

15 JUBILEE PTY LTD

Detailed Site Investigation

15 Jubilee Avenue, Warriewood NSW

Document Control

Report Title: Detailed Site Investigation, 15 Jubilee Avenue, Warriewood NSW

Report No: E24716.E02_Rev2

Copies		Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Mr Joshua Mete 15 Jubilee Pty Ltd PO Box 600, Spit Junction NSW 2088	
2	Original (Saved to Digital Archives) (Document1)	El Australia Suite 6.01, 55 Miller Street, Pyrmont NSW 2009	

Author	Technical Reviewer

© 2021 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

				Page Number
EX	ECU	TIVE SU	MMARY	1
1.	INT	RODUC ⁻	TION	3
	1.1	Backgr	ound and Purpose	3
	1.2	Propos	ed Development	3
	1.3	Regula	tory Framework	3
	1.4	Project	Objectives	4
	1.5	Scope	of Works	4
2.	SITI	E DESCI	RIPTION	5
	2.1	Propert	ty Identification, Location, and Physical Setting	5
	2.2	Local L	and Use	5
	2.3	Region	al Setting	6
	2.4	Ground	lwater Bore Records and Local Groundwater Use	6
	2.5	EPA O	nline Records	6
		2.5.1	Contaminated Land – Record of EPA Notices	6
			List of NSW Contaminated Sites Notified to EPA	7
		2.5.3	POEO Public Register	7
	2.6	Site Ins	spection	7
3.	SITI	E HISTO	PRY	8
	3.1	Previou	us Investigation	8
	3.2	SafeWo	ork NSW Search	9
	3.3	PFAS A	Assessment	9
	3.4	Emergi	ng Chemicals	10
	3.5	Summa	ary of Site History	10
4.	COI	NCEPTU	IAL SITE MODEL	11
	4.1	Potenti	al Contamination Sources	11
	4.2	Potenti	al Contaminants of Concern	11
	4.3	Potenti	al Pollutant Linkages and Receptors	11
	4.4	Data G	ар	11
5.	SAN	/IPLING,	, ANALYTICAL AND QUALITY PLAN	13
	5.1	Data Q	uality Objectives	13
	5.2	Data Q	uality Indicators	15
	5.3	Samplii	ng Rationale	15
	5.4	Soil Sa	mpling	16
	5.5	Ground	lwater Sampling	17
	5.6	Assess	ment Criteria	18
6.	DAT	ΓΑ QUAI	LITY ASSESSMENT	20

	6.1	Field Q	AC Assessment	20
		6.1.1	Intra-Laboratory Duplicates	20
		6.1.2	Inter-Laboratory Duplicates	20
		6.1.3	Trip Blanks	20
		6.1.4	Trip Spikes	21
		6.1.5	Rinsate Blank	21
		6.1.6	Assessment of Field QC Data	21
	6.2	Labora	tory QC Assessment	21
		6.2.1	Laboratory Accreditation	21
		6.2.2	Sample Holding Times	21
		6.2.3	Test Methods and Practical Quantitation Limits	21
		6.2.4	Method Blanks	21
		6.2.5	Laboratory Duplicate Samples	21
		6.2.6	Laboratory Control Samples	21
		6.2.7	Matrix Spikes	22
		6.2.8	Surrogates	22
	6.3	Conclu	ding Remarks	22
7.	RES	ULTS		23
	7.1	Subsur	face Conditions	23
	7.2	Soil		23
	7.3	Ground	dwater	24
8.	SITE	CHAR	ACTERISATION	26
	8.1	Subsur	face Conditions	26
	8.2	Soil Im	pacts	26
	8.3	Waste	Classification	26
	8.4	Ground	dwater Impacts	26
	8.5	Review	v of CSM	26
9.	CON	ICLUSI	ON	27
10.	STA	TEMEN	IT OF LIMITATIONS	28
REI	FFDE	NCES		29
AB	BREV	/IATION	NS	31

Schedule of Tables

Table 2-1	Site Identification	5
Table 2-2	Local Land Use	5
Table 2-3	Regional Setting	6
Table 3-1	Summary of Owner History	8
Table 3-2	Summary of Aerial Photograph History	9
Table 3-3	PFAS Decision Tree	9
Table 3-4	Emerging or Controlled Chemicals	10
Table 4-1	Conceptual Site Model	12
Table 5-1	Project Data Quality Objectives	13
Table 5-2	Data Quality Indicators	15
Table 5-3	Soil Sampling Methodology	16
Table 5-4	Groundwater Sampling Methodology	17
Table 7-1	Summary of Subsurface Conditions	23
Table 7-2	Monitoring Well Construction Details	24
Table 7-3	Groundwater Field Data	25

Appendices

APPENDIX A - FIGURES

APPENDIX B - PROPOSED DEVELOPMENT PLANS

APPENDIX C – LAND TITLES

APPENDIX D - SAFEWORK NSW SEARCH

APPENDIX E - BOREHOLE / TEST PIT LOGS

APPENDIX F - GROUNDWATER FIELD SHEETS

APPENDIX G - COC AND SRA DOCUMENTATION

APPENDIX H - LABORATORY ANALYTICAL REPORTS

APPENDIX I - RESULT SUMMARY TABLES

Executive Summary

Background and Objectives

Mr Joshua Mete of 15 Jubilee Pty Ltd engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) of the property located at 15 Jubilee Avenue, Warriewood NSW ('the site').

The site is located approximately 22km north of the Sydney central business district, within the Local Government Area of Northern Beaches Council. It comprised a largely vacant block of land fronting Jubilee Avenue, and was legally identified as Lot 202 in Deposited Plan (DP) 1019363, covering a total area of approximately 4554m².

At the time of this investigation, the site surface was mostly vegetated, with a large metallic shipping container near the north eastern boundary. Redevelopment was proposed for the property and the contamination status of the site was required, to determine if any unacceptable risks were posed to human and environmental receptors.

The primary objectives of this investigation were to:

- Evaluate the potential for site contamination, on the basis of historical land uses and anecdotal and documentary evidence of possible pollutant sources;
- Assess the degree of any potential contamination, by means of intrusive sampling and laboratory analysis for the contaminants of potential concern (COPC); and
- Make recommendations for the appropriate management of any contaminated soils and/or groundwater (if identified).

Key Findings

The key findings of the DSI were:

- The site was a vacant property at the time of this investigation. It originally formed part of the 'Great Warriewood Estate' in the early 1900s.
- The site appeared to have been used as farmland until the 1970s, with both livestock grazing and market (greenhouse) gardening taking place. From the 1970s onwards, the site was mainly used for residential purposes (two houses), or was vacant land.
- The site was free of statutory notices and licensing agreements issued under the Contaminated Land Management Act 1997 and Protection of the Environment Operations Act 1997. The site was not included on the List of NSW Contaminated Sites Notified to the EPA.
- Visual evidence of gross contamination, including fragments of fibre cement sheeting (FCS), was not observed on any part of the site. No suspicious odour was detected during the site inspection, or any of the field (sampling) works.
- There was no evidence that an underground storage tank (UST) was present on the site.
 No above-ground storage tank (AST) was identified.
- The potential for acid sulfate soils (ASS) to be present on the site was extremely low.
- Contaminant concentrations in the representative soil samples were all below the adopted ecological and human health criteria applicable to commercial land use scenarios.

Contaminant concentrations in the representative groundwater samples were all below the adopted groundwater investigation levels (GILs), with the exception of the heavy metals, copper and zinc. The metal levels were considered to be consistent with natural (background) concentrations for an urbanised area and not present as a result of on-site impacts. The local groundwater was considered suitable for commercial land use.

Conclusion

Based on the findings of this DSI and with due consideration of El's Statement of Limitations (**Section 10**), it was concluded that the potential for site contamination was low. Both soils and groundwater were considered to be suitable for the proposed (commercial) development, in accordance with *State Environmental Planning Policy* 55 (SEPP 55) - *Remediation of Land*.

Recommendations

El provide the following recommendations in relation to the proposed development of the property:

- Any soil materials designated for off-site disposal, including Virgin Excavated Natural Materials (VENM), are to be classified in accordance the EPA (2014) Waste Classification Guidelines; and
- Any material being imported to the site (i.e. for landscaping purposes) should be assessed for potential contamination in accordance with EPA guidelines, and thereby validated as suitable for the intended use.

1. Introduction

1.1 Background and Purpose

Mr Joshua Mete of 15 Jubilee Pty Ltd engaged El Australia (El) to conduct a Detailed Site Investigation (DSI) of the property located at 15 Jubilee Avenue, Warriewood NSW ('the site').

The site is located approximately 22km north of the Sydney central business district, within the Local Government Area of Northern Beaches Council (**Figure 1**, **Appendix A**). It comprised a largely vacant block of land fronting Jubilee Avenue, and was legally identified as Lot 202 in Deposited Plan (DP) 1019363, covering a total area of approximately 4554m² (**Figure 1**, **Appendix A**).

At the time of this investigation, the site surface was mostly vegetated, with a large metallic shipping container near the north eastern boundary. Redevelopment was proposed for the property and the contamination status of the site was required, to determine if any unacceptable risks were posed to human and environmental receptors. This report is provided in support of the Development Application (DA) to Northern Beaches Council and for the purpose of enabling the developer to meet its obligations under the *Environmental Planning and Assessment Act* 1997, in particular the requirements of *State Environmental Planning Policy* 55 - Remediation of Land (SEPP55).

1.2 Proposed Development

Based on the supplied plans (**Appendix A**), the proposed development involved construction of a three-level, commercial facility, with storage units, warehouses and offices, overlying a single level basement. The lowest (basement slab) level would require bulk excavation to depths of up to 3m below ground level (BGL) within the eastern portion of the site, and filling of up to 0.8m thickness within the western portion, creating a final (flat) surface at 18.2m Australian Height Datum (AHD). Locally deeper excavations may be required for footings and service trenches.

1.3 Regulatory Framework

In addition to the *Environmental Planning and Assessment Act 1997* and SEPP55, the following regulatory framework and guidelines were considered during this DSI:

- Contaminated Land Management Act 1997;
- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- EPA (1995) Sampling Design Guidelines;
- EPA (2017) Guidelines for the NSW Site Auditor Scheme;
- EPA (2020) Consultants Reporting on Contaminated Land;
- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, and
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation.

1.4 Project Objectives

The primary objectives of this investigation were to:

- Evaluate the potential for site contamination, on the basis of historical land uses and anecdotal and documentary evidence of possible pollutant sources;
- Assess the degree of any potential contamination, by means of intrusive sampling and laboratory analysis for the contaminants of potential concern (COPC); and
- Make recommendations for the appropriate management of any contaminated soils and/or groundwater (if identified).

1.5 Scope of Works

In order to achieve the above objectives, the scope of works was as follows:

Desktop Study

- Review of relevant (hydro)geological and soil landscape maps for the project area;
- A search of groundwater bore records within close vicinity to the site;
- A site walkover inspection, performed with the assistance of a qualified services locator, whom conducted ground penetrating radar (GPR) to check for underground services;
- A search of historical land title records relating to the site;
- A search of historical aerial photography archived at NSW Land and Property Information, to assist with identifying previous land use, both on-site and in the surrounding area;
- A search of property files archived by Northern Beaches Council, for information relating to operational site history;
- A search of the Stored Chemical Information Database and microfiche records held by SafeWork NSW, for information relating to the storage of hazardous chemicals, including possible underground tank approvals and locations;
- Searches of databases maintained by the NSW Environment Protection Authority (EPA) for statutory notices and licensing agreements issued under the Contaminated Land Management Act 1997 and Protection of the Environment Operations Act 1997; and
- A search of the List of NSW Contaminated Sites Notified to the EPA.

Field Work and Laboratory Analysis

- Drilling of boreholes at six locations (BH1-BH6) and excavation of test pits at six locations (TP1-TP6), each into the natural soil horizons;
- Multiple level soil sampling within fill and natural soils at each of the test bores and pit;
- Installation of three groundwater monitoring wells (in bores BH3, BH4 and BH5), each constructed following the standard protocols described under NUDLC (2012) Minimum Construction Requirements for Water Bores in Australia;
- One round of sampling from each of the groundwater wells; and
- Laboratory analysis of selected soil and groundwater samples for the COPC.

Data Interpretation and Reporting

This DSI report documents all desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. It also provides a record of observations made during the detailed site walkover inspection, borehole / test pit and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. Site Description

2.1 Property Identification, Location, and Physical Setting

The site identification details and associated information are presented in **Table 2-1**. The site locality is shown in **Appendix A**, **Figure 1**.

Table 2-1 Site Identification

Attribute	Description	
Site Address	15 Jubilee Avenue, Warriewood NSW	
Lot / DP	Lot 202 in DP 1019363	
Location Description	The site was bound by: North: Jubilee Avenue, a two lane, asphalt road; East: 19 Jubilee Avenue, low density residential property; South: Two to three storey commercial buildings with basements; and West: A small creek runs along the western site boundary, followed by a three storey commercial building with basement.	
Site Coordinates	North eastern corner of site (GDA2020-MGA56): Easting: 341580.993 / Northing: 6272136.7 (Source: http://maps.six.nsw.gov.au)	
Site Area	4554m²	
State Survey Marks	A state survey mark, SS141974, is situated at the north western corner of the site, on Jubilee Avenue.	
Local Government Authority	Northern Beaches Council	
Current Zoning	B7 – Business Park (<i>Pittwater Local Environmental Plan 2014</i>)	

2.2 Local Land Use

The site is situated within an area of mixed use, as described in **Table 2-2**. The potential local receptors within close proximity to the site are also identified.

Table 2-2 Local Land Use

Direction	Land Use Description	Potential Receptors
North	Jubilee Avenue, followed by commercial buildings (no basements)	Commercial land users Blackmores Limited, a pharmaceutical company
East	Low density residential	Residential land users
South	Commercial	Commercial land users
West	A small tributary of Narrabeen Creek runs along the western boundary, followed by commercial buildings with basements	Commercial land users Ecological receptors of creek

2.3 Regional Setting

Local topography, (hydro)geology and soil landscape information are summarised in Table 2-3.

Table 2-3 Regional Setting

Attribute	Description
Topography	The site is located on the south side of the road, within gently west dipping topography. Site levels vary from RL 22.4m in the north eastern corner, to RL 15.5m in the south western corner.
Site Drainage	Site drainage is likely to be consistent with the general slope of the site. Stormwater is likely to drain directly to ground in the absence of hardstand.
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources <i>Sydney 1:100,000 Geological Series Sheet 9130</i> (DMR 1983), indicates the site is underlain bya Newport formation, which typically comprises interbedded laminite, shale, and quartz, to lithic-quartz sandstone, and minor red claystone north of the Hawkesbury River, and clay pellet sandstone south of the Hawkesbury River.
Soil Landscape	The Soil Conservation of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicated that the site overlies a Tuggerah landscape, which is characterised by costal Aeolian strata, commonly a sand or clayey sand with apedal massive structure and porous sandy fabric; well sorted and dominated by medium sized sand grains; pH ranges from strongly acidic (pH 4.5) and neutral (pH 7.0).
Acid Sulphate Soil (ASS) Risk	With reference to the <i>Hornsby / Mona Vale Acid Sulfate Soil Risk Map</i> (1:25,000 scale; Murphy, 1997), the subject land lies within the map class description of 'No Known Occurrence'. In such cases, acid sulphate soils (ASS) are not know or expected to occur and "land management activities are not likely to be affected by ASS materials". With reference to the <i>Pittwater Local Environmental Plan 2014 Acid Sulfate Soils Map</i> , the subject land lies within a <i>Class 5</i> area.
	ASS were therefore not expected to occur on this site.
Anticipated Groundwater Flow Direction	Inferred to be towards Narrabeen Creek, located approximately 230m south east of the site.

2.4 Groundwater Bore Records and Local Groundwater Use

An online search of groundwater bores registered with WaterNSW was conducted by EI on 23 July 2020 (Ref. https://realtimedata.waternsw.com.au/water.stm). The search revealed there were no registered bores within a 500m radius of the site. Therefore, the beneficial use of groundwater for potable, irrigation or domestic use was unlikely in the local area.

2.5 EPA Online Records

2.5.1 Contaminated Land – Record of EPA Notices

An on-line search of the contaminated land public record of EPA Notices was conducted on 23 July 2020. The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the CLM Act 1997;
- Notices available to the public under Section 58 of the CLM Act 1997;
- Approved voluntary management proposals under the CLM Act 1997 that have not been fully carried out and where the approval of the EPA has not been revoked;
- Site audit statements provided to the EPA under Section 53B of the CLM Act 1997 that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and

 Actions taken by the EPA under Section 35 or 36 of the Environmentally Hazardous Chemicals Act 1985.

The search confirmed that the site known as 15 Jubilee Avenue, Warriewood NSW and surrounding lands within close proximity (within 250m radius) were not subject to any regulatory notices relevant to the above legislations.

2.5.2 List of NSW Contaminated Sites Notified to EPA

A search through the *List of NSW Contaminated Sites Notified to the EPA* under Section 60 of the CLM Act 1997 was conducted on 23 July 2020. This list is maintained by EPA and includes properties on which contamination has been identified, but is not deemed to be impacted significantly enough to warrant regulation. The site and localities in proximity (≤250m radius) had not been notified as contaminated to the EPA.

2.5.3 POEO Public Register

A search of the *Protection of the Environment Operations Act* 1997 public register was conducted on 23 July 2020. The public register contains records related to environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes. The search did not identify any properties within close proximity (250m radius).

2.6 Site Inspection

Observations were recorded during a walkover inspection of the site, a summary of which is given below. Refer also to **Appendix A**, **Figure 2**.

- The site surface was covered by grass, weeds and several (scattered) trees. All vegetation was in good condition (i.e. no visible evidence of stress), indicating that the local soils were not an issue with respect to phytotoxicity.
- A large metallic shipping container was situated in the north eastern corner, positioned on a concrete pad. This container and paving were the only structures on the property.
- The site boundaries were marked by metal fencing. Access to the site was achieved via a single ingress/egress located on the norther (western) boundary, fronting Jubilee Avenue.
- No suspicious odour or visual evidence of (gross) contamination was observed at any part of the site, including fragments of fibre cement sheeting (FCS).
- There was no evidence, by way of a fill / dip point or vent, that an underground storage tank (UST) was present on the site. No above-ground storage tank (AST) was present.

3. Site History

3.1 Previous Investigation

This report follows on from a previous investigation competed at the site being, *Phase 1 Environmental Site Assessment Draft for 15 Jubilee Avenue, Warriewood* – prepared by LNC-Lavalin Australia Pty Ltd (dated 21 July 2016). Information relating to site history, based on land titles information and aerial photographs, has been extracted from this report.

Land Titles Information

The information from LNC-Lavalin (2016) was current up to June 2016 and is summarised in **Table 3-1**. Copies of the documents are presented in **Appendix C**.

Table 3-1 Summary of Owner History

Period of Acquisition	Registered Proprietor(s) and Occupations
1908	Henry F Halloran
1908 to 15.04.1930	William James Wilcox, Frank Kleemo, Gerard Vernon Fisk and Charles Salon
15.04.1930 to 02.07.1948	Traiko Ramos (farmer)
02.07.1948 to 13.03.1950	Traiko Ramos (farmer) and Traianos Atanas Georgiu (farmer)
05.02.1979 to 24.03.1987	Alexandra Georgiou (widow) and Mary Phillips (daughter)
04.12.2000 to 27.09.2004	Alexandra Delkou / Anna Belcheff
27.09.2004 to 26.06.2007	Wayne Gordon Brown, Gary Neil Brown, Suzanne Ruby Brown and Jane Lee
26.06.2007 to 04.06.2010	Maitcorp Pty Ltd
2010 to date	Blackmores Limited #

Note 1 # denotes current registered proprietor

Historical Aerial Images

The historical aerial images reviewed by LNC-Lavalin (2016) were:

- 1943: Six Maps 1943 Imagery NSW Department of Finance and Services;
- 1955: NSW 232, Sydney RUN 11 Print 5005, Lands Photo;
- 1961: NSW 1052, RUN 21, Print 5169, Lands Photo;
- **1970:** NSW 1912, RUN 9, Print 5003, Land and Property Information;
- 1982: NSW 3260, RUN 1, Print 108, Land and Property Information;
- 1994: NSW 4245, RUN 5, Print 136, Land and Property Information;
- 2005: NSW 4941, RUN 5, Print 159, Land and Property Information; and
- 2016: Google Earth.

Information obtained from these photographs is summarised in Table 3-2.

Note that surrounding land use was similar to the site, with much of the area occupied by market gardening from the 1940s to 1970. From 1970 to 1990, significant commercial development occurred in the north, south and west with residential activities increasing in density to the east.

Table 3-2 Summary of Aerial Photograph History

Aerial Photograph	Site Description	Land use
1943	Vacant Land	Former bushland, now cleared
1943, 1955 and 1961	The site comprised an open air garden, four greenhouses in the upper eastern half and open pasture in the lower western half. Small sheds were in the south western and south eastern corners, likely associated with livestock.	Agricultural (south) and market garden (north east)
1970	Market gardening had ceased. Two residential dwellings were present in the north, fronting the street with the remainder of the site found vacant. Sheds remained.	Residential (north) and agricultural (south)
1982, 1994	The dwellings and sheds were removed and the land was occupied by livestock.	Agricultural grazing
2005, 2016	The site appeared unchanged from previous description, except livestock were no longer apparent	Vacant

3.2 SafeWork NSW Search

El submitted a request to SafeWork NSW for information relating to the storage of dangerous goods, held under their Stored Chemical Information Database (SCID) and microfiche records. The search did not identify any such records for the site. A copy of the correspondence from SafeWork NSW is attached in **Appendix D**.

3.3 PFAS Assessment

EPA (2017) requires that per and poly- fluoroalkyl substances (PFAS) are considered when assessing land contamination. El use the following decision tree (**Table 3-3**), based on EnRisk (2016), for determining the potential for PFAS to be present on-site and whether PFAS sampling of soil and groundwater is required. In this case, the assessment established that the potential for PFAS contamination was low.

Table 3-3 PFAS Decision Tree

Preliminary Screening	Probability	Justification
Did fire training occur on-site?	Low	No historic activities related to firefighting were identified
Is an airport or fire station up gradient of or adjacent to the site? 1	Low	Not identified
Have "fuel" fires ever occurred or are USTs on site?	Low	No storage of flammable chemicals identified
Have PFAS been used in manufacturing or stored on-site? ²	Low	PFAS contamination not expected

Note 1 Runoff from fire training areas may impact surface water, sediment and groundwater.

Note 2 PFAS is used wide range of industrial processes and consumer products, see https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas

Note 3 If medium or high probability is identified, the sampling will include preliminary sampling and testing for PFAS in water and possibly, soil.

3.4 Emerging Chemicals

The EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the *Environmentally Hazardous Chemicals Act 1985* to manage chemicals of concern and limit their impact on the environment. CCOs provide the EPA a rapid and flexible mechanism for responding to emerging chemical issues. Similar to PFAS compounds, EI considered the chemicals controlled by CCOs and other potential emerging chemicals for this DSI, as outlined in **Table 3-4** below. In this case, the assessment established there was potential for organochlorine pesticide contamination at the site, due to previous market gardening activities.

Table 3-4 Emerging or Controlled Chemicals

Decision
No
No
No
No
Likely - organochlorine pesticides
No
Yes

- Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the Site.
- Note 2 From anti-fouling paints used or removed at boat & ship yards and marinas.
- Note 3 From older transformer oils & electrical capacitors
- Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products
- Note 5 Other chemicals considered as emerging e.g. 1,4dioxane (associated with some cVOCs).

3.5 Summary of Site History

Land titles and Google searches of the history of Warriewood established that the site originally formed part of the 'Great Warriewood Estate' in the early 1900s. Development of the region began around 1920, with much of the early land uses being agricultural and/or horticultural (i.e. livestock grazing and market gardening).

The site appeared to have been used as farmland until the 1970s, with both livestock grazing and market (greenhouse) gardening taking place. From the 1970s onwards, the site was mainly used for residential purposes (two houses), or was vacant land.

4. Conceptual Site Model

In accordance with NEPC (2013) Schedule B2 – Guideline on Site Characterisation, EI developed a conceptual site model (CSM) that assessed plausible linkages between potential contamination sources, migration pathways and receptors. The CSM helps to identify gaps in the existing site characterisation and design the sampling strategy.

4.1 Potential Contamination Sources

Based on the inspection and history review, the potential sources of contamination for this site were as follows:

- Previous commercial activities dating back to the 1920s, including market (greenhouse) gardening and the application of pesticides; and
- The weathering and uncontrolled demolition of exposed building fabrics containing hazardous substances, including potential asbestos-containing materials (ACM), leadbased paints and metallic surfaces.

4.2 Potential Contaminants of Concern

The COPC were:

- The priority heavy metals (HMs), being arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn);
- Organochlorine pesticides (OCP);
- Organophosphate pesticides (OPP);
- Total recoverable hydrocarbons (TRH);
- The monocyclic aromatic hydrocarbons benzene, toluene, ethylbenzene and xylenes (BTEX);
- Polycyclic aromatic hydrocarbons (PAH) including naphthalene and benzo(a)pyrene (BαP);
 and
- Asbestos.

4.3 Potential Pollutant Linkages and Receptors

El considered there was potential for contamination to be present on the site. The identified receptors were site workers (during excavation and construction), service and maintenance staff, and the residential occupants. Ecological receptors could be exposed via discharging and irrigation of groundwater. An evaluation of the contamination sources, exposure pathways and human and environmental receptors is presented in **Table 4-1**.

4.4 Data Gap

It was concluded that an intrusive (sampling and analysis) component was required for this DSI, to adequately determine whether the site presented an unacceptable contamination risk to the identified receptors.

Table 4-1 Conceptual Site Model

Site Area / Source	Transport Mechanism	Exposure Pathway	Potential Receptor	
Previous commercial activities	Physical erosion and wind mobilization during ground disturbance activities (e.g. excavation and earthmoving). Leaching of contaminants from impacted soils exposed to water.	Dermal contact Ingestion Inhalation of dust and/or vapour Uptake (plants)	Site Workers during construction; Future commercial site users and maintenance personnel; and Groundwater (if significant soil impact is identified) Basements users	
Weathering and uncontrolled demolition of exposed building fabrics	Release of hazardous materials during uncontrolled demolition of building fabrics	Ingestion Dermal contact Inhalation of airborne contaminants	Construction and maintenance workers; End users of commercial site	

5. Sampling, Analytical and Quality Plan

The sampling, analytical and quality plan (SAQP) ensures that the data collected during environmental works at a site are representative and provide a robust basis for assessment decisions. The SAQP for this DSI included the following:

- Data quality objectives, including a summary of the objectives of the DSI;
- Investigation methodology, including the media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling procedures (including sample handling, preservation and storage);
- Field screening methods;
- Laboratory analysis methods; and
- Analytical quality assurance / quality control (QA/QC).

5.1 Data Quality Objectives

In accordance with the USEPA (2006) *Data Quality Assessment* and EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, Data Quality Objectives (DQO) were developed by the EI assessment team to determine the appropriate level of data quality needed for the specific requirements of the project. The DQO process that was applied for this DSI is documented in **Table 5-1**.

Table 5-1 Project Data Quality Objectives

DQO Step	Details
1. State the problem	Redevelopment of the land is proposed, for commercial use. The contamination appraisal established there was potential for contamination to exist on the site. Further, intrusive investigation was required, to determine: Is the site suitable for the proposed commercial/industrial development?; and Does the site pose an unacceptable risk to human and/or ecological receptors?
2. Identify the decisions / Goal of the study	 Based on the objectives outlined in Section 1.4, the following decisions were necessary: Has the site been adequately characterised, with sufficient and appropriate sampling coverage (vertical and lateral) to assess for the presence of potential contamination sources? Has the nature, source and extent of any onsite impacts (soil, groundwater, and/or vapour) been defined? What influence do site-specific, geologic conditions have on the fate and transport of any impacts that may be identified? Does the degree of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, assuming remedial action is necessary? If not, what are the remaining data gaps requiring closure?

DQO Step	Details		
3. Identify inputs to the decision	 Inputs to the decision making process included: Proposed development (land use); Site history and CSM; Areas of concern identified during the site inspection; National and EPA guidelines endorsed under the NSW Contaminated Land Management Act 1997; In-field and laboratory analyses of selected soil and groundwater samples for the COPC, to verify the presence and extent of on-site contamination; Consideration whether the site can be made suitable for the proposed land use; and Confirmation that data quality indicators (DQIs) were achieved. 		
4. Define the boundaries of the study	Lateral – defined as the sites cadastral boundaries. Vertical – From the existing ground level, fill and natural soils. Temporal – Results are valid on the day of data and sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources.		
5. Develop a decision rule	 The decision rules for the investigation were: If the concentrations of contaminants in the soil and/or groundwater data exceed the adopted criteria; then assess the need to further investigate the extent of impacts onsite. Decision criteria for analytical data were defined by the Data Quality Indicators (DQI) in Table 5-2. 		
6. Specify limits on decision errors	Specific limits for this project were in accordance with NEPM and EPA guidelines, standard procedures for field sampling and handling, and the adopted indicators of data quality. To assess the useability of the data, pre-determined DQI for completeness, comparability, representativeness, precision and accuracy were adopted, as presented below in Table 5-2 . If any of the DQI were not met, further assessment was necessary to determine whether the non-conformance would significantly affect the useability of the data. Corrective actions included requesting further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, recollection of samples.		
7. Optimise the design for obtaining data	The plan for obtaining data and achieve the decision rules involved: Written instructions were issued to guide field personnel. Soil sampling locations were chosen using a systematic triangular grid, the number ((twelve) complying with the minimum density recommended under the EPA (1995) Sampling Design Guidelines for an area of 4554m². An upper soil profile sample was collected at each borehole and tested for the COPC, to assess the condition of the fill layer. Further sampling was carried out in deeper soil layers, with samples selected for testing based on field observations (i.e. visual and olfactory evidence). Threegroundwater monitoring wells were installed, to assess local groundwater quality. Review of the results was undertaken to determine if further intrusive investigation (i.e. additional sampling) was warranted.		

5.2 Data Quality Indicators

To ensure that the investigation results were of an acceptable quality, the data set was assessed against the data quality indicators (DQI) outlined in **Table 5-2**. Refer to **Section 6** for further Quality Assurance / Quality Control information.

Table 5-2 Data Quality Indicators

QA/QC Measure	Data Quality Indicator	Acceptable Range
Accuracy	Field – Split duplicate Field – Trip blank (laboratory prepared) Field – Trip spike (laboratory prepared) Laboratory – control spike and matrix spike	<30% relative percentage difference (RPD) < laboratory limit of reporting (LOR) 80-120% recovery Prescribed by the laboratories
Precision	Field – Blind duplicate Laboratory – duplicates	<30% RPD Prescribed by the laboratories
Representativeness	Field – Rinsate blank Field – Trip blank (laboratory prepared) Field – Trip spike (laboratory prepared) Laboratory – Method blank The appropriateness of sampling methodologies (including preservation, storage and transport) assessed to confirm minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).	< laboratory LOR < laboratory LOR 80-120% recovery Prescribed by the laboratories Compliance with SOPs; checking of SRAs
Completeness	Analytical data sets were evaluated as complete upon confirmation that: Standard operating procedures (SOPs) were adhered to; All chain-of- custody (COC) documentation was properly completed and received; and All analyses were conducted, as per COC instructions.	It could then be considered whether the proportion of "useable data" was sufficient to the purposes of the land use assessment.
Comparability	Adherence to SOPs and regulator-endorsed guidelines. Sampling completed by experienced personnel. NATA-accredited laboratory methodologies employed.	

5.3 Sampling Rationale

With reference to **Section 4** (CSM) and **Section 5.1** (DQO), the soil and groundwater sampling works for this DSI were completed in accordance with the following rationale:

- Sampling fill and natural soils from twelve locations (boreholes BH1-BH6 and test pits TP1-TP6), positioned systematically across the site in a triangular grid-based pattern, to characterise in situ soils;
- Installation of three groundwater monitoring wells, positioned in a triangular formation, with the completion of one monitoring (sampling) event to assess local groundwater quality; and
- Laboratory analysis of representative soil and groundwater samples for the identified COPC.

5.4 Soil Sampling

The borehole drilling / test pit excavation and soil sampling works conducted at the site are described in **Table 5-3**. Test bore / pit locations are illustrated in **Appendix A**, **Figure 2**. The test bore / pit log are presented in **Appendix E**.

Table 5-3 Soil Sampling Methodology

Activity/Item	Details		
Fieldwork	The field work was conducted on 11 and 12 June 2020 by suitably experienced El personnel. The works were completed in conjunction with a geotechnical investigation (El reference E24716.G03_Rev3).		
Drilling Method	Test pits TP1 to TP6 were excavated using a 5 tonne digger and boreholes BH1 to BH6 were drilled using a ute-mounted, drilling rig, employing solid flight augers.		
Soil Logging	Collected soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Australian Standard (AS) 1726-2017. Logs are presented in Appendix E .		
Field Observations	A summary of field observations is as follows:		
(including visual and olfactory signs of	 No visual signs of contamination were observed and no suspicious odours were detected during any stage of the field investigation programme; 		
potential contamination)	 Fibre cement sheet fragments were not observed in any drilling cuttings; and Ash or slag was noted during the intrusive investigation. 		
Soil Sampling	Samples were collected using a dry grab method (with the sampler wearing unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars and plastic, zip-lock bags (the former for general analytes, the latter for asbestos analyses). Blind and split field duplicates were separated from the primary samples and		
	placed into dedicated glass jars.		
Decontamination Procedures	Drilling Equipment - The drilling rods were decontaminated between sampling locations with potable water until the augers were free of all residual materials.		
	Sampling Equipment – sampling equipment (i.e. metal trowel) was scrubbed and washed in a solution of potable water and <i>Decon 90</i> , then rinsed with potable water.		
	Dedicated gloves were used for the collection of each sample.		
Waste Management	Soil cuttings were used as backfill for completed boreholes.		
Sample Preservation and Transport	Samples for laboratory analysis were stored in a refrigerated (ice-filled) chest, whilst on-site and in transit to the corresponding laboratory.		
	Soil samples were transported to SGS Australia Pty Ltd (SGS; the primary laboratory), under strict chain-of-custody (COC) conditions. Signed COC certificates and sample receipt advice (SRA) were provided by SGS for confirmation purposes (Appendix G).		
	A split (inter-laboratory) field duplicate was submitted to Envirolab Services Pty Ltd (Envirolab; the secondary laboratory) under strict COC conditions. Signed COC certificates and SRA were provided by Envirolab (Appendix G).		
Laboratory Analysis and Quality Control	Soil samples were analysed by SGS and Envirolab for the COPC. All samples were analysed within the required holding period, as documented in the corresponding laboratory reports (Appendix H).		
	In addition to the split (inter-laboratory) duplicate (analysed by Envirolab), QC testing comprised a blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared, trip spike soil sample and a laboratory-prepared, trip blank soil sample, all tested by SGS.		

5.5 Groundwater Sampling

The groundwater sampling works conducted at the site are described in **Table 5-4**. Monitoring well locations are illustrated in **Appendix A**, **Figure 2**.

Table 5-4 Groundwater Sampling Methodology

Activity/Item	Details			
Fieldwork	Groundwater monitoring wells were installed and developed on 11 June 2020 and the GME occurred on 18 June 2020.			
Well Construction	Test bores BH3, BH4 and BH5 (each approximately 6m deep) were converted to groundwater monitoring wells. Well construction details are provided in Table 7-2 and the borelogs presented in Appendix E.			
	Well construction was in general accordance with the standards described in NUDLC, 2012 and involved the following:			
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product if present; 			
	 Base and top of each well was sealed with a uPVC cap; 			
	 Annular, graded sand filter was used to approximately 300 mm above top of screen interval; 			
	 Granular bentonite was applied above annular filter to seal the screened interval; 			
	 Drill cuttings were used to backfill the bore annulus to just below ground level; and 			
	Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level.			
Well Development	Well development was conducted for each well directly following installation. This involved agitation within the full length of the water column using a dedicated, high density polyethylene (HDPE), disposable bailer, followed by removal of water and accumulated sediment using a 12V, HDPE submersible bore pump (Proactive Environmental, model <i>Super Twister</i>). Pumping was continued until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes).			
Well Gauging and Groundwater Flow Direction	Monitoring wells were gauged for standing water level (SWL) prior to purging. The measured SWLs are shown in Table 7-2 . A transparent HDPE bailer was used to visually assess for the presence of phase-separated hydrocarbons (PSH) prior to the commencement of well purging. PSH was not detected in any of the wells. Based on the reduced water levels (Table 7-3), the direction of groundwater flow in the aquifer was inferred to be south westerly.			
Well Purging and Field Testing	No volatile organic odours were detected during any stage of well purging. Measurement of water quality parameters (dissolved oxygen (DO), electrical conductivity (EC), reduction / oxidation potential (Redox), pH and temperature) was conducted repeatedly during well purging and values were recorded onto field data sheets (Appendix F). Purged water volumes removed from each well and field test results are summarised in Table 7-3 .			
Groundwater sampling	Groundwater was sampled using a micro-purge system. Water was continuously measured for temperature, EC, Redox, DO and pH. Once three consecutive field measurements were recorded to within ±10% for DO, ±3% for EC, ±0.2 for pH, ±0.2°C for T and ±20mV for Redox, this was considered to indicate that representative groundwater quality had been achieved and final physico-chemical measurements were recorded. Groundwater samples were then collected from the micro-purge sampling pump discharge point.			

