

Preliminary Site Investigation inclusive of Supplementary Sampling & Waste Classification

> Abbott Road Fields Curl Curl NSW 2096

Prepared for Urbis Pty Ltd (On Behalf of Optus Pty Ltd)

May 2019



#### New South Wales

2 Tipperary Avenue Killarney Heights NSW 2087

Queensland

11 Tintaldra Court Buderim QLD 4556

 Mob:
 0412 987 456

 Fax:
 02 9285 0528

 Eml:
 fenn@canopyenterprises.com

ABN/ACN: 53 093 830 409/093 830 409

**Ref No: CUAB-19-PSI** Abbott Road Fields, Curl Curl NSW 2096

This Report is Commercial in Confidence and may only be used for the specific purposes for which it was commissioned and in accordance with the terms of engagement. The Report should not be reproduced in part or full without joint authorisation from the Client and Canopy Enterprises Pty Ltd unless related to its intended purposes, in which case all relevant acknowledgements should be included.

**Fenn Hinchcliffe** CEnvP BA, MBEnv, CEnvP, MEIANZ **Director** Canopy Enterprises Pty Ltd



MEIANZ, CENVP

24 May 2019

Dr Gunnar Haid MSc; PhD (Petroleum Engineering) MUL Senior Environmental Engineer Canopy Enterprises Pty Ltd

Page i

# **Table of Contents**

| 1   | EXECUTIVE SUMMARY 5                              | ;  |
|-----|--------------------------------------------------|----|
| 1.1 | Recommendations                                  | ;  |
| 2   | PROJECT INTRODUCTION                             | ,  |
| 2.1 | Scope of Work                                    | j  |
| 3   | SITE INFORMATION AND SURROUNDINGS                | ,  |
| 3.1 | Site Identification                              |    |
| 3.2 | Site Description / Land Use                      |    |
| 3.3 | Topography9                                      |    |
| 3.4 | Hydrology and Hydrogeology                       | )  |
| 3.5 | Geology and Soils                                | )  |
| 3.6 | Acid Sulfate Soil Risk                           | )  |
| 3.7 | Salinity Risk10                                  | )  |
| 4   | HISTORY                                          | L  |
| 4.1 | General History11                                |    |
| 4.2 | Heritage Registers11                             |    |
| 4.3 | EPA Records12                                    | )  |
| 4.4 | WorkCover NSW Records                            | 2  |
| 4.5 | Aerial Photographs12                             | 2  |
| 4.6 | Historical Land Title Search13                   | ;  |
| 4.7 | Summary or Historical Research13                 | ;  |
| 5   | FIELD WORKS AND SUPPLEMENTARY SAMPLING PROGRAM14 | ļ  |
| 5.1 | Site Inspection and Sampling14                   | ļ  |
| 5.2 | Assessment Criteria15                            | ;  |
| 5.3 | Sample Results16                                 | Ĵ  |
| 6   | WASTE CLASSIFICATION                             | ;  |
| 6.1 | Analytical Results - Waste Classification18      | 3  |
| 7   | CONCEPTUAL SITE MODEL                            | )  |
| 7.1 | Potential Areas and Contaminants of Concern      |    |
| 7.2 | Potential Impact Areas and Migration20           | )  |
| 7.3 | Potential Off-Site Migration                     |    |
| 7.4 | Potential Receptors                              |    |
| 7.5 | Potential Contaminant Pathways21                 | L  |
| 8   | QUALITY CONTROL AND QUALITY ASSURANCE            | )  |
| 8.1 | Field QC Samples                                 |    |
| 8.2 | Laboratory Quality Program                       | 2  |
| 9   | FINDINGS AND CONCLUSIONS                         | \$ |
| 9.1 | Recommendations                                  |    |
| 10  | LIST OF KEY GUIDELINES AND REGULATIONS           |    |
| -   |                                                  |    |
| 11  | LIST OF ABBREVIATIONS                            |    |
| 12  | LIMITATIONS                                      | I  |

Page ii

## **SUMMARY OF TABLES**

| TABLE 1: SUMMARY OF SITE DETAILS                             | 7  |
|--------------------------------------------------------------|----|
| TABLE 2: SUMMARY OF GROUNDWATER BORE DATA                    | 9  |
| TABLE 3: SUMMARY OF HISTORICAL AERIAL PHOTOGRAPH INFORMATION | 12 |
| TABLE 4: SUMMARY OF HISTORICAL LAND TITLES INFORMATION       | 13 |
| TABLE 5: ANALYTICAL SCHEDULE                                 | 15 |
| TABLE 6: ASSESSMENT CRITERIA AND RESULTS SUMMARY             | 17 |
| TABLE 7: SUMMARY OF AEC                                      | 20 |

## TABLE OF MAPS

| FIGURE 1 LOCATION MAP | 8 |
|-----------------------|---|
| FIGURE 2 LOCATION MAP | 8 |

### **APPENDICES**

| APPENDIX A | CONSTRUCTION DETAILS                     |
|------------|------------------------------------------|
| APPENDIX B | LOCATION MAP AND SITE PHOTOGRAPHS        |
| APPENDIX C | GROUNDWATER BOREHOLE SEARCH RESULTS      |
| APPENDIX D | HERITAGE REGISTER SEARCH RESULTS         |
| APPENDIX E | EPA SEARCH RESULTS                       |
| APPENDIX F | LAND TITLES SEARCH RESULTS               |
| APPENDIX G | HISTORICAL RESEARCH INFORMATION          |
| APPENDIX H | LABORATORY REPORTS AND COC DOCUMENTATION |

APPENDIX I BORE LOGS

Page iii

# Acknowledgements and Copyright

The following imagery and documentation are attributed to and gratefully acknowledged:

| Location Map:       | Google Maps                                                                  |
|---------------------|------------------------------------------------------------------------------|
| Aerial Photography: | NSW Department of Land Property Information<br>Google Earth Pro, Google Maps |
| General History:    | John Fisher Park and Abbot Road Land Plan of Management<br>Warringah council |

All other sources are referenced as footnotes within the document.

This Report may only be used for the specific purposes for which it was commissioned and in accordance with the terms of engagement. **The Report is Commercial in Confidence** and should not be transferred electronically, reproduced in part or full without joint authorisation from the Client and Canopy Enterprises Pty Ltd unless related to its intended purposes, in which case all relevant acknowledgements should be included.



# **1** Executive Summary

Canopy Enterprises Pty Ltd (Canopy) Canopy Enterprises Pty Ltd (Canopy) was engaged by Urbis Pty Ltd on behalf of Optus Pty Ltd (Client) to undertake a Preliminary Site Investigation and preliminary Waste Classifications (PSI/WC) at a small parcel of land that forms part of Abbott Road Fields in Curl Curl, NSW.

Canopy understands that a PSI/WC is required to facilitate the Development Application (DA) to enable the installation of a telecommunications tower and associated equipment shelter. Details of the project are provided in the Summary of Site Details as contained in Table 1 in Section 3.1.

The full suite of findings and conclusions and recommendations are outlined in Section 9 and Section 9.1 respectively, however the salient points can be summarised as follows:

- The Site is located in an Acid Sulfate prone area and the presence of Potential Acid Sulfate Soils has been established (report issued separately);
- The Site is close to the lagoon foreshore/embankment and is likely to have been impacted as a result of historic disposal of dredge spoil;
- All samples that were analysed showed contaminant concentrations below the adopted site criteria and the land is hence considered suitable for this land use.
- The soil at the Site has been classified as General Solid Waste in accordance of the EPA Waste Guidelines Part 1: Classifying Waste (2014);
- The subsurface does however contain Potential Acid Sulfate Soils which will require management regardless of whether or not the spoil is exported off-site or reused on the Site (see Preliminary Acid Sulfate Soil Assessment report with Reference CUAB-19-PASSA); and

#### **1.1 Recommendations**

Based on the above information, Canopy recommends that:

- 1. An Acid Sulfate Soils Management Plan needs to be commissioned prior to commencement of excavation work. Details are available in the Acid Sulfate Soils report issued separately (Ref: CUAB-19-PASSA);
- 2. If required, excavated soils can be re-used on-site subject to treatment and testing of the soils in accordance with an Acid Sulfate Soils Management Plan as per Recommendation 1 above;
- 3. On-site soils meet the contamination criteria for classification as General Solid Waste. All soils to be taken offsite must take into account the presence of Potential Acid Sulfate Soils at the Site prior to being disposed of to a suitable landfill facility (see Section 6.1 and recommendation in the Preliminary Acid Sulfate Soils Assessment).



# 2 **Project Introduction**

Canopy Enterprises Pty Ltd (Canopy) was engaged by Urbis Pty Ltd on behalf of Optus Pty Ltd (Client) to undertake a Preliminary Site Investigation and preliminary Waste Classifications (PSI/WC) at a small parcel of land that forms part of Abbott Road Fields in Curl Curl, NSW.

Canopy understands that a PSI/WC is required to facilitate the Development Application (DA) to enable the installation of a telecommunications tower and associated equipment shelter. Details of the project are provided in the Summary of Site Details as contained in Table 1 in Section 3.1.

This investigation has been undertaken in consideration of and generally in accordance with the guidelines and regulatory documents as presented in Section 10 (among others) including in particular the Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (OEH 2011) (Reporting Guidelines).

#### 2.1 Scope of Work

The scope of works for this assessment includes:

- Review of information relating to the current Site condition (soils), including:
  - ➢ Geological maps of the area;
  - ➢ Groundwater data; and
  - Acid Sulfate Soil Risk Map.
- Site history review comprising:
  - Historical aerial photography;
  - Historical Land Title Search;
  - > NSW Environmental Protection Authority (EPA) Contaminated Land Searches;
  - Historical contamination assessments (if any); and
  - > Historical Information available under reasonable endeavour.
- Development of a conceptual site model (CSM);
- Identify potential areas of environmental concern (AECs) and associated contaminants of potential concern (COPCs);
- A detailed site inspection of the Site including drilling and sampling of soils;
- Laboratory analysis of select samples for COPCs; and
- Preparation of this Report.



# **3** Site Information and Surroundings

## 3.1 Site Identification

The Site details are summarised in Table 1 below:

#### **Table 1: Summary of Site Details**

| Subject                                             | Description                                                                                                                                                                         |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site description (The Site)                         | Part of Lot 7356/DP1167221<br>Abbott Road Fields,<br>Curl Curl 2096, NSW<br>As defined in the Site Map in Appendix B.                                                               |
| Site Area approximately                             | Approximately 150 m <sup>2</sup>                                                                                                                                                    |
| The Client:                                         | Urbis Pty Ltd<br>On behalf of Optus Pty Ltd                                                                                                                                         |
| Council and LEP                                     | Northern Beaches Council, Warringah Local Environmental<br>Plan 2011 (Updated 2018), Map index 010A                                                                                 |
| Present and proposed zoning                         | RE1–Public Recreation                                                                                                                                                               |
| Reason for Assessment                               | Proposed development for the installation of an existing<br>telecommunication tower and equipment shelter as per draft<br>layout contained in Appendix A                            |
| ASS Class and Risk Profile                          | Class 1: Any works<br>Class 3: Works beyond 1 meter below ground surface.<br>Works by which the watertable is likely to be lowered<br>beyond 1 meters below natural ground surface. |
| Approximate Elevation                               | 3.5 - 4.5 m AHD                                                                                                                                                                     |
| Supporting relevant information provided to Canopy: | Geotechnical Investigation: Geosense Drilling and<br>Engineering REF:232, Dated: 03/12/2018<br>Draft Site Layout, Ref: S 2711-P1 rev 1 Dated 03/12/2018                             |
| Additional Information                              | This assessment has been undertaken by suitably qualified<br>personnel with reference to the relevant Guidelines and<br>Regulations in particular the EPA Reporting Guidelines.     |



#### Figure 1 Location Map Part of Abbott Road Fields, Curl Curl 2096 (Source: Google Maps)



Figure 2 Location Map Part of Abbott Road Fields, Curl Curl 2096 (Source: Google Maps)







#### 3.2 Site Description / Land Use

The Site is an irregular shaped rectangle which forms a small part of what is otherwise known as Abbott Road Fields (John Fisher Park) in Curl Curl. Abbott Road is located approximately 120 meters to the north of the site. Curl Curl and Harbord Lagoon boarder the site with Greendale Creek flowing through, immediately to the south. The adjoining land uses are comprised of other sports fields to the north, north east and south west. Medium residential housing is situated to the north of Abbott Road and south of Curl Curl and Harbord Lagoons.

