MW111).	P5: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	The results of the groundwater analysis indicate that groundwater is impacted by zinc and PFOS likely associated with the urbanised nature of the area. Remediation is not required for these contaminants in groundwater.

14. Conclusions

A review of previous reports, available site history and an interview with site personnel indicated that the site was used for agricultural purposes since at least 1920, then for indoor plant propagation and then as a plant nursey (current use) since *circa* 1976. The surrounding land use is understood to have had a long history of horticulture use as well as residential and some commercial developments.

The SafeWork Records indicate that there was one AST and two USTs at the site however the detailed records were missing and therefore the location of these items is unknown. The SafeWork records provided indicate that the AST was used to store flammable gas.

Potential sources of contamination identified at the site included fill of unknown origin, the site's former agricultural and plant propagation (horticultural) land use, the site's current plant nursey / garden centre land use, former / disused underground petroleum storage tanks (USTs), an on-site diesel above ground storage tank (AST) and chemical storage, hazardous material from site buildings and off site up-gradient commercial land uses.

The investigation encountered fill at all test locations to depths of between 0.3 m and 1.3 m bgl. The deepest fill was generally encountered along the north-east site boundary and the shallowest fill was generally encountered in the south-west portion of the site. Signs of contamination identified in the fill included anthropogenic materials in some locations (plastic, brick, wire, wood, glass, metal sheeting, terracotta and ash), and an asbestos fibre cement fragment in MW101 and a hydrocarbon odour in HA102. The fill was underlain by natural alluvial sands, with layers of silty clay and sandy clay in some locations. These findings are consistent with DP (2004a) and DP (2004b).

The laboratory results for soils detected asbestos in fill two locations including bonded ACM (MW101 only) and potentially friable FA/AF (MW101 and HA104). It is noted that FA/AF was also detected in fill at one location from DP (2004a) (BH4). As such, it is expected that asbestos contamination may be present in fill across the site. This is expected to include 'hotspots' with high volumes of asbestos and fill with a lower frequency of asbestos.

Apart from asbestos, the majority of analytes in soil were within the SAC for the proposed residential land use. B(a)P and TRH F3 fraction were detected above the ESL however these exceedances were not considered to be of concern for the reasons discussed in Section 12.1. Additionally, an elevated concentrations of arsenic slightly below the SAC was detected in BH113 and it is considered that there may be some fill soils with concentrations of arsenic in exceedance of the SAC.

The laboratory results indicated that all samples testing exceeded the ASS screening criteria and that ASS is likely to be present in all soils below the water table near the creek (i.e., the north-east site boundary) and in some horizons further away from the creek.

The fill soils at the site have been given a preliminary classification of General Solid Waste - Special Waste Asbestos (GSW-A). Any fill soils that contain ASS will require treatment prior to off-site disposal to meet the GSW requirements.

The laboratory results for groundwater detected concentrations of heavy metals and PFOS in exceedance of the SAC in both the groundwater and surface water. Additionally, an elevated concentration of arsenic was detected in the two down-gradient wells It was noted that the concentrations of PFOS and heavy metals did not appear to increase in the surface water between the up-stream and down-stream test locations which indicates that it is unlikely that the creek was significantly impacted by the groundwater at the site.

15. Recommendations

Based on the results of this assessment it is considered that the site can be rendered suitable for the proposed development subject to remediation of contamination issues at the site.

It is recommended that:

• A detailed site investigation be undertaken to assess data gaps at the site, including further assessment for the recorded USTs, characterisation of contamination in the existing building footprints when access becomes available and further groundwater assessment.

- A remediation action plan (RAP) is required to address the identified asbestos contamination and the former USTs as well any other contamination identified during further investigation or site works. The RAP should include an Unexpected Finds Protocol (UFP) and an Asbestos Finds Protocol describing how unexpected contamination and asbestos finds identified during constructions works will be managed. A detailed asbestos assessment may be required to inform the remediation decision. A validation assessment report will be required to validate the success of the remediation works recommended by the RAP.
- A hazardous building materials (HBM) assessment will be required for existing site buildings / structures prior to demolition. Hazardous materials will need to be removed in accordance with relevant legislation and guidelines prior to demolition and certified by a suitably qualified person.
- An acid sulfate soil management plan (ASSMP) is required to provide the methods by which acid sulfate soil (ASS) at the site are to be managed during the works. Delineation of ASS is difficult, and it is recommended it be assumed that all soils from beneath the water table are ASS for planning purposes.
- All soil disposed off-site will require classification in accordance with the POEO Act prior to disposal. Based on the results of this investigation the soils have been given a preliminary classification of general solid waste - asbestos waste. All soils containing ASS will require treatment prior to disposal.

16. References

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene.* Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (1995). *Contaminated Sites, Sampling Design Guidelines.* NSW Environment Protection Authority.

NSW EPA. (2005). *Guidelines for Assessing Former Orchards and Market Gardens*. NSW Environment Protection Authority.

NSW EPA. (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

17. Limitations

Douglas Partners (DP) has prepared this report for this project at 20-22 MacPherson Street, Warriewood in accordance with DP's proposal dated 1 November 2021 and acceptance received from Emma Nesbitt of Green Kingswood Pty Ltd dated 24 October 2022. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Green Kingswood Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and / or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and / or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has been detected by laboratory analysis in fill at three test locations sampled and analysed. Building demolition materials were also observed in fill, and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos. Hazardous building materials (including asbestos) have been identified in site buildings / structures.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection / sampling, or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

Douglas Partners Pty Ltd

Appendix A

Notes About this Report

Drawings

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

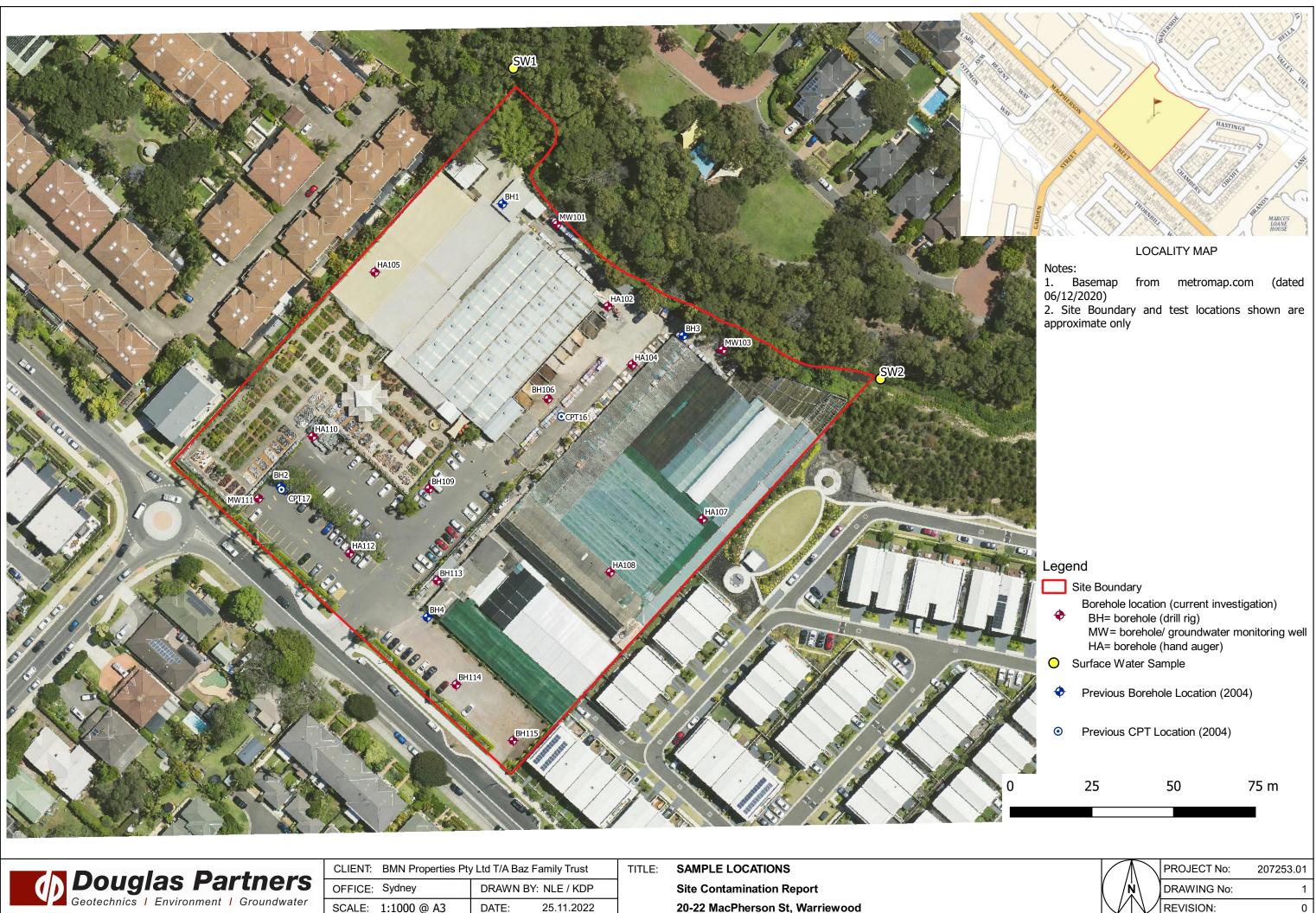
Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies


In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Douglas Partners Geotechnics Environment Groundwater	С
Douglas Partners	0
Geotechnics Environment Groundwater	s

CLIENT: BMN Properties Pty	y Ltd T/A Baz Family Trust	TITLE:	SAMPLE LOCATIONS
OFFICE: Sydney	DRAWN BY: NLE / KDP		Site Contamination Report
SCALE: 1:1000 @ A3	DATE: 25.11.2022		20-22 MacPherson St, Warriewood

Appendix B

SafeWork NSW Records

Our Ref: D21/178846

22 December 2022

Ms Nerilee Edwards Douglas Partners Pty Ltd Nerilee.Edwards@douglaspartners.com.au

Dear Ms Edwards

RE SITE: 20-22 Macpherson Street Warriewood NSW 2101

I refer to your site search request received by SafeWork NSW requesting information on Storage of Hazardous Chemicals for the above site.

Unfortunately, the file 35/022954 matching your request is marked as 'missing' as per the Repository records, however I have at least attached a screen shot of the historical SCID database indicating 2 underground and 1 above-ground tanks. There is unfortunately no site sketch in the SCID database.

For further information or if you have any questions, please call us on 13 10 50 or email <u>licensing@safework.nsw.gov.au</u>

Yours sincerely

Gabriela Draper

Licensing Representative

Licensing and Funds, Better Regulation Division SafeWork NSW | Customer Service **p** 13 10 50 **e** licensing@safework.nsw.gov.au | www.safework.nsw.gov.au

Level 3, 32 Mann Street, Gosford, NSW 2250

Stored Chemical Information Database (SCID)								
ile Edit Topic Reporting Window Help								
□◆圖♥ 2 ♡ 増き(=) ♡ 培⊗₩ %	B B I I I I I S 8	POLA	енсе мурисани	mepp no. 22324	DIVERSION NEITHIONE	FTTEMETED		
 Search for DG Licence Application 		Applicant	Site Mail	Depots Appli	ed For Accreditations	NoteBook	Sketch	
Application Site Depot Results Map		Depot			Depot Class	M	lax Capacity Max	c Capacity Unit
Received Date Application No Applicant Name	Occupier Name Site	Number	1	NUMBER TANKS		and the second division of the second divisio	pplied For Gran	and the second se
15/12/1991 22954 RENTOKIL PTY LIMITED	GREENFINGERS 20	2	ABOVE-GRO	and the second se	 2.1 FLAMMAE 3 FLAMMABL 		7500	7500[L 12000[L
			JUNDERGRO	UND TANK	 3 FLAMMABL 	E LIQUI 🔹	4600	4600 L
							_	,
		and the second division of the second divisio	Abbrev. Prope	er Shipping Na	me Common Nam	e	DG Class	PG HazChe
OG Licence Application app no. 22954 35/022954 RENTOKIL PTY LIM ppicant Site Mail Depots Appled For Accreditations Not Occ. Legal Name RENTOKIL PTY LIMITED Occ. Trading Name GREENFINGERS Site Name			-	-			1	•
Address Line 1 20 MACPHERSON ST Address Line 2								
Address Line 3								
Locality WARRIEWOOD State N	SW Postcode 2102							
Nature of Site GARDEN EQUIPMENT RETAILING Site Staffing								
Emergency Contact Comm. Type Number	Description							
(N							
Supplier Name	14							
		-						

Appendix C

Site Photographs

Photo 3 – Inside of a plant nursery

Photo 4 – Inside of a plant nursery

CLIENT:

Site Photographs PROJECT: 207253.01 Preliminary Site Investigation for Contamination PLATE No: 2 20-22 MacPherson Street, Warriewood REV: 0 BMN Properties Pty Ltd T/A Baz Family Trust DATE: 30/09/21

Photo 5 – Asbestos danger sign inside plant nursery

Photo 6 - Exterior of plant nursey

Site Pho	tographs	PROJECT:	207253.01
Prelimina Contami	ary Site Investigation for nation	PLATE No:	3
20-22 Ma	cPherson Street, Warriewood	REV:	0
CLIENT:	BMN Properties Pty Ltd T/A Baz Family Trust	DATE:	30/09/21

Photo 7 – Chemical store-room in plant nursey[MN1]

Photo 8 – Carpark with plant nursery to the right (photograph taken from southern corner facing north-west)

	Preliminary Site Investigation for		PROJECT:	207253.01
Douglas Partners Geotechnics Environment Groundwater			PLATE No:	4
			REV:	0
	CLIENT:	BMN Properties Pty Ltd T/A Baz Family Trust	DATE:	30/09/21

Photo 9 – Road running through middle of the site[MN2]

Photo 10 – Building material placed along the site road through the middle of the site (beside plant nursery)

	Site Photographs		PROJECT:	207253.01
Douglas Partners Geotechnics Environment Groundwater	Preliminary Site Investigation for Contamination		PLATE No:	5
	20-22 MacPherson Street, Warriewood		REV:	0
	CLIENT:	BMN Properties Pty Ltd T/A Baz Family Trust	DATE:	30/09/21

Photo 11 – Storage of garden material along north site boundary

Photo 12 - Above-ground diesel tank in northern portion of site

	Site Photographs		PROJECT:	207253.01
Douglas Partners Geotechnics Environment Groundwater	Preliminary Site Investigation for Contamination		PLATE No:	6
	20-22 MacPherson Street, Warriewood		REV:	0
	CLIENT:	BMN Properties Pty Ltd T/A Baz Family Trust	DATE:	30/09/21



Photo 13 – Storage space in northern site corner within the main warehouse

Photo 14 – Hazardous Materials Storage Cupboard

	Site Photographs		PROJECT:	207253.01
Douglas Partners Geotechnics Environment Groundwater	Preliminary Site Investigation for Contamination		PLATE No:	7
	20-22 MacPherson Street, Warriewood		REV:	0
	CLIENT:	BMN Properties Pty Ltd T/A Baz Family Trust	DATE:	30/09/21

Photo 15 - Locker room with possible petroleum storage

Photo 16 - Chemical storage

 Site Photographs
 PROJECT:
 207253.01

 Preliminary Site Investigation for Contamination
 PLATE No:
 8

 20-22 MacPherson Street, Warriewood
 REV:
 0

 CLIENT:
 BMN Properties Pty Ltd T/A Baz Family Trust
 DATE:
 30/09/21

Photo 17 – Petroleum jelly storage drum

	Site Photographs		PROJECT:	207253.01
Douglas Partners Geotechnics Environment Groundwater	Preliminary Site Investigation for Contamination		PLATE No:	9
	20-22 MacPherson Street, Warriewood		REV:	0
	CLIENT:	BMN Properties Pty Ltd T/A Baz Family Trust	DATE:	30/09/21

Appendix D

Data Quality Objectives

Appendix D Data Quality Objectives 20-22 MacPherson Street, Warriewood

D1.0 Data Quality Objectives

The assessment has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

	Step	Summary
1:	State the problem	The objective of the investigation is to assess the contamination status of the site with respect to the proposed land use. The report is being undertaken as the land is to be subdivided for a residential development. A preliminary conceptual site model (CSM) has been prepared (Section 8) for the proposed development.
		The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, Field staff.
2:	Identify the	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 8). The CSM identifies the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Section 10.
	decisions / goal of the study	The decision is to establish whether or not the results fall below the SAC or whether or not the 95% upper confidence limit of the sample population falls below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and / or remediation will be derived.
3:	Identify the information	Inputs to the investigation were the results of analysis of samples to measure the concentration of COPC identified in the CSM (Section 8) at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the COPC are detailed in Section 10.
	inputs	A photoionization detector (PID) was used on-site to screen soils for VOC. PID readings were used to inform sample selection for laboratory analysis.
4:	Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken. Constraints to the assessment are identified and discussed in the conclusions of the report, Section 14.
5:	Develop the analytical approach (or decision rule)	The decision rule is to compare all analytical results with SAC (Section 10, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) was adopted where possible.

Step	Summary
	Where a sample result exceeded the adopted criterion, a further site-specific assessment were made as to the risk posed by the presence of that contaminant(s).
	Initial comparisons were with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPDs should generally be below 30%; for field blanks and rinsates, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Section 12.5.
	Baseline condition: Concentrations of contaminants at the site and/or statistical analysis of data (in line with NEPC (2013)) exceed human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis).
	Alternative condition: Concentrations of contaminants at the site and statistical analysis of data (in line with NEPC (2013)) complies with human health and environmental SAC and as such, does not pose a potentially unacceptable risk to receptors (alternative hypothesis).
6: Specify the	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.
performance or acceptance criteria	Uncertainty that may exist due to the above potential decision errors shall be mitigated as follows:
Unterna	• As well as a primary screening exercise, the use of the 95% UCL as per NEPC (2013) may be applied, i.e., 95% is the defined confidence level associated with the UCL on the geometric mean for contaminant data. The resultant 95%UCL shall subsequently be screened against the corresponding SAC.
	The statistical assessment was only able to be applied to certain datasets, such as those obtained via systematic sampling. Identification of areas for targeted sampling were via professional judgement and errors were not able to have a probability assigned to them.
7: Optimise the design for	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.
obtaining data	Further details regarding the proposed sampling plan are presented in Section 9.

D1.0 References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Appendix E

Site Assessment Criteria

Appendix E Site Assessment Criteria 20-22 MacPherson Street, Warriewood

E1.0 Introduction

E1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).
- HEPA PFAS National Environmental Management Plan (NEMP) (HEPA, 2020).
- ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018).
- NHMRC Guidelines for Managing Risks In Recreational Water (NHMRC, 2008).
- NHMRC, NRMMC Australian Drinking Water Guidelines 6 2011, Version 3.2 (NHMRC, NRMMC, 2016).
- ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000).

E1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: residential
 - o Corresponding to land use category 'A', residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry)).
- Soil type: sand and clay.

E2.0 Soils

E2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and Table 2.

Contaminant	HIL-A				
Metals					
Arsenic	100				
Cadmium	20				
Chromium (VI)	100				
Copper	6000				
Lead	300				
Mercury (inorganic)	40				
Manganese	3800				
Nickel	400				
Zinc	7400				
РАН					
B(a)P TEQ	3				
Total PAH	300				
Phenols					
Phenol	3000				
Pentachlorophenol	100				
OCP					
DDT+DDE+DDD	240				
Aldrin and dieldrin	6				
Chlordane	50				
Endosulfan	270				
Endrin	10				
Heptachlor	6				
НСВ	10				
Methoxychlor	300				

Table 1: Health Investigation Levels (mg/kg)

Contaminant	HIL-A
OPP	
Chlorpyrifos	160
РСВ	
РСВ	1
Herbicides	
2,4,5-T	600
2,4-D	900
МСРА	600
МСРВ	600
Месоргор	600
Picloram	4500
Other Pesticides	
Atrazine	320

Table 2: Health Screening Levels (mg/kg)

Contaminant	HSL-A&B	HSL-A&B
SAND	0 m to <1 m	1 m to <2 m
Benzene	0.5	0.5
Toluene	160	220
Ethylbenzene	55	NL
Xylenes	40	60
Naphthalene	3	NL
TRH F1	45	70
TRH F2	110	240
CLAY	0 m to <1 m	1 m to <2 m
Benzene	0.7	1
Toluene	480	NL
Ethylbenzene	NL	NL
Xylenes	110	310
Naphthalene	5	NL
TRH F1	50	90

Contaminant	HSL-A&B	HSL-A&B
TRH F2	280	NL

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Contaminant	DC HSL-A	DC HSL-IMW
Benzene	100	1100
Toluene	14 000	120 000
Ethylbenzene	4500	85 000
Xylenes	12 000	130 000
Naphthalene	1400	29 000
TRH F1	4400	82 000
TRH F2	3300	62 000
TRH F3	4500	85 000
TRH F4	6300	12 000

 Table 3: Health Screening Levels for Direct Contact (mg/kg)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C₁₀-C₁₆ minus naphthalene IMW intrusive maintenance worker

E2.2 Health Investigation Levels for Per- and Poly-Fluoroalkyl Substances in Soil

The laboratory analytical results for per- and poly-fluoroalkyl substances (PFAS) in soil have been assessed against HIL published in HEPA (2020). The HIL represent a nationally-agreed suite that should be used to inform site investigations. The HIL are intentionally conservative, and an exceedance of these criteria may not constitute a risk if other exposure pathways are controlled. An exceedance of the HIL should trigger further investigations, such as a site-specific risk assessment. At the time of this investigation, screening values were available only for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS).

The HIL derived from Table 2 of HEPA (2020) are in Table 4.

Table 4: Health Investigation Levels (mg/kg)

Contaminant	HIL-A
PFOS and PFHxS *	0.01
PFOA	0.1

Notes: * Includes PFOS only, PFHxS only and the sum of the two.

E2.3 Asbestos in Soil

The HSL for asbestos in soil are based on likely exposure levels for different scenarios published in NEPC (2013) for the following forms of asbestos:

- Bonded asbestos containing material (ACM); and
- Fibrous asbestos and asbestos fines (FA and AF).

The HSL are in Table 5.

Table 5: Health Screening Levels for Asbestos

Form of Asbestos	HSL-A	
ACM	0.01%	
FA and AF	0.001%	
FA and AF and ACM	No visible asbestos for surface soil *	

Notes: Surface soils defined as top 10 cm.

* Based on site observations at the sampling points and the analytical results of surface samples.

E2.4 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 7 with inputs into their derivation shown in Table 6.

Variable	Input	Rationale
Age of contaminants	"Aged" (>2 years)	Fill placed at site >2 years ago
рН	6.8	Average of 3 samples analysed
CEC	8.8 cmolc/kg	Average of 3 samples analysed
Clay content	5 - 50%	Clay content input varied based on sample matrix
Traffic volumes	high	Site is adjacent to a trafficked road
State / Territory	NSW	Site is located in Warriewood, NSW

Contaminant	EIL-A-B-C
Metals	
Arsenic	100
Copper	190
Nickel	130
Chromium III	320 - 690*
Lead	1100
Zinc	440
РАН	
Naphthalene	170
ОСР	
DDT	180

Table 7: Ecological Investigation Levels (mg/kg)

Notes: * Value ranges based on matrix of sample

E2.5 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 8.

Table 8: Ecological Screening Levels (mg/kg)	Table 8:	Ecological	Screening	Levels	(mg/kg)
--	----------	------------	-----------	--------	---------

Contaminant	Soil Type	EIL-A-B-C
Benzene	Coarse	50
Toluene	Coarse	85
Ethylbenzene	Coarse	70
Xylenes	Coarse	105
TRH F1	Coarse/ Fine	180*
TRH F2	Coarse/ Fine	120*
TRH F3	Coarse	300
TRH F4	Coarse	2800
B(a)P	Coarse	0.7
Benzene	Fine	65
Toluene	Fine	105
Ethylbenzene	Fine	125

Contaminant	Soil Type	EIL-A-B-C
Xylenes	Fine	45
TRH F3	Fine	1300
TRH F4	Fine	5600
B(a)P	Fine	0.7

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH > C_{10} - C_{16} including naphthalene

E2.6 Ecological Soil Guideline Values

The interim ecological soil guideline values (EGV) derived from Table3 of HEPA (2020) are in Table 9.

Contaminant	Direct Exposure	Indirect Exposure
PFOS	1	0.01
PFOA	10	NC
PFHxS	NC	NC

Notes: NC no criterion

E2.7 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services.

The adopted management limits are in Table 10.

Contaminant	Soil Type	ML-A-B-C
TRH F1	Coarse	700
TRH F2	Coarse	1000
TRH F3	Coarse	2500
TRH F4	Coarse	10 000
TRH F1	Fine	800
TRH F2	Fine	1000
TRH F3	Fine	3500
TRH F4	Fine	10 000

Table 10: Management Limits (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} including BTEX TRH F2 is TRH > C_{10} - C_{16} including naphthalene

E3.0 Groundwater

E3.1 Introduction

The groundwater investigation levels (GIL) used for interpretation of the groundwater data (as a Tier 1 assessment) have been selected based on the potential risks posed from contamination sourced from the site to receptors at or down-gradient of the site, as identified by the conceptual site model (CSM). The receptors, exposure points and pathways are summarised in Table 11.

Table 11: Summary of Potential Receptors and Potential Risks

Receptor	Location	Exposure Point	Exposure Pathway
Surface water aquatic ecosystem [Narrabeen Creek]	Down-gradient from site.	Receiving surface water body at the groundwater discharge point.	Exposure to contaminants.
Occupants of buildings	On site and down-gradient from site.	Enclosed buildings (existing commercial and proposed residential)	Inhalation of VOC (including TRH and BTEX) overlying VOC impacted groundwater via the vapour intrusion pathway.

The rationale for the selection of GIL is in Table 12.

Receptor / Beneficial Use	GIL	Source	Comments / Rationale
Aquatic ecosystem	DGV	ANZG (2018)	Freshwater 99% LOP for bioaccumulative contaminants 95% LOP for non-bioaccumulative contaminants
Aquatic ecosystem	DGV	HEPA (2020)	Freshwater 99% LOP Screening values were only available for PFOS and PFOA at the time of this investigation.
Building occupants (vapour intrusion)	HSL	NEPC (2013)	2 m to <4 m
Recreational waters	GV	NHMRC (2008)	Based on the NHMRC (2018) values x10 to account for ingestion of water whilst undertaking recreational activities.
Notes: DGV default g % LOP percer HSL health sc	ntage level of p	protection of species	

Table 12: Groundwater Investigation Level Rationale

tes: DGV default guideline value
 % LOP percentage level of protection of species
 HSL health screening level
 GV guideline value
 LTV long term value (up to 100 years)
 STV short term value (up to 20 years)

E3.2 Groundwater Investigation Levels for Aquatic Ecosystems

The DGV for the protection of aquatic ecosystems derived from ANZG (2018) are in Table 13.

Table 13: Groundwater Investigation Levels for Protection of Aqua	atic Ecosystems (µg/L)
---	------------------------

Contaminant	Fresh Water
Metals	
Arsenic	24 as As (III);
	13 as As(V)
Cadmium	0.2
Chromium	3.3 as Cr(III);
	1 as Cr(VI)
Copper	1.4
Lead	3.4
Mercury (inorganic)	0.06 ^a
Nickel	1.1
Zinc	15 ^b

Contaminant	Fresh Water
BTEX	
Benzene	600
Toluene	180
Ethylbenzene	80
m+p-xylene	72 as m-xylene; 200 as p-xylene
o-xylene	350
РАН	
B(a)P	0.1
Naphthalene	16
Anthracene	0.01
Fluoranthene	1
Phenanthrene	0.6
OCP	
Aldrin	0.001
alpha-chlordane	0.03
DDT	0.006
Dieldrin	0.01
Endosulfan I	0.03
Endosulfan II	0.03
gamma-Chlordane	0.03
Heptachlor	0.01
Hexachlorobenzene	0.05
Lindane	0.2
Methoxychlor	0.005
OPP	
Azinphos methyl (Guthion)	0.02
Chlorpyriphos	0.00004
Diazinon	0.01
Dimethoate	0.15
Fenitrothion	0.2
Malathion	0.05

Contaminant	Fresh Water
Parathion	0.004
voc	
1,1,1-trichloroethane	270
tetrachloroethene	70
1,1,2-trichloroethylene	330
1,1-Dichloroethene	700
1,2-dichlorobenzene	160
1,3-dichlorobenzene	260
1,4-dichlorobenzene	60
carbon tetrachloride	240
Vinyl Chloride	100
Chloroform	770
Monochlorobenzene	55
Herbicides	
2,4,5-T	36
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	280
Atrazine	13
Glyphosate	320
МСРА	1.4
Simazine	3.2
РСВ	
Arochlor 1242	0.6
Arochlor 1254	0.03

Notes: Where the contaminant does not have a % LOP, the 'unknown' LOP has been adopted

a: 99% LOP adopted for bioaccumulative contaminants

b: adjusted based on average hardness of 62 mg CaCO_3/L

The DGV for the protection of aquatic ecosystems derived from HEPA (2020) are in Table 14.

	Contaminant / LOP	Fresh Water DGV
PFOS	95% LOP	0.13
PFOA	95% LOP	220
PFOS	99% LOP	0.00023
PFOA	99% LOP	19

Table 14: Groundwater Investigation Levels for Protection of Aquatic Ecosystems (µg/L)

E3.3 Health Screening Levels for Vapour Intrusion

The HSL to evaluate potential vapour intrusion risks derived from NEPC (2013) are in Table 15

Contaminant	HSL-A&B	Solubility Limit
SAND	2 m to <4 m	-
Benzene	800	59 000
Toluene	NL	61 000
Ethylbenzene	NL	3900
Xylenes	NL	21 000
Naphthalene	NL	170
TRH F1	1000	9000
TRH F2	1000	3000
CLAY	2 m to <4 m	-
Benzene	5000	59 000
Toluene	NL	61 000
Ethylbenzene	NL	3900
Xylenes	NL	21 000
Naphthalene	NL	170
TRH F1	NL	9000
TRH F2	NL	3000

Table 15: Groundwater Health Screening Levels for Vapour Intrusion (µg/L)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

E3.4 Groundwater Investigation Levels for Recreational Water

The GV for recreational water derived from NHMRC (2008) are in Table 16.

Table 16: Groundwater Investigation Levels for Protection of Recreational Waters (µg/L)

Contaminant	Guideline Value
`Metals	
Arsenic	100
Cadmium	20
Chromium (total)	500
Copper	20000
Lead	100
Mercury (inorganic)	10
Nickel	200
BTEX	
Benzene	10
Toluene	8000
Ethylbenzene	3000
Total xylenes	6000
РАН	
Benzo(a)pyrene	0.1
ОСР	
DDT	90
Heptachlor	3
Lindane	100
OPP	
Azinphos methyl (Guthion)	300
Bromophos-ethyl	100
Chlorpyriphos	100
Diazinon	40
Dichlorvos	50
Dimethoate	70
Ethion	40
Fenitrothion	70

Contaminant	Guideline Value
Malathion	700
Parathion	200
voc	
tetrachloroethene	500
1,1-Dichloroethene	300
1,2-dichlorobenzene	15000
1,2-dichloroethane	30
1,4-dichlorobenzene	400
carbon tetrachloride	30
1,2-dibromoethane	10
hexachlorobutadiene	7
Bromomethane	10
Monochlorobenzene	3000
Styrene (vinylbenzene)	300
PFAS	
PFOA	10
Herbicides	
2,4,5-T	1000
2,4-D [(2,4-Dichlorophenoxy) acetic acid]	300
Atrazine	200
Fenoprop	100
Glyphosate	10000
Hexazinone	4000
МСРА	400
Simazine	200

E4.0 References

ANZECC. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australia and New Zealand Environment and Conservation Council.

ANZG. (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality.* Canberra, ACT: Australian and New Zealand Governments and Australian state and territory governments.

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater.* Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

NHMRC. (2008). Guidelines for Managing Risks In Recreational Water.

NHMRC, NRMMC. (2016). *Australian Drinking Water Guidelines 6 2011, Version 3.2.* Canberra: National Health and Medical Research Council, National Resource Management Ministerial Council.

Douglas Partners Pty Ltd

Appendix F

Field Work Methodology

Appendix F Field Work Methodology 20-22 MacPherson Street, Warriewood

F1.0 Guidelines

The following key guidelines were consulted for the field work methodology:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- HEPA PFAS National Environmental Management Plan (NEMP) (HEPA, 2020).

F2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the solid flight auger / hand auger;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Transfer samples in laboratory-prepared container (specific for PFAS) by hand, capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for PID screening;
- Collect ~500 ml samples for FA and AF analysis;
- Collect ~40 g to 50 g samples in zip-lock bags for asbestos (presence / absence) analysis;
- Collect ~250 g samples in zip-lock bags for acid sulphate soil analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Collect 10% replicate samples for QC purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

Reference was made to HEPA (2020) for requirements specific to PFAS.

F2.1 Field Testing

Field testing is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

PID Field Test

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen using the PID.

F3.0 Groundwater Sampling

F3.1 Monitoring Well Installation

Monitoring wells were constructed using class 18 uPVC machine slotted screen and blank sections with screw threaded joints. The screened section of each well was backfilled with a washed sand filter pack to approximately 0.5 m above the screened interval. Each well was completed with a hydrated bentonite plug of at least 0.5 m thick and then compacted drill cuttings to the surface, finished as a with lockable steel monument set in a concrete plinth.

F3.2 Monitoring Well Development

Groundwater monitoring wells were developed as soon as practicable following well installation. The purpose of well development was to remove sediments and / or drilling fluid introduced to the well during drilling and to facilitate connection of the monitoring well to the aquifer. The wells were developed by pumping / bailing to remove a minimum of five well volumes, or until dry.

F3.3 Groundwater Sampling

Groundwater sampling is carried out in accordance with DP standard operating procedures. Groundwater samples are collected using a low flow peristaltic pump via the micro-purge (minimal drawdown) method. The sampling method is described as follows:

- Measure the static water level using an electronic interface probe and record the thickness of any LNAPL (if encountered);
- Decontaminate the interface probe and cable between monitoring wells by rinsing in a diluted Liquinox solution and then rinsing in demineralised water;
- Lower the well-dedicated tubing into the well then clamped at a level estimated to be 1 m below the top of the water column (provided the depth of the pump is within the screened section) or to the approximate mid-point of the well screen;
- Set the pump at the lowest rate possible to minimise drawdown of the water column;

- Measure physical parameters by continuously passing the purged water through a flow cell; and
- Following stabilisation of the field parameters, collect samples in laboratory-prepared bottles minimising headspace within the sample bottle and cap immediately.

Decontaminate the interface probe and pump between monitoring wells by rinsing in a diluted Liquinox solution and then rinsing in demineralised water.

The general groundwater sample handling and management procedures comprise:

- Collect 10% replicate samples for QC purposes;
- Label sample containers with individual and unique identification details, including project number and sample location;
- Place the sample jars into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

F4.0 Surface Water Sampling

Surface water sampling was carried out in accordance with DP standard operating procedures. Sample collection was completed using a telescopic pole and decontaminated sample container. A new pair of disposable nitrile gloves was worn at each sample site to minimise potential for cross-contamination.

The sampling method is described as follows:

- Where possible, the sampling point was a reasonable distance from the edge;
- Immersion of the sample container to at least 0.2 m below the surface (where possible), with the
 opening pointing directly down to maintain a volume of air in the container, thereby avoiding the
 collection of any surface films;
- Once under the surface of the water, the mouth of the sample container was directed up stream so that gloved hands, sample container and/or sample collection device were downstream of the sample being collected;
- Use of sample location specific laboratory-prepared glass bottles without preservatives;
- The water samples were decanted into laboratory-prepared bottles, minimising headspace within the sample bottle and capped immediately. The sample location specific laboratory-prepared glass bottle was used as the sample container for the last sample from that location;
- Any excess water was disposed downstream of the sampling;
- Labelling of sample containers with individual and unique identification details, including project number and sample location;
- Placement of the sample jars into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

F5.0 References

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Appendix G

Borehole Logs

BMN Properties Pty Ltd T/A Baz Family Trust

20-22 Macpherson Street, Warriewood

Due Dilligence

SURFACE LEVEL: 8.2 AHD EASTING: 341691 NORTHING: 6271481 DIP/AZIMUTH: 90°/--

BORE No: MW101 PROJECT No: 207253.01 DATE: 31/8/2021 SHEET 1 OF 1

Sampling & In Situ Testing Well Description Graphic Water Depth Log 뭅 <u>b</u>e Construction of Depth Type Results & Comments (m) San Details Strata Gatic cover CONCRETE SLAB: 2-20mm aggregate Concrete 0.12 0.12 Е FILL/Gravelly Silty SAND: fine to coarse, dark brown, trace 0.2 0.2 \plastic, brick fragments, wire and wood, moist Bentonite 0.0-0.5m FILL/Sandy CLAY: low plasticity, dark brown, with silt, fine 'Sample ACM-01', fibre cement fragment 0.4 to coarse sand, trace fine to medium gravel, wire, wood, glass, metal sheeting and asbestos cement fragment**, ACM-01 D** E 0.5 Blank pipe 0.0-1.0m w~PL 0.9 Е 1.0 1 1.2 Sandy CLAY CL: low plasticity, dark brown, sandy clay with fine to medium sand and fine to medium gravel, w>PL, soft to firm, alluvial 14 Е V 15 0.1.1 s N = 21 95 F - 2 20 -2 2.0 SAND SP: medium, brown and dark grey, trace silt, wet, alluvial Gravel 0.5-4.0m 2.4 Е Machine slotted PVC screen 2.5 2.6 1.0-4.0m Silty CLAY CI: medium plasticity, dark brown, with sand, trace rootlets, w>PL, alluvial 2.9 Е . 3 3.0 3 Below 3.1m: grey, with wood fragments 3.4 Е 3.5 3.9 Е End cap 4 4.0 4 0 Bore discontinued at 4.0m - Target depth reached

RIG: Multidrill

TYPE OF BORING:

CLIENT:

PROJECT:

LOCATION:

DRILLER: Traccess

LOGGED: AS Diatube Coring 0-0.12m, Spiral Flight Auger (TC-bit) to 4.0m

CASING: Uncased

WATER OBSERVATIONS: Groundwater observed at 1.5m whilst augering. Groundwater recorded in groundwater well at 1.4m bgl on 8/09/2021. REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56. ** asbestos confirmed by laboratory analysis (Sample ACM-01, from 0.4m)

SAM	PLIN	3 & IN SITU TESTING	LEG	END					
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	_		-		
3 Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)			00	Partners	
3LK Block sample	U,	Tube sample (x mm dia.)	PL(E	0) Point load diametral test ls(50) (MPa)					5
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					•
D Disturbed sample	⊳	Water seep	S	Standard penetration test	11				
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	I Envir	ronment Groundwate)r

BMN Properties Pty Ltd T/A Baz Family Trust

20-22 Macpherson Street, Warriewood

Due Dilligence

SURFACE LEVEL: 8.2 AHD 341707 EASTING: **NORTHING: 6271456** DIP/AZIMUTH: 90°/--

BORE No: HA102 PROJECT No: 207253.01 DATE: 8/9/2021 SHEET 1 OF 1

Sampling & In Situ Testing Graphic Well Description Water Depth Log Sample 뭅 Construction of Depth Results & Comments (m) Type Details Strata 0.0 CONCRETE SLAB <u>0</u>.0 Е 0.1 0.13 ROADBASE GRAVEL: medium to coarse, dark grey, with 0.13 sand FILL/Sandy CLAY: low plasticity, pale brown and red, fine 0.35 to medium sand, trace fine to medium gravel including ∖ironstone, w~PL 0.5 E* FILL/Silty CLAY: medium plasticity, dark grey, w~PL, 0.6 slightly 'grease' odour 0.8 Sandy CLAY CL: low plasticity, pale grey, fine sand, trace 0.9 rootlets, w~PL-w>PL, alluvial Е 1.0 1.0 Bore discontinued at 1.0m - Target depth reached - 2 -2 3 - 3 -4 - 4

RIG: Hand Tools

CLIENT:

PROJECT:

LOCATION:

DRILLER: AS

LOGGED: AS

CASING: Uncased

TYPE OF BORING: Hand Auger WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56. *Field replicate BD1/20210908 from 0.5-0.6m

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

CLIENT: BMN Properties Pty Ltd T/A Baz Family Trust PROJECT: Due Dilligence LOCATION: 20-22 Macpherson Street, Warriewood

SURFACE LEVEL: 7.7 AHD **EASTING:** 341742 NORTHING: 6271443 **DIP/AZIMUTH:** 90°/--

BOREHOLE LOG

BORE No: MW103 PROJECT No: 207253.01 DATE: 31/8/2021 SHEET 1 OF 1

\square		Description	U		Sam	npling 8	& In Situ Testing		Well
Ъ	Depth (m)	of	Graphic Log	e	Ę	ple	Poculte &	Water	Construction
	(11)	Strata	۵ ۵	Type	Depth	Sample	Results & Comments	5	Details
		CONCRETE SLAB: 2-20mm aggregate	<u></u>						Gatic cover
	0.14 -	FILL/Sandy CLAY: low plasticity, brown, with fine to medium gravel, fine to coarse sand, w~Pl		E	0.14 0.2				
-	0.3	FILL/SAND: medium, brown, trace fine gravel, moist	\bigotimes						Backfill 0.0-0.5m
				E	0.4				
		Between 0.6-0.8m: with clay nodules							
-~				s			3,3,4 N = 7		Bentonite 0.5-1.0m
	.				0.05				0.0-1.5m
-	-1			E_	0.95 1.0				
-	· 1.3 ·	SAND: SP medium, pale brown and pale grey, moist,							
ł		alluvial		E	1.4				
		At 1.5m: medium dense			1.5				
-0	.			s			2,2,3 N = 5		
	.								
	-2	Below 2.0m: wet		E	1.95 2.0			Ţ	
	.								
	.								
	.			E	2.4				
	.				2.5				- Gravel 1.0-4.0m
-u-									
ŀ									Machine slotted
	-3			E	2.9 3.0				
					0.0				
	.				3.4				
	3.5	Sandy CLAY CL-CI: low to medium plasticity, pale grey,	7.7	E	3.5				
-		medium sand, w>PL, alluvial							
	.		·/·/·						
			\ <u>.</u>	E	3.9				End cap
	-4 4.0	Bore discontinued at 4.0m			-4.0-				-
	.	- Target depth reached							-
	.								-
	.								
-00	.								
	.								-

RIG: Multidrill **TYPE OF BORING:** Diatube Coring 0-0.14m, Spiral Flight Auger (TC-bit) to 4.0m

DRILLER: Traccess

LOGGED: AS

CASING: Uncased

WATER OBSERVATIONS: Groundwater observed at 2.0m whilst augering. Groundwater recorded in groundwater well at 2.2m bgl on 8/09/2021. **REMARKS:** Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56.

	SAM	IPLIN	G & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	A Douglas Parmers
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	Ocatachaire I Frainceant I Orangeharten
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

BMN Properties Pty Ltd T/A Baz Family Trust

20-22 Macpherson Street, Warriewood

Due Dilligence

SURFACE LEVEL: 8.0 AHD EASTING: 341714 NORTHING: 6271438 DIP/AZIMUTH: 90°/-- BORE No: HA104 PROJECT No: 207253.01 DATE: 1/9/2021 SHEET 1 OF 1

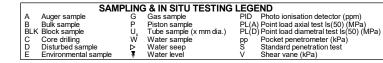
Sampling & In Situ Testing Graphic Log Well Description Water Depth Sample Construction 뭅 of Depth Results & Comments (m) Type Details Strata 0.0 FILL/Gravelly SAND: fine to coarse, brown, fine to coarse Е 0.1 gravel, trace clay and terracotta fragment, dry 0.2 FILL/Sandy CLAY: low to medium plasticity, grey, medium sand, trace fine gravel, w~PL 0.4 E* 0.5 0.8 FILL/CLAY: medium plasticity, grey, trace fine sand, w~PL, possibly natural 1.0 • 1 Е 1.2 1.2 Bore discontinued at 1.2m - Hand auger refusal on clay ∞ **-**2 -2 3 - 3 -4 - 4

RIG: Hand Tools

CLIENT:

PROJECT:

LOCATION:


DRILLER: AS

LOGGED: AS

CASING: Uncased

TYPE OF BORING: Hand Auger WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56. *Field replicate BD4/20210901 from 0.4-0.5m

BMN Properties Pty Ltd T/A Baz Family Trust

20-22 Macpherson Street, Warriewood

Due Dilligence

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 9.7 AHD **EASTING:** 341636 **NORTHING:** 6271466 **DIP/AZIMUTH:** 90°/-- BORE No: HA105 PROJECT No: 207253.01 DATE: 1/9/2021 SHEET 1 OF 1

					DIF	P/AZII	MUTH	 90°/		SHEET 1 OF 1
	_		Description	.c.		Sam		& In Situ Testing	L	Well
RL	Dept (m)	h	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	0	.01	\GRAVEL: medium, subrounded to subangular	\boxtimes	Е	0.01				
-	- - -	0.4 -	FILL/Clayey SAND: fine to coarse, grey, with medium angular gravel, trace roots, wet	\bigotimes		0.1 0.4				
-		0.6	FILL/Sandy CLAY: low plasticity, grey, medium sand, trace roots, w~PL, possibly natural	\bigotimes	E*	0.5				-
-6	-		CLAY CI: medium plasticity, grey, trace fine sand and roots, w~PL, alluvial			0.9				-
	-1	1.0		\mathbb{Z}	Е	0.9 —1.0—				1
8			Bore discontinued at 1.0m - Target depth reached							- - - - - - - - -
	- -2 -									-2
	- - -									- - - -
4										
	- 3 - - -									-3
- 9										-
-	- - 4 -									- 4
	- - - -									
-	-									-

RIG: Hand Tools

DRILLER: AS

5

LOGGED: AS

CASING: Uncased

TYPE OF BORING: Hand Auger WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56. *Field replicate BD5/20210901 from 0.4-0.5m

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Pho

 B
 Bulk sample
 P
 Piston sample
 PL(A) Poir

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Poir

 C
 Core drilling
 W
 Water sample (x mm dia.)
 PL(D) Poir

 D
 Disturbed sample
 P
 Water seep
 S
 Star

 E
 Environmental sample
 ¥
 Water level
 V
 She

BMN Properties Pty Ltd T/A Baz Family Trust

20-22 Macpherson Street, Warriewood

Due Dilligence

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 8.3 AHD **EASTING:** 341689 **NORTHING:** 6271428 **DIP/AZIMUTH:** 90°/-- BORE No: BH106 PROJECT No: 207253.01 DATE: 31/8/2021 SHEET 1 OF 1

Sampling & In Situ Testing Well Graphic Description Water Depth Log 뭅 Sample Construction of Depth Results & Comments (m) Type Details Strata CONCRETE SLAB: 2-20mm aggregate 0.14 0.14 FILL/Sandy CLAY: low plasticity, dark grey, with silt, trace Е 0.25 terracotta and brick, w~PL 0.35 SAND SP: medium, pale grey, moist, alluvial 0.5 Е 0.6 0.9 Е 1.0 1.0 1 Bore discontinued at 1.0m - Target depth reached - 2 -2 - 3 - 3 -4 - 4

 RIG:
 Multidrill
 DRILLER:
 Traccess
 LOGGED:
 AS

 TYPE OF BORING:
 Diatube Coring 0-0.14m, Spiral Flight Auger (TC-bit) to 1.0m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56.

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 Piston sample

 B Bulk sample
 Piston sample
 Piston sample

 LK Block sample
 U, Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C Core drilling
 W Water sample
 Public value of the control o

CASING: Uncased

SURFACE LEVEL: 7.5 AHD BMN Properties Pty Ltd T/A Baz Family Trust **EASTING:** 341736 20-22 Macpherson Street, Warriewood NORTHING: 6271391 DIP/AZIMUTH: 90°/--

BORE No: HA107 PROJECT No: 207253.01 DATE: 1/9/2021 SHEET 1 OF 1

						0				
Ι.	Der	oth	Description	Graphic Log				& In Situ Testing	er	Well
Ч	Dep (n	n)	of	Lo	Type	Depth	Sample	Results & Comments	Water	Construction
			Strata	0			Sar	Comments		Details
	-		FILL/CLAY: low to medium plasticity, brown, with fine to coarse sand and fine gravel (to 0.2m depth), w~PL		Е	0.0				-
ŀ	-		coarse sand and line graver (to 0.211 depth), w~PL							-
ł	-			\bigotimes						-
ł	-			\mathbb{X}	E	0.4				-
	-			\otimes		0.5				-
ł	-									-
ł	-									-
f	-	0.8	Sandy CLAY CI: medium plasticity, grey, medium sand, w~PL, alluvial	1. ×. ×.						
ſ	- - 1	1.0	w~PL, alluvial	(./.)	Е	0.9 —1.0—				-
	- 1	1.0	Bore discontinued at 1.0m			-1.0-				
	_		- Hand auger refusal on clay							_
	-									-
ł	_									
-9	_									
ł	-									-
ł	-									-
ł	-									-
t	_									
[-2									-2
	_									-
	_									-
ŀ	-									-
-9	-									-
ł	-									-
ł	-									-
ł	-									-
ł	-									
ľ	-3									-3
	_									
	-									-
ŀ	-									-
-4	_									
ł	_									-
ł	-									F
ł	-									F
ſ										
[-4									-4
	_									
+	_									
ŀ	_									
-~	_									
ł	-									
ł	_									
ł	-									- I
ł	-									F
L								I		

RIG: Hand Tools TYPE OF BORING:

CLIENT:

PROJECT:

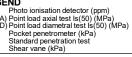
LOCATION:

Due Dilligence

Hand Auger

DRILLER: AS

LOGGED: AS


CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56.