Activity/Item	Details
Decontamination Procedure	Decontamination was not required as sampling equipment was stored and transported prior to use in factory-sealed, plastic sleeves, while each bailer was dedicated to each individual well. All sample containers were supplied by the laboratory for the particular project and only opened once immediately prior to sampling. While ice was used to keep the samples cool, all melt water was continuously drained from the esky to prevent cross-contamination of samples. The water level probe and water quality kit probes were washed in a solution of potable water and <i>Decon 90</i> and then rinsed with potable water between measurements/wells.
Sample Preservation	Sample containers were supplied by the laboratory with the following preservatives: one, 1 litre amber glass, acid-washed and solvent-rinsed bottle; two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). Samples for metals analysis were field-filtered using 0.45 µm pore-size membranes. All containers were filled with sample to the brim then capped and stored in insulated chests (containing ice bricks), until completion of the fieldwork and during sample transit to the laboratory.
Sample Transport	After sampling, refrigerated sample chests were transported to SGS using strict COC procedures. SRA was provided by the laboratory to document sample condition upon receipt. Copies of the SRA and COC certificates are presented in Appendix G . A split (inter-laboratory) field duplicate was submitted to Envirolab under strict COC conditions. Signed COC certificates and sample receipt documentation were provided by Envirolab for confirmation purposes (Appendix G).
Quality Control and Laboratory Analysis	Groundwater samples were analysed by SGS and Envirolab for the COPC. All samples were analysed within the required holding period, as documented in the corresponding laboratory reports (Appendix H). In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised a blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared, trip spike water sample and a laboratory-prepared, trip blank water sample, all tested by SGS.

5.6 Assessment Criteria

The assessment criteria adopted for this project are outlined in **Table 5-5**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the proposed commercial land use scenario.

Table 5-5 Site Acceptance Criteria

Media	Target Receptor	Rationale
Soil	Human Health	NEPC(2013) Soil Health-based Investigation Levels (HILs) and Health-based Screening Levels (HSLs)
		Sample results were assessed against the NEPC (2013) HIL-D and HSL-D thresholds for commercial settings. Aesthetic suitability of site soil was further assessed using the <i>Management Limits</i> for TRH.

Media	Target Receptor	Rationale
	Ecological	NEPC (2013) Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs)
		NEPC (2013) Commercial D ElLs / ESLs were considered for soils from the site boundaries. Note ElLs / ESLs only apply to the top 2m (root zone). The ElL for benzo(a)pyrene was taken from CRC Care (2017) Risk-based management and remediation guidance for benzo(a)pyrene
Groundwater	Ecological	NEPC (2013) Groundwater Investigation Levels (GILs) for Fresh Water
		Given the nearest receiving waterbody, Narrabeen Creek, is a freshwater feature, the NEPC (2013) GILs for freshwater aquatic ecosystems were adopted. These are based on the ANZG (2018)Trigger Values for 95% level of protection.
	Human Health	Health-based Screening Levels (HSLs) The NEPC (2013) Commercial D groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours entering indoor air.

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 7**.

6. Data Quality Assessment

The assessment of data quality is defined as the scientific and statistical evaluation of environmental results to determine if they meet the objectives of the project (USEPA, 2006). For this DSI, data quality assessment involved an evaluation of the compliance of the field (sampling) and laboratory procedures with established protocols, as well as the accuracy and precision of the associated results from the quality control measures.

6.1 Field QC Assessment

The field QC samples collected during the investigation were as follows (soil and groundwater):

- Intra-laboratory (blind field) duplicates;
- Inter-laboratory (split field) duplicates;
- Trip blanks;
- Trip spikes; and
- A rinsate blank.

Analytical results for the tested QC samples, including RPD values between primary and duplicate samples and percent recoveries, are presented in the corresponding summary table in **Appendix I**.

6.1.1 Intra-Laboratory Duplicates

One blind field duplicate (BFD) soil sample was collected on 11 June 2020, identified as QD1. The sample was a duplicate of the primary soil sample, TP2_0.4-0.5.

One BFD groundwater sample was collected on 18 June 2020, identified as GW-QD1. The primary sample was BH3M-1.

The preparation of a BFD sample involved the collection of a bulk quantity of soil/water from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. BFD samples were analysed for TRH, BTEX and selected metals.

Calculated RPD values were found to be within the DQI, with the exception of soil arsenic, the variability being due to low analyte concentrations and sample heterogeneity. The reported results were well below the SIL and these variations were acceptable.

6.1.2 Inter-Laboratory Duplicates

One inter-laboratory duplicate (ILD) soil sample was collected on 11 June 2020, identified as QT1. The sample was a duplicate of the primary soil sample, TP2_0.4-0.5.

One ILD groundwater sample was collected on 18 June 2020, identified as GW-QT1. The primary sample was BH3M-1.

The preparation of an ILD sample was identical to the BFD sample. Each was analysed for TRH, BTEX and selected metals by the secondary laboratory (Envirolab). Calculated RPD values were found to be within the DQI, with most concentrations less than the laboratory limits of reporting (LOR).

6.1.3 Trip Blanks

Two trip blank samples were prepared and analysed by the primary laboratory for BTEX. Analytical results for each sample were all below the corresponding laboratory LOR, indicating

that ideal sample transport and handling conditions were achieved (i.e. there was no cross-contamination during sample transport and handling).

6.1.4 Trip Spikes

Two trip spike samples were prepared and analysed by the primary laboratory for BTEX. Analyte recoveries for these samples were 94-101%, which complied with the DQI. It was therefore concluded that satisfactory sample transport and handling conditions were achieved (i.e. there was negligible loss of volatiles, and by default semi-volatiles, during sample transport and handling).

6.1.5 Rinsate Blank

A single equipment rinsate blank was submitted to the primary laboratory for analysis of TRH, BTEX and selected metals. Analytical results were all reported below the laboratory LOR. El considered that decontamination procedures performed during the field works were effective.

6.1.6 Assessment of Field QC Data

Based on the results of the field QC samples, EI considered the field program carried out during the DSI was appropriate and the data were acceptable.

6.2 Laboratory QC Assessment

6.2.1 Laboratory Accreditation

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, where the pre-determined DQI were not achieved, in accordance with each laboratory's QC policy, respective tests were accordingly repeated. Where the results again fell outside the DQI, then sample heterogeneity was assumed and written comment was provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix H**.

6.2.2 Sample Holding Times

Sample holding times were within the laboratory DQIs, which were consistent with standard environmental protocols.

6.2.3 Test Methods and Practical Quantitation Limits

Practical Quantitation Limits, also known as LORs, for all tested parameters during the assessment of soils and groundwater are presented in the lab reports, **Appendix H**.

6.2.4 Method Blanks

Concentrations of all parameters in method blanks were below the laboratory PQLs and were therefore within the DQI.

6.2.5 Laboratory Duplicate Samples

The laboratory duplicates showed calculated RPDs that were within acceptable ranges and conformed to the DQI, with the exception of calcium and manganese in one sample, and copper, nickel, lead and zinc in two samples, all due to sample heterogeneity.

6.2.6 Laboratory Control Samples

Results for the laboratory control samples were within acceptable ranges and conformed to the DQI.

6.2.7 Matrix Spikes

All matrix spikes for the respective sample batches were within acceptable ranges and conformed to the DQI.

6.2.8 Surrogates

Recovery results for the surrogate samples conformed to the DQI, and were within acceptance criteria.

6.3 Concluding Remarks

All field work, including equipment decontamination and sample preservation and transport, was conducted in accordance with the SAQP and SOPs, which were devised with reference to industry-approved guidelines. Appropriate QC measures were integrated into each sampling event and the DQI were met, or if not, the variability was suitably justified.

All samples, including field QC samples, were transported to the primary and secondary laboratories under refrigerated conditions, using strict COC procedures. Relevant documents (COC forms) were presented with the samples at the times of delivery. All supporting documents (COCs and SRAs) were completed in full and signed, where appropriate. Copies of these were included in the DSI report.

Both contracted laboratories (SGS and Envirolab) were accredited by NATA for the analyses undertaken. All analytical procedures used were industry recognised and endorsed standard methods. Appropriate QC measures were integrated into each testing batch and the DQI were met, or if not, the variability was suitably justified.

All final reports were submitted in full and included all requested analyses, as per the signed COC forms.

The project DQOs specified in **Section 5.1** were considered to have been achieved. The adopted QA/QC program ensured that the data collated during the DSI were accurate, precise and representative of the site conditions. The data were therefore useable for interpretation (site investigation) purposes.

7. Results

7.1 Subsurface Conditions

Based on the test bore / pit logs (**Appendix E**), the site lithology was described as a layer of anthropogenic filling, overlying natural sandy soils, with bedrock expected at depth. More details are presented in **Table 7-1**.

Table 7-1 Summary of Subsurface Conditions

Unit	Material	Depth to Top of Unit (m BEGL)	RL of Top of Unit (m AHD)	Observed Thickness (m)	Comments
1	Topsoil/Fill	Surface	17.30 to 21.70	0.10 to 2.20	Topsoil and fill comprising fine to medium grained, brown, silty sand with rootlets, followed by fine to medium grained, pale brown to brown silty to clayey sand.
2	Alluvial Soil	0.10 to 2.20	16.00 to 21.20	1.27 to 4.90	Firm to very stiff, low plasticity sandy to silty clay, or clayey sand, with fine to medium ironstone gravels.
3	Very Low to Low Strength	1.77 to	11.10 to	-	Very low to low strength, distinctly weathered, fine to medium grained sandstone with clay and claystone bands. Not encountered in BH5, TP3, TP4, TP5, or TP6.
Clay Pellet Sandstone	7.10	19.93		The depth to bedrock varies across the site, being most shallow at the eastern end (BH1), becoming deeper at the western end (BH6).	

Field Observations

Soil samples were obtained from the boreholes and test pits at various depths ranging between 0.1m to 2.5m BGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, and charcoal) and the following observations were noted:

- A mild hydrogen sulphide odour was noted at one location being TP6, from a depth greater than 0.8mBGL;
- No slag or visual signs of contamination were noted in any of the boreholes or test pits; and
- No hydrocarbon odours were noted in any of the boreholes / test pit.

7.2 Soil

Laboratory analytical results for the tested soil samples are tabulated against the adopted SILs in **Appendix I**.

A total of 16 primary samples were analysed for the COPC and no concentration exceeded the corresponding SIL. Site soils were thus considered to be acceptable for retention, with respect to the proposed development.

Acid Sulfate Soil Assessment

Apart from the mild hydrogen sulphide odour at TP6 (from 0.8m BGL onwards), indicators of ASS were not observed in any of the examined soils, nor anywhere else across the site. The pH analyses (**Appendix G**) indicated that soils were:

- Moderately acidic to neutral (pH: 4.7-6.7); hence,
- Actual ASS were not expected, since pH_F values were well above the ASSMAC (1998) action value of 4; and
- Potential ASS were also not expected, as all pH_{FOX} values were above the ASSMAC (1998) action value of 3.5, and all pH differences (pH_F less pH_{FOX}) were less than 1, indicating little net acid generating ability.

These results supported the conclusion that ASS is not of concern to the current site, and did not require management during any future soil disturbance.

Waste Classification

Fill sample results were compared to the waste classification criteria prescribed under the EPA (2014) Waste Classification Guidelines, to provide a preliminary indication of the waste type(s) which may require off-site disposal. All results complied with the criteria for General Solid Waste (Non Putrescible).

7.3 Groundwater

Monitoring Well Construction

Three groundwater monitoring wells were utilised for the GME of this DSI. The available well construction details are provided in **Table 7-2**.

Table 7-2	Monitorina	Well	Construction	Details

Well ID	Well Depth (m BGL)	Well Stick-up (m BGL)	Screen Interval (m BGL)	Lithology Screened
внзм	5.9	- 0.1	2.9-5.9	Sandy Clay
BH4M	5.86	- 0.1	2.85-5.85	Sandy Clay
BH5M	6.1	- 0.1	3.1-6.1	Sandy Clay

Field Observations

Standing water levels (SWLs) were measured within each well prior to sampling, and presented in **Table 7-3**. The collected samples were evaluated on the basis of odour and visual signs of contamination, with the following observations noted:

- No olfactory or visual evidence of contamination was noted in any monitoring well; and
- No sheens were noted for the groundwater of any monitoring well.

Groundwater field parameters suggest that the local aquifer was acidic and fresh. The inferred hydraulic gradient was south westerly, towards Narrabeen Creek.

Table 7-3 Groundwater Field Data

Well ID	SWL (m BTOC)	SWL (m BGL)	DO (mg/L)	рН	EC (μS/cm)	T (°C)	Redox (mV)	Odour / Turbidity
внзм	1.0	1.1	2.97	5.73	439	20.47	92.6	None/Med
BH4M	1.7	1.8	2.83	5.29	486	19.51	187.2	None/Med
ВН5М	1.50	1.60	1.39	5.18	475	19.2	138.4	None/Med

Note 1 Standing water level measured from top of well casing, prior to groundwater sampling.

Laboratory Analytical Results

Laboratory analytical results for the tested groundwater samples are tabulated against the adopted GILs in **Appendix I**.

All reported concentrations for the COPC were below the adopted GILs, with the exception of the heavy metals, copper (Cu) and zinc (Zn). The metal levels were considered to be consistent with natural (background) concentrations for an urbanised area.

8. Site Characterisation

8.1 Subsurface Conditions

The subsurface of the site was generalised as a layer of anthropogenic filling, overlying natural sandy clays. The fill depth within the eastern part was estimated to be approximately 0.5m thick, increasing to the west, with a maximum thickness of 1.0m (identified at BH6). ASS was not identified and was not expected to require management during the development.

8.2 Soil Impacts

No olfactory indicator of contamination (i.e. suspicious odour), nor any visual signs of contamination (e.g. oil staining, petrochemical filming, asbestos fragments) were noted during the field works of this DSI. Contaminant concentrations in the representative soil samples were all below the adopted ecological and human health criteria applicable to commercial land use scenarios. The soils across the site were considered suitable for on-site retention, and did not pose an unacceptable risk to future users of the property, or its immediate surrounds.

8.3 Waste Classification

Fill material at the site is expected to be classified as *General Solid Waste (Non Putrescible)*. Further assessment including toxicity characteristics leaching procedure (TLCP) is required to confirm this. Should fill material require offsite disposal, additional details regarding the volumes and excavation areas and depths may be necessary, in order to produce a Waste Classification Certificate.

8.4 Groundwater Impacts

Concentrations of all COPCs were below the adopted GILs, except for copper and zinc. These metals are essential trace minerals, commonly found within groundwater due to the contact of the waterbody with underlying strata. As the criteria applied was applicable to an open, above ground waterbody, the values applied were representative of the required quality on discharge from the land mass, and do not directly compare to groundwater itself. As such, the elevated concentrations were unlikely to remain within discharged waters, and were commonly associated with urban environments. These elevated results were considered indicative of an urban groundwater system and were not present as a result of on-site impacts. The local groundwater was considered suitable for the commercial land use proposed.

8.5 Review of CSM

The CSM presented in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential on-site and off-site receptors. Data regarding soil and groundwater quality at the site were obtained and did not indicate an unacceptable risk posed to human or ecological receptors of the land, and no gaps in the dataset remain. The sampling was considered appropriate for use and the results conclude soil and groundwater at the site to pose a low, and acceptable risk to the site's receptors with no further assessment, management or remediation required.

9. Conclusion

The property located at 15 Jubilee Avenue, Warriewood NSW was the subject of a Detailed Site Investigation. The key findings of this DSI were:

- The site was a vacant property at the time of this investigation. It originally formed part of the 'Great Warriewood Estate' in the early 1900s.
- The site appeared to have been used as farmland until the 1970s, with both livestock grazing and market (greenhouse) gardening taking place. From the 1970s onwards, the site was mainly used for residential purposes (two houses), or was vacant land.
- The site was free of statutory notices and licensing agreements issued under the Contaminated Land Management Act 1997 and Protection of the Environment Operations Act 1997. The site was not included on the List of NSW Contaminated Sites Notified to the EPA.
- Visual evidence of gross contamination, including fragments of FCS, was not observed on any part of the site. No suspicious odour was detected during the site inspection, or any of the field (sampling) works.
- There was no evidence that a UST was present on the site. No AST was identified.
- The potential for ASS to be present on the site was extremely low.
- Contaminant concentrations in the representative soil samples were all below the adopted ecological and human health criteria applicable to commercial land use scenarios.
- Contaminant concentrations in the representative groundwater samples were all below the adopted GILs, with the exception of the heavy metals, copper and zinc. The metal levels were considered to be consistent with natural (background) concentrations for an urbanised area and not present as a result of on-site impacts. The local groundwater was considered suitable for the commercial land use proposed.

Based on the findings of this DSI and with due consideration of El's Statement of Limitations (**Section 10**), it was concluded that the potential for site contamination was low. Both soils and groundwater were considered to be suitable for the proposed (commercial) development, in accordance with *State Environmental Planning Policy* 55 (SEPP 55) - *Remediation of Land.*

Recommendations

El provide the following recommendations in relation to the proposed development of the property:

- Any soil materials designated for off-site disposal, including Virgin Excavated Natural Materials (VENM), are to be classified in accordance the EPA (2014) Waste Classification Guidelines; and
- Any material being imported to the site (i.e. for landscaping purposes) should be assessed for potential contamination in accordance with EPA guidelines, and thereby validated as suitable for the intended use.

10. Statement of Limitations

This report has been prepared for the exclusive use of 15 Jubilee Pty Ltd, whom is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report is limited to that agreed with 15 Jubilee Pty Ltd.

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices.

The conclusions presented in this report are based on a limited assessment of historical site use and current use of the site. Due to the preliminary nature of this assessment, findings are not based on actual samples collected or testing conducted. EI has relied upon information provided by the Client and other third parties to prepare this document, some of which could not be verified by EI due to the anecdotal or historical nature of the information.

El's professional opinions are reasonable and based on its professional judgment, experience and training.

El's professional opinions contained in this document are subject to modification if additional information is obtained through the data searches that have been initiated with government authorities, but for which the requested information is still pending.

Technical opinions may also be amended in the light of further investigation, observations, or validation testing and analysis during remedial activities. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

References

Ahern CR, Stone Y and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the *Acid Sulfate Soil Manual*, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998.

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018.

Bouwer H (1978) Groundwater Hydrology, McGraw-Hill Ryerson, Limited.

Chapman GA and Murphy CL (1989) Soil Landscapes of the Sydney 1:100 000 Sheet, Soil Conservation Service of NSW, Sydney, September 1989.

CRC CARE (2017) Risk-Based Management and Remediation Guidance for Benzo(a)pyrene, CRC CARE Technical Report No.39, CRC for Contamination Assessment and Remediation of the Environment, Newcastle, Australia, January 2017.

DEC (2006) *Guidelines for the NSW Site Auditor Scheme* (2nd Edition), New South Wales Department of Environment and Conservation, DEC 2006/121, April 2006.

DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination, New South Wales Department of Environment and Conservation, DEC 2007/144, June 2007.

DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130, Geological Survey of New South Wales, Department of Mineral Resources.

DUAP/EPA (1998) Managing Land Contamination. Planning Guidelines SEPP 55 - Remediation of Land. New South Wales Department of Urban Affairs and Planning / Environment Protection Authority, August 1998.

DUTCH (2009) Soil Remediation Circular 2009 (including the Intervention Values for Groundwater), Risk Assessment and Environmental Quality Division, Directorate for Chemicals, External Safety and Radiation Protection, Ministry of Housing, Spatial Planning and the Environment, Netherlands.

EnHealth (2005) *Management of Asbestos in the Non-Occupational Environment*, Department of Health and Ageing, Canberra, Australia.

Enrisk (2016) Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs, Environmental Risk Services Pty Ltd, Environment Protection Authority of New South Wales, 25 February 2016.

EPA (1995) Sampling Design Guidelines, Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.

EPA (2014) Waste Classification Guidelines - Part 1: Classifying Waste, Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.

EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), Environment Protection Authority of New South Wales, EPA 2017P0269, October 2017.

EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines. Environment Protection Authority of New South Wales, EPA 2020P2233, April 2020.

Johnson PC and Ettinger RA (1991) Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings, Environmental Science & Technology 25, 1445-1452.

LNC - Lavalin Australia Pty Ltd (2016) *Phase 1 Environmental Site Assessment Draft for 15 Jubilee Avenue, Warriewood*, 21 July 2016.

McWhorter DB and Sunada DK (1977) GroundWater Hydrology and Hydraulics, Water Resources Publications. LLC.

Merrick NP (1994) A Groundwater Flow Model of the Botany Basin, from the Proceedings of the IAH/IEA Water Down Under '94 Conference, Adelaide, 21-25 November 1994, Volume 2A, 113-118.

Murphy CL (1997) *Acid Sulfate Soil Risk of the Hornsby / Mona Vale Sheet* (2nd Edition), Department of Land and Water Conservation, Sydney (supplied by the Sydney South Coast, Geographical Information Systems Unit).

NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environment Protection (Assessment of Site Contamination) Amendment Measure, National Environment Protection Council, April 2013.

NHMRC (2018) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.5, August 2018.

NUDLC (2012) *Minimum Construction Requirements for Water Bores in Australia* (3rd Edition). National Uniform Drillers Licensing Committee 2011, February 2012

Standards Australia (2005) Table E1 - Minimum Sampling Points Required for Site Characterisation, in Australian Standard AS4482.1-2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-volatile and Semi-volatile Compounds, Standards Australia 2005.

USEPA (2000a) *Guidance for the Data Quality Objectives Process - EPA QA/G-4*, United States Environmental Protection Agency, EPA/600/R-96/055, August 2000.

USEPA (2000b) Data Quality Objectives Process for Hazardous Waste Site Investigations - EPA QA/G-4HW, United States Environmental Protection Agency, EPA/600/R-00/007, January 2000.

USEPA (2006) *Data Quality Assessment: A Reviewers Guide - EPA QA/G-9R*, United States Environmental Protection Agency, Office of Environmental Information, EPA/240/B-06/002, February 2006.

Vic EPA (2000) *Groundwater Sampling Guidelines*, Environment Protection Authority for the State Government of Victoria, April 2000.

WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, Published by the Western Australian Department of Health, May 2009.

Abbreviations

ACM Asbestos-Containing Materials

AHD Australian Height Datum

ASS Acid Sulfate Soils

AST Above-ground Storage Tank

 $B(\alpha)P$ Benzo(α)Pyrene (a PAH compound)

BFD Blind Field Duplicate
BGL Below Ground Level

BH Borehole

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

BTOC Below Top of Casing
CCO Chemical Control Order
COC Chain of Custody

COPC Contaminants of Potential Concern

CSM Conceptual Site Model

CVOC Chlorinated Volatile Organic Compounds (a sub-set of the VOC suite)

DA Development Application

DNAPL Dense Non-Aqueous Phase Liquid (also referred to as Phase-Separated Hydrocarbons)

DO Dissolved Oxygen DP Deposited Plan

DSI Detailed Site Investigation EC Electrical Conductivity

El El Australia

EIL Ecological Investigation Level
EMP Environmental Management Plan

EPA Environment Protection Authority (of New South Wales)

ESL Ecological Screening Level

F1 C_6 - C_{10} TRH (less the sum of BTEX concentrations) F2 $>C_{10}$ - C_{16} TRH (less the concentration of naphthalene)

FCS Fibre Cement Sheeting

GIL Groundwater Investigation Level
GIPA Government Information Public Access

GME Groundwater Monitoring Event
HDPE High Density Polyethylene
HIL Health-based Investigation Level

HM Heavy Metals

HSL Health-based Screening Level ILD Inter-Laboratory Duplicate

km Kilometres L Litres

LEP Local Environmental Plan LGA Local Government Area

LNAPL Light Non-Aqueous Phase Liquid (also referred to as Phase-Separated Hydrocarbons)

LOR Limit of Reporting (limit of reporting for respective laboratory method)

m Metres

µg/L Micrograms per Litre mg/L Milligrams per Litre

mV Millivolts
MW Monitoring Well
N/A Not Applicable

NATA National Association of Testing Authorities, Australia

NEPC National Environment Protection Council
NEPM National Environment Protection Measure

NSW New South Wales

OCP Organochlorine Pesticides

OEH Office of Environment and Heritage (of New South Wales)

OPP Organophosphate Pesticides
PAH Polycyclic Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls

PFAS Per- and Poly- Fluroalkyl Substances

pH Potential Hydrogen (a measure of the acidity or basicity of an aqueous solution)
PQL Practical Quantitation Limit (limit of detection for respective laboratory method)

PSH Phase-Separated Hydrocarbons
PSI Preliminary Site Investigation
QA/QC Quality Assurance / Quality Control

RAP Remediation Action Plan
Redox Reduction-Oxidation Potential

RL Relative Level

RPD Relative Percentage Difference SAQP Sampling, Analytical and Quality Plan

SCID Stored Chemical Information Database (maintained by SafeWork NSW)

SIL Soil Investigation Level

SOP Standard Operating Procedure

SRA Sample Receipt Advice (document confirming laboratory receipt of samples)

SWL Standing Water Level

TCLP Toxicity Characteristics Leaching Procedure

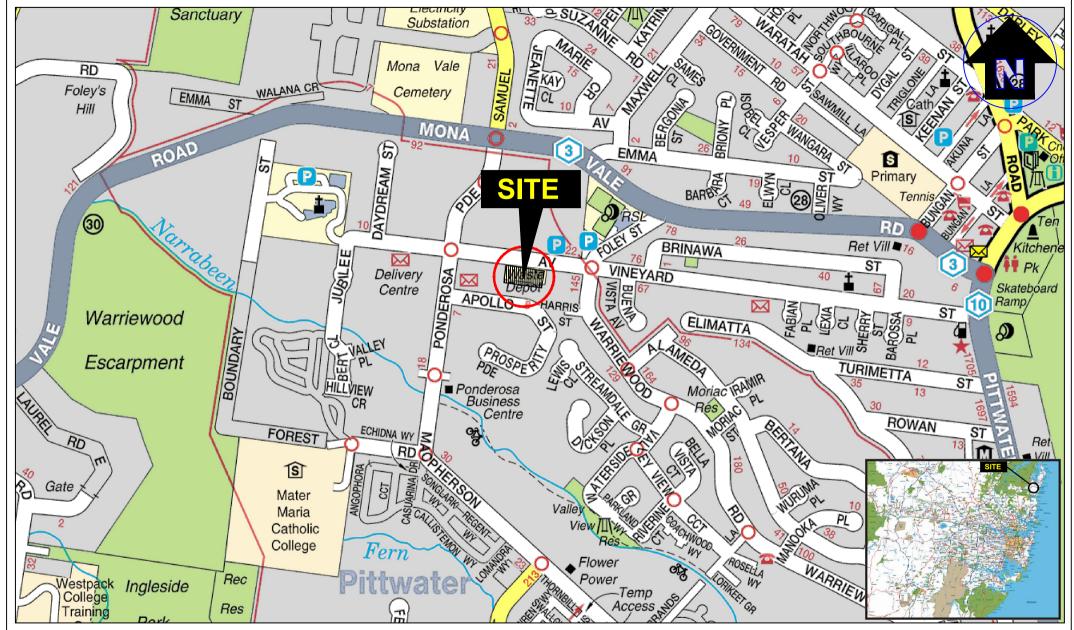
TDS Total Dissolved Solids (a measure of water salinity)

TEQ Toxicity Equivalent Quotient

TPH Total Petroleum Hydrocarbons (superseded term equivalent to TRH)

TRH Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)

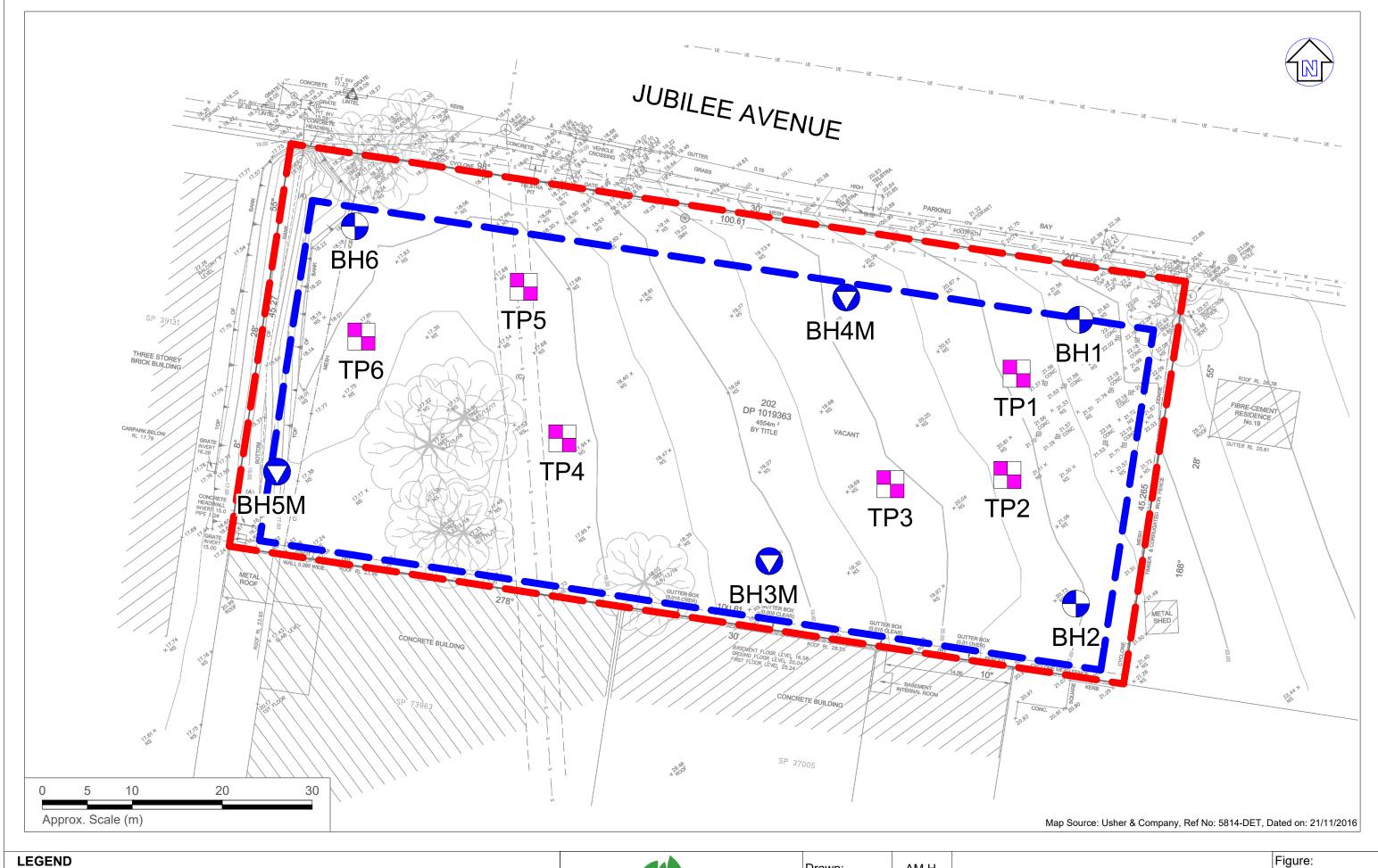
UCL Upper Confidence Limit (of the mean)
UPSS Underground Petroleum Storage System
USEPA United States Environmental Protection Agency


UST Underground Storage Tank
VENM Virgin Excavated Natural Material

VOC Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A - Figures

Drawn:	AM.H.
Approved:	E.S.
Date:	04-05-21
Scale:	Not To Scale


15 Jubilee Pty Ltd

Detailed Site Investigation
15 Jubilee Avenue, Warriewood NSW
Site Locality Plan

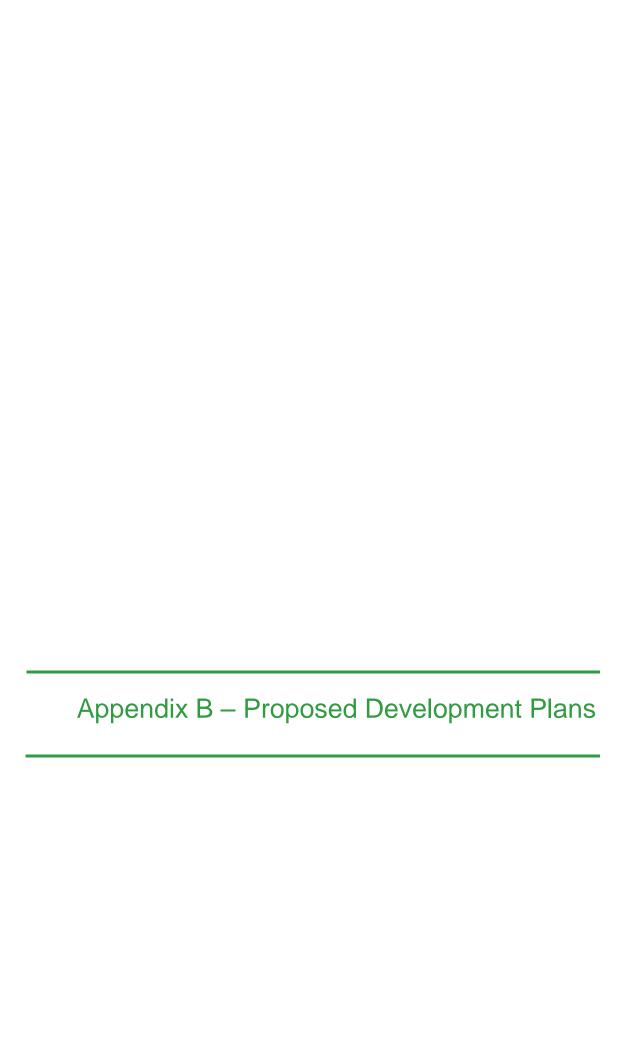
Figure:

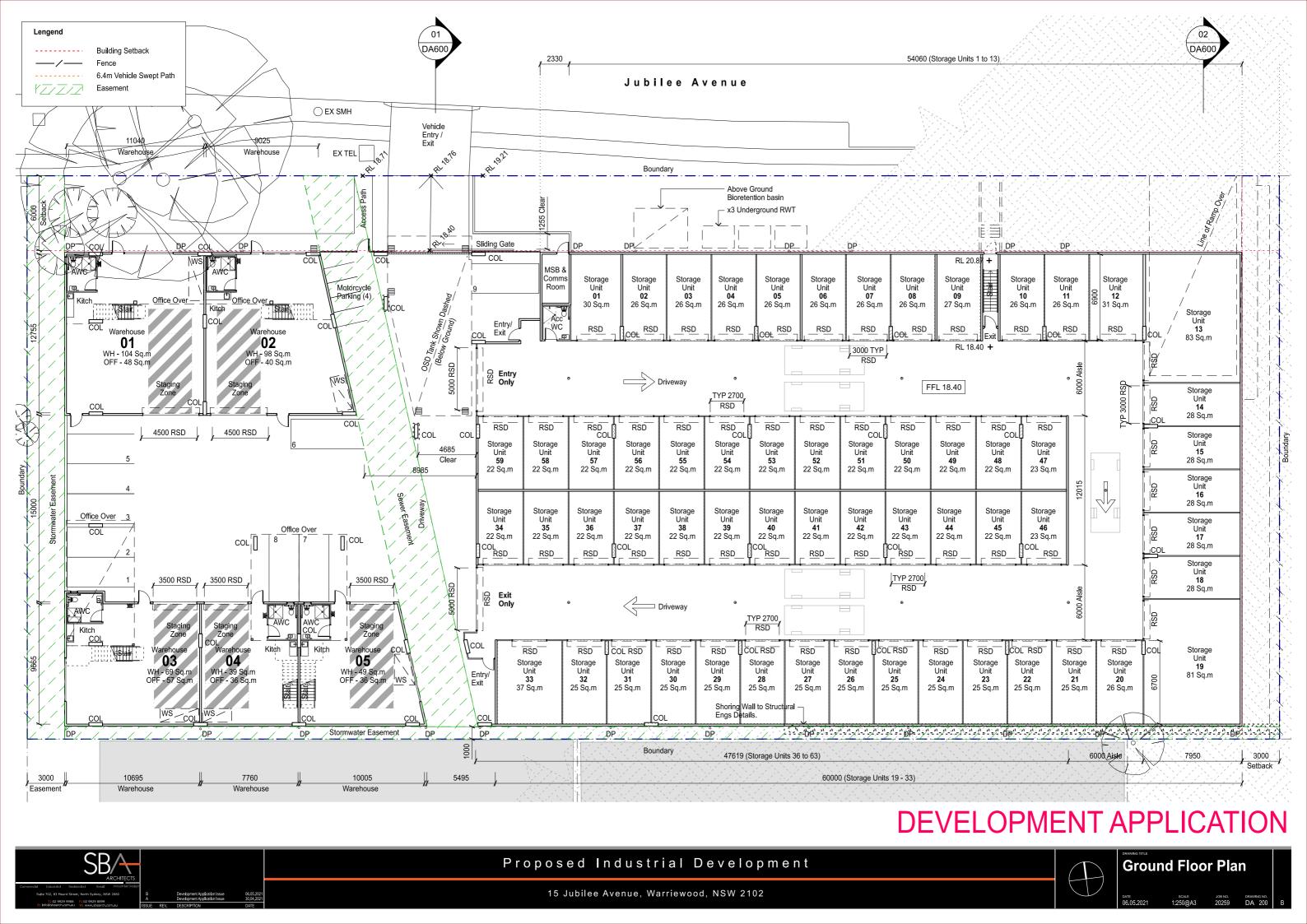
1

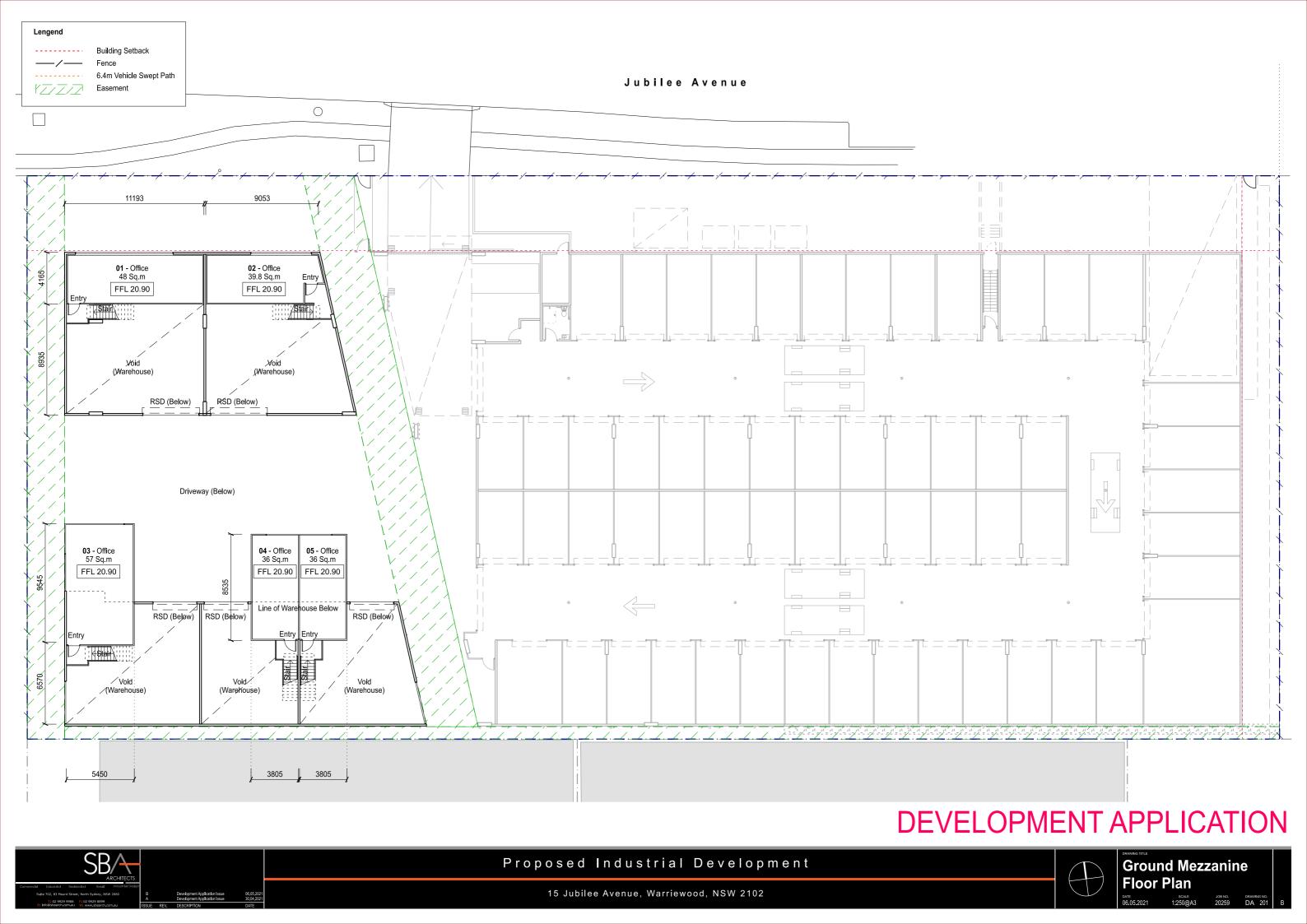
Project: E24716.E02

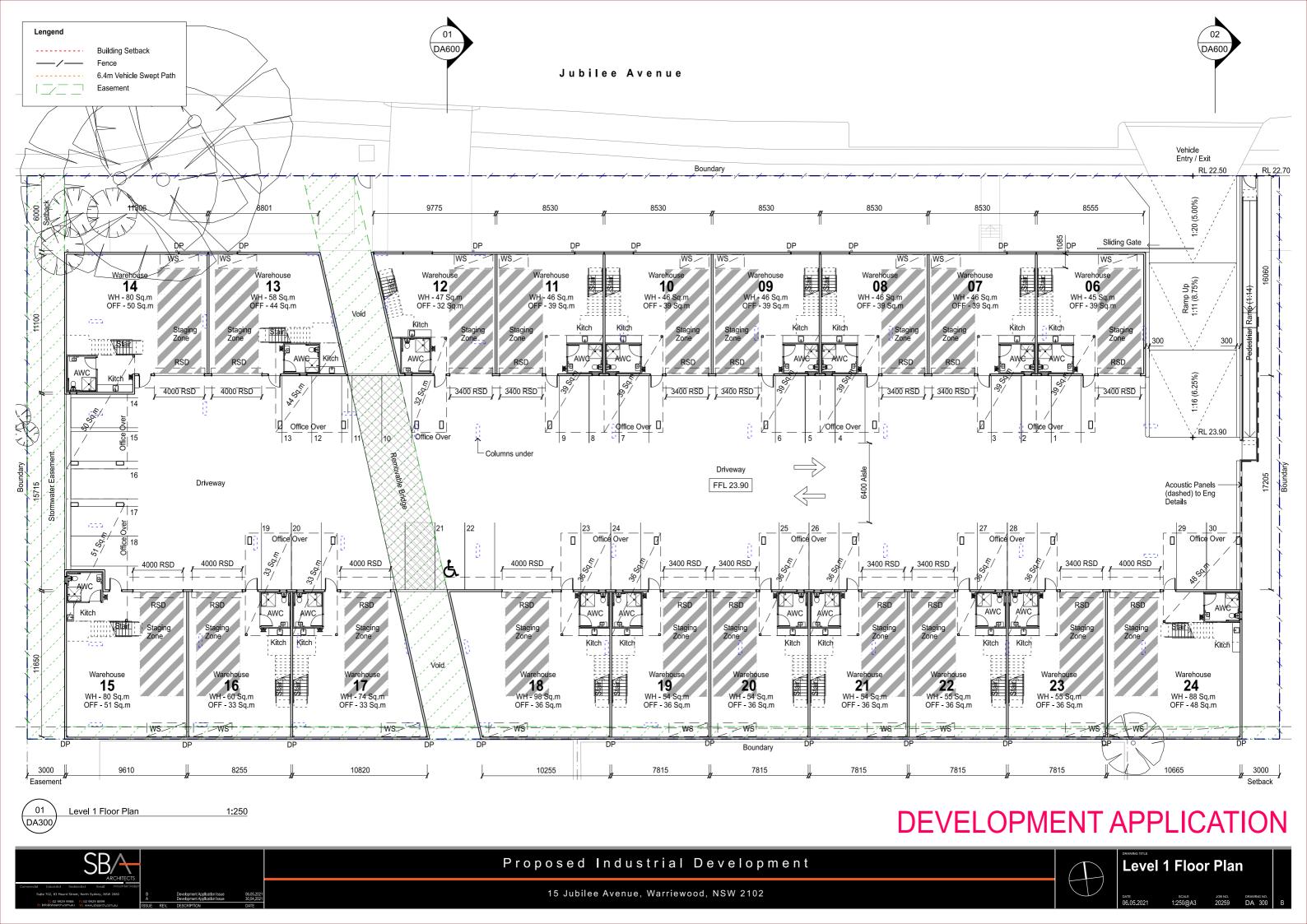
⊕ ⊘ ⊞

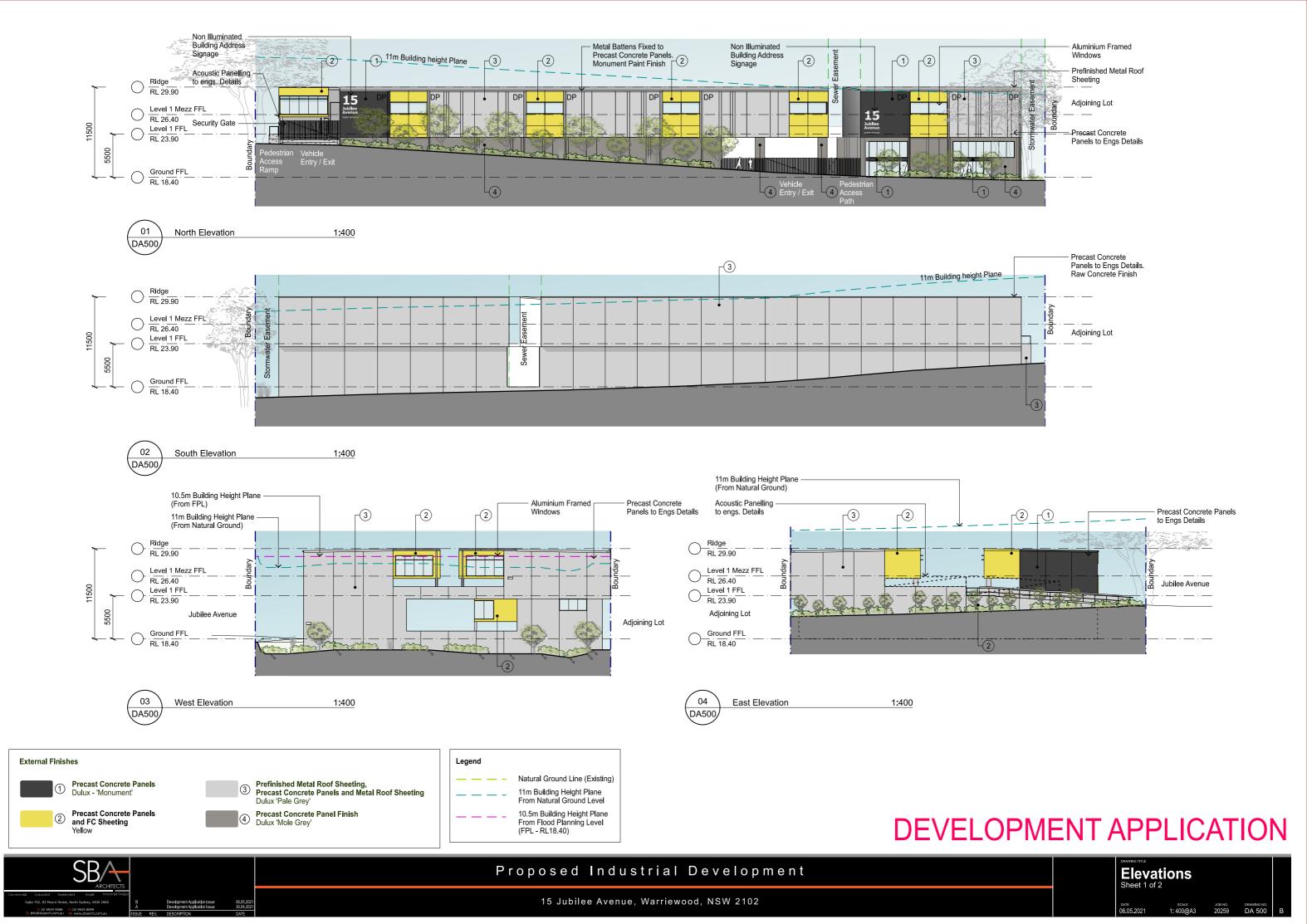
Approximate site boundary Approximate basement boundary Approximate borehole location Approximate borehole/monitoring well location Approximate test pit location

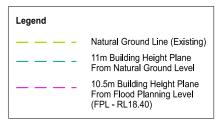


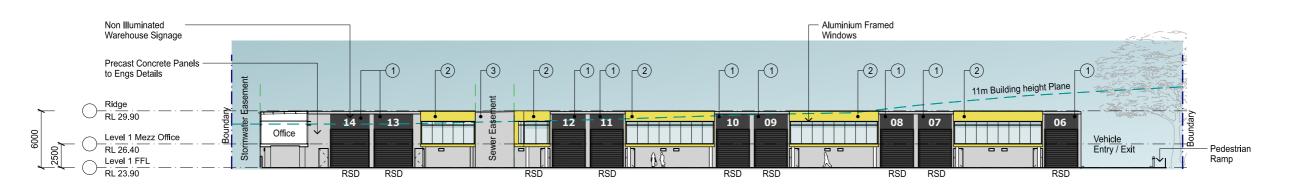

Drawn:	AM.H.
Approved:	E.S.
Date:	04-05-21

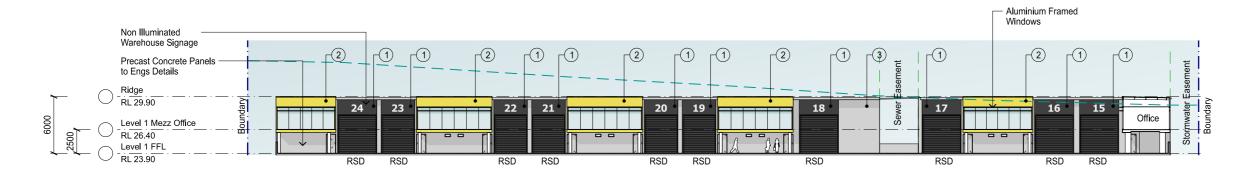

15 Jubilee Pty Ltd

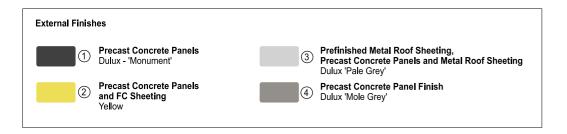

Detailed Site Investigation 15 Jubilee Avenue, Warriewood NSW Borehole Location Plan

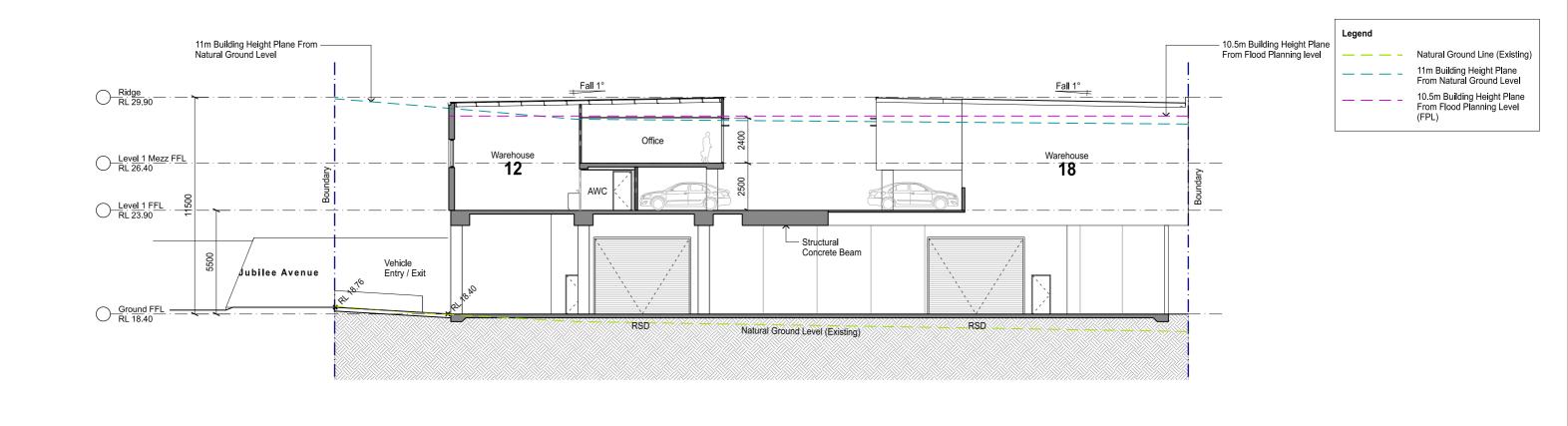

Project: E24716.E02

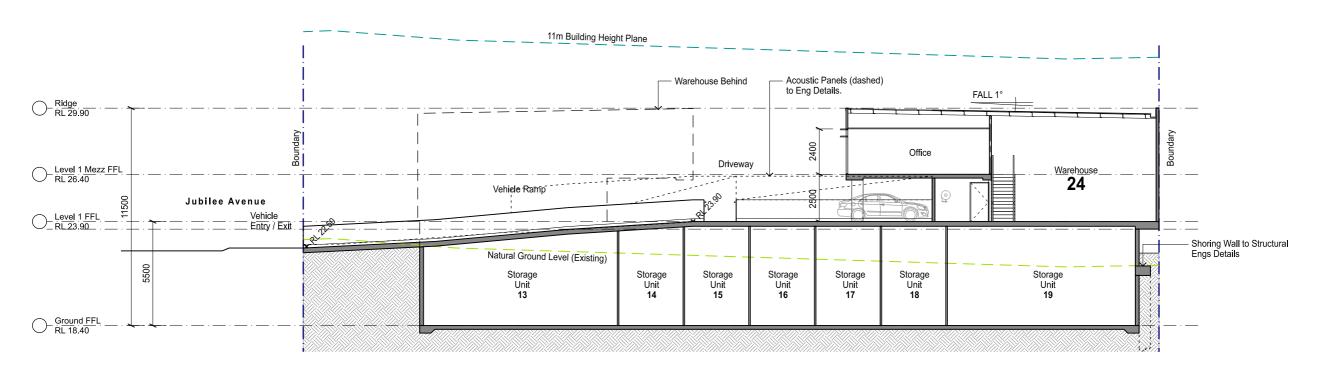











SB/\

DEVELOPMENT APPLICATION

Elevations
Sheet 2 of 2

DATE
D6 05 2021 1:400@A3 20259 DA 501

01 DA600

Section 01

1:200

DEVELOPMENT APPLICATION

Appendix C – Land Titles

Order number: 37687761 Your Reference: Historical Title for Lot 202 DP 1019363 04/07/2016

© State of New South Wales through Land and Property Information (2016)

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

4/7/2016 10:42AM

FOLIO: 202/1019363

First Title(s): OLD SYSTEM Prior Title(s): A/366630

Recorded	Number	Type of Instrument	C.T. Issue
15/11/2000	DP1019363	DEPOSITED PLAN	FOLIO CREATED EDITION 1
4/12/2000	7262756	TRANSFER	EDITION 2
2/5/2002	8559003	TRANSMISSION APPLICATION	EDITION 3
25/2/2004	AA439783	APPLICATION	EDITION 4
27/9/2004 27/9/2004	AA982517 AA982518	TRANSFER MORTGAGE	EDITION 5
9/10/2006 9/10/2006	AC653293 AC653294	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 6
18/7/2007 18/7/2007 18/7/2007		DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 7
20/7/2007	AD283708	CAVEAT	
3/1/2008	AD674396	CAVEAT	
2/4/2008	AD862994	CAVEAT	
8/4/2008 8/4/2008 8/4/2008 8/4/2008	AD866120 AD866121 AD866122 AD866123	WITHDRAWAL OF CAVEAT WITHDRAWAL OF CAVEAT DISCHARGE OF MORTGAGE MORTGAGE	EDITION 8
11/6/2010 11/6/2010 11/6/2010		WITHDRAWAL OF CAVEAT DISCHARGE OF MORTGAGE TRANSFER	EDITION 9

*** END OF SEARCH ***

PRINTED ON 4/7/2016

SAI Global Property Division an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with section 96B(2) of the Real Property Act 1900.

All handwriting must be in block capitals. A set of notes on this form (97-01T-2) is available from the Land Titles Office.

 Checked by (LTO use):

01T Form:

Release: 2.1 www.lpi.nsw.go	ov.au New South Wales Real Property Act 1900	AA982517C
	PRIVACY NOTE: this information is legally required and will	l become part of the public record
STAMP DUTY	Office of State Revenue use only	
r		NEW SOUTH WALES DUTY 09-03-2004 0001869915-001 Section 18(2)
) TORRENS TITLE	202/1019363	0371 + 1446344444444444. U
s) LODGED BY	Delivery Box 1972 Reference: 00 953 208	CODES T TW (Sheriff)
) TRANSFEROR	HOWARD ROBILLIARD and STUART MICHAEL PLO	NAMWO
O) CONSIDERATION	N The transferor acknowledges receipt of the consideration of \$	1,900,000.00 and as regards
E) ESTATE	the land specified above transfers to the transferee an estate	
F) SHARE Transferred	WHOLE	a contract of the second of
G) H) TRANSFEREE	Encumbrances (if applicable):	and the second of the second o
G)	Encumbrances (if applicable): WAYNE GORDON BROWN, GARY NEIL BROWN, SU TEMANCY: Tenants in Common in Equal Shar	ZANNE RUBY BROWN and JANE LEE
G) H) Transferee	Encumbrances (if applicable): WAYNE GORDON BROWN, GARY NEIL BROWN, SU	ZANNE RUBY BROWN and JANE LEE
G) H) TRANSFEREE I) DATE I certify that the same personally	Encumbrances (if applicable): WAYNE GORDON BROWN, GARY NEIL BROWN, SU TENANCY: Tenants in Common in Equal Shar the person(s) signing opposite, with whom y acquainted or as to whose identity I am proper offied, signed this instrument in my presence. Signal	ZANNE RUBY BROWN and JANE LEE
I) I) DATE I certify that th I am personally otherwise satis	Encumbrances (if applicable): WAYNE GORDON BROWN, GARY NEIL BROWN, SU TENANCY: Tenants in Common in Equal Shar the person(s) signing opposite, with whom y acquainted or as to whose identity I am proper offied, signed this instrument in my presence. Signal	res ded correct for the purposes of the Real rty Act 1900 by the transferor.
H) TRANSFEREE I) DATE I certify that the I am personally otherwise satis Signature of we with the I am personally otherwise satis	Encumbrances (if applicable): WAYNE GORDON BROWN, GARY NEIL BROWN, SU TENANCY: Tenants in Common in Equal Shar the person(s) signing opposite, with whom y acquainted or as to whose identity I am Proper street, signed this instrument in my presence. Witness: Artonietta Zaccagnini css: L4, A George St. Payramatta 2150 Certifi	res ded correct for the purposes of the Real rty Act 1900 by the transferor.
H) TRANSFEREE I) DATE I certify that the I am personally otherwise satis Signature of we with the I am personally otherwise satis	Encumbrances (if applicable): WAYNE GORDON BROWN, GARY NEIL BROWN, SU TENANCY: Tenants in Common in Equal Shar the person(s) signing opposite, with whom y acquainted or as to whose identity I am Proper street, signed this instrument in my presence. Witness: Artonietta Zaccagnini css: L4, A George St. Payramatta 2150 Certifi	red correct for the purposes of the Real rty Act 1900 by the transferor. ture of transferor: ded for the purposes of the Real Property Act by the person whose signature appears below.

pages sequentially

Land and Property Information NSW.

All handwriting must be in block capitals.

Box:=-=- /Req:C178419 /Doc:DL AF540831 /Rev:16-Jun-2010 /Sts:OK.OK /Prt:04-Jul-2016 13:36 /Seq:1 of 1 Ref:lpi:syd-dre1 /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only. 3/3.

01T Form:

TRANSFER

	ce of State Revenue use only	Client //p: 111'	1366057 2933 1515-103 No. 16854/2/ 25 00 42102000
NS TITLE FOL	IO IDENTIFIER 202/101936	3	
	Name, STRATE VALE (lection 392 C LLP: 12800 Reference: LEMAN	1000	T TW
FEROR MAI	TCORP PTY LIMITED ACN 07		MANAGERS APPOINTED)
ERATION The t	ransferor acknowledges receipt of the	consideration of \$ 2,255,000	.00 and as regards
	bovementioned land transfers to the		n fee simple
FERRED		"	
	mbrances (if applicable):		
FEREE			
BIA	ACKMORES LIMITED ABN 35 0	009 713 437	
TEN	IANCY:		
4 30	NE 2010		
rsonally acquain	n(s) signing opposite, with whom need or as to whose identity I am need this instrument in my presence.		purposes of the Real Property authorised officer named below.
	LLK-9	Signature of authorised	officer. Marrows
re of witness:		Authorised officer's na	Matt Jahlans Me: José ssuri Reen
ere of witness:	-0.1		
of witness:	ERIN LOUISE KING		don't estably secur
		Authority of officer: Signing on behalf of:	History Pty Lld Arnorig (Receives a Horojus Appointed)
of witness:	LVL 15, 50 PITT STREET	Signing on behalf of: Certified correct for the p	
of witness:	LVL 15, 50 PITT STREET	Signing on behalf of: Certified correct for the p	Hailman Phy Lld Armerica (Receives a Honogues Appointed) purposes of the Real Property
of witness:	LVL 15, 50 PITT STREET	Signing on behalf of: Certified correct for the part 1900 by the person w	Higherp Phy Lld (Receives a Hanajus Poposited) nurposes of the Real Propert

5. /Req:C180152 /Doc:DL AD274407 /Rev:18-Jul-2007 /Sts:OK.OK /Prt:21-Jul-2016 11:46 /Seq:1 of 3 Re::lpi:syd-dre1 /Src:W /WARNING: A4 Copy Supplied by LPI NSW for Conveyancing Purposes Only. TRANSFER 01T Form: Release: 3.2 **New South Wales** www.lands.nsw.gov.au Real Property Act 1900 PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Reg.___. by this form for the establishment and maintenance of the Real Property Act Register. Section 368-RP-Act requires that the Register is made available to any person for search upon payment of a fee, if any STAMP DUTY Office of State Revenue use only Charter 1405240 (A) FOLIO OF THE FOLIO IDENTIFIER 202/1019363 REGISTER (B) LODGED BY Name, Address or DX, Telephone, and LLPN if any L. J. & W. RALPH CODES Document 12}7865 Collection CITY LEGAL SEARCHING SERVICES Box 1089X 1084 TW Reference: HUR Muitcorp (Sheriff) WAYNE GORDON BROWN, GARY NEIL BROWN, SUZANNE RUBY BROWN and JANE LEE (D) The transferor acknowledges receipt of the consideration of \$ 3,000,000.00 and as regards the above folio of the Register transfers to the transfers an estate in fee simple (E) Encumbrances (if applicable): (G) TRANSFEREE MAITCORP PTY LTD (ACN 071 402 689) (I)TENANCY: 26-06-07 (J) I certify that the person(s) signing opposite, with whom Certified correct for the purposes of the Real Property Act 1900 by the transferor. I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence. Signature of witness: Dee Annexure "A" for execution by Transferor Name of witness: Address of witness: Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signatory's name: solicitor trans Signatory's capacity:

ALL HANDWRITING MUST BE IN BLOCK CAPITALS. 0702

Page 1 of 3

DEPARTMENT OF LANDS LAND AND PROPERTY INFORMATION DIVISION

ANNEXURE "A"

This is Annexure "A" referred to in Transfer dated 26-07 between Wayne Gordon Brown, Gary Neil Brown, Suzanne Ruby Brown and Jane Lee as Transferor and Maitcorp Pty Ltd (ACN 071 402 689) as Transferee.

I certify that Wayne Gordon Brown, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this Transfer in my presence.

Certified correct for the purposes of the Real Property Act 1900 by the Transferor

Signature of Witness:

2. Lockett

W.G. Brown

Name of Witness: KERRY LOCKET

Address of Witness:

12 LUMEAN AVE

ELANDRA HEIGHTS

I certify that Gary Neil Brown, with whom I am personally, acquainted or as to whose identity I am otherwise satisfied, signed this Transfer in my presence.

Signature of Witness:

Name of Witness: Slown Capes

Address of Witness:

4/2 Buncon Corner Man Concer Certified correct for the purposes of the Real Property Act 1900 by the Transferor

G. Brown

I certify that Suzanne Ruby Brown, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this Transfer in my presence.

Signature of Witness:

Name of Witness: Moton (KIN) ...

Address of Witness:

9/2 Buncon Lorus

Certified correct for the purposes of the Real Property Act 1900 by the Transferor

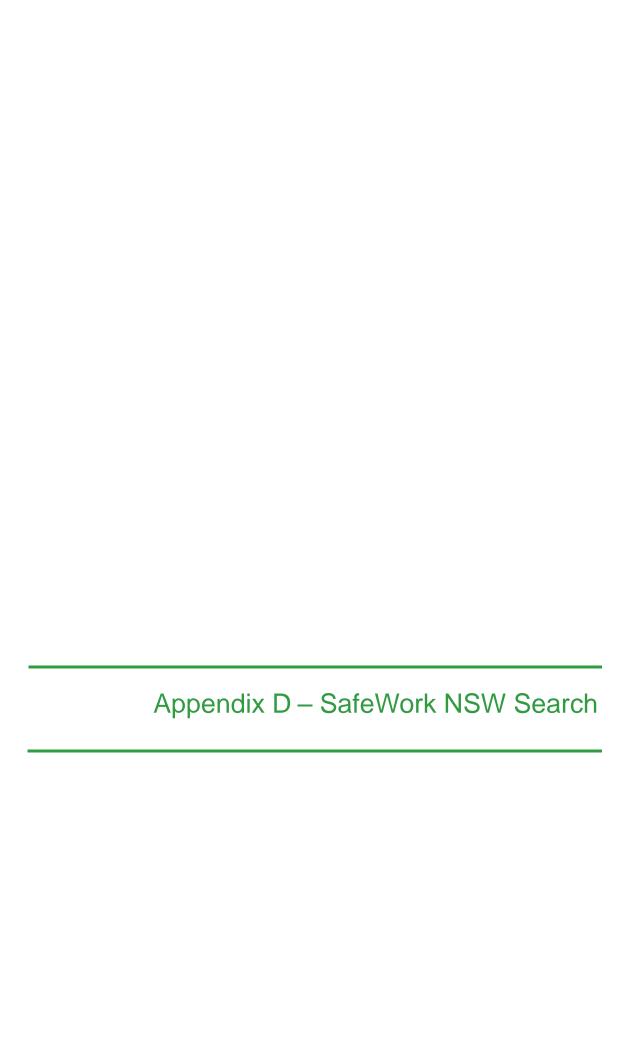
S.R. Brown

I certify that Jane Lee, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this Transfer in my presence.

Certified correct for the purposes of the Real Property Act 1900 by the Transferor

Signature of Witness:

K. Lockett


J.Lee

Name of Witness: Kenny Lockers

Address of Witness:

12 LUMEAN AVENUE

ELANDRA HEIGHTS

Locked Bag 2906, Lisarow NSW 2252
Customer Experience 13 10 50
ABN 81 913 830 179 | www.safework.nsw.gov.au

Our Ref: D20/136518

19 June 2020

Ms Emily Scanlon
El Australia
Suite 6.01
55 Miller St
PYRMONT NSW 2009

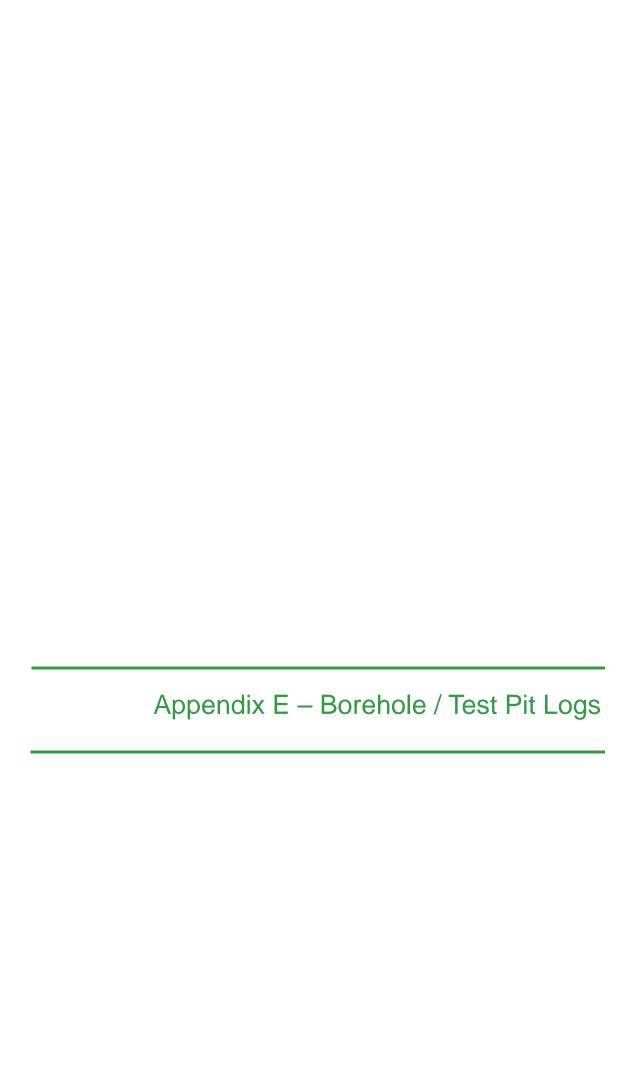
Dear Ms Scanlon

RE SITE: 15 Jubilee Ave, Warriewood NSW

I refer to your site search request received by SafeWork NSW on 17 June 2020 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the above-mentioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email licensing@safework.nsw.gov.auw


Yours sincerely

Customer Service Officer

9.1mm

Customer Experience - Operations

SafeWork NSW

BOREHOLE: BH1

Date Completed 11/6/20

Sheet Date Started 1 OF 1

11/6/20

Project Detailed Site Investigation

Location 15 Jubilee Avenue, Warriewood NSW

 Position
 Refer to Figure 2
 Surface RL
 21.70 m

 Job No.
 E24716.E02
 Contractor
 Hagstrom

 Client
 15 Jubilee Pty Ltd
 Drill Rig
 HP Scout

 Inclination
 -90°

Rig HP Scout Logged BY Date: 29/6/20 ation -90° Checked BL/BA Date: 29/6/20

								Inclination -90°			Checked BL/BA Date: 29/6/	_
	Dril	ling		Sampling	_			Field Material Des				_
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
		0 —	0.15	BH1_0.1-0.2 ES		XX	-	TOPSOIL/FILL: Silty SAND; fine to medium grained, brown, with rootlets, no odour.	М	-	TOPSOIL/FILL	I
		-	21.55	ВП 1_0.1-0.2 ЕЗ		\otimes	-	\mith rootlets, no odour. FILL: Clayey SAND; fine to medium grained, pale	-/ м	-	FILL	
		_	0.50 21.20				CI	brown-brown, no odour.	\bot		ALLUVIAL SOIL	+
				BH1_0.7-0.9 ES] .	Sandy CLAY; medium plasticity, red-brown to orange-brown to pale grey, trace fine to medium and sub-rounded to sub-angular ironstone gravels, no odour.			ALLOVIAL SOIL	
L		1 —		_		-	}	sub-angular ironstone gravels, no odour.				١.
		_							M (=PL	F		
		-					1					
-	빌	-	1.77				1					
AD/	GWNE	-	19.93			=	-	CLAY PELLET SANDSTONE; fine to medium grained,			WEATHERED BEDROCK	Ť
		2 —						CLAY PELLET SANDSTONE; fine to medium grained, red-brown to pale grey, with clay and claystone bands, very low to low strength, distinctly weathered, no odour.				
		-										
						::::						
M-H		_							-	-		
		3 —										
		-				1::::						
			3.50			::::						
		-						Borehole Terminated at 3.50 mBGL; T/C Bit Refusal.				
		-						Backfilled with Drilling Spoil.				
		4										
		_										
		-										
		-										
		5 —										
		-										
		-										
		6 —										
		-										
		-										
		-										
		_										
		7 —										
		-										
		=										
		8										
		-										
		-										
		_										
		9 —										
		<i>9</i> —										
		-										
		_										
		-										
		10 —								1		\perp

BOREHOLE: BH2

Date Completed 11/6/20

Sheet Date Started 1 OF 1

11/6/20

Project Detailed Site Investigation

Location 15 Jubilee Avenue, Warriewood NSW

Position Surface RL 20.70 m Refer to Figure 2 Job No. E24716.E02 Contractor Hagstrom Client 15 Jubilee Pty Ltd Drill Rig **HP Scout** Inclination

Logged BY Date: 29/6/20 Checked BL/BA Date: 29/6/20 -90°

_									Inclination -90°			Checked BL/BA Date: 29/6/2
			lling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0-	0.15 20.55	BH2_0.1-0.2 ES			-	TOPSOIL/FILL: Silty SAND; fine to medium grained, brown, with rootlets, no odour.	М	-	TOPSOIL/FILL FILL
			=	0.80				-	FILL: Silty SAND; fine to medium grained, pale brown-brown, trace clay, no odour.	М	-	FILL
	L		1 — -	19.90	BH2_1.0-1.2 ES			CH	Sandy CLAY; high plasticity, red-brown to orange-brown to pale grey, trace fine to medium and sub-rounded to sub-angular ironstone gravels, no odour.		F	ALLUVIAL SOIL
			<u> </u>							M (=PL		
AD/T		GWNE	2								St	
			-	2.50 18.20				-	CLAY PELLET SANDSTONE; fine to medium grained,			WEATHERED BEDROCK
			3—						red-brown to pale grey, with clay and claystone bands, very low to low strength, distinctly weathered, no odour.			
	М-Н		- - -							-	-	
				4.00								
			- -						Borehole Terminated at 4.00 mBGL; T/C Bit Refusal Backfilled with Drilling Spoil.			
			5—									
			- -									
			6— -									
			- -									
			7— -									
			- - -									
			8									
			-									
			9— - -									
			- - 10 <i>-</i>									
					This boreho	le lo	g shou	ld be	e read in conjunction with EI Australia's accompanying sta	ndard	d note	es.