Site photographs are provided in Appendix B.

### 3.3 Topography

Review of the regional topographic maps from SIX maps<sup>1</sup> and Free Map Tools<sup>2</sup> indicated that the site is located at approximately 5 m AHD.

The wider general area surrounding the site slopes toward the south. The site itself is mostly flat and does not show any distinct incline.

### 3.4 Hydrology and Hydrogeology

There was no stormwater collection system visible on the site, and surface water is believed discharge into onsite grass covered soils or to sun off into Harbord Lagoon.

The Site is within metres of Harbord Lagoon and groundwater at the site is hydraulically connected to the lagoon. The direction of groundwater flow can be assumed to be in a southerly direction towards the lagoon, but tidal influences affecting the water levels in the lagoon would also affect groundwater levels at the Site.

A preliminary search of the NSW Office of Water Online Database<sup>3</sup> was conducted to identify groundwater bores within the vicinity of the Site. The search indicates that there are four boreholes within a 500 m radius of the Site.

| Borehole                               | Owner / Purpose      | SWL*   | Total Depth | Approx. Distance<br>from Site / Direction |  |
|----------------------------------------|----------------------|--------|-------------|-------------------------------------------|--|
| GW109151                               | Private / Monitoring | 10.0 m | 120 m       | 181 m / NE                                |  |
| GW026577                               | Private / Monitoring | NP**   | 2.7 m       | 161 m / NE                                |  |
| GW107537                               | 7537 NP**            |        | 4.34 m      | 168 m / NE                                |  |
| GW110933 Private / Monitoring          |                      | 1.9 m  | 4.0 m       | 214 m / NW                                |  |
| * Standing Water Level ** Not Provided |                      |        |             |                                           |  |

#### Table 2: Summary of Groundwater Bore Data



<sup>1</sup> http://maps.six.nsw.gov.au/

<sup>&</sup>lt;sup>2</sup> https://www.freemaptools.com/elevation-finder.htm

<sup>&</sup>lt;sup>3</sup> https://realtimedata.waternsw.com.au/water.stm

All data obtained from the database search including the locations of those bore holes and where available drillers' notes and descriptions of subsurface conditions are presented in Appendix C.

#### 3.5 Geology and Soils

The Site is located on silty to peaty quartz sand, silt and clay. Ferruginous and humic cementation in places. Common shell layers (Sydney 1:100 000 Geological Map<sup>4</sup>).

Based on information obtained from the NSW Department Environment and Heritage<sup>5</sup> the landscape at the Site is described as follows: level to gently undulating swales, depressions and unfilled lagoons on Quaternary sands. Local relief <10 m, slopes <3%. Watertable at <2 m. Mostly cleared and native vegetation.

Soils are described as very shallow to moderately deep (>150 cm), well sorted, sandy Humus Podzols (Uc2.32) and dark, mottled Siliceous Sands (Uc1.21), overlying buried acid peats (O) in depressions; deep (>200 cm) Podzols (Uc2.12, Uc2.32) and pale Siliceous Sands (Uc1.2) on sandy rises.

Limitations of the group include localised flooding and run-on, high watertables, highly permeable soils.

#### 3.6 Acid Sulfate Soil Risk

A review of the Warringah LEP 2011(Acid Sulfate Soils Map – Sheet <u>ASS\_10A</u>) indicates that the site is located with an ASS Class Zone 1 and Class Zone 3. According to LEP Clause 6.1 (2), development consent is required for Class 1 areas with "Any works".

The requirement is consistent with those outlined in Table 2.1 'Classification scheme in the Acid Sulfate Soils Planning Maps' of the Acid Sulfate Soils Guidelines. A requirement for a Preliminary Acid Sulfate Soils Assessment (PASSA) is therefore triggered.

#### 3.7 Salinity Risk

A review of the Hydrogeological Landscapes Overall Salinity Hazards<sup>6</sup> Map shows the site to be outside of any salinity hazard zone. The more detailed Salinity Potential in Western Sydney 2002<sup>7</sup> Map confirmed no salinity risk for the Site.



<sup>&</sup>lt;sup>4</sup> Sydney 1:100 000 Geological Map, NSW Department of Mineral Resources, Map Sheet 9130, 1st Edition (1983)

<sup>&</sup>lt;sup>5</sup> http://www.environment.nsw.gov.au/eSpade2Webapp#

<sup>&</sup>lt;sup>6</sup> 1:125,000 Hydrogeological Landscapes Overall Salinity Hazards, Western Sydney Study Area. Produced by OEH Imagery & Spatial Information Services Wagga Wagga. May 2011

<sup>&</sup>lt;sup>7</sup> Salinity Potential in Western Sydney 2002, Department of Infrastructure, Planning and Natural Resources. Map date March 2003, ISBN 0 7347 5303 9

# 4 History

## 4.1 General History

A review of the John Fisher Park and Abbott Road Land Plan of Management (2001) identifies the Site and the surrounding areas history as;

The site now occupied by John Fisher Park, also referred to as Abbott Road Fields was previously low lying, poorly draining estuarine flats. The area supported Swamp Mahogany (Eucalyptus robusta) heath and scrub, dominated by Swamp Oak (Casuarina glauca). Due to its poorly drained soils, swamp lands and dense vegetation, the area was not suited to colonisation by early settlers who were looking for agricultural land (Benson and Howell, 1990).

Early in the 20th century, part of the land was cleared and drainage was improved for the establishment of market gardens. These gardens retained some proportion of the previous native vegetation. Following World War I, the northern beaches of Sydney became popular holiday resorts.

As motor cars improved access to northern areas, small cottages were built behind the beaches from Manly to Newport. Following World War II intensive urban development began to spread along the coastal beaches and up onto the sandstone plateaus. In response to urban development and population growth in the local area, in 1951 the market gardens were converted into a tip. This involved extensive filling with both putrescible and non-putrescible wastes and resulted in the straightening of the previously more winding Greendale Creek. As a result of the change in hydrology and the addition of fill, the banks of the creek were progressively raised and steepened, narrowing the creek.

Filling was followed by civil works which continued up until the mid-1970's, after which the park was developed as open space, with numerous sporting facilities. The finished park was named after John L. Fisher, Shire President at the time the project began. The park is also referred to as Abbott Road Fields.

Sources and supporting information are provided in Appendix G.

#### 4.2 Heritage Registers

The Site was listed (at the time of preparation of this report) as a heritage item under Australian and NSW Heritage registers. A statement of significance show The Memorial Gateway has historical, technical and aesthetic significance as a man-made and high visual element designed as a formal entrance to the newly established playing fields for both Manly High School and its adjoining sports grounds. It also has a high degree of social significance in its association with famous local sports identities.

Schedule 5 of Council's LEP did not list the site as a heritage item. The search did not identify the presence of any items of national or state significance in the vicinity of the Site.

The results of the heritage database search are provided in Appendix D.



### 4.3 EPA Records

Search of the NSW EPA's public register under the Protection of the Environment Operations Act 1997 (POEO Act) was undertaken (Appendix E). The search for the Site did not identify any records in the database for the Site.

A search was conducted of the EPA's public contaminated land register (Appendix E). The search showed no entry for the Site. There is a site located 1.2km west of the site which has been notified to the EPA under Section 60 of the Contaminated Land Management Act 1997 (CLM Act). The property is listed as a "Landfill". It is assigned an EPA Site Management Class of "Regulation under CLM Act not required" which means that "The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required."

#### 4.4 WorkCover NSW Records

Based on the information obtained as part of Canopy's Site History Research procedure, a search of records of WorkCover NSW was not considered to be necessary for this Site.

#### 4.5 Aerial Photographs

Historical aerial photographs were sourced from Google Earth Pro, Six Maps and NSW Department of Land Property Information (LPI). All historic photographs are shown in Appendix G, a summary of the findings is provided below.

| Year | Site Description and Surrounding Area                                                                                                                                                                                                                                                                          |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1943 | It can be observed from the image that the site appears to be a tidal wetland or<br>estuarine environment with coastal vegetation including grasses, sedges and herbs.<br>Abbott Road can be seen to the north of the site and Griffin Road to the east. Low<br>density residential housing lies to the north. |  |
| 2005 | This image shows the site has been levelled and developed into a sports field. Some vegetation can be seen on the south of the site bordering Curl Curl Lagoon. To the north is a carpark bordering Abbott Road with medium density residential housing to the north of Abbott Road.                           |  |
| 2009 | The Site appears to be more or less in the same state as the previous picture with slight growth of vegetation.                                                                                                                                                                                                |  |
| 2014 | The Site appears to be relatively the same. Additional sporting courts have been constructed approximately 250m to the west of the site.                                                                                                                                                                       |  |
| 2018 | The Site appears to be more or less in the same state as the previous picture with slight growth of vegetation.                                                                                                                                                                                                |  |

#### Table 3: Summary of Historical Aerial Photograph Information



#### 4.6 Historical Land Title Search

Canopy undertook a search of current and past Land Titles for the Site. Results are summarised in Table 4 below:

| Land Title Certificate<br>Approximate Transfer Date To: | Purchaser/Leasers /Activity                                                         |
|---------------------------------------------------------|-------------------------------------------------------------------------------------|
| Crown Land                                              | Indicative Date 1886                                                                |
| 4/7/2011                                                | Deposited Plan (1167221) Lot/DP (7356/167221) Plan<br>of Crown Land being reserved. |

#### Table 4: Summary of Historical Land Titles Information

Note: Reasonable effort has been made to ensure titling accuracy to the extent practicable of the landowner/ ID, approximate date of land transfer and previous land sizes and format. However, the sole purpose and intent of the searches is to establish either general or any specific activities on the subject Site which may have a reflection on the potential for contaminated land. Therefore, information herein should not be relied upon for titling or any other purposes whatsoever.

The title certificates revealed that the Site has been owned by the Crown and maintained by various individual entities under the auspice of Council in recent decades. Due to the nature of the dealing in 2011 it would require detailed research to obtain previous title documentation. Given the strong historic indicators in conjunction with field observations which confirm that the Site has been subjected to land fill activities, most likely dredging residual (see section 4.7 below), hence there is no discernible benefit to obtaining further historic titles as sampling and analysis was based on the presence of fill of unknown origin.

Copies of the detailed historical land title certificates obtained are included in Appendix F.

#### 4.7 Summary or Historical Research

The information obtained from the historical sources reviewed has been found to be in general agreement with other sources. The Site's history can reasonably be summarised a plot of land which was a tidal wetland with small amounts of vegetation.

The Site is close to the present (and original) foreshore/embankment of the Curl Curl Lagoon (refer 1943 aerial). It considered likely that the Site was vulnerable to past reshaping/heightening as a result of historic disposal dredge spoil (either intentionally or simply as a matter of convenience). Whilst this is not known factually, the likelihood of dredging activity having occurred historically would be consistent with finding of foreign material within the fill layer to approximately 3 metres depth.

The Site and its surrounds were then progressively converted/upgraded to form part of the present oval sports field from the circa 1960's with the majority of the conversion happening after the late 1970s through to the present era.

A landfill facility was present approximately 1 to 1.5 km west of the Site which appears to the have been active up to circa 1970s. It is not considered likely that the landfill activities had any impact on the Site due to the distance from the Site, topography and time lapse.



# 5 Field Works and Supplementary Sampling Program

### 5.1 Site Inspection and Sampling

A detailed site inspection was undertaken by Dr Gunnar Haid, Canopy's Senior Environmental Engineer, on 8 May 2019. Findings and observations are discussed below. Site Photographs are provided in Appendix B.

The Site is a small (150-200  $\text{m}^2$ ) approximately square shaped area located on the southern boundary of Abbott Road Field as indicated in the Site Map in Appendix B. There are no aboveground structures on the Site, and the entire area is covered with grass. There were no fences or other structures indicating the exact proposed boundaries of the Site at the time of the inspection.

The locations for drilling were cleared of underground utilities before carrying out the drilling activities. The boreholes were drilled using a truck mounted rig with solid flight augers.

In order to satisfactorily characterise a site in accordance with the NSW EPA Sampling Design Guidelines (1995) for a site less than 500 m<sup>2</sup>, five borehole locations are required as a minimum to be drilled (across the subject site). This number is based on the maximum size of an undetected surface hotspot of a diameter of less than 11.8 m. Given the history of the Site as most likely reclaimed land the most likely area for contamination to be encountered is not necessarily near surface soils as might be typical on the majority of sites. Contamination at any site with a similar history needs to be assumed to be distributed with equal probability which takes account of both the lateral and vertical soil profiles.