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

3 & IN 5110 1E511NG	LEGI	ΞN
Gas sample	PID	F
Piston sample	PL(A PL(C) F
Tube sample (x mm dia.)	PL(C)) F
Water sample	pp S	ŕF
Water seep		S
Water level	V	S

CLIENT:BMN Properties Pty Ltd T/A Baz Family TrustPROJECT:Due DilligenceLOCATION:20-22 Macpherson Street, Warriewood

SURFACE LEVEL: 7.9 AHD **EASTING:** 341708 **NORTHING:** 6271374 **DIP/AZIMUTH:** 90°/-- BORE No: HA108 PROJECT No: 207253.01 DATE: 1/9/2021 SHEET 1 OF 1

\square			5			San	nolina 8	& In Situ Testing		
RL	Dep	pth	Description	Graphic Log					Water	Well
R	(n	n)	of	Gra	Type	Depth	Sample	Results & Comments	Na	Construction Details
			Strata			0.0	Š	-		Details
-			FILL/Silty CLAY: medium plasticity, brown, trace fine to medium sand, w~PL		E	0.1				-
+ +			with fine gravel to 0.1m depth							-
+										-
		0.4	Clayey SAND SP: medium, pale grey, moist, alluvial		E	0.4				-
t t				(1./.)		0.5				-
		0.6	SAND SP: medium, pale grey, moist, alluvial							
						0.9				-
	- 1	1.0			E	-1.0-			_	1
			Bore discontinued at 1.0m - Target depth reached							-
$\left \right $			raiger deparroached							-
										-
ł										-
	•									
										[
-9										-
	-2									-2
$\left \right $										-
$\left \right $										-
										-
	•									
										[
-0										-
$\left \right $	- 3									-3
										-
										-
ł										-
										ţ l
-4										- I
	-4									-4
										F
										F
										ţ l
										ļ
										ļ
										ļ
-0										

RIG: Hand Tools

DRILLER: AS

LOGGED: AS

CASING: Uncased

TYPE OF BORING: Hand Auger WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56.

 SAMPLINC

 A
 Auger sample
 G

 B
 Bulk sample
 P

 BLK
 Block sample
 U

 C
 Core drilling
 W

 D
 Disturbed sample
 P

 E
 Environmental sample
 ¥

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample

 P
 Piston sample

 U
 Tube sample (x mm dia.)

 W
 Water sample (x mm dia.)

 W
 Water sample

 Mater sample
 Star

 Mater sample
 Star

 Mater sample
 Star

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

BMN Properties Pty Ltd T/A Baz Family Trust

20-22 Macpherson Street, Warriewood

Due Dilligence

SURFACE LEVEL: 9.3 AHD EASTING: 341652 NORTHING: 6271400 DIP/AZIMUTH: 90°/-- BORE No: BH109 PROJECT No: 207253.01 DATE: 31/8/2021 SHEET 1 OF 1

	onth	Description	hic		Sam		& In Situ Testing	<u>ہ</u>	Well
	epth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		Strata	G	Ту		San	Comments		Details
	0.02		\mathbb{X}	Е	0.02 0.1				-
_	0.3	FILL/Silty SAND: fine to coarse, brown, trace fine to medium igneous gravel and asphalt, dry			0.1				
-		∖ SAND SP: medium, grey, moist, alluvial, possibly fill Below 0.35m: pale grey		E*	0.4 0.5				-
	0.7	SAND SP: medium, dark brown, trace silt, moist to wet, alluvial							
- - 1 -		LBelow 0.7m: wet		E	0.9 1.0				- 1 - 1
-	1.6 -			E	1.4 1.5				-
		SAND SP: medium, pale grey, wet, alluvial		E	1.9			Ţ	-
-2	2.0	Bore discontinued at 2.0m	1		-2.0-				2
-									
-3									-3
-									-
-4									4
									-

TYPE OF BORING: Spiral Flight Auger (TC-bit) 0.0-2.0m **WATER OBSERVATIONS:** Groundwater observed at 1.7m whilst augering

CLIENT:

PROJECT:

LOCATION:

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56. *Field replicate BD1/20210831 from 0.4-0.5m

	SAM	LIN	G & IN SITU TESTING	G LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BI	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater
DE	Disturbed sample	Þ	Water seep	S Standard penetration test (Geotechnics Environment Groundwat

BMN Properties Pty Ltd T/A Baz Family Trust

20-22 Macpherson Street, Warriewood

Due Dilligence

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 10.4 AHD **EASTING:** 341617 **NORTHING: 6271416 DIP/AZIMUTH:** 90°/--

BORE No: HA110 PROJECT No: 207253.01 DATE: 8/9/2021 SHEET 1 OF 1

				DIF		VIUT	H: 90°/		SHEET 1 OF 1		
		Description	<u>.</u>		Sam	pling & In Situ Testing			Well		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details		
H		CONCRETE SLAB	<u>.</u>			05					
	0.13	FILL/SAND: medium, dark grey, trace medium rounded gravel (marble), moist		_ <u>E</u>	0.13 0.2						
	- 0.5	SAND SP: medium, pale grey, moist, alluvial		E	0.4 0.5				-		
	-								-		
-	- 1 1.0			E	0.9						
	-	Bore discontinued at 1.0m - Target depth reached									
-6	-										
	-										
	- - 2								-2		
-	-										
- 8											
	-										
									-		
	-3								-3		
. 4	-								-		
	-										
-	-										
-	-4								-4		
. 9	-										
	-										
-	-										
	_										

RIG: Hand Tools

DRILLER: AS Hand Auger

LOGGED: AS

CASING: Uncased

TYPE OF BORING: WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56.

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

BMN Properties Pty Ltd T/A Baz Family Trust

Due Dilligence

LOCATION: 20-22 Macpherson Street, Warriewood

CLIENT:

PROJECT:

SURFACE LEVEL: 10.9 AHD **EASTING**: 341600 **NORTHING**: 6271397 **DIP/AZIMUTH**: 90°/-- BORE No: MW111 PROJECT No: 207253.01 DATE: 31/8/2021 SHEET 1 OF 1

Dent	Description	ic –		Sam	Sampling & In Situ Testing			Well	
Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
0.07	_ ASPHALTIC CONCRETE		-	0.07				Gatic cover	
0.3	FILL/Clayey SAND: fine to coarse, dark brown, with silt and fine to medium gravel, trace possible ash, moist		E	0.15					
0.0	SAND SP: medium, grey and pale grey, dry to moist, alluvial		E*	0.4 0.5					
0.7	SAND SP: medium, brown and pale grey, trace fine gravel and silt, moist, very loose, alluvial			0.9				Backfill 0.0-1.5m	
			s			1,1,2 N = 3		-1 - Blank pipe - 0.0-2.5m	
1.5	Clayey SAND SP: medium, pale grey and orange, moist, loose, alluvial		<u> </u>	1.45 1.5				Bentonite 1.5-2.0m	
2			E	1.9 2.0				-2 -2	
			S 	2.45		3,3,4 N = 7			
3	Below 2.9m: wet		E	2.9			Ţ	3	
	Sandy CLAY CL-CI: low to medium plasticity, pale grey, medium sand, w~PL to w>PL, alluvial		E	3.4					
				3.5				Gravel 2.0-5.0m	
4			E	3.9 4.0				- 2.5-5.0m	
4.2	Clayey SAND SP: medium, pale grey, wet, alluvial		E	4.4					
5 5.0	Bore discontinued at 5.0m - Target depth reached		E	- 4.9 5.0				End cap	

WATER OBSERVATIONS: Groundwater observed at 3.0m whilst augering. Groundwater recorded in groundwater well at 2.4m bgl on 8/09/2021. **REMARKS:** Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56. *Field replicate BD2/20210831 from 0.4-0.5m

	SA	AMPLII	NG & IN SITU TESTIN	G LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	P	Piston sample		A) Point load axial test Is(50) (MPa)		Douglas Partners
BL	K Block sample	U	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1	Douglas Parliers
C	Core drilling	V	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		Out the basis of Freedom and the Original states
E	Environmental sample	e 📱	Water level	V	Shear vane (kPa)		🗖 Geotechnics Environment Groundwater
						-	

CLIENT: BMN Properties Pty Ltd T/A Baz Family Trust PROJECT: Due Dilligence LOCATION: 20-22 Macpherson Street, Warriewood

SURFACE LEVEL: 10.0 AHD **EASTING:** 341628 NORTHING: 6271380 **DIP/AZIMUTH:** 90°/--

BORE No: HA112 PROJECT No: 207253.01 DATE: 8/9/2021 SHEET 1 OF 1

	_		Description	.c.		Sam		& In Situ Testing	-	Well
R	Dej (n	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
ę			Strata			ă	Sa	Comments		Details
ł	-	0.12				0.13				-
ł	-		FILL/Sandy SILT: orange, fine to medium grained, poorly graded with clay, ironstone gravel and igneous gravel,	\otimes	E*	0.23				-
ţ	-		moist							
	-	0.5			_	0.5				-
ł	-	0.65	FILL/SAND: fine to medium, dark grey, poorly graded, with greous gravel, moist (possibly natural)		E	0.6				-
ł	-	0.03	SAND SP: fine to medium, grey, poorly graded, moist,							-
Ī	_		alluvial			0.9				
-0	- 1	1.0			E	-1.0-				1
ł	-		Bore discontinued at 1.0m - Target depth reached							-
ł	-									-
ţ	_									
ŀ	-									-
ł	-									-
ł	-									-
Ì	_									
-∞	-2									-2
ł	-									-
ł	-									-
Ī	_									
ŀ	-									-
ł	-									-
ł	-									-
Ī	_									
	-3									-3
ł	-									-
ł	-									-
Ī	_									
-	-									-
ł	-									-
ł	-									-
Ī	_									
-9	-4									-4
ł	-									- I
ł	-									
Ţ	_									
ŀ	-									- I
ł	-									- I
ł	-									
Ī	-									

RIG: Hand Tools

DRILLER: AS TYPE OF BORING: Diatube Coring 0.0-0.12m, Hand Auger to 1.0m LOGGED: ZW

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56. *Field replicate BD2/20210908 from 0.13-0.23m

		SAMP	LIN	3 & IN SITU TESTING	LEG	END								
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_			-		_	_
B	Bulk sample		Р	Piston sample		A) Point load axial test Is(50) (MPa)			Doug	ha l			Dow	
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1	1.			PLS			ners
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
D	Disturbed sample	э	⊳	Water seep	S	Standard penetration test			O to a to a to	-				• • • • • • • • • • • • • • • • • • •
E	Environmental sa	ample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	S I	I ENVI	iron	nment (Groundwater

BMN Properties Pty Ltd T/A Baz Family Trust

20-22 Macpherson Street, Warriewood

Due Dilligence

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 9.0 AHD **EASTING:** 341655 **NORTHING:** 6271372 **DIP/AZIMUTH:** 90°/-- BORE No: BH113 PROJECT No: 207253.01 DATE: 31/8/2021 SHEET 1 OF 1

_							-	1. 90 /		
	_		Description	. <u>2</u>		Sam		& In Situ Testing	5	Well
RL	De	epth m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction
		,	Strata	Ū	Ту	Dei	Sam	Comments		Details
ſ		0.05	CONCRETE SLAB: 2-20mm aggregate		E	0.05				
	[FILL/Gravelly SAND: fine to coarse, dark brown and grey, fine to medium igneous gravel, trace roots and possible	\bigotimes		0.15				
+	Ļ	0.3	rine to medium igneous gravel, trace roots and possible ash, moist	\bigotimes						-
+	-		FILL/SAND: medium, dark brown and grey, moist	\bigotimes	E	0.4				-
ł	ŀ			\bigotimes		0.5				-
ł	ŀ	0.65		KXX						
f	ŀ		SAND SP: medium, grey and pale grey, moist, alluvial							
[[0.9				
-∞	- 1				E	1.0				-1
+	ŀ									-
ł	-		Below 1.2m: dark brown, moist to wet							-
ł	F									
ł	ŀ				E	1.4				
ĺ	[1.6				1.5			V	
	Ļ	1.0	Clayey SAND SP: medium, pale grey, wet, alluvial	1.1.1					-	-
-	ŀ			1.1.1						-
ł	ł			·/./.	E	1.9				-
-~	-2	2.0	Bore discontinued at 2.0m	1	L.	-2.0-				2
ł	F		- Target depth reached							
t	[
	[
+	-									-
ł	-									-
ł	-									-
ł	-									
	-3									-3
										-
-	ļ									-
ł	ŀ									-
ł	-									-
ł	ŀ									
İ	ŀ									
	[
-	-									-
-0	-4									-4
ł	ŀ									
ł	ŀ									
ł	ŀ									
[[
	ļ									
ł	ļ									
ł	ŀ									-
ł	ŀ									
L	L								1	

 RIG:
 Multidrill
 DRILLER:
 Traccess
 LOGGED:
 AS

 TYPE OF BORING:
 Concrete coring 0.0-0.05m, Spiral Flight Auger (TC-bit) to 2.0m

 WATER OBSERVATIONS:
 Groundwater observed at 1.6m whilst augering

 REMARKS:
 Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 Plot
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 Plot
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 D
 Disturbed sample
 P
 Water sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 D
 Disturbed sample
 V
 Water sample
 p
 Pocket penetrometer (KPa)

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

CASING: Uncased

SURFACE LEVEL: 9.1 AHD **EASTING:** 341660 NORTHING: 6271340 **DIP/AZIMUTH:** 90°/--

BORE No: BH114 PROJECT No: 207253.01 DATE: 31/8/2021 SHEET 1 OF 1

Г						0	unlin - ·	9 In Situ Testing		
	Dept	th	Description	Graphic Log				& In Situ Testing	ter	Well
Ч	(m))	of	Lo	Type	Depth	Sample	Results & Comments	Water	Construction
			Strata	0	ŕ		Sar	Comments		Details
-0	0	.04 -	ASPHALTIC CONCRETE	\times	E*	0.05				_
		0.3-	FILL/SAND: fine to coarse, brown, with fine to coarse igneous gravel, dry		_	0.15				-
		0.3 -	SAND SP: medium, brown, pale brown and pale grey, trace fine gravel, dry to moist, alluvial, possibly fill		E	0.4				-
			Below 0.6m: dark brown							-
	- 1	0.8-	SAND SP: medium, grey and pale grey, moist, alluvial		E	0.9				-
	- 1		Below 1.2m: brown, moist to wet		E	· 1.4				-
		1.5-	Bore discontinued at 1.5m - Target depth reached			-1.5-				-
· ·	-2									-2
	- 3									- 3
										-
 - م-	-4									-4
										-
	2. M							CASING		

RIG: Multidrill

DRILLER: Traccess TYPE OF BORING: Spiral Flight Auger (TC-bit) 0.0-1.5m

LOGGED: AS

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56. *Field replicate BD3/20210831 from 0.05-0.15m

		SAMP	LIN	3 & IN SITU TESTING	LEG	END										
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_					_		_	
В	Bulk sample		Р	Piston sample		A) Point load axial test Is(50) (MPa)			Do		- 6	00				KO
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)	1	1.				15				
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)					_		-			
D	Disturbed sample	э	⊳	Water seep	S	Standard penetration test			0			—			^	
E	Environmental sa	ample	Ŧ	Water level	V	Shear vane (kPa)			Geotech	nnics	1	Envir	onm	ient I	Grouna	water
							_									

PROJECT: LOCATION: 20-22 Macpherson Street, Warriewood

CLIENT:

BMN Properties Pty Ltd T/A Baz Family Trust Due Dilligence

BMN Properties Pty Ltd T/A Baz Family Trust

Due Dilligence

LOCATION: 20-22 Macpherson Street, Warriewood

CLIENT:

PROJECT:

SURFACE LEVEL: 8.7 AHD **EASTING:** 341678 NORTHING: 6271323 **DIP/AZIMUTH:** 90°/--

BORE No: BH115 PROJECT No: 207253.01 DATE: 31/8/2021 SHEET 1 OF 1

	Description	. <u>0</u>		Sam	npling	& In Situ Testing		Well
Depth (m)	of	Graphic Log	be	oth	Sample	Results &	Water	Construction
(,	Strata	Ū	Type	Depth	Sam	Results & Comments	>	Details
0.05	- ASPHALTIC CONCRETE		E	0.05				
- 0.3	FILL/SAND: fine to coarse, brown and dark brown, trace fine to medium igneous and sandstone gravel, dry			0.15				-
-	FILL/SAND: fine to coarse, dark brown, with silt, trace roots, moist		E	0.4				-
- 0.8 - - 1 -	SAND SP: medium, grey, moist, alluvial		E	0.9 1.0				- - -1
- - -	Below 1.2m: dark brown, trace silt		E	1.4 1.5				-
- 1.6 - -	SAND SP: medium, pale grey, wet, alluvial		· · ·	1.9			Ţ	-
-2 - - 2.2 -	Sandy CLAX CL CL law to modium plasticity, brown		E	2.0				-2
	Sandy CLAY CL-CI: low to medium plasticity, brown, medium sand, w>PL, alluvial		E	· 2.4 · 2.5				-
· 2.8 ·	CLAY CI-CH: medium to high plasticity, grey, trace fine to medium sand, w>PL, alluvial		E	2.9				-
- 3 3.0 · - - - -	Bore discontinued at 3.0m - Target depth reached			-3.0-				
- 4 - - -								-4
- - -								-
G: Multio	drill DRILLER: Traccess		LOC	GED	: AS	CASIN	G : U	ncased

TYPE OF BORING: Spiral Flight Auger (TC-bit) 0.0-3.0m

WATER OBSERVATIONS: Groundwater observed at 1.6m whilst augering

REMARKS: Location coordinates and levels provided by Craig & Rhodes to MGA2020 Zone 56.

		SAMPL	ING	& IN SITU TESTING	G LEG	END							
Α	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_		-	_		_
В	Bulk sample		Р	Piston sample		A) Point load axial test Is(50) (MPa)			Doug				
BLł	K Block sample		U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)		11.			15 F		Iners
С	Core drilling	,	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	1	⊳	Water seep	S	Standard penetration test		11	O the start is	1 -			0
Е	Environmental san	nple	¥	Water level	V	Shear vane (kPa)			Geotechnics	; E	:nvironn	nent I	Groundwater
							-						

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

man olaye er ena		
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW of	cannot be differentia	ted use DW (see below)
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

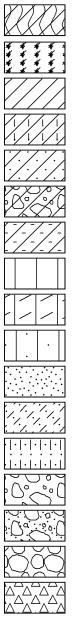
Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General


0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

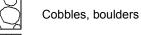
Gravelly clay

Shaly clay

Silt

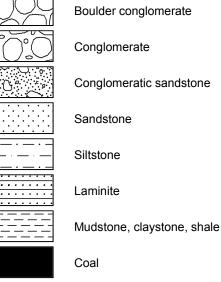
Clayey silt

Sandy silt


Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

·-----

Metamorphic Rocks

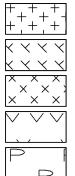
 >
 >

 >
 >

 +
 +

 +
 +

 +
 +


 .
 .

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Appendix H

Groundwater Field Sheets

Project and Bor	re Installation Detail	s MW101					- 6
Project Name / S	Site Location	Warnewood	,20-22	Max phonson S	iteet	Project Number	207253.0
Well Constructio	n Dotaile	Well ID	MWIOI	Drilling Method		Hole Diameter (m) [~]	
	IT Details	Well Depth (m bgl)		Screened (m bgl)		Stick Up (m)	
Survey Informati	ion	Easting		Northing		Elevation RL	
GW Level During	g Drilling		m bgl			201	
Contaminants/Co	omments						
Well Developme	ent Details						
	eather Conditions					Purged By	/
Purge Method / I						i digod Dj	
Product observe			mm	Confirmed with	Bailer? (Y / N)		
GW Level (pre-p			m bgl		ed Well Depth		m bgl
Height of Water			m bgl		Bore Volume*		L
GW Level (post-			m bgl		ume Purged**		L
Appearance/Con			in bgi		unio i urgou		
Appearance/Con	liments						
Sampling Detai	ls			and the			
Date / Time / We	eather Conditions	4.11.22/	9:4010	Jorcast	1.3	Sampled By	Th
Sampling Metho	d / Equipment		DPE + Sili	ion tubing, 4	Tum in	line filter	
WQM Model		YSI Pro DSS		WQM Ca	alibration Date	25.5.22	
Product observe	d / Thickness	0	mm	Confirmed with	Bailer? (🏹 N)		
GW Level (pre-n	nicropurge)	1.20	m bgl	Observe	ed Well Depth	3.92	m bgl
Height of Water	Column	777172	m bgl	Estimated	Bore Volume*	15	s p Li
GW Level (post	sample)	2.35	m bgl	Total Volume of	Micro-Purged	10	L
Water Quality P				50 - 12 - 13 - 13 - 13 - 13 - 13 - 13 - 13			· · · · · · · · · · · · · · · · · · ·
Time	Cumulative Volume (L)	Temp (°C)	DO (mg/L) [#]	EC (µS or mS/cm)	pН	Redox (mV)	Turbidity
Stabilisation	Target (3 readings)	0.2	+/- 10%	+/- 5%	+/- 0.1	+/- 10 mV	+/- 10%
9:40	2	18.3	5.8	272.0	3.65	106.4	72
9.42	4	18.4	2.6	266.9	3.71	106.6	48
9:42	16	18.5	6.6	2666	3.51	102.7	146
9:46	8	18.7	1.0	268.6	3.4	100.4	169
9:48	10	18.7	0.9	266.5	3.37	100.4	219
1.70	10	0.1	τ (200.5			
							100 A
			1				
	1977 - 19						
		198 - 195, J. B.		a. 5.	i a in the day		
28 L.							
10 · ·					Turkidit unkura	and loss than 5 NTU	
Notes:	# Considered stabilised if thr	ee DO values are less than 0.5	o mg/L	^ Considered stabilised if the	iee i urbiaity values		
Sample Details							
Sampling Depth	(rationale)	3	m bgl,	Middle of	water a	slunn	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ations (e.g. colour,	PII-		and the second sec			
sediment, sheen	n, odour)	Pale brown,	no od	ow			
Sample ID		MWIOI			T	1	
QAQC Samples		Replicate		Triplicate		Other	4
Sample Contain		Amber glass	1	Plastic		PFAS (no teflon)	
Juantity / Prese	rvation / Filtration	Metals (F/UF) (HNO3)	2	Phenols/COD/NH3 (H2SO4)		Vials (HCI)	
		Ferrous/Ferric Iron (HCI)		Cyanides/Chromium (NaOH)		Other	
Comments	i de la composición d La composición de la c	allow	apearly for	11.	L	L	1
			1	U			
*Estimated Well Volun	ne = H * F	Std. Drilling Diameter (m) ~	NMLC (0.075)	HQ (0.096)	PQ (0.1226)	SFA (0.125) 5.4	HFA (0.194 11.1


Project and Bo	ore Installation Deta	ils MW103					
Project Name /	Site Location	Warrie	indered, 2	0-22 Mar. 1	terson St	Project Number	207213.0
		Well ID	MWIOS	Drilling Method	95001	Hole Diameter (m)	19 - 11
Well Constructi	on Details	Well Depth (m bgl)	0.00	Screened (m bgl)		Stick Up (m)	
Survey Informa	tion	Easting		Northing		Elevation RL	1
GW Level Durir	ng Drilling		m bgl				
Contaminants/0							
Well Developm				2.2 C.C.	ti ti ta in		1
	eather Conditions					Purged By	/
Purge Method /							
Product observe			mm	Confirmed with			
GW Level (pre-			m bgl		ed Well Depth		m bgl
Height of Water		- 11 - M 11.	m bgl	Estimated	Bore Volume*		L
GW Level (post	-purge)		m bgl	Total Vo	lume Purged**		L
Appearance/Co	mments					and the second	
Sampling Deta	ils						
	eather Conditions	4.11.22(8	:50 / 0	vera A		Sampled By	177
	od / Equipment				1		TG
WQM Model				Silian Lubing	alibration Date	inlu Filter	
Product observe	ad / Thickness	YSI POD				25.5.72	
		0	mm	Confirmed with		1.55	
GW Level (pre-		2.15	m bgl		ed Well Depth	3.95	m bgl
Height of Water		1.8	m bgl		Bore Volume*	10	L
GW Level (post		2.47	m bgl	Total Volume of	Micro-Purged	18	L
Water Quality I	Parameters						
Time	Cumulative Volume (L)	Temp (°C)	DO (mg/L) [#]	EC (µS or mS/cm)	pН	Redox (mV)	Turbidity
	Target (3 readings)	0.2	+/- 10%	+/- 5%	+/- 0.1	+/- 10 mV	+/- 10%
8:56	2	16.5	10.5	307.3	15.19	123	235
8:58	4	16.4	3.3	252.7	14.32	121-6	279
2:00	6	16.4	2.0	301.0	14.36	121	480
9:02	8	16.3	1.2	249.8	14.30	119-8	768
9:05	10	16.5	9.3	253.1	6.25	131.4	51
9:17	12	16.3	2.7	250.7	4.91	130.4	80
9:19	14	16.3	1.3	249.9	4.66	131.6	160
9:21	16	16.3	0.6	249.4	4.66	132.5	313
9:23	18	16.3	0.2	249.1	4.75	132.0	451
(745		()	0.6	641.1		1) 2.0	951
			1 10 17 1			1	A
·	The set of the						
Notes:	# Considered stabilised if th	ree DO values are less than 0.5	5 mg/L	^ Considered stabilised if th	ree Turbidity values	are less than 5 NTU	
Sample Details							
Sampling Depth	1 1	3	m bgl,	Middle of	- water	cohony	
Sample Observa sediment, sheer	ations (e.g. colour,	Pol brown,	no odo	h.			
Sample ID	i, 00001)	All 4 103	10 000				
QAQC Samples				Triplicate		Other	[
Sample Contain		Replicate	1	Triplicate		Other	3
•	ervation / Filtration	Amber glass	(Plastic Phenols/COD/NH3		PFAS (no teflon)	
		Metals (F/UF) (HNO3)	2	(H2SO4)		Vials (HCI)	
		Ferrous/Ferric Iron (HCI)		Cyanides/Chromium (NaOH)		Other	
Comments		Star Landska	1.1.1		i dia an		
	me = H * F	Std. Drilling Diameter (m) [~]	NMLC (0.075)	HQ (0.096)		SFA (0.125)	HFA (0.194)
Estimated Well Volur					PQ (0.1226)		

	e Installation Deta	ils MW III	and the second		and a second second	1.1 A 1.1	
Project Name / S	ite Location	Warrie wood	,20-22	Macpherson	street	Project Number	207253.0
Well Construction	Dotaile	Well ID MWIII		Drilling Method		Hole Diameter (m) [~]	
Well Construction	TDetails	Well Depth (m bgl)		Screened (m bgl)	-	Stick Up (m)	
Survey Information	on	Easting		Northing	Such a suit	Elevation RL	
GW Level During	Drilling		m bgl	al de la companya de			
Contaminants/Co	omments			- 문자한 학생	- 	t of the	
Well Developme	ent Details				1		
	ather Conditions					Purged By	/
Purge Method / E	Equipment						
Product observed			mm	Confirmed wit	h Bailer? (Y / N)		
GW Level (pre-p	urge)	E Nesda Mar	m bgl		rved Well Depth		m bgl
Height of Water			m bgl		d Bore Volume*	· · · · · · · · · · · · · · · · · · ·	L
GW Level (post-			m bgl	Total V	olume Purged**		L
Appearance/Com						and the Market	
O							
Sampling Detail		1411 72	10151			0	
	ather Conditions	4.11.22	18:15 1	overcost	.1 ~	Sampled By	Th
Sampling Method	a / Equipment	Peri Rump, LC	PE tuby.		and the second s		
WQM Model	d / Thislanses	YSI PRODS			Calibration Date	20.00 000	11 A.
Product observed		0	mm		h Bailer? ()/N)		
GW Level (pre-m		1.78	m bgl		rved Well Depth		m bgl
Height of Water (3.62	m bgl		d Bore Volume*		L
GW Level (post s		1.44	m bgl	l otal volume	of Micro-Purged	10	L
Water Quality Pa		1					1
Time	Cumulative Volume (L)		DO (mg/L) [#]	EC (µS or mS/cm)	pH	Redox (mV)	Turbidity
	arget (3 readings)	0.2	+/- 10%	+/- 5%	+/- 0.1	+/- 10 mV	+/- 10%
8:15	1	20-1	6.2%	268.7	6.83	201.5	443
8:17	4	/	6.3 637.	267.0	11-3	212.5	790
8:19	0	20.1	5.3%	294.3	1.47	217.3	600
8:21	§.	20.1	4.7	266.4	11.22	220.9	720
8:23	ŤO	20.1	3.9%	266.3	1.65	223.5	600
	2017 - 100 -						
	in (17, m)						
1 ¹⁴ Janai					36		den al c
Natara	Consideration to the state		mall		there T. Links		
Notes: #	Considered stabilised if th	ree DO values are less than 0.5	o mg/L	^ Considered stabilised if	three Turbidity values	are less than 5 NTU	
Sample Details							
Sampling Depth	,	3	m bgl,	Middle of	2 water	celumo	
	tions (e.g. colour,	Class 1	rless, no				
sediment, sheen, Sample ID	odour)		rees, no	odor			
•		MW III		Triplicate		Others	1
QAQC Samples Sample Containe	re	Replicate		Triplicate		Other	
	rs vation / Filtration	Amber glass	1	Plastic Phenols/COD/NH3		PFAS (no teflon)	1
	P. B. P.	Metals (F/UF) (HNO3)	2	(H2SO4)		Vials (HCl)	dia ta
		Ferrous/Ferric Iron (HCI)		Cyanides/Chromium (NaOH)		Other	
Comments	han an tha tha sa	pH prope	appeared f	aulter.	F. S. B. M. J.		
Estimated Well Volume	e = H * F	Std. Drilling Diameter (m)	NMLC (0.075)	HQ (0.096)	PQ (0.1226)	SFA (0.125)	HFA (0.194)
	vell volumes	Factor (F):	2.8	3.7	5.2	5.4 SFA (0.125)	HFA (0.194) 11.1

Groundwater Field Sheet ver. December 2020

Douglas Partners Geotechnics | Environment | Groundwater

PROJECT Warnewood 20-22 Maephorson St Job No 207253.02 Page _ (of _/ Surface Water Samples Sample SWI - Taker apparently so in to the wort at the site bonday from Norrabeen Creek (Shown on map). Sampled vsny grab method & with felescopic sampler. 2. Metab (F&VE), 1x ambr glan, 1x plasti & 1x PFAS. Sample, Colour less & odorarless Sample SW2-Taken approximitely 3 metry to the East of the Site bounday on Narrabeen Greek Csham an draving? Sampled using grab metherd with telescopic sampler. 2. Metals CF& UE), (x awbr gloss, 1x plastic 1x PPAS Sample - colorles & ador less 1 1 / / Approved By / / Checked By Comps By

(h	Douglas Partners Geotechnics Environment Groundwater
<u>v</u>	Geotechnics Environment Groundwater

CLIENT: BMN Properties Pty	/ Ltd T/A Baz Family Trust
OFFICE: Sydney	DRAWN BY: NLE
SCALE: 1:1000 @ A3	DATE: 20.09.2021

in a

Groundwater Field She Project and Bore Installation				•		¥
Bore / Standpipe ID:	103					
Project Name:			Due Du	930901		
Project Number:	007	253.01	Due Dil	igence		
Site Location:	201	122.01				
Bore GPS Co-ord:						
Installation Date:						
GW Level (during drilling):		m bgl				
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:						
Bore Development Details						
Date/Time:	0110	9121 C	17:45			
Purged By:	AS					
GW Level (pre-purge):	2.35	m bgl				
Observed Well Depth:	4.0	m bgl				
PSH observed:	Yes / (No	(interface / vis	ual). Thickness if	observed:		
Estimated Bore Volume:	~12	L				
Total Volume Purged:		arget: no drill mud	, min 3 well vol. or o	dry)		2
GW Level (post-purge):	2.40					
Equipment: Micropurge and Sampling De		whistle.	PFAS Free	twis ter	brub 'p	aller
Date/Time:						
Sampled By:						
Weather Conditions:						
GW Level (pre-purge):		m bgl				
Observed Well Depth:		m bgl				
PSH observed:	Yes / No	(intorfaco / vic				
	103 / 110		sual). Thickness if	observed:		
Estimated Bore Volume:		L	sual). I nickness if	observed:		
Estimated Bore Volume: GW Level (post sample):			sual). I nickness if	observed:	÷	
Estimated Bore Volume:		L	sual). I nickness if	opserved:	1. 1.5	
Estimated Bore Volume: GW Level (post sample):		L m bgl	sual). Thickness if	observed.		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged:		L m bgl L	ity Parameters	observed:		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment:	Temp (°C)	L m bgl L		pH	Turbidity	Redox (mV)
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u>	ity Parameters		Turbidity +/- 10%	Redox (mV) +/- 10 mV
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume		L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm)	рH		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm)	рH		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm)	рH		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm)	рH		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm)	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment:	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings)	Temp (°C)	L m bgl L <u>Water Qual</u> DO (mg/L)	ity Parameters EC (μS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings)	Temp (°C) 0.1 ° C	L m bgl L m bgl h m bg	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings) Additional Readings Following	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: <u>Fime / Volume</u> Stabilisation Criteria (3 readings) Additional Readings Following stabilisation:	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sampl	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: <u>Fime / Volume</u> Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: ampling Depth (rationale):	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: ampling Depth (rationale): sample Appearance (e.g.	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sampl	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: <u>Fime / Volume</u> Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: ampling Depth (rationale): ample Appearance (e.g. olour, siltiness, odour):	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sampl	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. olour, siltiness, odour): Sample ID:	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sampl	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. solour, siltiness, odour): Sample ID: QA/QC Samples:	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC Sampl	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. solour, siltiness, odour): Sample ID:	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings) Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. olour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and iltration:	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC	ity Parameters EC (µS or mS/cm) +/- 3%	pН		
Estimated Bore Volume: GW Level (post sample): Total Volume Purged: Equipment: Time / Volume Stabilisation Criteria (3 readings) Additional Readings Following stabilisation: Sampling Depth (rationale): Sample Appearance (e.g. olour, siltiness, odour): Sample ID: DA/QC Samples: Sampling Containers and	Temp (°C) 0.1 ° C	L m bgl L Mater Qual DO (mg/L) +/- 0.3 mg/L +/- 0.3 mg/L SPC SPC	ity Parameters EC (µS or mS/cm) +/- 3%	pН		

Rev March 2012

Scanned with CamScanner

Groundwater Field She	et								
Project and Bore Installation I)etails								
Bore / Standpipe ID:	101								
Project Name:		lewood	Due Dilige	ence					
Project Number:		53.01							
Site Location:									
Bore GPS Co-ord:									
Installation Date:									
GW Level (during drilling):		m bgl							
Well Depth:		m bgl							
Screened Interval:		m bgl							
Contaminants/Comments:									
Bore Development Details									
Date/Time:	011091	31 08:	45						
Purged By:	AS		-12						
GW Level (pre-purge):		mbal							
Observed Well Depth:	ר, mbgl א mbal								
PSH observed:		Yes / No (interface / visual). Thickness if observed:							
Estimated Bore Volume:									
Total Volume Purged:		v 15 (target: no drill mud, min 3 well vol. or dry) (well (Iry)							
GW Level (post-purge):	dry	m bgl							
Equipment:	water w	histic. Pr	AS Free pu	mp, bo	nier				
Micropurge and Sampling Det	ails								
Date/Time:									
Sampled By:					4				
Weather Conditions:									
GW Level (pre-purge):	m bgl								
Observed Well Depth:	m bgl								
PSH observed:	Yes / No (interface / visual). Thickness if observed:								
Estimated Bore Volume:		L							
GW Level (post sample):	m bgl								
Total Volume Purged:		L							
Equipment:			÷						
		Water Qual	ity Parameters						
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	рН	Turbidity	Redox (mV)			
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV			
Stabilisation Criteria (S readings)	0.1 0	1/- 0.0 mg/L		.,					
			3						
						10			
3i									
N									
			1. 1. 1. 1. N. V.						
		1							
Additional Readings Following	DO % Sat	SPC	TDS		. 21.4	10 ¹⁰			
stabilisation:		and the second second	failed at the		1.121	R			
		Samp	le Details						
Sampling Depth (rationale):		m bgl,			the start of				
Sample Appearance (e.g.					*				
colour, siltiness, odour):			×	18-1	0				
Sample ID:			1						
QA/QC Samples:									
Sampling Containers and		1 Mar 1			8				
filtration:									
						1.1			
	- 1								
Comments / Observations:	1 - A					Carl State			
£									
		12				Lab in Part			
						and the second			

Rev March 2012

Project and Bore Installation D)etails						
Bore / Standpipe ID:	111						
Project Name:	Warr	hoowai	Due Dilio	ence			
Project Number:	20725	3.01		1			
Site Location:							
Bore GPS Co-ord:							
nstallation Date:							
GW Level (during drilling):		m bgl					
Well Depth:		m bgl					
Screened Interval:		m bgl					
Contaminants/Comments:							
Bore Development Details							
Date/Time:	01109	121 09	1.30				
Purged By:	AS						
GW Level (pre-purge):		m bal					
Observed Well Depth:	2.52 m bgl 5 m bgl						
	5 m bgi Yes / No (interface / ylsual). Thickness if observed:						
Estimated Bore Volume:	18	1					
Total Volume Purged:		raet: no drill mud	, min 3 well vol. or	dry) west	MEN : SIA	w recoold	
GW Level (post-purge):	dry.	m bgl	,		1 1 2 2 1	······································	
Str Level (post pulge).		mbgi					
Equipment:	water v	vhistle. I	PFAS Free t	wister	pump. bo	וופר	
Micropurge and Sampling Deta	ails				8		
Date/Time:						6	
Sampled By:						1	
Weather Conditions:							
GW Level (pre-purge):	m bgl						
Observed Well Depth:	m bgi						
PSH observed:	Yes / No (interface / visual). Thickness if observed:						
Estimated Bore Volume:							
GW Level (post sample):	m bgl						
Total Volume Purged:		L			8		
Equipment:	. *						
		Water Qual	ity Parameters				
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	Redox (mV)	
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	+/- 10 mV	
	0.1 0						
						· · ·	
	-						
						N	
						14	
						1.	
Additional Readings Following	DO % Sat	SPC	TDS				
stabilisation:				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
		-	le Details			J.S.	
Sampling Depth (rationale):		m bgl,	₹. 4 4	a state of		3	
Sample Appearance (e.g.			1211111111			S. The State	
colour, siltiness, odour):	240				1		
Sample ID:		1.17	-D		Station 2		
QA/QC Samples:							
Sampling Containers and filtration:							

Rev March 2012

Geotechnics | Environment | Groundwater

2

.

roundwater Field Sheet	ł			Bore	Volume = camp vo	hume + filter ; 1 k
			<u></u>		volume = 71:d: '4 +	- n(xt; d, /4-xt; - 4)
oject and Bore Installation D		21.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Where	x=3.14	
ore / Standpipe ID:	BHID.	2	19	·····		for most filter pack
roject Name:		2 01	1	the second	material)	
roject Number:	20725	3.01			h = height of wa	
ite Location:			12.	- Harden	d,= cianster of a b, = length of file	
ore GPS Co-ord:		· · · · · · · · · · · · · · · · · · ·			d = dan er of o	
nstallation Date:				Bore	Vol Normally	
GW Level (during drilling):		m bgl				
Well Depth:		m bgl		·		
Screened Interval:		m bgl				
Contaminants/Comments:						
Bore Development Details		1				
Date/Time:)					
Purged By:	1					
GW Level (pre-purge):	/	m bgl		d'a		
GW Level (post-purge):	1	m bgl	•			
PSH observed:	Yes / No (interface / v	visual () Thickne	ess if observed:		C-
Observed Well Depth:	·	m bgl	加助			7. N
Estimated Bore Volume:	5	L	1 Mart			
Total Volume Purged:	(target: no drill	mud, min 3 w	ell vol. or dry)			
Equipment:	· · · · ·		4			
Micropurge and Sampling De	etails					
Date/Time:	819	121	-	1		aj no
Sampled By:		A	5			
Weather Conditions:	C10917	, warm			s = **	
GW Level (pre-purge):	2.17	m bgl			1	
GW Level (post sample):	2.30	m bgl		2 M	8	
PSH observed:	Yes / No (interface /	visual). Thickn	ess if observed:		
Observed Well Depth:	4.15	m bgl	1 Def			
Estimated Bore Volume:	14.2	L				
Total Volume Purged:	~10		Ed. and		<u> </u>	
Equipmont:	Deripur	np, int	er face n	netre y	SI	
Equipment:	10.10					
-*.x.**** 1	T		y Parameters	pH	TDS Turbidity	Redox (mV)
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)		+/- 10%	+/- 10 mV
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/L	+/- 3%	+/- 0.1		
10:48	15.6	12.65	276.6	5 1.7	917.	1144 4
10:49	15.5	0.52	270.9	5.14	214	139.7
10:50	15.5	0,25	269.0	5.13	260	137.7
10:51	15.5	0.15	267,5	5,12	230	126.6
10:54	11.5	0.09		F.12	213	137.3
10:53	15.5	0.05	770.6	5,12	200	
10:44	15.5	0.03	270,3	5,12	17]	135.4
(0:55	150	0.01	70,1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	103	-13217
						-
		SPC	TDS			+
Additional Readings Following	DO % Sat		1.00		· · · · ·	-
stabilisation:	1	Sampl	e Details			
	13.5	m bgl,		· · · · ·		
Sampling Depth (rationale):				1		
Sample Appearance (e.g.	PEBW	n. silt	y, odour	iess	•	1
colour, siltiness, odour):	BATIO	20MA				
Sample ID:		·)				*
QA/QC Samples:	4× 500m	omber	Lx vir	is .	Ix micro	bes
Sampling Containers and		- (
Hilfrotion'	2×250mL unpreserved					
filtration: Comments / Observations:	22250m	L Grieni	FI XINI	TUID TUIN		

Rev March 2012

oject_Warriewood		Job No 207 253 0	Page of
BHIOI - GW	Sampling	Sheet	AS
OBIO9121 OC Gwlevel (prepurge) Gwlevel (post purge well deptn: 3.85	1:00 1.44m	est vol: vol purge	
• NO PAH Observed		- equipmen	t: peripump, int metre ys
Water Quality Par Time Temper	N C V	C(us) PH	TDS Red 303 50.8
9:20 16.6	0.39 3	51.6 5.86 46.4 5.84 38.8 5.83	266 -22.1
9:22	0.17 3	35.9 5.84 35.9 5.84	2 60 - 7 2 [°] . - 2 60 - 72 [°] .
q:24 16.0 q:25 16.6		6.65.85	261 -74
· containers same · sampling depth	2.5m then	3.8m (weilr	
· sample appearanc	SUIFURIC OC	ιουΓ	
	1 2021 0 9 0 8 Checked By	Approved By	

Scanned with CamScanner

ROJECT_WALLIEWOC	d		Job No_	07253.01	Page of _
	V Samply	ng she	et		AS
· 08 10912 1 · Gw ievei (prep Gw ievei (pos weil gepth:	11:30 urge): 9.1 purge): 9. 5.15	60	e	25 E VOLUMO Vol. purgeo	5. ~ 19.5L
· NO PAH obser · Equipment per water Quality	ipump, YS		efre		
	0 (mg1L) 2.82	$FC(w^5)$ 327	р <u>Н</u> 4.92	TDS 254	Redox 213
	2.10	3567	4.91	231	217
1.33 19.8	2.07	317,7		229	226,2
	2.0	316.6	4.9	229	230
· containers : · sample deptn:	Same as 3.5m	BH	203		
scimple appear		le gren	_,_ode	orless.	
omps By	Checked By			Approved By	

Scanned with CamScanner

Project and Bor	re Installation Detail	s MW101					- 6
Project Name / S	Site Location	Warnewood	,20-22	Max phonson S	iteet	Project Number	207253.0
Well Constructio	n Dotaile	Well ID	MWIOI	Drilling Method		Hole Diameter (m) [~]	
	IT Details	Well Depth (m bgl)		Screened (m bgl)		Stick Up (m)	
Survey Informati	ion	Easting		Northing		Elevation RL	- <u>-</u>
GW Level During	g Drilling		m bgl			201	
Contaminants/Co	omments						
Well Developme	ent Details						
	eather Conditions					Purged By	/
Purge Method / I						i digod D	
Product observe			mm	Confirmed with	Bailer? (Y / N)		
GW Level (pre-p			m bgl		ed Well Depth		m bgl
Height of Water			m bgl		Bore Volume*		L
GW Level (post-			m bgl		ume Purged**		L
Appearance/Con			in bgi		unio i urgou		
Appearance/Con	liments						
Sampling Detai	ls			and the			
Date / Time / We	eather Conditions	4.11.22/	9:4010	Jorcast	1.3	Sampled By	Th
Sampling Metho	d / Equipment		DPE + Sili	ion tubing, 4	Tum in	line filter	
WQM Model		YSI Pro DSS		WQM Ca	alibration Date	25.5.22	
Product observe	d / Thickness	0	mm	Confirmed with	Bailer? (🏹 N)		
GW Level (pre-n	nicropurge)	1.20	m bgl	Observe	ed Well Depth	3.92	m bgl
Height of Water	Column	777172	m bgl	Estimated	Bore Volume*	15	s p Li
GW Level (post	sample)	2.35	m bgl	Total Volume of	Micro-Purged	10	L
Water Quality P				50 - 12 T			· · · · · · · · · · · · · · · · · · ·
Time	Cumulative Volume (L)	Temp (°C)	DO (mg/L) [#]	EC (µS or mS/cm)	pН	Redox (mV)	Turbidity
Stabilisation	Target (3 readings)	0.2	+/- 10%	+/- 5%	+/- 0.1	+/- 10 mV	+/- 10%
9:40	2	18.3	5.8	272.0	3.65	106.4	72
9.42	4	18.4	2.6	266.9	3.71	106.6	48
9:42	16	18.5	6.6	2666	3.51	102.7	146
9:46	8	18.7	1.0	268.6	3.4	100.4	169
9:48	10	18.7	0.9	266.5	3.37	100.4	219
1.70	10	0.1	<u> </u>	200.5			
							100 A
			1				
		38 33. J. D.		a. 5.	i a in the day		
25							
10 · ·					Turkidit unkura	and loss than 5 NTU	
Notes:	# Considered stabilised if thr	ee DO values are less than 0.5	o mg/L	^ Considered stabilised if the	iee i urbidity values		
Sample Details							
Sampling Depth	(rationale)	3	m bgl,	Middle of	water a	slunn	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ations (e.g. colour,	PII-		and the second sec			
sediment, sheen	n, odour)	Pale brown,	no od	ow			
Sample ID		MWIOI			T	1	
QAQC Samples		Replicate		Triplicate		Other	4
Sample Contain		Amber glass	1	Plastic		PFAS (no teflon)	
Juantity / Prese	rvation / Filtration	Metals (F/UF) (HNO3)	2	Phenols/COD/NH3 (H2SO4)		Vials (HCI)	
		Ferrous/Ferric Iron (HCI)		Cyanides/Chromium (NaOH)		Other	
Comments	i de la composición d La composición de la c	allow	apearly for	11.	L	L	1
			1	U			
*Estimated Well Volun	ne = H * F	Std. Drilling Diameter (m) ~	NMLC (0.075)	HQ (0.096)	PQ (0.1226)	SFA (0.125) 5.4	HFA (0.194 11.1