BOREHOLE: BH3M

Sheet

Project Detailed Site Investigation

Location 15 Jubilee Avenue, Warriewood NSW

 Position
 Refer to Figure 2

 Job No.
 E24716.E02

 Client
 15 Jubilee Pty Ltd

Contractor Hagstrom
Drill Rig HP Scout

Date Started 11/6/20
Date Completed 11/6/20
Logged BY Date: 29/6/20

1 OF 1

					Client	10 0	ubilee	. ty L	td Drill Rig HP Scout Inclination -90°				ged BY cked BL/B <i>l</i>	Date: 29/6 A Date: 29/6	
		Dril	ling		Sampling				Field Material Desc						
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZI ID Static Wa BH3M	OMETER D ter Level	DETAILS	
			0 — - - - 1 —	0.10	BH3M_0.3-0.4 ES			-	TOPSOIL/FILL: Silty SAND; fine to medium grained, with rootlets, no odour. FILL: Silty SAND; fine to medium grained, pale grey, no odour.	M	- L			- Backfill	
	L		- - -	2.00				C	Sandy CLAY; fine to medium grained, pale grey, trace red mottled brown, no odour.	M (<pl< td=""><td>L) St</td><td></td><td></td><td></td><td></td></pl<>	L) St				
		11/6/20	2 — - - -	2.80			x	CI	Silty CLAY; medium plasticity, red-brown to orange-brown to pale grey, trace fine to medium and sub-rounded to sub-angular ironstone and sandstone gravels, no odour.	M (<pl< td=""><td>) St</td><td></td><td>▼</td><td>- Bentonite - uPVC 50 mm casing</td><td></td></pl<>) St		▼	- Bentonite - uPVC 50 mm casing	
AD/I		\triangle	3— - - - -					-	CLAY PELLET SANDSTONE; fine to medium grained, red-brown to pale grey, with clay and claystone bands, very low strength, distinctly weathered, no odour.					- uPVC 50 mm	
	М		5 —							-	-			Screen Sand	
	Н		6	6.00			::::		Borehole Terminated at 6.00 mBGL;					- Collapse	
									T/C Bit Refusal on Drilling Rig Resistance.						
			- 9 — - - - 10 —												

BOREHOLE: BH4M

1 OF 1

11/6/20

Sheet

Date Started

Project Detailed Site Investigation

Location 15 Jubilee Avenue, Warriewood NSW

 Position
 Refer to Figure 2
 Surface RL
 20.20 m

 Job No.
 E24716.E02
 Contractor
 Hagstrom

 Client
 15 Jubilee Pty Ltd
 Drill Rig
 HP Scout

 Inclination
 -90°

actor Hagstrom Date Completed 11/6/20
ig HP Scout Logged BY Date: 29/6/20
ition -90° Checked BL/BA Date: 29/6/20

								Inclination -90°				3L/BA Date: 29/6/
		lling		Sampling	П		_	Field Material Desc			PIEZOMET	ER DETAILS
METHOD PENETRATION	RESISTANCE WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMET ID Static Water Level BH4M P4 44	
		0	0.10 20.10	BH4M_0.3-0.4 ES			-	TOPSOIL/FILL: Silty ASAND; fine to medium grained, brown, with rootlets, no odour. FILL: Silty SAND; fine to medium grained, pale brown-brown, no odour.	M	-		
		1— - -	1.10 19.10	BH4M_1.3-1.5 ES			CI	Sandy CLAY; medium plasticity, red-brown to orange-brown to pale grey, trace fine to medium and sub-rounded to sub-angular ironstone gravels, no odour.				⋖ — Backfill
L		2— - -							M (=PL	St		Bentonite uPVC 50 mm Casing
Š	11/6/20	3— - -								н		
		4 — - - -	4.00 16.20				-	CLAY PELLET SANDSTONE; fine to medium grained, red-brown, pale grey, with clay and claystone bands, very low strength, distinctly weathered, no odour.				uPVC 50 mm Screen Sand
М	1	5— 5—							-	-		
		-	6.00									Collapse
		7— -						Borehole Terminated at 6.00 mBGL; Target Depth Reached.				
		8 8 										
		9										
		- - 10						e read in conjunction with EI Australia's accompanying sta				

BOREHOLE: BH5M

Date Started

Date Completed 11/6/20

1 OF 1

11/6/20

Sheet

Project Detailed Site Investigation

Location 15 Jubilee Avenue, Warriewood NSW

 Position
 Refer to Figure 2
 Surface RL
 17.30 m

 Job No.
 E24716.E02
 Contractor
 Hagstrom

 Client
 15 Jubilee Pty Ltd
 Drill Rig
 HP Scout

 Inclination
 -90°

Rig HP Scout Logged BY Date: 29/6/20 ation -90° Checked BL/BA Date: 29/6/20

				Inclination -90°		Checked BL/BA Date: 29/6/20
Drilli	ing	Sampling		Field Material Des		
METHOD PENETRATION RESISTANCE WATER	(metres) RL RL	SAMPLE OR FIELD TEST	GRAPHIC LOG USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	PIEZOMETER DETAILS D Static Water Level BH5M
	0 17.30 - 0.40 16.90	BH5M_0.1-0.2 ES BH5M_0.6-0.8 ES		TOPSOIL/FILL: Silty SAND; fine to medium grained, brown, with rootlets and roots, no odour. From 0.4 m, pale brown, no odour.	 M -	
	1	BH5M_1.2-1.4 ES	CL CI	Sandy CLAY; low to medium plasticity, grey, fine to medium grained sand, no odour.		Backfill -
L	2	BH5M_2.0-2.2 ES		From 2.0 m, pale grey, no odour.	M (=PL)	■ Bentonite
AD/T	3				St	uPVC 50 mm Casing
	4				M (>PL) - W	uPVC 50 mm Screen
M	5 <u>5.00</u> 12.30	_		From 5.0-5.5 m, red-brown to pale grey, no odour.	M (=PL)	
L-M	6 — 6.08			Resolved Tempirate de 1000 m POL	(>PL)	
	7			Borehole Terminated at 6.08 mBGL; Target Depth Reached.		-
	8					-
	9					
	10	This borehole	log should b	e read in conjunction with EI Australia's accompanying st	tandard note	es.

BOREHOLE: BH6

Date Completed 12/6/20

Sheet Date Started 1 OF 1

12/6/20

Project Detailed Site Investigation

Location 15 Jubilee Avenue, Warriewood NSW Position Refer to Figure 2

Job No.E24716.E02ContractorHagstromClient15 Jubilee Pty LtdDrill RigHP ScoutInclination-90°

Rig HP Scout Logged BY Date: 29/6/20 nation -90° Checked BL/BA Date: 29/6/20

									Inclination -90°			Checked BL/BA Date: 29/6/	/20
		Dril	ling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0 —		BH6_0.1-0.2 ES			-	TOPSOIL/FILL: Silty SAND; fine to medium grained, brown, with rootlets, no odour.			TOPSOIL/FILL	T -
			=	1.00	BH6_0.6-0.8 ES					М	-		-
			1— - -	7.00	BH6_1.2-1.4 ES			-	FILL: Silty SAND; fine to medium grained, pale brown-brown, no odour.			FILL	
	L		- 2—							М	VL - L		-
		V 11/6/20	-	2.20	BH6_2.4-2.6 ES			CL- CI	Sandy CLAY; low to medium plasticity, pale grey, fine to medium grained sand, no odour.	M (<pl< td=""><td>)</td><td>ALLUVIAL SOIL</td><td>+</td></pl<>)	ALLUVIAL SOIL	+
			3—							М			=
AD/T			-							(<pl - W</pl 	F		
			4	4.00					From 4.0 m, with red-brown ironstone bands, no odour.		_		-
			- -										
	м		5							М	VSt		-
			- - 6—							(<pl - M (>PL</pl)		
			-								н		
	Н		7—	7.10									-
			-						Borehole Terminated at 7.10 mBGL; T/C Bit Refusal on Bedrock. Backfilled with Drilling Spoil.				
			8 —										-
			-										
			9—										-
			-										
			10 —				<u> </u>	<u> </u>	e read in conjunction with EI Australia's accompanying sta	<u> </u>			上

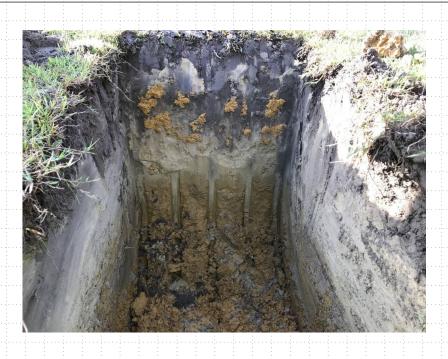
15 Jubilee Avenue, Warriewood NSW Location

Refer to Figure 2 Position E24716.E02

Job No. 15 Jubilee Pty Ltd Client

Contractor Ken Coles Excavation Pty Ltd

Machine Excavator Date


Sheet

1 OF 1 11/6/20

ES Logged Checked ВА

TEST PIT: TP1

TION								
METHOD EXCAVATION RESISTANCE WATER	(metres) NADD DEPTH RL	SAMPLE OR FIELD TEST	GRAPHIC	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	0.0	TP1_0.1-0.2 ES		-	TOPSOIL: Silty SAND; fine to medium grained, poorly graded, brown, with trace roots, root fibres, no odour.	М	-	TOPSOIL
	0.50	TP1_0.4-0.5 ES		-	FILL: SAND; fine to coarse grained, poorly graded, pale brown, no odour.	М	-	FILL
	0.5	TP1_0.7-0.8 ES		SC	Clayey SAND; fine to coarse grained, poorly graded, orange-brown, trace ironstone gravels, no odour.			AEOLIAN
E - GWNE	1.0					М	-	
	1.40	TP1 1.6-1.7 ES		CL- CI	Sandy CLAY; low to medium plasticity, red mottled pale grey, angular to sub-angular sand, no odour.			ALLUVIAL
	2.0 —	IF 1_1.0*1.7 ES		<u> </u>		М	-	
	2.30		<u></u>	<u>-</u>	Test Pit Terminated at 2.30 mBGL; Refusal on Bedrock (Clay Pellet Sandstone).			
	-3.0				Sketch & Other Observations			

15 Jubilee Avenue, Warriewood NSW

Refer to Figure 2

E24716.E02 Job No.

Location

Position

Logged

Sheet

Date

TEST PIT: TP2

11/6/20 ES

1 OF 1

JUD INU.		Contractor	Nen coles Excavation i ty Eta	33	
Client	15 Jubilee Pty Ltd	Machine	Excavator	Checked	BA

		Exca	vation		Sampling				Field Material Desc	riptic	n	
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0	0.20	TP2_0.1-0.2 ES			-	TOPSOIL: Silty SAND; fine to medium grained, poorly graded, brown, with trace roots, root fibres, no odour.	М	-	TOPSOIL
				0.50	TP2_0.4-0.5 ES			-	FILL: SAND; fine to coarse grained, poorly graded, pale brown, no odour.	М	-	FILL
			0.5	0.50	TP2_0.7-0.8 ES			SC	Clayey SAND; fine to coarse grained, poorly graded, orange-brown, trace ironstone gravels, no odour.			AEOLIAN
В	-	GWNE	1.0		ASS-TP2_1.0					М	-	
				1.30				CL- CI	Sandy CLAY; low to medium plasticity, red mottled pale grey, angular to sub-angular sand, no odour.			ALLUVIAL
			1.5 —		TP2_1.5-1.6 ES					М	-	
			—2.0 —	2.00	ASS-TP2 2.0				Tuck Pit Turni in the Let 0.00 or P.O.			
				-	7.65 11 2_2.5				Test Pit Terminated at 2.00 mBGL; Refusal on Bedrock.			
			2.5									
				-								
			└ 3.0 ─						Sketch & Other Observations	<u> </u>		

15 Jubilee Avenue, Warriewood NSW Location

Refer to Figure 2 Position E24716.E02 Job No.

15 Jubilee Pty Ltd Client

Sheet

Ken Coles Excavation Pty Ltd

Excavator

1 OF 1

11/6/20 Date

TEST PIT: TP3

Logged ES Checked ВА

EXCAVATION RESISTANCE							OL			5	
EXCAVAT RESISTAN	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
		0.0	0.20	TP3_0.1-0.2 ES		\bigotimes	-	TOPSOIL: Silty SAND; fine to medium grained, poorly graded, brown, with trace roots, root fibres.	М	-	TOPSOIL
		0.5	0.60	TP3_0.4-0.5 ES			-	FILL: SAND; fine to coarse grained, poorly graded, pale brown.	М	-	FILL
ш - <u>;</u>	GWNE	- - -	1.00	TP3_0.8-0.9 ES			SC	Clayey SAND; fine to coarse grained, poorly graded, orange-brown, trace ironstone gravels.	М	-	AEOLIAN
		1.0 — - -	7.00				CL- CI	Sandy CLAY; low to medium plasticity, red mottled pale grey, angular to sub-angular sand.	М	-	ALLUVIAL
		—1.5 — - -	1.50			<u> </u>		Test Pit Terminated at 1.50 mBGL; Target Depth Reached.			
		2.0									
		2.5									
		- - -3.0									
								Sketch & Other Observations		-	

Contractor

Machine

15 Jubilee Avenue, Warriewood NSW

Refer to Figure 2 Position

E24716.E02 Job No. 15 Jubilee Pty Ltd Client

Location

Contractor Ken Coles Excavation Pty Ltd

Machine Excavator

11/6/20 Date ES Logged

Sheet

Checked ВА

TEST PIT: TP4

1 OF 1

		E	Exca	vation		Sampling				Field Material Desci			
COLTUN	TYCON WELDER	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				0.0 —	0.20	TP4_0.1-0.2 ES			-	TOPSOIL: Silty SAND; fine to medium grained, poorly graded, brown, with trace roots, root fibres, no odour.	М	-	TOPSOIL
			GWNE	- - 0.5 — -		TP4_0.4-0.5 ES			SC	Clayey SAND; fine to medium grained, poorly graded, pale grey, no odour.			AEOLIAN/ALLUVIAL
			19	1.0 — - - -	1.30					From 1.3 m, grey mottled red, no odour.	М	-	-
F				 1.5 -	1.50			: \		Test Pit Terminated at 1.50 mBGL; Target Depth Reached.			
				2.0 — - - -									
4-07-05				2.5 —									
2014-07-05 Prj: EIA 1.03 2014-07-05				- -3.0									
4-07-05 F										Sketch & Other Observations			
and In Situ Tool - DGD Lib: EIA 1.03 20									*				

15 Jubilee Avenue, Warriewood NSW

Refer to Figure 2

Position E24716.E02 Job No. 15 Jubilee Pty Ltd

Location

Client

Contractor Ken Coles Excavation Pty Ltd

Machine Excavator

11/6/20 Date

Sheet

TEST PIT: TP5

ES Logged Checked ВА

1 OF 1

	Excavation Sampling							Field Material Description								
METHOD	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
			0.0	0.20	TP5_0.1-0.2 ES			-	TOPSOIL: Silty SAND; fine to medium grained, poorly graded, brown, with trace roots, root fibres, no odour.	М	-	TOPSOIL				
Ш		GWNE	0.5		TP5_0.4-0.5 ES			SC	Clayey SAND; fine to medium grained, poorly graded, pale grey, no odour.			AEOLIAN/ALLUVIAL				
_		GW	1.0 — - - -							М	-					
			- 1.5	1.50		-			Test Pit Terminated at 1.50 mBGL;							
			2.0 —						Target Depth Reached.							
			2.5													
_			_3.0—						Sketch & Other Observations							
						<u> </u>			ORGENI & OUIEI OUSEIVAUOTIS							

Project Detailed Site Investigation

15 Jubilee Avenue, Warriewood NSW

Location 15 Jubilee Avenue Position Refer to Figure 2

Job No. E24716.E02 Client 15 Jubilee Pty Ltd Sheet

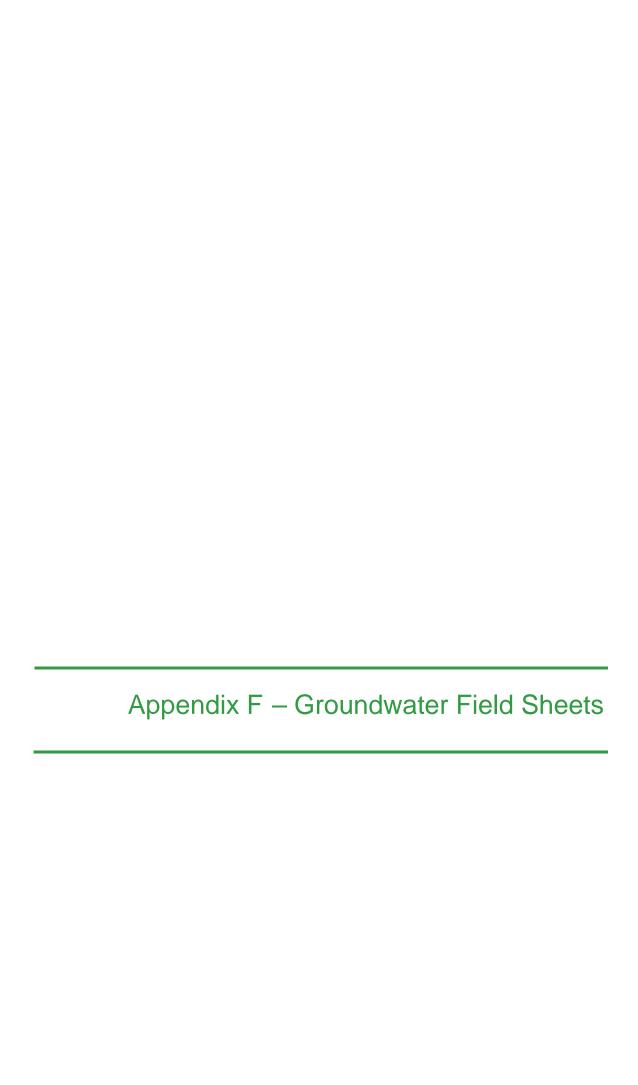
Ken Coles Excavation Pty Ltd

Excavator

1 OF 1 11/6/20

Date 1

Logged ES Checked BA


TEST PIT: TP6

Г	Excavation Sampling							Field Material Description								
МЕТНОВ	EXCAVATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
			0.0 —	0.80	TP6_0.2-0.3 ES TP6_0.6-0.7 ES			-	TOPSOIL: Silty SAND; fine to medium grained, poorly graded, brown, with trace roots, root fibres, no odour.	М	-	TOPSOIL	-			
Ш	-	GWNE	1.0 —	0.80	TP6_0.9-1.0 ES ASS-TP6_1.0			SC	Clayey SAND; fine to medium grained, poorly graded, pale grey, with mild sulfur odour.			AEOLIAN/ALLUVIAL	-			
			1.5 —		ASS-TP6_1.5 TP6_1.5-1.6 ES					М	-					
			2.0 — - - - -2.5—	2.50	ASS-TP6_2.0								-			
05 Prj: EIA 1.03 2014-07-03			-3.0		ASS-TP6_2.5				Test Pit Terminated on Weathered Bedrock at 2.50 mBGL; Target Depth Reached. Sketch & Other Observations				-			

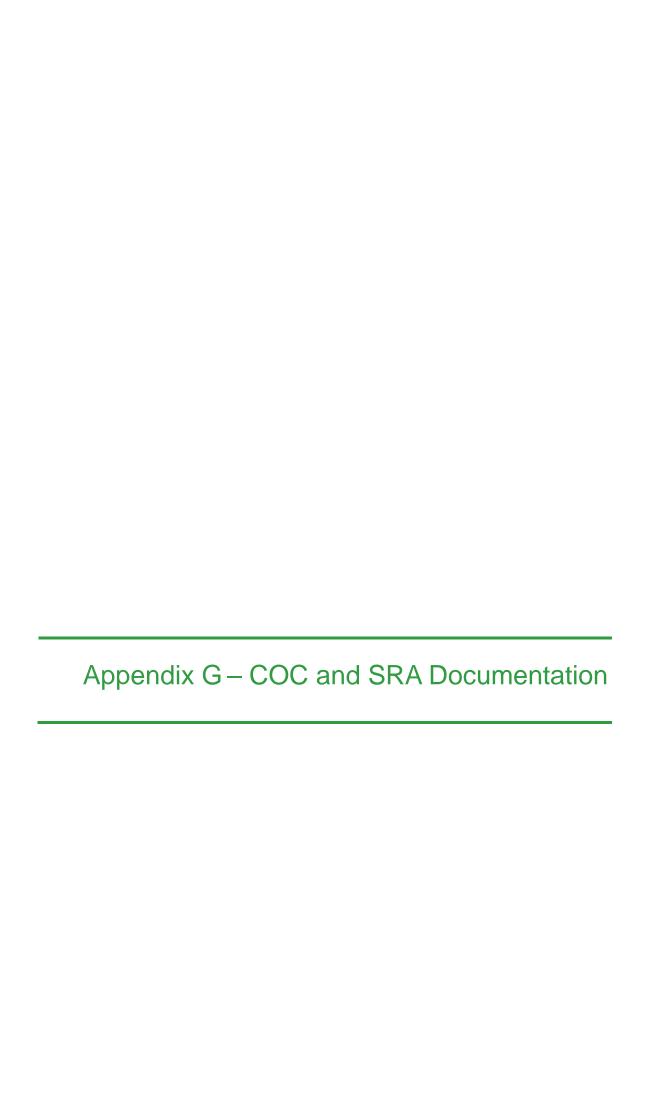
Contractor

Machine

WATER	SAMPLING	FIFL	D SHEFT

Site Address:						Claustialia
	15 Jubilee	Ave, Wa	rriewood		Job Numb	per: E24716
Client:					Date:	18-Jun-20
Field Staff:	Emily		,		Sampling	Location ID BH3M
Well Location:	BH3M				Round No	o: 1
MEDIUM	1Groundwat	ter 🗆 S	Surface Wa	ater .	□Stormw	rater Other:
SAMPLING POINT INFO						
Well Installation Date:	11/06/202	0			Stick up /	down (m): (+ above ground - below ground)
Initial Well Depth (mBTOC):	5.83		(50	(3 mBGL)		terval (mBTOC): 2.83-5.83
Previous Sampling Date:	X		(0.			SWL (mBTOC): x
PID READINGS						(
PID Headspace (ppm): •	X				PID Baok	ground (ppm): ×
PID Breathing Space (ppm):	X				I ID BOOK	ground (ppm).
PRE PURGE						
Total Well Depth (mBTOC):	5,5		(5h.	MBGL)	Well Hea	d Condition: 000d
SWL (mBTOC): ()	0,0			MBGL)		olumn (m): 4.5
PHASE SEPARATED HYDR	OCAPRON	S (DSH)	(1.1	mo(L)	Water oo	7.5
Depth to PSH (mBTOC):	X	13 (1 311)			DSH Vieu	ally Confirmed (Bailer): X
PSH Thickness (mm):	<u>X</u>				F SIT VISU	ally Colliffied (Baller).
PURGE AND SAMPLE				1	1	
	. Con III		7D : / I//		10 1 "	TO:
Sampling Method	Bladde	r l	⊐Peristalti	C L	Submersil	Myselland Mysell
Depth of Pump Inlet (mBTO)					Fill Timer	
Pump Pressure Regulator (p					Discharge	
Weather Conditions: OVEY	cast				Cycle:	CPM4
Pump on time: 8.15	-				Pump off	time: 9:15
WATER QUALITY PARAME	TERS				- 3	
Probe Make and Model:	,					st Date and Time:
			Deden	DO		
Time Volume SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	(mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)
8:30 0.5 1.0		(μS/cm)	,	(mg/L) 5.14	(units)	- pale pinklareu
8:30 0.5 1.0	(°C)	(µS/cm)	(mV)	(mg/L) 5.14	(units)	
(L) (mbtoc) (%:30	(°C)	(μS/cm)	(mV)	(mg/L)	(units)	- pale pink arey
(L) (mbtoc)	(°C) 20.98 20.54	(µS/cm) 1557 1554	(mV) 118.5	(mg/L) 5.14 3.49	(units)	- pale pink arey
(L) (mbtoc) (8:30 0.5 1.0 0.5 1.0 0.5	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidita - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidita - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidite - no odovr
(L) (mbtoc)	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidita - no odovr
(L) (mbtoc) (8:30 0.5 1.0	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidita - no odovr
Stabilisation range:	20.98 20.54 20.53	(µS/cm) 1557 1554 448	(mV) 118.5 100.0 94.0	(mg/L) 5.14 3.49 3.48	(units)	- pale pinklarey - med turbidita - no odovr
Stabilisation range: 3 consecutive readings	(°C) 20.98 20.54 20.53 20.47	(µs/cm) 1557 954 448 439	(mV) 118.5 100.0 94.0 92.6	(mg/L) 5.14 3.49 3.48 2.97	(units) (a 68 5.88 5.73	- pale pinklarey - med turbidita - no odovr
Stabilisation range: 3 consecutive readings	(°C) 20.98 20.54 20.53 20.47	(µ\$/cm) 1557 1557 1448 1439	(mV) 11 8.5 100.0 94.0 92.6 ±20mV	(mg/L) 5.14 3.49 3.48 2.97	(units) (a 68 5.88 5.73	- pale pinklarey - med turbidita - no odovr
Stabilisation range: 3 consecutive readings	(°C) 20.98 20.54 20.53 20.47	(µ\$/cm) 1557 1557 1448 1439	(mV) 11 8.5 100.0 94.0 92.6 ±20mV	(mg/L) 5.14 3.49 3.48 2.97	(units) (a 68 5.88 5.73	- pale pinklarey - med turbidite - no odovr
Stabilisation range: 3 consecutive readings	(°C) 20.98 20.54 20.53 20.47	(µ\$/cm) 1557 1557 1448 1439	(mV) 11 8.5 100.0 94.0 92.6 ±20mV	(mg/L) 5.14 3.49 3.48 2.97	(units) (a 68 5.88 5.73	- pale pinklarey - med turbidita - no odovr
Stabilisation range: 3 consecutive readings	(°C) 20.98 20.54 20.53 20.47	(µ\$/cm) 1557 1557 1448 1439	(mV) 11 8.5 100.0 94.0 92.6 ±20mV	(mg/L) 5.14 3.49 3.48 2.97	(units) (a 68 5.88 5.73	- pale pinklarey - med turbidite - no odovr

WATER SAMPLING FIELD SHEET



Site Addre	ess:		15 Jubilee	Ave, War	riewood	10	Job Numb	per: E24716
Client:			80	- Y			Date:	18-Jun-20
Field Staf	f:	,	Emily				Sampling	Location ID BHHM
Well Loca	ation:	19	BH4M	١		12 32	Round No	: 1
MEDIUM			Groundwat	er 🗆 S	urface Wa	iter	□Stormw	ater □Other:
SAMPLIN	IG POINT	INFO						
Well Insta	allation Dat	e:	11/06/202	0			Stick up /	down (m): - O .\ (+ above ground - below ground)
Initial We	II Depth (m	BTOC):	5.76		(5.8	(mBGL)	Screen In	terval (mBTOC): 2.76 - 5.76
Previous	Sampling [Date:	Х				Previous 3	SWL (mBTOC): x
PID REAL	DINGS							
PID Head	Ispace (ppi	m): X					PID Back	ground (ppm): 🗶
PID Breat	thing Spac	e (ppm):)	X					
PRE PUR	RGE							
Total Wel	II Depth (m	BTOC):	5.8		(5.9m)	BGL)	Well Head	d Condition: QOOD
SWL (mB	BTOC):	1.	7		(18 m	BGL)	Water Co	
PHASE S	EPARATE	D HYDRO	CARBON	S (PSH)				
	PSH (mBT		×			÷.	PSH Visu	ally Confirmed (Bailer):
	kness (mn	,	X	12				
	AND SAME	-						
Sampling	g Method		□Bladde	r [JPeristaltic	c 🗆	Submersik	ole Other:
	Pump Inlet	(mBTOC					Fill Timer:	
	essure Reg			()			Discharge	_
	Conditions		sunny				Cycle:	СРМЧ
Pump on		10:31					Pump off	
	QUALITY I						i dinp on	
	ake and Mo		LIKO				Bump Tes	st Date and Time:
1 1020 1110	Volume	SWL	Temp	EC	Redox	DO	рН	
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)
19: 30	0.5	1.7	19.18	488	99.2	4.51	5.65	- pale grey
10:33	1.0	1.7	19.61	483	178.9	3.48	5.32	- low-med turbidity
10:36			19.53	491	1908	2.95	5.28	
10.00	1.5	1.7				1000	11.40	-no odour
10.54	2.0	1.7	19.51	486	187.2	2.83	5.29	-no odour -no sheen
10:39	3.7		19.51	486	187.2	7.00		
10.59	3.7		19.51	486	187.2	2.03	5.29	
10.59	3.7		19.51	486	187.2	2.33	5.29	
10.39	3.7		19.51	486	187.2	2.33	5.29	
10.39	3.7		19.51	486	187.2	2.33	5.29	
10.39	3.7		19.51	486	187.1	2.33	5.29	
10.34	3.7		19.51	486	157.2	2.33	5.29	
10.34	3.7		19.51	486	157.2	2.53	5.29	
10.34	3.7		19.51	486	157.2	2.53	5.29	
10.34	1.7		19.51	486	157.2	2.53	5.29	
10.34	1.7			486	157.2	2.53	5.29	
10.34	1.7		19.51	486	157.2	7.53	5.29	
	1.7	1.7	N.				5.29	
Stab	2.0	I.7		±3%	±20mV	±10%	5.29 ±0.2	-3-3-7
Stab 3 cons	2.0	Inge:	±0.2°C	±3%			5.29	-3-3-7
Stab 3 cons	2.0	Inge:	±0.2°C	±3%			5.29	-3-3-7
Stab 3 cons	2.0	Inge:	±0.2°C	±3%			5.29	
Stab 3 cons	2.0	Inge:	±0.2°C	±3%			5.29	-3-3-7
Stab 3 cons	Dillisation rasecutive re	Inge:	±0.2°C	±3%			5.29	

WATER SAMPLING FIELD SHEET

									elaustra	
Site Addre	ess:		15 Jubilee	Ave, Wa	rriewood		Job Numb	er:	E24716	
Client:							Date:		18-Jun-20	
Field Staff	f:		Emily				Sampling	Location II	BHSM	
Well Loca	ition: BH	5M					Round No):	1	
MEDIUM			Groundwa	ter 🗆 S	Surface Wa	ater	□Stormw	ater	□Other:	
SAMPLIN	IG POINT	INFO								
Well Insta	allation Dat	e:	11/06/202	.0			Stick up /	down (m):	-O.\ (+ above ground -	- below ground)
Initial Wel	II Depth (m	BTOC):	5.98			(mBGL)	Screen In	terval (mB	roc): 2-98-5.0	18
	Sampling [X				Previous	SWL (mBT		
PID REAL										
PID Head	Ispace-(pp	m): 🗴			i.		PID Back	ground (pp	m): X	
	thing Spac									
PRE PUR		1								
Total Wel	II Depth (m	BTOC):	0.0		(6.1 mP	(12	Well Head	d Condition	: 000d	
SWL (mB		/,			Carini	JUL J	Water Co	lumn (m):	4.5	
	EPARATE			IS (PSH)						
	PSH (mBT			,			PSH Visu	ally Confirm	ned (Bailer): 🗶	
	kness (mn					7				
	AND SAME									
Sampling			⊠Bladde	r T	⊒Peristalti	с П	Submersil	ole	□Other:	
	Pump Inlet	(mBTOC					Fill Timer			
The state of the s	essure Reg				6		Discharge			
	Conditions		OVERCO	ct			Cycle:		Pm4	
Pump on		9:40	040,00	120			Pump off		: 15	
-	QUALITY I		FRS				r amp on	unio. 10	, 10	
	ake and Mo		LIKO				Bump Te	st Date and	I Time:	
1 TODO IVIO			_		Daday	DO	_	ot Bate arre		
	Volumo	SWI	lamn	I EC			1 nH	2000		
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (μS/cm)	Redox (mV)		pH (units)	Commen	ts (colour, turbidity, odour, s	heen etc.)
	(L)	SWL (mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)			sheen etc.)
9:44	(L) 0.5	(mbtoc)	(°C)	(μS/cm) 520	(mV)	(mg/L)	(units) 5.09	- pale	pink areu	sheen etc.)
9:44	(L) 0.5 1.0	(mbtoc) 1.5	(°C) 19.89 19.74	(µS/cm) 520 527	(mV) 156.8 148.3	(mg/L) 5.04 3.97	(units) 5.09 5.23	- pale - med	pinkl greu	sheen etc.)
9:44 9:47 9:50	(L) 0.5 1.0	(mbtoc) 1.5 1.5	(°C) 19.89 19.74 19.23	(μS/cm) 520	(mV) 156.8 148.3 139.8	(mg/L) 5 04 3.97 1.79	(units) 5.09 5.23 5.18	- pale - med - no o	pinkl greu	heen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50	(L) 0.5 1.0	(mbtoc) 1.5 1.5	(°C) 19.89 19.74 19.23	(µS/cm) 520 527 485	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5 04 3.97 1.79	(units) 5.09 5.23 5.18	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50 9:53	(L) 0.5 1.0 1.5 2.0	(mbtoc) 1.5 1.5 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53 9:56	(L) 0.5 1.0 1.5 2.0 2.5	(mbtoc) 1.5 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53 9:56	(L) 0.5 1.0 1.5 2.0 7.6	(mbtoc) 1.5 1.5 1.5 1.5 1.5	(°C) 19.89 19.74 19.23 (9.21	(µS/cm) 520 527 485 477	(mV) 156.8 148.3 139.8 136.2	(mg/L) 5.04 3.97 1.79 1.35	(units) 5.09 5.13 5.18 5.17	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53 9:56 8:56	(L) 0.5 1.0 1.5 2.0 1.6 Sillisation rasecutive re	(mbtoc) 1.5 1.5 1.5 1.5 1.5 ange:	(°C) 19.89 19.74 19.23 19.21 19.30	(µ\$/cm) 520 527 485 477 475	(mV) 156.8 148.3 139.8 136.2 138.4	(mg/L) 5 04 3.97 1.79 1.35 1.39	(units) 5.09 5.13 5.18 5.17 5.18	- pale - med - no o	pinkl grey turbidity dour	heen etc.)
9:44 9:47 9:50 9:53 9:56 8:56	(L) 0.5 1.0 1.5 2.0 7.6	(mbtoc) 1.5 1.5 1.5 1.5 1.5 ange:	(°C) 19.89 19.74 19.23 19.21 19.30	(µ\$/cm) 520 527 485 477 475	(mV) 156.8 148.3 139.8 136.2 138.4	(mg/L) 5 04 3.97 1.79 1.35 1.39	(units) 5.09 5.13 5.18 5.17 5.18	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53 9:56 8:56	(L) 0.5 1.0 1.5 2.0 1.6 Sillisation rasecutive re	(mbtoc) 1.5 1.5 1.5 1.5 1.5 ange:	(°C) 19.89 19.74 19.23 19.21 19.30	(µ\$/cm) 520 527 485 477 475	(mV) 156.8 148.3 139.8 136.2 138.4	(mg/L) 5 04 3.97 1.79 1.35 1.39	(units) 5.09 5.13 5.18 5.17 5.18	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53 9:56 8:56	(L) 0.5 1.0 1.5 2.0 1.6 Sillisation rasecutive re	(mbtoc) 1.5 1.5 1.5 1.5 1.5 ange:	(°C) 19.89 19.74 19.23 19.21 19.30	(µ\$/cm) 520 527 485 477 475	(mV) 156.8 148.3 139.8 136.2 138.4	(mg/L) 5 04 3.97 1.79 1.35 1.39	(units) 5.09 5.13 5.18 5.17 5.18	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)
9:44 9:47 9:50 9:53 9:56 8:56	(L) 0.5 1.0 1.5 2.0 7.6 Dillisation rasecutive re	(mbtoc) 1.5 1.5 1.5 1.5 1.5 ange:	(°C) 19.89 19.74 19.23 19.21 19.30	(µ\$/cm) 520 527 485 477 475	(mV) 156.8 148.3 139.8 136.2 138.4	(mg/L) 5 04 3.97 1.79 1.35 1.39	(units) 5.09 5.13 5.18 5.17 5.18	- pale - med - no o	pinkl grey turbidity dour	sheen etc.)