With the intention of achieving the best possible understanding of the site conditions, Canopy decided to obtain two near surface samples at two different locations (B1 1.0 m and B2 0.5 m) and to also obtain one additional sample from a deeper area below the surface (3.5 m in B1). Locations of the borings are shown in the Site Map contained within Appendix B.

Samples were obtained directly from the auger by hand using disposable gloves while to the extent possible making sure that cross contamination between layers was avoided. Soil sample jars were fully filled in an attempt to minimise head space.

Filled soil sample containers were immediately placed in an ice chilled esky for transport to the laboratory. A chain of custody (CoC) form was filled in with the sample names, sampling date and required analyses. This documentation and the sample were then sent to the laboratory for analysis, within the prescribed analyte holding times. CoC documentation is presented in Appendix H.

The subsurface conditions found during drilling were broadly speaking a thin layer of top soil (grass covered) followed by a fill layer of fine to medium grained sand with silt and clay containing some rock fragments. Foreign material (rubber, cloth) was encountered to a depth of approximately 3 m bgl.







The fill was followed by natural medium grained to coarse clayey and silty sand of a dark grey colure to a depth of approximately 6.7 m bgl followed by a layer of light grey sandy clay to the total depth of the boring at 10.0 m bgl. Groundwater was encountered at approximately 1.9-2.0 m bgl. A sandy layer of approximately 0.3 m thickness containing a large amount of organic material was notice at the approximate depth of the groundwater level.

Boring B1 reached a total depth of 9.0 m bgl, Boring B2 was terminated at 3.0 m bgl. Bore logs providing more detailed information about the subsurface conditions are provided in Appendix I.

Samples obtained between 2 and 3 m bgl were noted to have odour of decaying organic material. The samples had a dark grey almost black colour and had a buttery doe-like texture which is typically associated with Acid Sulfate Soils. There were no signs that underground storage tanks (USTs) have been used at the Site in the past. Onsite vegetation (the grassed surface) was found to be in healthy looking state and no patches of stressed growth were observed.

A total of three soil samples was collected at the depths indicated above for contamination assessment and submitted to the laboratory for analysis.

Samples were submitted to NATA accredited laboratory Envirolab Services in Chatswood, NSW. Analytical methods complied with NEPM and NSW EPA requirements, with Practical Quantitation Limits (PQLs) used in the laboratory tests less than the adopted site investigation criteria.

Samples were analysed in accordance with the analytical schedule summarised in Table 5 below.

| Medium | ID       | TRH /<br>BTEX | РАН | Metals<br>(8) | РСВ | OC/OP | Asbestos |
|--------|----------|---------------|-----|---------------|-----|-------|----------|
| Soil   | B1 1.5 m | Х             | Х   | Х             | Х   | Х     | Х        |
| Soil   | B1 3.5 m | Х             | Х   | Х             | Х   | Х     |          |
| Soil   | B2 0.5 m | Х             | Х   | Х             | Х   | Х     |          |

#### Table 5: Analytical Schedule

#### 5.2 Assessment Criteria

Assessment criteria relevant to Recreational Land Use (HIL-C Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths) were selected from Schedule B 1 Guidelines on Investigation Levels for Soil and Groundwater (National Environment Protection (Assessment of Site Contamination) Measure 1999, amended 2013).



Additional screening criteria were adopted from the Cooperative Research Centre for Contaminant Assessment and Remediation of the Environment (CRC CARE) Health Screening Levels (HSLs) for Petroleum Hydrocarbons in Soil and Groundwater (Friebel and Nadebaum 2011).

The CRC CARE guidance provides the latest approach for assessing the risks of petroleum mixtures for a variety of land use scenarios, and in particular the evaluation of the direct contact and vapour migration intrusion pathways. Consistent with CRC CARE (2013) Petroleum Vapour Intrusion guidance, soil HSLs were applied to the site, as detailed below.

The guidelines selected as relevant screening criteria for soil include those designed for the inhalation of vapour and for direct contact, considering:

- Health Investigation levels (HILs) for soil contaminants for Public Open Space (HIL C);
- Soil HSLs for Vapour Intrusion HIL C for soil and depth specific to the site; and
- Soil Health Screening Levels for Direct Contact HSL C (CRC Care 2011)

During the investigation the Site was found to be well vegetated with a healthy grass surface and no abnormal plant distress or indication of poor plant growth was evident. Soil results were not screened for ecological risk.

## 5.3 Sample Results

A summary of laboratory results from the investigation is provided in Table 6 below, the laboratory reports are included in Appendix H. The following key findings were reported by the laboratory:

• BTEX / TRH:

All samples reported concentrations below the adopted site criteria.

• Eight Priority Heavy Metals:

All samples reported concentrations below the adopted site criteria.

• PAHs:

All samples reported concentrations below the adopted site criteria;

• OCP, OPP & PCBs:

All samples reported concentrations below the adopted site criteria.

• Asbestos:

The analysed sample reported no detectable concentrations of asbestos fibres.

A summary of the results and investigation criteria applied to this investigation is provided below.





| Analyte                              | Criteria<br>(mg/kg) | Maximum concentration<br>of all samples<br>[mg/kg] | Exceedance | Samples exceeding<br>criteria |
|--------------------------------------|---------------------|----------------------------------------------------|------------|-------------------------------|
| Arsenic                              | 3001                | 10                                                 | No         | NA                            |
| Cadmium                              | 90 <sup>1</sup>     | <0.4                                               | No         | NA                            |
| Chromium                             | 3001                | 10                                                 | No         | NA                            |
| Copper                               | 17,000 <sup>1</sup> | 16                                                 | No         | NA                            |
| Lead                                 | 600 <sup>1</sup>    | 27                                                 | No         | NA                            |
| Mercury                              | 80 <sup>1</sup>     | <0.1                                               | No         | NA                            |
| Nickel                               | 1,2001              | 3                                                  | No         | NA                            |
| Zinc                                 | 30,0001             | 48                                                 | No         | NA                            |
| F1 (TRH C6-C10<br>less BTEX)         | 45 <sup>2</sup>     | <25                                                | No         | NA                            |
| F2 (TRH C10-C16<br>less Naphthalene) | 110 <sup>2</sup>    | <50                                                | No         | NA                            |
| C10 - C16                            | 3,800 <sup>3</sup>  | <50                                                | No         | NA                            |
| C16 - C34                            | 5,300 <sup>3</sup>  | <100                                               | No         | NA                            |
| C34 - C40                            | 7,400 <sup>3</sup>  | <100                                               | No         | NA                            |
| Benzene                              | $0.5^{2}$           | <0.2                                               | No         | NA                            |
| Ethyl benzene                        | 55 <sup>2</sup>     | <1                                                 | No         | NA                            |
| Toluene                              | 160 <sup>2</sup>    | <0.5                                               | No         | NA                            |
| Xylene                               | 40 <sup>2</sup>     | <1                                                 | No         | NA                            |
| Naphthalene                          | 3 <sup>2</sup>      | <1                                                 | No         | NA                            |
| Total PAH                            | 3001                | 4.7                                                | No         | NA                            |
| PAHs (as BaP<br>TEQ)                 | 31                  | 0.9                                                | No         | NA                            |
| PCBs                                 | $1^{1}$             | <0.1                                               | No         | NA                            |
| OCP                                  |                     | <0.1                                               | No         | NA                            |
| OP                                   |                     | <0.1                                               | No         | NA                            |
| PFOA                                 | 104                 | <0.1                                               | No         | NA                            |

#### Table 6: Assessment Criteria and Results Summary

1 Health Investigation Levels (HILS) for soil contaminants - Public Open Space (HIL C)

2 Health Screening Levels for Public Open Space (HIL C) for soil contaminants in sand and at a depth of 0 m <1 m. Where no guideline levels are provided for public and open space land use in the referenced literature, HSL A levels for residential land use were applied.

3 Soil Health Screening Levels for Direct Contact HSL-C Recreational Open Space (CRC Care 2011)



# 6 Waste Classification

Samples obtained were classified in accordance with NSW (EPA) Waste Guidelines Part 1: Classifying Waste (2014) (Waste Guidelines). In accordance with these guidelines, the classification followed a 6-Step process:

Step 1: The material was considered not to be classified as "Special Waste".

Step 2: The material was not liquid waste.

- **Step 3:** The material did not fall into any of the pre-classified waste categories.
- Step 4: The material did not possess hazardous characteristics.
- Step 5: To determine the material's classification using chemical assessment, a total of three samples was collected from various depths. The amount of material with potential to be disposed of at the Site is estimated to be in the order of 20-30 m<sup>3</sup>. The required number of samples outlined in Victorian EPA Soil Sampling Guidelines<sup>8</sup> for an in-situ sampling regime of less than 50 m<sup>3</sup> is three samples.

Step 6: The material was considered to fall into the category of non-putrescible.

#### 6.1 Analytical Results - Waste Classification

During the site visit, pH values were obtained from a total of 20 soil samples that had been obtained as part of the Preliminary Acid Sulfate Soil Assessment (see separate report) using a field measuring tool. The pH values for the samples ranged between 6.6 and 7.8 which is within the natural background range.

The sample analysed for the presence of asbestos did not indicate the presence of asbestos.

Analytical results showed concentrations of all analytes to be below the threshold values for General Solid Waste (GSW). The reports as provided by the laboratory are provided in Appendix H.

Therefore, the material tested at the Site is **classified as General Solid Waste (non-putrescible)** in accordance with the requirements of the Waste Guidelines (if required to be disposed of to a suitable landfill facility).

The soils in the subsurface of the Site contain Potential Acid Sulfate Soils (PASS). A separate Acid Sulfate Soils Assessment report for the Site has been issued Ref: CUAB-19-PASSA dated May 2019. The report recommends that an Acid Sulfate Soils Management Plan is put in place prior to work commencement.

According to Part 4 of the Waste Classification Guidelines<sup>9</sup>, PASS can be disposed of in NSW in landfills that are licensed to accept PASS. The material must either be disposed of in water below the permanent water table before it had a chance to oxidise (within 24 of



<sup>&</sup>lt;sup>8</sup> VIC EPA Industrial Waste Resource Guidelines: Soil Sampling. Publication IWRG702 — June 2009)

<sup>&</sup>lt;sup>9</sup> NSW EPA Waste Classification Guidelines Part 4: Acid Sulfate Soils. EPA 2014/0798

excavation) and after having met the criteria for chemical analysis in Step 5 of the 6-Step classification process) or it must be treated prior to off-site disposal in accordance with the ASS Manual<sup>10</sup>, in which case the material can be disposed of at a licensed landfill above the water table.

If treated PASS is to be disposed of at a landfill, the landfill should be informed that the ASS has been treated in accordance with the neutralising techniques outlined in the ASS Manual and that the waste has also been classified in accordance with Part 1 of the Waste Classification Guidelines.



<sup>&</sup>lt;sup>10</sup> Ahern C R, Stone, Y, and Blunden B (1998). Acid Sulfate Soils Assessment Guidelines Published by the Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia

# 7 Conceptual Site Model

Based on the information presented above, the following Conceptual Site Model is presented:

#### 7.1 Potential Areas and Contaminants of Concern

Based on the Site history review and the observations made during the Site visit, potential Areas of Environmental Concern (AECs) associated with Contaminants of Potential Concern (CoPCs) that have been identified to potentially be present on-site are summarised in Table 7 below:

#### Table 7: Summary of AEC

| Potential AECs / Activity                   | <b>Contaminants of Potential Concern</b>             |
|---------------------------------------------|------------------------------------------------------|
| Possible fill layer present across the Site | Heavy metals, TRH/BTEX, PAHs, OC/OPs, PCBs, Asbestos |
| Past use as a sporting field                | OC/OP, Arsenic                                       |

Based on the site history review and the observations made during the field work, it is difficult to target any specific CoPC. In such cases it is customary to analyse samples for a broad range of the most commonly encountered substances in an attempt to cover a wide range of potential impacts.

Such analysis includes Polycyclic Aromatic Hydrocarbons (PAH), Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Asbestos, Organochlorine Pesticides (OC) and Organophosphorus Pesticides (OP), heavy metals, and Polychlorinated Biphenyls (PCB). This set of analytes is commonly used to ensure to the extent practicable that there have been no impacts from a range of past activities that may have occurred on (or near) a Site (to the extent the historic activities became known under research or could otherwise be reasonably suspected) or if there is fill material of unknown origin present at a Site.