Project and Bo	ore Installation Deta	ils MW103					
Project Name /	Site Location	Warrie	indered, 2	0-22 Mar. 1	terson St	Project Number	207213.0
		Well ID	MWIOS	Drilling Method	95001	Hole Diameter (m)	19 - 11
Well Constructi	on Details	Well Depth (m bgl)	0.00	Screened (m bgl)		Stick Up (m)	
Survey Informa	tion	Easting		Northing		Elevation RL	1
GW Level Durir	ng Drilling		m bgl				
Contaminants/0							
Well Developm				2.2 C.C.	the second s		1
	eather Conditions					Purged By	/
Purge Method /							
Product observe			mm	Confirmed with			
GW Level (pre-			m bgl		ed Well Depth		m bgl
Height of Water		- 11 B B	m bgl	Estimated	Bore Volume*		L
GW Level (post	-purge)		m bgl	Total Vo	lume Purged**		L
Appearance/Co	mments						
Sampling Deta	ils						
	eather Conditions	4.11.22(8	:50 / 0	vera A		Sampled By	177
	od / Equipment				1		TG
WQM Model				Silian Lubing	alibration Date	inlu filter	
Product observe	ad / Thickness	YSI POD				25.5.72	
		0	mm	Confirmed with		1.55	
GW Level (pre-		2.15	m bgl		ed Well Depth	3.95	m bgl
Height of Water		1.8	m bgl		Bore Volume*	10	L
GW Level (post		2.47	m bgl	Total Volume of	Micro-Purged	18	L
Water Quality I	Parameters						
Time	Cumulative Volume (L)	Temp (°C)	DO (mg/L) [#]	EC (µS or mS/cm)	pН	Redox (mV)	Turbidity
	Target (3 readings)	0.2	+/- 10%	+/- 5%	+/- 0.1	+/- 10 mV	+/- 10%
8:56	2	16.5	10.5	307.3	15.19	123	235
8:58	4	16.4	3.3	252.7	14.32	121-6	279
2:00	6	16.4	2.0	301.0	14.36	121	480
9:02	8	16.3	1.2	249.8	14.30	119-8	768
9:05	10	16.5	9.3	253.1	6.25	131.4	51
9:17	12	16.3	2.7	250.7	4.91	130.4	80
9:19	14	16.3	1.3	249.9	4.66	131.6	160
9:21	16	16.3	0.6	249.4	4.66	132.5	313
9:23	18	16.3	0.2	249.1	4.75	132.0	451
(745		()	0.6	641.1		1) 2.0	951
			1 10 17 1			1	A
·	The set of the						
Notes:	# Considered stabilised if th	ree DO values are less than 0.5	5 mg/L	^ Considered stabilised if th	ree Turbidity values	are less than 5 NTU	
Sample Details							
Sampling Depth	1 1	3	m bgl,	Middle of	- water	cohony	
Sample Observa sediment, sheer	ations (e.g. colour,	Pol brown,	no odo	h.			
Sample ID	i, 00001)	All 4 103	10 000				
QAQC Samples				Triplicate		Other	[
Sample Contain		Replicate	1	Triplicate		Other	3
•	ervation / Filtration	Amber glass	(Plastic Phenols/COD/NH3		PFAS (no teflon)	
		Metals (F/UF) (HNO3)	2	(H2SO4)		Vials (HCI)	
		Ferrous/Ferric Iron (HCI)		Cyanides/Chromium (NaOH)		Other	
Comments		Star Landska	1.1.1		i dia an		
	me = H * F	Std. Drilling Diameter (m)	NMLC (0.075)	HQ (0.096)		SFA (0.125)	HFA (0.194)
Estimated Well Volur					PQ (0.1226)		

	e Installation Deta	ils MW III	and the second		and a second second	1.1 A 1.1	
Project Name / S	ite Location	Warrie wood	,20-22	Macpherson	street	Project Number	207253.0
Well Construction	Dotaile	Well ID MWIII		Drilling Method		Hole Diameter (m) [~]	
Well Construction	TDetails	Well Depth (m bgl)		Screened (m bgl)	-	Stick Up (m)	
Survey Information	on	Easting		Northing	Such a suit	Elevation RL	
GW Level During	Drilling		m bgl	al de la companya de			
Contaminants/Co	omments			- 문자한 학생	- 	t of the	
Well Developme	ent Details				1		
	ather Conditions					Purged By	/
Purge Method / E	Equipment						
Product observed			mm	Confirmed wit	h Bailer? (Y / N)		
GW Level (pre-p	urge)	B. New Star P. 1	m bgl		rved Well Depth		m bgl
Height of Water			m bgl		d Bore Volume*	· · · · · · · · · · · · · · · · · · ·	L
GW Level (post-			m bgl	Total V	olume Purged**		L
Appearance/Com						and the Market	
O							
Sampling Detail		1411 72	10151			0	
	ather Conditions	4.11.22	18:15 1	overcost	.1 ~	Sampled By	Th
Sampling Method	a / Equipment	Peri Rump, LC	PE tuby.		and the second s		
WQM Model	d / Thislanses	YSI PRODS			Calibration Date	20.00 000	11 A.
Product observed		0	mm		h Bailer? ()/N)		
GW Level (pre-m		1.78	m bgl		rved Well Depth		m bgl
Height of Water (3.62	m bgl		d Bore Volume*		L
GW Level (post s		1.44	m bgl	l otal volume	of Micro-Purged	10	L
Water Quality Pa		1					1
Time	Cumulative Volume (L)		DO (mg/L) [#]	EC (µS or mS/cm)	pH	Redox (mV)	Turbidity
	arget (3 readings)	0.2	+/- 10%	+/- 5%	+/- 0.1	+/- 10 mV	+/- 10%
8:15	1	20-1	6.2%	268.7	6.83	201.5	443
8:17	4	/	6.3 637.	267.0	11-3	212.5	790
8:19	0	20.1	5.3%	294.3	1.47	217.3	600
8:21	§.	20.1	4.7	266.4	11.22	220.9	720
8:23	ŤO	20.1	3.9%	266.3	1.65	223.5	600
	2017 - 100 -						
	in (17, m)						
1 ¹⁴ Janai					36		den al c
Natara	Consideration to the state		mall		there T. Links		
Notes: #	Considered stabilised if th	ree DO values are less than 0.5	o mg/L	^ Considered stabilised if	three Turbidity values	are less than 5 NTU	
Sample Details							
Sampling Depth	,	3	m bgl,	Middle of	2 water	celumo	
	tions (e.g. colour,	Class 1	rless, no				
sediment, sheen, Sample ID	odour)		rees, no	odor			
•		MW III		Triplicate		Others	1
QAQC Samples Sample Containe	re	Replicate		Triplicate		Other	
	rs vation / Filtration	Amber glass	1	Plastic Phenols/COD/NH3		PFAS (no teflon)	1
	Politica.	Metals (F/UF) (HNO3)	2	(H2SO4)		Vials (HCl)	ab th
		Ferrous/Ferric Iron (HCI)		Cyanides/Chromium (NaOH)		Other	
Comments	han an tha tha sa	pH prope	appeared f	aulter.	F. S. B. M. J.		
Estimated Well Volume	e = H * F	Std. Drilling Diameter (m)	NMLC (0.075)	HQ (0.096)	PQ (0.1226)	SFA (0.125)	HFA (0.194)
	vell volumes	Factor (F):	2.8	3.7	5.2	5.4 SFA (0.125)	HFA (0.194) 11.1

Groundwater Field Sheet ver. December 2020

Appendix I

Laboratory Results Tables

Table 1: Summary of Laboratory Results - Soils

							Metals		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					TI	RH	 			BT	TEX			PA	(H	
			Arsenic	Cadmium	Total Chromium	C opper	Lead	Mercury (inorganic)	Nickel	Zhc	Manganese	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	TotalXylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAH
Sample ID	Depth	PQL Sample Date	4 mg/kg	0.4 mg/kg	1 mg/kg	1 mg/kg	1 mg/kg	0.1 mg/kg	1 mg/kg	1 mg/kg	1 mg/kg	25 mg/kg DP,202	50 mg/kg	25 mg/kg	50 mg/kg	100 mg/kg	100 mg/kg	0.2 mg/kg	0.5 mg/kg	1 mg/kg	1 mg/kg	1 mg/kg	0.05 mg/kg	0.5 mg/kg	0.05 mg/kg
MW101	0.12 - 0.2 m	31/08/21	-	-	-	-	-		-		-	- -		-	-	-	-	-	-		-	-	-	-	-
MW101	0.4 - 0.5 m	31/08/21	8 100 100	0.5 20 -	16 100 690	19 6000 190	81 300 1100	<0.1 40 -	6 400 130	360 7400 440	76 3800 -	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	0.05 - 0.7	<0.5 3 -	0.05 300 -
ACM-01	0.4 m	31/08/21	-	-	-		-					-	-	-	-			-					-	-	
MW101	1.4 - 1.5 m	31/08/21	<4 100 100	<0.4 20 -	9 100 690	5 6000 190	12 300 1100	<0.1 40 -	2 400 130	98 7400 440	16 3800 -	<25 	<50 - 120	<25 90 180	<50 NL -	<100 - 1300	<100 - 5600	<0.2 1 65	<0.5 NL 105	<1 NL 125	<1 310 45	<1 NL 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
HA102	0.13 - 0.2 m	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-			-	-
HA102	0.5 - 0.6 m	08/09/21	<4 100 100	<0.4 20 -	8 100 690	1 6000 190	12 300 1100	<0.1 40 -	1 400 130	5 7400 440	9 3800 -	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05	<0.5 3 -	<0.05 300 -
HA102	0.9 - 1 m	08/09/21	<4 100 100	<0.4 20 -	3 100 690	<1 6000 190	6 300 1100	<0.1 40 -	<1 400 130	1 7400 440	4 3800 -	<25 	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
MW103	0.4 - 0.5 m	31/08/21	<4 100 100 5	<0.4 20 - <0.4	3 100 410 11	<1 6000 190 25	4 300 1100 30	<0.1 40 - <0.1	<1 400 130 8	1 7400 440 51	<1 3800 - 120	<25 <25	<50 - 120 <50	<25 45 180 <25	<50 110 - <50	<100 - 300 370	<100 - 2800 190	<0.2 0.5 50 <0.2	<0.5 160 85 <0.5	<1 55 70 <1	<1 40 105 <1	<1 3 170 <1	<0.05 - 0.7 1.6	<0.5 3 - 2.3	<0.05 300 - 23
HA104	0 - 0.1 m	01/09/21	100 100	20 -	100 320	6000 190 -	<u>300 1100</u>	40 -	400 130	7400 440	3800 -		- 120	45 180 -	110 - -	- 300	- 2800	0.5 50	160 85 -	55 70	40 105	<u> </u>	- 0.7	3	300
HA104	0.3 - 0.6 m	01/09/21	- <4		8	 <1		 <0.1			 3	 <25	 <50	 <25	 <50	 <100	 <100	 <0.2		 <1	 <1	 <1	 <0.05	 <0.5	 <0.05
HA104	0.4 - 0.5 m 0.4 - 0.5 m	01/09/21 01/09/21	100 100 <4	20 - <0.4	100 690 7	6000 190 1	300 1100 11	40 - <0.1	400 130 2	7400 440 5	3800 - 5	 <25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <1	- 0.7 <0.05	3 - <0.5	300 - <0.05
BD4/20210901 ^a HA104	1-1.2 m	01/09/21	100 100 -	20	100 690 -	6000 190 -	300 1100 -	40 -	400 130	7400 440	3800 -		- 120 -	50 180 -	280 - -	- 1300 -	- 5600 -	0.7 65 -	480 105 -	NL 125 -	110 45 -	5 170 -	- 0.7 -	3 -	300 - -
HA105	0.01 - 0.1 m	01/09/21	 <4	<0.4		17	 30	<0.1	8	82	 82	 <25	 <50	<25	 <50	 <100	 <100	<0.2	 <0.5	<1	<1	 <1	 0.1	 <0.5	0.78
HA105	0.4 - 0.5 m	01/09/21	100 100 11	20 - <0.4	100 320 11	6000 190 19	300 1100 57	40 - <0.1	400 130 4	7400 440 56	3800 - 97	 <25	- 120 <50	45 180 <25	110 - <50	- 300 <100	- 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	- 0.7 <0.05	3 - <0.5	<u>300</u> - <0.05
BH106	0.14 - 0.25 m	31/08/21	100 100 11 100 100	<0.4 20 -	100 690 11 100 690	6000 190 15 6000 190	300 1100 76 300 1100	40 - <0.1 40 -	400 130 10 400 130	7400 440 210 7400 440	97 3800 -	<25	- 120 <50 - 120	50 180 <25	200 - <50 280 -	- 1300 <100 - 1300	- 5600 <100 - 5600	0.7 65 <0.2 0.7 65	480 105 <0.5 480 105	NL 125 <1 NL 125	110 45 <1 110 45	5 170 <1 5 170	- 0.7 <0.05	<0.5	<0.05 300 -
HA107	0 - 0.1 m	01/09/21	7 100 100	<0.4 20 -	5 100 690	9 6000 190	30 300 1100	<0.1 40 -	2 400 130	28 7400 440	49 3800 -	<25	- 120 <50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	- 0.7 <0.05 - 0.7	<0.5 3 -	<0.05 300 -
HA108	0 - 0.1 m	01/09/21	5 100 100	<0.4 20 -	4 100 690	12 6000 190	34 300 1100	<0.1 40 -	5 400 130	63 7400 440	59 3800 -	<25 	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
HA108	0.9 - 1 m	01/09/21	-		-	-	-	-	-	-		-		-	-			-					-	-	-
BH109	0.02 - 0.1 m	31/08/21	<4 100 100	<0.4 20 -	19 100 410	37 6000 190	4 300 1100		70 400 130	49 7400 440	340 3800 -	<25 	<50 - 120	<25 45 180	<50 110 -	<100 - 300	<100 - 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 <u>3</u> 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -
BH109	0.4 - 0.5 m	31/08/21	<4 100 100	<0.4 20 -	<1 100 410	2 6000 190	1 300 1100		<1 400 130	11 7400 440	6 3800 -	<25	<50 - 120	<25 45 180	<50 110 -	<100 - 300	<100 - 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 <u>3 170</u>	,	<0.5 3 -	<0.05 300 -
BD1/20210831 ^a	0.4 - 0.5 m	31/08/21	<5 100 100 <4	<1 20 - <0.4	<2 100 410 5	<5 6000 190 24	<5 300 1100 48	<0.1 40 - <0.1	<2 400 130 1	7 7400 440 28	55	<10 <25	<50 - 120 <50	<10 <u>45</u> 180 <25	<50 110 - <50	<100 - <u>300</u> <100	<100 - 2800 <100	<0.2 0.5 50 <0.2	<0.5 160 85 <0.5	<0.5 55 70 <1	<0.5 40 105 <1	<1 <u>3</u> 170 <1	<0.5 - 0.7 0.06	<0.5 <u>3</u> - <0.5	<0.5 <u>300</u> - 0.06
HA110	0.13 - 0.2 m	08/09/21	-4 100 100	20 -	100 410	6000 190	40 300 1100	Jananana	400 130	7400 440 -		-20	- 120 -	45 180 -	110 -	- 300	- 2800			55 70 -	40 105	3 170 -	- 0.7		300 - -
HA110	0.4 - 0.5 m	08/09/21	 <4	 <0.4	14	 37	 20	 0.2	 16	 66	 140	 <25	 <50	 <25	 <50	 <100	 <100	 <0.2	 <0.5	 <1	 <1	 <1	 0.1	 <0.5	1
MW111 HA112	0.07 - 0.15 m 0.13 - 0.23 m	31/08/21 08/09/21	100 100 5	20 - <0.4	100 410 44	6000 190 9	300 1100 9	40 - <0.1	400 130 1	7400 440 7	3800 - 13	 <25	- 120 <50	45 180 <25	110 - <50	- 300 <100	- 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	- 0.7 0.1	3 - <0.5	300 - 1.5
BH113	0.05 - 0.15 m	31/08/21	100 100 91	20 - <0.4	100 410 7	6000 190 20	300 1100 24	40 - <0.1	400 130 24	7400 440 41	3800 - 220	 <25	- 120 <50	45 180 <25	110 - <50	- <u>300</u> <100	- 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	- 0.7 0.06	3 - <0.5	300 - 0.66
BH114	0.4 - 0.5 m	31/08/21	100 100 <4	20 - <0.4	100 410 4	6000 190 3	300 1100 5	<0.1	400 130 <1	7400 440 4	<u>3800</u> - 18	 <25	- 120 <50	45 180 <25	110 - <50	- 300 <100	- 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	- 0.7 <0.05	3 - <0.5	<u>300</u> - <0.05
BH115	0.4 - 0.5 m	31/08/21	100 100 5	20 - <0.4	100 410 6	6000 190 17	300 1100 55	<0.1	400 130 4	44	3800 - 79	 <25	<50	45 180 <25	<50	- 300 <100	<100	<0.2	160 85 <0.5	<1	40 105 <1	<1	0.09	3 - <0.5	300 - 0.4
		: ;	<u>100 100</u> <3	20 - <0.5	<u>100 410</u>	6000 190 12	<u>300 1100</u> 11	<u>40</u> - <0.05	<u>400 130</u>	7400 440 32	3800 -	DP, 200		45 180	<u> 110</u>	- 300	- 2800	0.5 50 <0.5	160 85 <0.5	<pre>55 70 </pre>	40 105 <1.5	<u>3</u> 170 <0.1	- 0.7 2.4	3	<u>8 300 -</u> 19
BH1	0.5 m	24/09/2021	<3 100 100 <3		5 100 410 1	Jaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	11 300 1100 26	Jaamaana	6 400 130 0.8	Jaamaaaaa	<u>3800</u> -		\$	45 180 -		- 300	&	Janananana		<0.5 55 70 <0.5		jaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ku waxaa ku wa	hamananan	3 -	19 <u>300</u> - 0.58
BH2	0.2 m	24/09/2021	-5 100 100 <3	hamaaaa	100 410 6	Jaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	hananana	jaan maana	400 130 2	Janananana	Suumanni		&aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	45 180 -	hamman	- 300	haan ahaan ahaa haa haa haa haa haa haa)	-0.3 160 85 -	žaunaan	40 105	ja an	(aaaaaaaaaaa)	hamaaaaa	300 - -
BH2	1.0 m	24/09/2021	100 100	}	100 410		300 1100	j	400 130		3800 -		- 120	45 180	110 -	- 300	- 2800	0.5 50	160 85	55 70	40 105	3 170	- 0.7	3 -	300 -

Table 1: Summary of Laboratory Results - Soils

5		,	,	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~~		~~~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				~~~~~~	
1			ŧ	}				Metals					}		TR				•	BT	EX	8		
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Aercury (inorganic)	Nickel	Zhc	Manganese	ткн с6 - с10	TRH >C10-C16	1 ((C6-C10)-BTEX)	F2 (>C 10-C 16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Bonzol almurana
				12	0.9	4	2	10	<0.05	1	7				ٿ	-		-	<0.5	<0.5	<0.5	<1.5	<0.1	
Ì	BH3	0.5 m	1	100 100	20 -	100 410	6000 190	300 1100	40 -	400 130	7400 440	3800 -		- 120	45 180	110 -	- 300	- 2800	0.5 50	160 85	55 70	40 105	3 170	ματου 5 -
	BH3	3.0 m	24/00/0024	<3	<0.5	4	<0.5	4	<0.05	0.6	<0.5		-	- 1	-	-	-	-	-	-	-	-		
ĺ	Billo		24/03/2021	100 100	20 -	100 410	6000 190	300 1100	40 -	400 130	7400 440	3800 -		- 120	<u>45 180</u>	110 -	- 300	- 2800	0.5 50	160 8 5	55 70	40 105	<u>3 170</u>	
1	BH4	0.5 m	24/09/2021	<3	<0.5	4	21	28	0.06	3	47	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<1.5	<0.1	<
į			24/03/2021	100 100	20 -	100 410	6000 190	300 1100	40 -	400 130	7400 440	3800 -		- 120	45 180	110 -	- 300	- 2800	0.5 50	160 85	55 70	40 105	3 170	

Lab result

HIL/HSL value EIL/ESL value

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

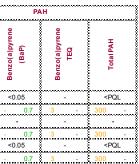
📕 Indicates that as best os has been detected by the lab, refer to the lab report Blue = DC exceedance Red = EGV-indirect exceedance 🗌 HSL 0-<1 Exceedance

Bold = Lab detections - = Nottested or No HIL/HSL/EIL/ESL (as applicable) or Notapplicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = DirectContactHSL

Notes:

- а QA/QC replicate of sample listed directly below the primary sample
- Reported naphthalene laboratory result obtained from BTEXN suite b
- EIL criteria applies to DDT only с


Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

- SAC based on generic land use thresholds for Residential A with garden/accessible soil
- HIL HIL A Residential (Low density) (NEPC, 2013)
- HSL A/B Residential / Low High Density (vapour intrusion) (NEPC, 2013) HSL

DC DirectcontactHSL A Residential (Low density) (directcontact) (CRC CARE, 2011)

- EIL/ESL Urban Residential and Public Open Space (NEPC, 2013)
- ML Residential, Parkland and Public Open Space (NEPC, 2013)

Table 2: Summary of Laboratory Results - Soils - Continued

			Phenol					OCP					0	PP	PCB					Herbicides						PF	AS		Asbe	estos
			Phenol	DDT+DDE+DDD ^C	Endrin	Hexachlorobenzen e	Heptachlor	Aldrin + Dieldrin	Methoxychlor	Total Chlordane	Total Endosulfan	Other analysed OCP	Chlorpyriphos	Other analysed OPP	Total PCB	Glyphosate	2,4-D	2,4,5-T	MCPA	MCPB	МСРР	Picloram	Atrazine	Other analysed Herbicides	Total Positive PFAS	PFOS + PFHxS	PFOS	PFOA	Total Asbestos	FA and AF Estimation
		PQL	5	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.05	0.05	0.1	0.05	0.1	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5-2	0.0001	0.0001	0.0001	0.0001		<0.001
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg DP, 2021	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	%(w/w)
MW101	0.12 - 0.2 m	31/08/21	-		-		-	-			-		-		-				-		-		-					-	NAD	<0.001
MW101	0.4 - 0.5 m	31/08/21	<5 100 -	<0.1 240 180	<0.1 10 -	<0.1 10 -	<0.1 6 -	<0.1 6 -	<0.1 300 -	<0.2 50 -	<0.2 270 -	<pql< td=""><td><0.1 160 -</td><td><pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Detected</td><td>0.0209</td></pql<></td></pql<>	<0.1 160 -	<pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Detected</td><td>0.0209</td></pql<>	<0.1 1 -														Detected	0.0209
ACM-01	0.4 m	31/08/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	Detected	-
MW101	1.4 - 1.5 m	31/08/21	<pre><5 100 -</pre>	<0.1 240 180	<0.1	<0.1 10 -	<0.1 6 -	 <0.1	 <0.1 300 -	 <0.2	<0.2 270 -	 <pql< td=""><td><0.1 160 -</td><td><pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Detected</td><td><0.001</td></pql<></td></pql<>	<0.1 160 -	<pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Detected</td><td><0.001</td></pql<>	<0.1 1 -														Detected	<0.001
HA102	0.13 - 0.2 m	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NAD	<0.001
HA102	0.5 - 0.6 m	08/09/21	<5	<0.1	<0.1	<0.1	<0.1	<0.1	 <0.1 300 -	<0.2	<0.2	 <pql< td=""><td> <0.1</td><td> <pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NAD</td><td><0.001</td></pql<></td></pql<>	 <0.1	 <pql< td=""><td><0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NAD</td><td><0.001</td></pql<>	<0.1														NAD	<0.001
HA102	0.9 - 1 m	08/09/21	100 - <5	240 180 <0.1	<u>10</u> -	<0.1	<u>6</u> - <0.1	<0.1	<0.1	<0.2	270 - <0.2	<pql< td=""><td><0.1</td><td><pql< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pql<></td></pql<>	<0.1	<pql< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pql<>	<u> </u>															
			100 - <5	240 180 <0.1	10 - <0.1	10 - <0.1	6 - <0.1	6 - <0.1	300 - <0.1	50 - <0.2	270 - <0.2	 <pql< td=""><td>160 - <0.1</td><td> <pql< td=""><td>1 - <0.1</td><td> <10</td><td> <0.5</td><td><0.5</td><td> <0.5</td><td> <0.5</td><td><0.5</td><td></td><td><0.5</td><td> <pql< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pql<></td></pql<></td></pql<>	160 - <0.1	 <pql< td=""><td>1 - <0.1</td><td> <10</td><td> <0.5</td><td><0.5</td><td> <0.5</td><td> <0.5</td><td><0.5</td><td></td><td><0.5</td><td> <pql< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pql<></td></pql<>	1 - <0.1	 <10	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	 <pql< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pql<>						
MW103	0.4 - 0.5 m	31/08/21	100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -		900 -	600 -	600 -	600 -	600 -	4500 -	320 -						NAD	<0.001
HA104	0 - 0.1 m	01/09/21	<5 100 -	<0.1 240 180	<0.1	<0.1 10 -	<0.1	<0.1 6 -	<0.1 300 -	<0.2 50 -	<0.2 270 -	<pql< td=""><td><0.1 160 -</td><td><pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Detected</td><td>0.0022</td></pql<></td></pql<>	<0.1 160 -	<pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Detected</td><td>0.0022</td></pql<>	<0.1 1 -														Detected	0.0022
HA104	0.3 - 0.6 m	01/09/21			-						-													-				-	NAD	<0.001
HA104	0.4 - 0.5 m	01/09/21	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.003</td><td>0.003</td><td>0.0029</td><td>< 0.0001</td><td>-</td><td>-</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.003</td><td>0.003</td><td>0.0029</td><td>< 0.0001</td><td>-</td><td>-</td></pql<>	<0.1	-	-	-	-	-	-	-	-	-	0.003	0.003	0.0029	< 0.0001	-	-
BD4/20210901 ^a	1 - 1.2 m	01/09/21	100 - <5	240 180 <0.1	10 - <0.1	10 - <0.1	6 - <0.1	6 - <0.1	300 - <0.1	50 - <0.2	270 - <0.2	 <pql< td=""><td>160 - <0.1</td><td><pql< td=""><td>1 - <0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>- 1</td><td>0.1 10 -</td><td></td><td>_</td></pql<></td></pql<>	160 - <0.1	<pql< td=""><td>1 - <0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>- 1</td><td>0.1 10 -</td><td></td><td>_</td></pql<>	1 - <0.1											-	- 1	0.1 10 -		_
			100 -	240 180	10 -	10 -	6 - -	6 -	300 -	50 -	270 -		160 - -		1 -										<0.0001	 <0.0001	<0.0001	<0.0001		
HA104	1 - 1.2 m	01/09/21																								0.01 -	- 1	0.1 10	-	-
HA105	0.01 - 0.1 m	01/09/21	<5 100 -	<0.1 240 180	<0.1	<0.1 10 -	<0.1 6 -	<0.1 6 -	<0.1 300 -	<0.2 50 -	<0.2 270 -	<pql< td=""><td><0.1 160 -</td><td><pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 160 -	<pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NAD</td><td><0.001</td></pql<>	<0.1 1 -														NAD	<0.001
HA105	0.4 - 0.5 m	01/09/21	<5 100 -	<0.1 240 180	<0.1 10 -	<0.1 10 -	<0.1	<0.1 6 -	<0.1 300 -	<0.2 50 -	<0.2 270 -	<pql< td=""><td><0.1 160 -</td><td><pql< td=""><td><0.1</td><td><100</td><td><0.5 900 -</td><td><0.5 600 -</td><td><0.5 600 -</td><td><0.5 600 -</td><td><0.5 600 -</td><td><0.5 4500 -</td><td><0.5 320 -</td><td><pql< td=""><td></td><td></td><td></td><td></td><td>NAD</td><td>-</td></pql<></td></pql<></td></pql<>	<0.1 160 -	<pql< td=""><td><0.1</td><td><100</td><td><0.5 900 -</td><td><0.5 600 -</td><td><0.5 600 -</td><td><0.5 600 -</td><td><0.5 600 -</td><td><0.5 4500 -</td><td><0.5 320 -</td><td><pql< td=""><td></td><td></td><td></td><td></td><td>NAD</td><td>-</td></pql<></td></pql<>	<0.1	<100	<0.5 900 -	<0.5 600 -	<0.5 600 -	<0.5 600 -	<0.5 600 -	<0.5 4500 -	<0.5 320 -	<pql< td=""><td></td><td></td><td></td><td></td><td>NAD</td><td>-</td></pql<>					NAD	-
BH106	0.14 - 0.25 m	31/08/21	<5	<0.1 240 180	<0.1	<0.1	<0.1	<0.1	<0.1 300 -	< 0.2	<0.2 270 -	<pql< td=""><td><0.1 160 -</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 160 -	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>NAD</td><td><0.001</td></pql<>	<0.1	-	-		-	-	-		-	-		-	-	-	NAD	<0.001
HA107	0 - 0.1 m	01/09/21	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>NAD</td><td><0.001</td></pql<>	<0.1		-	-		-	-		-	-			-	-	NAD	<0.001
			100 - <5	240 180 <0.1	10 - <0.1	10 - <0.1	6 - <0.1	6 - <0.1	300 - <0.1	50 - <0.2	270 - <0.2	 <pql< td=""><td>160 - <0.1</td><td> <pql< td=""><td>1 - <0.1</td><td> <100</td><td> <0.5</td><td>< 0.5</td><td><0.5</td><td> <0.5</td><td>< 0.5</td><td></td><td>< 0.5</td><td> <pql< td=""><td><0.0001</td><td></td><td><0.0001</td><td> <0.0001</td><td></td><td></td></pql<></td></pql<></td></pql<>	160 - <0.1	 <pql< td=""><td>1 - <0.1</td><td> <100</td><td> <0.5</td><td>< 0.5</td><td><0.5</td><td> <0.5</td><td>< 0.5</td><td></td><td>< 0.5</td><td> <pql< td=""><td><0.0001</td><td></td><td><0.0001</td><td> <0.0001</td><td></td><td></td></pql<></td></pql<>	1 - <0.1	 <100	<0.5	< 0.5	<0.5	<0.5	< 0.5		< 0.5	 <pql< td=""><td><0.0001</td><td></td><td><0.0001</td><td> <0.0001</td><td></td><td></td></pql<>	<0.0001		<0.0001	<0.0001		
HA108	0 - 0.1 m	01/09/21	100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -		900 -	600 -	600 -	600 -	600 -	4500 -	320 -			0.01 -	- 1	0.1 10	NAD	<0.001
HA108	0.9 - 1 m	01/09/21																							<0.0001	<0.0001 0.01 -	<0.0001 - 1	<0.0001 0.1 10	-	-
BH109	0.02 - 0.1 m	31/08/21	<5 100 -	<0.1 240 180	<0.1	<0.1	<0.1	<0.1	<0.1 300 -	<0.2	<0.2 270 -	<pql< td=""><td><0.1 160 -</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>0.0005</td><td>0.0005</td><td>0.0005</td><td><0.0001 0.1 10</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 160 -	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>0.0005</td><td>0.0005</td><td>0.0005</td><td><0.0001 0.1 10</td><td>NAD</td><td><0.001</td></pql<>	<0.1	-	-	-	-	-	-		-	-	0.0005	0.0005	0.0005	<0.0001 0.1 10	NAD	<0.001
BH109	0.4 - 0.5 m	31/08/21	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<pql< td=""><td><0.1</td><td><pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	<pql< td=""><td><0.1</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>NAD</td><td><0.001</td></pql<>	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	NAD	<0.001
BD1/20210831 ^a	0.4 - 0.5 m	31/08/21	100 -	<0.05	10 - <0.05	10 - <0.05	6 - <0.05	6 - <0.05	300 - <0.2	50 - <0.05	270 - <0.05	 <pql< td=""><td>160 - <0.05</td><td> <pql< td=""><td>1 - <0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></pql<></td></pql<>	160 - <0.05	 <pql< td=""><td>1 - <0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></pql<>	1 - <0.1														-	-
HA110	0.13 - 0.2 m	08/09/21	 <5 100 -	240 180 <0.1 240 180	10 - <0.1 10 -	<0.1 10 -	6 - <0.1 6 -	6 - <0.1 6 -	300 - <0.1 300 -	50 - <0.2 50 -	270 - <0.2 270 -	<pql< td=""><td>160 - <0.1 160 -</td><td><pql< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.0001</td><td><0.0001</td><td><0.0001</td><td><0.0001 0.1 10</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	160 - <0.1 160 -	<pql< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.0001</td><td><0.0001</td><td><0.0001</td><td><0.0001 0.1 10</td><td>NAD</td><td><0.001</td></pql<>	<u> </u>										<0.0001	<0.0001	<0.0001	<0.0001 0.1 10	NAD	<0.001
HA110	0.4 - 0.5 m	08/09/21		-	-	-	-	-				-		-	-	-		-	-		-	-	-	-	<0.0001	<0.0001 -	<0.0001	<0.0001	-	-
MW111	0.07 - 0.15 m	31/08/21	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	 <pql< td=""><td><0.1</td><td> <pql< td=""><td><0.1</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>- 1</td><td>0.1 10 -</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1	 <pql< td=""><td><0.1</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>- 1</td><td>0.1 10 -</td><td>NAD</td><td><0.001</td></pql<>	<0.1			-		-				-		-	- 1	0.1 10 -	NAD	<0.001
HA112	0.13 - 0.23 m		100 - <5	240 180 <0.1	10 - <0.1	10 - <0.1	6 - <0.1	<u>6</u> - <0.1	<u>300</u> - <0.1	50 - <0.2	<0.2	 <pql< td=""><td>160 - <0.1</td><td> <pql< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NAD</td><td><0.001</td></pql<></td></pql<>	160 - <0.1	 <pql< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NAD</td><td><0.001</td></pql<>	<u> </u>														NAD	<0.001
BH113	0.05 - 0.15 m	31/08/21	100 - <5	240 180 <0.1	<u>10</u> -	10 - <0.1	<u>6</u> - <0.1	<u>6</u> - <0.1	300 - <0.1	50 - <0.2	270 - <0.2	 <pql< td=""><td>160 - <0.1</td><td> <pql< td=""><td>1 - <0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0013</td><td>0.0011</td><td>0.0011</td><td>0.0002</td><td>NAD</td><td><0.001</td></pql<></td></pql<>	160 - <0.1	 <pql< td=""><td>1 - <0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0013</td><td>0.0011</td><td>0.0011</td><td>0.0002</td><td>NAD</td><td><0.001</td></pql<>	1 - <0.1										0.0013	0.0011	0.0011	0.0002	NAD	<0.001
			100 - <5	240 180 <0.1	10 - <0.1	10 - <0.1	6 - <0.1	6 - <0.1	300 - <0.1	50 - <0.2	270 - <0.2	 <pql< td=""><td>160 - <0.1</td><td> <pql< td=""><td>1 - <0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.01 -</td><td>- 1</td><td>0.1 10 -</td><td></td><td></td></pql<></td></pql<>	160 - <0.1	 <pql< td=""><td>1 - <0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.01 -</td><td>- 1</td><td>0.1 10 -</td><td></td><td></td></pql<>	1 - <0.1											0.01 -	- 1	0.1 10 -		
BH114	0.4 - 0.5 m	31/08/21	100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -														NAD	<0.001
BH115	0.4 - 0.5 m	31/08/21	<5 100 -	<0.1 240 180	<0.1 10 -	<0.1 10 -	<0.1 6 -	<0.1 6 -	<0.1 300 -	<0.2 50 -	<0.2 270 -	<pql< td=""><td><0.1 160 -</td><td><pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NAD</td><td><0.001</td></pql<></td></pql<>	<0.1 160 -	<pql< td=""><td><0.1 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NAD</td><td><0.001</td></pql<>	<0.1 1 -														NAD	<0.001

Table 2: Summary of Laboratory Results - Soils - Continued

			Phenol					OCP					0	PP	PCB					Herbicides						PF	AS		Asb	estos
			Phenol	DDT+DDE+DDD ^C	Endrin	Hexachlorobenzen e	Heptachlor	Aldrin + Dieldrin	Methoxychlor	Total Chlordane	Total Endosulfan	Other analysed OCP	Chlorpyriphos	Other analysed OPP	Total PCB	Glyphosate	2,4-D	2,4,5-T	MCPA	MCPB	МСРР	Picloram	Atrazine	Other analysed Herbicides	Total Positive PFAS	PFOS + PFHxS	PFOS	PFOA	Total Asbestos	FA and AF Estimation
		1	1	1					1						OP, 2004a								1							
BH1	0.5 m	24/09/2021	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.4	<0.4	<pql< td=""><td><0.2</td><td><pql< td=""><td><pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td></pql<></td></pql<></td></pql<>	<0.2	<pql< td=""><td><pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td></pql<></td></pql<>	<pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td></pql<>	-	-	-	-	-	-	-	-	-	-	-	-	-		-
			100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -															<u> </u>
BH2	0.2 m	24/09/2021	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<pql< td=""><td><0.1</td><td><pql< td=""><td><pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<></td></pql<>	<0.1	<pql< td=""><td><pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -															<u> </u>
BH2	1.0 m	24/09/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -															
BH3	0.5 m	24/09/2021	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<pql< td=""><td><0.1</td><td><pql< td=""><td><pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<></td></pql<>	<0.1	<pql< td=""><td><pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<></td></pql<>	<pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></pql<>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -															
BH3	3.0 m	24/09/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -															
BH4	0.5 m	24/09/2021	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<pql< td=""><td><0.1</td><td><pql< td=""><td><pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>Detected</td><td>-</td></pql<></td></pql<></td></pql<>	<0.1	<pql< td=""><td><pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>Detected</td><td>-</td></pql<></td></pql<>	<pql< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>Detected</td><td>-</td></pql<>	-	-	-	-	-	-	-	-	-	-	-	-	-	Detected	-
			100 -	240 180	10 -	10 -	6 -	6 -	300 -	50 -	270 -		160 -		1 -															

Lab result HIL/HSL value EIL/ESL value

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

📕 Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance Red = EGV-indirect exceedance 🗌 HSL 0-<1 Exceedan

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos

HIL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Notes:

- QA/QC replicate of sample listed directly below the primary sample а
- b Reported naphthalene laboratory result obtained from BTEXN suite
- EIL criteria applies to DDT only с
- d HIL for pentachlorophenol used as a screening HIL for total phenols

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

- SAC based on generic land use thresholds for Residential A with garden/accessible soil
- HIL HIL A Residential (Low density) (NEPC, 2013)
- HSL HSL A/B Residential / Low - High Density (vapour intrusion) (NEPC, 2013)
- DC Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE, 2011)
- EIL/ESL Urban Residential and Public Open Space (NEPC, 2013)
- Residential, Parkland and Public Open Space (NEPC, 2013) ML

Table 2: Summary of Laboratory Results for Waste Classification

						Metals				TI	RH		B	TEX			PAH		Phenols	C	ICP	OPP	PCB	Herbicides	Asbe	stos		PF	AS	
			Arsenic	Cadmium	Total Chromium	Lead	Mercury (inorganic)	Nickel	TCLP Nickel	TRH C6 - C9	C10-C36 recoverable hydrocarbons	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Benzo(a)pyrene (BaP)	TCLP Benzo(a)pyrene (BaP)	TotalPAH	Phenol	Total Endosulf an	TotalAnalysed OCP	TotalAnalysed OPP	TotalPCB	A nalysed Herbicides	TotalAsbestos	FA and AF Estimation	PFOA	TCLPPFOA	PFOS+PFH x S	TCLP PFOS+PFHxS
		PQL	4	0.4	1	1	0.1	1	0.02	25	50	0.2	0.5	1	3	0.05	0.001	0.05	5	0.05	0.1	0.1	0.1		0.001	<0.001	0.0001	0.00001	0.0001	0.00001
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	%(w/w)	mg/kg	mg/L	mg/kg	mg/L
aste Classifica	tion Criteria	f																												
	CT1	3	100	20	100	100	4	40	-	650	10000	10	288	600	1000	0.8	ş -	200	288	60	<50	4	<50	NC	nil	nil	÷ -		-	3 -
S	SCC1/TCLP1		} -	••••••••••••••••••••••••••••••••••••••		\$ -	4 } -	1050	2	-	••••••••••••••••••••••••••••••••••••••	4 -	ðunnunnun -	\$ } -	-	10	0.04	4 -	••••••••••••••••••••••••••••••••••••••	20000000 } -		ð -	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	-	-	18	0.5	1.8	0.05
boratory Resu	ılts - DP, 2021	1		•		÷	÷											•												<u> </u>
MW101	0.12 - 0.2 m	31/08/21	-	-	-	-	-	-	-	-	-	-	-	8 -	-		-	-	-	-	-	-	-		NAD	NAD	-	-	-	- 1
MW101	0.4 - 0.5 m	31/08/21	8	0.5	16	81	<0.1	6	-	<25	<50	<0.2	<0.5	<1	<3	0.05	-	0.05	<5		<0.1	<0.1	<0.1	-	Detected	Detected	-	-		
ACM-01	0.4 m	31/08/21	-	-	-	-	-	-	-	-	-	-	-	-	-	}	-		-		-	-	-	-	Detected	-	-	-		
MW101	1.4 - 1.5 m	31/08/21	<4	<0.4	9	12	<0.1	2	-	<25	<50	<0.2	<0.5	<1	<3	<0.05	-	<0.05	<5		<0.1	<0.1	<0.1		Detected	NAD	-	-		-
HA102	0.13 - 0.2 m	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NAD	NAD	-	-		-
HA102	0.5 - 0.6 m	08/09/21	<4	<0.4	8	12	<0.1	1		<25	<50	<0.2	<0.5	<1	<3	<0.05		<0.05	<5		<0.1	<0.1	<0.1		NAD	NAD				
HA102	0.9 - 1 m	08/09/21	<4	<0.4	3	6	<0.1	<1		<25	<50	<0.2	<0.5	<1	<3	<0.05		<0.05	<5	Luuiuu	<0.1	<0.1	<0.1							
	0.4 - 0.5 m	31/08/21	<4	<0.4	3	4	<0.1	<1		<25	<50	<0.2	<0.5	<1	<3	<0.05	ļ	<0.05	<5	ļ	<0.1	<0.1	<0.1	<pql< td=""><td>NAD</td><td>NAD</td><td>-</td><td>- -</td><td>÷</td><td></td></pql<>	NAD	NAD	-	- -	÷	
HA104	0 - 0.1 m	01/09/21	5	<0.4	11	30	<0.1	8		<25	450	<0.2	<0.5	<1	<3	1.6	<0.001	23	<5	ļ	<0.1	<0.1	<0.1		Detected	Detected			- 	
	0.3 - 0.6 m	01/09/21									} 		; 									; 	, 		NAD	NAD				سَسيهُ
HA104	0.4 - 0.5 m	01/09/21	<4	<0.4	8	11	<0.1	1	ļ	<25	<50	<0.2	<0.5	<1	<3	<0.05	\$	<0.05	<5	ļ	<0.1	<0.1	<0.1			-	<0.0001	<0.00001	0.003	<0.000
D4/20210901	0.4 - 0.5 m	01/09/21	<4	<0.4	7	11	<0.1	2	-	<25	<50	<0.2	<0.5	<1	<3	<0.05	-	<0.05	<5	<u>.</u> -	<0.1	<0.1	<0.1	-	-	-	-	-	-	
HA104	1 - 1.2 m	01/09/21								-		- 				}						§			-	-	<0.0001		<0.0001	
	0.01 - 0.1 m 0.4 - 0.5 m	01/09/21 01/09/21	<4 11	<0.4 <0.4	11 11	30 57	<0.1 <0.1	8 4		<25 <25	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<3 <3	0.1 <0.05		0.78 <0.05	<5 <5		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	- <pql< td=""><td>NAD NAD</td><td>NAD -</td><td></td><td>-</td><td></td><td></td></pql<>	NAD NAD	NAD -		-		
BH106 (0.14 - 0.25 m	31/08/21	11	<0.4	11	76	<0.1	10	-	<25	<50	<0.2	<0.5	<1	<3	<0.05	-	<0.05	<5	-	<0.1	<0.1	<0.1		NAD	NAD	-	-	-	-
HA107	0 - 0.1 m	01/09/21	7	<0.4	5	30	<0.1	2	-	<25	<50	<0.2	<0.5	<1	<3	<0.05	-	<0.05	<5	-	<0.1	<0.1	<0.1	-	NAD	NAD	-	-		
HA108	0 - 0.1 m	01/09/21	5	<0.4	4	34	<0.1	5	-	<25	<50	<0.2	<0.5	<1	<3	<0.05		<0.05	<5		<0.1	<0.1	<0.1	<pql< td=""><td>NAD</td><td>NAD</td><td><0.0001</td><td>-</td><td><0.0001</td><td></td></pql<>	NAD	NAD	<0.0001	-	<0.0001	
HA108	0.9 - 1 m	01/09/21	-	<u>.</u>		-	<u>.</u> -	-	-	-	-		-	Į	-			-				-			-	-	<0.0001		<0.0001	
	0.02 - 0.1 m	31/08/21	<4	<0.4	19	4	<0.1	70	0.07	<25	<50	<0.2	<0.5	<1	<3	<0.05	\$	<0.05	<5		<0.1	<0.1	<0.1		NAD	NAD	<0.0001	<0.00001	0.0005	<0.000
BH109	0.4 - 0.5 m	31/08/21	<4	<0.4	<1	1	<0.1	<1		<25	<50	<0.2	<0.5	<1	<3	<0.05	\$	<0.05	<5		<0.1	<0.1	<0.1		NAD	NAD				
D1/20210831	0.4 - 0.5 m	31/08/21	<5	<1	<2	<5	<0.1	<2	-	<10	<50	<0.2	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	<0.05	<0.05	<0.05	<0.1	-	-	-	-	-	-	-
HA110	0.13 - 0.2 m	08/09/21	<4	<0.4	5	48	<0.1	1	-	<25	<50	<0.2	<0.5	<1	<3	0.06	-	0.06	<5	-	<0.1	<0.1	<0.1	-	NAD	NAD	<0.0001	-	<0.0001	-
HA110	0.4 - 0.5 m	08/09/21								-												§			-	-	<0.0001		<0.0001	
MW111 (0.07 - 0.15 m	31/08/21	<4	<0.4	14	20	0.2	16		<25	<50	<0.2	<0.5	<1	<3	0.1		1	<5		<0.1	<0.1	<0.1		NAD	NAD	- 			
HA112 (0.13 - 0.23 m	08/09/21	5	<0.4	44	9	<0.1	1	-	<25	<50	<0.2	<0.5	<1	<3	0.1	· -	1.5	<5	· -	<0.1	<0.1	<0.1		NAD	NAD	-	-	-	
BH113 (0.05 - 0.15 m	31/08/21	91	<0.4	7	24	<0.1	24	<u>.</u>	<25	<50	<0.2	<0.5	<1	<3	0.06	<u>.</u>	0.66	<5	ļ	<0.1	<0.1	<0.1	ļ	NAD	NAD	0.0002	<0.00001	0.0011	0.0000
	0.4 - 0.5 m	31/08/21	<4	<0.4	4	5	<0.1	<1		<25	<50	<0.2	<0.5	<1	<3	<0.05	\$	<0.05	<5		<0.1	<0.1	<0.1		NAD	NAD				
	0.4 - 0.5 m	31/08/21	5	<0.4	6	55	<0.1	4		<25	<50	<0.2	<0.5	<1	<3	0.09	<u>} -</u>	0.4	<5	ş -	<0.1	<0.1	<0.1		NAD	NAD	-	-		<u>} -</u>
boratory Resu				,				,						<u> </u>				,						<u>.</u>						
BH1	0.5 m	24/09/2021	<3	<0.5	5	11	<0.05	6		<20	191	<0.5	<0.5	<0.5	<1.5	2.4	ļ	19	<0.5	<0.4	<pql< td=""><td><pql< td=""><td><pql< td=""><td><u></u></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><u></u></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td></pql<></td></pql<>	<pql< td=""><td><u></u></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td></pql<>	<u></u>	-	-	-	-		
BH2	0.2 m	24/09/2021	<3	<0.5	1	26	<0.05	0.8	ļ	<20	<120	<0.5	<0.5	<0.5	<1.5	0.08	ļ	0.58	ļ	<0.2	<pql< td=""><td><pql< td=""><td><pql< td=""><td>ļ</td><td></td><td>-</td><td>-</td><td>ļ</td><td></td><td></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>ļ</td><td></td><td>-</td><td>-</td><td>ļ</td><td></td><td></td></pql<></td></pql<>	<pql< td=""><td>ļ</td><td></td><td>-</td><td>-</td><td>ļ</td><td></td><td></td></pql<>	ļ		-	-	ļ		
BH2	1.0 m	24/09/2021	<3	<0.5	6	5	<0.05	2									ģ		ģ				- 	Ş						
BH3	0.5 m	24/09/2021	12	0.9	4	10	<0.05	1	<u>-</u>	<20	<120	<0.5	<0.5	<0.5	<1.5	<0.05	ļ	<pql< td=""><td>ļ</td><td><0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td></pql<></td></pql<></td></pql<></td></pql<>	ļ	<0.2	<pql< td=""><td><pql< td=""><td><pql< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td></pql<></td></pql<>	<pql< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td></pql<>		-	-	-	-		
BH3	3.0 m	24/09/2021	<3	<0.5	4	4	<0.05	0.6	<u>.</u>			<u>.</u>			-		<u>.</u>			<u>}</u>			·····		-)	-	<u>.</u>			
BH4	0.5 m	24/09/2021	<3	<0.5	4	28	0.06	3		<20	<120	<0.5	<0.5	<0.5	<1.5	<0.05		<pql< td=""><td><0.5</td><td><0.2</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td></td><td>Detected</td><td>-</td><td></td><td></td><td></td><td></td></pql<></td></pql<></td></pql<></td></pql<>	<0.5	<0.2	<pql< td=""><td><pql< td=""><td><pql< td=""><td></td><td>Detected</td><td>-</td><td></td><td></td><td></td><td></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td></td><td>Detected</td><td>-</td><td></td><td></td><td></td><td></td></pql<></td></pql<>	<pql< td=""><td></td><td>Detected</td><td>-</td><td></td><td></td><td></td><td></td></pql<>		Detected	-				

📕 CT1 exceedance 📕 TCLP1 and/or SCC1 exceedance 🗧 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Total chromium used as initial screen for chromium(VI).
- c Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
- d Criteria for scheduled chemicals used as an initial screen
- e Criteria for Chlorpyrifos used as initial screen
- f All criteria are in the same units as the reported results
- PQL Practical quantitation limit
- Not tested, No criteria or Not applicable

Assessment Criteria:

NSW EPA, 2014, Waste Classification Guidelines Part 1

- CT1 Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste
- SCC1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
- TCLP1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