ource: [Untitled].pdf page: 1 SGS Raf: SE207473_CGC

	- 1										No.													SIL
Sheet o	f	7	. 1078		San	iple N	/latrix								Ana	lysis		,						Comments
Site: 15 Jubilee Ave,	Warriew	ood NSW		Project No: E24716			t, etc.)	AHs	\Hs					ion	thange)	anductivity)						The state of the s		HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	ALEXA	istralia , 33 Maddox NDRIA NSW 594 0400 F:	2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM A /TRH/BTEX/PAHs	HM A /TRH/BTEX			SC	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	to.					HMB / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory		S	ampling	WATER		ERS	A /	Α/Π	ΑA	втех	VOCs	Asbestos	oestc	/ CE	/EC	vatei	sPOCAS	S,A				ட	Cadmium Chromium
ID	GI	Туре	Date	Time	₩	SOIL	6	₹ŏ	呈	NH	ВТ	>	Asi	Asl	표	H	De	SP(PFAS				고	Lead Mercury Nickel
TP4_0.4-0.5		JEUB	1116	10		X																		Dewatering Suite
TP5_0.1-0.2	6		Accessed to the latest of the					X	1															pH & EC TDS / Turbidity NTU Hardness
TP5_0.4-0.5	19								X												Total Cyanide Metals (Al, As, Cd, Cr,			
TP6_0.2-0.3	7							X										•						Cu, Pb, Hg, Nl, Zn) TRH (F1, F2, F3, F4) BTEX
TP6_0.6-0.7			and the same of th																					PAH Total Phenol
TP6_0.9-1.0			And the second second																					LABORATORY TURNAROUND
TP6_1.5-1.6			WWW.						je Us															Standard
BH1_0.1-0.2	8		Action (Alexandrical)					X										St	ກລົ	74	73			24 Hours
BH1_0.7-0.9	9	man, go o delle media	elian eliano primere						X									•			14.			48 Hours
BH2_0.1-0.2	10	And the second second second	di Commissione de la Commissio			William Town		X																72 Hours
BH2_1.0-1.2		Gunis de Principal de Companyo	And the second second																					Other
BH3M_0.3-0.4	10	1	W			V		*																
Container Type: J= solvent washed, ac S= solvent washed, ac	id rinsed gla		ss jar			Inves	stigato	r: I atte				iples v sampli				ccorda	ance	, F	Report	with E	l Waste	e Classi	ificatio	on Table
P= natural HDPE plasi VC= glass vial, Teflon ZLB = Zip-Lock Baq	Septum							ame (El)	:				ved by	(SGS):	:			Sam	pler's	Comr	nents:			
ZLB = Zlp-Lock Bag				= 0000		Prii		ily Sc	anlor	1		Prin	" U	h	4	4	_,							i
400		5		, 55 Miller St		Sigr	nature	$\overline{}$				Sign	ature	13	1		•							
No.	- 	2		NT NSW 200 9516 0722	19	Date	12/6	5/2020)			Date	1	21	((ં	23	2/-						
elaus Contamination Remod	udll fation Geotiech	d		ustratia.com.	au			FANT						227				<i>y</i>						
			GOC Merch 2	018 FORM v.A - SGS		Plea	se e-n	nail lab	orato	ry resi	ults to	lab@	<u> Dela</u>	ustra	lia.co	m.a	u	3.0						

Sheet of	N				San	ple N	/latrix								Ana	lysis		-	-					Comments			
Site: 15 Jubilee Ave,	Warriew	ood NSW	,	Project No: E24716			t, etc.)	AHs tos	.Hs					uo			Towns of the last	THE STREET STREET						HM A Arsenic Cadmium Chromium Copper			
Laboratory:	ALEXA	stralia 33 Maddox NDRIA NSW 94 0400 F:	2015	1499			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Aspestos	/TRH/BTEX/PAHs	/TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ring Suite	· ·					HM ^B / PAH	Lead Mercury Nickel Zinc HM ^B Arsenic			
Sample ID	Laboratory ID	Container Type		ampling	WATER		HERS	MA/CP/O	HM A /	HM A /T	втех	VOCs	Asbestos	sbesto	7/ CE	1/EC	Dewatering	sPOCAS	PFAS				TCLP H	Cadmium Chromium Lead			
		3,240	Date		3	SOIL	6	_	I	エ	'n	^	Ä	ď	ᅕ	<u>ā</u> .	ă	, S	<u> </u>				1	Mercury Nickel			
BH4M_0.3-0.4	12	31200	11/4/7	w		1		X	_															Dewatering Suite pH & EC			
BH4M_1.3-1.5																		*						TDS / Turbidity NTU Hardness Total Cyanide			
BH5M_0.1-0.2	13							X																Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)			
BH5M_0.6-0.8		TOTAL COMMENTS OF THE PARTY OF																						TRH (F1, F2, F3, F4) BTEX			
BH5M_1.2-1.4	14								×															PAH Total Phenol			
BH5M_2.0-2.2			The state of the s																					LABORATORY TURNAROUND			
BH6_0.1-0.2	15	Of the last of the						X										•		10 10				Standard			
BH6_0.6-0.8		S. Commission of the Commissio	Appendict to the second to the														2							24 Hours			
BH6_1.2-1.4		and the same of th	A CARLO CONTRACTOR OF THE CARL			The second secon																		48 Hours			
BH6_2.4-2.6	Me.																							72 Hours			
· Soil-QD1	16	V			-					X										1000				Other			
Soil-TripBlank-1		VC	and the second second second	aephraen		V					X									LS.							
Container Type: J≂ solvent washed, aci S= solvent washed, ac P= natural HDPE plasti	d rinsed,Tel		ıss jar	2 8			stigato	r: I atte with					vere co			ccorda	ance	F	leport	with El	Wast	e Class	aificatio	on Table			
VC= glass vial, Teflon						Samp Prin		me (El)	ļ. -			Recei Prin	ved by		-			Sam	pler's	Comn	nents:						
							Em	ily Sc	anloi	1			•		Uso	1											
12		5		, 55 Miller St		Sigr	ature	\bigvee	_			Sign	ature	ير،د	Bu	hu	1	1									
0.0.0	Frali	~		NT NSW 200 9516 0722	มฮ	Date	12/6	5/2020)			Date		1/00	120	0	2-30	•									
Contamination Remed	LI C	Cl nical		ustralia.com.	au			TANT																			
			COC March 2	2018 FORM v.4 - SGS		Plea	se e-n	nail lab	orato	ry resi	ults to:	lab@	g)eiaı	ustra	lia.co	m.a	u										

Sheet 4 of	Ч	-			San	ple N	/latrix	í						-	Ana	lysis			-					Comments
Site:				Project No:																				HM A Arsenic
15 Jubilee Ave,	Warriew	ood NSW		E24716			nt, etc.)	AHs	AHs					tion	change)	onductivity		*						Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	199			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	HM A /TRH/BTEX/PAHs	HM A /TRH/BTEX	The second restriction of the second restric		νρ	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite						MB/PAH	Mercury Nickel Zinc HMB Arsenic
Sample	Laboratory	Container	Se	mpling	WATER		ERS	AA /	Λ≜.π	T/ ₹/	втех	VOCs	Asbestos	besto	Ð/	/EC	water	sPOCAS	PFAS				TCLP HM	Cadmium Chromium
lD	ID	Туре	Date	Time	1	SOIL	6	Ξŏ	Í	f	HB H	>	As	As	Ŧ	표	å	-gs	P				2	Lead Mercury Nickel
Soil-Trip Spike-1	18	VC	LABI	preparec	1	X					X													Dewatering Suite
																								TDS / Turbidity NTU Hardness
																								Total Cyanide Metals (Al, As, Cd, Cr,
																								Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
																		,						PAH Total Phenol
																								LABORATORY TURNAROUND
																								Standard
							a																	24 Hours
																								48 Hours
		áit.																٠						72 Hours
		<u> </u>																						Other
Container Type:			7					Щ																
J= solvent washed, aci S= solvent washed, ac	id rinsed gla:		ss jar			Inves	itigato	r: I atte with:					vere co			ccorda	ance	F	Report	with El	Wast	e Class	sificatio	on Table
P= natural HDPE plasti VC= glass vial, Teflon								ame (El):	:				ived by	(SGS):				Sam	pler's	Comm	nents:			·
ZLB = Zip-Lock Bag		-		Pril		ily Sca	anloi	n		Prin	nt .	SI	مط	a										
40				55 Miller St NT NSW 200		Sign	nature	ヘ				Sign	ature	20	8.	hn								
1	e 12/6	5/2020)			Date	1	2/0	6/2	(1)	000	_												
elaus:	trali	9516 0722 ustralia.com.	au	IMF	-	TANT					1-		+10	. (~	2-3	U								
Contamination Remed	ation Geotechr	nical		18 FORM v.4 - SGS		53/900/504/508		nail lab		ry res	ults to:	lab@	@eia	ustra	lia.co	m.a	u [

What Burn

Manager

CLIENT DETAILS

Telephone

LABORATORY DETAILS

Emily Scanlon Contact

EI AUSTRALIA Client Address **SUITE 6.01**

55 MILLER STREET

PYRMONT NSW 2009

61 2 9516 0722

(Not specified) Facsimile

emily.scanlon@eiaustralia.com.au Email

E24716 15 Jubilee Ave, Warriewood NSW Project

E24716 Order Number 18 Samples

Laboratory Address

SGS Alexandria Environmental

Huong Crawford

Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone +61 2 8594 0400

+61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com Fmail

Samples Received Fri 12/6/2020 Fri 19/6/2020

Report Due SE207473 SGS Reference

SUBMISSION DETAILS

This is to confirm that 18 samples were received on Friday 12/6/2020. Results are expected to be ready by COB Friday 19/6/2020. Please quote SGS reference SE207473 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Yes Sample container provider SGS Samples received in correct containers Yes 12/6/2020 Date documentation received Samples received in good order Yes 14.3°C Sample temperature upon receipt Turnaround time requested Standard

Complete documentation received Yes Sample cooling method None Sample counts by matrix 18 Soil Type of documentation received COC Samples received without headspace Yes Sufficient sample for analysis Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

19 soil samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS _

Client El AUSTRALIA

Project E24716 15 Jubilee Ave, Warriewood NSW

- SUMMARY OF ANALYSIS

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP1_0.1-0.2	29	14	26	11	7	10	11	7
002	TP2_0.4-0.5	29	14	26	11	7	10	11	7
003	TP3_0.1-0.2	29	14	26	11	7	10	11	7
004	TP3_0.8-0.9	-	-	26	-	7	10	11	7
005	TP4_0.1-0.2	29	14	26	11	7	10	11	7
006	TP5_0.1-0.2	29	14	26	11	7	10	11	7
007	TP6_0.2-0.3	29	14	26	11	7	10	11	7
008	BH1_0.1-0.2	29	14	26	11	7	10	11	7
009	BH1_0.7-0.9	-	-	26	-	7	10	11	7
010	BH2_0.1-0.2	29	14	26	11	7	10	11	7
011	BH3M_0.3-0.4	29	14	26	11	7	10	11	7
012	BH4M_0.3-0.4	29	14	26	11	7	10	11	7
013	BH5M_0.1-0.2	29	14	26	11	7	10	11	7
014	BH5M_1.2-1.4	-	-	26	-	7	10	11	7
015	BH6_0.1-0.2	29	14	26	11	7	10	11	7
016	Soil-QD1	-	-	-	-	7	10	11	7
017	Soil-TripBlank-1	-	-	-	-	-	-	11	-
018	Soil-TripSpike-1	-	-	-	-	-	-	11	-

_ CONTINUED OVERLEAF

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS _

Client El AUSTRALIA

Project E24716 15 Jubilee Ave, Warriewood NSW

- SUMMARY OF ANALYSIS

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	TP1_0.1-0.2	2	1	1
002	TP2_0.4-0.5	2	1	1
003	TP3_0.1-0.2	2	1	1
004	TP3_0.8-0.9	-	1	1
005	TP4_0.1-0.2	2	1	1
006	TP5_0.1-0.2	2	1	1
007	TP6_0.2-0.3	2	1	1
008	BH1_0.1-0.2	2	1	1
009	BH1_0.7-0.9	-	1	1
010	BH2_0.1-0.2	2	1	1
011	BH3M_0.3-0.4	2	1	1
012	BH4M_0.3-0.4	2	1	1
013	BH5M_0.1-0.2	2	1	1
014	BH5M_1.2-1.4	-	1	1
015	BH6_0.1-0.2	2	1	1
016	Soil-QD1	-	1	1
017	Soil-TripBlank-1	-	-	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

15/06/2020 Page 3 of 3

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

Yin, Emily (Sydney)

From:

Emily Scanlon - ElAustralia <emily.scanlon@eiaustralia.com.au>

Sent:

Tuesday, 16 June 2020 7:24 AM

To:

Yin, Emily (Sydney)

Subject:

[EXTERNAL] RE: SE207473A - E24716

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Hi Emily,

I hope you are well.

Yes, please- the samples listed on the COC are correct. No need to sample ASS_TP6_2.5.

Thank you for checking. Have a great day.

Kind Regards,

Emily Scanlon Environmental Engineer

T 02 9516 0722

M 0466 718 070

E emily.scanlon@eiaustralia.com.au

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

www.eiaustralia.com.au

beaton

Environmental | Geotechnical | Structural | Civil | Hazardous Materials

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

Please consider the environment before printing this email.

From: Yin, Emily (Sydney) [mailto:Emily.Yin@sgs.com]

Sent: Monday, 15 June 2020 9:16 PM

To: Emily Scanlon - EIAustralia **Subject:** SE207473A - E24716

Dear Emily,

Just confirming that these are the samples you want analysed for pH/pHfox.

Also ASS_TP6_2.5 extra sample received.

Do you want it analysed?

Please clarify as soon as possible.

Thank You.

Regards,

Emily Yin

CLIENT DETAILS ______ LABORATORY DETAILS

Contact Emily Scanlon Manager Huong Crawford

Client El AUSTRALIA Laboratory SGS Alexandria Environmental

SUITE 6.01 Address Unit 16, 33 Maddox St 55 MILLER STREET Alexandria NSW 2015

PYRMONT NSW 2009

 Telephone
 61 2 9516 0722
 Telephone
 +61 2 8594 0400

 Facsimile
 (Not specified)
 Facsimile
 +61 2 8594 0499

Email emily.scanlon@eiaustralia.com.au Email au.environmental.sydney@sgs.com

Project E24716 15 Jubilee Ave, Warriewood NSW Samples Received Mon 15/6/2020
Order Number E24716 Report Due Mon 22/6/2020

 Order Number
 E24716
 Report Due
 Mon 22/6/2020

 Samples
 26
 SGS Reference
 SE207473A

SUBMISSION DETAILS

COMMENTS -

Address

This is to confirm that 26 samples were received on Monday 15/6/2020. Results are expected to be ready by COB Monday 22/6/2020. Please quote SGS reference SE207473A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Complete documentation received Yes Yes Sample container provider SGS Sample cooling method None Sample counts by matrix Samples received in correct containers 7 Soil Yes 15/6/2020 Date documentation received Type of documentation received COC Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 14.3°C Sufficient sample for analysis Yes Turnaround time requested Standard

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

024

ASS_TP6_1.5

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client El AUSTRALIA Project E24716 15 Jubilee Ave, Warriewood NSW

4

SUMMARY	OF ANALYSIS	
No.	Sample ID	Field pH for Acid Sulphate Soil
002	TP2_0.4-0.5	4
020	ASS_TP2_1.0	4
021	ASS_TP2_2.0	4
022	TP4_0.4-0.5	4
023	ASS_TP6_1.0	4

CONTINUED OVERLEAF

Testing as per this table shall commence immediately unless the client intervenes with a correction.

TAILSAUSTRALIA	Project E24716 15 Jubilee Ave, Warriewood NSW
OF ANALYSIS —	
Sample ID	Field pH for Acid Sulphate Soil
ASS_TP6_2.0	4
	AUSTRALIA OF ANALYSIS Sample ID

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

16/06/2020 Page 3 of 3

Sheet of		_				San	nple N	/latrix								Ana	alysis								Comments
site: 15 Jul	pilee 1	Ave, NSW		Proje	ect No:			t, etc.)	AHs	Hs					on	hange)	nductivity)				(al)				HM A Arsenic Cadmium Chromium Copper
Laboratory:	ALEXA	istralia , 33 Maddox NDRIA NSW 594 0400 F: 0	2015	499			5	OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			s	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite			ols (Total		9	MB/PAH	Lead Mercury Nickel Zinc HM B Arsenic
Sample ID	Laboratory ID	Туре	Sa	ampling	Time	WATER	SOIL	OTHERS	HM A /	HM ≜ /T	HM A /T	BTEX	VOCs	Asbestos	Asbesto	pH / CE(pH / EC	Dewater	sPOCAS	PFAS	Phenols		HOH	TCLP HM	Cadmium Chromium Lead Mercury
GW_BH3M-1	1	S, P, 2x	18/6/7	WI	AM	X				X		,	X							_	X				Nickel Dewatering Suite
GW-BH4M-1	2					1					-		1												pH & EC TDS / Turbidity NTU
GW-BH5M-1	3									V	\		1								V				Hardness Total Cyanide Metals (Al, As, Cd, Cr,
GW-QD-1	4										X														Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
GW-QR+1	5				1	Ш					X														PAH Total Phenol
GW-QRB-1		V	Labp	(0.00.)	Ved	\perp																	X		LABORATORY TURNAROUND
GW-TripBlank-1	6	vc	Lack	Tepa	1	Ц						X													Standard
GW-TripSpike-1	7	1	V	1	V	V					3	V	1								0				24 Hours
					31																				48 Hours
					1																				72 Hours
				+																					Other
Container Type:	-							SERVICE A SERVIC																	
J= solvent washed, acid S= solvent washed, acid P= natural HDPE plastic	d rinsed gla	flon sealed, glas ss bottle	ss jar				Inves	tigato	r: I atte with:	st tha	t these	e sam field s	ples w sampli	ere co	ollecte	d in ac	ccorda	nce	R	eport	with EI	Waste	Class	ificatio	on Table
VC= glass vial, Teffon S ZLB = Zip-Lock Bag	Septum					Sampl		me (EI):					ved by	(SGS):				Sam	pler's	Comm	ents:				
		and a matter districts		-	EN	ric	1 50	INA	ON	7	Prin	-	Su	ba			S	GS E	HS S	ydn	ey C	ос			
0:0			ller Str W 200		Signa		\sim		_		Signa	Dix	Bu	hu	4		5	SE:	207	768	39				
ejaust	rali	2	Ph: 9	516 07	722		Date	16	101				Date 18	tog	120	0	3.	00							
Contamination Remodil	tion Geotech	nical	lab@eiau: coc March 2018			au			ANT	-	V resi	ilts to	lah@	neiar	ietrol	ia co	ma								
							. 1000	0 0 11	all lab	orator	y 1630	into to.	lanc	yoldt	iou di	ia.co	III.al								1

Manager

Address

CLIENT DETAILS

LABORATORY DETAILS

Emily Scanlon Contact

EI AUSTRALIA Client **SUITE 6 01** Address

55 MILLER STREET

PYRMONT NSW 2009

61 2 9516 0722 Telephone Facsimile (Not specified)

Email emily.scanlon@eiaustralia.com.au

E24716 15 Jubilee Ave Warriewood NSW Proiect

Order Number E24716 7 Samples

SGS Alexandria Environmental Laboratory

Unit 16 33 Maddox St

Huong Crawford

Alexandria NSW 2015

+61 2 8594 0400 Telephone

+61 2 8594 0499 Facsimile

Email au.environmental.sydney@sgs.com

Samples Received Thu 18/6/2020 Tue 23/6/2020 Report Due

SE207689 SGS Reference

SUBMISSION DETAILS

This is to confirm that 7 samples were received on Thursday 18/6/2020. Results are expected to be ready by COB Tuesday 23/6/2020. Please quote SGS reference SE207689 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Yes Complete documentation received Sample container provider SGS Samples received in correct containers Yes 18/6/2020 Date documentation received Samples received in good order Yes Sample temperature upon receipt 7.3°C Turnaround time requested Three Days

Yes Sample cooling method Ice Bricks Sample counts by matrix 7 Water Type of documentation received COC Samples received without headspace Yes Sufficient sample for analysis Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

1 water sample has been placed on hold as no tests have been assigned for it. This sample will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS _

Client El AUSTRALIA

Project E24716 15 Jubilee Ave Warriewood NSW

SUMMARY OF ANALYSIS

No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	GW_BH3M-1	1	22	1	7	9	78	7
002	GW_BH4M-1	1	22	1	7	9	78	7
003	GW_BH5M-1	1	22	1	7	9	78	7
004	GW_QD-1	1	-	-	7	9	11	7
005	GW_QR-1	1	-	-	7	9	11	7
006	GW_Trip Blank-1	-	-	-	-	-	11	-
007	GW_Trip Spike-1	-	-	-	-	-	11	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

19/06/2020 Page 2 of 2

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet	of <u> </u>	-			Sar	nple	Matrix											<u> </u>		· .				16.7
Site:				Project No:	+	Ť		-		 	Τ	T .		Т-	Ana	alysis	3 T—-							Comments
15 Jubilee Ave	e, Warrie	wood NSV	V	E24716			etc.)	Hs os	\sqrt{2}					=	ange)	conductivity)					-			HMA Arsenic Cadmium Chromium
Laboratory:	ALEXA	ustralia , 33 Maddox NDRIA NSW 594 0400 F: (2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHS OCP/OP/PCB/Asbestos	HM A /TRH/BTEX/PAHs	HM A /TRH/BTEX				Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical cond	Suite						TCLP HMB/PAH	Copper Lead Mercury Nickel Zinc HMB
Sample:	Laboratory		S	ampling	臣		ERS (I	A /TI	А ЛТЕ	A/TR	×	. 00	Asbestos	stos	SHO	EC (e	Dewatering	3AS					- E	Arsenic Cadmium
	ID ID	Туре	Date		WATER	SOIL	OTH	₽Ö	Ξ	H	втех	VOCs	Asbe	Asbe	PH/	Hd/	Dewa	sPOCAS	PFAS				占	Chromium Lead
TP1_0.1-0.2		J, 21B	11/4/	W		X		X										···	-	 	+	+		Mercury Nickel
TP1_0.4-0.5																		-		-	┼─			Dewatering Suite pH & EC
TP1_0.7-0.8											•							-		 	-			TDS / Turbidity NTU Hardness Total Cyanide
TP1_1.6-1.7								_								-				ļ	 			Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Nl, Zn)
TP2_0.1-0.2																				<u> </u>	 	<u> </u>		TRH (F1, F2, F3, F4) BTEX PAH
TP2_0.4-0.5						1		V			-					εήV	/IROL AI	3		ab Ser 2 Ashi			\rightarrow	Total Phenol
TP2_0.7-0.8					_			\hookrightarrow		\dashv							/IROLA		atswoo	d NSW	2067			LABORATORY TURNAROUND
TP2_1.5-1.6					\dashv	\dashv											o No:			24	48	 		Standard
TP3_0.1-0.2								-			÷					Tin	e Rec	oivod.			15		0	24 Hours
TP3_0.4-0.5								지		\dashv	* 65 * 65 * 65			\dashv	·	Red Ten	ceived	by: ()	W)			149	5	48 Hours
						+			_,	-						Cdd	oling:	e/ice	ack)	Nond				72 Hours
TP4_0.8-0.9		-					_		X										- Colon					Other
TP4_0.1-0.2 Container Type:		<u> </u>	<u></u>		_	V		X.								\neg							\neg	
J= solvent washed, acid S= solvent washed, acid P= natural HDPE plastic VC= glass vial, Teflon S	d rinsed glas: c bottle	on sealed, glass s bottle	jar		Ļ			WILH SE	t that andai	these rd El fi	samp eld sa	les we ampling	ere col g proc	lected edure:	in acc	corda	nce	Re	port w	vith El	Waste	Classif	fication	Table
ZLB = Zip-Lock Bag					_	Sample Print						Receive Print	ed by (S	GS):				Samp	ler's C	Comm	ents:		<u> </u>	
41		Sui	te 6.01, 5	5 Miller Stree	et,	Signa	Emily	y Scar	nlon		-	Signati		<u>nu(</u> (W	em	2_	\dashv	`Plea	se tra	ansfe	r sam	ıple "C	(T1 "	To Envirolab
	·vali-	. P		T NSW 2009 16 0722	上	Date	12/6/2	2020			\dashv	Date	12-1	<i></i>		:30	\dashv_{i}	-1	۱	. 1, 1	lı (a			
Continuation Remode	Idlication in the state of the	i la		tralia.com.au	्री		ORTA						12/		14	. 3U	'	-10	spo	, 14	148	•		
			COC March 2018	ORM v.4 - SGS		Please	e-mai	labor	atory	result	s to: I	ab@e	eiaus	tralia	a.con	n.au								

Ship o	f\	_			Sam	nple Matrix Analysis									-	.,		Comments	7						
site: 15 Jubi Warac	rec fi	ve, NSW	3	Project No:			, etc.)	4Hs tos	Hs				Wagnings Assessing Vig. 17 or 18 Discours from July 20 Biological	lon	hange)	nductivity)								HM ≜ Arsenic Cadmium Chromium Copper Lead	
Laboratory:	12 Ash CHATS	ab Services ley Street, WOOD NS\ 910 6200					OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM A /TRH/BTEX/PAHS	HM ≜ /TRH/BTEX			30	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	S					HM B / PAH	Mercury Nickel Zinc (G HM ^B Arsenic	
Sample ID	Laboratory ID	Container Type	Sa Date	ampling Time	WATER	SOIL	OTHERS	HMA /	HM A //	HM A /	втех	VOCs	Asbestos	Asbest	pH / CE	pH / EC	Dewate	sPOCAS	PFAS				TCLP !	Cadmium Chromium Lead Mercury	
GW-QT-I		S,P, 2x VC	18/4/5	a Am	×				×				electronismosterismost											Nickel Dewatering Suite pH & EC TDS / Turbidity NTU Hardness Total Cyanide	
Fig.																								Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH Total Phenol	
		·														The state of the s								LABORATORY TURNAROUND	
							and the second s						Antonio de la constanta de la	-										Standard 24 Hours	
					The second secon																			48 Hours 72 Hours	
													SALA SALA SALA SALA SALA SALA SALA SALA											Other	-
Container Type: J= solvent washed, ar S= solvent washed, ar P= natural HDPE plas	cid rinsed gla tic bottle		ss jar						stand			sampl	ing pro	ocedu	res.	ccord	ance	<u> </u>				e Clas	sificati	on Table	
VC= glass vial, Teflon ZLB = Zip-Lock Bag	s Septum					Pri	ri EN	ame (El		\$41.C	M	Pri		(Envir	olab)			Sam	ıpler's	Comi	ments:				
- At 1020)		PYRMO	, 55 Miller S NT NSW 20		Sigi	nature e	// 1810	120	·		Sig _i Dat	nature e	<u> </u>				,							
eiaus	trali	a	lab@eia	9516 0722 ustralia.com	.au		POR	TAN7	- ;		ults to	: lab	 @eia	ustra	alia.c	om.a	u								

ANALYTICAL REPORT

Huong Crawford

CLIENT DETAILS -

LABORATORY DETAILS

Contact Emily Scanlon Manager

Client El AUSTRALIA Laboratory SGS Alexandria Environmental
Address SUITE 6.01 Address Unit 16, 33 Maddox St

55 MILLER STREET Alexandria NSW 2015 PYRMONT NSW 2009

 Telephone
 61 2 9516 0722
 Telephone
 +61 2 8594 0400

 Facsimile
 (Not specified)
 Facsimile
 +61 2 8594 0499

Email emily.scanlon@eiaustralia.com.au Email au.environmental.sydney@sgs.com

 Project
 E24716 15 Jubilee Ave, Warriewood NSW
 SGS Reference
 SE207473 R0

 Order Number
 E24716
 Date Received
 12/6/2020

 Samples
 19
 Date Reported
 19/6/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Dong LIANG

Metals/Inorganics Team Leader

Kamrul AHSAN

Senior Chemist

Ly Kim HA

Organic Section Head

kmln

Yusuf KUTHPUDIN Asbestos Analyst

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

VOC's in Soil [AN433] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.004	SE207473.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	11/6/2020 SE207473.006	11/6/2020 SE207473.007	11/6/2020 SE207473.008	11/6/2020 SE207473.009	11/6/2020 SE207473.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.011	SE207473.012	SE207473.013	SE207473.014	SE207473.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			Soil-QD1	Soil-TripBlank-1	Soil-TripSpike-1	TP5_0.4-0.5
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.016	SE207473.017	SE207473.018	SE207473.019
Benzene	mg/kg	0.1	<0.1	<0.1	[94%]	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	[93%]	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	[95%]	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	[94%]	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	[95%]	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	-	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	-	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	-	<0.1

19/06/2020 Page 2 of 20

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/6/2020	11/6/2020	11/6/2020	11/6/2020	11/6/2020
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.004	SE207473.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE207473.006	SE207473.007	SE207473.008	SE207473.009	SE207473.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.011	SE207473.012	SE207473.013	SE207473.014	SE207473.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			Soil-QD1	TP5_0.4-0.5
			SOIL	SOIL
			11/6/2020	11/6/2020
PARAMETER	UOM	LOR	SE207473.016	SE207473.019
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

19/06/2020 Page 3 of 20

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			11/6/2020	11/6/2020	11/6/2020	11/6/2020	11/6/2020
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.004	SE207473.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	SE207473.006	SE207473.007	SE207473.008	SE207473.009	SE207473.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020
PARAMETER	UOM	LOR	SE207473.011	SE207473.012	SE207473.013	SE207473.014	SE207473.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

19/06/2020 Page 4 of 20

SE207473 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/6/2020 (continued)

			Soil-QD1	TP5_0.4-0.5
			3011 431	11 0_0.4 0.0
			SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.016	SE207473.019
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210

19/06/2020 Page 5 of 20

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
			SOIL -	SOIL -	SOIL -	SOIL	SOIL
			11/6/2020	11/6/2020	11/6/2020	11/6/2020	11/6/2020
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.004	SE207473.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	0.1	<0.1	0.3
Pyrene	mg/kg	0.1	0.2	<0.1	0.1	<0.1	0.4
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.4
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.5</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.5
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.6</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	0.6
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.6</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.6
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	2.9
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	2.9

SOIL								
PARAMETER UOM LOR SE207473.000 11/62/2				TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
Name				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SE207473.006 SE207473.007 SE207473.008 SE207473.009 SE207473.009 SE207473.009 SE207473.009 SE207473.000 Co.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <								
Naphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1								
2-methy/naphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td>PARAMETER</td> <td>UOM</td> <td>LOR</td> <td></td> <td></td> <td>SE207473.008</td> <td>SE207473.009</td> <td>SE207473.010</td>	PARAMETER	UOM	LOR			SE207473.008	SE207473.009	SE207473.010
1-methylnaphthalene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td>Naphthalene</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td>	Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene mg/kg 0.1 <0.1 0.2 <0.1 <0.1 <0.1 Anthracene mg/kg 0.1 <0.1	Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0	Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene mg/kg 0.1 0.1 0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	Phenanthrene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	<0.1
Pyrene	Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene mg/kg 0.1 <0.1 0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	Fluoranthene	mg/kg	0.1	0.1	0.8	<0.1	<0.1	<0.1
Chrysene mg/kg 0.1 <0.1 0.3 <0.1 <0.1 <0.1 Benzo(b8)jfluoranthene mg/kg 0.1 <0.1	Pyrene	mg/kg	0.1	0.1	0.8	<0.1	<0.1	<0.1
Benzo(b&)fluoranthene mg/kg 0.1 <0.1 0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(a)anthracene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	<0.1
Benzo(k)fluoranthene mg/kg 0.1 <0.1 0.2 <0.1 <0.1 <0.1 <0.1	Chrysene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	<0.1
Benzo(a)pyrene mg/kg 0.1 <0.1 0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Benzo(a)pyrene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	<0.1
Benzo(ghi)perylene mg/kg 0.1 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< th=""> TEQ (mg/kg) 0.2 <0.2 0.4 <0.2 <0.3 <0.2 <0.2</lor=0<>	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=lor< th=""> TEQ (mg/kg) 0.3 <0.3 0.5 <0.3 <0.3 <0.3 Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""> TEQ (mg/kg) 0.2 <0.2</lor=lor></lor=lor<>	Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""> TEQ (mg/kg) 0.2 <0.2 0.5 <0.2 <0.2 <0.2 Total PAH (18) mg/kg 0.8 <0.8</lor=lor>	Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.4</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0.4	<0.2	<0.2	<0.2
Total PAH (18) mg/kg 0.8 <0.8 3.7 <0.8 <0.8 <0.8	Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.5</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.5	<0.3	<0.3	<0.3
	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.5</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.5	<0.2	<0.2	<0.2
Total PAH (NEPM/WHO 16) mg/kg 0.8 <0.8 3.7 <0.8 <0.8 <0.8	Total PAH (18)	mg/kg	0.8	<0.8	3.7	<0.8	<0.8	<0.8
	Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	3.7	<0.8	<0.8	<0.8

19/06/2020 Page 6 of 20

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/6/2020 (continued)

			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
			11/6/2020	11/6/2020	11/6/2020	11/6/2020	11/6/2020
PARAMETER	UOM	LOR	SE207473.011	SE207473.012	SE207473.013	SE207473.014	SE207473.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	0.3
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	0.7
Pyrene	mg/kg	0.1	<0.1	<0.1	0.4	<0.1	0.6
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	0.2
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	0.2
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	0.2
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.3</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.3
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.4</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td><td>0.3</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.2	<0.2	0.3
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	1.7	<0.8	3.0
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	1.7	<0.8	3.0

			TP5_0.4-0.5 SOIL -
PARAMETER	UOM	LOR	11/6/2020 SE207473.019
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

19/06/2020 Page 7 of 20

OC Pesticides in Soil [AN420] Tested: 15/6/2020

PARAMETER 100								
PARAMETER 100				TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
PARAMETER 100				SOIL	SOIL	SOII	SOIL	SOIL
PARRATER VOM OR SE207473-001 SE207473-002 SE207473-004 SE207473-004 SE207473-004 CRADIA CA-10 AD-10				-	-	-	-	-
Heachidrotherane (HGS) mg/kg 0.1 40								
Alpha BHC ng/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1							SE207473.004	
Lindane ng/lg 0.1 4.01	· · ·						-	
Heptachlor mg/kg 0.1 4-0.1	Alpha BHC	mg/kg	0.1	<0.1	<0.1		-	
Aldrin mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Beta BHC mg/kg 0.1 40.1	Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Deta BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Heptachlor epoxide mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <td>Beta BHC</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td>-</td> <td><0.1</td>	Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
ορ'DDE mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Alpha Endosulfan mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <td>Heptachlor epoxide</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td>-</td> <td><0.1</td>	Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Gamma Chlordane mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Alpha Chlordane mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
trans-Nonachlor mg/kg 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
p.β-DDE mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Dieldrin mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endrin mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
o,p*DDD mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
o,p'-DDT mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Beta Endosulfan mg/kg 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
p.p-DDD mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
p,p'-DDT mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Endosulfan sulphate mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td>p,p'-DDD</td> <td>mg/kg</td> <td>0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td>-</td> <td><0.1</td>	p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endrin Aldehyde mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Methoxychlor mg/kg 0.1 <0.1 <0.1 <0.1 - <0.1 Endrin Ketone mg/kg 0.1 <0.1	Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endrin Ketone mg/kg 0.1 <0.1 <0.1 <0.1 - <0.1 Isodrin mg/kg 0.1 <0.1	Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Isodrin mg/kg 0.1 <0.1 <0.1 <0.1 - <0.1 Mirex mg/kg 0.1 <0.1	Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Mirex mg/kg 0.1 <0.1 <0.1 <0.1 - <0.1	Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Mirex mg/kg 0.1 <0.1 <0.1 <0.1 - <0.1	Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
	Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
		mg/kg					_	

19/06/2020 Page 8 of 20

OC Pesticides in Soil [AN420] Tested: 15/6/2020 (continued)

			TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
			SOIL -	SOIL -	SOIL	SOIL -	SOIL
			- 11/6/2020	11/6/2020	11/6/2020	11/6/2020	- 11/6/2020
PARAMETER	UOM	LOR	SE207473.006	SE207473.007	SE207473.008	SE207473.009	SE207473.010
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	-	<1

19/06/2020 Page 9 of 20

SGS

ANALYTICAL RESULTS

OC Pesticides in Soil [AN420] Tested: 15/6/2020 (continued)

			DUOM O O O A	D11484 0 0 0 4	DUEL O 4 O O	DUEN 1011	BUI 0 4 0 0
			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	11/6/2020	11/6/2020	11/6/2020	11/6/2020	11/6/2020
Hexachlorobenzene (HCB)	mg/kg	0.1	SE207473.011 <0.1	SE207473.012 <0.1	SE207473.013 <0.1	SE207473.014	SE207473.015 <0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Lindane		0.1	<0.1	<0.1	<0.1	-	<0.1
	mg/kg						
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	-	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	-	<1

19/06/2020 Page 10 of 20

OC Pesticides in Soil [AN420] Tested: 15/6/2020 (continued)