#### 7.2 Potential Impact Areas and Migration

Due to the Site forming part of re-claimed land, contaminants can be encountered at random intervals at any depth. If impact is found in near surface soils, it may have potential to leach or migrate deeper into the soil profile or be moved through groundwater.

Materials commonly present in impacted fill can be used as an indication of the depth of disturbance. Where fill materials impacted with certain contaminants are found to be present, these contaminants have the potential to migrate deeper into natural soils or sometimes offsite (transported via groundwater flow).

No surface water bodies were identified at the site and therefore surface water is not a potentially contaminated medium. Groundwater at the Site is hydraulically connected to the close by Harbord Lagoon. Depth to groundwater at the Site was established to be approximately 2 m bgl. Groundwater was not sampled as part of this investigation.



## 7.3 Potential Off-Site Migration

There are a number of ways contaminants can migrate from a site. Usually off-site migration is caused by combination of dust (wind), surface water runoff, surface water seeping into the groundwater or groundwater migration. The following properties influence the potential for contaminants to migrate off-site:

- Type of contaminant (solid/liquid, solubility, volatility, general mobility);
- The vertical location of the contaminants;
- The amount (concentration) of contaminants;
- The extent of the contaminants (widespread, localised); and
- The site topography, geology, hydrology and hydrogeology (see sections above).

The CoPC identified at the Site as outlined in Table 7 are solid (e.g. asbestos, heavy metals), liquid (e.g. TPH, PAH, PCBs dissolved in transformer oils) and volatile (volatile short chain hydro carbons).

The ground surface of the site is covered grassed areas, hence the potential for windblown contaminants to migrate from the site is considered to be low. The investigation did establish the presence of groundwater in the soils at the site at a depth of approximately 1.9 - 2.0 m bgl. Given the low levels of contamination encountered at the Site there is only a small risk of off-site migration of potential off-site migration of soil impact.

Nevertheless, it must be noted that the scope of the investigation herein is limited to soil therefore groundwater was not specifically targeted as part of it.

#### 7.4 **Potential Receptors**

Based on the information available to date, the potential receptors of concern are as follows:

- Site occupants, workers or the public;
- Future users of the Site; and
- Personnel undertaking the excavation of the Site (or other site works).

Potential receptors may be exposed to CoPCs through direct contact with impacted soils and/or ingestion and/or inhalation of dusts / fibres associated with impacted soils or groundwater.

#### 7.5 Potential Contaminant Pathways

Preferential pathways at the Site such as natural and/or man-made pathways that result in the preferential migration of CoPCs as either liquids or gasses have not been identified at the Site.

The groundwater table in the area is at a depth of 1.9 - 2.0 m bgl. Given the low levels of CoPC fond at the Site, groundwater is the sandy shallower soil horizon natural preferential pathway at the Site.



# 8 Quality Control and Quality Assurance

#### 8.1 Field QC Samples

Intra-laboratory field duplicate (blind or field duplicates) samples are used to determine the precision associated with all or part of the sample collection and measurement process. They are two independent samples collected as nearly as possible, from the same point in space and time. The two samples are collected from the same source using the same type of sampling equipment. Each field duplicate is collected and stored in separate sample containers and transported in the same shipping container<sup>11</sup>.

Inter-laboratory duplicate samples are field duplicate samples submitted to two different laboratories to provide a check of the analytical performance of the primary laboratory and specifically, the reproducibility of primary laboratory data. The laboratory chosen for the analysis of all samples is NATA registered and has a rigorous quality program in place (See laboratory reports in Appendix H). It is regularly audited as part of the NATA registration.

Considering the preliminary nature of this investigation, it is Canopy's opinion that the quality control implemented by the laboratory is sufficiently rigorous for this type of investigation and the submission of intra-laboratory duplicate samples and inter-laboratory duplicate samples would not provide data that would add to the results in a substantial way. The same is valid in this case for trip blanks and trip spikes.

Potential cross contamination between sampling locations can be an issue at contamination assessments. Rinsate samples are used to assess the effectiveness of decontamination procedures. Levels of contaminants resulting from cross contamination between sample locations would in all likelihood over-estimate site impact rather than mask the presence of contaminants. No rinsate samples were submitted as part of this investigation which was for the reasons given above considered acceptable for this investigation.

#### 8.2 Laboratory Quality Program

Laboratory QA/QC is provided in the reports in Appendix H and summarised below:

- Laboratory analysis of soil samples was undertaken by a NATA accredited environmental testing laboratory.
- All soil samples were extracted and analysed within holding times.
- No target analytes were detected in any of the method blanks.
- RPDs for the laboratory duplicate soil samples were within the acceptable range for all samples.
- Percentage recovery results for laboratory control samples were within the acceptable range for all samples.
- Percentage recovery results for surrogate samples were within the acceptable range for all samples.
- Percentage recovery results for matrix spikes were within the acceptable range for all samples.



<sup>&</sup>lt;sup>11</sup> Lee, C C. Environmental Engineering Dictionary. 4th ed., Government Institutes, 2005.

# 9 Findings and Conclusions

Based on the results of the investigation and subject to the limitations in Section 12 (noting the investigation is concerned with soils only) the following conclusions are made:

- The Site forms part of Abbott Road Fields in Curl Curl and has a size of approximately 150-200 m<sup>2</sup>;
- The Site is located in an Acid Sulfate prone area and the presence of Potential Acid Sulfate Soils has been established (report issued separately);
- The Site is not located in an area prone to salinity risk hence a salinity assessment is not considered to be necessary;
- The Site is close to the lagoon foreshore/embankment and is likely to have been impacted as a result of historic disposal of dredge spoil;
- Foreign material was observed within the fill layer to approximately 3 metres depth which is consistent with dredging activity having occurred historically;
- No stress was observed in the vegetation and no surface staining typical of contamination was encountered;
- Two boreholes were drilled across the Site as part of the investigation's supplementary sampling program;
- The subsurface of the Site in all borings was found to contain a surface layer of topsoil followed by fill material containing to a depth of approximately 4.0 m bgl which was then followed by natural soils (clay and sand mixtures);
- Groundwater was encountered at the Site at approximately 1.9 m 2.0 m bgl but not analysed as part of this investigation;
- A total of three samples was submitted to the laboratory and analysed for a broad range of analytes as part of the investigation;
- The sampling program conducted as part of this investigation targeted a wide range of target contaminants;
- All samples that were analysed showed contaminant concentrations below the adopted site criteria and the land is hence considered suitable for this land use;
- The soil at the Site has been classified as General Solid Waste in accordance of the EPA Waste Guidelines Part 1: Classifying Waste (2014);
- The subsurface does however contain Potential Acid Sulfate Soils which will require management regardless of whether or not the spoil is exported off-site or reused on the Site (see Preliminary Acid Sulfate Soil Assessment report with Reference CUAB-19-PASSA); and
- Visible assessment of samples did not indicate the presence of Asbestos in the soils, and laboratory analysis did not detect asbestos fibres.



#### 9.1 Recommendations

Based on the above information, Canopy recommends that:

- 4. An Acid Sulfate Soils Management Plan needs to be commissioned prior to commencement of excavation work. Details are available in the Acid Sulfate Soils report issued separately (Ref: CUAB-19-PASSA);
- 5. If required, excavated soils can be re-used on-site subject to treatment and testing of the soils in accordance with an Acid Sulfate Soils Management Plan as per Recommendation 1 above;
- 6. Should any evidence become apparent during site/earth works that asbestos or asbestos fragments (or other contaminants including hydrocarbon odours) are present in soils then appropriate actions should be undertaken in accordance with relevant guidelines and regulations;
- 7. Any soils imported to the Site must be validated as suitable for Public Open Space land use; and
- 8. On-site soils meet the contamination criteria for classification as General Solid Waste. All soils to be taken offsite must take into the presence of Potential Acid Sulfate Soils at the Site prior to being disposed of to a suitable landfill facility (see Section 6.1 and recommendation in the Preliminary Acid Sulfate Soils Assessment).

The conclusions and recommendations should be read together in conjunction with the full report and the Limitations.



# **10** List of Key Guidelines and Regulations

- National Environment Protection (Assessment of Site Contamination) Measure 1999. (amended 2013);
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (OEH 2011);
- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995);
- State Environmental Planning Policy No. 55;
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 3rd Edition, NSW EPA, (October 2017);
- EPA Waste Guidelines Part 1: Classifying Waste (2014);
- Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 The excavated natural material order 2014;
- Ahern C R, Stone, Y, and Blunden B (1998). Acid Sulfate Soils Assessment Guidelines Published by the Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia (Acid Sulfate Soils Guidelines);
- CRC CARE 2017, Risk-based management and remediation guidance for benzo(a)pyrene, CRC CARE Technical Report no. 39, CRC for Contamination Assessment and Remediation of the Environment, Newcastle, Australia;
- HEPA (Heads of EPAs Australia and New Zealand and the Australian Government Department of the Environment and Energy (2018). PFAS National Environmental Management Plan (NEMP).





# 11 List of Abbreviations

A list of the common abbreviations that may be used throughout this report is provided below.