Table 3: Acid Sulfate Soil Results

	Sample			Screer	ning Tests			<u></u>	Sc	r Suite Laboratory	Results			
Location	Depth	Date	pH _F	рН _{FOX}	pH _{FOX} minus pH _F	Reaction	рН _{ксі}	Chromium Reducible Sulphur	Total Actual Acidity	Net Acid Soluble Sulfur	Net Acidity	Net Acidity (excluding ANC)	Liming Rate (excluding ANC)	Soil Description
		Sampled				****		(S _{Cr})	(s-TAA)	(s-S _{NAS})			-	
	(m)		pH units	pH units	pH units	-	pH units	(%w/w S)	(%w/w S)	(%w/w S)	(%w/w S)	moles H+/T	kg CaCO3/T	
vestigation L														
SSMAC (1998	-			1	1		1	1		T				
creening Indic				<3.5	≤ -1									
	es, Coarse Tex							0.03	0.03		0.03	18		
to 1,000 tonne	es, Medium Te	xture						0.06	0.06		0.06	36		
	es, Fine Textu	e						0.1	0.1		0.1	62		
1,000 tonnes,	Any Texture							0.03	0.03		0.03	18		
PA (2014)					-		1			1		1		
ASS Requiren	ment		≥5.5*											
aboratory Re	sults - DP, 20	21												
MW101	0.9-1	31/08/21	6.7	2.8	-3.9	М	5.8	0.02	0.01	-	0.030	19	1.4	Brown sandy clay fill
MW101	1.4-1.5	31/08/21	6.5	2.0	-4.5	V	-	-	-	-	-	-	-	Brown sandy clay
MW101	1.9-2	31/08/21	6.4	1.8	-4.6	х	4.8	0.12	0.04	-	0.15	94	7.1	Brown sandy clay
MW101	2.4-2.5	31/08/21	5.9	2.6	-3.3	М	-	-	-	-	-	-	-	Brown and grey sand
MW101	2.9-3	31/08/21	5.9	2.8	-3.1	М	-	-	-	-	-	-	-	Brown silty clay
MW101	3.4-3.5	31/08/21	5.5	3.0	-2.5	М	-	-	-	-	-	-	-	Brown silty clay
MW101	3.9-4	31/08/21	5.4	2.5	-2.9	М	-	-	-	-	-	-	-	Brown silty clay
MW103	1.4-1.5	31/08/21	4.5	3.5	-1	М	-	-	-	-	-	-	-	Brown and grey sand
MW103	1.9-2	31/08/21	5.5	4.0	-1.5	М	-	-	-	-	-	-	-	Brown and grey sand
MW103	2.4-2.5	31/08/21	5.5	4.0	-1.5	L	-	-	-	-	-	-	-	Brown and grey sand
MW103	2.9-3	31/08/21	5.4	2.5	-2.9	М	-	-	-	-	-	-	-	Brown and grey sand
MW103	3.4-3.5	31/08/21	5.2	1.6	-3.6	М	4.0	0.08	0.06	0.005	0.14	90	6.8	Brown and grey sand
MW103	3.9-4	31/08/21	6.0	3.4	-2.6	V	-	-	-	-	-	-	-	Grey sandy clay
MW111	0.9-1	31/08/21	5.8	4.3	-1.5	М	-	-	-	-	-	-	-	Brown and grey sand
MW111	1.4-1.5	31/08/21	5.2	4.2	-1	М	-	-	-	-	_	-	-	Brown and grey sand
MW111	1.9-2	31/08/21	5.1	4.5	-0.6	L	-	-	-	-	-	-	-	Grey and orange clayey sand
MW111	2.4-2.5	31/08/21	4.6	3.6	-1	L	-	-	-	-	-	-	-	Grey and orange clayey sand
MW111	2.9-3	31/08/21	4.7	3.7	-1	L	-	-	-	-	-	-	-	Grey and orange clayey sand
MW111	3.4-3.5	31/08/21	5.2	4.2	-1	L	-	_	-	_	_	_	_	Grey sandy clay
MW111	3.9-4	31/08/21	5.2	4.1	-1.1	L	-	-	-	-	-	-	-	Grey sandy clay
MW111	4.4-4.5	31/08/21	5.0	4.2	-0.8	L	-	-	-	_	-	_	-	Grey clayey sand
MW111	4.9-5	31/08/21	5.2	4.3	-0.9	L	-	-	-	-	-	_	-	Grey clayey sand
BH115	0.9-1	31/08/21	7.1	5.0	-2.1	М	-	-	-	-	-	-	-	Grey sand
BH115	1.4-1.5	31/08/21	5.8	5.0	-0.8	M	-	-	-	-	-	-	-	Grey sand
BH115	1.9-2	31/08/21	5.8	5.0	-0.8	L	-	-	-	-	-	-	_	Grey sand
BH115	2.4-2.5	31/08/21	5.1	2.3	-2.8	H	-	_	-	_	_	-	-	Brown sandy clay
BH115	2.9-3	31/08/21	4.7	2.9	-1.8	н	3.5	0.008	0.18	<0.005	0.19	120	8.8	Grey clay
	sults - DP, 20						5.0							2.09 0009
BH2	0.5	24/09/04	7.7	3.06	-4.64	М	-	-	-	-	_		_	
BH2	1.5	24/09/04	6.83	4.76	-4.04	L-M	-	-	-	-	-		-	-
BH2	3	24/09/04	5.64	4.76	-2.07	L-M	-	-	-	-	-	-	-	-
BH2 BH3	2.6	29/09/04	6.18	4.25	-1.39 -1.51	L-M	-	-	-	-	-	-	-	-
					**	~~~~~								
BH3	2.6	29/09/04	6.08	4.37	-1.71	L-M	-	-	-	-	-	-	-	-
BH4	0.7	29/09/04	6.32	4.38	-1.94	L-M	-	-	-	-	-	-	-	-
BH4	1.5	29/09/04	6.34	5.07	-1.27	L-M	-	-	-	-	-	-	-	-

Notes:

 Reaction Description (after Sullivan et al, 2018)

 L
 Low reaction

 M
 Medium reaction

 H
 High reaction

 X
 Extreme reaction

 V
 'Volcanic' reaction

Table 4: Groundwater and Surface Water Results

		ANIONS AN	ID CATIONS					Dissolved	METALS							Total N	/IETALS			
		Calcium	Magnesium	Hardness	Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc
	PQL	500	500		1	0.1	1	1	1	0.05	1	1	1	0.1	1	1	1	0.05	1	1
Sample ID	Sample Date	μg/L	µg/L		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L
NHMRC (2012)	Recreation				100	20	500	20000	100	10	200		100	20	500	20000	100	10	200	
NEPC (2013) H	SL 4-8m																			
ANZG (2018) 9	5% LOP Fresh				13/24	0.2	1	1.4	3.4	0.06	11	8	13/24	0.2	1	1.4	3.4	0.06	11	8
Hardness modf	ified Trigger Value											15								15
HEPA (2018) 9	5% LOP Fresh																			
HEPA (2018) 99	9% LOP Fresh																			
Current Result	<u>s</u>																			
MW101	04/11/22	-	-	-	4	<0.1	<1	1	<1	<0.05	<1	4	12	0.2	7	14	24	<0.05	4	250
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	1	<0.1	<1	4	<1	<0.05	<1	4	2	<0.1	<1	<1	<1	<0.05	1	6
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	<1	<0.1	<1	1	<1	<0.05	<1	2	<1	<0.1	<1	<1	<1	<0.05	<1	7
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	22000	7500	-	<1	<0.1	<1	4	<1	<0.05	<1	14	<1	<0.1	<1	2	1	<0.05	<1	15
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	23000	7700	-	<1	<0.1	<1	2	<1	<0.05	<1	13	<1	<0.1	<1	2	<1	<0.05	2	16
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Previous Resu	lts																			
BH101	08/09/21	17000	7100	71	3	<0.1	<1	<1	<1	<0.05	<1	32	-	-	-	-	-	-	-	-
BD1/20210908	08/09/21	-	-	-	2	<0.1	<1	<1	<1	<0.05	<1	27	-	-	-	-	-	-	-	-
BH103	08/09/21	6100	9400	54	4	<0.1	<1	<1	<1	<0.05	<1	36	-	-	-	-	-	-	-	-
BH111	08/09/21	6400	11000	61	<1	<0.1	<1	<1	<1	<0.05	1	23	-	-	-	-	-	-	-	-

Notes:

* QA/QC replicate of sample listed directly below the primary sample

PQL Practical quantitation limit

-No criterion / not defined / not tested / not applicable

Shaded cell is exceedance of guideline value

Where one or more guideline value is exceeded, the cell is shaded to the colour of the highest guideline value exceeded

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 4-8m

NHMRC (2008) Guidelines for Managing Risk in Recreational Water

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, orange text is 'unknown' level of protection

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 4-8m

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 95% level of protection of species for Fresh aquatic ecosystems [NB: 99% level of protection adopted for bioaccumulative chemicals]

HEPA (2018) PFAS National Environmental Management Plan, 99% level of protection for Fresh aquatic ecosystems

NHMRC (2008) Guidelines for Managing Risk in Recreational Water

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, orange text is 'unknown' level of protection

			Т	RH				B	TEX										PAH							
		F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene	Total Xylenes	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene (BaP)	Naphthalene	Benzo(b.j+k)fluoranth ene	Benzo(g,h,i)perylene	Chrysene	Dibenzo(a,h)anthrace ne	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Phenanthrene	Pyrene
	PQL	10	50	100	100	1	1	1	1	2	1	0.1	0.1		0.1	0.1	1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
IHMRC (2012) Recreation	ion					10	8000	3000			6000					0.1										
EPC (2013) HSL 4-8m		1000	1000			800	NL				NL						NL									
NZG (2018) 95% LOP F	Fresh					950	180	80						0.01		0.1	16					1			0.6	
ardness modfified Trigg	ger Value																									
EPA (2018) 95% LOP F	Fresh																									
EPA (2018) 99% LOP F	Fresh																									
urrent Results																										
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
evious Results																										
BH101	08/09/21	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
D1/20210908	08/09/21	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH103	08/09/21	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH111	08/09/21	<10	<50	<100	<100	<1	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Notes:

* QA/QC replicate of sample listed directly below

PQL Practical quantitation limit

r																				
											OCP									
		Aldrin	alpha-BHC	al pha-chlordane	beta-BHC	DDE	DDT	delta-BHC	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulphate	Endrin	gamma-Chlordane	Heptachlor	Hexachlorobenzene	Lindane	Methoxychlor	QQ	Total Analysed OCP
	PQL	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NHMRC (2012)	Recreation						90								3		100			
NEPC (2013) H	ISL 4-8m																			
ANZG (2018) 9	5% LOP Fresh	0.001		0.03			0.006		0.01	0.03	0.03			0.03	0.01	0.05	0.2	0.005		
Hardness modfi	ified Trigger Value																			
HEPA (2018) 95	5% LOP Fresh																			
HEPA (2018) 99	9% LOP Fresh																			
Current Result	<u>is</u>																			
MW101	04/11/22	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Previous Resu	lts	T		1	T	1	T	T				1					T	1	1	
BH101	08/09/21	<0.001	<0.001	<0.001	<0.001	0.002	0.004	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.008
BD1/20210908	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103	08/09/21	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
BH111	08/09/21	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001

Notes:

* QA/QC replicate of sample listed directly below

PQL Practical quantitation limit

								C	PP											Р	СВ			
		Azinphos methyl (Guthion)	Bromophos-ethyl	Chlorpyriphos	Chlorpyriphos-methyl	Diazinon	Dichlarvos	Dimethoate	Ethion	Ronnel (fenchlorphos)	Fenitrothion	Malathion	Parathion	Parathion-methyl	Total Analysed OPP	Glyphosphate	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Aroclor 1260	Total Analysed PCB
	PQL	0.02	0.2	0.009	0.2	0.01	0.2	0.15	0.2	0.2	0.2	0.05	0.004	0.2	0.004	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Sample ID	Sample Date	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	mg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
HMRC (2012) Recreati	ion	300	100	100		40	50	70	40		70	700	200	7										
NEPC (2013) HSL 4-8m	I																							
NZG (2018) 95% LOP	Fresh	0.02		0.00004		0.01		0.15			0.2	0.05	0.004							0.6		0.03		
lardness modfified Trig	ger Value																							
EPA (2018) 95% LOP	Fresh																							
IEPA (2018) 99% LOP	Fresh																							
urrent Results					-								-											
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Previous Results			1	1		1	1	1		T				1		1				T	1	T		
BH101	08/09/21	<0.02	<0.2	<0.009	<0.2	<0.01	<0.2	<0.15	<0.2	<0.2	<0.2	<0.05	<0.004	<0.2	<0.004	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
3D1/20210908	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103	08/09/21	<0.02	<0.2	<0.009	<0.2	<0.01	<0.2	<0.15	<0.2	<0.2	<0.2	<0.05	<0.004	<0.2	<0.004	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
BH111	08/09/21	< 0.02	<0.2	< 0.009	<0.2	<0.01	<0.2	<0.15	<0.2	<0.2	<0.2	< 0.05	< 0.004	<0.2	< 0.004	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01

Notes:

* QA/QC replicate of sample listed directly below

PQL Practical quantitation limit

 No criterion / not defined / not tested / not applik Shaded cell is exceedance of guideline value Where one or more guideline value is exceeded NEPC (2013) National Environment Protection NHMRC (2008) Guidelines for Managing Risk i ANZG (2018) Australian and New Zealand Guik NEPC (2013) National Environment Protection ANZG (2018) Australian and New Zealand Guik

HEPA (2018) PFAS National Environmental Ma

NHMRC (2008) Guidelines for Managing Risk i

ANZG (2018) Australian and New Zealand Guid

						HERB	ICIDES												VOC							
		2,4,5-T	2,4-D [(2,4- Dichlorophenoxy) acetic acid]	Atrazine	Fenoprop	Glyphosate	Hexazinone	loxynii	MCPA	Simazine	Total Analysed Herbicides	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane	tetrachloroethene	1,1,2-trichloroethane	1,1,2- trichloroethylene	1,1-dichloroethane	1,1-Dichloroethene	1,1-dichloropropene	1,2,3- trichlorobenzene	1,2,3- trichloropropane	1,2,4- trichlorobenzene	1,2,4-trimethyl benzene	1,2-dibromo-3- chloropropane	1,2-dichlorobenzene
	PQL	0.5	0.5	2	0.5	10	2	1	0.5	2	0.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NHMRC (2012)	Recreation	1000	300	200	100	10000	4000		400	200					500				300							15000
NEPC (2013) H	SL 4-8m																									
ANZG (2018) 95	5% LOP Fresh	36	280	13		320			1.4	3.2			270		70		330		700							160
Hardness modfi	ified Trigger Value																									
HEPA (2018) 95	5% LOP Fresh																									
HEPA (2018) 99	9% LOP Fresh																									
Current Result	<u>s</u>																									
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Previous Resu	lts	T		n		T	i .	i .					r	i	r	1	i .	i .	i .	i .	T	ir	1		i	ir
BH101	08/09/21	<0.5	<0.5	<2	<0.5	<10	<2	<1	<0.5	<2	<0.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BD1/20210908	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103	08/09/21	<0.5	<0.5	<2	<0.5	<10	<2	<1	<0.5	<2	<0.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
BH111	08/09/21	<0.5	<0.5	<2	<0.5	<10	<2	<1	<0.5	<2	<0.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

Notes:

* QA/QC replicate of sample listed directly below

PQL Practical quantitation limit

				1		-				1	1		0		1			1								
		1,2-dichloroethane	1,2-dichloropropane	1,3,5-trimethyl benzene	1,3-dichlorobenzene	1,3-dichloropropane	1,4-dichlorobenzene	2,2-dichloropropane	2-chlorotoluene	4-chlorotoluene	4-isopropyl toluene	Bromobenzene	bromochloromethane	bromodichloromethar e	bromoform	carbon tetrachloride	Chloroethane	Vinyl Chloride	Chloroform	Chloromethane	cis-1,2- dichloroethene	cis-1,3- dichloropropene	isopropylbenzene (cumene)	Cyclohexane	dibromochloromethar e	dibromomethane
	PQL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10	10	1	10	1	1	1	1	1	1
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
HMRC (2012) Recreati	ion	30					400									30		3								
EPC (2013) HSL 4-8m																										
NZG (2018) 95% LOP I	Fresh				260		60									240		100	770							
ardness modfified Trigg	ger Value																									
EPA (2018) 95% LOP F	Fresh																									
EPA (2018) 99% LOP F	Fresh																									
urrent Results				1	1	1		-			1			-			1									
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
evious Results			1				1	1		1	1			1	1											-1
BH101	08/09/21	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<10	<1	<10	<1	<1	<1	<1	<1	<1
D1/20210908	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103	08/09/21	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<10	<1	<10	<1	<1	<1	<1	<1	<1
BH111	08/09/21	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<10	<1	<10	<1	<1	<1	<1	<1	<1

Notes:

* QA/QC replicate of sample listed directly below

PQL Practical quantitation limit

								V	C												PFAS					
		Dichlorodifluorometh ane	1,2-dibromoethane	hexachlorobutadiene	Bromomethane	Monochlorobenzene	n-buţyl benzene	n-propyl benzene	sec-butyl benzene	Styrene (vinylbenzene)	tert-butyl benzene	trans-1,2- dichloroethene	trans-1,3- dichloropropene	Trichlorofluoromethan e	VOLATILE ORGANIC COMPOUNDS	10:2 FTS	4:2 FTS	6:2 FTS	8:2 FTS	EtPerfluorooctanesulf amid oacetic acid	MePerfluorooctanesul famid oacetic acid	N-Et perfluorooctanesulfon amid oethanol	N-Ethyl perfluorooctanesulfon amide	N-Me perfluorooctanesulfon amid oethanol	N-Methyl perfluorooctane sulfonamide	Perfluorobutanesulfo nic acid
	PQL	10	1	1	10	1	1	1	1	1	1	1	1	10	1	0.02	0.01	0.01	0.02	0.02	0.02	0.5	0.1	0.05	0.05	0.01
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L
NHMRC (2012)	Recreation		10	7	10	3000				300																
NEPC (2013) HS	SL 4-8m																									
ANZG (2018) 95	5% LOP Fresh					55																				
Hardness modfif	fied Trigger Value																									
HEPA (2018) 95	% LOP Fresh																									
HEPA (2018) 99	% LOP Fresh																									
Current Results	<u>8</u>			1		÷			i	i	i		i		1											
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.02	<0.01	<0.01	<0.02	<0.02	<0.02	<0.5	<0.1	<0.05	<0.05	<0.01
MW101	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.002	<0.001	0.003	<0.0004	<0.002	<0.002	<0.5	<0.1	<0.05	<0.05	0.002
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.02	<0.01	<0.01	<0.02	<0.02	<0.02	<0.5	<0.1	<0.05	<0.05	<0.01
MW103	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.002	<0.001	0.0004	<0.0004	<0.002	<0.002	<0.5	<0.1	<0.05	<0.05	0.002
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.02	<0.01	<0.01	<0.02	<0.02	<0.02	<0.5	<0.1	<0.05	<0.05	<0.01
MW111	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.002	<0.001	0.002	<0.0004	<0.002	<0.002	<0.5	<0.1	<0.05	<0.05	0.004
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.02	<0.01	<0.01	<0.02	<0.02	<0.02	<0.5	<0.1	<0.05	<0.05	<0.01
SW1	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.002	<0.001	<0.0004	<0.0004	<0.002	<0.002	<0.5	<0.1	<0.05	<0.05	0.005
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.02	<0.01	<0.01	<0.02	<0.02	<0.02	<0.5	<0.1	<0.05	<0.05	<0.01
SW2	04/11/22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.002	<0.001	<0.0004	<0.0004	<0.002	<0.002	<0.5	<0.1	<0.05	<0.05	0.0047
Previous Result																1					1					
BH101	08/09/21	<10	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	-	-	0.0008	<0.0004	-	-	-	-	-	-	-
BD1/20210908	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	-	-	-	-	-
BH103	08/09/21	<10	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	-	-	<0.0004	<0.0004	-	-	-	-	-	-	-
BH111	08/09/21	<10	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	-	-	0.0005	<0.0004	-	-	-	-	-	-	-

Notes:

* QA/QC replicate of sample listed directly below

PQL Practical quantitation limit

										PFAS								
		Perfluorobutanoic acid	Perfluorodecanesulfo nic acid	Perfluorodecanoic acid	Perfluorododecanoic acid	Perfluoroheptanoic acid	Perfluorohexanoic acid	Perfluorononanoic acid	Perfluorooctane sulfonamide	Perfluoropentanesulf onic acid	Perfluoropentanoic acid	Perfluorotetradecanoi c acid	Perfluorotridecanoic acid	Perfluoroundecanoic acid	PFHxS	PFOA	PFOS	PFAS
	PQL	0.02	0.02	0.02	0.05	0.01	0.01	0.01	0.1	0.01	0.02	0.5	0.1	0.02	0.01	0.01	0.01	0.01
Sample ID	Sample Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NHMRC (2012)) Recreation															10		
NEPC (2013) H	HSL 4-8m																	
ANZG (2018) 9	95% LOP Fresh																	
Hardness mod	fified Trigger Value																	
HEPA (2018) 9	5% LOP Fresh															220	0.13	
HEPA (2018) 9	99% LOP Fresh															19	0.00023	
Current Resul	ts																	
MW101	04/11/22	<0.02	<0.02	<0.02	<0.05	<0.01	<0.01	<0.01	<0.1	<0.01	<0.02	<0.5	<0.1	<0.02	<0.01	<0.01	<0.01	<0.01
MW101	04/11/22	<0.02	<0.002	<0.002	<0.005	0.001	0.0042	<0.001	<0.01	<0.001	0.006	<0.05	<0.01	<0.002	0.0045	0.0025	0.0024	0.026
MW103	04/11/22	<0.02	<0.02	<0.02	<0.05	<0.01	<0.01	<0.01	<0.1	<0.01	<0.02	<0.5	<0.1	<0.02	0.01	<0.01	<0.01	0.01
MW103	04/11/22	<0.02	<0.002	<0.002	<0.005	0.002	0.002	<0.001	<0.01	<0.001	0.004	<0.05	<0.01	<0.002	0.0059	0.0045	0.0021	0.023
MW111	04/11/22	<0.02	<0.02	<0.02	<0.05	<0.01	<0.01	<0.01	<0.1	<0.01	<0.02	<0.5	<0.1	<0.02	0.02	0.01	<0.01	0.03
MW111	04/11/22	<0.02	<0.002	<0.002	<0.005	0.0042	0.0044	<0.001	<0.01	0.002	0.006	<0.05	<0.01	<0.002	0.012	0.01	0.0058	0.05
SW1	04/11/22	<0.02	<0.02	<0.02	<0.05	<0.01	<0.01	<0.01	<0.1	<0.01	<0.02	<0.5	<0.1	<0.02	0.02	<0.01	<0.01	0.02
SW1	04/11/22	<0.02	<0.002	<0.002	<0.005	0.003	0.0063	<0.001	<0.01	0.001	0.01	<0.05	<0.01	<0.002	0.019	0.0082	0.0089	0.061
SW2	04/11/22	<0.02	<0.02	<0.02	<0.05	<0.01	<0.01	<0.01	<0.1	<0.01	<0.02	<0.5	<0.1	<0.02	0.02	0.01	<0.01	0.03
SW2	04/11/22	<0.02	<0.002	<0.002	<0.005	0.004	0.0071	<0.001	<0.01	0.001	0.01	<0.05	<0.01	<0.002	0.018	0.0084	0.0084	0.061
Previous Resu	ults																	
BH101	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0058	0.003	0.002	0.012
3D1/20210908	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH103	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0072	0.0056	0.0025	0.016
BH111	08/09/21	-	-	-	-	-	-	-	-	-	-	-	-	-	0.006	0.0035	0.002	0.013

Notes:

* QA/QC replicate of sample listed directly below

PQL Practical quantitation limit

	A B C	D	E l	F JCL Statistic	G s for TRH F3	Н		J	K	L
1										
3	User Selected Options	;								
4	Date/Time of Computation	ProUCL 5.128/09/	2021 1	2:24:44 PM						
5	From File	WorkSheet.xls								
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Number of Bootstrap Operations	2000								
9										
10										
	C0									
12				Oomorrol						
13	Total	Number of Observ	ations	General : 11	Statistics		Numbo	r of Distinct Obs	onvations	2
14	l Oldi	Number of Observ	auons	11				r of Missing Obs		0
15		Mir	nimum	100			Number		Mean	124.5
16 17			kimum	370					Median	100
17			SD	81.41				Std. Error		24.55
19		Coefficient of Va	riation	0.654					kewness	3.317
20									I	
21				Normal C	OF Test					
22	S	Shapiro Wilk Test St	atistic	0.345			Shapiro Wi	lk GOF Test		
23	5% S	hapiro Wilk Critical	Value	0.85		Data No	Normal at	5% Significance	Level	
24		Lilliefors Test St	atistic	0.528				GOF Test		
25	5	% Lilliefors Critical		0.251			Normal at	5% Significance	Level	
26		Da	ita Not	Normal at 5	% Significand	ce Level				
27										
28	05% N		As	suming Norn	nal Distributio			ata di fan Olyayana		
29	95% NG	ormal UCL 95% Student's-		169				sted for Skewne ed-CLT UCL (Ch		191.1
30		35% Students	-LOCL	109				ed-t UCL (Johns		173.1
31									011-1070)	
32 33				Gamma (GOF Test					
34		A-D Test St	atistic	3.718		Anders	son-Darling	Gamma GOF Te	est	
35		5% A-D Critical	Value	0.731	Da	ata Not Gam	ma Distribut	ed at 5% Signifi	cance Lev	el
36		K-S Test St	atistic	0.538		Kolmogo	prov-Smirno	v Gamma GOF	Test	
37		5% K-S Critical	Value	0.256	Da	ata Not Gam	ma Distribut	ed at 5% Signified	cance Lev	el
38		Data Not	Gamn	na Distribute	d at 5% Sign	ificance Leve	əl			
39										
40				Gamma	Statistics				- 1	
41			(MLE)	5.133				star (bias correc	,	3.794
42		Theta hat		24.26			I heta	star (bias correc	,	32.83
43		nu hat		112.9				nu star (bias c MLE Sd (bias c		83.46
44	M	LE Mean (bias corr	ected)	124.5				MLE Sd (blas c Chi Square Val		63.94 63.41
45	۸ine	sted Level of Signifi	cance	0.0278		/	• •	djusted Chi Square var	` '	63.41 60.56
46			Janoo	0.0270						
47 48			Ass	suming Gam	ma Distributi	on				
48 49	95% Approximate Gamma	a UCL (use when n		163.9			usted Gam	ma UCL (use wh	en n<50)	171.6
49 50			,,					`	,	
51				Lognormal	GOF Test					
52	S	Shapiro Wilk Test St	atistic	0.345		Shap	iro Wilk Log	normal GOF Te	st	
53	5% S	hapiro Wilk Critical	Value	0.85		Data Not I	ognormal a	t 5% Significanc	e Level	
54		Lilliefors Test St		0.528			-	ormal GOF Test		
55	5	% Lilliefors Critical	Value	0.251		Data Not I	.ognormal a	t 5% Significanc	e Level	

	А	В	С	D	Е	F	G	Н		J	К	L
56					Data Not L	ognormal at	5% Significa	ince Level				
57												
58						-	I Statistics					
59				Minimum of L		4.605					logged Data	4.724
60			Ν	laximum of l	ogged Data	5.914				SD of	logged Data	0.394
61												
62							rmal Distribu	ition				
63					95% H-UCL	157.2				Chebyshev (I	,	164.5
64				Chebyshev (184.3			97.5%	Chebyshev (I	MVUE) UCL	211.8
65			99%	Chebyshev (MVUE) UCL	265.8						
66												
67					-		ion Free UCI					
68				[Data do not f	ollow a Disce	ernible Distrik	oution (0.05)				
69												
70					-		ribution Free	UCLs				
71					% CLT UCL	164.9					ckknife UCL	N/A
72				Standard Bo	•	N/A					tstrap-t UCL	N/A
73				5% Hall's Bo	•	N/A			95% I	Percentile Bo	otstrap UCL	N/A
74				95% BCA Bo	•	N/A						
75				ebyshev(Me	. ,	198.2				ebyshev(Me		231.5
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	277.8			99% Ch	ebyshev(Me	an, Sd) UCL	368.8
77												
78						Suggested	UCL to Use					
79				95% Stu	dent's-t UCL	169				or 95% Mo	dified-t UCL	173.1
80												
81	١	Note: Sugge	•	•				•		nost appropri	ate 95% UCL	
82						•	ta size, data (
83		These recor	mmendations	s are based ι	pon the resu	Its of the sin	nulation studi	ies summariz	zed in Singh,	Maichle, and	d Lee (2006).	
84	Ho	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	onal insight th	ne user may	want to cons	ult a statistici	an.
85												
												_

Appendix J

Laboratory Chain of Custody, Sample Receipt Advice and Certificate of Analysis Documentation

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 309798

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.02, Warriewood</u>
Number of Samples	5 Water
Date samples received	02/11/2022
Date completed instructions received	02/11/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	11/11/2022
Date of Issue	09/11/2022
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Giovanni Agosti, Group Technical Manager Josh Williams, Organics and LC Supervisor Loren Bardwell, Development Chemist Phalak Inthakesone, Organics Development Manager, Sydney Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Organochlorine Pesticides in Water						
Our Reference		309798-1	309798-2	309798-3	309798-4	309798-5
Your Reference	UNITS	MW101	MW103	MW111	SW1	SW2
Date Sampled		04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	08/11/2022	08/11/2022	08/11/2022	08/11/2022	08/11/2022
Date analysed	-	08/11/2022	08/11/2022	08/11/2022	08/11/2022	08/11/2022
alpha-BHC	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
НСВ	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
beta-BHC	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-BHC	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
delta-BHC	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDE	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan II	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDD	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDT	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methoxychlor	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	87	82	86	79	81

HM in water - dissolved						
Our Reference		309798-1	309798-2	309798-3	309798-4	309798-5
Your Reference	UNITS	MW101	MW103	MW111	SW1	SW2
Date Sampled		04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/11/2022	07/11/2022	07/11/2022	07/11/2022	07/11/2022
Date analysed	-	07/11/2022	07/11/2022	07/11/2022	07/11/2022	07/11/2022
Arsenic-Dissolved	µg/L	4	1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	1	4	1	4	2
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	µg/L	4	4	2	14	13

HM in water - total				_		
Our Reference		309798-1	309798-2	309798-3	309798-4	309798-5
Your Reference	UNITS	MW101	MW103	MW111	SW1	SW2
Date Sampled		04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/11/2022	07/11/2022	07/11/2022	07/11/2022	07/11/2022
Date analysed	-	07/11/2022	07/11/2022	07/11/2022	07/11/2022	07/11/2022
Arsenic-Total	μg/L	12	2	<1	<1	<1
Cadmium-Total	μg/L	0.2	<0.1	<0.1	<0.1	<0.1
Chromium-Total	μg/L	7	<1	<1	<1	<1
Copper-Total	µg/L	14	<1	<1	2	2
Lead-Total	μg/L	24	<1	<1	1	<1
Mercury-Total	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Total	μg/L	4	1	<1	<1	2
Zinc-Total	μg/L	250	6	7	15	16

Cations in water Dissolved			
Our Reference		309798-4	309798-5
Your Reference	UNITS	SW1	SW2
Date Sampled		04/11/2022	04/11/2022
Type of sample		Water	Water
Date digested	-	07/11/2022	07/11/2022
Date analysed	-	07/11/2022	07/11/2022
Calcium - Dissolved	mg/L	22	23
Magnesium - Dissolved	mg/L	7.5	7.7
Hardness	mgCaCO 3 /L	86	89

Miscellaneous Inorganics						
Our Reference		309798-1	309798-2	309798-3	309798-4	309798-5
Your Reference	UNITS	MW101	MW103	MW111	SW1	SW2
Date Sampled		04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Date analysed	-	04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
рН	pH Units	6.4	5.5	5.2	6.7	6.8

PFAS in Waters Extended						
Our Reference		309798-1	309798-2	309798-3	309798-4	309798-5
Your Reference	UNITS	MW101	MW103	MW111	SW1	SW2
Date Sampled		04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	06/11/2022	06/11/2022	06/11/2022	06/11/2022	06/11/2022
Date analysed	-	06/11/2022	06/11/2022	06/11/2022	06/11/2022	06/11/2022
Perfluorobutanesulfonic acid	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluoropentanesulfonic acid	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorohexanesulfonic acid - PFHxS	μg/L	<0.01	0.01	0.02	0.02	0.02
Perfluoroheptanesulfonic acid	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorodecanesulfonic acid	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorobutanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoropentanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorohexanoic acid	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluoroheptanoic acid	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorooctanoic acid PFOA	µg/L	<0.01	<0.01	0.01	<0.01	0.01
Perfluorononanoic acid	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorodecanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoroundecanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorododecanoic acid	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Perfluorotridecanoic acid	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluorotetradecanoic acid	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
4:2 FTS	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
6:2 FTS	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
8:2 FTS	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
10:2 FTS	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctane sulfonamide	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Methyl perfluorooctane sulfonamide	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
EtPerfluorooctanesulf- amid oacetic acid	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	100	101	100	102	100
Surrogate ¹³ C ₂ PFOA	%	96	95	96	96	95
Extracted ISTD ¹³ C ₃ PFBS	%	100	97	98	97	96
Extracted ISTD ¹⁸ O ₂ PFHxS	%	101	103	99	100	101
Extracted ISTD ¹³ C ₄ PFOS	%	101	101	102	100	103
Extracted ISTD ¹³ C ₄ PFBA	%	98	97	99	93	92

PFAS in Waters Extended						
Our Reference		309798-1	309798-2	309798-3	309798-4	309798-5
Your Reference	UNITS	MW101	MW103	MW111	SW1	SW2
Date Sampled		04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Type of sample		Water	Water	Water	Water	Water
Extracted ISTD ¹³ C ₃ PFPeA	%	97	97	97	97	97
Extracted ISTD ¹³ C ₂ PFHxA	%	106	101	100	101	97
Extracted ISTD ¹³ C ₄ PFHpA	%	98	101	98	99	95
Extracted ISTD ¹³ C ₄ PFOA	%	108	108	106	106	110
Extracted ISTD ¹³ C ₅ PFNA	%	111	109	112	111	110
Extracted ISTD ¹³ C ₂ PFDA	%	106	107	111	107	104
Extracted ISTD ¹³ C ₂ PFUnDA	%	114	120	108	114	112
Extracted ISTD ¹³ C ₂ PFDoDA	%	103	109	106	112	112
Extracted ISTD ¹³ C ₂ PFTeDA	%	80	81	76	79	82
Extracted ISTD ¹³ C ₂ 4:2FTS	%	121	116	111	116	115
Extracted ISTD ¹³ C ₂ 6:2FTS	%	101	101	102	102	103
Extracted ISTD ¹³ C ₂ 8:2FTS	%	115	113	113	119	120
Extracted ISTD ¹³ C ₈ FOSA	%	97	102	99	98	99
Extracted ISTD d ₃ N MeFOSA	%	98	101	96	98	101
Extracted ISTD d₅ N EtFOSA	%	104	106	102	101	102
Extracted ISTD d7 N MeFOSE	%	96	99	96	97	102
Extracted ISTD d ₉ N EtFOSE	%	98	102	95	97	94
Extracted ISTD d ₃ N MeFOSAA	%	111	114	116	114	115
Extracted ISTD d₅ N EtFOSAA	%	106	107	108	111	111
Total Positive PFHxS & PFOS	µg/L	<0.01	0.01	0.02	0.02	0.02
Total Positive PFOA & PFOS	µg/L	<0.01	<0.01	0.01	<0.01	0.01
Total Positive PFAS	µg/L	<0.01	0.01	0.03	0.02	0.03

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY CONT	ROL: Organoo	hlorine P	esticides in Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			08/11/2022	[NT]		[NT]	[NT]	08/11/2022		
Date analysed	-			08/11/2022	[NT]		[NT]	[NT]	08/11/2022		
alpha-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	100		
НСВ	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
beta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	99		
gamma-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Heptachlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	81		
delta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Aldrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	93		
Heptachlor Epoxide	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	96		
gamma-Chlordane	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
pp-DDE	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	90		
Dieldrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	96		
Endrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	76		
Endosulfan II	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
pp-DDD	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	82		
Endrin Aldehyde	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
pp-DDT	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	96		
Methoxychlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	75	[NT]		[NT]	[NT]	93		

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	309798-2
Date prepared	-			07/11/2022	1	07/11/2022	07/11/2022		07/11/2022	07/11/2022
Date analysed	-			07/11/2022	1	07/11/2022	07/11/2022		07/11/2022	07/11/2022
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	4	3	29	97	104
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	98	103
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	95	99
Copper-Dissolved	µg/L	1	Metals-022	<1	1	1	1	0	101	105
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	101	104
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	93	97
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	99	103
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	4	4	0	99	105

QUALITY	CONTROL:	HM in wa	ter - total		Duplicate				Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	309798-2
Date prepared	-			07/11/2022	1	07/11/2022	07/11/2022		07/11/2022	07/11/2022
Date analysed	-			07/11/2022	1	07/11/2022	07/11/2022		07/11/2022	07/11/2022
Arsenic-Total	µg/L	1	Metals-022	<1	1	12	11	9	103	94
Cadmium-Total	µg/L	0.1	Metals-022	<0.1	1	0.2	0.2	0	101	94
Chromium-Total	µg/L	1	Metals-022	<1	1	7	6	15	99	90
Copper-Total	µg/L	1	Metals-022	<1	1	14	14	0	105	93
Lead-Total	µg/L	1	Metals-022	<1	1	24	23	4	103	94
Mercury-Total	µg/L	0.05	Metals-021	<0.05	1	<0.05			90	[NT]
Nickel-Total	µg/L	1	Metals-022	<1	1	4	4	0	103	91
Zinc-Total	µg/L	1	Metals-022	<1	1	250	250	0	104	89

QUALITY	CONTROL:	HM in wa	ter - total			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	309798-4
Date prepared	-			[NT]	3	07/11/2022	07/11/2022			07/11/2022
Date analysed	-			[NT]	3	07/11/2022	07/11/2022			07/11/2022
Arsenic-Total	µg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Cadmium-Total	µg/L	0.1	Metals-022	[NT]	3	<0.1	[NT]			[NT]
Chromium-Total	µg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Copper-Total	µg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Lead-Total	µg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Mercury-Total	µg/L	0.05	Metals-021	[NT]	3	<0.05	<0.05	0		93
Nickel-Total	µg/L	1	Metals-022	[NT]	3	<1	[NT]			[NT]
Zinc-Total	µg/L	1	Metals-022	[NT]	3	7	[NT]		[NT]	[NT]

QUALITY CONTROL: Cations in water Dissolved						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			07/11/2022	[NT]			[NT]	07/11/2022	
Date analysed	-			07/11/2022	[NT]			[NT]	07/11/2022	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]			[NT]	99	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	102	

QUALITY COI		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			04/11/2022	[NT]		[NT]	[NT]	04/11/2022	
Date analysed	-			04/11/2022	[NT]		[NT]	[NT]	04/11/2022	
рН	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	100	[NT]

QUALITY CON	ITROL: PFA	S in Wate	ers Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			06/11/2022	[NT]		[NT]	[NT]	06/11/2022	
Date analysed	-			06/11/2022	[NT]		[NT]	[NT]	06/11/2022	
Perfluorobutanesulfonic acid	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	103	
Perfluoropentanesulfonic acid	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	105	
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	107	
Perfluoroheptanesulfonic acid	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	107	
Perfluorooctanesulfonic acid PFOS	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	103	
Perfluorodecanesulfonic acid	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	91	
Perfluorobutanoic acid	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	107	
Perfluoropentanoic acid	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	106	
Perfluorohexanoic acid	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	110	
Perfluoroheptanoic acid	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	112	
Perfluorooctanoic acid PFOA	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	104	
Perfluorononanoic acid	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	98	
Perfluorodecanoic acid	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	98	
Perfluoroundecanoic acid	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	97	
Perfluorododecanoic acid	µg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	98	
Perfluorotridecanoic acid	µg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	93	
Perfluorotetradecanoic acid	µg/L	0.5	Org-029	<0.5	[NT]		[NT]	[NT]	114	
4:2 FTS	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	103	
6:2 FTS	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	110	
8:2 FTS	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	112	
10:2 FTS	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	128	
Perfluorooctane sulfonamide	µg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	113	
N-Methyl perfluorooctane sulfonamide	µg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	103	
N-Ethyl perfluorooctanesulfon amide	µg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	101	
N-Me perfluorooctanesulfonamid oethanol	µg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	124	
N-Et perfluorooctanesulfonamid oethanol	µg/L	0.5	Org-029	<0.5	[NT]		[NT]	[NT]	123	
MePerfluorooctanesulf- amid oacetic acid	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	111	
EtPerfluorooctanesulf- amid oacetic acid	µg/L	0.02	Org-029	<0.02	[NT]		[NT]	[NT]	104	
Surrogate ¹³ C ₈ PFOS	%		Org-029	103	[NT]		[NT]	[NT]	101	
Surrogate ¹³ C ₂ PFOA	%		Org-029	98	[NT]		[NT]	[NT]	98	

QUALITY CO	NTROL: PFA	S in Wate		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	98	[NT]		[NT]	[NT]	91	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	97	[NT]		[TN]	[NT]	93	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	100	[NT]		[NT]	[NT]	99	
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	97	[NT]		[NT]	[NT]	96	
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	97	[NT]		[NT]	[NT]	94	
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	97	[NT]		[NT]	[NT]	92	
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	96	[NT]		[NT]	[NT]	92	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	101	[NT]		[NT]	[NT]	102	
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	109	[NT]		[NT]	[NT]	104	
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	106	[NT]		[NT]	[NT]	103	
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	108	[NT]		[NT]	[NT]	108	
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	105	[NT]		[NT]	[NT]	99	
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	81	[NT]		[NT]	[NT]	77	
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	108	[NT]		[NT]	[NT]	105	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	102	[NT]		[NT]	[NT]	98	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	120	[NT]		[NT]	[NT]	105	
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	100	[NT]		[NT]	[NT]	94	
Extracted ISTD d ₃ N MeFOSA	%		Org-029	92	[NT]		[NT]	[NT]	92	
Extracted ISTD d₅ N EtFOSA	%		Org-029	97	[NT]		[NT]	[NT]	92	
Extracted ISTD d7 N MeFOSE	%		Org-029	94	[NT]		[NT]	[NT]	88	

QUALITY CON		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	95	[NT]		[NT]	[NT]	91	[NT]
Extracted ISTD d₃ N MeFOSAA	%		Org-029	110	[NT]		[NT]	[NT]	105	[NT]
Extracted ISTD d₅ N EtFOSAA	%		Org-029	118	[NT]		[NT]	[NT]	107	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

TRACE METALS: In theory the total metal content should be higher than the dissolved metal content. However, in some samples this is not the case. The sample has been re-analysed for both Total and Dissolved metals and results have been confirmed.

Douglas Partners Geotechnics | Environment | Groundwater

coc 4/11 11:41

CHAIN OF CUSTODY DESPATCH SHEET

	Geolecimics										_			To: En	viroleh Se	-		
Projec		207253.0			Suburb		Warriew	<u>vood</u>						To: Envirolab Services 12 Ashley St, Chatswood NSW 2067				
	t Manager:	Nerilee E	dwards			Number:				Sampl		TG		Attn: Sample Receipt				
Email:				douglaspa		m.au; tom	.graham	@doug	laspartr	ers.con	1.au				mple Rec 2) 9910 62			samplereceipt@envirolab.com.au
	round time:				48 hour													nd store in accordance with FPM HAZID)
Prior	Storage: 🗋 F	ridge 🗌	Freezer	🗸 Esky 🗌		Do samp	oles co	ntain 'p	otenti	al' HB	M? 🔽	No	Yes	(If YES, t	nen nandle	, tran	sport al	nd store in accordance with FFM HAZID)
	Sai	mple ID		led	Sample Type	Container Type		_	_		/	Analyte	s					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Metals (Total)	Metals (Filtrable)	OCP	PFAS	Hardness	Hď						Notes/ Preservation/ Additional Requirements
)	MW101			4/11/22	w	G+P	Х	Х	x	X		X						
2	MW103			4/11/22	w	G+P	х	x	х	x		x						
7	MW111			4/11/22	w	G+P	x	х	х	х		X						
<u> </u>	SW1			4/11/22	w	G+P	x	х	x	x	X	X				ELI		Envirolab Services 12 Ashley St
5	SW2	┼──		4/11/22	w	G+P	x	х	х	X	X	x	1					Chalswood NSW 2067 Ph: (02) 9910 6200
		+													_	Dale Time	Receiv Receiv	209798 ad. 04/11-122. ed: 1205
		+		<u> </u>												Temp		CH MIDIEN,
		+-	<u> </u>													Sequi	rity: Inta	cepack ct/Broken/None
		+	<u> </u>		1						1							· · · ·
	· · · · · · · · · · · · · · · · · · ·	+-	<u>+</u>				<u>†</u>			1	1							
					<u> </u>				<u> </u>	<u> </u>	+		+		-	-+		
		+	┼── -	+	<u> </u>	{	<u> </u>	<u> </u>		┨───	+-	+ -	+ -	+ +				<u> </u>
		<u> </u>			<u> </u>	 	┼—				╂───	╂──	╂	+ - +		- +		
		_]	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u>}</u>	AB REC		<u> </u>	<u> </u>
	is to analyse								· ·				_				<u> </u>	
Num	per of sample					Transpo	orted to	<u>labor</u>	atory ł	oy:	TG				ab Ref. N		71.	nistue.
	results to:	Dougla	s Partner	s Pty Ltd		7							_		ato 8 Tir	Dy: met		41122 1205-
Addr			iitage Roa	d, West Ryde	NSW 21		(02) 98	309 066	6	01		TG			igned:	ne.	1	
Relin	quished by:	TG				Date:	4/11/2	022		Signe	: <u>a:</u>	16			igneu.	6	/	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards

Sample Login Details	
Your reference	207253.02, Warriewood
Envirolab Reference	309798
Date Sample Received	02/11/2022
Date Instructions Received	02/11/2022
Date Results Expected to be Reported	11/11/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Organochlorine Pesticides in Water	HM in water - dissolved	HM in water - total	Cations in water Dissolved	Hq	PFAS in Waters Extended
MW101	\checkmark	\checkmark	\checkmark		✓	\checkmark
MW103	1	\checkmark	\checkmark		✓	\checkmark
MW111	1	✓	✓		✓	\checkmark
SW1	✓	\checkmark	\checkmark	✓	✓	\checkmark
SW2	1	\checkmark	\checkmark	\checkmark	✓	\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 309798-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.02, Warriewood</u>
Number of Samples	additional analysis
Date samples received	02/11/2022
Date completed instructions received	24/11/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	01/12/2022				
Date of Issue	30/11/2022				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Alexander Mitchell Maclean, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 309798-A Revision No: R00

Page | 1 of 10

PFAS in Waters Trace Extended						
Our Reference		309798-A-1	309798-A-2	309798-A-3	309798-A-4	309798-A-5
Your Reference	UNITS	MW101	MW103	MW111	SW1	SW2
Date Sampled		04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	29/11/2022	29/11/2022	29/11/2022	29/11/2022	29/11/2022
Date analysed	-	29/11/2022	29/11/2022	29/11/2022	29/11/2022	29/11/2022
Perfluorobutanesulfonic acid	µg/L	0.002	0.002	0.004	0.0050	0.0047
Perfluoropentanesulfonic acid	µg/L	<0.001	<0.001	0.002	0.001	0.001
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.0045	0.0059	0.012	0.019	0.018
Perfluoroheptanesulfonic acid	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluorooctanesulfonic acid PFOS	µg/L	0.0024	0.0021	0.0058	0.0089	0.0084
Perfluorodecanesulfonic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorobutanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluoropentanoic acid	µg/L	0.006	0.004	0.006	0.01	0.01
Perfluorohexanoic acid	µg/L	0.0042	0.002	0.0044	0.0063	0.0071
Perfluoroheptanoic acid	µg/L	0.001	0.002	0.0042	0.003	0.004
Perfluorooctanoic acid PFOA	µg/L	0.0025	0.0045	0.010	0.0082	0.0084
Perfluorononanoic acid	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluorodecanoic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluoroundecanoic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorododecanoic acid	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Perfluorotridecanoic acid	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorotetradecanoic acid	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
4:2 FTS	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
6:2 FTS	µg/L	0.003	0.0004	0.002	<0.0004	<0.0004
8:2 FTS	µg/L	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
10:2 FTS	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorooctane sulfonamide	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
N-Methyl perfluorooctane sulfonamide	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
EtPerfluorooctanesulf- amid oacetic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Surrogate ¹³ C ₈ PFOS	%	98	99	101	103	101
Surrogate ¹³ C ₂ PFOA	%	128	125	120	126	124
Extracted ISTD ¹³ C ₃ PFBS	%	66	70	73	66	70
Extracted ISTD ¹⁸ O ₂ PFHxS	%	92	98	100	98	100
Extracted ISTD ¹³ C ₄ PFOS	%	76	82	83	81	83
Extracted ISTD ¹³ C ₄ PFBA	%	#	#	#	#	#

PFAS in Waters Trace Extended						
Our Reference		309798-A-1	309798-A-2	309798-A-3	309798-A-4	309798-A-5
Your Reference	UNITS	MW101	MW103	MW111	SW1	SW2
Date Sampled		04/11/2022	04/11/2022	04/11/2022	04/11/2022	04/11/2022
Type of sample		Water	Water	Water	Water	Water
Extracted ISTD ¹³ C ₃ PFPeA	%	43	43	54	39	36
Extracted ISTD ¹³ C ₂ PFHxA	%	89	91	102	82	79
Extracted ISTD ¹³ C ₄ PFHpA	%	103	111	114	108	106
Extracted ISTD ¹³ C ₄ PFOA	%	79	89	94	87	89
Extracted ISTD ¹³ C ₅ PFNA	%	73	94	99	95	98
Extracted ISTD ¹³ C ₂ PFDA	%	93	98	106	111	112
Extracted ISTD ¹³ C ₂ PFUnDA	%	48	83	91	103	105
Extracted ISTD ¹³ C ₂ PFDoDA	%	60	73	80	85	90
Extracted ISTD ¹³ C ₂ PFTeDA	%	67	91	95	103	114
Extracted ISTD ¹³ C ₂ 4:2FTS	%	126	126	133	118	111
Extracted ISTD ¹³ C ₂ 6:2FTS	%	149	166	159	169	175
Extracted ISTD ¹³ C ₂ 8:2FTS	%	119	117	107	139	148
Extracted ISTD ¹³ C ₈ FOSA	%	41	62	61	68	71
Extracted ISTD d ₃ N MeFOSA	%	98	101	96	98	101
Extracted ISTD d₅ N EtFOSA	%	104	106	102	101	102
Extracted ISTD d7 N MeFOSE	%	96	99	96	97	102
Extracted ISTD d ₉ N EtFOSE	%	98	102	95	97	94
Extracted ISTD d ₃ N MeFOSAA	%	67	95	89	122	124
Extracted ISTD d₅ N EtFOSAA	%	34	82	71	104	109
Total Positive PFHxS & PFOS	µg/L	0.0069	0.0080	0.018	0.028	0.027
Total Positive PFOS & PFOA	µg/L	0.0049	0.0066	0.016	0.017	0.017
Total Positive PFAS	µg/L	0.026	0.023	0.050	0.062	0.064

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY CONTR	OL: PFAS ir	n Waters [·]	Trace Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			29/11/2022	[NT]		[NT]	[NT]	29/11/2022	
Date analysed	-			29/11/2022	[NT]		[NT]	[NT]	29/11/2022	
Perfluorobutanesulfonic acid	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	109	
Perfluoropentanesulfonic acid	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	106	
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	105	
Perfluoroheptanesulfonic acid	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	112	
Perfluorooctanesulfonic acid PFOS	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	94	
Perfluorodecanesulfonic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	78	
Perfluorobutanoic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	99	
Perfluoropentanoic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	93	
Perfluorohexanoic acid	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	89	
Perfluoroheptanoic acid	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	102	
Perfluorooctanoic acid PFOA	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	92	
Perfluorononanoic acid	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	88	
Perfluorodecanoic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	94	
Perfluoroundecanoic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	84	
Perfluorododecanoic acid	µg/L	0.005	Org-029	<0.005	[NT]		[NT]	[NT]	100	
Perfluorotridecanoic acid	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	88	
Perfluorotetradecanoic acid	µg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	91	
4:2 FTS	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	102	
6:2 FTS	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	95	
8:2 FTS	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	99	
10:2 FTS	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	124	
Perfluorooctane sulfonamide	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	101	
N-Methyl perfluorooctane sulfonamide	µg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	103	
N-Ethyl perfluorooctanesulfon amide	µg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	101	
N-Me perfluorooctanesulfonamid oethanol	µg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	124	
N-Et perfluorooctanesulfonamid oethanol	µg/L	0.5	Org-029	<0.5	[NT]		[NT]	[NT]	123	
MePerfluorooctanesulf- amid oacetic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	98	
EtPerfluorooctanesulf- amid oacetic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	104	
Surrogate ¹³ C ₈ PFOS	%		Org-029	98	[NT]		[NT]	[NT]	98	
Surrogate ¹³ C ₂ PFOA	%		Org-029	110	[NT]		[NT]	[NT]	107	

QUALITY CONTR	ROL: PFAS ir	Naters	Trace Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	74	[NT]		[NT]	[NT]	72	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	88	[NT]		[NT]	[NT]	82	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	84	[NT]		[NT]	[NT]	84	
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	100	[NT]		[NT]	[NT]	99	
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	80	[NT]		[NT]	[NT]	80	
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	100	[NT]		[NT]	[NT]	98	
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	93	[NT]		[NT]	[NT]	92	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	100	[NT]		[NT]	[NT]	101	
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	109	[NT]		[NT]	[NT]	107	
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	89	[NT]		[NT]	[NT]	88	
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	88	[NT]		[NT]	[NT]	87	
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	77	[NT]		[NT]	[NT]	80	
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	68	[NT]		[NT]	[NT]	73	
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	119	[NT]		[NT]	[NT]	117	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	132	[NT]		[NT]	[NT]	129	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	117	[NT]		[NT]	[NT]	98	
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	62	[NT]		[NT]	[NT]	58	
Extracted ISTD d ₃ N MeFOSA	%		Org-029	92	[NT]		[NT]	[NT]	92	
Extracted ISTD d₅ N EtFOSA	%		Org-029	97	[NT]		[NT]	[NT]	92	
Extracted ISTD d7 N MeFOSE	%		Org-029	94	[NT]		[NT]	[NT]	88	

QUALITY CONTROL: PFAS in Waters Trace Extended						Duplicate				covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	95	[NT]		[NT]	[NT]	91	[NT]
Extracted ISTD d₃ N MeFOSAA	%		Org-029	86	[NT]		[NT]	[NT]	76	[NT]
Extracted ISTD d₅ N EtFOSAA	%		Org-029	83	[NT]		[NT]	[NT]	76	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Ming To

From:	Aileen Hie	
Sent:	Thursday, 24 November 2022 1:00 PM	
To:	Ming To	207:309798 A
Subject:	FW: Results for Registration 309798 207253.02, Warriewood	7A7: Standard.
Categories:	Additional	Due: 01/12/2022
	·	M7.
A job just trace PEAS		

A JOD, JUST TRACE PRAS

·

From: Nerilee Edwards <Nerilee.Edwards@douglaspartners.com.au> Sent: Thursday, 24 November 2022 12:59 PM To: Aileen Hie <AHie@envirolab.com.au> Subject: RE: Results for Registration 309798 207253.02, Warriewood

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Yes please

Nerilee Edwards | Senior Associate / Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: +61 414 769 011 | E: Nerilee.Edwards@douglaspartners.com.au

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

If you are not the intended recipient of this email, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of

From: Aileen Hie <<u>AHie@envirolab.com.au</u>> Sent: Thursday, 24 November 2022 12:55 PM To: Nerilee Edwards <<u>Nerilee.Edwards@douglaspartners.com.au</u>> Subject: RE: Results for Registration 309798 207253.02, Warriewood

Hi Nerilee

1-5

PFAS ok for trace. Do you want it logged in for testing?