			Soil-QD1	TP5_0.4-0.5
			SOIL	SOIL
			-	- 30IL
PARAMETER	UOM	LOR	SE207473.016	SE207473.019
Hexachlorobenzene (HCB)	mg/kg	0.1	-	-
Alpha BHC	mg/kg	0.1	-	-
Lindane	mg/kg	0.1	-	-
Heptachlor	mg/kg	0.1	-	-
Aldrin	mg/kg	0.1	-	-
Beta BHC	mg/kg	0.1	-	-
Delta BHC	mg/kg	0.1	-	-
Heptachlor epoxide	mg/kg	0.1	-	-
o,p'-DDE	mg/kg	0.1	-	-
Alpha Endosulfan	mg/kg	0.2	-	-
Gamma Chlordane	mg/kg	0.1	-	-
Alpha Chlordane	mg/kg	0.1	-	-
trans-Nonachlor	mg/kg	0.1	-	-
p,p'-DDE	mg/kg	0.1	-	-
Dieldrin	mg/kg	0.2	-	-
Endrin	mg/kg	0.2	-	-
o,p'-DDD	mg/kg	0.1	-	-
o,p'-DDT	mg/kg	0.1	-	-
Beta Endosulfan	mg/kg	0.2	-	-
p,p'-DDD	mg/kg	0.1	-	-
p,p'-DDT	mg/kg	0.1	-	-
Endosulfan sulphate	mg/kg	0.1	-	-
Endrin Aldehyde	mg/kg	0.1	-	-
Methoxychlor	mg/kg	0.1	-	-
Endrin Ketone	mg/kg	0.1	-	-
Isodrin	mg/kg	0.1	-	-
Mirex	mg/kg	0.1	-	-
Total CLP OC Pesticides	mg/kg	1	-	-

19/06/2020 Page 11 of 20

OP Pesticides in Soil [AN420] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP4_0.1-0.2	TP5_0.1-0.2
PARAMETER	UOM	LOR	SOIL - 11/6/2020 SE207473.001	SOIL - 11/6/2020 SE207473.002	SOIL - 11/6/2020 SE207473.003	SOIL - 11/6/2020 SE207473.005	SOIL - 11/6/2020 SE207473.006
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP6_0.2-0.3	BH1_0.1-0.2	BH2_0.1-0.2	BH3M_0.3-0.4	BH4M_0.3-0.4
			SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020
PARAMETER	UOM	LOR	SE207473.007	SE207473.008	SE207473.010	SE207473.011	SE207473.012
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH5M_0.1-0.2	BH6_0.1-0.2
			SOIL	SOIL
			11/6/2020	11/6/2020
PARAMETER	UOM	LOR	SE207473.013	SE207473.015
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7

19/06/2020 Page 12 of 20

PCBs in Soil [AN420] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.004	SE207473.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	-	<1

			TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.006	SE207473.007	SE207473.008	SE207473.009	SE207473.010
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	-	<1

			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020	SOIL - 11/6/2020
PARAMETER	UOM	LOR	SE207473.011	SE207473.012	SE207473.013	SE207473.014	SE207473.015
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	-	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	-	<1

19/06/2020 Page 13 of 20

SE207473 R0

PCBs in Soil [AN420] Tested: 15/6/2020 (continued)

			Soil-QD1	TP5_0.4-0.5
			SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.016	SE207473.019
Arochlor 1016	mg/kg	0.2	-	-
Arochlor 1221	mg/kg	0.2	-	-
Arochlor 1232	mg/kg	0.2	-	-
Arochlor 1242	mg/kg	0.2	-	-
Arochlor 1248	mg/kg	0.2	-	-
Arochlor 1254	mg/kg	0.2	-	-
Arochlor 1260	mg/kg	0.2	-	-
Arochlor 1262	mg/kg	0.2	-	-
Arochlor 1268	mg/kg	0.2	-	-
Total PCBs (Arochlors)	mg/kg	1	-	-

19/06/2020 Page 14 of 20

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.004	SE207473.005
Arsenic, As	mg/kg	1	5	11	8	1	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	2.8	2.9	3.2	7.6	3.5
Copper, Cu	mg/kg	0.5	12	5.3	24	<0.5	15
Lead, Pb	mg/kg	1	37	7	66	4	34
Nickel, Ni	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	1.1
Zinc, Zn	mg/kg	2	13	2.7	24	<2.0	16

			TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 11/6/2020	- 11/6/2020	- 11/6/2020	- 11/6/2020	- 11/6/2020
PARAMETER	UOM	LOR	SE207473.006	SE207473.007	SE207473.008	SE207473.009	SE207473.010
Arsenic, As	mg/kg	1	1	2	1	1	10
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	0.4
Chromium, Cr	mg/kg	0.5	2.6	3.6	5.2	12	5.7
Copper, Cu	mg/kg	0.5	8.1	5.4	4.1	0.6	23
Lead, Pb	mg/kg	1	14	18	6	5	63
Nickel, Ni	mg/kg	0.5	0.5	1.5	0.8	<0.5	0.9
Zinc, Zn	mg/kg	2	5.1	31	9.8	2.8	76

			_				
			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.011	SE207473.012	SE207473.013	SE207473.014	SE207473.015
Arsenic, As	mg/kg	1	1	3	6	<1	<1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	0.9	1.8	5.2	7.5	9.4
Copper, Cu	mg/kg	0.5	2.4	6.2	6.8	<0.5	5.2
Lead, Pb	mg/kg	1	5	8	22	11	18
Nickel, Ni	mg/kg	0.5	<0.5	<0.5	1.0	1.9	2.3
Zinc, Zn	mg/kg	2	4.9	6.2	37	<2.0	10

			Soil-QD1	TP5_0.4-0.5
			SOIL	SOIL
			- 11/6/2020	- 11/6/2020
PARAMETER	UOM	LOR	SE207473.016	SE207473.019
Arsenic, As	mg/kg	1	5	1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	1.8	6.3
Copper, Cu	mg/kg	0.5	5.5	<0.5
Lead, Pb	mg/kg	1	2	4
Nickel, Ni	mg/kg	0.5	<0.5	<0.5
Zinc, Zn	mg/kg	2	2.2	<2.0

19/06/2020 Page 15 of 20

SE207473 R0

Mercury in Soil [AN312] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.004	SE207473.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.006	SE207473.007	SE207473.008	SE207473.009	SE207473.010
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.011	SE207473.012	SE207473.013	SE207473.014	SE207473.015
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			Soil-QD1	TP5_0.4-0.5
			SOIL	SOIL
			- 11/6/2020	- 11/6/2020
PARAMETER	UOM	LOR	SE207473.016	SE207473.019
Mercury	mg/kg	0.05	<0.05	<0.05

19/06/2020 Page 16 of 20

SE207473 R0

Moisture Content [AN002] Tested: 15/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP3_0.8-0.9	TP4_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.004	SE207473.005
% Moisture	%w/w	1	13.8	12.2	14.4	16.5	13.8

			TP5_0.1-0.2	TP6_0.2-0.3	BH1_0.1-0.2	BH1_0.7-0.9	BH2_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.006	SE207473.007	SE207473.008	SE207473.009	SE207473.010
% Moisture	%w/w	1	14.0	11.8	15.5	17.7	14.2

			BH3M_0.3-0.4	BH4M_0.3-0.4	BH5M_0.1-0.2	BH5M_1.2-1.4	BH6_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.011	SE207473.012	SE207473.013	SE207473.014	SE207473.015
% Moisture	%w/w	1	9.8	12.4	10.3	16.9	13.6

			Soil-QD1	Soil-TripBlank-1	TP5_0.4-0.5
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.016	SE207473.017	SE207473.019
% Moisture	%w/w	1	11.8	<1.0	18.3

19/06/2020 Page 17 of 20

SE207473 R0

Fibre Identification in soil [AN602] Tested: 18/6/2020

			TP1_0.1-0.2	TP2_0.4-0.5	TP3_0.1-0.2	TP4_0.1-0.2	TP5_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.001	SE207473.002	SE207473.003	SE207473.005	SE207473.006
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			TP6_0.2-0.3	BH1_0.1-0.2	BH2_0.1-0.2	BH3M_0.3-0.4	BH4M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
							11/6/2020
PARAMETER	UOM	LOR	SE207473.007	SE207473.008	SE207473.010	SE207473.011	SE207473.012
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH5M_0.1-0.2	BH6_0.1-0.2
			SOIL	SOIL
PARAMETER	UOM	LOR	SE207473.013	SE207473.015
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

19/06/2020 Page 18 of 20

METHOD SUMMARY

SGS

METHOD _____ METHODOLOGY SUMMARY _

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

AN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B,

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN420

SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.

AN602

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

AN602

- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg; and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

19/06/2020 Page 19 of 20

FOOTNOTES SE207473 R0

FOOTNOTES

* NATA accreditation does not cover the performance of this service.

* Indicative data, theoretical holding time exceeded

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-qb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

19/06/2020 Page 20 of 20

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS . LABORATORY DETAILS

Emily Scanlon Huong Crawford Contact Manager

EI AUSTRALIA SGS Alexandria Environmental Client Laboratory Address

SUITE 6.01 Unit 16, 33 Maddox St Address 55 MILLER STREET Alexandria NSW 2015

PYRMONT NSW 2009

61 2 9516 0722 +61 2 8594 0400 Telephone Telephone (Not specified) Facsimile +61 2 8594 0499 Facsimile

emily.scanlon@eiaustralia.com.au Email au.environmental.sydney@sqs.com Email

E24716 15 Jubilee Ave, Warriewood NSW SE207473 R0 SGS Reference Project E24716 12 Jun 2020 Order Number Date Received 19 Jun 2020 19 Date Reported

COMMENTS

Samples

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Samples clearly labelled Yes Complete documentation received Yes Sample container provider SGS Sample cooling method None Samples received in correct containers 18 Soil Yes Sample counts by matrix 12/6/2020 Type of documentation received Date documentation received COC Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 14.3°C Sufficient sample for analysis Yes Turnaround time requested Standard

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[ENV]AN602

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
TP2_0.4-0.5	SE207473.002	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
TP3_0.1-0.2	SE207473.003	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
TP4_0.1-0.2	SE207473.005	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
TP5_0.1-0.2	SE207473.006	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
TP6_0.2-0.3	SE207473.007	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
BH1_0.1-0.2	SE207473.008	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
BH2_0.1-0.2	SE207473.010	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020
BH6_0.1-0.2	SE207473.015	LB202269	11 Jun 2020	12 Jun 2020	11 Jun 2021	18 Jun 2020	11 Jun 2021	19 Jun 2020

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
Soil-QD1	SE207473.016	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201988	11 Jun 2020	12 Jun 2020	09 Jul 2020	15 Jun 2020	09 Jul 2020	18 Jun 2020

Moisture Content

Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
Soil-QD1	SE207473.016	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
Soil-TripBlank-1	SE207473.017	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201968	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	20 Jun 2020	17 Jun 2020

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020

19/6/2020 Page 2 of 22

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP5_0.1-0.2	SE207473.006	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
Soil-QD1	SE207473.016	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
Soil-QD1	SE207473.016	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
Soil-QD1	SE207473.016	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP5 0.4-0.5	SE207473.019	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020

19/6/2020 Page 3 of 22

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PCBs in Soil (continued) Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP6_0.2-0.3	SE207473.007	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
Soil-QD1	SE207473.016	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	19 Jun 2020

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
Soil-QD1	SE207473.016	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201985	11 Jun 2020	12 Jun 2020	08 Dec 2020	15 Jun 2020	08 Dec 2020	18 Jun 2020

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
Soil-QD1	SE207473.016	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201966	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020

19/6/2020 Page 4 of 22

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.1-0.2	SE207473.008	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
Soil-QD1	SE207473.016	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
Soil-TripBlank-1	SE207473.017	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
Soil-TripSpike-1	SE207473.018	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Voiaule Peutoleum riyurod	arbons in con						Modiod. I	NE-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1_0.1-0.2	SE207473.001	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP2_0.4-0.5	SE207473.002	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP3_0.1-0.2	SE207473.003	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP3_0.8-0.9	SE207473.004	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP4_0.1-0.2	SE207473.005	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP5_0.1-0.2	SE207473.006	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
TP6_0.2-0.3	SE207473.007	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH1_0.1-0.2	SE207473.008	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH1_0.7-0.9	SE207473.009	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH2_0.1-0.2	SE207473.010	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH3M_0.3-0.4	SE207473.011	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH4M_0.3-0.4	SE207473.012	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH5M_0.1-0.2	SE207473.013	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH5M_1.2-1.4	SE207473.014	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
BH6_0.1-0.2	SE207473.015	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
Soil-QD1	SE207473.016	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020
Soil-TripBlank-1	SE207473.017	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
Soil-TripSpike-1	SE207473.018	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	18 Jun 2020
TP5_0.4-0.5	SE207473.019	LB201964	11 Jun 2020	12 Jun 2020	25 Jun 2020	15 Jun 2020	25 Jul 2020	17 Jun 2020

19/6/2020 Page 5 of 22

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	103
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	97
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	103
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	103
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	104
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	98
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	107
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	107
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	100
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	103
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	100
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	95

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Of Teationes in Coll					Modiod: ME-(AO)-[ENV]ANA		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %		
2-fluorobiphenyl (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	83		
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	90		
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	85		
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	91		
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	79		
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	77		
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	93		
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	88		
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	80		
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	91		
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	93		
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	80		
d14-p-terphenyl (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	85		
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	83		
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	79		
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	85		
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	78		
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	81		
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	82		
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	79		
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	82		
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	87		
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	84		
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	90		

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TP1_0.1-0.2	SE207473.001	%	70 - 130%	83
	TP2_0.4-0.5	SE207473.002	%	70 - 130%	90
	TP3_0.1-0.2	SE207473.003	%	70 - 130%	85
	TP3_0.8-0.9	SE207473.004	%	70 - 130%	79
	TP4_0.1-0.2	SE207473.005	%	70 - 130%	91
	TP5_0.1-0.2	SE207473.006	%	70 - 130%	79
	TP6_0.2-0.3	SE207473.007	%	70 - 130%	77
	BH1_0.1-0.2	SE207473.008	%	70 - 130%	93
	BH1_0.7-0.9	SE207473.009	%	70 - 130%	90
	BH2_0.1-0.2	SE207473.010	%	70 - 130%	88
	BH3M_0.3-0.4	SE207473.011	%	70 - 130%	80
	BH4M_0.3-0.4	SE207473.012	%	70 - 130%	91
	BH5M_0.1-0.2	SE207473.013	%	70 - 130%	93
	BH5M_1.2-1.4	SE207473.014	%	70 - 130%	78
	BH6_0.1-0.2	SE207473.015	%	70 - 130%	80
	TP5_0.4-0.5	SE207473.019	%	70 - 130%	96
d14-p-terphenyl (Surrogate)	TP1_0.1-0.2	SE207473.001	%	70 - 130%	85
	TP2_0.4-0.5	SE207473.002	%	70 - 130%	83
	TP3_0.1-0.2	SE207473.003	%	70 - 130%	79
	TP3_0.8-0.9	SE207473.004	%	70 - 130%	79

19/6/2020 Page 6 of 22

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	TP4_0.1-0.2	SE207473.005	%	70 - 130%	85
	TP5_0.1-0.2	SE207473.006	%	70 - 130%	78
	TP6_0.2-0.3	SE207473.007	%	70 - 130%	81
	BH1_0.1-0.2	SE207473.008	%	70 - 130%	82
	BH1_0.7-0.9	SE207473.009	%	70 - 130%	89
	BH2_0.1-0.2	SE207473.010	%	70 - 130%	79
	BH3M_0.3-0.4	SE207473.011	%	70 - 130%	82
	BH4M_0.3-0.4	SE207473.012	%	70 - 130%	87
	BH5M_0.1-0.2	SE207473.013	%	70 - 130%	84
	BH5M_1.2-1.4	SE207473.014	%	70 - 130%	90
	BH6_0.1-0.2	SE207473.015	%	70 - 130%	90
	TP5_0.4-0.5	SE207473.019	%	70 - 130%	80
d5-nitrobenzene (Surrogate)	TP1_0.1-0.2	SE207473.001	%	70 - 130%	84
	TP2_0.4-0.5	SE207473.002	%	70 - 130%	82
	TP3_0.1-0.2	SE207473.003	%	70 - 130%	82
	TP3_0.8-0.9	SE207473.004	%	70 - 130%	80
	TP4_0.1-0.2	SE207473.005	%	70 - 130%	81
	TP5_0.1-0.2	SE207473.006	%	70 - 130%	81
	TP6_0.2-0.3	SE207473.007	%	70 - 130%	84
	BH1_0.1-0.2	SE207473.008	%	70 - 130%	85
	BH1_0.7-0.9	SE207473.009	%	70 - 130%	88
	BH2_0.1-0.2	SE207473.010	%	70 - 130%	84
	BH3M_0.3-0.4	SE207473.011	%	70 - 130%	77
	BH4M_0.3-0.4	SE207473.012	%	70 - 130%	82
	BH5M_0.1-0.2	SE207473.013	%	70 - 130%	83
	BH5M_1.2-1.4	SE207473.014	%	70 - 130%	81
	BH6_0.1-0.2	SE207473.015	%	70 - 130%	81
	TP5_0.4-0.5	SE207473.019	%	70 - 130%	82
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	103
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	97
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	103
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	103
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	104
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	98
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	107
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	107
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	100
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	103
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	100
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	95

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	95
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	94
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	92
	TP3_0.8-0.9	SE207473.004	%	60 - 130%	91
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	89
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	89
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	95
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	85
	BH1_0.7-0.9	SE207473.009	%	60 - 130%	98
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	83
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	88
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	88
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	92
	BH5M_1.2-1.4	SE207473.014	%	60 - 130%	91
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	85
	Soil-QD1	SE207473.016	%	60 - 130%	85

19/6/2020 Page 7 of 22

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Bromofluorobenzene (Surrogate)	Soil-TripBlank-1	SE207473.017	%	60 - 130%	90
	Soil-TripSpike-1	SE207473.018	%	60 - 130%	85
	TP5_0.4-0.5	SE207473.019	%	60 - 130%	90
l4-1,2-dichloroethane (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	108
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	106
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	107
	TP3_0.8-0.9	SE207473.004	%	60 - 130%	105
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	106
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	106
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	114
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	104
	BH1_0.7-0.9	SE207473.009	%	60 - 130%	116
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	104
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	110
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	109
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	114
	BH5M_1.2-1.4	SE207473.014	%	60 - 130%	111
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	105
	Soil-QD1	SE207473.016	%	60 - 130%	107
	Soil-TripBlank-1	SE207473.017	%	60 - 130%	112
	Soil-TripSpike-1	SE207473.018	%	60 - 130%	103
	TP5_0.4-0.5	SE207473.019	%	60 - 130%	115
8-toluene (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	105
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	103
	TP3 0.1-0.2	SE207473.003	%	60 - 130%	103
	TP3_0.8-0.9	SE207473.004	%	60 - 130%	104
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	103
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	103
	TP6 0.2-0.3	SE207473.007	%	60 - 130%	111
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	102
	BH1_0.7-0.9	SE207473.009	%	60 - 130%	114
	BH2 0.1-0.2	SE207473.010	%	60 - 130%	101
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	107
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	107
	BH5M 0.1-0.2	SE207473.013	%	60 - 130%	112
	BH5M_1.2-1.4	SE207473.014	%	60 - 130%	110
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	103
	Soil-QD1	SE207473.016	%	60 - 130%	104
	Soil-TripBlank-1	SE207473.017	% %	60 - 130%	109
	Soil-TripSpike-1	SE207473.017	%	60 - 130%	103
	TP5_0.4-0.5	SE207473.019	% %	60 - 130%	114

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	95
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	94
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	92
	TP3_0.8-0.9	SE207473.004	%	60 - 130%	91
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	89
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	89
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	95
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	85
	BH1_0.7-0.9	SE207473.009	%	60 - 130%	98
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	83
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	88
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	88
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	92
	BH5M_1.2-1.4	SE207473.014	%	60 - 130%	91
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	85
	Soil-QD1	SE207473.016	%	60 - 130%	85
	TP5_0.4-0.5	SE207473.019	%	60 - 130%	90

19/6/2020 Page 8 of 22

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

olatile Petroleum Hydrocarbons in Soli (continued)				Method: ME-(AU)-[ENV]Ar		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9	
d4-1,2-dichloroethane (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	108	
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	106	
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	107	
	TP3_0.8-0.9	SE207473.004	%	60 - 130%	105	
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	106	
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	106	
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	114	
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	104	
	BH1_0.7-0.9	SE207473.009	%	60 - 130%	116	
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	104	
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	110	
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	109	
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	114	
	BH5M_1.2-1.4	SE207473.014	%	60 - 130%	111	
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	105	
	Soil-QD1	SE207473.016	%	60 - 130%	107	
	TP5_0.4-0.5	SE207473.019	%	60 - 130%	115	
l8-toluene (Surrogate)	TP1_0.1-0.2	SE207473.001	%	60 - 130%	105	
	TP2_0.4-0.5	SE207473.002	%	60 - 130%	103	
	TP3_0.1-0.2	SE207473.003	%	60 - 130%	103	
	TP3_0.8-0.9	SE207473.004	%	60 - 130%	104	
	TP4_0.1-0.2	SE207473.005	%	60 - 130%	103	
	TP5_0.1-0.2	SE207473.006	%	60 - 130%	103	
	TP6_0.2-0.3	SE207473.007	%	60 - 130%	111	
	BH1_0.1-0.2	SE207473.008	%	60 - 130%	102	
	BH1_0.7-0.9	SE207473.009	%	60 - 130%	114	
	BH2_0.1-0.2	SE207473.010	%	60 - 130%	101	
	BH3M_0.3-0.4	SE207473.011	%	60 - 130%	107	
	BH4M_0.3-0.4	SE207473.012	%	60 - 130%	107	
	BH5M_0.1-0.2	SE207473.013	%	60 - 130%	112	
	BH5M_1.2-1.4	SE207473.014	%	60 - 130%	110	
	BH6_0.1-0.2	SE207473.015	%	60 - 130%	103	
	Soil-QD1	SE207473.016	%	60 - 130%	104	
	TP5_0.4-0.5	SE207473.019	%	60 - 130%	114	

19/6/2020 Page 9 of 22

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB201988.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
B201966.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	=	87

OP Pesticides in Soil

Method: ME-(AU)-[ENV]AN420

OT T COMORGOO III COM				modica: ME (10) [E144] 14420		
Sample Number	Parameter	Units	LOR	Result		
LB201966.001	Dichlorvos	mg/kg	0.5	<0.5		
	Dimethoate	mg/kg	0.5	<0.5		
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5		
	Fenitrothion	mg/kg	0.2	<0.2		
	Malathion	mg/kg	0.2	<0.2		
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2		
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2		
	Bromophos Ethyl	mg/kg	0.2	<0.2		
	Methidathion	mg/kg	0.5	<0.5		
	Ethion	mg/kg	0.2	<0.2		
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2		
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94		
	d14-p-terphenyl (Surrogate)	%	_	85		

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB201966.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

19/6/2020 Page 10 of 22

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result
LB201966.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	95
		2-fluorobiphenyl (Surrogate)	%	-	94
		d14-p-terphenyl (Surrogate)	%	-	85

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result
LB201966.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
_		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	87

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB201985.001	Arsenic, As	mg/kg	1	<1
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.5	<0.5
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	2	<2.0

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB201966.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB201964.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	112
		d8-toluene (Surrogate)	%	-	108
		Bromofluorobenzene (Surrogate)	%	-	102
	Totals	Total BTEX	mg/kg	0.6	<0.6

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB201964.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	112

19/6/2020 Page 11 of 22

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.010	LB201988.014	Mercury	mg/kg	0.05	<0.05	0.07	131	29
SE207473.019	LB201988.022	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.010	LB201968.011	% Moisture	%w/w	1	14.2	14.2	37	0
SE207473.019	LB201968.020	% Moisture	%w/w	1	18.3	19.5	35	6

DC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

JC Pesticides III s	2011						Would	ou. IVIE-(AU)-	TELA A TAMAGE
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.012	LB201966.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.154	30	0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Record 1	Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
1-methylnaphthalene mg/kg 0.1 <0.1 0 200 0 Acenaphthylene mg/kg 0.1 <0.1	SE207473.004	LB201966.023	Naphthalene	mg/kg	0.1	<0.1	0	200	0
Acenaphthylene mg/kg 0.1 <0.1 0.0005443423 200 0 Acenaphthene mg/kg 0.1 <0.1			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
Acenaphthene mg/kg 0.1 <0.1 0.0004425929 200 0 Fluorene mg/kg 0.1 <0.1			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
Fluorene mg/kg 0.1 <0.1 0 200 0 Phenanthrene mg/kg 0.1 <0.1			Acenaphthylene	mg/kg	0.1	<0.1	0.0005443423	200	0
Phenanthrene mg/kg 0.1 <0.1 0.0012581900 200 0 Anthracene mg/kg 0.1 <0.1			Acenaphthene	mg/kg	0.1	<0.1	0.0004425929	200	0
Anthracene mg/kg 0.1 <0.1 0.0013867639 200 0 Fluoranthene mg/kg 0.1 <0.1			Fluorene	mg/kg	0.1	<0.1	0	200	0
Fluoranthene mg/kg 0.1 <0.1 0 200 0 Pyrene mg/kg 0.1 <0.1			Phenanthrene	mg/kg	0.1	<0.1	0.0012581900	200	0
Pyrene mg/kg 0.1 <0.1 0.006679803 200 0 Benzo(a)anthracene mg/kg 0.1 <0.1			Anthracene	mg/kg	0.1	<0.1	0.0013867639	200	0
Benzo(a)anthracene mg/kg 0.1 <0.1 0.0062213854 200 0 Chrysene mg/kg 0.1 <0.1			Fluoranthene	mg/kg	0.1	<0.1	0	200	0
Chrysene mg/kg 0.1 <0.1 0.058063129 200 0 Benzo(b&j)fluoranthene mg/kg 0.1 <0.1			Pyrene	mg/kg	0.1	<0.1	0.0006679803	200	0
Benzo(b&j)fluoranthene mg/kg 0.1 <0.1 0 200 0 Benzo(k)fluoranthene mg/kg 0.1 <0.1			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.0062213854	200	0
Benzo(k)fluoranthene mg/kg 0.1 <0.1 0.0004292737 200 0 Benzo(a)pyrene mg/kg 0.1 <0.1			Chrysene	mg/kg	0.1	<0.1	0.0058063129	200	0
Benzo(a)pyrene mg/kg 0.1 <0.1 0.0041785487 200 0 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0	200	0
Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 0 200 0			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.0004292737	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.0041785487	200	0
Dibenzo(ah)anthracene mg/kg 0.1 <0.1 0 200 0			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0

19/6/2020 Page 12 of 22

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.004	LB201966.023		Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4279802118	30	7
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4616578532	30	15
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.3921134392	30	1
SE207473.009	LB201966.024		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.0007589141	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0.0004214105	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.0019188996	200	0
			Anthracene	mg/kg	0.1	<0.1	0.0017922061	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.0020876892	200	0
			Pyrene	mg/kg	0.1	<0.1	0.0023460494	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.0072010530	200	0
			Chrysene	mg/kg	0.1	<0.1	0.0066574639	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.0012834754	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.0011754442	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.0003645687	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.0002882324	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.0004474051	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	0.121	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4331004606	30	1
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4205237598	30	7
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.3941134628	30	13

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.012	LB201966.025	Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
		Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
		Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
	Surrogate	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.154	30	0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.010	LB201985.014	Arsenic, As	mg/kg	1	10	8	42	24
		Cadmium, Cd	mg/kg	0.3	0.4	0.3	116	1
		Chromium, Cr	mg/kg	0.5	5.7	6.0	39	6
		Copper, Cu	mg/kg	0.5	23	23	32	3
		Nickel, Ni	mg/kg	0.5	0.9	0.8	91	14
		Lead, Pb	mg/kg	1	63	63	32	0
		Zinc, Zn	mg/kg	2	76	70	33	8
SE207473.019	LB201985.022	Arsenic, As	mg/kg	1	1	1	105	11
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	6.3	6.0	38	4
		Copper, Cu	mg/kg	0.5	<0.5	<0.5	200	0
		Nickel, Ni	mg/kg	0.5	<0.5	<0.5	197	0

19/6/2020 Page 13 of 22

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued)

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.019	LB201985.022	Lead, Pb	mg/kg	1	4	3	57	12
		Zinc, Zn	mg/kg	2	<2.0	<2.0	200	0

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

	•	•							
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.004	LB201966.023		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE207473.009	LB201966.024		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.010	LB201964.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.4	10.5	50	1
			d8-toluene (Surrogate)	mg/kg	-	10.1	10.2	50	0
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.3	8.4	50	1
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE207473.019	LB201964.024	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	11.5	9.8	50	16
			d8-toluene (Surrogate)	mg/kg	-	11.4	9.6	50	17
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.0	7.8	50	15
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.010	LB201964.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.4	10.5	30	1
			d8-toluene (Surrogate)	mg/kg	-	10.1	10.2	30	0
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.3	8.4	30	1
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE207473.019	LB201964.024		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0

19/6/2020 Page 14 of 22

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

								(, -	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207473.019	LB201964.024	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	11.5	9.8	30	16
			d8-toluene (Surrogate)	mg/kg	-	11.4	9.6	30	17
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.0	7.8	30	15
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

19/6/2020 Page 15 of 22

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil	Method	od: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201988.002	Mercury	ma/ka	0.05	0.23	0.2	70 - 130	113

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201966.002	Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	110
	Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	112
	Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	110
	Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	111
	Endrin	mg/kg	0.2	0.2	0.2	60 - 140	108
	p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	76
Surrogate	es Tetrachloro-m-xvlene (TCMX) (Surrogate)	ma/ka	-	0.14	0.15	40 - 130	91

OP Pesticides in Soil

OP Pesticides in Soil	Pesticides in Soil							J)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201966.002		Dichlorvos	mg/kg	0.5	1.5	2	60 - 140	75
		Diazinon (Dimpylate)	mg/kg	0.5	2.0	2	60 - 140	101
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	2	60 - 140	90
		Ethion	mg/kg	0.2	1.6	2	60 - 140	79
;	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80

PAH (Polynuclear Aromatic	Hydrocarbons) in Soil				N.	летоа: ме-(А	U)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201966.002	Naphthalene	mg/kg	0.1	4.4	4	60 - 140	111
	Acenaphthylene	mg/kg	0.1	4.3	4	60 - 140	108
	Acenaphthene	mg/kg	0.1	4.3	4	60 - 140	108
	Phenanthrene	mg/kg	0.1	4.6	4	60 - 140	116
	Anthracene	mg/kg	0.1	4.2	4	60 - 140	106
	Fluoranthene	mg/kg	0.1	5.1	4	60 - 140	128
	Pyrene	mg/kg	0.1	5.0	4	60 - 140	125
	Benzo(a)pyrene	mg/kg	0.1	4.4	4	60 - 140	110
Surroga	tes d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	87
	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80

PCBs in Soil

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201966.002	Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	85

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Method: ME-(AU)-[ENV]AN420

Mathed: ME (ALI) TENDOANIAGO

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201985.002	Arsenic, As	mg/kg	1	340	318.22	80 - 120	108
	Cadmium, Cd	mg/kg	0.3	5.4	5.41	80 - 120	101
	Chromium, Cr	mg/kg	0.5	35	38.31	80 - 120	91
	Copper, Cu	mg/kg	0.5	300	290	80 - 120	104
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	99
	Lead, Pb	mg/kg	1	97	89.9	80 - 120	108
	Zinc Zn	ma/ka	2	280	273	80 - 120	103

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recover	able Hydrocarbor	s) in Soil				N	Method: ME-(Al	J)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201966.002		TRH C10-C14	mg/kg	20	33	40	60 - 140	83
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	75
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	75
	TRH F Bands	TRH >C10-C16	mg/kg	25	31	40	60 - 140	78
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	75
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	90

VOC's in Soil

Sample Number	Parameter	Units	LOR

Method: ME-(AU)-[ENV]AN433

19/6/2020 Page 16 of 22

LABORATORY CONTROL SAMPLES

SE207473 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201964.002	Monocyclic	Benzene	mg/kg	0.1	3.7	5	60 - 140	75
	Aromatic	Toluene	mg/kg	0.1	3.8	5	60 - 140	76
		Ethylbenzene	mg/kg	0.1	3.8	5	60 - 140	76
		m/p-xylene	mg/kg	0.2	7.6	10	60 - 140	76
		o-xylene	mg/kg	0.1	3.8	5	60 - 140	76
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.9	10	70 - 130	109
		d8-toluene (Surrogate)	mg/kg	-	10.9	10	70 - 130	109
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.4	10	70 - 130	94

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB201964.002		TRH C6-C10	mg/kg	25	71	92.5	60 - 140	77
		TRH C6-C9	mg/kg	20	66	80	60 - 140	83
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.9	10	70 - 130	109
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.4	10	70 - 130	94
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	49	62.5	60 - 140	78

19/6/2020 Page 17 of 22

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201988.004	Mercury	mg/kg	0.05	0.23	<0.05	0.2	105

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

oc resudides ill	0011						Wou	iou. ML-(Ac	-(AO)-[E144]A14420	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%	
SE207473.001	LB201966.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-	
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-	
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-	
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	124	
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	125	
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-	
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	124	
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-	
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-	
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-	
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-	
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-	
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-	
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-	
			Dieldrin	mg/kg	0.2	0.2	<0.2	0.2	123	
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	121	
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-	
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-	
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-	
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-	
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	89	
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-	
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-	
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-	
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-	
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-	
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-	
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.16	-	100	

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201966.004		Dichlorvos	mg/kg	0.5	1.7	<0.5	2	84
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	1.8	<0.5	2	83
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.6	<0.2	2	81
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	1.5	<0.2	2	73
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
			Total OP Pesticides*	mg/kg	1.7	6.5	<1.7	-	-
	Su	ırrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	79
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	75

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

1 74 I (I Olylluoloc	ai Audinado Hydrodai bolis) ili (Jon				Wou	iod. ME-(ric)-[E144]-14420
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201966.004	Naphthalene	mg/kg	0.1	4.3	<0.1	4	108
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	4.1	<0.1	4	102
		Acenaphthene	mg/kg	0.1	4.2	<0.1	4	105
		Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	4.5	0.1	4	109

19/6/2020 Page 18 of 22

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201966.004	Anthracene	mg/kg	0.1	4.4	<0.1	4	109
		Fluoranthene	mg/kg	0.1	4.7	0.2	4	114
		Pyrene	mg/kg	0.1	4.8	0.2	4	116
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
		Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(a)pyrene	mg/kg	0.1	4.0	<0.1	4	99
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.0</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.0	<0.2	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.2</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.2	<0.3	-	-
		Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.1</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.1	<0.2	-	-
		Total PAH (18)	mg/kg	0.8	35	<0.8	-	-
	Surro	ogates d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	82
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	79
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	75

PCBs in Soil

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201966.004		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	99
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	101

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201985.004	Arsenic, As	mg/kg	1	58	5	50	105
		Cadmium, Cd	mg/kg	0.3	46	<0.3	50	92
		Chromium, Cr	mg/kg	0.5	56	2.8	50	106
		Copper, Cu	mg/kg	0.5	63	12	50	102
		Nickel, Ni	mg/kg	0.5	53	<0.5	50	106
		Lead, Pb	mg/kg	1	86	37	50	97
		Zinc, Zn	mg/kg	2	66	13	50	105

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201966.004		TRH C10-C14	mg/kg	20	36	<20	40	90
			TRH C15-C28	mg/kg	45	<45	<45	40	85
			TRH C29-C36	mg/kg	45	<45	<45	40	75
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	36	<25	40	90
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	36	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	83
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201964.004	Monocyclic	Benzene	mg/kg	0.1	3.6	<0.1	5	72
		Aromatic	Toluene	mg/kg	0.1	3.7	<0.1	5	74
			Ethylbenzene	mg/kg	0.1	3.7	<0.1	5	74
			m/p-xylene	mg/kg	0.2	7.6	<0.2	10	76
			o-xylene	mg/kg	0.1	3.8	<0.1	5	75

19/6/2020 Page 19 of 22

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207473.001	LB201964.004	Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.4	10.8	10	104
			d8-toluene (Surrogate)	mg/kg	-	10.5	10.5	10	105
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.9	9.5	10	89
		Totals	Total Xylenes	mg/kg	0.3	11	<0.3	-	-
			Total BTEX	mg/kg	0.6	22	<0.6	-	-

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Volaule Feu Oleul	Volatile Petroleum nydrocalibons in Soli									
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%	
SE207473.001	LB201964.004		TRH C6-C10	mg/kg	25	68	<25	92.5	74	
			TRH C6-C9	mg/kg	20	63	<20	80	79	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.4	10.8	10	104	
			d8-toluene (Surrogate)	mg/kg	-	10.5	10.5	10	105	
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.9	9.5	-	89	
		VPH F	Benzene (F0)	mg/kg	0.1	3.6	<0.1	-	-	
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	46	<25	62.5	73	

19/6/2020 Page 20 of 22

MATRIX SPIKE DUPLICATES

SE207473 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

19/6/2020 Page 21 of 22

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

19/6/2020 Page 22 of 22

ANALYTICAL REPORT

Email

Date Received

CLIENT DETAILS -

LABORATORY DETAILS

Emily Scanlon Contact EI AUSTRALIA

Client **SUITE 6.01** Address

55 MILLER STREET

PYRMONT NSW 2009

61 2 9516 0722 Telephone

Facsimile (Not specified)

Email emily.scanlon@eiaustralia.com.au

E24716 15 Jubilee Ave, Warriewood NSW Project E24716 Order Number

12 Samples

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16. 33 Maddox St Address

Alexandria NSW 2015

+61 2 8594 0400

12 Jun 2020

Telephone Facsimile +61 2 8594 0499

au.environmental.sydney@sgs.com

SGS Reference SE207473 R0

19 Jun 2020 Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Kamrul AHSAN Senior Chemist Ly Kim HA

Organic Section Head

kmln

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

19/06/2020

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Page 1 of 3

ANALYTICAL REPORT

RESULTS Method AN602

Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE207473.001	TP1_0.1-0.2	Soil	82g Sand, Soil	11 Jun 2020	No Asbestos Found	<0.01
SE207473.002	TP2_0.4-0.5	Soil	120g Sand	11 Jun 2020	No Asbestos Found	<0.01
SE207473.003	TP3_0.1-0.2	Soil	125g Sand, Soil, Rocks	11 Jun 2020	No Asbestos Found	<0.01
SE207473.005	TP4_0.1-0.2	Soil	138g Sand, Rocks	11 Jun 2020	No Asbestos Found	<0.01
SE207473.006	TP5_0.1-0.2	Soil	77g Sand, Soil, Rocks	11 Jun 2020	No Asbestos Found	<0.01
SE207473.007	TP6_0.2-0.3	Soil	84g Sand, Soil, Rocks, Plant matter	11 Jun 2020	No Asbestos Found Organic Fibres Detected	<0.01
SE207473.008	BH1_0.1-0.2	Soil	371g Clay, Sand, Soil	11 Jun 2020	No Asbestos Found	<0.01
SE207473.010	BH2_0.1-0.2	Soil	168g Sand, Soil, Rocks	11 Jun 2020	No Asbestos Found	<0.01
SE207473.011	BH3M_0.3-0.4	Soil	178g Sand, Rocks	11 Jun 2020	No Asbestos Found	<0.01
SE207473.012	BH4M_0.3-0.4	Soil	187g Sand, Rocks	11 Jun 2020	No Asbestos Found	<0.01
SE207473.013	BH5M_0.1-0.2	Soil	109g Sand, Soil, Rocks	11 Jun 2020	No Asbestos Found	<0.01
SE207473.015	BH6_0.1-0.2	Soil	129g Clay, Sand, Soil, Rocks	11 Jun 2020	No Asbestos Found Organic Fibres Detected	<0.01

19/06/2020 Page 2 of 3

SE207473 R0

METHOD SUMMARY

METHOD -

METHODOLOGY SUMMARY

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.