| ACM       Asbestos Containing Material         AEC       Area of Environmental Concern         AHD       Australian Height Datum         B(a)P       Benzo(a)pyrene         bgl       Below Ground Level         BTEX       Benzene, toluene, ethylbenzene and xylenes         CEMP       Construction Environmental Management Plan         CoPCs       Contaminants of Potential Concern         CoC       Chain of Custody         CRC       Cooperative Research Centre for Contaminant Assessment and Remediation of the         CARE       Environment         CSM       Conceptual Site Model         DA       Development Application         DP       Deposited Plan         DQOs       Data Quality Objectives         DSI       Detailed Site Investigation         EMP       Environmental Management Plan         EPA       NSW Environment Protection Authority         ha       Hectare         HIL       Health based investigation level         HSL       Health based investigation level         HSL       Health screening levels         LOR       Limit of Reporting         NEPM       National Health and Medical Research Council         OC       Organochlorine Pesticides                                                           |       |                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------|
| AHD       Australian Height Datum         B(a)P       Benzo(a)pyrene         bgl       Below Ground Level         BTEX       Benzene, toluene, ethylbenzene and xylenes         CEMP       Construction Environmental Management Plan         CoPCs       Contaminants of Potential Concern         CoC       Chain of Custody         CRC       Cooperative Research Centre for Contaminant Assessment and Remediation of the         CARE       Environment         CSM       Conceptual Site Model         DA       Development Application         DP       Deposited Plan         DQOs       Data Quality Objectives         DSI       Detailed Site Investigation         EMP       Environmental Management Plan         EPA       NSW Environment Protection Authority         ha       Hectare         HIL       Health based investigation level         HSL       Health screening levels         LOR       Limit of Reporting         NEPM       National Environment Protection Measures         NHMRC       National Health and Medical Research Council         OC       Organochlorine Pesticides         PAHs       Polycyclic Aromatic Hydrocarbons         PFAS       Per- and Poly-Fluoroa                                                   | ACM   | Asbestos Containing Material                                                  |
| B(a)P       Benzo(a)pyrene         bgl       Below Ground Level         BTEX       Benzene, toluene, ethylbenzene and xylenes         CEMP       Construction Environmental Management Plan         CoPCs       Contaminants of Potential Concern         CoC       Chain of Custody         CRC       Cooperative Research Centre for Contaminant Assessment and Remediation of the<br>CARE         DA       Development Application         DA       Development Application         DP       Deposited Plan         DQOs       Data Quality Objectives         DSI       Detailed Site Investigation         EMP       Environment Protection Authority         ha       Hectare         HIL       Health screening levels         LOR       Limit of Reporting         NHMRC       National Environment Protection Measures         NHMRC       National Health and Medical Research Council         OC       Organochlorine Pesticides         PAHs       Polycyclic Aromatic Hydrocarbons         PFAS       Per- and Poly-Fluoroalkyl Substances         PFOS       Perfluorooctane Sulfonate         POS       Perfluorooctane Sulfonate         PCB       Polychlorinated Biphenyl         PQL       Pra                                                |       |                                                                               |
| bgl         Below Ground Level           BTEX         Benzene, toluene, ethylbenzene and xylenes           CEMP         Construction Environmental Management Plan           CoPCs         Contaminants of Potential Concern           CoC         Chain of Custody           CRC         Cooperative Research Centre for Contaminant Assessment and Remediation of the<br>CARE           Environment         Conceptual Site Model           DA         Development Application           DP         Deposited Plan           DQOs         Data Quality Objectives           DSI         Detailed Site Investigation           EMP         Environmental Management Plan           EPA         NSW Environment Protection Authority           ha         Hectare           HIL         Health screening levels           LOR         Limit of Reporting           NEPM         National Environment Protection Measures           NHMRC         National Health and Medical Research Council           OC         Organochlorine Pesticides           PAHs         Polycyclic Aromatic Hydrocarbons           PFAS         Per- and Poly-Fluoroalkyl Substances           PFOS         Perfluorooctane Sulfonate           PCB         Polychlorinated Biphenyl | -     |                                                                               |
| Berzene, toluene, ethylbenzene and xylenes           CEMP         Construction Environmental Management Plan           CoPCs         Contaminants of Potential Concern           CoC         Chain of Custody           CRC         Cooperative Research Centre for Contaminant Assessment and Remediation of the<br>CARE           Environment         Conceptual Site Model           DA         Development Application           DP         Deposited Plan           DQOs         Data Quality Objectives           DSI         Detailed Site Investigation           EMP         Environment Protection Authority           ha         Hectare           HIL         Health based investigation level           HSL         Health screening levels           LOR         Limit of Reporting           NEPM         National Environment Protection Measures           NHMRC         National Health and Medical Research Council           OC         Organochlorine Pesticides           PFOS         Perfluorooctane Sulfonate           PGB         Polycyclic Aromatic Hydrocarbons           PFAS         Per         Perestical Quantification Limit           RAP         Remedial Action Plan           RPD         Relative Percentage Difference |       |                                                                               |
| CEMPConstruction Environmental Management PlanCoPCsContaminants of Potential ConcernCoCChain of CustodyCRCCooperative Research Centre for Contaminant Assessment and Remediation of theCAREEnvironmentCSMConceptual Site ModelDADevelopment ApplicationDPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                        |       |                                                                               |
| CoPCsContaminants of Potential ConcernCoCChain of CustodyCRCCooperative Research Centre for Contaminant Assessment and Remediation of theCAREEnvironmentCSMConceptual Site ModelDADevelopment ApplicationDPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                      |       |                                                                               |
| CoCChain of CustodyCRCCooperative Research Centre for Contaminant Assessment and Remediation of the<br>CAREEnvironmentCSMConceptual Site ModelDADevelopment ApplicationDPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                               | CEMP  | Construction Environmental Management Plan                                    |
| CRCCooperative Research Centre for Contaminant Assessment and Remediation of the<br>EnvironmentCSMConceptual Site ModelDADevelopment ApplicationDPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNHMRCNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                  | CoPCs | Contaminants of Potential Concern                                             |
| CAREEnvironmentCSMConceptual Site ModelDADevelopment ApplicationDPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                  | CoC   | Chain of Custody                                                              |
| CSMConceptual Site ModelDADevelopment ApplicationDPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRC   | Cooperative Research Centre for Contaminant Assessment and Remediation of the |
| DADevelopment ApplicationDPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CARE  | Environment                                                                   |
| DPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSM   | Conceptual Site Model                                                         |
| DPDeposited PlanDQOsData Quality ObjectivesDSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA    | Development Application                                                       |
| DSIDetailed Site InvestigationEMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DP    |                                                                               |
| EMPEnvironmental Management PlanEPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DQOs  | Data Quality Objectives                                                       |
| EPANSW Environment Protection AuthorityhaHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DSI   | Detailed Site Investigation                                                   |
| haHectareHILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EMP   | Environmental Management Plan                                                 |
| HILHealth based investigation levelHSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA   | NSW Environment Protection Authority                                          |
| HSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ha    | Hectare                                                                       |
| HSLHealth screening levelsLORLimit of ReportingNEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HIL   | Health based investigation level                                              |
| NEPMNational Environment Protection MeasuresNHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HSL   | Health screening levels                                                       |
| NHMRCNational Health and Medical Research CouncilOCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOR   | Limit of Reporting                                                            |
| OCOrganochlorine PesticidesPAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NEPM  | National Environment Protection Measures                                      |
| PAHsPolycyclic Aromatic HydrocarbonsPFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NHMRC | National Health and Medical Research Council                                  |
| PFASPer- and Poly-Fluoroalkyl SubstancesPFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OC    | Organochlorine Pesticides                                                     |
| PFOSPerfluorooctane SulfonatePCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAHs  | Polycyclic Aromatic Hydrocarbons                                              |
| PCBPolychlorinated BiphenylPQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PFAS  | Per- and Poly-Fluoroalkyl Substances                                          |
| PQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PFOS  | Perfluorooctane Sulfonate                                                     |
| PQLPractical Quantification LimitRAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | РСВ   | Polychlorinated Biphenyl                                                      |
| RAPRemedial Action PlanRPDRelative Percentage DifferencePSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PQL   |                                                                               |
| PSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Remedial Action Plan                                                          |
| PSIPreliminary Site InvestigationSAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RPD   | Relative Percentage Difference                                                |
| SAPSampling Analysis PlanTCLPToxic Characteristic Leaching PotentialVOCVolatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PSI   |                                                                               |
| TCLP     Toxic Characteristic Leaching Potential       VOC     Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                                                               |
| VOC Volatile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TCLP  |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRH   |                                                                               |





# **12 Limitations**

The findings of this Report are based on the Scope of Work as defined herein noting the investigation is limited to the site soils (notwithstanding limited observations of structures in the vicinity if relevant due to the potential for the presence of ACMs). Canopy Enterprises Pty Ltd (Canopy) performed services in a manner consistent with industry standards for the undertaking similar works. The assessment was undertaken with regard to the proposed development and land use.

It is <u>not</u> possible to identify all hazardous or toxic materials which may be present on the Site and this assessment should not be interpreted as a guarantee that hazardous or toxic materials (including any hazardous or toxic materials not referred to) do not exist across the Site or between sampling points of the identified Areas of Environmental Concern (AEC).

Canopy accepts no liability for use or interpretation by any person or entity other than reasonable use and interpretation by the Client or their representative who engaged the works or relevant third parties and which relates directly to the intended purposes of the investigation.

All conclusions and considerations regarding this property represent the professional opinions of Canopy's personnel involved with the project and should not be considered a strictly legal interpretation of existing environmental guidelines or regulations.

Canopy assumes no responsibility or liability for errors in the public data utilised, statements from sources outside of Canopy or any consequential developments arising outside of the scope of this project. In the unlikely event however that Canopy was proven to be in error, given the nature, scale and cost of the assessment in comparison to the costs of the underlying works Canopy's liability for consequential damage is limited to the value of Canopy's engagement to the extent the law permits.

This Report may only be used for the specific purposes for which it was commissioned and in accordance with the terms of engagement. Canopy retains unfettered ownership of the Report, and its contents, until all payment obligations have been fulfilled. In the event of non-payment Canopy reserves its right to notify the relevant authorities including the relevant planning authority that the Report is withdrawn and invalid until full payment has been made.

The Report should not be reproduced in part or full without joint authorisation from the Client and Canopy unless related to its intended purposes, in which case all relevant acknowledgements should be included.

**Appendix A Construction Details** 







COPYRIGHT © OPTUS MOBILE PTY LTD ABN 65 054 365 696. ALL RIGHTS RESERVED. VERSION 2.0 NOVEMBER 2013

20 10 0 10 20 30 40 50mm A3

NOTE: THIS DRAWING IS DIAGRAMMATIC ONLY AND SHOULD NOT BE SCALED.



# Appendix B Site Map, Sampling Locations, Site Photographs





Site Map

Note: Red line is the approximate boundary of Site, red dots show approximate sampling locations

Source: Google Earth Pro





Photo 1: Setup process for Boring B1



**Photo 2:** Locations of Borings B1 and B2 upon completion of drilling operations

# Appendix C Groundwater Borehole Search Results





#### **WaterNSW** Work Summary

#### GW110933

| Licence:                                    |                         | L                    | icence Status:                   |                |        |                                |
|---------------------------------------------|-------------------------|----------------------|----------------------------------|----------------|--------|--------------------------------|
|                                             |                         |                      | ed Purpose(s):<br>ed Purpose(s): | DOMESTIC       |        |                                |
| Work Type:                                  | Spear                   |                      |                                  |                |        |                                |
| Work Status:                                | Supply Obtained         |                      |                                  |                |        |                                |
| Construct.Method:                           | Auger                   |                      |                                  |                |        |                                |
| Owner Type:                                 | Private                 |                      |                                  |                |        |                                |
| Commenced Date:<br>Completion Date:         |                         |                      | Final Depth:<br>Drilled Depth:   |                |        |                                |
| Contractor Name:                            | (None)                  |                      |                                  |                |        |                                |
|                                             | Michael Peter Sprouster |                      |                                  |                |        |                                |
| Assistant Driller:                          |                         |                      |                                  |                |        |                                |
| Property:                                   |                         | Standi               | ng Water Level<br>(m):           | 1.900          |        |                                |
| GWMA:<br>GW Zone:                           |                         | Salini               | ty Description:<br>Yield (L/s):  | 0.900          |        |                                |
| Site Details                                |                         |                      |                                  |                |        |                                |
| Site Chosen By:                             |                         |                      |                                  |                |        |                                |
|                                             |                         | Form A:<br>Licensed: | County<br>CUMBERLAND             | Parish<br>MANL | YCOVE  | <b>Cadastre</b><br>51//1094334 |
| <b>Region:</b> 10 -                         | Sydney South Coast      | CMA Map:             |                                  |                |        |                                |
| River Basin: - Un<br>Area/District:         | known                   | Grid Zone:           |                                  |                | Scale: |                                |
| Elevation: 0.00<br>Elevation Unk<br>Source: |                         |                      | 6262548.000<br>341703.000        |                |        | 33°45'55.3"S<br>151°17'26.3"E  |

#### GS Map: -

Construction
Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of
Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers
Heals, Gramenanet Turne, Turne, Territory, Territor, Territory, Territory, Territory, Territory,

MGA Zone: 56

| Hole | Pipe | Component | Туре              | From<br>(m) |      | Outside<br>Diameter<br>(mm) | Interval | Details                                |
|------|------|-----------|-------------------|-------------|------|-----------------------------|----------|----------------------------------------|
| 1    |      | Hole      | Hole              | 0.00        | 4.00 | 110                         |          | Auger                                  |
| 1    |      | Annulus   | Waterworn/Rounded | 0.00        | 0.00 |                             |          | Graded                                 |
| 1    | 1    | Casing    | Pvc Class 9       | 0.00        | 3.00 | 110                         |          | Glued                                  |
| 1    | 1    | Opening   | Screen            | 3.00        | 4.00 | 50                          | 0        | Stainless Steel, Screwed, A:<br>6.00mm |

Coordinate Unknown Source:

#### Water Bearing Zones

|      | To<br>(m) | Thickness<br>(m) | WBZ Туре |      | (L/s) |          | Salinity<br>(mg/L) |
|------|-----------|------------------|----------|------|-------|----------|--------------------|
| 1.90 | 4.00      | 2.10             | Unknown  | 1.90 | 0.90  | 01:00:00 |                    |

#### **Drillers Log**

| From | То   | Thickness | Drillers Description | Geological Material | Comments |
|------|------|-----------|----------------------|---------------------|----------|
| (m)  | (m)  | (m)       |                      |                     |          |
| 0.00 | 0.20 | 0.20      | TOSOIL               | Topsoil             |          |
| 0.20 | 0.50 | 0.30      | SANDS MIXED          | Sand                |          |
| 0.50 | 1.40 | 0.90      | SAND GREY AND CLAY   | Sand                |          |
| 1.40 | 1.90 | 0.50      | SAND DARK WITH CLAY  | Sand                |          |
| 1.90 | 2.50 | 0.60      | CLAY                 | Clay                |          |
| 2.50 | 3.00 | 0.50      | SAND AND CLAY        | Sand                |          |
| 3.00 | 4.00 | 1.00      | SAND AND QUARTZ      | Sand                |          |

#### Remarks

21/06/2010: Form A Remarks: Good quality water and flow for domestic use.

#### \*\*\* End of GW110933 \*\*\*

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.