Kind Regards,

Aileen Hie | Customer Service Supervisor | Envirolab Services (Monday to Friday 10am to 6pm)

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 E <u>AHle@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

Follow us on: LinkedIn | Facebook | Twitter

Samples will be analysed per our T&C's.	
From: Nerilee Edwards < <u>Nerilee.Edwards@douglaspartners.com.au</u> >	
Sent: Thursday, 24 November 2022 12:48 PM	
To: Aileen Hie < <u>AHie@envirolab.com.au</u> >	
Subject: RE: Results for Registration 309798 207253.02, Warriewood	

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

thanks

Nerilee Edwards | Senior Associate / Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: +61 414 769 011 | E: Nerilee.Edwards@douglaspartners.com.au

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

If you are not the intended recipient of this email, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of

From: Aileen Hie <<u>AHie@envirolab.com.au</u>> Sent: Thursday, 24 November 2022 12:24 PM To: Nerilee Edwards <<u>Nerilee.Edwards@douglaspartners.com.au</u>>; Samplereceipt <<u>Samplereceipt@envirolab.com.au</u>> Cc: Kurt Plambeck <<u>kurt.plambeck@douglaspartners.com.au</u>> Subject: RE: Results for Registration 309798 207253.02, Warriewood

Hi Nerilee

We can't do trace OCP as there's not enough sample left. PFAS should be ok but I'm just getting the lab to check the volume left in the PFAS bottle.

Kind Regards,

Aileen Hie | Customer Service Supervisor | Envirolab Services (Monday to Friday 10am to 6pm)

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 E <u>AHie@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

Follow us on	: LinkedIn	Facebook	<u>Twitter</u>
--------------	------------	----------	----------------

Samples will be analysed per our T&C's.

From: Nerilee Edwards <Nerilee.Edwards@douglaspartners.com.au>

Sent: Thursday, 24 November 2022 12:05 PM

To: Samplereceipt <<u>Samplereceipt@envirolab.com.au</u>>

Cc: Kurt Plambeck <<u>kurt.plambeck@douglaspartners.com.au</u>>

Subject: FW: Results for Registration 309798 207253.02, Warriewood

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Aileen,

Is it too late to get these tested for trace level OCP & PFAS?

ta

Nerilee Edwards | Senior Associate / Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | M: +61 414 769 011 | E: Nerilee.Edwards@douglaspartners.com.au

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

309798-A

If you are not the intended recipient of this email, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of

From: Nancy Zhang <<u>NZhang@envirolab.com.au</u>> Sent: Wednesday, 9 November 2022 6:00 PM To: Nerilee Edwards <<u>Nerilee.Edwards@douglaspartners.com.au</u>>; Tom Graham <<u>Tom.Graham@douglaspartners.com.au</u>> Subject: Results for Registration 309798 207253.02, Warriewood

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

Enquiries should be made directly to: customerservice@envirolab.com.au

How did we do? Send Feedback

Kind Regards,

Douglas Partners Geotechnics | Environment | Groundwater

coc 4/11 11:41

CHAIN OF CUSTODY DESPATCH SHEET

	Geolecimics										_			To: En	virolab Se	-		
Projec		207253.0			Suburb		Warriew	<u>vood</u>										M NSW 2067
	t Manager:	Nerilee E	dwards			Number:				Sampl		TG					atswoo	od NSW 2067
Email:				douglaspa		m.au; tom	.graham	@doug	laspartr	ers.con	1.au			Attn: Sa	mple Rec 2) 9910 62			samplereceipt@envirolab.com.au
	round time:				48 hour													nd store in accordance with FPM HAZID)
Prior	Storage: 🗋 F	ridge 🗌	Freezer	🗸 Esky 🗌		Do samp	oles co	ntain 'p	otenti	al' HBI	M? 🔽	No	Yes	(If YES, t	nen handle	, tran	sport al	nd store in accordance with FFM HAZID)
	Sai	mple ID		led	Sample Type	Container Type		_	_		/	Analyte	s					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	M - Materia G - glass Metals (Total) Metals (Filtrable) PFAS PFAS							Notes/ Preservation/ Additional Requirements					
)	MW101			4/11/22	w	G+P	Х	Х	x	X		X						
2	MW103			4/11/22	w	G+P	х	x	х	x		x						
7	MW111			4/11/22	w	G+P	x	х	х	х		X						
<u> </u>	SW1			4/11/22	w	G+P	x	х	x	x	X	X				ELI		Envirolab Services 12 Ashley St
5	SW2	┼──		4/11/22	w	G+P	x	х	х	X	X	x	1					Chalswood NSW 2067 Ph: (02) 9910 6200
		+													_	Dale Time	Receiv Receiv	209798 ad. 04/11-122. ed: 1205
		+		<u> </u>												Temp		CH MIDIEN,
		+-	<u> </u>													Sequi	rity: Inta	cepack ct/Broken/None
		+	<u> </u>		1						1							· · · ·
	· · · · · · · · · · · · · · · · · · ·	+-	<u>+</u>				<u>†</u>			1	1							
					<u> </u>				<u> </u>	<u> </u>	┼──		+		-	-+		
		+	┼── -	+	<u> </u>	{	<u> </u>	<u> </u>		┨───	+-	+ -	+ -	+ +				<u> </u>
		<u> </u>			<u> </u>	 	┼—				╂───	╂──	╂	+ - +		- +		
		_]		<u> </u>	<u> </u>	<u> </u>					<u>}</u>	AB REC		<u> </u>	<u> </u>
	etals to analyse:								· ·				_				<u> </u>	
Num	Number of samples in container: 5					Transported to laboratory by: TG								Lab Ref. No:				
	results to:	Dougla	s Partner	s Pty Ltd		ISW 211 Phone: (02) 9809 0666								Date & Time: 04/11/22 /205-				
Addr			iitage Roa	d, West Ryde	NSW 21		(02) 98	309 066	6	01		TG			igned:	ne.	1	
Relin	quished by:	TG				Date:	4/11/2	022		Signe	: <u>a:</u>	16			igneu.	6	/	

1 October 2004

TEST REPORT

Douglas Partners Pty Ltd

96 Hermitage Road WEST RYDE NSW 2114

Your Reference:37273, WarriewoodReport Number:31963

Attention: Nerilee Edwards

Dear Nerilee

The following samples were received from	n you on the date indicated.
Samples: Qty.	23 Soils, 1 Water
Date of Receipt of Samples:	24/09/04
Date of Receipt of Instructions:	24/09/04
Date Preliminary Report Faxed:	Not Issued

These samples were analysed in accordance with your written instructions. A copy of the instructions is attached with the analytical report.

The results and associated quality control are contained in the following pages of this report. Unless otherwise stated, solid samples are expressed on a dry weight basis (moisture has been supplied for your information only), air and liquid samples as received.

Should you have any queries regarding this report please contact the undersigned.

For sample 31963-6 Chrysotile Asbestos detected found as a 2mm fibre bundle loose in the soil.

Yours faithfully SGS ENVIRONMENTAL SERVICES

Jania Motani

Tania Notaras Manager – Sydney

NATA Endorsed Test Report This document may not be reproduced except in full. NATA Accredited Laboratory No. 2562

> SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services Botany Industrial Park Gate 3, Denison Street, Matraville 2036 NSW Australia t +61 (0)2 9666 1426 f +61 (0)2 9666 1364 url www.sgs.com

Page 1 of 18

REPORT NO:	31963
-------------------	-------

SGS Ref	Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
31963-1	1/0.5	<3	< 0.5	5	12	11	< 0.05	6	32
31963-2	2/0.2	<3	< 0.5	1	11	26	< 0.05	0.8	46
31963-3	2/1.0	<3	< 0.5	6	0.5	5	< 0.05	2	0.7
31963-4	3/0.5	12	0.9	4	2	10	< 0.05	1	7
31963-5	3/3.0	<3	< 0.5	4	< 0.5	4	< 0.05	0.6	< 0.5
31963-6	4/0.5	<3	< 0.5	4	21	28	0.06	3	47
31963-7	5/0.3	4	< 0.5	7	31	17	< 0.05	1	5
31963-8	5/1.5	<3	< 0.5	1	< 0.5	<2	< 0.05	0.3	< 0.5
31963-9	6/0.5	<3	< 0.5	1	4	9	< 0.05	0.7	93
31963-10	7/0.5	6	< 0.5	6	36	31	< 0.05	2	48
31963-11	8/0.3	<3	< 0.5	2	0.7	4	< 0.05	0.4	1
31963-12	9/0.1-0.5	<3	< 0.5	6	7	12	< 0.05	3	86
31963-13	10/0.2	8	< 0.5	9	23	34	0.08	6	170
31963-14	10/1.5	<3	< 0.5	2	< 0.5	2	< 0.05	1	3
31963-15	11/0.5	3	< 0.5	1	< 0.5	2	< 0.05	0.6	0.7
31963-16	12/0.5	<3	< 0.5	3	< 0.5	4	< 0.05	0.5	2
31963-17	13/0.4	4	< 0.5	6	4	39	< 0.05	0.5	26
31963-18	14/0.1	<3	< 0.5	3	2	5	< 0.05	0.9	7
31963-19	15/0-0.5	12	< 0.5	8	14	26	< 0.05	3	45
31963-20	15/3.0	3	< 0.5	12	8	16	< 0.05	4	0.8
31963-21	Z3	<3	< 0.5	7	14	12	< 0.05	7	37
31963-22	Z8	<3	< 0.5	3	< 0.5	4	< 0.05	0.5	2
31963-24	9/1.5	9	0.5	6	21	37	< 0.05	3	240

SGS Ref	Sample ID	TRH C6 - C9 P&T	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	Benzene	Toluene	Ethylbenzene	Total Xylenes	Surrogate
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
31963-1	1/0.5	<20	<20	89	82	< 0.50	< 0.50	< 0.50	<1.5	80
31963-2	2/0.2	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	89
31963-4	3/0.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	76
31963-6	4/0.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	82
31963-8	5/1.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	80
31963-9	6/0.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	78
31963-10	7/0.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	78
31963-11	8/0.3	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	75
31963-13	10/0.2	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	87
31963-15	11/0.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	70
31963-16	12/0.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	82
31963-17	13/0.4	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	88
31963-18	14/0.1	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	77
31963-19	15/0-0.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	72
31963-24	9/1.5	<20	<20	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	80

SGS Ref	Sample ID	HCB	alpha-BHC	gamma-BHC(Lindane)	Heptachlor	Aldrin	beta-BHC	delta-BHC	Heptachlor Epoxide	o,p'-DDE	alpha-Endosulfan	trans-Chlordane	cis-Chlordane	trans-Nonachlor	p.p'-DDE	Dieldrin
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
31963-1	1/0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2
31963-2	2/0.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-4	3/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-6	4/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-8	5/1.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-9	6/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-10	7/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.70	< 0.10
31963-11	8/0.3	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-13	10/0.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-15	11/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-16	12/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-17	13/0.4	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-18	14/0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-19	15/0-0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
31963-24	9/1.5	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10

PROJECT: 37273, Warriewood

SGS Ref	Sample ID	Endrin	0,p-'q,o	0,p'-DDT	beta-Endosulfan	p,p.'-DDD	p,p'-DDT	Endosulfan Sulphate	Endrin Aldehyde	Methoxychlor	Endrin Ketone	Surrogate
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
31963-1	1/0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	97
31963-2	2/0.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	109
31963-4	3/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	88
31963-6	4/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	98
31963-8	5/1.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	88
31963-9	6/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	81
31963-10	7/0.5	< 0.10	< 0.10	0.20	< 0.10	1.3	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	102
31963-11	8/0.3	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	100
31963-13	10/0.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	109
31963-15	11/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	101
31963-16	12/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	103
31963-17	13/0.4	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	106
31963-18	14/0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	105
31963-19	15/0-0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	110
31963-24	9/1.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	107

SGS Ref	Sample ID	Chlorpyrifos	Fenitrothion	Bromofos Ethyl	Ethion	Surrogate
		mg/kg	mg/kg	mg/kg	mg/kg	%
31963-1	1/0.5	< 0.2	< 0.2	< 0.2	< 0.2	97
31963-2	2/0.2	< 0.10	< 0.10	< 0.10	< 0.10	109
31963-4	3/0.5	< 0.10	< 0.10	< 0.10	< 0.10	88
31963-6	4/0.5	< 0.10	< 0.10	< 0.10	< 0.10	98
31963-8	5/1.5	< 0.10	< 0.10	< 0.10	< 0.10	88
31963-9	6/0.5	< 0.10	< 0.10	< 0.10	< 0.10	81
31963-10	7/0.5	< 0.10	< 0.10	< 0.10	< 0.10	102
31963-11	8/0.3	< 0.10	< 0.10	< 0.10	< 0.10	100
31963-13	10/0.2	< 0.10	< 0.10	< 0.10	< 0.10	109
31963-15	11/0.5	< 0.10	< 0.10	< 0.10	< 0.10	101
31963-16	12/0.5	< 0.10	< 0.10	< 0.10	< 0.10	103
31963-17	13/0.4	< 0.10	< 0.10	< 0.10	< 0.10	106
31963-18	14/0.1	< 0.10	< 0.10	< 0.10	< 0.10	105
31963-19	15/0-0.5	< 0.10	< 0.10	< 0.10	< 0.10	110
31963-24	9/1.5	< 0.10	<0.10	<0.10	< 0.10	107

SGS Ref	Sample ID	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Arochlor 1262	Arochlor 1268	Surrogate
		mg/kg	%								
31963-1	1/0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	97
31963-2	2/0.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	109
31963-4	3/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	88
31963-6	4/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	98
31963-8	5/1.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	88
31963-9	6/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	81
31963-10	7/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	102
31963-11	8/0.3	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	100
31963-13	10/0.2	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	109
31963-15	11/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	101
31963-16	12/0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	103
31963-17	13/0.4	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	106
31963-18	14/0.1	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	105
31963-19	15/0-0.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	110
31963-24	9/1.5	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	107

SGS Ref	Sample ID	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo[a]anthracene	Chrysene	Benzo[b,k]fluoranthene	Benzo[a]pyrene	Indeno[123-cd]pyrene	Dibenzo[ah]anthracene	Benzo[ghi]perylene
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
31963-1	1/0.5	< 0.1	0.3	< 0.1	< 0.1	0.1	0.5	2.7	2.6	1.6	1.4	2.8	2.4	2.8	0.2	1.5
31963-2	2/0.2	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.2	< 0.1	< 0.1	< 0.2	0.08	0.1	< 0.1	<0.1
31963-4	3/0.5	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.2	< 0.05	< 0.1	< 0.1	<0.1
31963-6	4/0.5	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.2	< 0.05	<0.1	<0.1	<0.1
31963-8	5/1.5	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.2	< 0.05	< 0.1	<0.1	<0.1
31963-9	6/0.5	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.2	< 0.05	<0.1	<0.1	<0.1
31963-10	7/0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	<0.1
31963-11	8/0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	<0.1
31963-13	10/0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	<0.1
31963-15	11/0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	<0.1
31963-16	12/0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	<0.1
31963-17	13/0.4	< 0.1	0.1	< 0.1	< 0.1	0.2	0.1	0.6	0.6	0.4	0.3	0.5	0.3	0.4	< 0.1	0.2
31963-18	14/0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	<0.1
31963-19	15/0-0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.05	< 0.1	< 0.1	<0.1
31963-24	9/1.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.2	0.1	< 0.1	< 0.2	0.08	< 0.1	< 0.1	<0.1

SGS Ref	Sample ID	Total +ve PAH	Surrogate
		mg/kg	%
31963-1	1/0.5	19	121
31963-2	2/0.2	0.58	121
31963-4	3/0.5	0.00	129
31963-6	4/0.5	0.00	125
31963-8	5/1.5	0.00	126
31963-9	6/0.5	0.00	126
31963-10	7/0.5	0.00	130
31963-11	8/0.3	0.00	120
31963-13	10/0.2	0.00	126
31963-15	11/0.5	0.00	123
31963-16	12/0.5	0.00	126
31963-17	13/0.4	3.7	123
31963-18	14/0.1	0.00	129
31963-19	15/0-0.5	0.00	131
31963-24	9/1.5	0.48	129

Ś

PROJECT: 37273, Warriewood

REPORT NO: 31963

		Total Phenolics (as Pheno
SGS Ref	Sample ID	Tot
		mg/kg
31963-1	1/0.5	< 0.50
31963-6	4/0.5	< 0.50
31963-8	5/1.5	< 0.50
31963-9	6/0.5	< 0.50
31963-10	7/0.5	< 0.50
31963-15	11/0.5	< 0.50
31963-17	13/0.4	< 0.50
31963-19	15/0-0.5	< 0.50

SGS Ref	Sample ID	Sample Description	Asbestos ID in soil
31963-6	4/0.5	20g	Chryso
		Sand,	tile
		Soil,	asbesto
		Rock	s
			detecte
			d
31963-13	10/0.2	20g	No
		Sand,	asbesto
		Soil,	S
		Rock	detecte
			d
31963-16	12/0.5	20g	No
		Sand,	asbesto
		Soil	S
			detecte
			d

Metals - Determination of various metals by ICP-AES following aqua regia digest. Mercury - Determination of Mercury by Cold Vapour Generation Atomic Absorption Spectroscopy. BTEX/TRH C6-C9 - Determination by Purge and Trap Gas Chromatography with Flame Ionisation Detection (FID) and Photo Ionisation Detection (PID). The surrogate spike used is aaa-trifluorotoluene.
BTEX/TRH C6-C9 - Determination by Purge and Trap Gas Chromatography with Flame Ionisation Detection (FID) and Photo Ionisation Detection (PID). The surrogate spike used is aaa-trifluorotoluene.
FID) and Photo Ionisation Detection (PID). The surrogate spike used is aaa-trifluorotoluene.
TRH - Determination of Total Recoverable Hydrocarbons by gas chromatography following extraction with DCM/Acetone for solids and DCM for liquids.
OC/OP/PCB - Determination of a suite of Organchlorine Pesticides, Chlorinated Organo-phosphorus Pesticides and Polychlorinated Biphenyls (PCB's) by sonication extraction using dichloromethane for waters or acetone / hexane for soils followed by Gas Chromatographic separation with Electron Capture Detection (GC /ECD). The surrogate spike used is 2,4,5,6-Tetrachloro-m-xylene.
PAHs by GC/MS - Determination of Polynuclear Aromatic Hydrocarbons (PAH's) by Gas Chromatography / Mass Spectrometry following extraction with dichloromethane or dichloromethane/acetone. The surrogate spike used is p-Terphenyl-d14.
Total Phenolics - determined colorimetrically following steam stripping of the sample. Based on APHA 20th ED, 5530-D.
Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques. Accreditation does not cover the identification of Synthetic Mineral Fibre.
Air Dry - Cover air drying at 40 C, moisture content at 103 C - 105 C, wet slurrying, compositing and preparation of a 1:5 soil suspension.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Acid Extractable Metals in Soil						Base+Duplicate+%RPD		Duplicate+% RPD
Arsenic	mg/kg	3	SEM-010	<3	31963-1	<3 <3	31963-2	96 98 RPD: 2
Cadmium	mg/kg	0.5	SEM-010	<0.5	31963-1	<0.5 <0.5	31963-2	104 106 RPD: 2
Chromium	mg/kg	0.5	SEM-010	<0.5	31963-1	5 6 RPD: 18	31963-2	98 99 RPD: 1
Copper	mg/kg	0.5	SEM-010	<0.5	31963-1	12 12 RPD: 0	31963-2	102 102 RPD: 0
Lead	mg/kg	2	SEM-010	<2	31963-1	11 11 RPD: 0	31963-2	98 100 RPD: 2
Mercury	mg/kg	0.05	SEM-005	<0.05	31963-1	<0.05 <0.05	31963-2	96 98 RPD: 2
Nickel	mg/kg	0.2	SEM-010	<0.2	31963-1	6 7 RPD: 15	31963-2	98 100 RPD: 2
Zinc	mg/kg	0.5	SEM-010	<0.5	31963-1	32 34 RPD: 6	31963-2	100 98 RPD: 2
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
TRH/BTEX in Soil						Base+Duplicate+%RPD		Duplicate+% RPD
TRH C6 - C9 P&T	mg/kg	20	SEO-017	<20	31963-11	<20 <20	31963-17	70 64 RPD: 9
TRH C10 - C14	mg/kg	20	SEO-020	<20	31963-11	<20 <20	31963-17	85 86 RPD: 1
TRH C15 - C28	mg/kg	50	SEO-020	<50	31963-11	<50 <50	31963-17	81 80 RPD: 1
TRH C29 - C36	mg/kg	50	SEO-020	<50	31963-11	<50 <50	31963-17	93 93 RPD: 0
Benzene	mg/kg	0.5	SEO-017	<0.50	31963-11	<0.50 <0.50	31963-17	72 64 RPD: 12
Toluene	mg/kg	0.5	SEO-017	<0.50	31963-11	<0.50 <0.50	31963-17	71 63 RPD: 12
Ethylbenzene	mg/kg	0.5	SEO-017	<0.50	31963-11	<0.50 <0.50	31963-17	67 69 RPD: 3
Total Xylenes	mg/kg	1.5	SEO-017	<1.5	31963-11	<1.5 <1.5	31963-17	81 76 RPD: 6
Surrogate	%		SEO-017	[NT]	31963-11	75 88 RPD: 16	31963-17	78 74 RPD: 5

QUALITY CONTROL OC Pesticides in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate Base+Duplicate+% RPD	Spike Sm#	Matrix Spike % Recovery Duplicate+% RPD
HCB	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
alpha-BHC	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
gamma-BHC(Lindane)	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
Heptachlor	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	89 74 RPD: 18
Aldrin	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	89 72 RPD: 21
beta-BHC	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
delta-BHC	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	89 89 RPD: 0
Heptachlor Epoxide	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
o,p'-DDE	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
alpha-Endosulfan	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
trans-Chlordane	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
cis-Chlordane	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
trans-Nonachlor	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
<i>p,p'</i> -DDE	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
Dieldrin	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	91 72 RPD: 23
Endrin	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
o,p'-DDD	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
o,p'-DDT	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
beta-Endosulfan	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
<i>p,p'</i> -DDD	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
<i>p,p'</i> -DDT	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	91 88 RPD: 3
Endosulfan Sulphate	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	94 72 RPD: 27
Endrin Aldehyde	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
Methoxychlor	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]

QUALITY CONTROL OC Pesticides in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate Base+Duplicate+% RPD	Spike Sm#	Matrix Spike % Recovery Duplicate+% RPD
Endrin Ketone	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
Surrogate	%		SEO-005	[NT]	31963-4	88 82 RPD: 7	31963-15	91 81 RPD: 12
QUALITY CONTROL OP Pesticides in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate Base+Duplicate+%RPD	Spike Sm#	Matrix Spike % Recovery Duplicate+% RPD
Chlorpyrifos	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	93 76 RPD: 20
Fenitrothion	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
Bromofos Ethyl	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
Ethion	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-15	[NT]
Surrogate	%		SEO-005	[NT]	31963-4	88 82 RPD: 7	31963-15	91 81 RPD: 12
QUALITY CONTROL PCBs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate Base+Duplicate+%RPD	Spike Sm#	Matrix Spike % Recovery Duplicate+% RPD
Arochlor 1016	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	[NT]
Arochlor 1221	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	[NT]
Arochlor 1232	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	[NT]
Arochlor 1242	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	[NT]
Arochlor 1248	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	[NT]
Arochlor 1254	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	105 110 RPD: 5
Arochlor 1260	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	[NT]
Arochlor 1262	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	[NT]
Arochlor 1268	mg/kg	0.1	SEO-005	<0.10	31963-4	<0.10 <0.10	31963-2	[NT]
Surrogate	%		SEO-005	[NT]	31963-4	88 82 RPD: 7	31963-2	83 80 RPD: 4

QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate Base+Duplicate+% RPD	Spike Sm#	Matrix Spike % Recovery Duplicate+% RPD
Naphthalene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	93 91 RPD: 2
Acenaphthylene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	100 98 RPD: 2
Acenaphthene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	93 91 RPD: 2
Fluorene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	[NT]
Phenanthrene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	92 92 RPD: 0
Anthracene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	111 112 RPD: 1
Fluoranthene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	106 106 RPD: 0
Pyrene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	108 108 RPD: 0
Benzo[a]anthracene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	[NT]
Chrysene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	[NT]
Benzo[b,k]fluoranthene	mg/kg	0.20	SEO-030	<0.2	31963-11	<0.2 <0.2	31963-16	[NT]
Benzo[a]pyrene	mg/kg	0.050	SEO-030	<0.05	31963-11	<0.05 <0.05	31963-16	113 110 RPD: 3
Indeno[123-cd]pyrene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	[NT]
Dibenzo[ah]anthracene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	[NT]
Benzo[ghi]perylene	mg/kg	0.10	SEO-030	<0.1	31963-11	<0.1 <0.1	31963-16	[NT]
Total +ve PAH's	mg/kg	0	SEO-030	0.00	31963-11	0.00 0.00	31963-16	[NT]
Surrogate	%		SEO-030	[NT]	31963-11	120 125 RPD: 4	31963-16	124 129 RPD: 4

QUALITY CONTROL CN, Phenolics	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate Base+Duplicate+% RPD	Spike Sm#	Matrix Spike % Recovery Duplicate+% RPD
Total Phenolics (as Phenol)	mg/kg	0.5	SEI-065	<0.50	31963-17	<0.50 <0.50	31963-19	89 90 RPD: 1
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate Base+Duplicate+%RPD		
Moisture	%		SEP-001	[NT]	31963-4	13 13 RPD: 0		
QUALITY CONTROL Moisture	UNITS	Dup. Sm#	Duplicate Base:Duplicate:					
Moisture	sture %		12 12 RPI	D: 0				

Result Codes

 [INS]
 :
 Insufficient Sample for this test

 [NR]
 :
 Not Requested

 [NT]
 :
 Not tested

[HBG] : Results not Reported due to High Background Interference

* : Not part of NATA Accreditation

[N/A] : Not Applicable

Result Comments

ASBESTOS NB. Even after disintegration of certain bulk samples (vinyl tiles and bituminous type materials), the detection, of fibres may be difficult when using Polarised Light Microscopy and Dispersion Staining Techniques. This may be due to the matrix of the sample (uneven distribution), or fine fibres that are difficult to detect and positively identify.

OC/OP/PCBs in Soil level of reporting for Sample 1 raised due to matrix interference.

Date Organics extraction commenced: 28/09/04

NATA Accreditation No. 4361

Quality Control Protocol

Reagent Blank: Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. For larger projects, a reagent blank is prepared and analysed with every 20 samples.

Duplicate: A separate portion of a sample being analysed which is treated the same as the other samples in the batch. A duplicate is prepared at least every 20 samples.

Matrix Spike Duplicates: Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and prior to the extraction/digestion procedure. They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water (or Milli-Q water) may be used. A duplicate spiked sample is prepared at least every 20 samples. Surrogate Spike: Added to all samples requiring analysis for organics (where relevant) prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Internal Standard: Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Control Standards: Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity.

Additional QC Samples: A calibration standard and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.

CHAIN OF CUSTODY DESPATCH SHEET

7 /N	Douglas Partners Geolechnics · Environment · Groundwaler
N'A	Geolechnics · Environment · Groundwater

1

Project N Project N DP Cont Prior Sto	vo: act P	erso		12 Jenil	1						•••••		Bo Ga Ph: 96 Attn: At	otany Teo ate 3, De	hnical Co nison Str Fax: S	Services entre, Orica Indu eet, MATRAVIL 9666 1364	ustrial Park LE NSW 2	2036
	Sam	ple		1. A.			Ino	ganics		Organics Total / BTEX/ OCs/					· · · T À	TCLP	Notes	
Sample ID	Type S-soil W-wat	l	Lab ID	H. W.	Cd	Cr	Cu	Pb	Hg	Zn	Ni	Total / GS/MS Phenol	BTEX/ TPH	OCs/ OPs/ PCBs	PAHs	cisbestes Other		
1/0.5	5	î	-1							t.	;			\checkmark	\sim			
210.2	1		-2											\checkmark	\sim			
2/10			-3															
30.5			-4				<u> </u>						\sim	~	~			
33.0	. 1		-5	\sim														
610.5			-6									\checkmark	\sim	<u> </u>		1		
5/0.3			-7	~														_
5/1.5			-8	1							·		<u></u>					
610.5			-9										✓	<u> </u>				
710.5			- 10										<u> </u>				·	_
810.3	7		-11															
PQL (S)	mg/k	g	ł:	0.05	1	5	3	5	0.01	5		0.5/*	*	*	*			
PQL (W)	mg/L			0.001	0.01	0.05	0.03	0.05	0.0005	0.01		0.05/* ECEIVED		<u> </u>	Send re	esults to:		Щ
PQL = pract	lical qu	antita	ition lim	it, *As	per La	borator	y Metho	bd		SAM Pléa	PLES R se sign a	and date to	acknowle	dge	Dougla	s Partners Pty	b	
Date reling	uished	d:	241	21.2.2						recei	pt of sar	nples and r	eturn by fa	ax	Addres	esults to: s Partners Pty Lt s:	GS	
l otal numb	per or s	samp	oles jn o	containt							- 1	SG.				Receive	ed 24/0	9104
Results rec	nuired	bv:	ster	يتراث من	x &											By b	J.G	
Relinquish	ed by:		<u>M-</u> 2	-0. w.o.	<u>v 4 S</u>	•••••				Date	24.9	. 01 Lab	Ref: 315	162	Fax:	-	4-15	anth
Signature:	:	2				•••		<u>.</u>								Samples		ant form
FPM - EN																Ce)Cool	er Pack F	May ember 2003

CHAIN OF CUSTODY DESPATCH SHIEET

(]	51	Douglas Partners	
1	1	Genlechnics · Environment · Groundwaler	

Project N Project N DP Cont Prior Sto	lo: act Perso		1.2.	1					•••••		• • • • • • • •	Bo G Ph: 96 Attn: At	otany Teo	hnical C nison Sti Fax:		strial Park E NSW 2	2036	<u></u>
Sample D	Sample Type S-soil W-water	Lab ID	TIM S	Cd	Cr	Inor Cu	ganics	Hg	Zn	Ni	Organics Total / GS/MS Phenol		OCs/ OPs/ PCBs	PAHs	er bezons	TCLP	Notes	
10-10-16 10-12-	<	-12	$\langle \langle \langle$: :					1			
10/15		-14				-	1			· · · · · · · · · · · · · · · · · · ·	~							
1/2-5	•	-16	~								./			\/. \/.				
13/0.4		-18																
15 <u> C-C</u> 1 15 3×0		-19 -20																
Z3 Z3		-21										*		*		-		
PQL (S) PQL (W)	mg/kg mg/L		0.05	1 0.01	5 0.05	3 0.03	5	0.01	5 0.01	APLES F	0.5/* 0.05/* RECEIVED	*	A	Send	results to:	-		
PQL = prac Date relind Total numl Results re- Relinquish Signature:	quished: per of san quired by: ed by:	ples in	 contain 	Detect	lion Lim	nıl			Plea	ase sign eipt of sa	and date to mples and	o acknowl return by	tax	Dougl Addre	as Partners Pty Ltd			

CHAIN OF CUSTODY DESPATCH SHEET

Douglas Partners Geolechnics - Environment - Groundwaler

Project I Project I DP Cont Prior Sto	Vame: No: tact Persc prage:	ری بر esky	() () () () () () () () () () () () () (ری رہے۔ ا_ے وہ/ she	्र Ived (o	circle)	· · · · · · · · · · · · · · · · · · ·			••••••		B G Ph: 9 Attn: A	otany Te Sate 3, De	chnical C nison Sti Fax:	Services entre, Orica In reet, MATRAV 9666 1364	idustrial Park ILLE NSW 2	2036
	Inorganics										Organics				TCLP	Notes	
Sample ID	Sample Type S-soil W-water	Lab ID	HU H	Cd	Cr	Cù	Pb 1	Hg	Zn	Ni	Total / GS/MS Phenol	BTEX/ TPH	OCs/ OPs/ PCBs	PAHs	Other		PLS filter
A	L	- 23										: :					3 60161
7115	$\frac{w}{5}$	-24			:									~			
· · · · ·											-						
· · · · ·																	
			<u> </u>								_						
																	-
			-														
		-	_		-								*	*			
POL (S)	 mg/kg		0.05	1	5	3	5	0.01	5		0.5/*		*	*		-	
PQL (W)	mg/L		0.001	0.01	0.05	0.03 v Melho	0.05	0.0005	0.01 SAI	MPLES R	0.05/* RECEIVED			Send r	esults to: as Partners Pty		
	ctical quant	· · .	1010	Detecti	ON LINI	l I			Ple rec	ase sign eipt of sa	and date to mples and	o ačknowl return by	edge fax	Addres			
		1	acataia	or: -					1	nature:	S.C.						
D //	iber of san equired by hed by:		is to	(YV)					Dal	e: 24.9	 Lal	b Ref:?	19.63	. Fax:			
															<u>.</u>		

SGS Environmental Services Botany Industrial Park Gate 3, Denison St, Matraville NSW 2036 Telephone Number : (61 2) 9666 1426 Fax Number : (61 2) 9666 1364

SAMPLE RECEIPT CONFIRMATION

COMPANY	:	Douglas Partners Pty Ltd	FAX NO.	:	9809 4095
ATTENTION	:	Nerilee Edwards	PAGES	:	1
FROM	:	Aileen Hie	DATE	:	24/09/04

This is to confirm that samples for Project **37273**, **Warriewood** were received on **24/09/04** the results are expected to be ready on **1/10/04**. Please quote SGS Reference: **31963** when making enquiries regarding this project. Please refer to below which details information about the integrity of the samples and other useful information.

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples, unless otherwise instructed.

YES
YES
YES
YES
Cool
Ice
SGS
YES
Standard
YES

Comments:

The signed chain of custody will be returned to you with the original report.

The contents of this facsimile (including attachments) are privileged and confidential. Any unauthorised use of the contents is expressly prohibited. If you have received the document in error, please advise by telephone (reverse charges) immediately then shred the document. Thank you.

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 207253.01					Subur		Warrie	wood							To: Envirolab Services					
	ct Manager:					Number:					Samp	ler:	A.Sper	ncer		12 Ash	ley St, C	Chatswood NSW 2067		
Email													Attn:	Sample	e Receip	ot				
<u></u>	round time:				48 hour			Same day							Contact:	(02) 99	10 6200	Ssamplereceipt@envirolab.com.au		
Prior	Storage: 🗌 Fri	idge 🗌	Freezer	🗹 Esky		o samples contain 'potential' HBM? 🗌 No 🗹 Yes (If YES, then handle, transport and store in accordance with FPM HAZID)								accordance with FPM HAZID)						
	Sar	nple ID		pled	Sample Type	Container Type						Analyte	es							
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	On hold	Combo 8A (NEPC Asb)	Combo 8A	PFAS (short)	pH, CEC	Asbestos (NEPC)	metals, PAH	Phenoxý Acid Herbicides	Glyphosate Triazine Herbicides	Combo 8		Notes/ Preservation/ Additional Requirements		
1	BH104	0	0.1	01/09/21	S	G/P		x												
2	BH104	0.4	0.5	01/09/21	S	G	1			×						х				
3 ·	BH104	1	1.2	01/09/21	S	G/P	х			×										
4.	BH105	0.01	0.1	01/09/21	s	G/P		x		-										
5 '	BH105	0.4	0.5	01/09/21	S	G/P			X		Х			x	X					
6	BH105	0.9	1	01/09/21	s	G/P	х				_									
7	BH107	0	0.1	01/09/21	S	G/P		x			_ X					-				
8	BH107	0.4	0.5	01/09/21	S	G/P	Х													
9	BH107	0.9	1	01/09/21	S	G/P	Х													
10	BH108	0	.0.1	01/09/21	S	G/P		х		x		_		х	х					
11	BH108	0.4	0.5	01/09/21	S	G/P	X					_								
12	BH108	0.9	1	01/09/21	S	G/P				х	_						-			
13	BH104	0.3	0.6	01/09/21	S	Р					_	х								
├── ┘	BD4/20210901			01/09/21	S	G										Х				
	s to analyse: er of sample			r, Cu, Pb,		<u>Ni, Zn)</u> Transpo	rted to	labora	tony b						LAB RE Lab Ref			277008		
			Partners	Ptv Ltd		папэро			lory D	<u>y.</u>			_		Receive			7700£ CH		
Addre				West Ryde I	NSW 211	Phone:	(02) 98	09 0666				~						9/2021 14:30		
	uished by:					Date:				Signed	l:		- ·		Signed:			-11 2021 14-30		
FPM - E	NVID/Form COC	02								Page 1 (of 2						0210	0912021 1348 500 Rev5/February 20		

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 207253.01												To:	To: Envirolab Services					
Proje	ct Manager:	Nerilee I	Edwards		Order Number: Dispatch date:							12 Ashley St, Chatswood NSW 2067						
	Sample ID					Sample Container Type Type Analytes												
	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	On hold	Combo 8A (NEPC Asb)	Combo 8A	PFAS (short)	pH, CEC	Asbestos (NEPC)	metals, PAH	Phenoxy Acid Herbicides	Glyphosate Triazine Herbicides	Combo 8		Notes/ Preservation/ Additional Requirements 277 <i>0</i> 08
15	BD5/20210901			01/09/21	s	G	Х											
16	BH104	0.9	1	01/09/21	s	G	Х											
-																		
			·															
ļ																		
L																		
	; 																	
								-										· · · · · · · · · · · · · · · · · · ·

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards, Alyssa Spencer

Sample Login Details	
Your reference	207253.01, Warriewood
Envirolab Reference	277008
Date Sample Received	01/09/2021
Date Instructions Received	02/09/2021
Date Results Expected to be Reported	09/09/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	16 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	3
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Extra sample received - BH104/0.9-1.0

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Asbestos ID - soils NEPM	PFAS in Soils Short	Misc Inorg - Soil	CEC	Phenoxy Acid Herbicidesin Soil	Small Community Pesticides	Triazine Herbicides in Soil	On Hold
BH104/0-0.1	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
BH104/0.4-0.5	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓			\checkmark						
BH104/1-1.2											\checkmark						
BH105/0.01-0.1	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
BH105/0.4-0.5	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	✓	\checkmark	\checkmark	
BH105/0.9-1.0																	\checkmark
BH107/0-0.1	✓	✓	✓	✓	\checkmark	✓	✓	✓		✓		\checkmark	✓				
BH107/0.4-0.5																	\checkmark
BH107/0.9-1.0																	✓
BH108/0-0.1	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓			✓	✓	✓	
BH108/0.4-0.5																	\checkmark
BH108/0.9-1.0											✓						
BH104/0.3-0.6										✓							
BD4/20210901	✓	✓	✓	✓	✓	✓	✓	✓									
BD5/20210901																	✓
BH104/0.9-1.0																	✓

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 277008

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.01, Warriewood</u>
Number of Samples	16 Soil
Date samples received	01/09/2021
Date completed instructions received	02/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 09/09/2021

 Date of Issue
 10/09/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Alexander Mitchell Maclean, Senior Chemist Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Greta Petzold, Senior Report Coordinator Hannah Nguyen, Metals Supervisor Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		277008-1	277008-2	277008-4	277008-5	277008-7
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH105/0.01-0.1	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	82	104	91	99	109

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		277008-10	277008-14
Your Reference	UNITS	BH108/0-0.1	BD4/20210901
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date extracted	-	03/09/2021	03/09/2021
Date analysed	-	03/09/2021	03/09/2021
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<3	<3
Surrogate aaa-Trifluorotoluene	%	103	105

svTRH (C10-C40) in Soil						
Our Reference		277008-1	277008-2	277008-4	277008-5	277008-7
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH105/0.01-0.1	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	04/09/2021	04/09/2021	04/09/2021	04/09/2021	04/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	230	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	220	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	450	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	370	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	190	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	560	<50	<50	<50	<50
Surrogate o-Terphenyl	%	118	83	92	98	100

svTRH (C10-C40) in Soil			
Our Reference		277008-10	277008-14
Your Reference	UNITS	BH108/0-0.1	BD4/20210901
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date extracted	-	03/09/2021	03/09/2021
Date analysed	-	04/09/2021	04/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	92	98

PAHs in Soil						
Our Reference		277008-1	277008-2	277008-4	277008-5	277008-7
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH105/0.01-0.1	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021	07/09/2021	07/09/2021	07/09/2021
Naphthalene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	3.6	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	1.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	4.3	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	4.1	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	2.2	<0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	1.7	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	1.6	<0.05	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.9	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.8	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	23	<0.05	0.78	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	2.3	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	2.3	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	2.3	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	108	110	99	105	102

PAHs in Soil			
Our Reference		277008-10	277008-14
Your Reference	UNITS	BH108/0-0.1	BD4/20210901
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date extracted	-	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	107	113

Organochlorine Pesticides in soil						
Our Reference		277008-1	277008-2	277008-4	277008-5	277008-7
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH105/0.01-0.1	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021	07/09/2021	07/09/2021	07/09/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	115	117	125	119

Organochlorine Pesticides in soil			
Our Reference		277008-10	277008-14
Your Reference	UNITS	BH108/0-0.1	BD4/20210901
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date extracted	-	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	120	109

Organophosphorus Pesticides in Soil						
Our Reference		277008-1	277008-2	277008-4	277008-5	277008-7
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH105/0.01-0.1	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021	07/09/2021	07/09/2021	07/09/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	115	117	125	119

Organophosphorus Pesticides in Soil			
Our Reference		277008-10	277008-14
Your Reference	UNITS	BH108/0-0.1	BD4/20210901
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date extracted	-	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	120	109

PCBs in Soil						
Our Reference		277008-1	277008-2	277008-4	277008-5	277008-7
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH105/0.01-0.1	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021	07/09/2021	07/09/2021	07/09/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	108	115	117	125	119

PCBs in Soil			
Our Reference		277008-10	277008-14
Your Reference	UNITS	BH108/0-0.1	BD4/20210901
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date extracted	-	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	120	109

Acid Extractable metals in soil						
Our Reference		277008-1	277008-2	277008-4	277008-5	277008-7
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH105/0.01-0.1	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Arsenic	mg/kg	5	<4	<4	11	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	8	11	11	5
Copper	mg/kg	25	<1	17	19	9
Lead	mg/kg	30	11	30	57	30
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	1	8	4	2
Zinc	mg/kg	51	3	82	56	28
Manganese	mg/kg	120	3	82	97	49

Acid Extractable metals in soil			
Our Reference		277008-10	277008-14
Your Reference	UNITS	BH108/0-0.1	BD4/20210901
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date prepared	-	03/09/2021	03/09/2021
Date analysed	-	03/09/2021	03/09/2021
Arsenic	mg/kg	5	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	4	7
Copper	mg/kg	12	1
Lead	mg/kg	34	11
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	5	2
Zinc	mg/kg	63	5
Manganese	mg/kg	59	5

Misc Soil - Inorg						
Our Reference		277008-1	277008-2	277008-4	277008-5	277008-7
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH105/0.01-0.1	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg			
Our Reference		277008-10	277008-14
Your Reference	UNITS	BH108/0-0.1	BD4/20210901
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date prepared	-	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5

Moisture						
Our Reference		277008-1	277008-2	277008-3	277008-4	277008-5
Your Reference	UNITS	BH104/0-0.1	BH104/0.4-0.5	BH104/1-1.2	BH105/0.01-0.1	BH105/0.4-0
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Moisture	%	9.9	15	16	21	26
Moisture						
Our Reference		277008-7	277008-10	277008-12	277008-14	
Your Reference	UNITS	BH107/0-0.1	BH108/0-0.1	BH108/0.9-1.0	BD4/20210901	
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	
Moisture	%	17	20	12	13	

Asbestos ID - soils		
Our Reference		277008-5
Your Reference	UNITS	BH105/0.4-0.5
Date Sampled		01/09/2021
Type of sample		Soil
Date analysed	-	09/09/2021
Sample mass tested	g	Approx. 50g
Sample Description	-	Black clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO
Trace Analysis	-	No asbestos detected

Asbestos ID - soils NEPM						
Our Reference		277008-1	277008-4	277008-7	277008-10	277008-13
Your Reference	UNITS	BH104/0-0.1	BH105/0.01-0.1	BH107/0-0.1	BH108/0-0.1	BH104/0.3-0.6
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	09/09/2021	09/09/2021	09/09/2021	09/09/2021	09/09/2021
Sample mass tested	g	476.7	387.34	417.04	539.6	742.26
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	Chrysotile Amosite	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	0.0103	-	-	-	-
FA and AF Estimation*#2	%(w/w)	0.0022	<0.001	<0.001	<0.001	<0.001