AN602

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602

The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg; and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

Amosite - Brown Asbestos NA - Not Analysed
Chrysotile - White Asbestos LNR - Listed, Not Required

Crocidolite - Blue Asbestos * - NATA accreditation does not cover the performance of this service .

Amphiboles - Amosite and/or Crocidolite ** - Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining.

Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining.

Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

19/06/2020 Page 3 of 3

ANALYTICAL REPORT

CLIENT DETAILS -

LABORATORY DETAILS

Date Reported

22/6/2020

Emily Scanlon Huong Crawford Contact Manager

EI AUSTRALIA SGS Alexandria Environmental Client Laboratory Address **SUITE 6.01** Address Unit 16, 33 Maddox St

55 MILLER STREET Alexandria NSW 2015 **PYRMONT NSW 2009**

61 2 9516 0722 +61 2 8594 0400 Telephone Telephone Facsimile (Not specified) Facsimile +61 2 8594 0499

Email emily.scanlon@eiaustralia.com.au Email au.environmental.sydney@sgs.com

Project E24716 15 Jubilee Ave, Warriewood NSW SGS Reference SE207473A R0 E24716 15/6/2020 Order Number Date Received

COMMENTS

Samples

26

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG

Metals/Inorganics Team Leader

Field pH for Acid Sulphate Soil [AN104] Tested: 19/6/2020

			TP2_0.4-0.5	ASS_TP2_1.0	ASS_TP2_2.0	TP4_0.4-0.5	ASS_TP6_1.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							11/6/2020
PARAMETER	UOM	LOR	SE207473A.002	SE207473A.020	SE207473A.021	SE207473A.022	SE207473A.023
pHf	pH Units	-	6.7	6.0	4.8	4.9	5.5
pHfox	pH Units	-	5.8	5.5	5.0	4.9	5.5
Reaction*	No unit	-	XX	XX	XX	XX	XX
pH Difference*	pH Units	-10	0.9	0.6	-0.1	0.0	0.1

			ASS_TP6_1.5	ASS_TP6_2.0
			SOIL - 11/6/2020	SOIL - 11/6/2020
PARAMETER	UOM	LOR	SE207473A.024	SE207473A.025
pHf	pH Units	-	4.7	4.7
pHfox	pH Units	-	5.2	4.9
Reaction*	No unit	-	XX	XX
pH Difference*	pH Units	-10	-0.5	-0.2

22/06/2020 Page 2 of 3

METHOD SUMMARY

SE207473A R0

METHOD _

METHODOLOGY SUMMARY _

AN104

AN104

pHF is determined on an extract of approximately 2g of as received sample in approximately 10 mL of deionised water with pH determined after standing 30 minutes.

pHFox is determined on an extract of approximately 2g of as received sample with a few mLs of 30% hydrogen peroxide (adjusted to pH 4.5 to 5.5) with the extract reaction being rated from slight to extreme, with pH determined after reaction is complete and extract has cooled. Referenced to ASS Laboratory Methods Guidelines, method 23Af-Bf. 2004.

X Slight ReactionXX Moderate ReactionXXX Strong/High Reaction

XXXX Extreme/Vigorous Reaction (gas evolution and heat generation)

FOOTNOTES

 NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here; www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

22/06/2020 Page 3 of 3

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS ______ LABORATORY DETAILS _

Contact Emily Scanlon Manager Huong Crawford

Client El AUSTRALIA Laboratory SGS Alexandria Environmental
Address SUITE 6.01 Address Unit 16, 33 Maddox St

55 MILLER STREET Alexandria NSW 2015 PYRMONT NSW 2009

 Telephone
 61 2 9516 0722
 Telephone
 +61 2 8594 0400

 Facsimile
 (Not specified)
 Facsimile
 +61 2 8594 0499

Email emily.scanlon@eiaustralia.com.au Email au.environmental.sydney@sgs.com

Project E24716 15 Jubilee Ave, Warriewood NSW SGS Reference SE207473A R0

 Order Number
 E24716
 Date Received
 15 Jun 2020

 Samples
 26
 Date Reported
 22 Jun 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Samples clearly labelled Yes Complete documentation received Yes Sample container provider SGS Sample cooling method None Samples received in correct containers Sample counts by matrix 7 Soil Yes 15/6/2020 Type of documentation received COC Date documentation received Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 14.3°C Sufficient sample for analysis Yes Turnaround time requested Standard

SGS Australia Pty Ltd ABN 44 000 964 278

22/6/2020

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Field pH for Acid Sulphate Soil Method: ME-(AU)-[ENV]AN104

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP2_0.4-0.5	SE207473A.002	LB202350	11 Jun 2020	15 Jun 2020	09 Jul 2020	19 Jun 2020	09 Jul 2020	19 Jun 2020
ASS_TP2_1.0	SE207473A.020	LB202350	11 Jun 2020	15 Jun 2020	09 Jul 2020	19 Jun 2020	09 Jul 2020	19 Jun 2020
ASS_TP2_2.0	SE207473A.021	LB202350	11 Jun 2020	15 Jun 2020	09 Jul 2020	19 Jun 2020	09 Jul 2020	19 Jun 2020
TP4_0.4-0.5	SE207473A.022	LB202350	11 Jun 2020	15 Jun 2020	09 Jul 2020	19 Jun 2020	09 Jul 2020	19 Jun 2020
ASS_TP6_1.0	SE207473A.023	LB202350	11 Jun 2020	15 Jun 2020	09 Jul 2020	19 Jun 2020	09 Jul 2020	19 Jun 2020
ASS_TP6_1.5	SE207473A.024	LB202350	11 Jun 2020	15 Jun 2020	09 Jul 2020	19 Jun 2020	09 Jul 2020	19 Jun 2020
ASS_TP6_2.0	SE207473A.025	LB202350	11 Jun 2020	15 Jun 2020	09 Jul 2020	19 Jun 2020	09 Jul 2020	19 Jun 2020

22/6/2020 Page 2 of 9

SE207473A R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

22/6/2020 Page 3 of 9

SE207473A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

No method blanks were required for this job.

22/6/2020 Page 4 of 9

SE207473A R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Field pH for Acid Sulphate Soil Method: ME-(AU)-[ENV]AN104

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207637.005	LB202350.015	pHf	pH Units	-	7.326	7.441	30	2
		pHfox	pH Units	-	6.344	6.42	30	1

22/6/2020 Page 5 of 9

LABORATORY CONTROL SAMPLES

SE207473A R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number Parameter Units LOR

22/6/2020 Page 6 of 9

MATRIX SPIKES

SE207473A R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

22/6/2020 Page 7 of 9

MATRIX SPIKE DUPLICATES

SE207473A R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

22/6/2020 Page 8 of 9

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

22/6/2020 Page 9 of 9

ANALYTICAL REPORT

CLIENT DETAILS -

LABORATORY DETAILS

Laboratory

Address

Contact Emily Scanlon
Client EI AUSTRALIA

Address SUITE 6.01

55 MILLER STREET PYRMONT NSW 2009 Manager Huong Crawford

SGS Alexandria Environmental

Unit 16, 33 Maddox St Alexandria NSW 2015

61 2 9516 0722 Telephone +61 2 8594 0400 (Not specified) Facsimile +61 2 8594 0499

emily.scanlon@eiaustralia.com.au Email au.environmental.sydney@sgs.com

ProjectE24716 15 Jubilee Ave Warriewood NSWSGS ReferenceSE207689 R0Order NumberE24716Date Received18/6/2020Samples7Date Reported23/6/2020

COMMENTS

Telephone

Facsimile

Email

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

PAH - The Limit of Reporting (LOR) has been raised due to interferences from the sample matrix.

SIGNATORIES

Dong LIANG

Metals/Inorganics Team Leader

Ly Kim HA

Organic Section Head

kmln

Shane MCDERMOTT

Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

Member of the SGS Group

VOCs in Water [AN433] Tested: 22/6/2020

			GW_BH3M-1	GW_BH4M-1	GW_BH5M-1	GW_QD-1	GW_QR-1
			WATER	WATER	WATER	WATER	WATER
			-				-
DADAMETED		1.00	18/6/2020	18/6/2020	18/6/2020	18/6/2020	18/6/2020
PARAMETER Benzene	UOM μg/L	LOR 0.5	SE207689.001 <0.5	SE207689.002 <0.5	SE207689.003 <0.5	SE207689.004 <0.5	SE207689.005 <0.5
Toluene	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	μg/L	1	<1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	μg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	μg/L	3	<3	<3	<3	<3	<3
Naphthalene	μg/L	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	<5	-	-
Chloromethane	μg/L	5	<5	<5	<5	-	-
Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	<0.3	<0.3	-	-
Bromomethane	μg/L	10	<10	<10	<10	-	-
Chloroethane	μg/L	5	<5	<5	<5	-	-
Trichlorofluoromethane	μg/L	1	<1	<1	<1	-	-
Acetone (2-propanone)	μg/L	10	<10	<10	<10	-	-
lodomethane	μg/L	5	<5	<5	<5	-	-
1,1-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Acrylonitrile	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	<5	-	-
Allyl chloride	μg/L	2	<2	<2	<2	-	-
Carbon disulfide	μg/L	2	<2	<2	<2	-	-
trans-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
MtBE (Methyl-tert-butyl ether)	μg/L	2	<2	<2	<2	-	-
1,1-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Vinyl acetate	μg/L	10	<10	<10	<10	-	-
MEK (2-butanone)	μg/L	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromochloromethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Chloroform (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon tetrachloride	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromomethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
2-nitropropane	μg/L	100	<100	<100	<100	-	-
Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
MIBK (4-methyl-2-pentanone)	μg/L	5	< 5	<5	<5	-	-
cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
2-hexanone (MBK)	μg/L	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene	μg/L	1	<1	<1	<1	-	-

23/06/2020 Page 2 of 13

SE207689 R0

VOCs in Water [AN433] Tested: 22/6/2020 (continued)

			GW BH3M-1	GW BH4M-1	GW BH5M-1	GW_QD-1	GW_QR-1
			GW_BH3WI-1	GVV_BH4IVI-1	GW_BH3WI-1	GW_QD-1	GW_QR-1
			WATER	WATER	WATER	WATER	WATER
			18/6/2020	18/6/2020	18/6/2020	18/6/2020	18/6/2020
PARAMETER	UOM	LOR	SE207689.001	SE207689.002	SE207689.003	SE207689.004	SE207689.005
Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	μg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	μg/L	10	<10	<10	<10	-	-

23/06/2020 Page 3 of 13

VOCs in Water [AN433] Tested: 22/6/2020 (continued)

			GW_Trip Blank-1	GW_Trip Spike-1
			WATER	WATER
			18/6/2020	18/6/2020
PARAMETER	UOM	LOR	SE207689.006	SE207689.007
Benzene	μg/L	0.5	<0.5	[100%]
Toluene	μg/L	0.5	<0.5	[100%]
Ethylbenzene	μg/L	0.5	<0.5	[100%]
m/p-xylene	μg/L	1	<1	[101%]
o-xylene o-xylene	μg/L	0.5	<0.5	[101%]
Total Xylenes	μg/L	1.5	<1.5	-
Total BTEX	μg/L	3	<3	-
Naphthalene	μg/L	0.5	<0.5	-
Dichlorodifluoromethane (CFC-12)	μg/L	5	-	-
Chloromethane	μg/L	5	-	-
Vinyl chloride (Chloroethene)	μg/L	0.3	-	-
Bromomethane	μg/L	10	-	-
Chloroethane	μg/L	5	-	-
Trichlorofluoromethane	μg/L	1	-	-
Acetone (2-propanone)	μg/L	10	-	-
lodomethane	μg/L	5	-	-
1,1-dichloroethene	μg/L	0.5	-	-
Acrylonitrile	μg/L	0.5	-	-
Dichloromethane (Methylene chloride)	μg/L	5	-	-
Allyl chloride	μg/L	2	-	-
Carbon disulfide	μg/L	2	-	-
trans-1,2-dichloroethene	μg/L	0.5	-	-
MtBE (Methyl-tert-butyl ether)	μg/L	2	-	-
1,1-dichloroethane	μg/L	0.5	-	-
Vinyl acetate	μg/L	10	-	-
MEK (2-butanone)	μg/L	10	-	-
cis-1,2-dichloroethene	μg/L	0.5	-	-
Bromochloromethane	μg/L	0.5	-	-
Chloroform (THM)	μg/L	0.5	-	-
2,2-dichloropropane	μg/L	0.5	-	-
1,2-dichloroethane	μg/L	0.5	-	-
1,1,1-trichloroethane	μg/L	0.5	-	-
1,1-dichloropropene	μg/L	0.5	-	-
Carbon tetrachloride	μg/L	0.5	-	-
Dibromomethane	μg/L	0.5	-	-
1,2-dichloropropane	μg/L	0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	-	-
2-nitropropane	μg/L	100	-	-
Bromodichloromethane (THM)	μg/L	0.5	-	-
MIBK (4-methyl-2-pentanone)	μg/L	5	-	-
cis-1,3-dichloropropene	μg/L	0.5	-	-
trans-1,3-dichloropropene	μg/L	0.5	-	-
1,1,2-trichloroethane	μg/L	0.5	-	-
1,3-dichloropropane	μg/L	0.5	-	-
Dibromochloromethane (THM)	μg/L	0.5	-	-
2-hexanone (MBK)	μg/L	5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	-	-
1,1,1,2-tetrachloroethane	μg/L	0.5	-	-
Chlorobenzene	μg/L	0.5	-	-
Bromoform (THM)	µg/L	0.5	-	-
cis-1,4-dichloro-2-butene	μg/L	1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	-	-
1,1,2,2-tetrachloroethane	μg/L	0.5	-	-
1,2,3-trichloropropane	μg/L	0.5	-	-
trans-1,4-dichloro-2-butene	μg/L	1	-	-

23/06/2020 Page 4 of 13

SE207689 R0

VOCs in Water [AN433] Tested: 22/6/2020 (continued)

			GW_Trip Blank-1	GW_Trip Spike-1
			GW_IIIP BIAIIK-1	GW_IIIp Spike-I
			WATER	WATER
			18/6/2020	18/6/2020
PARAMETER	UOM	LOR	SE207689.006	SE207689.007
Isopropylbenzene (Cumene)	μg/L	0.5	-	-
Bromobenzene	μg/L	0.5	-	-
n-propylbenzene	μg/L	0.5	-	-
2-chlorotoluene	μg/L	0.5	-	-
4-chlorotoluene	μg/L	0.5	-	-
1,3,5-trimethylbenzene	μg/L	0.5	-	-
tert-butylbenzene	μg/L	0.5	-	-
1,2,4-trimethylbenzene	μg/L	0.5	-	-
sec-butylbenzene	μg/L	0.5	-	-
1,3-dichlorobenzene	μg/L	0.5	-	-
1,4-dichlorobenzene	μg/L	0.3	-	-
p-isopropyltoluene	μg/L	0.5	-	-
1,2-dichlorobenzene	μg/L	0.5	-	-
n-butylbenzene	μg/L	0.5	-	-
1,2-dibromo-3-chloropropane	μg/L	0.5	-	-
1,2,4-trichlorobenzene	μg/L	0.5	-	-
Hexachlorobutadiene	μg/L	0.5	-	-
1,2,3-trichlorobenzene	μg/L	0.5	-	-
Total VOC	μg/L	10	-	-

23/06/2020 Page 5 of 13

SE207689 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 22/6/2020

			GW_BH3M-1	GW_BH4M-1	GW_BH5M-1	GW_QD-1	GW_QR-1
			WATER	WATER	WATER	WATER	WATER
			18/6/2020	18/6/2020	18/6/2020	18/6/2020	18/6/2020
PARAMETER	UOM	LOR	SE207689.001	SE207689.002	SE207689.003	SE207689.004	SE207689.005
TRH C6-C9	μg/L	40	<40	<40	<40	<40	<40
Benzene (F0)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	μg/L	50	<50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	<50	<50	<50

23/06/2020 Page 6 of 13

SE207689 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 22/6/2020

			GW_BH3M-1	GW_BH4M-1	GW_BH5M-1	GW_QD-1	GW_QR-1
			WATER	WATER	WATER	WATER	WATER
			18/6/2020	18/6/2020	18/6/2020	18/6/2020	18/6/2020
PARAMETER	UOM	LOR	SE207689.001	SE207689.002	SE207689.003	SE207689.004	SE207689.005
TRH C10-C14	μg/L	50	<50	<50	<50	<50	<50
TRH C15-C28	μg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	μg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	μg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	μg/L	60	<60	<60	<60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<500	<500	<500	<500	<500
TRH C10-C40	μg/L	320	<320	<320	<320	<320	<320

23/06/2020 Page 7 of 13

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 22/6/2020

			GW BH3M-1	GW BH4M-1	GW BH5M-1
			GVV_BH3IVI-1	GVV_BH4IVI-1	Gw_Bnaw-1
			WATER	WATER	WATER
			18/6/2020	18/6/2020	18/6/2020
PARAMETER	UOM	LOR	SE207689.001	SE207689.002	SE207689.003
Naphthalene	μg/L	0.1	<0.2↑	<0.5↑	<0.3↑
2-methylnaphthalene	μg/L	0.1	<0.1	0.3	0.3
1-methylnaphthalene	μg/L	0.1	<0.1	0.3	0.2
Acenaphthylene	μg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	μg/L	1	<1	1	1

23/06/2020 Page 8 of 13

SE207689 R0

Total Phenolics in Water [AN289] Tested: 22/6/2020

			GW_BH3M-1	GW_BH4M-1	GW_BH5M-1
			WATER	WATER	WATER
					-
			18/6/2020	18/6/2020	18/6/2020
PARAMETER	UOM	LOR	SE207689.001	SE207689.002	SE207689.003
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01

23/06/2020 Page 9 of 13

SE207689 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 22/6/2020

			GW_BH3M-1	GW_BH4M-1	GW_BH5M-1	GW_QD-1	GW_QR-1
			WATER	WATER	WATER	WATER	WATER
			- 18/6/2020	- 18/6/2020	- 18/6/2020	- 18/6/2020	- 18/6/2020
PARAMETER	UOM	LOR	SE207689.001	SE207689.002	SE207689.003	SE207689.004	SE207689.005
Arsenic, As	μg/L	1	<1	<1	<1	<1	<1
Cadmium, Cd	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium, Cr	μg/L	1	<1	<1	<1	<1	<1
Copper, Cu	μg/L	1	5	16	15	3	<1
Lead, Pb	μg/L	1	<1	<1	<1	<1	<1
Nickel, Ni	μg/L	1	2	2	3	1	<1
Zinc, Zn	μg/L	5	18	25	21	17	<5

23/06/2020 Page 10 of 13

SE207689 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 22/6/2020

			GW_BH3M-1	GW_BH4M-1	GW_BH5M-1	GW_QD-1	GW_QR-1
			WATER	WATER	WATER	WATER	WATER
							-
			18/6/2020	18/6/2020	18/6/2020	18/6/2020	18/6/2020
PARAMETER	UOM	LOR	SE207689.001	SE207689.002	SE207689.003	SE207689.004	SE207689.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

23/06/2020 Page 11 of 13

AN311(Perth)/AN312

AN433

METHOD SUMMARY

SE207689 R0

METHOD _

ΔN020 Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B

AN289 Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete

Analyser. Reference APHA 5530 B/D.

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration

standards. Reference APHA 3112/3500.

AN318 Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent AN403

extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is

corrected for Naphthalene, the VOC data for Naphthalene is used.

AN403 Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same

method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent

solvents.

AN403 The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This

method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B,

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments AN420

and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on

USEPA 3500C and 8270D).

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass

Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed

directly. References: USEPA 5030B, 8020A, 8260.

23/06/2020 Page 12 of 13

FOOTNOTES SE207689 R0

FOOTNOTES

* NATA accreditation does not cover the performance of this service.

* Indicative data, theoretical holding time exceeded

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here; www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

23/06/2020 Page 13 of 13

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS _____ LABORATORY DETAILS _

Contact Emily Scanlon Manager Huong Crawford

Client El AUSTRALIA Laboratory SGS Alexandria Environmental

Address SUITE 6.01 Address Unit 16, 33 Maddox St 55 MILLER STREET Alexandria NSW 2015 PYRMONT NSW 2009

 Telephone
 61 2 9516 0722
 Telephone
 +61 2 8594 0400

 Facsimile
 (Not specified)
 Facsimile
 +61 2 8594 0499

Email emily.scanlon@eiaustralia.com.au Email au.environmental.sydney@sgs.com

Project E24716 15 Jubilee Ave Warriewood NSW SGS Reference SE207689 R0
Order Number E24716 Date Received 18 Jun 2020

COMMENTS _____

Samples

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

Date Reported

The data relating to sampling was taken from the Chain of Custody document.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY —

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

23 Jun 2020

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Wate	r						Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH3M-1	SE207689.001	LB202404	18 Jun 2020	18 Jun 2020	16 Jul 2020	22 Jun 2020	16 Jul 2020	23 Jun 2020
GW_BH4M-1	SE207689.002	LB202404	18 Jun 2020	18 Jun 2020	16 Jul 2020	22 Jun 2020	16 Jul 2020	23 Jun 2020
GW_BH5M-1	SE207689.003	LB202404	18 Jun 2020	18 Jun 2020	16 Jul 2020	22 Jun 2020	16 Jul 2020	23 Jun 2020
GW_QD-1	SE207689.004	LB202404	18 Jun 2020	18 Jun 2020	16 Jul 2020	22 Jun 2020	16 Jul 2020	23 Jun 2020
GW_QR-1	SE207689.005	LB202404	18 Jun 2020	18 Jun 2020	16 Jul 2020	22 Jun 2020	16 Jul 2020	23 Jun 2020
PAH (Polynuclear Aromatic	Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH3M-1	SE207689.001	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_BH4M-1	SE207689.002	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_BH5M-1	SE207689.003	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_QD-1	SE207689.004	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_QR-1	SE207689.005	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
Total Phenolics in Water							Method:	ME-(AU)-[ENV]AN289
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH3M-1	SE207689.001	LB202407	18 Jun 2020	18 Jun 2020	16 Jul 2020	22 Jun 2020	16 Jul 2020	22 Jun 2020
GW_BH4M-1	SE207689.002	LB202407	18 Jun 2020	18 Jun 2020	16 Jul 2020	22 Jun 2020	16 Jul 2020	22 Jun 2020
GW_BH5M-1	SE207689.003	LB202407	18 Jun 2020	18 Jun 2020	16 Jul 2020	22 Jun 2020	16 Jul 2020	22 Jun 2020
Trace Metals (Dissolved) in								ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW BH3M-1	SE207689.001	LB202424	18 Jun 2020	18 Jun 2020	15 Dec 2020	22 Jun 2020	15 Dec 2020	23 Jun 2020
GW_BH4M-1	SE207689.002	LB202424	18 Jun 2020	18 Jun 2020	15 Dec 2020	22 Jun 2020	15 Dec 2020	23 Jun 2020
GW_BH5M-1	SE207689.003	LB202424		18 Jun 2020	15 Dec 2020		15 Dec 2020	23 Jun 2020
GW_QD-1	SE207689.004	LB202424	18 Jun 2020 18 Jun 2020	18 Jun 2020	15 Dec 2020	22 Jun 2020 22 Jun 2020	15 Dec 2020	23 Jun 2020
GW_QR-1	SE207689.005	LB202424	18 Jun 2020	18 Jun 2020	15 Dec 2020	22 Jun 2020	15 Dec 2020	23 Jun 2020
TRH (Total Recoverable Hyd		LBZ0Z4Z4	10 0011 2020	10 0011 2020	10 Dec 2020	22 0011 2020		ME-(AU)-[ENV]AN403
		OC Bef	Commissi	Dessived	Futuration Dua	Evivoeted		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH3M-1	SE207689.001	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_BH4M-1	SE207689.002	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_BH5M-1	SE207689.003	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_QD-1	SE207689.004	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_QR-1	SE207689.005	LB202403	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
VOCs in Water								ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH3M-1	SE207689.001	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_BH4M-1	SE207689.002	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_BH5M-1	SE207689.003	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_QD-1	SE207689.004	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_QR-1	SE207689.005	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_Trip Blank-1	SE207689.006	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_Trip Spike-1	SE207689.007	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
Volatile Petroleum Hydrocar	bons in Water						Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
GW_BH3M-1	SE207689.001	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_BH4M-1	SE207689.002	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_BH5M-1	SE207689.003	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_QD-1	SE207689.004	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_QR-1	SE207689.005	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_Trip Blank-1	SE207689.006	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020
GW_Trip Spike-1	SE207689.007	LB202434	18 Jun 2020	18 Jun 2020	25 Jun 2020	22 Jun 2020	01 Aug 2020	23 Jun 2020

23/6/2020 Page 2 of 12

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	GW_BH3M-1	SE207689.001	%	40 - 130%	56
	GW_BH4M-1	SE207689.002	%	40 - 130%	58
	GW_BH5M-1	SE207689.003	%	40 - 130%	68
d14-p-terphenyl (Surrogate)	GW_BH3M-1	SE207689.001	%	40 - 130%	104
	GW_BH4M-1	SE207689.002	%	40 - 130%	118
	GW_BH5M-1	SE207689.003	%	40 - 130%	100
d5-nitrobenzene (Surrogate)	GW_BH3M-1	SE207689.001	%	40 - 130%	62
	GW_BH4M-1	SE207689.002	%	40 - 130%	52
	GW BH5M-1	SE207689.003	%	40 - 130%	66

VOCs in Water

Method: ME-(AU)-[ENV]AN433

					- (.c) [] ac
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	GW_BH3M-1	SE207689.001	%	40 - 130%	102
	GW_BH4M-1	SE207689.002	%	40 - 130%	103
	GW_BH5M-1	SE207689.003	%	40 - 130%	103
	GW_QD-1	SE207689.004	%	40 - 130%	104
	GW_QR-1	SE207689.005	%	40 - 130%	103
	GW_Trip Blank-1	SE207689.006	%	40 - 130%	101
	GW_Trip Spike-1	SE207689.007	%	40 - 130%	97
d4-1,2-dichloroethane (Surrogate)	GW_BH3M-1	SE207689.001	%	40 - 130%	99
	GW_BH4M-1	SE207689.002	%	40 - 130%	99
	GW_BH5M-1	SE207689.003	%	40 - 130%	99
	GW_QD-1	SE207689.004	%	40 - 130%	100
	GW_QR-1	SE207689.005	%	40 - 130%	99
	GW_Trip Blank-1	SE207689.006	%	40 - 130%	98
	GW_Trip Spike-1	SE207689.007	%	40 - 130%	101
d8-toluene (Surrogate)	GW_BH3M-1	SE207689.001	%	40 - 130%	99
	GW_BH4M-1	SE207689.002	%	40 - 130%	99
	GW_BH5M-1	SE207689.003	%	40 - 130%	99
	GW_QD-1	SE207689.004	%	40 - 130%	99
	GW_QR-1	SE207689.005	%	40 - 130%	99
	GW_Trip Blank-1	SE207689.006	%	40 - 130%	98
	GW_Trip Spike-1	SE207689.007	%	40 - 130%	101

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	GW_BH3M-1	SE207689.001	%	40 - 130%	102
	GW_BH4M-1	SE207689.002	%	40 - 130%	103
	GW_BH5M-1	SE207689.003	%	40 - 130%	103
	GW_QD-1	SE207689.004	%	40 - 130%	104
	GW_QR-1	SE207689.005	%	40 - 130%	103
d4-1,2-dichloroethane (Surrogate)	GW_BH3M-1	SE207689.001	%	60 - 130%	99
	GW_BH4M-1	SE207689.002	%	60 - 130%	99
	GW_BH5M-1	SE207689.003	%	60 - 130%	99
	GW_QD-1	SE207689.004	%	60 - 130%	100
	GW_QR-1	SE207689.005	%	60 - 130%	99
d8-toluene (Surrogate)	GW_BH3M-1	SE207689.001	%	40 - 130%	99
	GW_BH4M-1	SE207689.002	%	40 - 130%	99
	GW_BH5M-1	SE207689.003	%	40 - 130%	99
	GW_QD-1	SE207689.004	%	40 - 130%	99
	GW_QR-1	SE207689.005	%	40 - 130%	99

23/6/2020 Page 3 of 12

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)	-[ENV]AN311(Perth)/AN312
Orange Neurolean	D	I be to	LOD	Desult

Sample Number	Parameter	Units	LOR	Result
LB202404.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB202403.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	68
	2-fluorobiphenyl (Surrogate)	%	-	74
	d14-p-terphenyl (Surrogate)	%	-	96

Total Phenolics in Water

Method: ME-(AU)-[ENV]AN289	
----------------------------	--

Sample Number	Falalletel	Office	LOK	Result
LB202407.001	Total Phenols	mg/L	0.01	<0.01

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB202424.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB202403.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TRH C37-C40	μg/L	200	<200

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB202434.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5
		Chloromethane	μg/L	5	<5
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	μg/L	5	<5
		Trichlorofluoromethane	μg/L	1	<1
		lodomethane	μg/L	5	<5

23/6/2020 Page 4 of 12

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB202434.001	Halogenated Aliphatics	1,1-dichloroethene	μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
		cis-1,2-dichloroethene	μg/L	0.5	<0.5
		Bromochloromethane	μg/L	0.5	<0.5
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	µg/L	0.5	<0.5
		1,1-dichloropropene	µg/L	0.5	<0.5
		Carbon tetrachloride		0.5	<0.5
			μg/L	0.5	<0.5
		Dibromomethane Triples at the part of the least the large triples at the part of the large triples at	μg/L		
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	μg/L	1	<1
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	μg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	μg/L	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	µg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene		0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
			μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L		
	Nitrogonous Company	n-butylbenzene	µg/L	0.5	<0.5
	Nitrogenous Compounds Oxygenated Compounds	Acrylonitrile Acetone (2-propanone)	μg/L	0.5	<0.5 <10
	Oxygenated Compounds		µg/L	10	
		MtBE (Methyl-tert-butyl ether)	μg/L	2	<2
		Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	μg/L	2	<2
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	100
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5
·	<u> </u>		·		

23/6/2020 Page 5 of 12

SE207689 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in	Water	(continued)
		(

Method: ME-(AU)-[ENV]AN433

VOCS III Water (conti	inuea)			Men	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB202434.001	Trihalomethanes	Bromoform (THM)	μg/L	0.5	<0.5
Volatile Petroleum Hy	ydrocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB202434.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	100

23/6/2020 Page 6 of 12

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207693.001	LB202404.014	Mercury	μg/L	0.0001	0	-0.02	200	0
SE207724.038	LB202404.018	Mercury	μg/L	0.0001	-0.006	-0.004	200	0

Total Phenolics in Water

Method: ME-(AU)-[ENV]AN289

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207599.005	LB202407.014	Total Phenols	mg/L	0.01	0.00625	0.0092	200	0

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207693.001	LB202424.014	Arsenic, As	μg/L	1	1.02	1.032	112	1
		Cadmium, Cd	μg/L	0.1	-0.004	-0.004	200	0
		Chromium, Cr	μg/L	1	0.651	0.618	173	0
		Copper, Cu	μg/L	1	0.818	0.822	137	0
		Lead, Pb	μg/L	1	-0.003	0.002	200	0
		Nickel, Ni	μg/L	1	2.608	2.476	54	5
		Zinc, Zn	μg/L	5	2.426	1.852	200	0
SE207730.004	LB202424.028	Arsenic, As	μg/L	1	2.487	2.351	56	6
		Cadmium, Cd	μg/L	0.1	0.122	0.132	94	8
		Chromium, Cr	μg/L	1	0.791	0.778	142	0
		Copper, Cu	μg/L	1	0.097	0.092	200	0
		Lead, Pb	μg/L	1	0.055	0.07	200	0
		Nickel, Ni	μg/L	1	15.21	15.271	22	0
		Zinc, Zn	μg/L	5	43.193	44.738	26	4
SE207730.005	LB202424.029	Arsenic, As	μg/L	1	-0.015	-0.016	200	0
		Cadmium, Cd	μg/L	0.1	0	0.001	200	0
		Chromium, Cr	μg/L	1	0.029	0.008	200	0
		Copper, Cu	μg/L	1	-0.008	-0.064	200	0
		Lead, Pb	μg/L	1	0.085	0.004	200	0
		Nickel, Ni	μg/L	1	-0.011	0.014	200	0
		Zinc, Zn	μg/L	5	2.036	2.035	200	0

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207689.002	LB202434.013	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5	0.0012151501	200	0
			1,2-dichloropropane	μg/L	0.5	<0.5	0.0022259148	200	0
			cis-1,3-dichloropropene	μg/L	0.5	<0.5	0	200	0
			trans-1,3-dichloropropene	μg/L	0.5	<0.5	0.0088365569	200	0
			1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	0.0036475682	200	0
		Aliphatics	Chloromethane	μg/L	5	<5	0	200	0
			Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	0.0111705625	200	0
			Bromomethane	μg/L	10	<10	0.0404876532	200	0
			Chloroethane	μg/L	5	<5	0.0043438696	200	0
			Trichlorofluoromethane	μg/L	1	<1	0.0030505429	200	0
			Iodomethane	μg/L	5	<5	0.0339065832	200	0
			1,1-dichloroethene	μg/L	0.5	<0.5	0.0043302392	200	0
			Dichloromethane (Methylene chloride)	μg/L	5	<5	0	200	0
			Allyl chloride	μg/L	2	<2	0	200	0
			trans-1,2-dichloroethene	μg/L	0.5	<0.5	0.0379827116	200	0
			1,1-dichloroethane	μg/L	0.5	<0.5	0.0460921699	200	0
			cis-1,2-dichloroethene	μg/L	0.5	<0.5	0.0007611866	200	0
			Bromochloromethane	μg/L	0.5	<0.5	0	200	0
			1,2-dichloroethane	μg/L	0.5	<0.5	0.0173793646	200	0
			1,1,1-trichloroethane	μg/L	0.5	<0.5	0	200	0
			1,1-dichloropropene	μg/L	0.5	<0.5	0	200	0
			Carbon tetrachloride	μg/L	0.5	<0.5	0	200	0
			Dibromomethane	μg/L	0.5	<0.5	0	200	0
			Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5	0.0055109262	200	0