# **WaterNSW** Work Summary

### GW107537

| Licence:                            |                         | Licence Status:                                    |                             |                                     |
|-------------------------------------|-------------------------|----------------------------------------------------|-----------------------------|-------------------------------------|
|                                     |                         | Authorised Purpose(s):<br>Intended Purpose(s): REC | REATION (GROUND)            | VATER)                              |
| Work Type:                          | Bore                    |                                                    |                             |                                     |
| Work Status:                        |                         |                                                    |                             |                                     |
| Construct.Method:                   | Auger                   |                                                    |                             |                                     |
| Owner Type:                         |                         |                                                    |                             |                                     |
| Commenced Date:<br>Completion Date: |                         | Final Depth: 4.34<br>Drilled Depth: 4.34           |                             |                                     |
| completion bate.                    | 10/04/2003              | Dimed Deptil. 4.54                                 |                             |                                     |
| Contractor Name:                    | WATER WORKS             |                                                    |                             |                                     |
| Driller:                            | Andrew Malcolm Chalmers |                                                    |                             |                                     |
| Assistant Driller:                  |                         |                                                    |                             |                                     |
| Property:                           |                         | Standing Water Level 1.100                         | )                           |                                     |
| GWMA:                               |                         | (m):<br>Salinity Description:                      |                             |                                     |
| GW Zone:                            |                         | Yield (L/s): 1.470                                 | )                           |                                     |
| Site Details                        |                         |                                                    |                             |                                     |
| Site Chosen By:                     |                         |                                                    |                             |                                     |
|                                     |                         | County<br>Form A: CUMBERLAND<br>Licensed:          | <b>Parish</b><br>MANLY COVE | Cadastre<br>2682 752038             |
| Region: 10 -                        | Sydney South Coast      | СМА Мар:                                           |                             |                                     |
| River Basin: - Un<br>Area/District: | nknown                  | Grid Zone:                                         | Scal                        | e:                                  |
| Elevation: 0.00<br>Elevation Unk    |                         | Northing: 6262584.000<br>Easting: 342042.000       |                             | e: 33°45'54.3"S<br>e: 151°17'39.5"E |

Elevation: 0.00 m (A.H.D.) Elevation Unknown Source:

GS Map: -

### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

MGA Zone: 56

| Hole | Pipe | Component | Туре        | From<br>(m) |      | Outside<br>Diameter<br>(mm) | Inside<br>Diameter<br>(mm) | Interval | Details          |
|------|------|-----------|-------------|-------------|------|-----------------------------|----------------------------|----------|------------------|
| 1    |      | Hole      | Hole        | 0.00        | 4.34 | 125                         |                            |          | Auger            |
| 1    | 1    | Casing    | Pvc Class 9 | -0.30       | 4.34 | 114                         |                            |          | Driven into Hole |

Coordinate Unknown Source:

#### Water Bearing Zones

|      | To<br>(m) | Thickness<br>(m) |         | S.W.L.<br>(m) |      |      |      | Duration<br>(hr) | Salinity<br>(mg/L) |
|------|-----------|------------------|---------|---------------|------|------|------|------------------|--------------------|
| 1.10 | 4.34      | 3.24             | Unknown | 1.10          | 1.10 | 1.47 | 4.34 |                  | 550.00             |

### **Drillers** Log

|  | From | То | Thickness | Drillers Description | Geological Material | Comments |
|--|------|----|-----------|----------------------|---------------------|----------|
|--|------|----|-----------|----------------------|---------------------|----------|

|     | (m)  | (m)  | (m)  |           |      |  |
|-----|------|------|------|-----------|------|--|
| - [ | 0.00 | 2.00 | 2.00 | CLAY FILL | Clay |  |
| - [ | 2.00 | 4.34 | 2.34 | SAND      | Sand |  |
|     |      |      |      |           |      |  |

#### Remarks

18/10/2006: Previous Lic No: 10BL165295

### \*\*\* End of GW107537 \*\*\*

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

# **WaterNSW**

#### GW109151

Licence:

Work Summary Licence Status: Authorised Purpose(s): Intended Purpose(s): RECREATION (GROUNDWATER) Work Type: Bore Work Status: Test Hole Construct.Method: Other Owner Type: Private Commenced Date: Completion Date: 05/08/2008 Final Depth: 120.00 m Drilled Depth: 120.00 m Contractor Name: INTERTEC DRILLING SERVICES Driller: Paul Sheehy Assistant Driller: Standing Water Level 10.000 (m): Salinity Description: Yield (L/s): 2.100 Property: GWMA: GW Zone:

Site Details Site Chosen By:

|                                    |                            | Form A:<br>Licensed: | County<br>CUMBERLAND      | Parish<br>MANLY COVE  | Cadastre<br>253 752038        |
|------------------------------------|----------------------------|----------------------|---------------------------|-----------------------|-------------------------------|
| Region:                            | 10 - Sydney South Coast    | CMA Map:             |                           |                       |                               |
| River Basin:<br>Area/District:     | - Unknown                  | Grid Zone:           |                           | Scale:                |                               |
| Elevation:<br>Elevation<br>Source: | 0.00 m (A.H.D.)<br>Unknown |                      | 6262626.000<br>341987.000 |                       | 33°45'52.9"S<br>151°17'37.4"E |
| GS Map:                            | -                          | MGA Zone:            | 56                        | Coordinate<br>Source: |                               |

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

| Hole | Pipe | Component | Туре        | From<br>(m) |        | Outside<br>Diameter<br>(mm) | Inside<br>Diameter<br>(mm) | Interval | Details             |
|------|------|-----------|-------------|-------------|--------|-----------------------------|----------------------------|----------|---------------------|
| 1    |      | Hole      | Hole        | 0.00        | 27.20  | 230                         |                            |          | Other               |
| 1    |      | Hole      | Hole        | 27.20       | 32.80  | 165                         |                            |          | Rotary Air/Mud      |
| 1    |      | Hole      | Hole        | 32.80       | 120.00 | 156                         |                            |          | Down Hole Hammer    |
| 1    | 1    | Casing    | Pvc Class 9 | -0.30       | 41.70  | 140                         |                            |          | Suspended in Clamps |
| 1    | 1    | Casing    | Steel       | -0.30       | 29.30  | 156                         | 146                        |          | Driven into Hole    |

### Water Bearing Zones

| Fro<br>(m) |       |       | Thickness<br>(m) |         | D.D.L.<br>(m) | Yield<br>(L/s) |  | Salinity<br>(mg/L) |
|------------|-------|-------|------------------|---------|---------------|----------------|--|--------------------|
| 5          | 56.80 | 57.10 | 0.30             | Unknown |               | 2.10           |  | 610.00             |

| Drille | Drillers Log |       |                      |                     |          |  |  |  |  |  |  |  |
|--------|--------------|-------|----------------------|---------------------|----------|--|--|--|--|--|--|--|
| From   | То           |       | Drillers Description | Geological Material | Comments |  |  |  |  |  |  |  |
| (m)    | (m)          | (m)   |                      |                     |          |  |  |  |  |  |  |  |
| 0.00   |              |       | SAND, YELLOW         | Sand                |          |  |  |  |  |  |  |  |
| 2.50   | 27.20        | 24.70 | SAND/CLAY            | Sand                |          |  |  |  |  |  |  |  |
| 27.20  | 32.80        | 5.60  | SANDSTONE WEATHERED  | Sandstone           |          |  |  |  |  |  |  |  |
| 32.80  | 34.90        | 2.10  | SANDSTONE GREY       | Sandstone           |          |  |  |  |  |  |  |  |
| 34.90  | 35.50        | 0.60  | CLAY                 | Clay                |          |  |  |  |  |  |  |  |
| 35.50  | 44.70        | 9.20  | SANDSTONE GREY       | Sandstone           |          |  |  |  |  |  |  |  |
| 44.70  | 44.90        | 0.20  | SANDSTONE FRACTURED  | Sandstone           |          |  |  |  |  |  |  |  |
| 44.90  | 56.80        | 11.90 | SANDSTONE GREY       | Sandstone           |          |  |  |  |  |  |  |  |
| 56.80  | 57.10        | 0.30  | SANDSTONE FRACTURED  | Sandstone           |          |  |  |  |  |  |  |  |
| 57.10  | 58.90        | 1.80  | SANDSTONE DARK GREY  | Sandstone           |          |  |  |  |  |  |  |  |
| 58.90  | 62.00        | 3.10  | SANDSTONE GREY       | Sandstone           |          |  |  |  |  |  |  |  |
| 62.00  | 65.00        | 3.00  | SILTSTONE GREY       | Siltstone           |          |  |  |  |  |  |  |  |
| 65.00  | 91.90        | 26.90 | SANDSTONE GREY       | Sandstone           |          |  |  |  |  |  |  |  |
| 91.90  | 98.50        | 6.60  | SILTSTONE GREY       | Siltstone           |          |  |  |  |  |  |  |  |
| 98.50  | 101.50       | 3.00  | SILTSTONE RED        | Siltstone           |          |  |  |  |  |  |  |  |
| 101.50 | 115.00       | 13.50 | SANDSTONE GREY       | Sandstone           |          |  |  |  |  |  |  |  |
| 115.00 | 120.00       | 5.00  | SILTSTONE RED        | Siltstone           |          |  |  |  |  |  |  |  |

Remarks

02/04/2009: Previous Lic No:10BL600432

#### \*\*\* End of GW109151 \*\*\*

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interverting and using this data.



# WaterNSW Work Summary

### GW026577

| Licence:           |            | Licence Status:                                |            |
|--------------------|------------|------------------------------------------------|------------|
|                    |            | Authorised Purpose(s):<br>Intended Purpose(s): | IRRIGATION |
| Work Type:         | Spear      |                                                |            |
| Work Status:       |            |                                                |            |
| Construct.Method:  |            |                                                |            |
| Owner Type:        | Private    |                                                |            |
| Commenced Date:    |            | Final Depth:                                   | 2.70 m     |
| Completion Date:   | 01/12/1965 | Drilled Depth:                                 |            |
| Contractor Name:   | (None)     |                                                |            |
| Driller:           |            |                                                |            |
| Assistant Driller: |            |                                                |            |
| Property:          |            | Standing Water Level<br>(m):                   |            |
| GWMA:              |            | Salinity Description:                          |            |
| GW Zone:           |            | Yield (L/s):                                   |            |
| Site Details       |            |                                                |            |

Site Chosen By:

|                     |                                       | Form A:<br>Licensed: | County<br>CUMBERLAND      | Parish<br>MANLY COVE  | Cadastre<br>UNKNOWN FROM<br>HYDSYS |
|---------------------|---------------------------------------|----------------------|---------------------------|-----------------------|------------------------------------|
| Region:             | 10 - Sydney South Coast               | CMA Map:             | 9130-2N                   |                       |                                    |
| <b>River Basin:</b> | 213 - SYDNEY COAST -<br>GEORGES RIVER | Grid Zone:           |                           | Scale:                |                                    |
| Area/District:      | GEORGES RIVER                         |                      |                           |                       |                                    |
|                     | 0.00 m (A.H.D.)<br>(Unknown)          |                      | 6262590.000<br>342029.000 |                       | 33°45'54.1"S<br>151°17'39.0"E      |
| GS Map:             |                                       | MGA Zone:            | 56                        | Coordinate<br>Source: | GD.,PR. MAP                        |

### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

|   | Hole | Pipe | Component | Туре |       |       | Outside<br>Diameter<br>(mm) | Interval | Details |
|---|------|------|-----------|------|-------|-------|-----------------------------|----------|---------|
| I | 1    | 1    | Casing    |      | -0.90 | -0.90 |                             |          |         |

### Remarks

19/02/1975: SITED WOMENS BOWL CLUB CURL CURL



# Appendix D Heritage Register Search Results





Home > Topics > Heritage places and items > Search for heritage

# Memorial Gateway, John Fisher Park

### Item details

| Name of item:         | Memorial Gateway, John Fisher Park     |
|-----------------------|----------------------------------------|
| Type of item:         | Built                                  |
| Group/Collection<br>: | Parks, Gardens and Trees               |
| Category:             | Urban Park                             |
| Primary address:      | Abbott Road, North Curl Curl, NSW 2099 |
| Local govt. area:     | Warringah                              |

#### All addresses

| Street Address | Suburb/town     | LGA       | Parish | County | Туре            |
|----------------|-----------------|-----------|--------|--------|-----------------|
| Abbott Road    | North Curl Curl | Warringah |        |        | Primary Address |

### Statement of significance:

The Memorial Gateway has historical, technical and aesthetic significance as a man-made and high visual element designed as a formal entrance to the newly established playing fields for both Manly High School and its adjoining sports grounds. It also has a high degree of social significance in its association with famous local sports identies.