PFAS in Soils Short					
Our Reference		277008-2	277008-3	277008-10	277008-12
Your Reference	UNITS	BH104/0.4-0.5	BH104/1-1.2	BH108/0-0.1	BH108/0.9-1.0
Date Sampled		01/09/2021	01/09/2021	01/09/2021	01/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.2	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	µg/kg	2.9	<0.1	<0.1	<0.1
Perfluorooctanoic acid PFOA	µg/kg	<0.1	<0.1	<0.1	<0.1
6:2 FTS	µg/kg	<0.1	<0.1	<0.1	<0.1
8:2 FTS	µg/kg	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	100	98	98	102
Surrogate ¹³ C ₂ PFOA	%	88	84	86	85
Extracted ISTD ¹⁸ O ₂ PFHxS	%	86	83	78	83
Extracted ISTD ¹³ C ₄ PFOS	%	98	98	92	95
Extracted ISTD ¹³ C ₄ PFOA	%	102	98	93	98
Extracted ISTD ¹³ C ₂ 6:2FTS	%	103	89	89	88
Extracted ISTD ¹³ C ₂ 8:2FTS	%	91	84	86	81
Total Positive PFHxS & PFOS	µg/kg	3.0	<0.1	<0.1	<0.1
Total Positive PFOS & PFOA	µg/kg	2.9	<0.1	<0.1	<0.1
Total Positive PFAS	µg/kg	3.0	<0.1	<0.1	<0.1

Misc Inorg - Soil			
Our Reference		277008-5	277008-7
Your Reference	UNITS	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date prepared	-	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021
pH 1:5 soil:water	pH Units	6.7	5.3

CEC			
Our Reference		277008-5	277008-7
Your Reference	UNITS	BH105/0.4-0.5	BH107/0-0.1
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date prepared	-	07/09/2021	07/09/2021
Date analysed	-	07/09/2021	07/09/2021
Exchangeable Ca	meq/100g	9.4	1.5
Exchangeable K	meq/100g	0.3	0.3
Exchangeable Mg	meq/100g	0.84	0.45
Exchangeable Na	meq/100g	0.12	<0.1
Cation Exchange Capacity	meq/100g	11	2.3

Phenoxy Acid Herbicides in Soil			
Our Reference		277008-5	277008-10
Your Reference	UNITS	BH105/0.4-0.5	BH108/0-0.1
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date extracted	-	07/09/2021	07/09/2021
Date analysed	-	08/09/2021	08/09/2021
Clopyralid	mg/kg	<0.5	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5	<0.5
o-chlorophenoxy acetic acid	mg/kg	<0.5	<0.5
4-CPA	mg/kg	<0.5	<0.5
Dicamba	mg/kg	<0.5	<0.5
MCPP	mg/kg	<0.5	<0.5
MCPA	mg/kg	<0.5	<0.5
Dichlorprop	mg/kg	<0.5	<0.5
2,4-D	mg/kg	<0.5	<0.5
Bromoxynil	mg/kg	<0.5	<0.5
Triclopyr	mg/kg	<0.5	<0.5
2,4,5-TP	mg/kg	<0.5	<0.5
2,4,5-T	mg/kg	<0.5	<0.5
МСРВ	mg/kg	<0.5	<0.5
Dinoseb	mg/kg	<1	<1
2,4-DB	mg/kg	<0.5	<0.5
loxynil	mg/kg	<1	<1
Picloram	mg/kg	<0.5	<0.5
DCPA (Chlorthal) Diacid	mg/kg	<0.5	<0.5
Acifluorfen	mg/kg	<2	<2
2,4,6-T	mg/kg	<0.5	<0.5
2,6-D	mg/kg	<0.5	<0.5
Surrogate 2.4- DCPA	%	110	100

Small Community Pesticides			
Our Reference		277008-5	277008-10
Your Reference	UNITS	BH105/0.4-0.5	BH108/0-0.1
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date prepared	-	08/09/2021	08/09/2021
Date analysed	-	09/09/2021	09/09/2021
Glyphosate	mg/kg	<100	<100
Surrogate: L-Cysteic Acid	%	#	#

Triazine Herbicides in Soil			
Our Reference		277008-5	277008-10
Your Reference	UNITS	BH105/0.4-0.5	BH108/0-0.1
Date Sampled		01/09/2021	01/09/2021
Type of sample		Soil	Soil
Date extracted	-	03/09/2021	03/09/2021
Date analysed	-	09/09/2021	09/09/2021
Simazine	mg/kg	<0.5	<0.5
Atrazine	mg/kg	<0.5	<0.5
Propazine	mg/kg	<0.5	<0.5
Terbuthylazine	mg/kg	<0.5	<0.5
Metribuzin	mg/kg	<0.5	<0.5
Ametryn	mg/kg	<0.5	<0.5
Prometryn	mg/kg	<0.5	<0.5
Terbutryn	mg/kg	<0.5	<0.5
Cyanazine	mg/kg	<0.5	<0.5
Irgarol	mg/kg	<0.5	<0.5
Hexazinone	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	85	86

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Ext-054	Analysed by MPL Envirolab
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
ORG-029	Glyphosate & AMPA analysis using LC-MSMS.*

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2
Date extracted	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	97	101
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	97	101
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	101	104
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	91	94
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	99	103
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	98	102
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	101	104
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	92	1	82	104	24	104	105

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2	
Date extracted	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021	
Date analysed	-			04/09/2021	1	04/09/2021	04/09/2021		04/09/2021	04/09/2021	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	126	98	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	230	170	30	128	91	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	220	220	0	119	88	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	126	98	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	370	300	21	128	91	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	190	120	45	119	88	
Surrogate o-Terphenyl	%		Org-020	100	1	118	101	16	114	108	

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2
Date extracted	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			07/09/2021	1	07/09/2021	07/09/2021		07/09/2021	07/09/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	99	94
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.3	0	97	92
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	0.4	0.3	29	104	96
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	3.6	3.1	15	109	103
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	1.1	0.9	20	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	4.3	3.8	12	98	98
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	4.1	3.5	16	100	99
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	2.2	2.1	5	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	1.7	1.5	12	78	75
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	2	2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	1.6	1.6	0	106	101
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.9	0.8	12	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.8	0.8	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	104	1	108	110	2	99	97

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2
Date extracted	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			07/09/2021	1	07/09/2021	07/09/2021		07/09/2021	07/09/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	80
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	96
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	127	125
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	91
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	88
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	91
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	96
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	77	75
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	76
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	74	130
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	126	1	108	112	4	116	106

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2
Date extracted	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			07/09/2021	1	07/09/2021	07/09/2021		07/09/2021	07/09/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	81
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	100
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	70
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	86
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	91
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	77	75
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	87	86
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	121	1	108	112	4	116	106

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2
Date extracted	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			07/09/2021	1	07/09/2021	07/09/2021		07/09/2021	07/09/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	100	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	121	1	108	112	4	116	106

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Duj		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2
Date prepared	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			03/09/2021	1	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Arsenic	mg/kg	4	Metals-020	<4	1	5	5	0	111	92
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	106	92
Chromium	mg/kg	1	Metals-020	<1	1	11	13	17	109	96
Copper	mg/kg	1	Metals-020	<1	1	25	25	0	106	101
Lead	mg/kg	1	Metals-020	<1	1	30	31	3	109	97
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	106	93
Nickel	mg/kg	1	Metals-020	<1	1	8	11	32	107	94
Zinc	mg/kg	1	Metals-020	<1	1	51	64	23	113	99
Manganese	mg/kg	1	Metals-020	<1	1	120	170	34	108	96

QUALITY	CONTROL	Misc Soi	I - Inorg		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2	
Date prepared	-			06/09/2021	1	06/09/2021	06/09/2021		06/09/2021	06/09/2021	
Date analysed	-			06/09/2021	1	06/09/2021	06/09/2021		06/09/2021	06/09/2021	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	99	99	

QUALITY C	CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-2
Date prepared	-			03/09/2021	3	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			03/09/2021	3	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	97	104
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	99	99
Perfluorooctanoic acid PFOA	µg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	101	97
6:2 FTS	µg/kg	0.1	Org-029	<0.1	3	<0.1	<0.1	0	107	102
8:2 FTS	µg/kg	0.2	Org-029	<0.2	3	<0.2	<0.2	0	113	110
Surrogate ¹³ C ₈ PFOS	%		Org-029	99	3	98	104	6	99	97
Surrogate ¹³ C ₂ PFOA	%		Org-029	86	3	84	89	6	89	86
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	89	3	83	83	0	88	90
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	104	3	98	93	5	102	100
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	103	3	98	95	3	100	103
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	92	3	89	87	2	93	100
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	93	3	84	84	0	89	100

QUALITY	QUALITY CONTROL: Misc Inorg - Soil								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]	
Date prepared	-			06/09/2021	[NT]			[NT]	06/09/2021		
Date analysed	-			06/09/2021	[NT]			[NT]	06/09/2021		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	101	[NT]	

QUALITY CONTROL: CEC					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			07/09/2021	[NT]		[NT]	[NT]	07/09/2021	
Date analysed	-			07/09/2021	[NT]		[NT]	[NT]	07/09/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	87	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	90	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	84	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	101	

QUALITY CONTROL: Phenoxy Acid Herbicides in Soil					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	277008-10	
Date extracted	-			07/09/2021	5	07/09/2021	07/09/2021		07/09/2021	07/09/2021	
Date analysed	-			08/09/2021	5	08/09/2021	08/09/2021		08/09/2021	08/09/2021	
Clopyralid	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
3,5-Dichlorobenzoic acid	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
o-chlorophenoxy acetic acid	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
4-CPA	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
Dicamba	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	105	103	
MCPP	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	96	96	
MCPA	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	98	97	
Dichlorprop	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
2,4-D	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	98	96	
Bromoxynil	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
Triclopyr	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
2,4,5-TP	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
2,4,5-T	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	99	97	
МСРВ	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
Dinoseb	mg/kg	1	Ext-054	<1	5	<1	<1	0	[NT]	[NT]	
2,4-DB	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
loxynil	mg/kg	1	Ext-054	<1	5	<1	<1	0	[NT]	[NT]	
Picloram	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
DCPA (Chlorthal) Diacid	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
Acifluorfen	mg/kg	2	Ext-054	<2	5	<2	<2	0	[NT]	[NT]	
2,4,6-T	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
2,6-D	mg/kg	0.5	Ext-054	<0.5	5	<0.5	<0.5	0	[NT]	[NT]	
Surrogate 2.4- DCPA	%		Ext-054	100	5	110	99	11	99	96	

QUALITY CONTROL: Small Community Pesticides					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			08/09/2021	5	08/09/2021	08/09/2021		08/09/2021	
Date analysed	-			09/09/2021	5	09/09/2021	09/09/2021		09/09/2021	
Glyphosate	mg/kg	1	ORG-029	<1	5	<100	<100	0	129	
Surrogate: L-Cysteic Acid	%		Ext-054	134	5	#	#		134	[NT]

QUALITY CONTROL: Triazine Herbicides in Soil					Duplicate					Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]		
Date extracted	-			03/09/2021	5	03/09/2021	03/09/2021		03/09/2021			
Date analysed	-			09/09/2021	5	09/09/2021	09/09/2021		09/09/2021			
Simazine	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	[NT]			
Atrazine	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	92			
Propazine	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	90			
Terbuthylazine	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	[NT]			
Metribuzin	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	[NT]			
Ametryn	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	[NT]			
Prometryn	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	120			
Terbutryn	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	[NT]			
Cyanazine	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	[NT]			
Irgarol	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	[NT]			
Hexazinone	mg/kg	0.5	Org-022/025	<0.5	5	<0.5	<0.5	0	[NT]			
Surrogate p-Terphenyl-d14	%		Org-022/025	71	5	85	81	5	71			

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, sample 277008-4 is below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Factual description of asbestos identified in the soil samples: NEPM Sample 277008-1; Chrysotile and Amosite asbestos identified in 0.0684g of fibre cement material <7mm

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004. Note: Sample 277008-5 was sub-sampled from a bag provided by the client.

Acid Herbicides & Glyphosate analysed by MPL Laboratories. Report No. 268296

Glyphosate:

- # Surrogate recovery not reported due to sample matrix interferences.

- PQL Has been raised due to the sample matrix requiring dilution.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 277008-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.01, Warriewood</u>
Number of Samples	additional analysis
Date samples received	01/09/2021
Date completed instructions received	09/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	17/09/2021
Date of Issue	15/09/2021
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with Is	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 277008-A Revision No: R00

Page | 1 of 6

PAHs in TCLP (USEPA 1311)		
Our Reference		277008-A-1
Your Reference	UNITS	BH104/0-0.1
Date Sampled		01/09/2021
Type of sample		Soil
pH of soil for fluid# determ.	pH units	10.3
pH of soil TCLP (after HCl)	pH units	2.0
Extraction fluid used	-	1
pH of final Leachate	pH units	6.3
Date extracted	-	13/09/2021
Date analysed	-	14/09/2021
Naphthalene in TCLP	mg/L	0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	0.002
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	0.003
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	0.0060
Surrogate p-Terphenyl-d14	%	110

Method ID	Methodology Summary
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CON	TROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			13/09/2021	[NT]		[NT]	[NT]	13/09/2021	
Date analysed	-			14/09/2021	[NT]		[NT]	[NT]	14/09/2021	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	70	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	65	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	82	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	104	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	76	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	84	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	90	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	105	[NT]		[NT]	[NT]	92	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions											
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.											
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.											
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.											
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.											
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.											

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 277008-B

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.01, Warriewood</u>
Number of Samples	additional analysis
Date samples received	01/09/2021
Date completed instructions received	13/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	20/09/2021
Date of Issue	16/09/2021
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Alexander Mitchell Maclean, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

PFAS in TCLP Short		
Our Reference		277008-B-2
Your Reference	UNITS	BH104/0.4-0.5
Date Sampled		01/09/2021
Type of sample		Soil
Date prepared	-	15/09/2021
Date analysed	-	15/09/2021
pH of soil for fluid# determ.	pH units	6.9
pH of soil TCLP (after HCl)	pH units	1.7
Extraction fluid used	-	1
pH of final Leachate	pH units	4.9
Perfluorohexanesulfonic acid - PFHxS	µg/L	<0.01
Perfluorooctanesulfonic acid PFOS	µg/L	<0.01
Perfluorooctanoic acid PFOA	µg/L	<0.01
6:2 FTS	µg/L	<0.01
8:2 FTS	µg/L	<0.02
Surrogate ¹³ C ₈ PFOS	%	98
Surrogate ¹³ C ₂ PFOA	%	122
Extracted ISTD ¹⁸ O ₂ PFHxS	%	101
Extracted ISTD ¹³ C ₄ PFOS	%	74
Extracted ISTD ¹³ C ₄ PFOA	%	87
Extracted ISTD ¹³ C ₂ 6:2FTS	%	80
Extracted ISTD ¹³ C ₂ 8:2FTS	%	84
Total Positive PFHxS & PFOS	µg/L	<0.01
Total Positive PFOS & PFOA	µg/L	<0.01
Total Positive PFAS	µg/L	<0.01

Method ID	Methodology Summary
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY C	ONTROL: P	FAS in T	CLP Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	277008-B-2
Date prepared	-			15/09/2021	2	15/09/2021	15/09/2021		15/09/2021	15/09/2021
Date analysed	-			15/09/2021	2	15/09/2021	15/09/2021		15/09/2021	15/09/2021
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.01	Org-029	<0.01	2	<0.01	<0.01	0	104	106
Perfluorooctanesulfonic acid PFOS	µg/L	0.01	Org-029	<0.01	2	<0.01	<0.01	0	100	99
Perfluorooctanoic acid PFOA	µg/L	0.01	Org-029	<0.01	2	<0.01	<0.01	0	101	106
6:2 FTS	µg/L	0.01	Org-029	<0.01	2	<0.01	<0.01	0	112	112
8:2 FTS	µg/L	0.02	Org-029	<0.02	2	<0.02	<0.02	0	91	94
Surrogate ¹³ C ₈ PFOS	%		Org-029	96	2	98	110	12	94	96
Surrogate ¹³ C ₂ PFOA	%		Org-029	123	2	122	119	2	122	119
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	103	2	101	105	4	103	102
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	82	2	74	68	8	76	72
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	85	2	87	88	1	87	87
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	77	2	80	77	4	73	76
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	83	2	84	84	0	87	85

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions											
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.											
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.											
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.											
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.											
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.											

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Douglas, Partners

CHAIN OF CUSTODY DESPATCH SHEET

́Г	Proie	ct No:	207253.0	Suburt	burb: Warriewood									То:	To: Envirolab Services						
		ct Manager:						Order Number: A.Spencer								12 Ashley St, Chatswood NSW 2067					
с.	Email	:	Nerilee.E	Edwards@	douglaspa		rs.com.au										Attn: Sample Receipt				
	Turna	round time:	✓ Standa	ird 🗌	72 hour	48 hour			Same da	-						Contact:	(02) 99	10 6200) samplereceipt@envirolab.com.au		
	Prior	Storage: 🗌 F	ridge 🗌	Freezer	✓ Esky		nples co	ntain 'p	otenti	al' HBI	M? □ №	<u>lo</u>	✓ Yes	(If YE	S, then h	andle, tran	sport an	d store ir	accordance with FPM HAZID)		
· [Sai	mple ID		oled	Sample Container Analytes															
	Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8A (NEPC Asb)	Combo 8A	Combo 8	PFAS (short)	pH, CEC	Asbestos (NEPC)	metals, PAH	Phenoxy Acid Herbicides	Glyphosate Triazine Herbicides	Combo 8	ASS Screen	Notes/ Preservation/ Additional Requirements		
	1	BH103	, 0.14	0.2	31/08/21	S	G/P												Envirolab Servičės 12 Achloy St		
	Ζ	BH103	0.4	0.5	31/08/21	S	G/P	×				•			×	×			Chatswood NSW 2067 Ph: (02) 9910 6200		
	3.	、BH103 🚡	~0.5	0.95	31/08/21	s	G/P												Job No: 277/1-6		
· .	4	BH103	0.9	1	31/08/21	s	G/P									-			Date Received: 3//08/2/ Time Received: 1000		
	5	BH103	1.4	1.5	31/08/21	s	G/P											×	Received By: C/-T Temp: Cod/Ambient		
Ĺ	6	·BH103	1.5	1.95	31/08/21	S	G/P									-			Cocling Collicepack		
_	7	BH103	1.9	2	31/08/21	s	G/P											×			
	<u>8</u>	ूर्दे B <mark></mark> H103 ा	2.4	2.5	31/08/21	S	G/P						· · ·	×.				×			
-	.9	BH103	2.9	3.4	31/08/21	S	G/P											×	· · · · · · · · · · · · · · · · · · ·		
ŀ	(J)	BḪ103 -	3.4	3.5	31/08/21	S	G/P											×			
ļ	[]	BH103	3.9	4	31/08/21	S	G/P		· · · · ·									×			
	12	BH101	0.12	0.2	31/08/21	S	G/P						×	15 N							
-	13	BH101 4	0.4	0.5	31/08/21	S	G/P	×					· · · · · · · · · · · · · · · · · · ·	1					· · · · · · · · · · · · · · · · · · ·		
	14	BH101	0.9	1	31/08/21	S	G/P									 		×			
		s to analyse: per of sample			r, Cu, Pb,		, Ni, Zn) Transpo	orted to	labor	atorv h	ov:		<u> </u>			LAB R		<u>T</u>			
		results to:			Pty Ltd		1								_	Receive		Chri	istino		
يا جانب من	Addre	988:			, West Ryde			(02) 98	09 0666	<u>`</u>			`	<u> </u>		Date &	Time:,	31108	121 100		
	Rēlin	quished by:			Date:									Signed: 2000,							

.

Ø

• 🔬 .

Douglas Partners Geotechnics | Environment | Groundwater

2

đ.

CHAIN OF CUSTODY DESPATCH SHEET

	Geotechnics T	207253.0			Suburk):	Warriew	/ood									ab Servi	
	ct Manager:	Nerilee E				Number:			Dispat	ch dat	e:					12 Ashi	ey St, C	Chatswood NSW 2067
		mple ID		pled	Sample Type	Container Type						Analyte					u	Notes/ Preservation/ Additional
Lab ID	Location,/ Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8A (NEPC Asb)	Combo 8A	Combo 8	PFAS (short)	pH, CEC	Asbestos (NEPC)	metals, PAH	Phenoxy Ácid Herbicides	Glyphosate Triazine Herbicides	Combo 8	ASS Screen	Requirements
15	BH101	1.4	1.5	31/08/21	Ŝ	G/P	×										×	
16	BH101 -	1.5	1.95	31/08/21	s	G/P									<u></u> '			
[7	BH101	1.9	2	31/08/21	S	G/P				· _							×	· · · · · · · · · · · · · · · · · · ·
. (8	BH101	2.4	2.5	31/08/21	S	G/P									,		×	
[9	BH101	2.9.		31/08/21	S	G/P								 			×	<u>`</u>
. 20	BH101	∛ 3.4	3.5	31/08/21	S	G/P											×	
,21	BH101	3.9	4	31/08/21	S	G/P	P					<u> </u>	<u>,</u> ,				×	· · · · · · · · · · · · · · · · · · ·
22	BH109 A	0.02	0.1	31/08/21	s	G/P	×			×								
23-	BH109 7	• 0:4	-0.5	31/08/21	s	G/P	×			 							┣──	
24	BH109	0.9	1 /	31/08/21	S	G/P	 		ļ						<u>.</u>			
25	BŘ109	1.4	1.5	31/08/21	S	G/P			· ·		 	<u> </u>			 			
26	BH109	1.9	<i>,</i> 2	31/08/21		G/P	1		1									· · · · · · · · · · · · · · · · · · ·
27	BH106	0.14	© 0.25	31/08/21	S	G/P	×	<u>````</u>					ļ				<u> </u>	· · · · · · · · · · · · · · · · · · ·
28	BH106	0.5	0.6	31/08/21	S	G/P	· ·	<u> </u>	· ??		 	ļ		ېږ بر				
29	BH106	0.9	1	31/08/21	. S	G/P	·	• • •		<u> </u>		n .	<u> </u>			· · · · ·	<u> </u>	
30	BH111	0.07	0.15	31/08/21	S	G/P	×	· ·	 		×	A. 7			<u> </u>		<u> </u>	
31	BH111	0.4	0.5	31/08/21	S	G/P	19 L	<u>.</u>	<u> </u>		·	ļ				 	<u> </u>	· · · · · · · · · · · · · · · · · · ·
-32	BH111	0.9	1	31/08/21	s	G/P	ž										×	• •

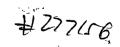
#27715-6.

Ð

÷.,

ġ,

ع ق


CHAIN OF CUSTODY DESPATCH SHEET

	Geotechnics	207253.0			Cuburk	uburb: Warriewood To: E												Envirolab Services				
	ct No: ct Manager:				ອບມາມ). <u> </u>	vaniew	100 <u>u</u>	Dispatch date:													
Proje	çt Manayer.																					
-13	Sample ID			oled [*]	Sample Type	Container Type						Analyte										
Lab ID	Location / Other ID	Depth.	Depth To	Date Sampled [*]	S - soil W - water	G - glass P - plastic	Combo 8A (NEPC Asb)	Combo 8A	Combo 8	PFAS (short)	pH, CEC	Asbestos (NEPC)	metals, PAH	Phenoxy Acid Herbicides	Glyphosate Triazine Herbicides	Combo 8	ASS Screen	Notes/ Preservation/ Additional Requirements				
33	BH111 -	. _v 1	1.45	31/08/21	S	G/P												:				
34	BH111	1.4	1.5	31/08/21	S	G/P											×					
35-	BH111	1.9	2	31/08/21	S	G/P											×	,,				
ÎUR_	BH111 +	2	2.45	31/08/21	s	G/P						-										
36	BH111	2.4	<u></u> 2.5	31/08/21	S	G/P											×					
37	BH111	2:9	3	31/08/21	S	G/P											×	· · · · · · · · · · · · · · · · · · ·				
38	BH111	3.4	3.5	31/08/21	S	G/P											×					
-39-	BH111	3.9	4	31/08/21	S	G/P											×					
40	BH111	4.4	4.5	31/08/21	S	G/P							, ,				×					
"ં મિં	BH111	4.9	5:	31/08/21	S	G/P								· · · ·			×					
42	BH115	0.05	0.15	31/08/21	S	G/P									ļ							
43	BH115 -	0.4	0.5	31/08/21	- S	G/P	×	. Here									·					
kφ	BH115	0.9	1	31/08/21	Ŝ	G/R		5		•					ļ		×	8				
45	BH115	1.4	. 1.5	31/08/21	_ _⊖ S ∘	-G/P	N						Ň	·			×	· · · ·				
1-46	BH115	1.9.	2	<u></u> 31/08/21	<u>,</u> S	G/P				سر ت		 					×					
47	, : BH115	2.4	2,5	31/08/21	Ş	G/P		3		· · ·	بر مرجع کا	۳. <u>`</u>	£?	ļ			×					
48	BH115	2.9	3	31/08/21	S	G/P	_			 		•.`-	,				×	· · · · · · · · · · · · · · · · · · ·				
- 49	- BH114	0.05	0.15	,31/08/21	S	G/P			ł	· · · · ·												
50	BH114	0.4	9 0.5	31/08/21	S	G/P	×		``		۹ ., ¥				ەر	<u> </u>						
																-						

Ş.

Page 3 of 5

÷.,

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No: 207253.01							Suburb: Warriewood To: Envirolab Services Dispatch date: ×												
Ì	Projec	t Manager:	Nerilee E	dwards	<u> </u>														
Ī		Sample ID			Sample Type														
	Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8A (NEPC Asb)	Combo 8A	Combo 8	PFAS (short)	pH, CEC	Asbestos (NEPC)	metals, PAH	Phenoxy Acid Herbicides	Glyphosate Triazine Herbicides	Combo 8	ASS Screen	Notes/ Preservation/ Additional Requirements
	12	BH114	0.9	Ĩ	31/08/21	S	G/P												······································
	52	BH114	1.4	1.5	31/08/21	s	G/P												
•	53	BH113	0.05	0.15	31/08/21	S	G/P	× _			×								
	54	BH113	0:4	0.5	31/08/21	∽ S	G/P	_,											
	55	BH113	0.9	<u> </u>	31/08/21	s	G/P				· _							L .	
1	56	BH113	1.4	1.5	31/08/21	S	G/P											<u> </u>	· · · · · · · · · · · · · · · · · · ·
	57	BH113	1.9	2	31/08/21	S	G/P											4	
		BD1/20210831			31/08/21	S	G/P												Pls send to second lab as below
, r.	58	BD2/2021083,1			31/08/21	S	G/P	 		<u> </u>						<u> </u>			
	59	BD3/20210831			31/08/21	S	G/P	<u> </u>		 			A a b ID			<u> </u>	Ļ.,		
	60.	ACM-01			31/08/21	fibro	_ P	<u> </u>	<u> </u>	<u> </u>			Asb ID	······			· · · · · ·		
-	<u>}</u>					·													
			à.			ļ		1			·						·		, t
					9 	+						` ş							
í							<u> </u>					F							<u> </u>
,									<u>₹</u>	• • •								1	
		<u> </u>					<u> </u>			жЕ.	-		<u>-</u>		<u> </u>				
	<u></u>			<u> </u>					:		ි දි	÷.	Ĵ. Ĵ.						ب جلسور م
		I	.05	I	I .	I	1 \		1		Page 4 0	L L		4 (2 · · ·)			•	Ħ	277156 Revort February 2021

FPM - ENVID/Form COC 02

Page 4 of 5

(

*c//()*Q

. Martine

Douglas Partners

×۶

Project No: Project Manager:		207253.0			Suburb		Warriev				To: Envirolab Services							
		207253.01			Suburb		Warriev	vood			To:							
		Nerilee E	dwards		Order Number: Sampler: A.Spencer									er				St, Chatswood NSW 2067
Email: Nerilee.Edwards@douglaspa					tners.com	n.au					Attn:	Sample	Receip	t				
Turna	around time:	🔽 Standa				24 ho		Same da		<u> </u>	Contact:	(02) 99	10 6200) samplereceipt@envirolab.com.au				
Prior	Storage: 🗌 Fi	ridge 🗌	Freezer	✓ Esky	Do sam	ples cor	ntain 'p	otenti	al' HBN	//?	andle, trai	sport and	d store in	accordance with FPM HAZID)				
		mple ID		led	Sample Type	Sample Container Analytes												
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water		metals, PAH	ткн, втех	OCP, OPP, PCB	phenols							Notes/ Preservation/ Additiona Requirements	
· 	BD1/20210831			31/08/21	S	G/P	×	×	×	×								Pls send to second lab
	<u> </u>																	
												-						· · ·
																<u> </u>		
	· ·								•									
Í																		
		1																
v	1																	·
┝───		+				1	<u>├</u>	<u> </u>	<u>†</u>		t. —	<u> </u>	11				1	

#277156

Page 5 of 5

1

٩

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards

Sample Login Details	
Your reference	207253.01, Warriewood
Envirolab Reference	277156
Date Sample Received	31/08/2021
Date Instructions Received	02/09/2021
Date Results Expected to be Reported	10/09/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	59 Soil, 1 Material
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	3
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Sample not received: BH111/2-2.45

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Triazine Herbicides in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils NEPM	PFAS in Soils Short	Misc Inorg - Soil	CEC	Phenoxy Acid Herbicidesin Soil	Glyphosate in Soil	sPOCAS field test	Asbestos ID - materials	On Hold
BH103-0.14-0.2																		✓
BH103-0.4-0.5	✓	✓	✓	✓	✓	✓	\checkmark	✓	\checkmark	✓				✓	✓			
BH103-0.5-0.95																		\checkmark
BH103-0.9-1																		✓
BH103-1.4-1.5																✓		
BH103-1.5-1.95																		\checkmark
BH103-1.9-2																\checkmark		
BH103-2.4-2.5																\checkmark		
BH103-2.9-3																✓		
BH103-3.4-3.5																✓		
BH103-3.9-4																✓		
BH101-0.12-0.2										✓								
BH101-0.4-0.5	✓	✓	✓	✓	✓	✓		✓	~	✓								
BH101-0.9-1																✓		
BH101-1.4-1.5	✓	✓	✓	✓	\checkmark	✓		\checkmark	✓	✓						\checkmark		
BH101-1.5-1.95																		✓
BH101-1.9-2																✓		
BH101-2.4-2.5																✓		
BH101-2.9-3																✓		
BH101-3.4-3.5												<u> </u>	<u> </u>	<u> </u>		✓	<u> </u>	

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Triazine Herbicides in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils NEPM	PFAS in Soils Short	Misc Inorg - Soil	CEC	Phenoxy Acid Herbicidesin Soil	Glyphosate in Soil	sPOCAS field test	Asbestos ID - materials	On Hold
BH101-3.9-4																\checkmark		
BH109-0.02-0.1	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark		\checkmark	✓	✓	\checkmark							
BH109-0.4-0.5	✓	✓	✓	1	✓	✓		✓	✓	✓								
BH109-0.9-1																		\checkmark
BH109-1.4-1.5																		\checkmark
BH109-1.9-2																		✓
BH106-0.14-0.25	✓	✓	✓	✓	✓	✓		✓	✓	✓								
BH106-0.5-0.6																		\checkmark
BH106-0.9-1																		\checkmark
BH111-0.07-0.15	✓	✓	✓	✓	✓	✓		✓	✓	✓		✓	✓					
BH111-0.4-0.5																		✓
BH111-0.9-1																✓		
BH111-1-1.45																		\checkmark
BH111-1.4-1.5																\checkmark		
BH111-1.9-2																\checkmark		
BH111-2.4-2.5																✓		
BH111-2.9-3																\checkmark		
BH111-3.4-3.5																\checkmark		
BH111-3.9-4																\checkmark		
BH111-4.4-4.5																\checkmark		

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Triazine Herbicides in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils NEPM	PFAS in Soils Short	Misc Inorg - Soil	CEC	Phenoxy Acid Herbicidesin Soil	Glyphosate in Soil	sPOCAS field test	Asbestos ID - materials	On Hold
BH111-4.9-5																\checkmark		
BH115-0.05-0.15																		✓
BH115-0.4-0.5	\checkmark	\checkmark	\checkmark	1	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark								
BH115-0.9-1																\checkmark		
BH115-1.4-1.5																\checkmark		
BH115-1.9-2																✓		
BH115-2.4-2.5																\checkmark		
BH115-2.9-3																\checkmark		
BH114-0.05-0.15																		\checkmark
BH114-0.4-0.5	✓	\checkmark	1	1	✓	✓		\checkmark	\checkmark	✓								
BH114-0.9-1																		\checkmark
BH114-1.4-1.5																		✓
BH113-0.05-0.15	✓	✓	✓	✓	✓	✓		\checkmark	\checkmark	✓	✓							
BH113-0.4-0.5																		✓
BH113-0.9-1																		✓
BH113-1.4-1.5																		✓
BH113-1.9-2																		✓
BD2/20210831																		✓
BD3/20210831																		✓
ACM-01						1									1		\checkmark	

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 277156

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.01, Warriewood</u>
Number of Samples	59 Soil, 1 Material
Date samples received	31/08/2021
Date completed instructions received	02/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 10/09/2021

 Date of Issue
 15/09/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Ridwan Wijaya Authorised by Asbestos Approved Signatory: Lucy Zhu Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Greta Petzold, Senior Report Coordinator Hannah Nguyen, Metals Supervisor Jenny He, Chemist Josh Williams, LC Supervisor Lucy Zhu, Asbestos Supervisor Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	03/09/2021	03/09/2021	07/09/2021	07/09/2021	07/09/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	105	97	87	92	98
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	07/09/2021	07/09/2021	07/09/2021	07/09/2021	07/09/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3

svTRH (C10-C40) in Soil						
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	03/09/2021	04/09/2021	06/09/2021	06/09/2021	06/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	91	96	77	80	86
svTRH (C10-C40) in Soil						
Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	03/09/2021	03/09/2021	03/09/2021
Date analysed	-	06/09/2021	06/09/2021	07/09/2021	07/09/2021	06/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
					100	
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀ Total +ve TRH (>C10-C40)	mg/kg mg/kg	<100 <50	<100 <50	<100 <50	<100 <50	<100 <50

PAHs in Soil						
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	07/09/2021	07/09/2021	06/09/2021	06/09/2021	06/09/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	112	104	120	113	118

PAHs in Soil						
Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	08/09/2021	08/09/2021	06/09/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	0.2	<0.1	0.2
Pyrene	mg/kg	<0.1	0.2	0.2	<0.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.4	<0.2	<0.2	0.3
Benzo(a)pyrene	mg/kg	<0.05	0.1	0.09	<0.05	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	1.0	0.4	<0.05	0.66
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	114	112	95	99	113

Organochlorine Pesticides in soil						
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	07/09/2021	07/09/2021	06/09/2021	06/09/2021	06/09/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	115	117	120	122	122

Organochlorine Pesticides in soil						
Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	08/09/2021	08/09/2021	06/09/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	116	119	111	114	115

Organophosphorus Pesticides in Soil						
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	07/09/2021	07/09/2021	06/09/2021	06/09/2021	06/09/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	115	117	120	122	122

Organophosphorus Pesticides in Soil						
Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	08/09/2021	08/09/2021	06/09/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	116	119	111	114	115

PCBs in Soil				_	_	
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/09/2021	03/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	07/09/2021	07/09/2021	06/09/2021	06/09/2021	06/09/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	115	117	120	122	122

PCBs in Soil						
Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	08/09/2021	08/09/2021	06/09/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	116	119	111	114	115

Triazine Herbicides in Soil		
Our Reference		277156-2
Your Reference	UNITS	BH103
Depth		0.4-0.5
Date Sampled		31/08/2021
Type of sample		Soil
Date extracted	-	03/09/2021
Date analysed	-	06/09/2021
Simazine	mg/kg	<0.5
Atrazine	mg/kg	<0.5
Propazine	mg/kg	<0.5
Terbuthylazine	mg/kg	<0.5
Metribuzin	mg/kg	<0.5
Ametryn	mg/kg	<0.5
Prometryn	mg/kg	<0.5
Terbutryn	mg/kg	<0.5
Cyanazine	mg/kg	<0.5
Irgarol	mg/kg	<0.5
Hexazinone	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	73

Acid Extractable metals in soil						
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Arsenic	mg/kg	<4	8	<4	<4	<4
Cadmium	mg/kg	<0.4	0.5	<0.4	<0.4	<0.4
Chromium	mg/kg	3	16	9	19	<1
Copper	mg/kg	<1	19	5	37	2
Lead	mg/kg	4	81	12	4	1
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	6	2	70	<1
Zinc	mg/kg	1	360	98	49	11
Manganese	mg/kg	<1	76	16	340	6
Acid Extractable metals in soil		, 	·			·

Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Arsenic	mg/kg	11	<4	5	<4	91
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	14	6	4	7
Copper	mg/kg	15	37	17	3	20
Lead	mg/kg	76	20	55	5	24
Mercury	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	10	16	4	<1	24
Zinc	mg/kg	210	66	44	4	41
Manganese	mg/kg	97	140	79	18	220

Misc Soil - Inorg						
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Moisture						
Our Reference		277156-2	277156-13	277156-15	277156-22	277156-23
Your Reference	UNITS	BH103	BH101	BH101	BH109	BH109
Depth		0.4-0.5	0.4-0.5	1.4-1.5	0.02-0.1	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/09/2021	03/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	07/09/2021	07/09/2021	07/09/2021
Moisture	%	7.6	24	23	6.5	16
Moisture						
Our Reference		277156-27	277156-30	277156-43	277156-50	277156-53
Your Reference	UNITS	BH106	BH111	BH115	BH114	BH113
Depth		0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5	0.05-0.15
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	07/09/2021	07/09/2021	07/09/2021	07/09/2021	07/09/2021
Moisture	%	18	12	9.4	8.1	14

Asbestos ID - soils NEPM						
Our Reference		277156-2	277156-12	277156-13	277156-15	277156-22
Your Reference	UNITS	BH103	BH101	BH101	BH101	BH109
Depth		0.4-0.5	0.12-0.2	0.4-0.5	1.4-1.5	0.02-0.1
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	08-09/09/2021	08-09/09/2021	08-09/09/2021	08-09/09/2021	08-09/09/2021
Sample mass tested	g	817.1	1,213.82	695.8	749.26	1,173.3
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	Chrysotile asbestos detected Amosite asbestos detected Crocidolite asbestos detected Organic fibres detected	Chrysotile asbestos detected Amosite asbestos detected Crocidolite asbestos detected Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	0.3890	0.4874	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	See Above	See Above	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	0.1252	0.3652	-
FA and AF Estimation*	g	-	-	0.1455	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	0.0209	<0.001	<0.001

Asbestos ID - soils NEPM						
Our Reference		277156-23	277156-27	277156-30	277156-43	277156-50
Your Reference	UNITS	BH109	BH106	BH111	BH115	BH114
Depth		0.4-0.5	0.14-0.25	0.07-0.15	0.4-0.5	0.4-0.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	08-09/09/2021	08-09/09/2021	08-09/09/2021	08-09/09/2021	08-09/09/2021
Sample mass tested	g	814.33	1,055.46	1,017.67	644.85	767.16
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Grey fine-grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	-	detected No asbestos				
		detected	detected	detected	detected	detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM		
Our Reference		277156-53
Your Reference	UNITS	BH113
Depth		0.05-0.15
Date Sampled		31/08/2021
Type of sample		Soil
Date analysed	-	08-09/09/2021
Sample mass tested	g	760.2
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected
ACM >7mm Estimation*	g	-
FA and AF Estimation*	g	_
FA and AF Estimation*#2	%(w/w)	<0.001

PFAS in Soils Short			
Our Reference		277156-22	277156-53
Your Reference	UNITS	BH109	BH113
Depth		0.02-0.1	0.05-0.15
Date Sampled		31/08/2021	31/08/2021
Type of sample		Soil	Soil
Date prepared	-	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021
Perfluorohexanesulfonic acid - PFHxS	µg/kg	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	µg/kg	0.5	1.1
Perfluorooctanoic acid PFOA	µg/kg	<0.1	0.2
6:2 FTS	µg/kg	<0.1	<0.1
8:2 FTS	µg/kg	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	104	103
Surrogate ¹³ C ₂ PFOA	%	116	116
Extracted ISTD ¹⁸ O ₂ PFHxS	%	105	101
Extracted ISTD ¹³ C ₄ PFOS	%	97	91
Extracted ISTD ¹³ C ₄ PFOA	%	93	92
Extracted ISTD ¹³ C ₂ 6:2FTS	%	102	96
Extracted ISTD ¹³ C ₂ 8:2FTS	%	106	108
Total Positive PFHxS & PFOS	µg/kg	0.5	1.1
Total Positive PFOS & PFOA	µg/kg	0.5	1.3
Total Positive PFAS	µg/kg	0.5	1.3

Misc Inorg - Soil		
Our Reference		277156-30
Your Reference	UNITS	BH111
Depth		0.07-0.15
Date Sampled		31/08/2021
Type of sample		Soil
Date prepared	-	06/09/2021
Date analysed	-	06/09/2021
pH 1:5 soil:water	pH Units	8.4

CEC		
Our Reference		277156-30
Your Reference	UNITS	BH111
Depth		0.07-0.15
Date Sampled		31/08/2021
Type of sample		Soil
Date prepared	-	07/09/2021
Date analysed	-	07/09/2021
Exchangeable Ca	meq/100g	12
Exchangeable K	meq/100g	0.3
Exchangeable Mg	meq/100g	0.78
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	13

Phenoxy Acid Herbicides in Soil		
Our Reference		277156-2
Your Reference	UNITS	BH103
Depth		0.4-0.5
Date Sampled		31/08/2021
Type of sample		Soil
Date extracted	-	13/09/2021
Date analysed	-	14/09/2021
Clopyralid	mg/kg	<0.5
3,5-Dichlorobenzoic acid	mg/kg	<0.5
o-chlorophenoxy acetic acid	mg/kg	<0.5
4-CPA	mg/kg	<0.5
Dicamba	mg/kg	<0.5
МСРР	mg/kg	<0.5
МСРА	mg/kg	<0.5
Dichlorprop	mg/kg	<0.5
2,4-D	mg/kg	<0.5
Bromoxynil	mg/kg	<0.5
Triclopyr	mg/kg	<0.5
2,4,5-TP	mg/kg	<0.5
2,4,5-T	mg/kg	<0.5
МСРВ	mg/kg	<0.5
Dinoseb	mg/kg	<1
2,4-DB	mg/kg	<0.5
loxynil	mg/kg	<1
Picloram	mg/kg	<0.5
DCPA (Chlorthal) Diacid	mg/kg	<0.5
Acifluorfen	mg/kg	<2
2,4,6-T	mg/kg	<0.5
2,6-D	mg/kg	<0.5
Surrogate 2.4- DCPA	%	100

Glyphosate in Soil		
Our Reference		277156-2
Your Reference	UNITS	BH103
Depth		0.4-0.5
Date Sampled		31/08/2021
Type of sample		Soil
Date Extracted	-	13/09/2021
Date analysed	-	13/09/2021
Glyphosate*	mg/kg	<10
Surrogate-L-cysteic acid	% rec	#

sPOCAS field test						
Our Reference		277156-5	277156-7	277156-8	277156-9	277156-10
Your Reference	UNITS	BH103	BH103	BH103	BH103	BH103
Depth		1.4-1.5	1.9-2	2.4-2.5	2.9-3	3.4-3.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
pH _F (field pH test)*	pH Units	4.5	5.5	5.5	5.4	5.2
pH _{FOX} (field peroxide test)*	pH Units	3.5	4.0	4.0	2.5	1.6
Reaction Rate*	-	Medium reaction	Medium reaction	Low reaction	Medium reaction	Medium reaction

sPOCAS field test						
Our Reference		277156-11	277156-14	277156-15	277156-17	277156-18
Your Reference	UNITS	BH103	BH101	BH101	BH101	BH101
Depth		3.9-4	0.9-1	1.4-1.5	1.9-2	2.4-2.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
pH _F (field pH test)*	pH Units	6.0	6.7	6.5	6.4	5.9
pH _{FOX} (field peroxide test)*	pH Units	3.4	2.8	2.0	1.8	2.6
Reaction Rate*	-	Volcanic reaction	Medium reaction	Volcanic reaction	Extreme reaction	Medium reaction

sPOCAS field test						
Our Reference		277156-19	277156-20	277156-21	277156-32	277156-34
Your Reference	UNITS	BH101	BH101	BH101	BH111	BH111
Depth		2.9-3	3.4-3.5	3.9-4	0.9-1	1.4-1.5
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
pH⊧ (field pH test)*	pH Units	5.9	5.5	5.4	5.8	5.2
pH _{FOX} (field peroxide test)*	pH Units	2.8	3.0	2.5	4.3	4.2
Reaction Rate*	-	Medium reaction				

sPOCAS field test						
Our Reference		277156-35	277156-36	277156-37	277156-38	277156-39
Your Reference	UNITS	BH111	BH111	BH111	BH111	BH111
Depth		1.9-2	2.4-2.5	2.9-3	3.4-3.5	3.9-4
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
pH⊧ (field pH test)*	pH Units	5.1	4.6	4.7	5.2	5.2
pHFOX (field peroxide test)*	pH Units	4.5	3.6	3.7	4.2	4.1
Reaction Rate*	-	Low reaction				

sPOCAS field test						
Our Reference		277156-40	277156-41	277156-44	277156-45	277156-46
Your Reference	UNITS	BH111	BH111	BH115	BH115	BH115
Depth		4.4-4.5	4.9-5	0.9-1	1.4-1.5	1.9-2
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021	06/09/2021	06/09/2021	06/09/2021
pH⊦ (field pH test)*	pH Units	5.0	5.2	7.1	5.8	5.8
pH _{FOX} (field peroxide test)*	pH Units	4.2	4.3	5.0	5.0	5.0
Reaction Rate*	-	Low reaction	Low reaction	Medium reaction	Medium reaction	Low reaction

sPOCAS field test			
Our Reference		277156-47	277156-48
Your Reference	UNITS	BH115	BH115
Depth		2.4-2.5	2.9-3
Date Sampled		31/08/2021	31/08/2021
Type of sample		Soil	Soil
Date prepared	-	06/09/2021	06/09/2021
Date analysed	-	06/09/2021	06/09/2021
pH _F (field pH test)*	pH Units	5.1	4.7
pH _{FOX} (field peroxide test)*	pH Units	2.3	2.9
Reaction Rate*	-	High reaction	High reaction
P			·

Asbestos ID - materials		
Our Reference		277156-60
Your Reference	UNITS	ACM-01
Depth		-
Date Sampled		31/08/2021
Type of sample		Material
Date analysed	-	07/09/2021
Mass / Dimension of Sample	-	41x34x5mm
Sample Description	-	Grey fibre cement material
Asbestos ID in materials	-	Chrysotile asbestos detected
		Amosite asbestos detected
		Crocidolite asbestos detected
Trace Analysis	-	[NT]

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Ext-054	Analysed by MPL Envirolab
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<="" is="" most="" pql.="" th="" the="" this=""></pql>
	approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum
	of the positive individual Xylenes.
ORG-029	Glyphosate & AMPA analysis using LC-MSMS.*
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	277156-15
Date extracted	-			03/09/2021	2	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			07/09/2021	2	03/09/2021	03/09/2021		06/09/2021	07/09/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	2	<25	<25	0	107	76
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	2	<25	<25	0	107	76
Benzene	mg/kg	0.2	Org-023	<0.2	2	<0.2	<0.2	0	110	86
Toluene	mg/kg	0.5	Org-023	<0.5	2	<0.5	<0.5	0	101	82
Ethylbenzene	mg/kg	1	Org-023	<1	2	<1	<1	0	109	70
m+p-xylene	mg/kg	2	Org-023	<2	2	<2	<2	0	107	72
o-Xylene	mg/kg	1	Org-023	<1	2	<1	<1	0	110	74
naphthalene	mg/kg	1	Org-023	<1	2	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	79	2	105	78	30	111	72

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	277156-15
Date extracted	-			03/09/2021	2	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			06/09/2021	2	03/09/2021	06/09/2021		06/09/2021	06/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	2	<50	<50	0	98	93
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	2	<100	<100	0	104	78
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	2	<100	<100	0	116	88
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	2	<50	<50	0	98	93
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	2	<100	<100	0	104	78
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	2	<100	<100	0	116	88
Surrogate o-Terphenyl	%		Org-020	81	2	91	84	8	84	85

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	277156-15
Date extracted	-			03/09/2021	2	03/09/2021	06/09/2021		03/09/2021	06/09/2021
Date analysed	-			07/09/2021	2	07/09/2021	06/09/2021		07/09/2021	07/09/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	107	93
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	125	103
Fluorene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	109	99
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	116	116
Anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	123	112
Pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	131	113
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	95	83
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	2	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	2	<0.05	<0.05	0	106	106
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	96	2	112	110	2	96	110

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	277156-15
Date extracted	-			03/09/2021	2	03/09/2021	06/09/2021		03/09/2021	06/09/2021
Date analysed	-			07/09/2021	2	07/09/2021	06/09/2021		07/09/2021	07/09/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	130	100
НСВ	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	124	96
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	131	89
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	130	111
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	128	112
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	129	107
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	118	112
Endrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	121	109
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	108	74
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	120	112
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	116	2	115	114	1	111	122

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	277156-15
Date extracted	-			03/09/2021	2	03/09/2021	06/09/2021		03/09/2021	06/09/2021
Date analysed	-			07/09/2021	2	07/09/2021	06/09/2021		07/09/2021	07/09/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	123	76
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	126	118
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	77	70
Malathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	122	99
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	128	109
Parathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	78	70
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	90	88
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	116	2	115	114	1	111	122

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	277156-15
Date extracted	-			03/09/2021	2	03/09/2021	06/09/2021		03/09/2021	06/09/2021
Date analysed	-			07/09/2021	2	07/09/2021	06/09/2021		07/09/2021	07/09/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	120	120
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	116	2	115	114	1	111	122

QUALITY CON	NTROL: Tria	zine Herb	icides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	277156-2
Date extracted	-			03/09/2021	2	03/09/2021	03/09/2021		03/09/2021	03/09/2021
Date analysed	-			06/09/2021	2	06/09/2021	06/09/2021		06/09/2021	06/09/2021
Simazine	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Atrazine	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	102	104
Propazine	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	112	114
Terbuthylazine	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Metribuzin	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Ametryn	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Prometryn	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	124	124
Terbutryn	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Cyanazine	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Irgarol	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Hexazinone	mg/kg	0.5	Org-022/025	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	78	2	73	77	5	76	74

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	277156-15
Date prepared	-			06/09/2021	2	06/09/2021	06/09/2021		06/09/2021	06/09/2021
Date analysed	-			06/09/2021	2	06/09/2021	06/09/2021		06/09/2021	06/09/2021
Arsenic	mg/kg	4	Metals-020	<4	2	<4	<4	0	97	84
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	95	89
Chromium	mg/kg	1	Metals-020	<1	2	3	3	0	93	91
Copper	mg/kg	1	Metals-020	<1	2	<1	<1	0	95	94
Lead	mg/kg	1	Metals-020	<1	2	4	4	0	94	85
Mercury	mg/kg	0.1	Metals-021	<0.1	2	<0.1	<0.1	0	102	80
Nickel	mg/kg	1	Metals-020	<1	2	<1	<1	0	95	89
Zinc	mg/kg	1	Metals-020	<1	2	1	1	0	97	#
Manganese	mg/kg	1	Metals-020	<1	2	<1	<1	0	98	85

QUALITY	CONTROL	Misc Soi	l - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	277156-15
Date prepared	-			06/09/2021	2	06/09/2021	06/09/2021		06/09/2021	06/09/2021
Date analysed	-			06/09/2021	2	06/09/2021	06/09/2021		06/09/2021	06/09/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	2	<5	<5	0	100	99

QUALITY C	CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	277156-22
Date prepared	-			06/09/2021	53	06/09/2021	06/09/2021		06/09/2021	06/09/2021
Date analysed	-			06/09/2021	53	06/09/2021	06/09/2021		06/09/2021	06/09/2021
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	<0.1	53	<0.1	<0.1	0	90	96
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	<0.1	53	1.1	0.7	44	98	104
Perfluorooctanoic acid PFOA	µg/kg	0.1	Org-029	<0.1	53	0.2	0.2	0	95	99
6:2 FTS	µg/kg	0.1	Org-029	<0.1	53	<0.1	<0.1	0	91	100
8:2 FTS	µg/kg	0.2	Org-029	<0.2	53	<0.2	<0.2	0	91	102
Surrogate ¹³ C ₈ PFOS	%		Org-029	106	53	103	101	2	104	101
Surrogate ¹³ C ₂ PFOA	%		Org-029	104	53	116	108	7	108	124
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	108	53	101	102	1	107	89
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	98	53	91	93	2	98	80
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	103	53	92	94	2	98	72
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	116	53	96	83	15	106	63
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	108	53	108	103	5	99	59

QUALITY	CONTROL	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			06/09/2021	[NT]		[NT]	[NT]	06/09/2021	
Date analysed	-			06/09/2021	[NT]		[NT]	[NT]	06/09/2021	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	101	[NT]

QU	ALITY CONT	ROL: CE	C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			07/09/2021	[NT]		[NT]	[NT]	07/09/2021	
Date analysed	-			07/09/2021	[NT]		[NT]	[NT]	07/09/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	87	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	90	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	84	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	101	[NT]

QUALITY CON	ITROL: Pheno	xy Acid H	erbicides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	277156-2
Date extracted	-			13/09/2021	2	13/09/2021	13/09/2021		13/09/2021	13/09/2021
Date analysed	-			14/09/2021	2	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Clopyralid	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
3,5-Dichlorobenzoic acid	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
o-chlorophenoxy acetic acid	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
4-CPA	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Dicamba	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	110	115
MCPP	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	101	109
MCPA	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	101	107
Dichlorprop	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
2,4-D	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	99	109
Bromoxynil	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Triclopyr	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
2,4,5-TP	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
2,4,5-T	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	101	119
МСРВ	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Dinoseb	mg/kg	1	Ext-054	<1	2	<1	<1	0	[NT]	[NT]
2,4-DB	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
loxynil	mg/kg	1	Ext-054	<1	2	<1	<1	0	[NT]	[NT]
Picloram	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
DCPA (Chlorthal) Diacid	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Acifluorfen	mg/kg	2	Ext-054	<2	2	<2	<2	0	[NT]	[NT]
2,4,6-T	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
2,6-D	mg/kg	0.5	Ext-054	<0.5	2	<0.5	<0.5	0	[NT]	[NT]
Surrogate 2.4- DCPA	%		Ext-054	120	2	100	98	2	97	98

QUALITY	CONTROL:	Glyphosa	te in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	277156-2
Date Extracted	-			13/09/2021	[NT]		[NT]	[NT]	13/09/2021	13/09/2021
Date analysed	-			14/09/2021	[NT]		[NT]	[NT]	14/09/2021	14/09/2021
Glyphosate*	mg/kg	1	Ext-054	<1	[NT]		[NT]	[NT]	105	88
Surrogate-L-cysteic acid	% rec		ORG-029	102	[NT]	[NT]	[NT]	[NT]	102	#

QUALIT	Y CONTROL:	sPOCAS	field test			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			06/09/2021	[NT]		[NT]	[NT]	06/09/2021	
Date analysed	-			06/09/2021	[NT]		[NT]	[NT]	06/09/2021	
pH _F (field pH test)*	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	
pH _{FOX} (field peroxide test)*	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	

QUALITY	CONTROL:	sPOCAS	field test			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			[NT]	[NT]		[NT]	[NT]	06/09/2021	
Date analysed	-			[NT]	[NT]		[NT]	[NT]	06/09/2021	
pH _F (field pH test)*	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	
pH _{FOX} (field peroxide test)*	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Contro	Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 metals in soil - # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

PFAS in Soil Short were provided without the ideal container type, Plastic containers are the recommended container type.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 277156-13; Chrysotile, Amosite and Crocidolite asbestos identified in 0.8345g of fibre cement material >7mm

Sample 277156-13; Chrysotile, Amosite and Crocidolite asbestos identified in 0.7276g of fibre cement material <7mm

Sample 277156-15; Chrysotile, Amosite and Crocidolite asbestos identified in 2.4346g of fibre cement material >7mm

Acid Herbicides & Glyphosate in Soil analysed by MPL Laboratories. Report No. 268713

Glyphosate in Soil:

- PQL has been raised due to interfernce from analytes (other than those being tested) in the sample/s.