23/6/2020 Page 7 of 12

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (continued) Method: ME-(AU)-[ENV]AN433

riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E207689.002	LB202434.013	Halogenated	1,1,2-trichloroethane	μg/L	0.5	<0.5	0	200	0
		Aliphatics	1,3-dichloropropane	μg/L	0.5	<0.5	0	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	0.0029030266	200	0
			1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	0	200	0
			cis-1,4-dichloro-2-butene	μg/L	1	<1	0	200	0
			1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	0.0022125424	200	0
			1,2,3-trichloropropane	μg/L	0.5	<0.5	0	200	0
			trans-1,4-dichloro-2-butene	μg/L	1	<1	0	200	0
			1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	0	200	0
			Hexachlorobutadiene	μg/L	0.5	<0.5	0	200	0
		Halogenated	Chlorobenzene	μg/L	0.5	<0.5	0.0155090989	200	0
		Aromatics	Bromobenzene	μg/L	0.5	<0.5	0.0464521015	200	0
			2-chlorotoluene	μg/L	0.5	<0.5	0	200	0
			4-chlorotoluene	μg/L	0.5	<0.5	0	200	0
			1,3-dichlorobenzene	μg/L	0.5	<0.5	0.0081647077	200	0
			1,4-dichlorobenzene	μg/L	0.3	<0.3	0.0076447680	200	0
			1,2-dichlorobenzene	μg/L	0.5	<0.5	0.0346267370	200	0
			1,2,4-trichlorobenzene	μg/L	0.5	<0.5	0.0028372078	200	0
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	0	200	0
		Monocyclic	Benzene	μg/L	0.5	<0.5	0.0304888061	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.0650854041	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.0360366403	200	0
			m/p-xylene	μg/L	1	<1	0.1060814070	200	0
			o-xylene	μg/L	0.5	<0.5	0.0337219027	200	0
			Styrene (Vinyl benzene)	μg/L	0.5	<0.5	0.0045604311	200	0
			Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	0.0074422157	200	0
			n-propylbenzene	μg/L	0.5	<0.5	0.0030507041	200	0
			1,3,5-trimethylbenzene	μg/L	0.5	<0.5	0.0056984738	200	0
			tert-butylbenzene	μg/L	0.5	<0.5	0.0016982594	200	0
			1,2,4-trimethylbenzene	μg/L	0.5	<0.5	0.0148941383	200	0
			sec-butylbenzene	μg/L	0.5	<0.5	0	200	0
			p-isopropyltoluene	μg/L	0.5	<0.5	0.0087155150	200	0
			n-butylbenzene	μg/L	0.5	<0.5	0.0088748163	200	0
		Nitrogenous	Acrylonitrile	μg/L	0.5	<0.5	0.0124407831	200	0
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	0.4935624134	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	2	<2	0.0100218756	200	0
			Vinyl acetate	μg/L	10	<10	0.0245005669	200	0
			MEK (2-butanone)	μg/L	10	<10	0	200	0
			MIBK (4-methyl-2-pentanone)	μg/L	5	<5	0.0095701809	200	0
			2-hexanone (MBK)	μg/L	5	<5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	0.5	0.4495694576	132	6
		Sulphonated	Carbon disulfide	μg/L	2	<2	0.0124739687	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.9	9.4791970204	30	4
		ŭ	d8-toluene (Surrogate)	μg/L	-	9.9	9.5181719079	30	4
			Bromofluorobenzene (Surrogate)	μg/L		10.3	9.5819896656	30	7
		Trihalomethan	Chloroform (THM)	μg/L	0.5	<0.5	0.0558923952	200	0
		es	Bromodichloromethane (THM)	µg/L	0.5	<0.5	0.0035430374	200	0
			Dibromochloromethane (THM)	μg/L	0.5	<0.5	0.0000400074	200	0
			Bromoform (THM)	µg/L	0.5	<0.5	0	200	0

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE207689.002	LB202434.016		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	9.9	9.4791970204	30	4
			d8-toluene (Surrogate)	μg/L	-	9.9	9.5181719079	30	4
			Bromofluorobenzene (Surrogate)	μg/L	-	10.3	9.5819896656	30	7
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.0304888061	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	0	200	0

23/6/2020 Page 8 of 12

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB202403.002	Naphthalene	μg/L	0.1	29	40	60 - 140	72
	Acenaphthylene	μg/L	0.1	27	40	60 - 140	68
	Acenaphthene	μg/L	0.1	33	40	60 - 140	83
	Phenanthrene	μg/L	0.1	38	40	60 - 140	94
	Anthracene	μg/L	0.1	32	40	60 - 140	81
	Fluoranthene	μg/L	0.1	37	40	60 - 140	92
	Pyrene	μg/L	0.1	37	40	60 - 140	92
	Benzo(a)pyrene	μg/L	0.1	39	40	60 - 140	96
Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.3	0.5	40 - 130	62
	2-fluorobiphenyl (Surrogate)	μg/L		0.3	0.5	40 - 130	68
	d14-p-terphenyl (Surrogate)	μg/L	-	0.5	0.5	40 - 130	94

Total Phenolics in Water

Method	: M	E-(A	U)-[EN	VJAN289

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB202407.002	Total Phenols	mg/L	0.01	0.24	0.25	80 - 120	95

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB202424.002	Arsenic, As	μg/L	1	19	20	80 - 120	97
	Cadmium, Cd	μg/L	0.1	22	20	80 - 120	110
	Chromium, Cr	μg/L	1	22	20	80 - 120	111
	Copper, Cu	μg/L	1	22	20	80 - 120	112
	Lead, Pb	μg/L	1	21	20	80 - 120	107
	Nickel, Ni	μg/L	1	22	20	80 - 120	108
	Zinc, Zn	μg/L	5	21	20	80 - 120	103

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB202403.002		TRH C10-C14	μg/L	50	1200	1200	60 - 140	98
		TRH C15-C28	μg/L	200	1500	1200	60 - 140	121
		TRH C29-C36	μg/L	200	1300	1200	60 - 140	106
	TRH F Bands	TRH >C10-C16	μg/L	60	1300	1200	60 - 140	111
		TRH >C16-C34 (F3)	μg/L	500	1500	1200	60 - 140	126
		TRH >C34-C40 (F4)	μg/L	500	580	600	60 - 140	97

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB202434.002	Halogenated	1,1-dichloroethene	μg/L	0.5	42	45.45	60 - 140	92
	Aliphatics	1.2-dichloroethane	μg/L	0.5	51	45.45	60 - 140	112
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	50	45.45	60 - 140	110
	Halogenated	Chlorobenzene	μg/L	0.5	56	45.45	60 - 140	122
	Monocyclic	Benzene	μg/L	0.5	46	45.45	60 - 140	100
	Aromatic	Toluene	μg/L	0.5	46	45.45	60 - 140	101
		Ethylbenzene	μg/L	0.5	46	45.45	60 - 140	100
		m/p-xylene	μg/L	1	91	90.9	60 - 140	101
		o-xylene	μg/L	0.5	46	45.45	60 - 140	102
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.3	10	60 - 140	103
	-	d8-toluene (Surrogate)	μg/L	-	10.2	10	70 - 130	102
		Bromofluorobenzene (Surrogate)	μg/L	-	9.7	10	70 - 130	97
	Trihalomethan	Chloroform (THM)	ua/L	0.5	55	45.45	60 - 140	121

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

	•						•	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB202434.002		TRH C6-C10	μg/L	50	730	946.63	60 - 140	78
		TRH C6-C9	μg/L	40	630	818.71	60 - 140	78
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.3	10	60 - 140	103
		d8-toluene (Surrogate)	μg/L	-	10.2	10	70 - 130	102
		Bromofluorobenzene (Surrogate)	μg/L	-	9.7	10	70 - 130	97
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	460	639.67	60 - 140	72

23/6/2020 Page 9 of 12

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207678.001	LB202404.004	Mercury	mg/L	0.0001	0.0066	-0.024	0.008	83

Total Phenolics in Water

Method: ME-(AU)-[ENV]AN289

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207474.001	LB202407.004	Total Phenols	mg/L	0.01	0.29	0.06	0.25	93

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207678.001	LB202424.004	Arsenic, As	μg/L	1	22	0.051	20	108
		Cadmium, Cd	μg/L	0.1	23	-0.006	20	113
		Chromium, Cr	μg/L	1	22	0.02	20	108
		Copper, Cu	μg/L	1	19	-0.914	20	102
		Lead, Pb	μg/L	1	22	0.035	20	109
		Nickel, Ni	μg/L	1	19	0.083	20	97
		Zinc, Zn	μg/L	5	16	0.856	20	78

VOCs in Water

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207689.004	LB202434.017	Monocyclic	Benzene	μg/L	0.5	52	<0.5	45.45	115
		Aromatic	Toluene	μg/L	0.5	49	<0.5	45.45	107
			Ethylbenzene	μg/L	0.5	48	<0.5	45.45	105
			m/p-xylene	μg/L	1	96	<1	90.9	106
			o-xylene	μg/L	0.5	48	<0.5	45.45	105
		Polycyclic	Naphthalene	μg/L	0.5	43	<0.5	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10	10.0	-	101
			d8-toluene (Surrogate)	μg/L	-	10	9.9	-	101
			Bromofluorobenzene (Surrogate)	μg/L	-	9.5	10.4	-	95

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE207689.004	LB202434.017		TRH C6-C10	μg/L	50	0.86	<50	946.63	91
			TRH C6-C9	μg/L	40	0.74	<40	818.71	91
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	0.0	10.0	-	101
			d8-toluene (Surrogate)	μg/L	-	0.0	9.9	-	101
			Bromofluorobenzene (Surrogate)	μg/L	-	0.0	10.4	-	95
		VPH F	Benzene (F0)	μg/L	0.5	0.052	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	0.57	<50	639.67	89

23/6/2020 Page 10 of 12

MATRIX SPIKE DUPLICATES

SE207689 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

23/6/2020 Page 11 of 12

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

23/6/2020 Page 12 of 12

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 244845

Client Details	
Client	El Australia
Attention	Lab Email, Emily Scanlon
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E24716, 15 Jubilee Ave Warriewood
Number of Samples	1 soil
Date samples received	15/06/2020
Date completed instructions received	15/06/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	22/06/2020				
Date of Issue	22/06/2020				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Ken Nguyen, Reporting Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		244845-1
Your Reference	UNITS	QT1
Date Sampled		11/06/2020
Type of sample		soil
Date extracted	-	18/06/2020
Date analysed	-	19/06/2020
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	92

svTRH (C10-C40) in Soil		
Our Reference		244845-1
Your Reference	UNITS	QT1
Date Sampled		11/06/2020
Type of sample		soil
Date extracted	-	18/06/2020
Date analysed	-	19/06/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	86

Acid Extractable metals in soil				
Our Reference		244845-1		
Your Reference	UNITS	QT1		
Date Sampled		11/06/2020		
Type of sample		soil		
Date prepared	-	18/06/2020		
Date analysed	-	18/06/2020		
Arsenic	mg/kg	5		
Cadmium	mg/kg	<0.4		
Chromium	mg/kg	3		
Copper	mg/kg	6		
Lead	mg/kg	3		
Mercury	mg/kg	<0.1		
Nickel	mg/kg	<1		
Zinc	mg/kg	4		

Moisture			
Our Reference		244845-1	
Your Reference	UNITS	QT1	
Date Sampled		11/06/2020	
Type of sample		soil	
Date prepared	-	18/06/2020	
Date analysed	-	19/06/2020	
Moisture	%	12	

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CON	TROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			18/06/2020	[NT]		[NT]	[NT]	18/06/2020	
Date analysed	-			19/06/2020	[NT]		[NT]	[NT]	19/06/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	95	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	95	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	89	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	94	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	93	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	99	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	96	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	105	[NT]		[NT]	[NT]	119	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			18/06/2020	[NT]		[NT]	[NT]	18/06/2020	
Date analysed	-			18/06/2020	[NT]		[NT]	[NT]	18/06/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	104	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	104	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	84	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-020	88	[NT]		[NT]	[NT]	74	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			18/06/2020	[NT]		[NT]	[NT]	18/06/2020	
Date analysed	-			18/06/2020	[NT]		[NT]	[NT]	18/06/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	113	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	106	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	103	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	79	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	106	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	110	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 245184

Client Details	
Client	El Australia
Attention	Emily Scanlon
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E24716, 15 Jubilee Ave Warriewood
Number of Samples	1 Water
Date samples received	18/06/2020
Date completed instructions received	19/06/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	25/06/2020
Date of Issue	25/06/2020
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.
Accredited for compliance with IS	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Dragana Tomas, Senior Chemist Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		245184-1
Your Reference	UNITS	GW-QT-1
Date Sampled		18/06/2020
Type of sample		Water
Date extracted	-	22/06/2020
Date analysed	-	24/06/2020
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	104
Surrogate toluene-d8	%	98
Surrogate 4-BFB	%	102

svTRH (C10-C40) in Water		
Our Reference		245184-1
Your Reference	UNITS	GW-QT-1
Date Sampled		18/06/2020
Type of sample		Water
Date extracted	-	22/06/2020
Date analysed	-	22/06/2020
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Surrogate o-Terphenyl	%	112

PAHs in Water		
Our Reference		245184-1
Your Reference	UNITS	GW-QT-1
Date Sampled		18/06/2020
Type of sample		Water
Date extracted	-	22/06/2020
Date analysed	-	22/06/2020
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b,j+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	μg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	90

HM in water - dissolved		
Our Reference		245184-1
Your Reference	UNITS	GW-QT-1
Date Sampled		18/06/2020
Type of sample		Water
Date prepared	-	22/06/2020
Date analysed	-	22/06/2020
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	7
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	2
Zinc-Dissolved	μg/L	16

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	plicate		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]			
Date extracted	-			22/06/2020	[NT]		[NT]	[NT]	22/06/2020				
Date analysed	-			24/06/2020	[NT]		[NT]	[NT]	24/06/2020				
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	108				
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	108				
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	103				
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	101				
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	108				
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	114				
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	112				
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]				
Surrogate Dibromofluoromethane	%		Org-023	105	[NT]		[NT]	[NT]	97				
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	100				
Surrogate 4-BFB	%		Org-023	101	[NT]		[NT]	[NT]	113				

QUALITY CON	ITROL: svTF	RH (C10-0			Du		Spike Re	covery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			22/06/2020	1	22/06/2020	22/06/2020		22/06/2020	
Date analysed	-			22/06/2020	1	22/06/2020	22/06/2020		22/06/2020	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	101	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	94	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	97	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	101	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	94	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	97	
Surrogate o-Terphenyl	%		Org-020	111	1	112	89	23	88	

QUAL	ITY CONTRO	.: PAHs ir	Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			22/06/2020	1	22/06/2020	22/06/2020		22/06/2020	
Date analysed	-			22/06/2020	1	22/06/2020	22/06/2020		22/06/2020	
Naphthalene	μg/L	1	Org-022/025	<1	1	<1	<1	0	110	
Acenaphthylene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Acenaphthene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Fluorene	μg/L	1	Org-022/025	<1	1	<1	<1	0	132	
Phenanthrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	90	
Anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Fluoranthene	μg/L	1	Org-022/025	<1	1	<1	<1	0	98	
Pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	94	
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Chrysene	μg/L	1	Org-022/025	<1	1	<1	<1	0	72	
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	1	<2	<2	0	[NT]	
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	94	
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	65	1	90	92	2	105	

QUALITY CC	NTROL: HN	l in water			Du		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			22/06/2020	[NT]		[NT]	[NT]	22/06/2020	
Date analysed	-			22/06/2020	[NT]		[NT]	[NT]	22/06/2020	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	98	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	101	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 245184

Revision No: R00

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 245184 Page | 12 of 12 Revision No: R00

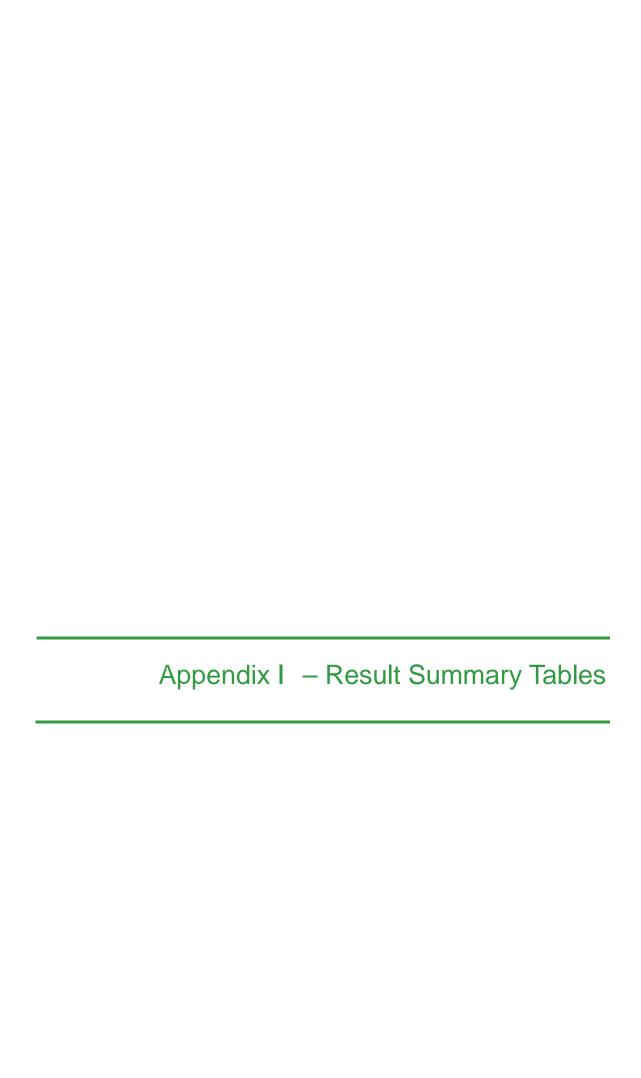


Table T1 - Summary of Soil Analytical Results

					Heavy	Metals					P/	AHs			В	ГЕХ			Т	RH		Pest	icides	PCBs	Asbestos
Sample ID	Sampling Date	As	Cd	Cr#	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(α)P TEQ)	Benzo(a)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	OCPs	OPPs	Total PCB	Presence / Absence
FILL																									
TP1_0.1-0.2		5	< 0.3	2.8	12	37	< 0.5	< 0.05	< 0.5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
TP2_0.4-0.5		11	<0.3	2.9	5.3	7	<0.5	< 0.05	<0.5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
TP3_0.1-0.2		8	<0.3	3.2	24	66	<0.5	< 0.05	<0.5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
TP4_0.1-0.2		4	<0.3	3.5	15	34	1.10	<0.05	1.1	0.6	0.4	2.9	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
TP5_0.1-0.2	11/06/2020	2	<0.3	2.6 3.6	8.1	14	0.50 1.50	<0.05 <0.05	0.5 1.5	<0.3 0.5	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25	<90	<120 <120	<1 <1	<1.7 <1.7	<1 <1	Absent Absent
TP6_0.2-0.3 BH1 0.1-0.2	11/06/2020	1	<0.3	5.2	5.4 4.1	18 6		<0.05	+	-	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25 <25	<25 <25	<90 <90	<120	<1	<1.7	<1	Absent
BH2 0.1-0.2		10	0.4	5.7	23	63	0.80	<0.05	0.8	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
BH3M_0.3-0.4		1	<0.3	0.9	2.4	5	<0.5	<0.05	<0.5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
BH4M_0.3-0.4		3	<0.3	1.8	6.2	8	<0.5	<0.05	<0.5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
BH5M_0.1-0.2		6	<0.3	5.2	6.8	22	1.00	< 0.05	1	<0.3	0.1	1.7	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
BH6_0.1-0.2	12/06/2020	<1	< 0.3	9.4	5.2	18	2.30	< 0.05	2.3	0.4	0.2	3	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
NATURAL				•	•	•											•								
TP3_0.8-0.9		1	< 0.3	7.6	< 0.5	4	< 0.05	< 0.5	<2	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	NA	NA	NA	NA
TP5_0.4-0.5	11/06/2020	1	< 0.3	6.3	< 0.5	4	< 0.05	< 0.5	<2	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH1_0.7-0.9	11,00,2020	1	< 0.3	12	0.6	5	< 0.05	< 0.5	2.8	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	NA	NA	NA	NA
BH5M_1.2-1.4		<1	<0.3	7.5	<0.5	11	< 0.05	1.9	<2	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
Marria	-t		T	T 40		T 00	T 00	1	I 00		Statistic Su					0.4	1 00	0.5	I 05		100	Т.			
Maxin	nium	11	0.4	12	24	66	2.3	1.9	2.8	0.6	0.4 IEPC (2013) Sit	3.7	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	Absent
		I		3,600	I	I					0 (2013) 310														
HIL D - Commer	rcial / industrial	3,000	900	Cr(VI)	240,000	1,500	730	6,000	400,000	40		4,000										3,600		7	
			•	•	•	Source de	epths (0 m to	<1 m. BGL)	•	•	***************************************	-	NL	4	NL	NL	NL	310	NL						
HSL D - Comme						Source de	epths (1 m to	<2 m. BGL)					NL	6	NL	NL	NL	480	NL						
Soil texture class	sification - Clay					Source de	epths (2 m to	<4 m. BGL)					NL	9	NL	NL	NL	NL	NL						
						Source	ce depths (4 m	+ BGL)			_		NL	20	NL	NL	NL	NL	NL						
EILs / ESLs - Urban residentia	al and public open space 1 2	160		310		1,800		55			0.7		370	75	135	165	180	215	170	1,700	3,300				
Managemei Commercial ar																	-	700	1,000	3,500	10,000				
Asbestos Co Non-Friable Asb																									0.01
Asbestos Co Friable Asbes																									0.001

Notes

All results are recorded in mg/kg

HIL D NEPC 1999 Amendment 2013 'HIL D' - Health based commercial / industrial soils settings.

HSL D NEPC 1999 Amendment 2013 'HSL D' Health Based Screening Levels applicable for vapour intrusion values applicable for commercial / industrial.

Thresholds are for Chromium VI.
NR No current published criterion.

NL Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical

NC Not calculated

NA 'Not Analysed' i.e. the sample was not analysed.

As strata contains both sand and clay, the most conserative soil assessment criteria values were applied (coarse grained).

2 EIL criteria is derived from a site specific Added Contaminant Limit (ACL) with the Ambient Background Concentration (ABC) for a high traffic NSW suburb.

The ecological criteria for benzo(α)pyrene was sourced from CRC Care (2017) Technical Report No. 39 Risk-based management and remediation guidance for benzo(a)pyrene.

To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

F2 To obtain F2 subtract naphthalene from the >C10-C16 fraction.
F3 (>C16-C34)

F4 (>C34-C40)

Table T2: Summary of Results for Waste Classification E24716 - Warriewood

				Heavy	Metals				P.A	AHs		втех				PH				Asbes
Sample ID	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Benzo(α)pyrene	Total PAHs	Benzene	Toluene	Ethylbenzene	Total Xylenes	°-c°	C ₁₀ -C ₃₆	OC Pesticides	OP Pesticides	PCBs	tos (Absence/Presence)
FILL						1														
TP1_0.1-0.2	5	<0.3	3	12.0	37	<0.5	<0.05	<0.5	<0.1	<0.8	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
TP2_0.4-0.5	11	<0.3	3	5.3	7	<0.5	<0.05	<0.5	<0.1	<0.8	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
TP3_0.1-0.2	8	<0.3	3	24.0	66	<0.5	<0.05	<0.5	<0.1	<0.8	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
TP4_0.1-0.2	4	<0.3	4	15.0	34	1.10	<0.05	1	0.4	2.9	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
TP5_0.1-0.2	1	<0.3	3	8.1	14	0.50	<0.05	1	<0.1	<0.8	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
TP6_0.2-0.3	2	<0.3	4	5.4	18	1.50	<0.05	2	0.3	3.7	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
BH1_0.1-0.2	1	<0.3	5	4.1	6	0.80	<0.05	1	<0.1	<0.8	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
BH2_0.1-0.2	10	0.4	6	23.0	63	0.90	<0.05	1	<0.1	<0.8	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
BH3M_0.3-0.4	1	<0.3	1	2.4	5	<0.5	<0.05	<0.5	<0.1	<0.8	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
BH4M_0.3-0.4	3	<0.3	2	6.2	8	<0.5	<0.05	<0.5	<0.1	<0.8	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
BH5M_0.1-0.2	6	<0.3	5	6.8	22	1.00	<0.05	1	0.1	1.7	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
BH6_0.1-0.2	<1	<0.3	9	5.2	18	2.30	<0.05	2	0.2	3	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent
								Statist	cal Analysis											
Maximum concentration	11	0.4	9.4	24	66	2.3	<0.05	2.3	0.4	3.7	<0.1	<0.1	<0.1	<0.3	<20	<110	<1	<1.7	<1	Absent

GENERAL SOLID WASTE (NON-PUTRESCIBLE)

Waste Classification Criteria																				
NSW EPA 2014 ¹	CT1 (mg/kg)	100	20	100		100	4	40		0.8	200	10	288	600	1,000	650	10,000			
General Solid Waste	TCLP1 (mg/L) / SCC1 (mg/kg)	5.0 / 500	1.0 / 100	5 / 1,900		5 / 1,500	0.2 / 50	2 / 1,050		0.04 / 10	NR / 200	0.5 / 18	14.4 / 518	30 / 1,080	50 / 1,800	NR / 650	NR / 10,000			
NSW EPA 2014	CT2 (mg/kg)	400	80	400		400	16	160		3.2	800	40	1,152	2,400	4,000	2,600	40,000			
Restricted Solid Waste ²	TCLP2 (mg/L) / SCC2 (mg/kg)	20 / 2000	4 / 400	20 / 7600		20 / 6000	0.8 / 200	8 / 4200		0.16 / 23	NR / 800	2 / 72	57.6 / 2073	120 / 4320	200 / 7200	NR / 2600	NR / 40,000			
Special Waste / Scheduled Waste ^{3,4}																		> 2 mg/kg - Scheduled Waste ⁴	> 2 mg/kg - PCB Waste ⁵	Where detected classification is Special Waste (Asbestos Waste)
ENM Order	Maximum Average Concentration (mg/kg)	20	0.5	75	100	50	0.5	30	150	0.5	20	NR	NR	NR	NR	NR	250			
ENW Order	Absolute Maximum	40	1	150	200	100	1	60	300	1	40	0.5	65	25	15	NR	500			

Notes: All results are recorded in mg/kg (unless otherwise stated)

'Not detected' i.e. all concentrations of the compounds within the analyte group were found to be below the laboratory limits of detection. 'Not Analysed' i.e. the sample was not analysed.

ND NA NC

NR

Not Calculated'

Not Referenced' i.e. No published criteria available

NSW EPA 2014 General Solid Waste Thresholds, in Waste Classification Guidelines, Table 1 (CT1) and Table 2 (TCLP1 / SCC1)
NSW EPA 2014 Restricted Solid Waste Thresholds, in Waste Classification Guidelines, Table 1 (CT2) and Table 2 (TCLP2 / SCC2)

NSW EPA Scheduled Chemical Wastes Chemical Control Order 2004. Section 4.14

NSW EPA Polychlorinated Biphenyl (PCB) Chemical Control Order 1997. Where PCBs are reported at concentrations >2 mg/kg, material is non-scheduled PCB waste. Where PCBs are reported at concentrations >50 mg/kg, material is scheduled PCB

Indicates waste criteria met

		Analysis										
Sample ID	Material	pH (f)	pH(fox)	Reaction	pH Difference							
TP2_0.4-0.5	SAND	6.7	5.8	Moderate Reaction	0.9							
ASS_TP2_1.0	Clayey SAND	6.0	5.5	Moderate Reaction	0.6							
ASS_TP2_2.0	Sandy CLAY	4.8	5.0	Moderate Reaction	-0.1							
TP4_0.4-0.5	Clayey SAND	4.9	4.9	Moderate Reaction	0.0							
ASS_TP6_1.0	Clayey SAND	5.5	5.5	Moderate Reaction	0.1							
ASS_TP6_1.5	Clayey SAND	4.7	5.2	Moderate Reaction	-0.5							
ASS_TP6_2.0	Clayey SAND	4.7	4.9	Moderate Reaction	-0.2							
ASSMAC (1998) Criteria	Field pH Indicator of AASS	≤ 4	pHFOX >3 and ≤4, less positive and SPOCAS test required to confirm pHFOX >4 and ≤5, neither positive or negative, SPOCAS test required to confirm	N o drop in pH, sulfur trail in S								
	Field pH Indicator of PASS	NR	pHfox <3 and a strong read	pHfox <3 and a strong reaction to peroxide, indicates a high level of certainty.								

Notes:

AASS Actual Acid Sulfate Soils

NA Not Analysed

NR No availbale criterion
PASS Potential Acid Sulfate Soils

pHF Field pH

PH Field Indicators (ASSMAC 1998)

pHF<=4, indicates that actual acid sulfate soil are present with sulphides being oxidised in the past resulting in acid soil (and soil pore water) conditions.

pHF values >4 and <5.5 are acid and may be the result of some previous or limited oxidation of sulfides but is not confirmatory of actual ASS.

If pHFOX is more than one pH unit below the pHF, it may indicate potential acid sulfate soils.

pHFOX <3 and a strong reaction to peroxide, indicates a high level of certainty of a potential acid sulfate soils.

pHFOX >3 and <=4 is less positive for presence of actual acid sulfate soils and laboratory analyses is need to confirm if sulphides are present.

pHFOX >4 and <=5 is neither positive or negative for presence of actual acid sulfate soils. Laboratory analyses by SPOCAS is need to confirm if oxidisable sulphides are present.

pHFOX >5 and little or no drop in pH from the field value indicates little net acid generating ability. The sulfur trail in the SPOCAS method should be used to check for absence of oxidisable sulfides.

Table T4 - Summary of Groundwater Analytical Results E24716 - Warriewood

		Sampling Date	Heavy Metals						PAHs			втех					TRHs				voc			
Samp	ole ID		As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Total PAHs	Benzo(a)pyrene	Naphthalene	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	Naphthalene	Total Phenois
GW_BI	H3M-1		<1	<0.1	<1	5	<1	<0.1	2	18	<1.058 ⁸	<0.1	<0.28	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<0.5	<10
GW_BI	H4M-1	M-1 18/6/2020	<1	<0.1	<1	16	<1	<0.1	2	25	1	<0.1	<0.58	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	0.5	<10
GW_BI	H5M-1		<1	<0.1	<1	15	<1	<0.1	3	21	1	<0.1	<0.38	<0.5	< 0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<0.5	<10
										Sta	atistical Analys	sis												
	Maximum Concent	tration	<1	<0.1	<1	16	<1	<0.1	3	25	1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	0.5	<10
											GILs										Nationalisation			
	NEDM (2042) LIC	N D					2m to	o <4m					NL	5,000	NL	NL	NL	NL	6,000	NL				
	NEPM (2013) HS Commercial / Indus			4m to <8m										5,000	NL	NL	NL	NL	6,000	NL				
							8r	m +					NL	5,000	NL	NL	NL	NL	7,000	NL				
	Fres	sh Waters ²	24 (AsIII) 13 (AsV)	0.2	1 4 (Cr VI)	1.4	3.4	0.06 ³	11	8 ⁴		0.4	16	950	180 ⁵	80 ⁵	350	275 ⁵	50 ⁶	60 ⁶	500 ⁶	500 ⁶	16	320
ANZG (2018)	Mari	Marine Waters ²		0.7 3	27 (Cr III) 4.4 (Cr IV)	1.3	4.4	0.1 ³	7	15 ⁴		0.1	50 ⁴	500 ⁴	180 ⁵	5 ⁵	350 ⁵	275 ⁵	50 ⁶	60 ⁶	500 ⁶	500 ⁶	50 ⁴	400
	Recrea	ntional Water ⁷	100	20		1,000 *	100	10	200	3,000*				10	25*	3*	20 *	20 *						

Notes:

Highlighted indicates criteria exceeds human health criteria Highlighted indicates criteria exceeds ecological health criteria

Highlighted indicates criteria exceeded

All values are $\mu g/L$ unless stated otherwise

NL Not Limiting

NA 'Not Analysed' i.e. the sample was not analysed.

ND Not Detected - i.e. concentration below the laboratory PQL

F1 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

F2 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

F3 (>C16-C34) F4 (>C34-C40)

NEPM (2013) Table 1A(4) Groundwater HSL D for vapour intrusion in sand, as a conservative approach.

NEPM (2013) Groundwater Investigation Levels for fresh and marine water quality, based on ANZECC & ARMCANZ (2000).

3 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZG (2018) for further guidance.

4 Figure may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance

5 Low reliability toxicity data, refer to ANZECC & ARMCANZ (2000)

6 In lack of a criteria the laboratory PQL has been used (DEC, 2007).

Based on NHMRC (2011 - update August 2018 v.3.5) Drinking Water Guidelines. The lowest of the Health Guideline x10 or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by *

8 The Limit of Reporting (LOR) has been riased due to interferences from the sample matrix.

Table T5.1 - Summary of QA/QC Results for Soil Samples

Site: 15 Jubilee Ave, Warriewood NSW

Job No: E24716.E02

		n Description	TRH				BTEX				Heavy Metals								
Date Sample Identifica	Sample Identification		F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc	
Intra-laborat	Intra-laboratory Duplicate																		
11/6/2020	TP2_0.4-0.5	Primary Soil Sample	<25	<25	<90	<120	< 0.1	< 0.1	< 0.1	< 0.3	11	< 0.3	2.9	5.3	7	< 0.05	< 0.5	2.7	
11/6/2020	Soil-QD1	Intra-laboratory duplicate of TP2_0.4-0.5	<25	<25	<90	<120	< 0.1	< 0.1	< 0.1	< 0.3	5	< 0.3	1.8	5.5	2	< 0.05	< 0.5	2.2	
		RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	75.00	0.00	46.81	3.70	111.11	38.46	0.00	20.41	
Inter-laborat	tory Duplicate		•									•							
11/6/2020	TP2_0.4-0.5	Primary Soil Sample	<25	<25	<90	<120	< 0.1	< 0.1	< 0.1	< 0.3	11	< 0.3	2.9	5.3	7	< 0.05	< 0.5	2.7	
11/6/2020	Soil-QT1	Inter-laboratory duplicate of TP2_0.4-0.5	<25	< 50	<100	<100	< 0.2	< 0.5	<1	<3	5	< 0.4	3	6	3	< 0.1	<1	4	
RPD			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.39	12.39	80.00	0.00	12.90	38.81	
Trip Blanks																			
	Soil-TripBlank-1	Soil	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.3	-	-	-	-	-	-	-	-	
Trip Spikes					•	•			-	T -	T -		•	ı	T	ı			
11/6/2020	Soil-TripSpike-1	Soil	-	-	-	-	[94%]	[93%]	[95%]	[94%]	[95%]	-	-	-	-	-	-	-	

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

82.35 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE: All soil results are reported in mg/kg . All water results are reported in μ g/L.

F1 = TRH C6-C10 less the sum of BTEX

F2 = TRH >C10-C16 less naphthalene

F3 = TRH >C16-C34

F4 = TRH >C34-C40

Table T5.2 - Summary of QA/QC Results for Groundwater Samples

Site: 15 Jubilee Ave, Warriewood NSW

Job No: E24716.E02

	Sample Identification	Description	TRH				BTEX				Heavy Metals								
Date			F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc	
Intra-labora	tory Duplicate		•	•			•	•					•						
18/6/2020	GW_BH3M-1	Primary Water Sample	<50	<60	< 500	<500	< 0.5	< 0.5	< 0.5	<1.5	<1	<0.1	<1	5	<1	< 0.0001	2	18	
18/6/2020	GW-QD1	Intra-laboratory duplicate of BH101M	<50	<60	< 500	<500	< 0.5	< 0.5	< 0.5	<1.5	<1	<0.1	<1	3	<1	< 0.0001	1	17	
	RPD			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	50.00	0.00	0.00	66.67	5.71	
Inter-labora	tory Duplicate																		
18/6/2020	GW_BH3M-1	Primary Water Sample	<50	<60	< 500	<500	< 0.5	< 0.5	< 0.5	<1.5	<1	<0.1	<1	5	<1	< 0.0001	2	18	
18/6/2020	GW-QT1	Inter-laboratory duplicate of BH101M	<10	<50	<100	<100	<1	<1	<1	<3	<1	<0.1	<1	7	<1	< 0.05	2	16	
	RPI	D	0.00	0.00	0.00	0.00	0.00	NA	0.00	0.00	0.00	0.00	0.00	33.33	0.00	0.00	0.00	11.76	
Trip Blanks																			
18/6/2020	GW_Trip Blank-1	Water	-	-	-	-	< 0.5	< 0.5	< 0.5	<1.5	-	-	-	-	-	-	-	-	
Trip Spikes																			
18/6/2020	GW_Trip Spike-1	Water	-	-	-	-	[100%]	[100%]	[100%]	[101%]	-	-	-	-	-	-	-	-	
Rinsate Blai																			
18/6/2020	GW_QR-1	De-ionised water	< 50	<60	< 500	< 500	< 0.5	< 0.5	< 0.5	<1.5	<1	< 0.1	<1	<1	<1	< 0.1	<1	<5	
18/6/2020	GW_QRB-1	De-ionised water	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

F1 = TRH C6-C10 less the sum of BTEX

F2 = TRH >C10-C16 less naphthalene

F3 = TRH >C16-C34

F2 = TRH >C34-C40