Date significance updated: 08 Mar 07

Note: The State Heritage Inventory provides information about heritage items listed by local and State government agencies. The State Heritage Inventory is continually being updated by local and State agencies as new information becomes available. Read the OEH **copyright and disclaimer**.

### Description

| Designer/Maker:          | Mr Geoffrey Lumsdaine, Architect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction<br>years:   | 1961-1962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Physical<br>description: | The gateway was among the first structures in Australia to be designed using hyperbolic parabaloid form. This was developed by Louis Kahn in the United states in the late 1950s when there was enthusiasm for exploring architectural possibilities using geometric forms and experimentation with light-weight concrete skins and roofs. It was taken up for use in public structures such as stadium, swimming pools and churches in Australia. The gateway retains the dimensions, layout and form of the original structure. |
| Physical                 | As a result of the increase in the level of the playing fields, the brick piers of the gateway                                                                                                                                                                                                                                                                                                                                                                                                                                    |



# **Appendix E**

# **EPA Register Search Results**



Home Environment protection licences POEO Public Register Search for licences, applications and notices

### Search results

Your search for: General Search with the following criteria

Suburb - Curl Curl

returned 0 result

Search Again



# Search for Environmental Protection Licences, applications, notices, audits or pollution studies and reduction programs



Home Contaminated land Record of notices

### Search results

Your search for: Suburb: CURL CURL

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed. This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register. POEO public register.

27 April 2019

For local

government

#### For business and industry

Accessibility (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/help-index) Disclaimer (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/disclaimer) Privacy (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/privacy) Copyright (https://www.epa.nsw.gov.au/about-us/contact-us/website-service-standards/copyright)

# Search of the Contaminated Land Record

# us/contact-us/locations)

(http

Find us on

Contact us

 131 555 (tel:131555) info@epa.nsw.gov.au (mailto:info@epa.nsw.gov.au) EPA Office Locations (https://www.epa.nsw.gov.au/about-

CANODY



.. more search tips

Search Again Refine Search

| Suburb        | SiteName                                          | Address                                     | ContaminationActivity | ManagementClass                                                       |              |             |
|---------------|---------------------------------------------------|---------------------------------------------|-----------------------|-----------------------------------------------------------------------|--------------|-------------|
|               |                                                   |                                             | Туре                  |                                                                       | Latitude     | Longitude   |
| CRESTWOOD     | Former BP Queanbeyan                              | 64 Uriarra ROAD                             | Service Station       | Regulation under CLM Act not                                          | -35.34646177 | 149.2246263 |
| CRONULLA      | Breen Holdings                                    | Bate Bay ROAD                               | Other Industry        | Regulation under CLM Act not<br>required                              | -34.03861737 | 151.1614114 |
| CROWS NEST    | Caltex Service Station                            | 111-121 Falcon STREET                       | Service Station       | Regulation under CLM Act not<br>required                              | -33.82868236 | 151.2060317 |
| CROYDON       | Caltex Service Station                            | 404-410 Liverpool ROAD                      | Service Station       | Regulation under CLM Act not                                          | -33.88853994 | 151.115879  |
| CROYDON       | BP Ashfield                                       | 584 Parramatta ROAD                         | Service Station       | Regulation under CLM Act not<br>required                              | -33.87399409 | 151.1267296 |
| CROYDON PARK  | Mobil Service Station                             | 334 Georges River ROAD                      | Service Station       | Regulation under CLM Act not                                          | -33.89771626 | 151.0999194 |
| CULCAIRN      | Caltex Service Station                            | 2883 Olympic HIGHWAY                        | Service Station       | Regulation under CLM Act not                                          | -35.67441635 | 147.0356845 |
| CULLEN BULLEN | Baal Bone Colliery                                | Castlereagh HIGHWAY                         | Other Industry        | Regulation under CLM Act not<br>required                              | -33.27193875 | 150.0587194 |
| CUNDLETOWN    | Caltex Service Station (1 Manning<br>River Drive) | Old Pacific HIGHWAY                         | Service Station       | Regulation under CLM Act not<br>required                              | -31.89329598 | 152.5068225 |
| CURL CURL     | John Fisher Park                                  | Corner Harbord and<br>Abbott ROADS          | Landfill              | Regulation under CLM Act not<br>required                              | -33.76352692 | 151.2798462 |
| DACEYVILLE    | Astrolabe Park                                    | Cook AVENUE                                 | Landfill              | Under assessment                                                      | -33.92963704 | 151.221773  |
| DAPTO         | RailCorp Dapto                                    | (Rear of property) 12-14<br>Hamilton STREET | Other Industry        | Regulation under CLM Act not<br>required                              | -34.50045405 | 150.787353  |
| DAPTO         | Nicheinvest Pty Ltd                               | 133-139 Lakelands<br>DRIVE                  | Service Station       | Under assessment                                                      | -34.50335    | 150.803144  |
| DARLINGHURST  | Proposed Retail Unit                              | 139-155 Palmer STREET                       | Unclassified          | Regulation under CLM Act not<br>required                              | -33.87504688 | 151,2168106 |
| DARLINGHURST  | Cross City Tunnel                                 | Riley Street and William<br>STREET          | Service Station       | Contamination was addressed<br>via the planning process (EP&A<br>Act) | -33.87424636 | 151.2158305 |
| DARLINGHURST  | 18-28 Neild Avenue, Darlinghurst                  | 18-28 Neild AVENUE                          | Landfill              | Regulation under CLM Act not<br>required                              | -33.87876581 | 151.2276546 |
| DEE WHY       | United Dee Why                                    | 1 The Strand STREET                         | Service Station       | Contamination currently<br>regulated under POEO Act                   | -33.75569207 | 151.2959451 |

List of NSW Contaminated sites Notified to the EPA



# Appendix F Land Title Search Results







LegalStream Australia Pty Ltd An Approved NSW LRS Information Broker ABN: 80 002 801 498

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------23/5/2019 8:28PM

FOLIO: 7356/1167221

\_\_\_\_

First Title(s): THIS FOLIO Prior Title(s): CROWN LAND

| Recorded               | Number               | Type of Instrument                  | C.T. Issue                     |
|------------------------|----------------------|-------------------------------------|--------------------------------|
| 4/7/2011               | DP1167221            | DEPOSITED PLAN                      | FOLIO CREATED<br>CT NOT ISSUED |
| 4/7/2011               | CA158903             | CONVERSION ACTION                   | CI NOI ISSUED                  |
| 18/3/2014<br>18/3/2014 | AI365044<br>AI145335 | REQUEST<br>LEASE BY A RESERVE TRUST |                                |

\*\*\* END OF SEARCH \*\*\*

CUAB-19

PRINTED ON 23/5/2019

Search Date/Time: 23/05/2019 8:28PM



m

Ч

/Seg:1

20:31

/Prt:23-May-2019

/Pgs:ALL

OK.

/sts:sc

/Rev:06-Jul-2011

ዋ

1167221

/Doc:DP /Src:B-

:R420560 :CUAB-19

Red: Ref:



e-departmental



Appendix G Historical Research Information & Historical Aerials



# **Research References:**

Google Earth. (2019). Google Earth – Google Earth. [online] Available at: https://www.google.com/earth/ [Accessed 18 May 2019].

John Fisher Park and Abbott Road Land Plan of Management. (2001). Retrieved from https:// files.northernbeaches.msw.gov.au/sites/default/files/test-grab/juppom.pdf [Accessed 18 May 2019].

Six Maps 1943 Imagery. (2019). Six Maps. Retrieved from https://maps.six.nsw.gov.au/#



Six Maps aerial Curl Curl 1943





Curl Curl Aerial 1991



Google Earth Pro 2005





Google Earth Pro 2009



Google Earth Pro 2014





Google Earth Pro 2018



# Appendix H Laboratory Reports

Canopy Enterprises PSI/WC Part of Abbott Road Fields, Curl Curl 2096 Ref: CUAB-19-PSI



|                            |                                    |                |                                       | USTODY         |                    | _            |              | _             |            |          |         |                | •      |          |           | ley St, Ch<br>9910 6201      |                    |          | irolab.com.au                                               |
|----------------------------|------------------------------------|----------------|---------------------------------------|----------------|--------------------|--------------|--------------|---------------|------------|----------|---------|----------------|--------|----------|-----------|------------------------------|--------------------|----------|-------------------------------------------------------------|
|                            |                                    | ENVIRC         | LAB GRO                               | UP - National  | -                  |              |              |               |            |          |         |                |        |          |           | <u>.ab</u> - MPL<br>Hayden C |                    |          | 154                                                         |
| Client: Canopy Enterprises |                                    |                | Client                                | Proje          | ct Nam             | ie/Nu<br>IΔA | mber<br>දා 1 | / Site e<br>🗘 | etc (ie    | report   | title): | •              |        | 9317 250 |           |                              |                    |          |                                                             |
| Contact Pers               | on: Fenn Hinchcliffe               | -              | · · · ·                               |                | PO No              |              |              | 101           | / 1        | /        |         | -              |        |          | Melbo     | urne Lab                     | - Envirol          | ab Servi | ces                                                         |
| Sampler: G H               |                                    |                |                                       |                |                    |              |              |               |            |          |         |                |        |          |           | more Dri                     |                    |          | 8179<br>envirolab.com.au                                    |
| Address:                   |                                    |                |                                       |                | Dater              | esulte       | s requi      | red:          |            |          |         |                | ~      |          |           |                              |                    |          |                                                             |
|                            |                                    |                |                                       |                |                    |              |              |               | ıme da     | v / 1 d  | av / 2  | day[/ 3        | 3 day) | )        |           | ne Office<br>)-20 Depo       |                    |          |                                                             |
| Phone:                     | •                                  | Mob:           | 0402 411 177                          |                |                    |              | nat: esc     |               |            | ,,       | -,,-    |                | 9      |          |           |                              |                    |          | virolab.com.au                                              |
| Email:                     | fenn@canopyenter                   |                |                                       | erprises.com   | <u> </u>           | omme         |              | _             | 1 1        |          | -       | -              |        | _        |           |                              |                    |          |                                                             |
|                            |                                    | ample informa  |                                       |                |                    |              |              |               |            |          | Tes     | ts Requ        | rired  |          | L         |                              |                    |          | Comments                                                    |
|                            |                                    |                | · · · · · · · · · · · · · · · · · · · |                |                    |              | [            | _ <u>_</u>    | [          |          | -       | 1              |        |          |           | _                            |                    |          |                                                             |
| Envirolab<br>Sample ID     | Client Sample ID<br>or information | Depth          | Date sampled                          | Type of sample | Priority<br>Metals | РАН          | oc/op        | BTEX/TRH      | PCB        | Comb 6   | Comb 6a | SPOCAS         |        | 1        |           |                              |                    |          | Provide as much<br>information about t<br>sample as you can |
|                            | Bi                                 | 0.5            | 8.5,19                                | Soil x 2       |                    |              |              |               |            |          | 0       | <u>,</u>       |        |          |           |                              |                    |          |                                                             |
| <u></u>                    | <u> </u>                           | 1.0            | <u> </u>                              | X I            | ł – –              |              |              |               |            |          |         |                |        |          |           |                              | + · ·              |          | <u> </u>                                                    |
|                            | · B/                               | 1.5            | - <i>h</i>                            | × 2            | <b> </b>           | •            | <u> </u>     |               |            |          | x       |                |        |          |           |                              | 1.                 |          | <del></del>                                                 |
| - <del>4</del>             | BI                                 | 2.0            |                                       | x <u>x</u>     |                    |              |              |               |            |          | · ^     | $\overline{x}$ |        |          |           | <b>E</b> IVIR                | มีล่อ              | •        | rolab Services<br>12 Ashley St                              |
| 5                          |                                    | 3.0            | 1                                     | × (            |                    |              | -            |               |            |          |         |                |        |          |           |                              |                    | Chatsv   | 000 NSW 2087                                                |
| 6                          | B1                                 | 3.5            | - 1                                   | X Z            |                    |              |              |               |            | x        |         |                |        |          | -         | Job N                        | 10: 7              |          | 102) 9910 6200<br>S1 .                                      |
| - <del>7</del> -           | 81                                 | 30             | 4                                     | × <u>~</u>     |                    |              | <u> </u>     |               |            |          |         |                |        |          |           |                              | <u> </u>           |          |                                                             |
| ġ                          | B1                                 | 5.5            | 4                                     | × /            |                    |              | <u>+</u>     | +             |            |          |         |                |        |          |           |                              |                    |          | p <u>sig</u>                                                |
| <u> </u>                   | B I                                | 65             | 6                                     | × /            |                    |              |              | <u>├</u> ──   | <u>├──</u> |          |         |                |        |          |           |                              | Receive<br>(en hy: | · · · ·  | 1 <del>3</del> 1 —                                          |
| 6                          | BI                                 | 7.0            | n                                     | ×ī             |                    |              |              |               | [          |          |         |                |        |          |           | Temp:                        | (CONA              | mbient   | ,,                                                          |
|                            | BI                                 | 7.5-           | 1.                                    | XI             |                    |              |              |               |            |          |         |                | •      |          |           | Çoolin                       | g lee/l            | epack    |                                                             |
| - 12-                      | BI                                 | 8.0            | n                                     | x/             |                    |              |              |               |            | -        | -       | X              |        |          |           |                              |                    |          | n/None                                                      |
|                            | BI                                 | 8.5            | ~                                     | ×1             |                    |              |              |               | -          |          |         |                |        |          |           |                              |                    |          | · ·                                                         |
| 14                         | BI                                 | 9.0            | A                                     | ×1             |                    |              |              |               |            |          |         |                |        |          |           |                              |                    |          |                                                             |
| 15                         | B                                  | 10.0           | 4                                     |                |                    |              |              |               |            |          |         |                |        |          |           |                              |                    |          |                                                             |
| 4                          | <u> </u>                           | 0.5            | 4                                     | XI             |                    |              |              |               | <u> </u>   | ×        |         |                |        |          |           |                              |                    |          |                                                             |
| 11                         | B2                                 | 1.0            | <u> </u>                              | x7             |                    |              |              |               |            |          |         |                |        |          |           |                              |                    |          |                                                             |
| 18                         | B2                                 |                | 2875) n                               | ×1             |                    |              | ŀ            |               |            |          |         |                |        |          |           | _                            |                    | •        |                                                             |
| <u>19</u>                  | BZ ·                               | 3.0            | 4                                     | <u> </u>       |                    |              |              | ŀ             |            |          |         | X              |        |          |           |                              |                    |          |                                                             |
| 20                         | B2                                 | 2-5            | ļ                                     |                |                    |              |              | <b> </b>      | <b> </b>   | <u> </u> |         |                |        |          | ļ         |                              |                    |          | 1. 2.                                                       |
|                            | · · · · ·                          | <u> </u>       | <u> </u>                              |                |                    |              | <u> </u>     |               | <u> </u>   | <u> </u> |         |                |        |          |           | _                            |                    | <u> </u> |                                                             |
|                            |                                    |                | <b>_</b>                              |                |                    |              |              |               |            |          |         | <u> </u>       |        |          |           |                              |                    |          |                                                             |
| Relinguisher               | l<br>by (Company): Can             | opy Enterprise | <u>l</u><br>es                        |                | Recei              | ved by       | / (Com       | L<br>panv):   | Ē          | US.      | l       | <u> </u>       | Į      |          | Lab use o | niy:                         |                    | !        | L                                                           |
| Print Name:                |                                    | 10             | _                                     |                | Print              |              | i e          | Ilen          |            |          |         |                |        |          | 1         | -                            | 1: Cool            | or Aml   | pient (circle one)                                          |
| Date & Time                |                                    | ,10:           | 45                                    |                | Date a             |              |              | Ö             | tos        | し        | 133     | 1 (0           | R.     |          | Temperat  |                              |                    |          | (if applicable)                                             |