- # Surrogate recovery was low due to suspected sample matrix interference during extraction.

CERTIFICATE OF ANALYSIS 277156-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.01, Warriewood</u>
Number of Samples	additional analysis
Date samples received	31/08/2021
Date completed instructions received	09/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	17/09/2021		
Date of Issue	16/09/2021		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Hannah Nguyen, Metals Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Metals from Leaching Fluid pH 2.9 or 5		
Our Reference		277156-A-22
Your Reference	UNITS	BH109
Depth		0.02-0.1
Date Sampled		31/08/2021
Type of sample		Soil
Date extracted	-	13/09/2021
Date analysed	-	13/09/2021
pH of soil for fluid# determ.	pH units	9.4
pH of soil TCLP (after HCl)	pH units	1.9
Extraction fluid used	-	1
pH of final Leachate	pH units	5.3
Nickel	mg/L	0.07

Method ID	Methodology Summary
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.

QUALITY CONTROL	: Metals fror	n Leachir	ng Fluid pH 2.9 or s	5		Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			13/09/2021	[NT]		[NT]	[NT]	13/09/2021	[NT]
Date analysed	-			13/09/2021	[NT]		[NT]	[NT]	13/09/2021	[NT]
Nickel	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]	[NT]	[NT]	90	[NT]

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Contro	Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CERTIFICATE OF ANALYSIS 277156-B

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details					
Your Reference	<u>207253.01, Warriewood</u>				
Number of Samples	additional analysis				
Date samples received	31/08/2021				
Date completed instructions received	13/09/2021				

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	21/09/2021				
Date of Issue	21/09/2021				
NATA Accreditation Number 2901	I. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

<u>Results Approved By</u> Alexander Mitchell Maclean, Senior Chemist Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 277156-B Revision No: R00

Chromium Suite					
Our Reference		277156-B-10	277156-B-14	277156-B-17	277156-B-48
Your Reference	UNITS	BH103	BH101	BH101	BH115
Depth		3.4-3.5	0.9-1	1.9-2	2.9-3
Date Sampled		31/08/2021	31/08/2021	31/08/2021	31/08/2021
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	17/09/2021	17/09/2021	17/09/2021	17/09/2021
Date analysed	-	17/09/2021	17/09/2021	17/09/2021	17/09/2021
рН ка	pH units	4.0	5.8	4.8	3.5
s-TAA pH 6.5	%w/w S	0.06	0.01	0.04	0.18
TAA pH 6.5	moles H+/t	40	8	22	110
Chromium Reducible Sulfur	%w/w	0.08	0.02	0.12	0.008
a-Chromium Reducible Sulfur	moles H+/t	47	11	72	5
Shci	%w/w S	0.044	[NT]	[NT]	0.008
Sксi	%w/w S	0.039	[NT]	[NT]	0.006
Snas	%w/w S	0.005	[NT]	[NT]	<0.005
ANC _{BT}	% CaCO₃	[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.14	0.030	0.15	0.19
a-Net Acidity	moles H+/t	90	19	94	120
Liming rate	kg CaCO₃ /t	7	1	7	8.8
a-Net Acidity without ANCE	moles H+/t	90	19	94	120
Liming rate without ANCE	kg CaCO₃ /t	6.8	1.4	7.1	8.8
s-Net Acidity without ANCE	%w/w S	0.14	0.030	0.15	0.19

PFAS in TCLP Short			
Our Reference		277156-B-22	277156-B-53
Your Reference	UNITS	BH109	BH113
Depth		0.02-0.1	0.05-0.15
Date Sampled		31/08/2021	31/08/2021
Type of sample		Soil	Soil
Date prepared	-	16/09/2021	16/09/2021
Date analysed	-	17/09/2021	17/09/2021
pH of soil for fluid# determ.	pH units	[NA]	6.5
pH of soil TCLP (after HCl)	pH units	[NA]	1.7
Extraction fluid used	-	[NA]	1
pH of final Leachate	pH units	[NA]	4.9
Perfluorohexanesulfonic acid - PFHxS	µg/L	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	µg/L	<0.01	0.01
Perfluorooctanoic acid PFOA	µg/L	<0.01	<0.01
6:2 FTS	µg/L	<0.01	<0.01
8:2 FTS	µg/L	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	99	99
Surrogate ¹³ C ₂ PFOA	%	98	92
Extracted ISTD ¹⁸ O ₂ PFHxS	%	99	95
Extracted ISTD ¹³ C ₄ PFOS	%	96	95
Extracted ISTD ¹³ C ₄ PFOA	%	94	97
Extracted ISTD ¹³ C ₂ 6:2FTS	%	75	72
Extracted ISTD ¹³ C ₂ 8:2FTS	%	106	105
Total Positive PFHxS & PFOS	µg/L	<0.01	0.01
Total Positive PFOS & PFOA	µg/L	<0.01	0.01
Total Positive PFAS	µg/L	<0.01	0.01

Method ID	Methodology Summary
INORG-004	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALIT	Y CONTROL:	Chromiu	m Suite			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			17/09/2021	10	17/09/2021	17/09/2021		17/09/2021	
Date analysed	-			17/09/2021	10	17/09/2021	17/09/2021		17/09/2021	
pH _{kcl}	pH units		Inorg-068	[NT]	10	4.0	4.0	0	97	
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	10	0.06	0.07	15	[NT]	
TAA pH 6.5	moles H+/t	5	Inorg-068	<5	10	40	42	5	99	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	10	0.08	0.08	0	[NT]	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	10	47	48	2	109	
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	10	0.044	0.044	0	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	10	0.039	0.048	21	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	10	0.005	<0.005	0	[NT]	
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	<0.05	10		[NT]		[NT]	
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	10		[NT]		[NT]	
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	10	0.14	0.14	0	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-068	<5	10	90	90	0	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	10	7	7	0	[NT]	
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-068	<5	10	90	90	0	[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	10	6.8	6.8	0	[NT]	
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	10	0.14	0.14	0	[NT]	

QUALITY C	ONTROL: F	FAS in T	CLP Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			16/09/2021	22	16/09/2021	16/09/2021		16/09/2021	
Date analysed	-			17/09/2021	22	17/09/2021	17/09/2021		17/09/2021	
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.01	Org-029	<0.01	22	<0.01	<0.01	0	108	
Perfluorooctanesulfonic acid PFOS	µg/L	0.01	Org-029	<0.01	22	<0.01	<0.01	0	108	
Perfluorooctanoic acid PFOA	µg/L	0.01	Org-029	<0.01	22	<0.01	<0.01	0	104	
6:2 FTS	µg/L	0.01	Org-029	<0.01	22	<0.01	<0.01	0	104	
8:2 FTS	μg/L	0.02	Org-029	<0.02	22	<0.02	<0.02	0	111	
Surrogate ¹³ C ₈ PFOS	%		Org-029	103	22	99	105	6	104	
Surrogate ¹³ C ₂ PFOA	%		Org-029	97	22	98	95	3	93	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	100	22	99	93	6	99	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	95	22	96	93	3	95	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	94	22	94	96	2	93	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	74	22	75	74	1	72	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	107	22	106	102	4	96	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions								
BlankThis is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Projec	ct No:	207253.0	01		Suburt): 	Warriev	vood							To:	Envirola	ab Servi	ices
	ct Manager:	Nerilee E	dwards	· · · · · ·	Order I	Number:					Sampl	er:	A.Spen	cer		12 Ash	ley St, C	Chatswood NSW 2067
Email		Nerilee.Edwards@douglaspartners.c				ners.com.au							Attn:	Sample	Receip	ot		
Turna	round time:	Standa		72 hour	48 hour	24 ho		Same da	-	on hole) samplereceipt@envirolab.com.au
Prior	Storage: 🛅 Fi	ridige 🗌 🗌	Freezer [✓ Esky	Do san	ples cor	ntain 'p	otentia	al' HBI	M? 🗌 🛛	No [·	/ Yes	(If YES	, then ha	andle, transp	port and	store in a	accordance with FPM HAZID)
	Sar	mple ID		pled	Sample Type	Container Type						Analyte	es					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	втех	voc	Hardness	PFAS (short, trace)	Glýphosate, Triazine Herbicides	Phenoxy Acid Herbicides	6L (trace OCP, OPP, PCB)	ЗГ				Notes/ Preservation/ Additional Requirements
	TS/20210908	-	-	-	w	G	Х				-							
2	TB/20210908	-	-	-	v	G	Х											
3	BD1/20210908	-	-	8/09/21	w	G/P								Х				
4	BH103	-	-	8/09/21	W	G/P		Х	Х	х	Х	Х	х					
5	BH101	-	I	8/09/21	w	G/P		х	х	х	х	Х	x					·
6	BH111	1	I	8/09/21	w	G/P		х	х	x	х	Х	х			-1Wil		12 Ashiey hatswood NSW 200
		et							_							Job	No: 😓	Ph: (02) 9910 6200
															5	Date	Receive	1: 08(0912)
																Rece	Receive	CH
			-													Cooli	rg:(ice/ic	nbient Beack
																, sri	ity. Intac	/Brc /
	s to analyse:						•				-		-	·	LAB RI		<u>'T</u>	
	per of sample					Transpo	orted to	labora	atory b	oy:	droppe	d off		<u> </u>	Lab Ref			
	results to:		Partners															istim
Addre				West Ryde	NSW 2114	-			;				-		Date &		05/11/9	1/21 1500
Reline	quished by:	uished by: A.Spencer				Date:	08/09/2	.021		Signe	d:				Signed:		1-	·

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards

Sample Login Details	
Your reference	207253.01, Warriewood
Envirolab Reference	277522
Date Sample Received	08/09/2021
Date Instructions Received	08/09/2021
Date Results Expected to be Reported	15/09/2021

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	OCPs in Water - Trace Level	OP in water Trace ANZECCF/ADWG	PCBs in Water - Trace Level	Triazine Herbicides in Water	HM in water - dissolved	Cations in water Dissolved	PFAS in Water TRACE Short	Acid Herbicides in Water	Small Community Pesticides
TS/20210908		✓											
TB/20210908		\checkmark											
BD1/20210908		\checkmark	\checkmark	\checkmark					\checkmark				
BH103	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH101	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH111	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓	✓	✓	\checkmark	\checkmark	\checkmark	✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 277522

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.01, Warriewood</u>
Number of Samples	6 Water
Date samples received	08/09/2021
Date completed instructions received	08/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	15/09/2021				
Date of Issue	16/09/2021				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Dragana Tomas, Senior Chemist Greta Petzold, Senior Report Coordinator Hannah Nguyen, Metals Supervisor Josh Williams, LC Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 277522 Revision No: R00

Page | 1 of 33

VOCs in water				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date extracted	-	10/09/2021	10/09/2021	10/09/2021
Date analysed	-	10/09/2021	10/09/2021	10/09/2021
Dichlorodifluoromethane	µg/L	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1
Chloroform	µg/L	<1	<1	<1
2,2-dichloropropane	µg/L	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1
Benzene	µg/L	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1
Toluene	µg/L	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1

VOCs in water				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Bromoform	µg/L	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2
Styrene	µg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1
o-xylene	µg/L	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	99	99
Surrogate toluene-d8	%	88	88	88
Surrogate 4-BFB	%	93	94	93

vTRH(C6-C10)/BTEXN in Water						
Our Reference		277522-1	277522-2	277522-3	277522-4	277522-5
Your Reference	UNITS	TS/20210908	TB/20210908	BD1/20210908	BH103	BH101
Date Sampled		08/09/2021	08/09/2021	08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	10/09/2021	10/09/2021	10/09/2021	10/09/2021	10/09/2021
Date analysed	-	10/09/2021	10/09/2021	10/09/2021	10/09/2021	10/09/2021
TRH C ₆ - C ₉	µg/L		[NA]	<10	<10	<10
TRH C ₆ - C ₁₀	µg/L		[NA]	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L		[NA]	<10	<10	<10
Benzene	µg/L	101%	<1	<1	<1	<1
Toluene	µg/L	99%	<1	<1	<1	<1
Ethylbenzene	µg/L	110%	<1	<1	<1	<1
m+p-xylene	µg/L	104%	<2	<2	<2	<2
o-xylene	µg/L	103%	<1	<1	<1	<1
Naphthalene	µg/L		[NA]	<1	<1	<1
Surrogate Dibromofluoromethane	%	99	98	99	98	99
Surrogate toluene-d8	%	90	88	88	88	88
Surrogate 4-BFB	%	92	93	94	93	94

vTRH(C6-C10)/BTEXN in Water		
Our Reference		277522-6
Your Reference	UNITS	BH111
Date Sampled		08/09/2021
Type of sample		Water
Date extracted	-	10/09/2021
Date analysed	-	10/09/2021
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	99
Surrogate toluene-d8	%	88
Surrogate 4-BFB	%	93

svTRH (C10-C40) in Water					
Our Reference		277522-3	277522-4	277522-5	277522-6
Your Reference	UNITS	BD1/20210908	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	09/09/2021	09/09/2021	09/09/2021	09/09/2021
Date analysed	-	11/09/2021	11/09/2021	11/09/2021	11/09/2021
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100
Total +ve TRH (C10-C36)	µg/L	<50	<50	<50	<50
TRH >C10 - C16	µg/L	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	<50
Surrogate o-Terphenyl	%	81	79	87	111

PAHs in Water - Low Level					
Our Reference		277522-3	277522-4	277522-5	277522-6
Your Reference	UNITS	BD1/20210908	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	09/09/2021	09/09/2021	09/09/2021	09/09/2021
Date analysed	-	10/09/2021	10/09/2021	10/09/2021	10/09/2021
Naphthalene	µg/L	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	75	70	86	83

OCPs in Water - Trace Level				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date extracted	-	09/09/2021	09/09/2021	09/09/2021
Date analysed	-	10/09/2021	10/09/2021	10/09/2021
alpha-BHC	µg/L	<0.001	<0.001	<0.001
НСВ	µg/L	<0.001	<0.001	<0.001
beta-BHC	µg/L	<0.001	<0.001	<0.001
gamma-BHC	µg/L	<0.001	<0.001	<0.001
Heptachlor	µg/L	<0.001	<0.001	<0.001
delta-BHC	µg/L	<0.001	<0.001	<0.001
Aldrin	µg/L	<0.001	<0.001	<0.001
Heptachlor Epoxide	µg/L	<0.001	<0.001	<0.001
gamma-Chlordane	µg/L	<0.001	<0.001	<0.001
alpha-Chlordane	µg/L	<0.001	<0.001	<0.001
Endosulfan I	µg/L	<0.002	<0.002	<0.002
pp-DDE	µg/L	<0.001	0.002	<0.001
Dieldrin	µg/L	<0.001	<0.001	<0.001
Endrin	µg/L	<0.001	<0.001	<0.001
Endosulfan II	µg/L	<0.002	<0.002	<0.002
pp-DDD	µg/L	<0.001	0.002	<0.001
Endrin Aldehyde	µg/L	<0.001	<0.001	<0.001
pp-DDT	µg/L	<0.001	0.004	<0.001
Endosulfan Sulphate	µg/L	<0.001	<0.001	<0.001
Methoxychlor	µg/L	<0.001	<0.001	<0.001
Surrogate TCMX	%	63	74	68

OP in water Trace ANZECCF/ADWG				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date extracted	-	09/09/2021	09/09/2021	09/09/2021
Date analysed	-	10/09/2021	10/09/2021	10/09/2021
Dichlorovos	µg/L	<0.2	<0.2	<0.2
Dimethoate	µg/L	<0.15	<0.15	<0.15
Diazinon	µg/L	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.2	<0.2	<0.2
Methyl Parathion	µg/L	<0.2	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2	<0.2
Fenitrothion	µg/L	<0.2	<0.2	<0.2
Malathion	µg/L	<0.05	<0.05	<0.05
Chlorpyriphos	µg/L	<0.009	<0.009	<0.009
Parathion	µg/L	<0.004	<0.004	<0.004
Bromophos ethyl	µg/L	<0.2	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02	<0.02
Surrogate TCMX	%	63	74	68

PCBs in Water - Trace Level				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date extracted	-	09/09/2021	09/09/2021	09/09/2021
Date analysed	-	10/09/2021	10/09/2021	10/09/2021
Aroclor 1016	µg/L	<0.01	<0.01	<0.01
Aroclor 1221	µg/L	<0.01	<0.01	<0.01
Aroclor 1232	µg/L	<0.01	<0.01	<0.01
Aroclor 1242	µg/L	<0.01	<0.01	<0.01
Aroclor 1248	μg/L	<0.01	<0.01	<0.01
Aroclor 1254	µg/L	<0.01	<0.01	<0.01
Aroclor 1260	μg/L	<0.01	<0.01	<0.01
Surrogate TCMX	%	63	74	68

Triazine Herbicides in Water				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date extracted	-	09/09/2021	09/09/2021	09/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021
Atrazine	mg/L	<0.002	<0.002	<0.002
Ametryn	mg/L	<0.002	<0.002	<0.002
Cyanazine	mg/L	<0.002	<0.002	<0.002
Hexazinone	mg/L	<0.002	<0.002	<0.002
Irgarol	mg/L	<0.002	<0.002	<0.002
Metribuzin	mg/L	<0.002	<0.002	<0.002
Prometryn	mg/L	<0.002	<0.002	<0.002
Propazine	mg/L	<0.002	<0.002	<0.002
Simazine	mg/L	<0.002	<0.002	<0.002
Terbutryn	mg/L	<0.002	<0.002	<0.002
Terbuthylazine	mg/L	<0.002	<0.002	<0.002
Surrogate p-Terphenyl-d14	%	85	84	76

HM in water - dissolved					
Our Reference		277522-3	277522-4	277522-5	277522-6
Your Reference	UNITS	BD1/20210908	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	09/09/2021	09/09/2021	09/09/2021	09/09/2021
Date analysed	-	09/09/2021	09/09/2021	09/09/2021	09/09/2021
Arsenic-Dissolved	µg/L	2	4	3	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	1
Zinc-Dissolved	μg/L	27	36	32	23

Cations in water Dissolved				_
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date digested	-	09/09/2021	09/09/2021	09/09/2021
Date analysed	-	09/09/2021	09/09/2021	09/09/2021
Calcium - Dissolved	mg/L	6.1	17	6.4
Magnesium - Dissolved	mg/L	9.4	7.1	11
Hardness	mgCaCO 3 /L	54	71	61

PFAS in Water TRACE Short				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date prepared	-	10/09/2021	10/09/2021	10/09/2021
Date analysed	-	10/09/2021	10/09/2021	10/09/2021
Perfluorohexanesulfonic acid - PFHxS	μg/L	0.0072	0.0058	0.0060
Perfluorooctanesulfonic acid PFOS	µg/L	0.0025	0.002	0.002
Perfluorooctanoic acid PFOA	μg/L	0.0056	0.0030	0.0035
6:2 FTS	μg/L	<0.0004	0.0008	0.0005
8:2 FTS	μg/L	<0.0004	<0.0004	<0.0004
Surrogate ¹³ C ₈ PFOS	%	97	100	90
Surrogate ¹³ C ₂ PFOA	%	93	100	95
Extracted ISTD ¹⁸ O ₂ PFHxS	%	89	99	91
Extracted ISTD ¹³ C ₄ PFOS	%	76	84	89
Extracted ISTD ¹³ C ₄ PFOA	%	80	88	96
Extracted ISTD ¹³ C ₂ 6:2FTS	%	73	97	94
Extracted ISTD ¹³ C ₂ 8:2FTS	%	71	102	80
Total Positive PFHxS & PFOS	μg/L	0.0098	0.0077	0.0079
Total Positive PFOS & PFOA	µg/L	0.0081	0.0049	0.0055
Total Positive PFAS	μg/L	0.015	0.012	0.012

Acid Herbicides in Water				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date extracted	-	13/09/2021	13/09/2021	13/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021
Clopyralid	µg/L	<0.5	<0.5	<0.5
3,5-Dichlorobenzoic acid	µg/L	<0.5	<0.5	<0.5
o-chlorophenoxy acetic acid	µg/L	<0.5	<0.5	<0.5
4-CPA	µg/L	<0.5	<0.5	<0.5
Dicamba	μg/L	<0.5	<0.5	<0.5
МСРР	µg/L	<0.5	<0.5	<0.5
МСРА	µg/L	<0.5	<0.5	<0.5
Dichlorprop	µg/L	<0.5	<0.5	<0.5
2,4-D	µg/L	<0.5	<0.5	<0.5
Bromoxynil	µg/L	<0.5	<0.5	<0.5
Triclopyr	µg/L	<0.5	<0.5	<0.5
2,4,5-TP	µg/L	<0.5	<0.5	<0.5
2,4,5-T	µg/L	<0.5	<0.5	<0.5
МСРВ	µg/L	<0.5	<0.5	<0.5
Dinoseb	µg/L	<1	<1	<1
2,4-DB	µg/L	<0.5	<0.5	<0.5
loxynil	µg/L	<1	<1	<1
Picloram	µg/L	<1	<1	<1
Acifluorfen	µg/L	<2	<2	<2
2,4,6-T	µg/L	<0.5	<0.5	<0.5
2,6-D	µg/L	<0.5	<0.5	<0.5
Surrogate 2.4- DCPA	%	88	73	92

Small Community Pesticides				
Our Reference		277522-4	277522-5	277522-6
Your Reference	UNITS	BH103	BH101	BH111
Date Sampled		08/09/2021	08/09/2021	08/09/2021
Type of sample		Water	Water	Water
Date prepared	-	14/09/2021	14/09/2021	14/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021
Glyphosate*	mg/L	<0.01	<0.01	<0.01
Surrogate: L-Cysteic Acid	%	103	101	102

Method ID	Methodology Summary
Disclaimer	Please note that sampling strategies are outside the control of the laboratory and are therefore not covered under NATA accreditation.
Ext-054	Analysed by MPL Envirolab
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALI	TY CONTROI	.: VOCs i	n water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	•			10/09/2021	4	10/09/2021	13/09/2021		10/09/2021	
Date analysed	-			10/09/2021	4	10/09/2021	13/09/2021		10/09/2021	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Chloromethane	µg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Vinyl Chloride	µg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Bromomethane	µg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Chloroethane	µg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	4	<10	<10	0	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,1-dichloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	105	
Cis-1,2-dichloroethene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Bromochloromethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Chloroform	μg/L	1	Org-023	<1	4	<1	<1	0	115	
2,2-dichloropropane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2-dichloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	120	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	100	
1,1-dichloropropene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Cyclohexane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Carbon tetrachloride	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Benzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Dibromomethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
				<1		<1				
1,2-dichloropropane	µg/L	1	Org-023		4		<1	0	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	4	<1	<1	0	123	
Bromodichloromethane	µg/L	1	Org-023	<1	4	<1	<1	0	104	
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Toluene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,3-dichloropropane	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Dibromochloromethane	µg/L	1	Org-023	<1	4	<1	<1	0	94	
1,2-dibromoethane	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	4	<1	<1	0	91	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Bromoform	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	4	<2	<2	0	[NT]	
Styrene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	

QUALIT	Y CONTROI	.: VOCs i	n water			Du	uplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
o-xylene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2,3-trichloropropane	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Bromobenzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
n-propyl benzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
2-chlorotoluene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Tert-butyl benzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,3-dichlorobenzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Sec-butyl benzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
4-isopropyl toluene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2-dichlorobenzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
n-butyl benzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Hexachlorobutadiene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	98	4	98	99	1	100	
Surrogate toluene-d8	%		Org-023	88	4	88	98	11	89	
Surrogate 4-BFB	%		Org-023	95	4	93	100	7	91	

QUALITY CONTR	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			10/09/2021	4	10/09/2021	13/09/2021		10/09/2021	
Date analysed	-			10/09/2021	4	10/09/2021	13/09/2021		10/09/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	4	<10	<10	0	103	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	4	<10	<10	0	103	
Benzene	μg/L	1	Org-023	<1	4	<1	<1	0	101	
Toluene	μg/L	1	Org-023	<1	4	<1	<1	0	97	
Ethylbenzene	μg/L	1	Org-023	<1	4	<1	<1	0	103	
m+p-xylene	μg/L	2	Org-023	<2	4	<2	<2	0	106	
o-xylene	μg/L	1	Org-023	<1	4	<1	<1	0	101	
Naphthalene	μg/L	1	Org-023	<1	4	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	98	4	98	99	1	100	
Surrogate toluene-d8	%		Org-023	88	4	88	98	11	89	
Surrogate 4-BFB	%		Org-023	95	4	93	100	7	91	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	277522-3
Date extracted	-			09/09/2021	3	09/09/2021	09/09/2021		09/09/2021	09/09/2021
Date analysed	-			11/09/2021	3	11/09/2021	11/09/2021		11/09/2021	11/09/2021
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	3	<50	<50	0	111	116
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	3	<100	<100	0	121	127
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	3	<100	<100	0	93	120
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	3	<50	<50	0	111	116
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	3	<100	<100	0	121	127
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	3	<100	<100	0	93	120
Surrogate o-Terphenyl	%		Org-020	96	3	81	80	1	105	105

QUALITY CON	NTROL: PAF	ls in Wate	er - Low Level			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			09/09/2021	3	09/09/2021	09/09/2021		09/09/2021	
Date analysed	-			10/09/2021	3	10/09/2021	10/09/2021		10/09/2021	
Naphthalene	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	115	
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	90	
Fluorene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	93	
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	116	
Anthracene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	93	
Pyrene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	102	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	106	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	3	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	83	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	3	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	87	3	75	78	4	89	

QUALITY	CONTROL: OCP	s in Wate	r - Trace Level			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	•			09/09/2021	[NT]		[NT]	[NT]	09/09/2021	
Date analysed				10/09/2021	[NT]		[NT]	[NT]	10/09/2021	
alpha-BHC	μg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	129	
НСВ	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
beta-BHC	μg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	128	
gamma-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Heptachlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	122	
delta-BHC	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Aldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	132	
Heptachlor Epoxide	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	132	
gamma-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
alpha-Chlordane	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
pp-DDE	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	127	
Dieldrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	117	
Endrin	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	135	
Endosulfan II	µg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
pp-DDD	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	127	
Endrin Aldehyde	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
pp-DDT	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	122	
Methoxychlor	µg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	96	[NT]		[NT]	[NT]	72	

QUALITY CONTRO	L: OP in wa	ter Trace .	ANZECCF/ADWG	i		Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			09/09/2021	[NT]		[NT]	[NT]	09/09/2021	
Date analysed	-			10/09/2021	[NT]		[NT]	[NT]	10/09/2021	
Dichlorovos	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	114	
Dimethoate	µg/L	0.15	Org-022/025	<0.15	[NT]		[NT]	[NT]	[NT]	
Diazinon	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Methyl Parathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	121	
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	104	
Malathion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	127	
Chlorpyriphos	μg/L	0.009	Org-022/025	<0.009	[NT]		[NT]	[NT]	132	
Parathion	μg/L	0.004	Org-022/025	<0.004	[NT]		[NT]	[NT]	98	
Bromophos ethyl	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	106	
Azinphos-methyl (Guthion)	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	96	[NT]		[NT]	[NT]	72	

QUALITY CON	TROL: PCBs	in Water	- Trace Level			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			09/09/2021	[NT]		[NT]	[NT]	09/09/2021	
Date analysed	-			10/09/2021	[NT]		[NT]	[NT]	10/09/2021	
Aroclor 1016	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	120	
Aroclor 1260	µg/L	0.01	Org-021	<0.01	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	96	[NT]		[NT]	[NT]	72	

QUALITY CON	TROL: Triaz	ine Herbio	cides in Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			09/09/2021	[NT]		[NT]	[NT]	09/09/2021	
Date analysed	-			14/09/2021	[NT]		[NT]	[NT]	14/09/2021	
Atrazine	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	84	
Ametryn	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Cyanazine	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Hexazinone	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Irgarol	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Metribuzin	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Prometryn	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	92	
Propazine	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	88	
Simazine	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Terbutryn	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Terbuthylazine	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	86	[NT]		[NT]	[NT]	98	

QUALITY CC	NTROL: HN	l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	277522-4
Date prepared	-			09/09/2021	3	09/09/2021	09/09/2021		09/09/2021	09/09/2021
Date analysed	-			09/09/2021	3	09/09/2021	09/09/2021		09/09/2021	09/09/2021
Arsenic-Dissolved	µg/L	1	Metals-022	<1	3	2	2	0	101	98
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	3	<0.1	<0.1	0	100	100
Chromium-Dissolved	μg/L	1	Metals-022	<1	3	<1	<1	0	102	99
Copper-Dissolved	µg/L	1	Metals-022	<1	3	<1	<1	0	103	101
Lead-Dissolved	µg/L	1	Metals-022	<1	3	<1	<1	0	102	103
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	3	<0.05			116	
Nickel-Dissolved	µg/L	1	Metals-022	<1	3	<1	<1	0	103	101
Zinc-Dissolved	µg/L	1	Metals-022	<1	3	27	27	0	102	97

QUALITY CON	ITROL: Catio	ons in wa	ter Dissolved			Duj	plicate		Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date digested	-			09/09/2021	[NT]		[NT]	[NT]	09/09/2021		
Date analysed	-			09/09/2021	[NT]		[NT]	[NT]	09/09/2021		
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	99		
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	101		

QUALITY CON	TROL: PFAS	in Water	TRACE Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	277522-5
Date prepared	-			10/09/2021	4	10/09/2021	10/09/2021		10/09/2021	10/09/2021
Date analysed	-			10/09/2021	4	10/09/2021	10/09/2021		10/09/2021	10/09/2021
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.0002	Org-029	<0.0002	4	0.0072	0.0067	7	90	81
Perfluorooctanesulfonic acid PFOS	µg/L	0.0002	Org-029	<0.0002	4	0.0025	0.0025	0	95	92
Perfluorooctanoic acid PFOA	µg/L	0.0002	Org-029	<0.0002	4	0.0056	0.0059	5	99	108
6:2 FTS	µg/L	0.0004	Org-029	<0.0004	4	<0.0004	<0.0004	0	104	104
8:2 FTS	μg/L	0.0004	Org-029	<0.0004	4	<0.0004	<0.0004	0	94	115
Surrogate ¹³ C ₈ PFOS	%		Org-029	101	4	97	92	5	98	89
Surrogate ¹³ C ₂ PFOA	%		Org-029	103	4	93	100	7	98	107
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	96	4	89	97	9	97	101
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	88	4	76	80	5	91	88
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	100	4	80	79	1	100	85
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	101	4	73	83	13	99	98
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	104	4	71	65	9	96	100

QUALITY C	ONTROL: Aci	d Herbici		Du	plicate	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	277522-6
Date extracted	-			13/09/2021	4	13/09/2021	13/09/2021		13/09/2021	13/09/2021
Date analysed	-			14/09/2021	4	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Clopyralid	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
3,5-Dichlorobenzoic acid	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
o-chlorophenoxy acetic acid	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
4-CPA	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
Dicamba	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	79	99
МСРР	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	72	96
MCPA	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	72	94
Dichlorprop	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
2,4-D	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	67	93
Bromoxynil	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
Triclopyr	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
2,4,5-TP	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
2,4,5-T	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	78	98
МСРВ	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
Dinoseb	µg/L	1	Ext-054	<1	4	<1	<1	0	[NT]	[NT]
2,4-DB	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
loxynil	µg/L	1	Ext-054	<1	4	<1	<1	0	[NT]	[NT]
Picloram	µg/L	1	Ext-054	<1	4	<1	<1	0	[NT]	[NT]
Acifluorfen	µg/L	2	Ext-054	<2	4	<2	<2	0	[NT]	[NT]
2,4,6-T	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
2,6-D	µg/L	0.5	Ext-054	<0.5	4	<0.5	<0.5	0	[NT]	[NT]
Surrogate 2.4- DCPA	%		Ext-054	78	4	88	79	11	70	88

QUALITY CON	TROL: Small	Commur		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	277522-5
Date prepared	-			14/09/2021	4	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Date analysed	-			14/09/2021	4	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Glyphosate*	mg/L	0.01	Ext-054	<0.01	4	<0.01	<0.01	0	107	96
Surrogate: L-Cysteic Acid	%		Disclaimer	97	4	103	103	0	97	96

Result Definiti	Result Definitions								
NT	Not tested								
NA	Test not required								
INS	Insufficient sample for this test								
PQL	Practical Quantitation Limit								
<	Less than								
>	Greater than								
RPD	Relative Percent Difference								
LCS	Laboratory Control Sample								
NS	Not specified								
NEPM	National Environmental Protection Measure								
NR	Not Reported								

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Acid Herbicides & Glyphosate in Water analysed by MPL Laboratories. Report No. 268712

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Proie	ct No:	207253	<u>)</u> 1		Suburt):	Warrie	wood			-				То:	Envirola	ab Serv	ices
Proje	ct Manager:	Nerilee Edwards Order Number: Sampler: A.Spencer						icer	12 Ashley St, Chatswood NSW 2067									
Emai	: 	Nerilee.E	Edwards@	douglaspa											Attn:	Sample		
	around time:			72 hour	48 hour			Same da		on hol						<u> </u>		0 samplereceipt@envirolab.com.au
Prior	Storage: 🗌 Fr	idge 🔄	Freezer	✓ Esky		nples co	ntain 'j	potenti	al' HB	M? 📋	No	✓ Yes	(If YES	5, then ha	indle, trans	port and	store in	accordance with FPM HAZID)
	Sar	nple ID		pled	Sample Type	Container Type			=			Analyt	es					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	On Hold											Notes/ Preservation/ Additional Requirements
1	TS/20210908	-	-	_	S	G	Х											
2	TB/20210908	-	-	-	S	G	Х											
3	BD1/20210908	-	-	8/09/21	S	G	х											
.4	BD2/20210908	-	-	8/09/21	S	G	х											·
5	BH102	0.13	0.2	8/09/21	S	G/P	х											
. 6	BH102	0.5	0.6	8/09/21	S	G/P	х							-				
י ר 🐇	BH102	0.9	1	8/09/21	s	G/P	х											الأربطية (12) من من الأربطية (من الأربطية (12) من
8	BH110	0.13	0.2	8/09/21	s	G/P	х											Chatswood NSW 2007 Ph: (02) 9910 6200
9	BH110	0.4	0.5	8/09/21	S	G/P	х											<u>lob No:</u>
10	BH110	0.9	1	8/09/21	S	G/P	х				-							Date Received: Time Received:
1	BH112	- 0.13	0.23	8/09/21	S	G/P	х											Received By: Temp: Cool/Ambient
.1.2	• BH112	0.5	0.6	8/09/21	S	Ğ/P	х											Caoling: Ice/Icepack
13	BH112	0.9	1	8/09/21	S	G/P	х											
10		· · · · ·																
Metal	s to analyse:	.HM9 (A	s, Cd, Ci	r, Cu, Pb,	Hg, Mn,	Ni, Zn)									LAB R	ECEIP	<u>T</u>	······································
-	per of sample					Transpo	orted to	labor	atory b	y:	droppe	ed off				f. No:		
		Douglas	Partners	Pty Ltd [.]											Receiv		TS	HAW I
Addr		96 Hermit	age Road,	West Ryde	NSW 2114		(02) 98	09 0666	3						Date &			814M 1900
Relin	quished by:					Date:				Signe	ed:				Signed	-FF	\sim	► ۱

. .

...

n

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards

Sample Login Details	
Your reference	207253.01, Warriewood
Envirolab Reference	277525
Date Sample Received	08/09/2021
Date Instructions Received	08/09/2021
Date Results Expected to be Reported	On Hold

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	13 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	Asbestos ID - soils	On Hold
TS/20210908											✓
TB/20210908											✓
BD1/20210908											✓
BD2/20210908											\checkmark
BH102-0.13-0.2											\checkmark
BH102-0.5-0.6											\checkmark
BH102-0.9-1											\checkmark
BH110-0.13-0.2											✓
BH110-0.4-0.5											✓
BH110-0.9-1											\checkmark
BH112-0.13-0.23											\checkmark
BH112-0.5-0.6											\checkmark
BH112-0.9-1											✓

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 277525

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Nerilee Edwards
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>207253.01, Warriewood</u>
Number of Samples	13 Soil
Date samples received	08/09/2021
Date completed instructions received	08/09/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 16/09/2021

 Date of Issue
 16/09/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Lucy Zhu, Asbestos Supervisor Steven Luong, Organics Supervisor

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu Results Approved By Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Josh Williams, LC Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		277525-1	277525-2	277525-6	277525-7	277525-8
Your Reference	UNITS	TS/20210908	TB/20210908	BH102	BH102	BH110
Depth		-	-	0.5-0.6	0.9-1	0.13-0.2
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/09/2021	13/09/2021	13/09/2021	13/09/2021	13/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021
TRH C ₆ - C ₉	mg/kg	[NA]	<25	<25	<25	<25
TRH C6 - C10	mg/kg	[NA]	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	[NA]	<25	<25	<25	<25
Benzene	mg/kg	84%	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	83%	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	85%	<1	<1	<1	<1
m+p-xylene	mg/kg	85%	<2	<2	<2	<2
o-Xylene	mg/kg	85%	<1	<1	<1	<1
naphthalene	mg/kg	[NA]	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	[NA]	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	84	94	78	78	75

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		277525-11
Your Reference	UNITS	BH112
Depth		0.13-0.23
Date Sampled		8/09/2021
Type of sample		Soil
Date extracted	-	13/09/2021
Date analysed	-	14/09/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	76

svTRH (C10-C40) in Soil					
Our Reference		277525-6	277525-7	277525-8	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH112
Depth		0.5-0.6	0.9-1	0.13-0.2	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	13/09/2021	13/09/2021	13/09/2021	13/09/2021
Date analysed	-	15/09/2021	15/09/2021	15/09/2021	15/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	109	107	106	109

PAHs in Soil					
Our Reference		277525-6	277525-7	277525-8	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH112
Depth		0.5-0.6	0.9-1	0.13-0.2	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	13/09/2021	13/09/2021	13/09/2021	13/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.4
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.06	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	0.06	1.5
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	98	100	101

Organochlorine Pesticides in soil					
Our Reference		277525-6	277525-7	277525-8	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH112
Depth		0.5-0.6	0.9-1	0.13-0.2	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	13/09/2021	13/09/2021	13/09/2021	13/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	127	111	111	112

Organophosphorus Pesticides in Soil					
Our Reference		277525-6	277525-7	277525-8	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH112
Depth		0.5-0.6	0.9-1	0.13-0.2	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	13/09/2021	13/09/2021	13/09/2021	13/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	127	111	111	112

PCBs in Soil					
Our Reference		277525-6	277525-7	277525-8	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH112
Depth		0.5-0.6	0.9-1	0.13-0.2	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	13/09/2021	13/09/2021	13/09/2021	13/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	127	111	111	112

Acid Extractable metals in soil					
Our Reference		277525-6	277525-7	277525-8	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH112
Depth		0.5-0.6	0.9-1	0.13-0.2	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021
Arsenic	mg/kg	<4	<4	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	3	5	44
Copper	mg/kg	1	<1	24	9
Lead	mg/kg	12	6	48	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	<1	1	1
Zinc	mg/kg	5	1	28	7
Manganese	mg/kg	9	4	55	13

Misc Soil - Inorg					
Our Reference		277525-6	277525-7	277525-8	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH112
Depth		0.5-0.6	0.9-1	0.13-0.2	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5

Moisture						
Our Reference		277525-6	277525-7	277525-8	277525-9	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH110	BH112
Depth		0.5-0.6	0.9-1	0.13-0.2	0.4-0.5	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/09/2021	13/09/2021	13/09/2021	13/09/2021	13/09/2021
Date analysed	-	14/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021
Moisture	%	26	13	10	5.8	11

Asbestos ID - soils NEPM Our Reference		277525-5	277525-6	277525-8	277525-11
Your Reference	UNITS	BH102	BH102	BH110	BH112
Depth		0.13-0.2	0.5-0.6	0.13-0.2	0.13-0.23
Date Sampled		8/09/2021	8/09/2021	8/09/2021	8/09/2021
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	16/09/2021	16/09/2021	16/09/2021	16/09/2021
Sample mass tested	g	509.23	290.99	760.05	680.26
Sample Description	-	Brown clayey soil & rocks	Black coarse- grained soil & rocks	Grey fine-grained soil & rocks	Brown clayey soi & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-
FA and AF Estimation*	g	-	-	-	_
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001

PFAS in Soils Short			
Our Reference		277525-8	277525-9
Your Reference	UNITS	BH110	BH110
Depth		0.13-0.2	0.4-0.5
Date Sampled		8/09/2021	8/09/2021
Type of sample		Soil	Soil
Date prepared	-	14/09/2021	14/09/2021
Date analysed	-	14/09/2021	14/09/2021
Perfluorohexanesulfonic acid - PFHxS	µg/kg	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	µg/kg	<0.1	<0.1
Perfluorooctanoic acid PFOA	µg/kg	<0.1	<0.1
6:2 FTS	µg/kg	<0.1	<0.1
8:2 FTS	µg/kg	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	103	97
Surrogate ¹³ C ₂ PFOA	%	114	112
Extracted ISTD ¹⁸ O ₂ PFHxS	%	103	104
Extracted ISTD ¹³ C ₄ PFOS	%	85	92
Extracted ISTD ¹³ C ₄ PFOA	%	93	96
Extracted ISTD ¹³ C ₂ 6:2FTS	%	110	101
Extracted ISTD ¹³ C ₂ 8:2FTS	%	115	106
Total Positive PFHxS & PFOS	µg/kg	<0.1	<0.1
Total Positive PFOS & PFOA	µg/kg	<0.1	<0.1
Total Positive PFAS	µg/kg	<0.1	<0.1

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" th="" that="" the="" this="" to=""></pql>
	 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Method ID	Methodology Summary
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate Spike I				Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-7
Date extracted	-			13/09/2021	6	13/09/2021	13/09/2021		13/09/2021	13/09/2021
Date analysed	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	6	<25	<25	0	92	86
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	6	<25	<25	0	92	86
Benzene	mg/kg	0.2	Org-023	<0.2	6	<0.2	<0.2	0	104	96
Toluene	mg/kg	0.5	Org-023	<0.5	6	<0.5	<0.5	0	86	81
Ethylbenzene	mg/kg	1	Org-023	<1	6	<1	<1	0	87	82
m+p-xylene	mg/kg	2	Org-023	<2	6	<2	<2	0	91	85
o-Xylene	mg/kg	1	Org-023	<1	6	<1	<1	0	88	83
naphthalene	mg/kg	1	Org-023	<1	6	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	80	6	78	77	1	84	80

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-7
Date extracted	-			13/09/2021	6	13/09/2021	13/09/2021		13/09/2021	13/09/2021
Date analysed	-			15/09/2021	6	15/09/2021	15/09/2021		15/09/2021	15/09/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	6	<50	<50	0	100	114
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	6	<100	<100	0	80	88
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	6	<100	<100	0	101	93
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	6	<50	<50	0	100	114
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	6	<100	<100	0	80	88
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	6	<100	<100	0	101	93
Surrogate o-Terphenyl	%		Org-020	104	6	109	107	2	126	107

QUALII	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-7
Date extracted	-			13/09/2021	6	13/09/2021	13/09/2021		13/09/2021	13/09/2021
Date analysed	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	92	82
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	93	89
Fluorene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	93	92
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	104	86
Anthracene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	104	92
Pyrene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	105	95
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	91	79
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	6	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	6	<0.05	<0.05	0	106	100
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	102	6	101	99	2	111	100

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-7
Date extracted	-			13/09/2021	6	13/09/2021	13/09/2021		13/09/2021	13/09/2021
Date analysed	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	90	84
НСВ	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	89	82
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	85	73
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	99	89
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	98	88
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	98	88
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	102	90
Endrin	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	103	90
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	102	90
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	94	70
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	114	6	127	110	14	120	118

QUALITY CONTRO	L: Organopł	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-7
Date extracted	-			13/09/2021	6	13/09/2021	13/09/2021		13/09/2021	13/09/2021
Date analysed	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	105	97
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	104	92
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	95	77
Malathion	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	110	99
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	106	94
Parathion	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	97	80
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	92	84
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	114	6	127	110	14	120	118

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-7
Date extracted	-			13/09/2021	6	13/09/2021	13/09/2021		13/09/2021	13/09/2021
Date analysed	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	100	80
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	6	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	114	6	127	110	14	120	118

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-7
Date prepared	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Date analysed	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Arsenic	mg/kg	4	Metals-020	<4	6	<4	<4	0	107	103
Cadmium	mg/kg	0.4	Metals-020	<0.4	6	<0.4	<0.4	0	103	100
Chromium	mg/kg	1	Metals-020	<1	6	8	8	0	105	104
Copper	mg/kg	1	Metals-020	<1	6	1	1	0	106	112
Lead	mg/kg	1	Metals-020	<1	6	12	13	8	106	106
Mercury	mg/kg	0.1	Metals-021	<0.1	6	<0.1	<0.1	0	99	123
Nickel	mg/kg	1	Metals-020	<1	6	1	1	0	105	104
Zinc	mg/kg	1	Metals-020	<1	6	5	5	0	102	101
Manganese	mg/kg	1	Metals-020	<1	6	9	8	12	106	106

QUALITY	CONTROL	Misc Soi	I - Inorg			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-7
Date prepared	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Date analysed	-			14/09/2021	6	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	6	<5	<5	0	102	101

QUALITY C	CONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	277525-9
Date prepared	-			14/09/2021	8	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Date analysed	-			14/09/2021	8	14/09/2021	14/09/2021		14/09/2021	14/09/2021
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	<0.1	8	<0.1	<0.1	0	97	97
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	<0.1	8	<0.1	<0.1	0	101	98
Perfluorooctanoic acid PFOA	µg/kg	0.1	Org-029	<0.1	8	<0.1	<0.1	0	101	101
6:2 FTS	µg/kg	0.1	Org-029	<0.1	8	<0.1	<0.1	0	114	113
8:2 FTS	µg/kg	0.2	Org-029	<0.2	8	<0.2	<0.2	0	99	99
Surrogate ¹³ C ₈ PFOS	%		Org-029	97	8	103	107	4	102	103
Surrogate ¹³ C ₂ PFOA	%		Org-029	123	8	114	113	1	109	115
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	107	8	103	101	2	105	101
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	86	8	85	86	1	91	88
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	93	8	93	95	2	93	93
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	95	8	110	129	16	101	97
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	88	8	115	124	8	94	94

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, sample 277525-6 is below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Douglas Partners

CHAIN OF CUSTODY DESPATCH SHEET

| und time:
orage: | 🗹 Standa | Edwards@ | douglaspa |
 | Number: |

 |
 | | | Samp | A.W. | |
 | 1 | 12 4-4 | love Of 1 | | |
|--------------------------|--|---|---
--
--|---
--
--
--
--|---|--|---|--|---|--|---|---
---|---|--|
| und time:
orage: 🗌 Fr | 🗹 Standa | |)douglaspa |
 | |

 |
 | | | Samp | | A.Spend | cer
 | | 12 ASN | ey Si, C | Chatswood NSW 2067 | |
| o rage: 🗌 Fr | the second s | ird | |
 | |

 |
 | · · · · · | | | | |
 | | | Receip | | |
| | idge 🔄 | | 72 hour | 48 hour
 | |

 | Same da
 | | | | | | · · · · · · · · · · · · · · · · · · ·
 | | | |) samplereceipt@envírolab.com.au | |
| San | | Freezer | ノ Esky |
 | nples co | ntain 'p

 | otenti
 | al' HBN | И? [] М | | √ Yes | (If YES | S, then h
 | andie, tran | sport an | d store ir | accordance with FPM HAZID) | |
| | ar ID | nple ID | | pled
 | Sample
Type | Container
Type

 |
 | | | | | Analyte | es
 | | | | | |
| Location /
Other ID | Depth
From | Depth
To | Date Sampled | S - soil
W - water
 | G - glass
P - plastic | Combo 8A
(NEPC Asb)

 | Combo 8A
 | Combo 8 | PFAS
(short) | pH, CEC | Asbestos
(NEPC) | metals, PAH | Phenoxy Acid
Herbicides
 | Glyphosate
Triazine
Herbicides | Combo 8 | ASS Screen | Notes/ Preservation/ Addition
Requirements | |
| BH103 | 0.14 | 0.2 | 31/08/21 | S
 | G/P |

 |
 | | | | | |
 | | | | Envirolab Services | |
| BH103 | 0.4 | 0.5 | 31/08/21 | s
 | G/P | ×

 |
 | | | • | | | ×
 | × | | | Chatswood NSW 2067
Ph: (02) 9910 6200 | |
| BH103 | 0.5 | 0.95 | 31/08/21 | s
 | G/P |

 |
 | | | | | |
 | | | | JOD NO: 277/56 | |
| BH103 | 0.9 | 1 | 31/08/21 | S
 | G/P |

 |
 | | | | | |
 | | | | Date Received: 31/08/2)
Time Received: 1000 | |
| BH103 | 1.4 | 1.5 | 31/08/21 | S
 | G/P |

 |
 | | | + | | |
 | · | | × | Keceived Rv: A JT | |
| BH103 | 1.5 | 1.95 | 31/08/21 | S
 | G/P |

 |
 | | | | | |
 | | | | Temp: Col/Ambient
Cooling Col/Cepack
Security: Intact/Broken/Kone | |
| BH103 | 1.9 | 2 | 31/08/21 | S
 | G/P |

 |
 | | | | | |
 | | | × | | |
| BH103 🔹 | 2.4 | 2.5 | 31/08/21 | S
 | G/P |

 |
 | | | | 1. 1. 1. 1. 1. | |
 | | | × | | |
| BH103 | 2.9 | 3 * | 31/08/21 | S
 | G/P |

 |
 | | | | · · · · · · · · | |
 | | | × | Environmental Division | |
| BH103 - | 3.4 | 3.5 | 31/08/21 | S
 | G/P |

 |
 | | | | | |
 | | | × | Work Order Reference
ES2132305 | |
| BH103 | 3.9 | 4 | 31/08/21 | S
 | G/P |

 |
 | | | | | |
 | | | × | | |
| BH101 | 0.12 | 0.2 | 31/08/21 | S
 | G/P |

 |
 | | | | × | j. No. |
 | | | | | |
| BH101 ₣ | 0.4 | 0.5 | 31/08/21 | ^к .
. S
 | G/P | . ×

 |
 | | | | | |
 | | | | | |
| BH101 | 0.9 | - 1 | 31/08/21 | S
 | G/P | а
2

 |
 | | | | | 74 |
 | | | × | Telephone : + 61-2-8784 8555 | |
| o analyse: | HM9 (A | s, Cd, C | r, Cu, Pb, | Hg, Mn,
 | Ni, Zn) | and a

 |
 | 2 | | | | |
 | LAB RE | CEIP | T | | |
| | | | · |
 | | rted to

 | labora
 | tory b | y: | | | |
 | | | | | |
| sults to: | Douglas | Partners | |
 | |

 |
 | | | | | |
 | Receive | d by: | Chri | sting | |
| | | | |
 | |

 |
 | | | | - <u>+</u> ^ | |
 | Date & 1 | lime:, | 31108 | 121 (00 | |
| ished by: 🗧 | ENSINC | (M) | <u>112025</u> | <u> </u>
 | Date: (| 0912

 | 1 90
 | 2.2 | Signed | 1: (| $\nabla V \nabla$ | Y | | | | | | | | | | | | | | |
 | Signed: | 1B | | 7/21 1630 85 | |
| | BH103
BH103
BH103
BH103
BH103
BH103
BH103
BH103
BH103
BH103
BH103
BH103
BH101
BH101
BH101
Co analyse:
of samples
Sults to:
Signal State St | BH103 0.14 BH103 0.4 BH103 0.5 BH103 0.9 BH103 1.4 BH103 1.5 BH103 1.9 BH103 2.4 BH103 2.9 BH103 3.4 BH103 3.9 BH101 0.12 BH101 0.9 oanalyse: HM9 (A of samples in comsults to: Douglas | BH103 0.14 0.2 BH103 0.4 0.5 BH103 0.5 0.95 BH103 0.9 1 BH103 1.4 1.5 BH103 1.4 1.5 BH103 1.4 1.5 BH103 1.9 2 BH103 2.4 2.5 BH103 2.9 3 BH103 2.9 3 BH103 3.9 4 BH101 0.12 0.2 BH101 0.12 0.2 BH101 0.99 1 o analyse: HM9 (As, Cd, Cl of samples in container: sults to: Douglas Partners 96 Hermitage Road, shed by: PV SWU (WMC 100 | BH103 0.14 0.2 31/08/21 BH103 0.4 0.5 31/08/21 BH103 0.5 0.95 31/08/21 BH103 0.9 1 31/08/21 BH103 0.9 1 31/08/21 BH103 0.9 1 31/08/21 BH103 1.4 1.5 31/08/21 BH103 1.5 1.95 31/08/21 BH103 1.9 2 31/08/21 BH103 2.9 3 31/08/21 BH103 2.9 3 31/08/21 BH103 2.9 3 31/08/21 BH103 3.9 4 31/08/21 BH103 3.9 4 31/08/21 BH103 3.9 4 31/08/21 BH101 0.12 0.2 31/08/21 BH101 0.9 1 31/08/21 BH101 0.9 1 31/08/21 BH101 0.9 1 31/08/21 BH101 0.9 1 31/08/21 <td< td=""><td>BH103 0.14 0.2 31/08/21 S BH103 0.4 0.5 31/08/21 S BH103 0.5 0.95 31/08/21 S BH103 0.9 1 31/08/21 S BH103 0.9 1 31/08/21 S BH103 1.4 1.5 31/08/21 S BH103 1.4 1.5 31/08/21 S BH103 1.9 2 31/08/21 S BH103 1.9 2 31/08/21 S BH103 2.9 3 31/08/21 S BH103 2.9 3 31/08/21 S BH103 3.9 4 31/08/21 S BH103 3.9 4 31/08/21 S BH101 0.12 0.2 31/08/21 S BH101 0.9 1 31/08/21 S BH101 0.9 1 31/08/21 S BH101 0.9 1 31/08/21 S BH101</td><td>BH103 0.14 0.2 31/08/21 S G/P BH103 0.4 0.5 31/08/21 S G/P BH103 0.5 0.95 31/08/21 S G/P BH103 0.5 0.95 31/08/21 S G/P BH103 0.9 1 31/08/21 S G/P BH103 1.4 1.5 31/08/21 S G/P BH103 1.4 1.5 31/08/21 S G/P BH103 1.9 2 31/08/21 S G/P BH103 1.9 2 31/08/21 S G/P BH103 2.9 3 ' 31/08/21 S G/P BH103 2.9 3 ' 31/08/21 S G/P BH103 3.9 4 31/08/21 S G/P BH103 3.9 4 31/08/21 S G/P BH101 0.12 0.2 31/08/21 S G/P BH101 0.4 0.5 <td< td=""><td>Image: second system Image: second system <t< td=""><td>BH103 0.14 0.2 31/08/21 S G/P I BH103 0.4 0.5 31/08/21 S G/P X BH103 0.4 0.5 31/08/21 S G/P X BH103 0.5 0.95 31/08/21 S G/P X BH103 0.9 1 31/08/21 S G/P X BH103 1.4 1.5 31/08/21 S G/P X BH103 1.4 1.5 31/08/21 S G/P X BH103 1.9 2 31/08/21 S G/P X BH103 2.9 3' 31/08/21 S G/P X BH103 2.9 3' 31/08/21 S G/P X BH103 3.9 4 31/08/21 S G/P X BH101 0.12 0.2 31/08/21 S G/P X BH101 0.9 1 31/08/21 S G/P</td><td>BH103 0.14 0.2 31/08/21 S G/P Image: constraint of the state of</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Constraint of the state of t</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Control of the second sec</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Constraint of the second s</td><td>BH103 0.14 0.2 31/08/21 S G/P E a</td></t<></td></td<></td></td<> | BH103 0.14 0.2 31/08/21 S BH103 0.4 0.5 31/08/21 S BH103 0.5 0.95 31/08/21 S BH103 0.9 1 31/08/21 S BH103 0.9 1 31/08/21 S BH103 1.4 1.5 31/08/21 S BH103 1.4 1.5 31/08/21 S BH103 1.9 2 31/08/21 S BH103 1.9 2 31/08/21 S BH103 2.9 3 31/08/21 S BH103 2.9 3 31/08/21 S BH103 3.9 4 31/08/21 S BH103 3.9 4 31/08/21 S BH101 0.12 0.2 31/08/21 S BH101 0.9 1 31/08/21 S BH101 0.9 1 31/08/21 S BH101 0.9 1 31/08/21 S BH101 | BH103 0.14 0.2 31/08/21 S G/P BH103 0.4 0.5 31/08/21 S G/P BH103 0.5 0.95 31/08/21 S G/P BH103 0.5 0.95 31/08/21 S G/P BH103 0.9 1 31/08/21 S G/P BH103 1.4 1.5 31/08/21 S G/P BH103 1.4 1.5 31/08/21 S G/P BH103 1.9 2 31/08/21 S G/P BH103 1.9 2 31/08/21 S G/P BH103 2.9 3 ' 31/08/21 S G/P BH103 2.9 3 ' 31/08/21 S G/P BH103 3.9 4 31/08/21 S G/P BH103 3.9 4 31/08/21 S G/P BH101 0.12 0.2 31/08/21 S G/P BH101 0.4 0.5 <td< td=""><td>Image: second system Image: second system <t< td=""><td>BH103 0.14 0.2 31/08/21 S G/P I BH103 0.4 0.5 31/08/21 S G/P X BH103 0.4 0.5 31/08/21 S G/P X BH103 0.5 0.95 31/08/21 S G/P X BH103 0.9 1 31/08/21 S G/P X BH103 1.4 1.5 31/08/21 S G/P X BH103 1.4 1.5 31/08/21 S G/P X BH103 1.9 2 31/08/21 S G/P X BH103 2.9 3' 31/08/21 S G/P X BH103 2.9 3' 31/08/21 S G/P X BH103 3.9 4 31/08/21 S G/P X BH101 0.12 0.2 31/08/21 S G/P X BH101 0.9 1 31/08/21 S G/P</td><td>BH103 0.14 0.2 31/08/21 S G/P Image: constraint of the state of</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Constraint of the state of t</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Control of the second sec</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Constraint of the second s</td><td>BH103 0.14 0.2 31/08/21 S G/P E a</td></t<></td></td<> | Image: second system Image: second system <t< td=""><td>BH103 0.14 0.2 31/08/21 S G/P I BH103 0.4 0.5 31/08/21 S G/P X BH103 0.4 0.5 31/08/21 S G/P X BH103 0.5 0.95 31/08/21 S G/P X BH103 0.9 1 31/08/21 S G/P X BH103 1.4 1.5 31/08/21 S G/P X BH103 1.4 1.5 31/08/21 S G/P X BH103 1.9 2 31/08/21 S G/P X BH103 2.9 3' 31/08/21 S G/P X BH103 2.9 3' 31/08/21 S G/P X BH103 3.9 4 31/08/21 S G/P X BH101 0.12 0.2 31/08/21 S G/P X BH101 0.9 1 31/08/21 S G/P</td><td>BH103 0.14 0.2 31/08/21 S G/P Image: constraint of the state of</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Constraint of the state of t</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Control of the second sec</td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P </td><td>BH103 0.14 0.2 31/08/21 S G/P Image: Constraint of the second s</td><td>BH103 0.14 0.2 31/08/21 S G/P E a</td></t<> | BH103 0.14 0.2 31/08/21 S G/P I BH103 0.4 0.5 31/08/21 S G/P X BH103 0.4 0.5 31/08/21 S G/P X BH103 0.5 0.95 31/08/21 S G/P X BH103 0.9 1 31/08/21 S G/P X BH103 1.4 1.5 31/08/21 S G/P X BH103 1.4 1.5 31/08/21 S G/P X BH103 1.9 2 31/08/21 S G/P X BH103 2.9 3' 31/08/21 S G/P X BH103 2.9 3' 31/08/21 S G/P X BH103 3.9 4 31/08/21 S G/P X BH101 0.12 0.2 31/08/21 S G/P X BH101 0.9 1 31/08/21 S G/P | BH103 0.14 0.2 31/08/21 S G/P Image: constraint of the state of | BH103 0.14 0.2 31/08/21 S G/P | BH103 0.14 0.2 31/08/21 S G/P Image: Constraint of the state of t | BH103 0.14 0.2 31/08/21 S G/P | BH103 0.14 0.2 31/08/21 S G/P Image: Control of the second sec | BH103 0.14 0.2 31/08/21 S G/P | BH103 0.14 0.2 31/08/21 S G/P | BH103 0.14 0.2 31/08/21 S G/P Image: Constraint of the second s | BH103 0.14 0.2 31/08/21 S G/P E a | |

CHAIN OF CUSTODY DESPATCH SHEET

		207253.0			Suburt): 	Warriev	boow				<u> </u>			To: Dispatc		ab Serv •	x
Projec	ct Manager:	Nerilee E	dwards			·									Dispate		•	· · · · · · · · · · · · · · · · · · ·
	San	nple ID		pled	Sample Type	Container Type		,				Analyte						
'Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	Combo 8A (NEPC Asb)	Combo 8A	Combo 8	PFAS (short)	pH, CEC	Asbestos (NEPC)	metals, PAH	Phenoxy Acid Herbicides	Glyphosate Triazine Herbicides	Combo 8	ASS Screen	Notes/ Preservation/ Addition Requirements
51	BH114	0.9	1	31/08/21	S	G/P												
52	BH114	1.4	1.5	31/08/21	S	G/P					l 							
53	BH113	0.05	0.15	31/08/21	S	G/P	×			×								
54	BH113	Ò.4	0.5	31/08/21	S	G/P												
55	BH113	0.9	1	31/08/21	S	G/P		ļ									ļ.,	
56	BH113	1.4	1.5	31/08/21	S	G/P												
57	BH113	1.9	2 .	31/08/21	S	G/P												
-	BD1/20210831			31/08/21	s	G/P								 				Pls send to second lab as be
58	BD2/20210831			31/08/21	s	G/P		ļ									ļ	
59	BD3/20210831			31/08/21	s	G/P			<u> </u>					ļ			ļ	
60	ACM-01	a maria da ser	ەر سىر بەر	31/08/21	fibro	Р						Asb ID		 			Į	
4 A								 	ļ									· · · · · · · · · · · · · · · · · · ·
	-						ļ	Ì		-1				 			<u> </u>	· · · · · · · · · · · · · · · · · · ·
				2			ļ 	ļ									ļ	
neu	valuithed		es sui	y	ļ	ļ		ļ	ļ	ļ	*	ļ					ļ	
	CMUL	env	1					3										
		6/9/	1900	Þ				 			<u> </u>							
s	L		UN))				 		
										ľ	z.							a filmed in

Douglas Partners Geotechnics | Environment | Groundwater

and the second
CHAIN OF CUSTODY DESPATCH SHEET

.

	ct No:	207253.		-	Suburb: Warriewood								To:					
	ct No:	207253.			Suburt		Warrie	wood							То:	Envirola		
Projec	ct Manager:	Nerilee f				Number:					Samp	ler:	A.Spen	cer		12 Ashley St, Chatswood NSW 2067		
Email				douglaspa											Attn:	Sample		
	round time:			72 hour	48 hour			Same da) samplereceipt@envirolab.com.au
Prior \$	Storage: 🗌 F	idge 🗌	Freezer [Esky 	Do san	nples cor	ntain 'j	ootenti	al' HBN	<u>/? []</u>	No [✓ Yes	(if YE	S, then h	andle, trar	sport an	d store in	accordance with FPM HAZID)
. <u>.</u>	Sar	npie ID		<u><u>e</u></u>	Sample Type	Container Type					· · · · · · ·	Analyte	es		<u> </u>			
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water	G - glass P - plastic	metais, PAH	TRH, BTEX	OCP, OPP, PCB	phenols								Notes/ Preservation/ Additiona Requirements
	BD1/20210831			31/08/21	S	G/P	×	×	×	×								Pls send to second lab
All	nquianed																	
	CM	hien	2															·····
		0	m º															
			·	M														
															.			
														ŝ.				
									<u> </u>									
									1							1		1

#277156

Rev5/February 2021

Dono 5 of 5

4

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	ES2132305		
Client Contact Address	E DOUGLAS PARTNERS PTY LTD E MR NERILEE EDWARDS 96 HERMITAGE ROAD WEST RYDE NSW, AUSTRALIA 2114	Contact: SeAddress: 277	vironmental Division Sydney pan Mahamad 7-289 Woodpark Road Smithfield W Australia 2164
E-mail	: nerilee.edwards@douglaspartners.c om.au	E-mail : Se	pan.Mahamad@ALSGlobal.com
Telephone Facsimile	: 08 9809 0666 : 08 9809 4095		1 2 8784 8555 1-2-8784 8500
Project Order number C-O-C number Site Sampler	: 207253.01 : : : : A.Spencer		f 2 l2017DOUPAR0002 (EN/222) PM 2013 B3 & ALS QC Standard
Dates Date Samples Receiv Client Requested Due Date		Issue Date Scheduled Reporting Date	: 07-Sep-2021 : 13-Sep-2021
Delivery Detai Mode of Delivery No. of coolers/boxes Receipt Detail	/s : Carrier :	Security Seal Temperature No. of samples received / an	: Intact. : 8.6'C - Ice Bricks present alysed : 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL Sampling date / Sample ID In time Laboratory sample Sampling date / Sample ID In time ES2132305-001 31-Aug-2021 00:00 BD1/20210831

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE INVOICES		
- A4 - AU Tax Invoice (INV)	Email	apinvoices@douglaspartners.com.a
NERILEE EDWARDS		u
- *AU Certificate of Analysis - NATA (COA)	Email	nerilee.edwards@douglaspartners.c
*All Interpretive OC Report DEEALILT (Apon OCI Rep.) (OCI)	Email	om.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Emai	nerilee.edwards@douglaspartners.c om.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	nerilee.edwards@douglaspartners.c
		om.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nerilee.edwards@douglaspartners.c
- Chain of Custody (CoC) (COC)	Email	om.au
	Lindii	nerilee.edwards@douglaspartners.c om.au
- EDI Format - ESDAT (ESDAT)	Email	nerilee.edwards@douglaspartners.c
		om.au
- EDI Format - XTab (XTAB)	Email	nerilee.edwards@douglaspartners.c
		om.au

SOIL - S-19 RH/BTEXN/PAH/Ph/OC/OP/PCB/8 metals

 \checkmark

CERTIFICATE OF ANALYSIS

Work Order	ES2132305	Page	: 1 of 8	
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sy	ydney
Contact	: MR NERILEE EDWARDS	Contact	: Sepan Mahamad	
Address	: 96 HERMITAGE ROAD	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
	WEST RYDE NSW, AUSTRALIA 2114			
Telephone	: 08 9809 0666	Telephone	: +61 2 8784 8555	
Project	: 207253.01	Date Samples Received	: 06-Sep-2021 16:30	ANUTUR A
Order number	:	Date Analysis Commenced	: 09-Sep-2021	
C-O-C number	:	Issue Date	: 13-Sep-2021 16:10	
Sampler	: A.Spencer			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005: Poor precision was obtained for Chromium on sample ES2132024-#003. Results have been confirmed by re-extraction and reanalysis.

Page : 3 of 8 Work Order : ES2132305 Client : DOUGLAS PARTNERS PTY LTD Project : 207253.01

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD1/20210831	 	
		Samplii	ng date / time	31-Aug-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2132305-001	 	
Compound	ONO Number			Result	 	
EA055: Moisture Content (Dried @	105-110°C)					
Moisture Content		1.0	%	1.7	 	
EG005(ED093)T: Total Metals by IC						
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-38-2	1	mg/kg	<1	 	
Chromium	7440-43-9	2	mg/kg	<2	 	
Copper	7440-47-3	5	mg/kg	<5	 	
Lead		5	mg/kg	<5	 	
Nickel	7439-92-1	2	mg/kg	<2	 	
Zinc	7440-02-0	5		7	 	
-	7440-66-6	5	mg/kg	1	 	
EG035T: Total Recoverable Mercu		0.1		-0.4		
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP066: Polychlorinated Biphenyls	(PCB)					
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	 	
EP068A: Organochlorine Pesticide	s (OC)					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	

Page : 4 of 8 Work Order : ES2132305 Client : DOUGLAS PARTNERS PTY LTD Project : 207253.01

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD1/20210831	 	
		Samplii	ng date / time	31-Aug-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2132305-001	 	
				Result	 	
EP068A: Organochlorine Pesticid	es (OC) - Continued					
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.05	mg/kg	<0.05	 	
EP068B: Organophosphorus Pest						1
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	 	
Ethion	563-12-2	0.05	mg/kg	<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	 	
EP075(SIM)A: Phenolic Compoun	ds					
Phenol	108-95-2	0.5	mg/kg	<0.5	 	
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	 	
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	 	
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	 	
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	 	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	 	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	 	
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	 	

Page : 5 of 8 Work Order : ES2132305 Client : DOUGLAS PARTNERS PTY LTD Project : 207253.01

Sub-Matrix: SOIL			Sample ID	BD1/20210831	 	
(Matrix: SOIL)						
		Samplii	ng date / time	31-Aug-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2132305-001	 	
				Result	 	
EP075(SIM)A: Phenolic Compounds -	Continued					
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	 	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	 	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	 	
Pentachlorophenol	87-86-5	2	mg/kg	<2	 	
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbor	IS	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydrocar	bons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	าร			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	

Page : 6 of 8 Work Order : ES2132305 Client : DOUGLAS PARTNERS PTY LTD Project : 207253.01

Sub-Matrix: SOIL			Sample ID	BD1/20210831	 		
(Matrix: SOIL)							
			ng date / time	31-Aug-2021 00:00	 		
Compound	CAS Number	LOR	Unit	ES2132305-001	 		
				Result	 		
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns - Continued				
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 		
(F1)							
>C10 - C16 Fraction		50	mg/kg	<50	 		
>C16 - C34 Fraction		100	mg/kg	<100	 		
>C34 - C40 Fraction		100	mg/kg	<100	 		
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 		
(F2)							
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	 		
Toluene	108-88-3	0.5	mg/kg	<0.5	 		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 		
^ Sum of BTEX		0.2	mg/kg	<0.2	 		
^ Total Xylenes		0.5	mg/kg	<0.5	 		
Naphthalene	91-20-3	1	mg/kg	<1	 		
EP066S: PCB Surrogate							
Decachlorobiphenyl	2051-24-3	0.1	%	93.9	 		
EP068S: Organochlorine Pesticide Su	rrogate						
Dibromo-DDE	21655-73-2	0.05	%	118	 		
EP068T: Organophosphorus Pesticide							
DEF	78-48-8	0.05	%	93.3	 		
EP075(SIM)S: Phenolic Compound Su							
Phenol-d6	13127-88-3	0.5	%	104	 		
2-Chlorophenol-D4	93951-73-6	0.5	%	101	 		
2.4.6-Tribromophenol	118-79-6	0.5	%	91.9	 		
	110-79-0	0.0	,,,				
EP075(SIM)T: PAH Surrogates	204 00 0	0.5	%	107			
2-Fluorobiphenyl	321-60-8	0.5	%	107	 		
Anthracene-d10	1719-06-8		%	99.2	 		
4-Terphenyl-d14	1718-51-0	0.5	70	33.2	 		
EP080S: TPH(V)/BTEX Surrogates			01			1	
1.2-Dichloroethane-D4	17060-07-0	0.2	%	106	 		
Toluene-D8	2037-26-5	0.2	%	99.6	 		

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BD1/20210831						
		Samplir	ng date / time	31-Aug-2021 00:00						
Compound	CAS Number	LOR	Unit	ES2132305-001						
				Result						
EP080S: TPH(V)/BTEX Surrogates - Con	P080S: TPH(V)/BTEX Surrogates - Continued									
4-Bromofluorobenzene	460-00-4	0.2	%	105						

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	/ Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrog	ate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Su	rrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrog	ates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QUALITY CONTROL REPORT

Work Order	: ES2132305	Page	: 1 of 11	
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division	Sydney
Contact	: MR NERILEE EDWARDS	Contact	: Sepan Mahamad	
Address	: 96 HERMITAGE ROAD WEST RYDE NSW, AUSTRALIA 2114	Address	: 277-289 Woodpark Roa	ad Smithfield NSW Australia 2164
Telephone	: 08 9809 0666	Telephone	: +61 2 8784 8555	
Project	: 207253.01	Date Samples Received	: 06-Sep-2021	- MIIIII
Order number	:	Date Analysis Commenced	09-Sep-2021	
C-O-C number	:	Issue Date	: 13-Sep-2021	
Sampler	: A.Spencer			HAC-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES	5 (QC Lot: 3892163)							
ES2132024-003	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	137	# 110	22.3	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	165	166	0.0	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	62	61	1.8	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	90	88	2.1	0% - 50%
ES2132259-001 Anonymous	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	23	32	30.6	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	109	117	7.1	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 3892169)							
ES2132024-045	Anonymous	EA055: Moisture Content		0.1	%	24.5	26.5	7.7	0% - 20%
ES2132259-004	Anonymous	EA055: Moisture Content		0.1	%	9.3	9.7	4.5	0% - 20%
EG035T: Total Reco	overable Mercury by	FIMS (QC Lot: 3892165)							
ES2132296-003	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.8	0.9	0.0	No Limit
ES2132392-009	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.0	No Limit
EP066: Polychlorina	ated Biphenyls (PCB)	(QC Lot: 3889808)							
ES2132392-009	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2132293-001	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit

Page	: 3 of 11
Work Order	: ES2132305
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 207253.01

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochio	orine Pesticides (OC)	(QC Lot: 3889807)							
ES2132293-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP068B: Organopho	sphorus Pesticides (OP) (QC Lot: 3889807)							
ES2132293-001	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit

Page	: 4 of 11
Work Order	: ES2132305
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 207253.01

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
P068B: Organopho	sphorus Pesticides (OP) (QC Lot: 3889807) - continued							
ES2132293-001	Anonymous	EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
P075(SIM)A: Pheno	lic Compounds (QC	Lot: 3889806)	·						
ES2132392-009	Anonymous	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<2	<2	0.0	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.0	No Limit
ES2132293-001 Anonymous	Anonymous	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.0	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.0	No Limit
P075(SIM)B: Polyni	uclear Aromatic Hvdr	ocarbons (QC Lot: 3889806)							
ES2132392-009	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
	, anonymous	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
			205-89-2	0.0				0.0	
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.8	<0.8	0.0	No Limit

Page : 5 of 11 Work Order : ES2132305 Client : DOUGLAS PARTNERS PTY LTD Project : 207253.01

Sub-Matrix: SOIL						t			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP075(SIM)B: Poly	nuclear Aromatic Hydr	ocarbons (QC Lot: 3889806) - continued							
ES2132392-009	Anonymous	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.8	<0.8	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
ES2132293-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	0.7	0.7	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	0.7	0.7	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	0.6	0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	2.0	1.9	5.1	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
P080/071: Total P	etroleum Hydrocarbon	s (QC Lot: 3889618)							
EW2103795-002	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EW2103795-004	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
P080/071: Total P	etroleum Hydrocarbon	s (QC Lot: 3889805)							
ES2132392-009	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	940	720	26.7	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	710	580	20.5	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2132293-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	110	130	18.7	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
P080/071. Total P	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 3889618)							
EW2103795-002	Anonymous		C6 C10	10	mg/kg	<10	<10	0.0	No Limit
EW2103795-002 EW2103795-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
- **2 103/ 33-004	Anonymous	EP080: C6 - C10 Fraction	0_010	10	iiig/kg	~10	>10	0.0	

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total R	ecoverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 3889805)							
ES2132392-009	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	1370	1100	21.9	0% - 50%
		EP071: >C34 - C40 Fraction		100	mg/kg	490	350	32.7	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES2132293-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	140	160	13.6	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	110	120	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	C Lot: 3889618)								
EW2103795-002	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EW2103795-004	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES(QCI	Lot: 3892163)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	94.2	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	102	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	113	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	108	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	102	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	100	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	90.1	66.0	133
EG035T: Total Recoverable Mercury by FIMS((QCLot: 3892165)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	111	70.0	125
EP066: Polychlorinated Biphenyls (PCB) (QCL	.ot: 3889808)							
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	92.3	62.0	126
EP068A: Organochlorine Pesticides (OC) (QCL	_ot: 3889807)							
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	84.1	69.0	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	87.4	65.0	117
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	87.6	67.0	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	88.8	68.0	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.1	65.0	117
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	67.0	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	91.4	69.0	115
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	94.8	62.0	118
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	95.7	63.0	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	66.0	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	92.9	64.0	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	87.5	66.0	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.8	67.0	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.7	67.0	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	92.8	69.0	115
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	98.4	69.0	121
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	92.3	56.0	120
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.3	62.0	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	85.6	66.0	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	92.0	64.0	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	84.5	54.0	130

Page : 8 of 11 Work Order : ES2132305 Client : DOUGLAS PARTNERS PTY LTD Project : 207253.01

Sub-Matrix: SOIL				Method Blank (MB) Report		Laboratory Control Spike (LCS) Report		
					Spike	Spike Recovery (%)		e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP)	(QCLot: 3889807) - continued	I						
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	79.9	59.0	119
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	106	62.0	128
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	106	54.0	126
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	108	67.0	119
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	89.5	70.0	120
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	87.3	72.0	120
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	87.5	68.0	120
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	68.0	122
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	90.5	69.0	117
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.3	76.0	118
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	92.7	64.0	122
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	92.5	70.0	116
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	99.1	69.0	121
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	93.2	66.0	118
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	107	68.0	124
P068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	91.1	62.0	112
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	91.0	68.0	120
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	89.6	65.0	127
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	101	41.0	123
EP075(SIM)A: Phenolic Compounds (QCLot: 3	3889806)							
EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	6 mg/kg	93.5	71.0	125
EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	6 mg/kg	95.7	72.0	124
P075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	6 mg/kg	99.2	71.0	123
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	12 mg/kg	101	67.0	127
EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	6 mg/kg	81.5	54.0	114
EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	6 mg/kg	94.8	68.0	126
EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	6 mg/kg	91.5	66.0	120
EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	6 mg/kg	92.4	70.0	120
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	6 mg/kg	91.6	70.0	116
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	6 mg/kg	73.8	54.0	114
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	6 mg/kg	75.8	60.0	114
EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	12 mg/kg	43.8	10.0	57.0
EP075(SIM)B: Polynuclear Aromatic Hydrocarl	bons (QCLot: 3889806)							
P075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	98.0	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	94.2	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	95.6	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	95.3	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	97.4	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	96.1	77.0	127

Page	: 9 of 11
Work Order	: ES2132305
Client	: DOUGLAS PARTNERS PTY LTD
Project	207253.01

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
		Report		Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	ons (QCLot: 3889806) - cor	ntinued							
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	88.5	73.0	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	88.8	74.0	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	89.6	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	94.5	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	72.0	68.0	116	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	76.4	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	92.1	70.0	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	98.5	61.0	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	98.1	62.0	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	98.8	63.0	121	
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 3889618)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	92.4	68.4	128	
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 3889805)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	101	75.0	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	90.8	77.0	131	
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	97.5	71.0	129	
EP080/071: Total Recoverable Hydrocarbons - N	NEPM 2013 Fractions (QCL	ot: 3889618)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	93.5	68.4	128	
EP080/071: Total Recoverable Hydrocarbons - N	NEPM 2013 Eractions (QCI of	of: 3889805)							
P071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	95.6	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	90.5	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	102	63.0	131	
EP080: BTEXN (QCLot: 3889618)								1	
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	103	62.0	116	
P080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	92.7	67.0	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	94.9	65.0	117	
P080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	94.6	66.0	118	
P080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	92.3	68.0	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	87.5	63.0	119	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

OIL	Ма	atrix Spike (MS) Report	t
	Spike	SpikeRecovery(%)	Acceptable Limits (%)

ub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3892163)						
ES2132024-003	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	83.9	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	86.2	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	108	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	99.4	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	91.2	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	96.8	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	81.7	66.0	133
G035T: Total Re	coverable Mercury by FIMS (QCLot: 3892165)						
ES2132296-003	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	108	70.0	130
P066: Polychlori	nated Biphenyls (PCB) (QCLot: 3889808)						
ES2132293-001	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	88.3	70.0	130
		EF000. Total Folychionnated biphenyis		i ing/itg	00.0	10.0	100
	hlorine Pesticides (OC) (QCLot: 3889807)						
ES2132293-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	79.2	70.0	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	80.8	70.0	130
	EP068: Aldrin	309-00-2	0.5 mg/kg	85.3	70.0	130	
	EP068: Dieldrin	60-57-1	0.5 mg/kg	84.3	70.0	130	
	EP068: Endrin	72-20-8	2 mg/kg	78.2	70.0	130	
		EP068: 4.4 [°] -DDT	50-29-3	2 mg/kg	86.8	70.0	130
P068B: Organop	hosphorus Pesticides (OP) (QCLot: 3889807)						
ES2132293-001	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	104	70.0	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	75.0	70.0	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	90.7	70.0	130
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	80.6	70.0	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	82.2	70.0	130
P075(SIM)A: Phe	nolic Compounds (QCLot: 3889806)				1		
ES2132293-001	Anonymous	EP075(SIM): Phenol	108-95-2	10 mg/kg	99.4	70.0	130
	, alonymous	EP075(SIM): 2-Chlorophenol	95-57-8	10 mg/kg	94.4	70.0	130
		EP075(SIM): 2-Nitrophenol	88-75-5	10 mg/kg	91.5	60.0	130
		EP075(SIM): 2-Olloro-3-methylphenol	59-50-7	10 mg/kg	94.1	70.0	130
		EP075(SIM): Pentachlorophenol	87-86-5	10 mg/kg	57.6	20.0	130
	muclear Aremetic Hudroserberg (OCI et: 2000						
	ynuclear Aromatic Hydrocarbons (QCLot: 3889		02.02.0	10 mm//m	02.4	70.0	400
ES2132293-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	92.4	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	79.3	70.0	130
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 3889618)						
	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	91.2	70.0	130

Page	: 11 of 11
Work Order	ES2132305
Client	: DOUGLAS PARTNERS PTY LTD
Project	207253.01

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
		Spike	SpikeRecovery(%)	Acceptable I	Limits (%)		
aboratory sample ID	Sample ID	Method: Compound	Concentration	MS	Low	High	
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 3889805) - continued						
ES2132293-001	Anonymous	EP071: C10 - C14 Fraction		480 mg/kg	112	73.0	137
		EP071: C15 - C28 Fraction		3100 mg/kg	104	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	113	52.0	132
EP080/071: Total F	ecoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 3889618)					
EW2103795-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	89.5	70.0	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 3889805)					
ES2132293-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	107	73.0	137
		EP071: >C16 - C34 Fraction		4320 mg/kg	106	53.0	131
		EP071: >C34 - C40 Fraction		890 mg/kg	121	52.0	132
EP080: BTEXN (Q	CLot: 3889618)						
EW2103795-002	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	88.4	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	83.7	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	87.0	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	86.8	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	85.6	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	77.9	70.0	130

QA/QC Compliance Assessment to assist with Quality Review								
Work Order	: ES2132305	Page	: 1 of 5					
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney					
Contact	: MR NERILEE EDWARDS	Telephone	: +61 2 8784 8555					
Project	: 207253.01	Date Samples Received	: 06-Sep-2021					
Site	:	Issue Date	: 13-Sep-2021					
Sampler	: A.Spencer	No. of samples received	:1					
Order number	:	No. of samples analysed	:1					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Matrix: SOII

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2132024003	Anonymous	Chromium	7440-47-3	22.3 %	0% - 20%	RPD exceeds LOR based limits

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

Matrix: SOIL				Evaluation	i: 🗴 = Holding time	breach ; 🗸 = with	in noiding tir
Method	Sample Date	E	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluatio
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) BD1/20210831	31-Aug-2021				09-Sep-2021	14-Sep-2021	~
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) BD1/20210831	31-Aug-2021	09-Sep-2021	27-Feb-2022	1	09-Sep-2021	27-Feb-2022	~
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) BD1/20210831	31-Aug-2021	09-Sep-2021	28-Sep-2021	1	10-Sep-2021	28-Sep-2021	1
EP066: Polychlorinated Biphenyls (PCB)							
oil Glass Jar - Unpreserved (EP066) BD1/20210831	31-Aug-2021	09-Sep-2021	14-Sep-2021	~	10-Sep-2021	19-Oct-2021	✓
EP068A: Organochlorine Pesticides (OC)							
oil Glass Jar - Unpreserved (EP068) BD1/20210831	31-Aug-2021	09-Sep-2021	14-Sep-2021	1	10-Sep-2021	19-Oct-2021	✓
EP068B: Organophosphorus Pesticides (OP)							
oil Glass Jar - Unpreserved (EP068) BD1/20210831	31-Aug-2021	09-Sep-2021	14-Sep-2021	1	10-Sep-2021	19-Oct-2021	~
EP075(SIM)A: Phenolic Compounds							
oil Glass Jar - Unpreserved (EP075(SIM)) BD1/20210831	31-Aug-2021	09-Sep-2021	14-Sep-2021	1	10-Sep-2021	19-Oct-2021	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) BD1/20210831	31-Aug-2021	09-Sep-2021	14-Sep-2021	1	10-Sep-2021	19-Oct-2021	~

Page	: 3 of 5
Work Order	ES2132305
Client	: DOUGLAS PARTNERS PTY LTD
Project	207253.01

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080) BD1/20210831	31-Aug-2021	09-Sep-2021	14-Sep-2021	1	09-Sep-2021	14-Sep-2021	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) BD1/20210831	31-Aug-2021	09-Sep-2021	14-Sep-2021	1	09-Sep-2021	14-Sep-2021	~
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) BD1/20210831	31-Aug-2021	09-Sep-2021	14-Sep-2021	1	09-Sep-2021	14-Sep-2021	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	15	13.33	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Appendix K

Data Quality Assurance and Quality Control

Appendix K Data Quality Assurance and Quality Control 20-22 MacPherson Street, Warriewood

K1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA / QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other filed QC samples are included in the summary results tables at the end of this appendix.

ltem	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	5% of primary samples; <30% RPD	PC
Inter-laboratory replicates	5% of primary samples; <30% RPD	PC
Trip Spikes	1 per sampling event; 60-140% recovery	С
Trip Blanks	1 per sampling event; <pql< td=""><td>С</td></pql<>	С
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Table 1: Field and Laboratory Quality Control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, with the exception of those indicated in Tables QA1 – QA3. The exceedances are not, however, considered to be of concern given that:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred, particularly for groundwater (e.g., arsenic in groundwater replicate pair BD1/20210908 and BH101 and nickel in soil replicate pair BD4/20210901 and BH104/0.4-0.5);
- The soil replicate pairs were collected from fill soils which by its nature is heterogeneous;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the PQL;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

K2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data Quality Indicator	Method(s) of Achievement			
Completeness	Systematic and selected target locations sampled.			
	Preparation of borehole logs, sample location plan and chain of custody records.			
	Preparation of field groundwater sampling sheets.			
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.			
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).			
	Completion of chain of custody (COC) documentation.			
	NATA accredited laboratory results certificates provided by the laboratory.			
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.			
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.			
	Experienced samplers used.			
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.			
	Satisfactory results for field and laboratory QC samples.			
Representativeness	Target media sampled.			
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.			
	Samples were extracted and analysed within holding times.			
	Samples were analysed in accordance with the COC.			
Precision	Field staff followed standard operating procedures.			
	Acceptable RPD between original samples and replicates.			
	Satisfactory results for all other field and laboratory QC samples.			
Accuracy	Field staff followed standard operating procedures.			
	Satisfactory results for all field and laboratory QC samples.			

Table 2: Data Quality Indicators

Based on the above, it is considered that the DQIs have been generally complied with.

K3.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

K4.0 References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Table QA1: Relative Percentage Difference Results - Intra-laboratory Replicates - Soils

					Metals								RH				ВТ	ΓEX			P	АН	
	Arseric	Cadm iun	Total Chrom ium	Copper	pead	Mercury (Incrgaric)	Nickel	Zinc	Mangarese	ТКН С6-С10	ТКН ×С10-С16	F1 ((C6-C10)-BTEX)	P2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34.C40)	Benzene	Toluene	E thy lberz ene	Total Xylenes	Naphfhalene b	Benzc(a)pyrene (BaP)	Berzo(a)pyr ene TEQ	Total PAHs
Sample ID Depth Sample D	ate mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BD4/20210901 0.4 - 0.5 m 01/09/20	21 <4	⊲0.4	7	1	11	⊲0.1	2	5	5	<25	<50	<25	<50	<100	<100	⊲0.2	⊲0.5	<1	<1	<1	<0.05	<0.5	<0.05
HA 104 0.4 - 0.5 m 01/09/20	21 <4	⊲0.4	8	<1	11	⊲0.1	1	3	3	<25	<50	<25	<50	<100	<100	<0.2	⊲0.5	<1	<1	<1	<0.05	<0.5	<0.05
Differen		0	1	0	0	0	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RPD	0%	0%	13.3%	0%	0%	0%	66.7%	50.0%	50.0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Table QA2: Relative Pe	rcentage Di	fference Res	sults – Inte	er-laborator		es - Soils																	
					Metals								RH				BT	ΕX			P.	AH	
	Ar senic	Cadmium	Total Chromium	Copper	Lead	Mer cury (inor ganic)	Nickel	2 IC	Manganese	ткн с6 -с10	TRH >C10-C16	FI ((C6.C10).BTEX)	F2 (>c10-c16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34C40)	Berzene	Toluene	Eftylberzene	Total Xylenes	Naphthalene ^b	Berzo(a)pyrene (BaP)	Benzo(a)pyrene TE Q	Total PAHs
Sample ID Depth Sample D	ate mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BD1/20210831 0.4 - 0.5 m 31/08/20	21 <5	<1	<2	<5	<5	<0.1	<2	7	-	<10	<50	<10	<50	<100	<100	⊲0.2	⊲0.5	⊲0.5	⊲0.5	<1	<0.5	<0.5	<0.5
BH109 0.4 - 0.5 m 31/08/20	21 <4	⊲0.4	<1	2	1	⊲0.1	<1	11	6	<25	<50	<25	<50	<100	<100	<0.2	⊲0.5	<1	<1	<1	<0.05	<0.5	<0.05
Differen		0	0	0	0	0	0	4	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RPD	0%	0%	0%	0%	0%	0%	0%	44.4%	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Table QA3: Relative Pe	rcentage Di	fference Res	sults – Intr	ra-laborator	ry Replicate	es - Water																	
			Me	etals					т	RH		BTEX							P	AH			
Arsenic	Cadmium	Total Chromium	Copper	pead	Mercury (inorganic)	Nickel	Zinc	F1 ((C6-C10)-BTEX)	P2 (>C10.C16 less Naphtralene)	F3 (>C16-C34)	F4 (>C34-C40)	Total Xylenes	Acenaphthene	Acerapititylene	Berzo(a)pritir acene	Naphthalene	Benzo(a)pyrene (BaP)	Berzolbj+k/fluor anthen e	Berzo(g,h,i)per ylene	Chrysene	Diberzo(a,ħ)arthracene	Flucranthene	Ruorene
Sample ID Sample Date µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	mg/L	µg/L	mg/L	mg/L	mg/L	µg/L	µg/L	mg/L	mg/L	mg/L	mg/L	µg/L	mg/L
BD1/20210908 08/09/21 2	<0.1	<1	<1	<1	<0.05	<1	27	<10	<50	⊲0.1	⊲0.1	<0.002	<0.0001	<0.0001	<0.0001	<1	⊲0.1	<0.0002	<0.0001	<0.0001	<0.0001	⊲0.1	⊲0.0001
MW101 08/09/21 3	⊲0.1	<1	<1	<1	<0.05	<1	32	<10	<50	⊲0.1	⊲0.1	<0.002	⊲0.0001	<0.0001	<0.0001	<1	⊲0.1	<0.0002	⊲0.0001	<0.0001	<0.0001	<0.1	⊲0.0001
Difference 1	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RPD 40%	0%	0%	0%	0%	0%	0%	17%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

P henol	OCP	OPP	PCB		
Phenol	Total OCP	C Mor pyriphos	Total PCB		
mg/kg	mg/kg	mg/kg	mg/kg		
<5	<pql< td=""><td>⊲0.1</td><td>⊲PQL</td></pql<>	⊲0.1	⊲PQL		
<5	≪PQL	⊲0.1	<pql< td=""></pql<>		
0	0	0	0		
0%	0%	0%	0%		
Phenol	OCP	OPP	PCB		
Phenol	Total OCP	Chlor pyr iphos	Total PCB		
mg/kg	mg/kg	mg/kg	mg/kg		
	⊲PQL	<0.05	<pql< td=""></pql<>		
\$	⊲PQL	⊲0.1	⊲PQL		
-	0	0	0		
-	0%	0%	0%		

Indenc(1,2,3-c, d)pyr ene	P henanthr ene	Pyrene
mg/L	µg/L	mg/L
⊲0.0001 ⊲0.0001	⊲0.1 ⊲0.1	⊲0.0001 ⊲0.0001
0	0	0
0%	0%	0%

Table QA4: Trip Blank Results - Soils (mg/kg)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TB/20210908	<0.2	<0.5	<1	<1	<2

Table QA5: Trip Spike Results - Soils (% Recovery)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TS/20210908	84	83	85	85	85

Table QA6: Trip Blank Results - Water (µg/L)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TB/20210908	<1	<1	<1	<1	<2

Table QA7: Trip Spike Results - Water (% Recovery)

Sample ID	Benzene	Toluene	Ethylbenzene	o-Xylene	m+p-Xylene
TS/20210908	101	99	110	103	104