Ŀ

3 :



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# **CERTIFICATE OF ANALYSIS 217051**

| Client Details |                                     |
|----------------|-------------------------------------|
| Client         | Canopy Enterprises Pty Ltd          |
| Attention      | Fenn Hinchcliffe                    |
| Address        | 16/40 Hilly St, Mortlake, NSW, 2137 |

| Sample Details                       |                |
|--------------------------------------|----------------|
| Your Reference                       | <u>CUAB-19</u> |
| Number of Samples                    | 20 Soil        |
| Date samples received                | 08/05/2019     |
| Date completed instructions received | 08/05/2019     |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

# **Report Details**

 Date results requested by
 13/05/2019

 Date of Issue
 13/05/2019

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with \*

### Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Matt Tang

### Results Approved By

Ken Nguyen, Reporting Supervisor Matthew Tang, Asbsestos Supervisor Nick Sarlamis, Inorganics Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager



| vTRH(C6-C10)/BTEXN in Soil                           |       |            |            |            |
|------------------------------------------------------|-------|------------|------------|------------|
| Our Reference                                        |       | 217051-3   | 217051-6   | 217051-16  |
| Your Reference                                       | UNITS | B1         | B1         | B2         |
| Depth                                                |       | 1.5        | 3.5        | 0.5        |
| Date Sampled                                         |       | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample                                       |       | Soil       | Soil       | Soil       |
| Date extracted                                       | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed                                        | -     | 10/05/2019 | 10/05/2019 | 10/05/2019 |
| TRH C6 - C9                                          | mg/kg | <25        | <25        | <25        |
| TRH C6 - C10                                         | mg/kg | <25        | <25        | <25        |
| vTPH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | mg/kg | <25        | <25        | <25        |
| Benzene                                              | mg/kg | <0.2       | <0.2       | <0.2       |
| Toluene                                              | mg/kg | <0.5       | <0.5       | <0.5       |
| Ethylbenzene                                         | mg/kg | <1         | <1         | <1         |
| m+p-xylene                                           | mg/kg | <2         | <2         | <2         |
| o-Xylene                                             | mg/kg | <1         | <1         | <1         |
| naphthalene                                          | mg/kg | <1         | <1         | <1         |
| Total +ve Xylenes                                    | mg/kg | <1         | <1         | <1         |
| Surrogate aaa-Trifluorotoluene                       | %     | 112        | 112        | 113        |

| svTRH (C10-C40) in Soil                                      |       |            |            |            |
|--------------------------------------------------------------|-------|------------|------------|------------|
| Our Reference                                                |       | 217051-3   | 217051-6   | 217051-16  |
| Your Reference                                               | UNITS | B1         | B1         | B2         |
| Depth                                                        |       | 1.5        | 3.5        | 0.5        |
| Date Sampled                                                 |       | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample                                               |       | Soil       | Soil       | Soil       |
| Date extracted                                               | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed                                                | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | mg/kg | <50        | <50        | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | mg/kg | <100       | <100       | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | mg/kg | <100       | <100       | <100       |
| TRH >C10 -C16                                                | mg/kg | <50        | <50        | <50        |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | mg/kg | <50        | <50        | <50        |
| TRH >C <sub>16</sub> -C <sub>34</sub>                        | mg/kg | <100       | <100       | <100       |
| TRH >C <sub>34</sub> -C <sub>40</sub>                        | mg/kg | <100       | <100       | <100       |
| Total +ve TRH (>C10-C40)                                     | mg/kg | <50        | <50        | <50        |
| Surrogate o-Terphenyl                                        | %     | 86         | 89         | 90         |

| PAHs in Soil                   |       |            |            |            |
|--------------------------------|-------|------------|------------|------------|
| Our Reference                  |       | 217051-3   | 217051-6   | 217051-16  |
| Your Reference                 | UNITS | B1         | B1         | B2         |
| Depth                          |       | 1.5        | 3.5        | 0.5        |
| Date Sampled                   |       | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample                 |       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed                  | -     | 10/05/2019 | 10/05/2019 | 10/05/2019 |
| Naphthalene                    | mg/kg | <0.1       | <0.1       | <0.1       |
| Acenaphthylene                 | mg/kg | <0.1       | <0.1       | <0.1       |
| Acenaphthene                   | mg/kg | <0.1       | <0.1       | <0.1       |
| Fluorene                       | mg/kg | <0.1       | <0.1       | <0.1       |
| Phenanthrene                   | mg/kg | 0.2        | <0.1       | 0.1        |
| Anthracene                     | mg/kg | <0.1       | <0.1       | <0.1       |
| Fluoranthene                   | mg/kg | 0.3        | <0.1       | 0.6        |
| Pyrene                         | mg/kg | 0.3        | <0.1       | 0.7        |
| Benzo(a)anthracene             | mg/kg | 0.1        | <0.1       | 0.4        |
| Chrysene                       | mg/kg | 0.2        | <0.1       | 0.5        |
| Benzo(b,j+k)fluoranthene       | mg/kg | 0.3        | <0.2       | 0.9        |
| Benzo(a)pyrene                 | mg/kg | 0.2        | 0.05       | 0.61       |
| Indeno(1,2,3-c,d)pyrene        | mg/kg | <0.1       | <0.1       | 0.3        |
| Dibenzo(a,h)anthracene         | mg/kg | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene           | mg/kg | 0.1        | <0.1       | 0.4        |
| Total +ve PAH's                | mg/kg | 1.7        | 0.05       | 4.7        |
| Benzo(a)pyrene TEQ calc (zero) | mg/kg | <0.5       | <0.5       | 0.8        |
| Benzo(a)pyrene TEQ calc(half)  | mg/kg | <0.5       | <0.5       | 0.8        |
| Benzo(a)pyrene TEQ calc(PQL)   | mg/kg | <0.5       | <0.5       | 0.9        |
| Surrogate p-Terphenyl-d14      | %     | 99         | 91         | 92         |

| Organochlorine Pesticides in soil |       |            |            |            |
|-----------------------------------|-------|------------|------------|------------|
| Our Reference                     |       | 217051-3   | 217051-6   | 217051-16  |
| Your Reference                    | UNITS | B1         | B1         | B2         |
| Depth                             |       | 1.5        | 3.5        | 0.5        |
| Date Sampled                      |       | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample                    |       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed                     | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       |
| Total +ve DDT+DDD+DDE             | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX                    | %     | 94         | 96         | 95         |

| Organophosphorus Pesticides |       |            |            |            |
|-----------------------------|-------|------------|------------|------------|
| Our Reference               |       | 217051-3   | 217051-6   | 217051-16  |
| Your Reference              | UNITS | B1         | B1         | B2         |
| Depth                       |       | 1.5        | 3.5        | 0.5        |
| Date Sampled                |       | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample              |       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed               | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Azinphos-methyl (Guthion)   | mg/kg | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl             | mg/kg | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos               | mg/kg | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl        | mg/kg | <0.1       | <0.1       | <0.1       |
| Diazinon                    | mg/kg | <0.1       | <0.1       | <0.1       |
| Dichlorvos                  | mg/kg | <0.1       | <0.1       | <0.1       |
| Dimethoate                  | mg/kg | <0.1       | <0.1       | <0.1       |
| Ethion                      | mg/kg | <0.1       | <0.1       | <0.1       |
| Fenitrothion                | mg/kg | <0.1       | <0.1       | <0.1       |
| Malathion                   | mg/kg | <0.1       | <0.1       | <0.1       |
| Parathion                   | mg/kg | <0.1       | <0.1       | <0.1       |
| Ronnel                      | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate TCMX              | %     | 94         | 96         | 95         |

| PCBs in Soil               |       |            |            |            |
|----------------------------|-------|------------|------------|------------|
| Our Reference              |       | 217051-3   | 217051-6   | 217051-16  |
| Your Reference             | UNITS | B1         | B1         | B2         |
| Depth                      |       | 1.5        | 3.5        | 0.5        |
| Date Sampled               |       | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample             |       | Soil       | Soil       | Soil       |
| Date extracted             | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed              | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Aroclor 1016               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1221               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1232               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1242               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1248               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1254               | mg/kg | <0.1       | <0.1       | <0.1       |
| Aroclor 1260               | mg/kg | <0.1       | <0.1       | <0.1       |
| Total +ve PCBs (1016-1260) | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX            | %     | 94         | 96         | 95         |

| Acid Extractable metals in soil |       |            |            |            |
|---------------------------------|-------|------------|------------|------------|
| Our Reference                   |       | 217051-3   | 217051-6   | 217051-16  |
| Your Reference                  | UNITS | B1         | B1         | B2         |
| Depth                           |       | 1.5        | 3.5        | 0.5        |
| Date Sampled                    |       | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample                  |       | Soil       | Soil       | Soil       |
| Date prepared                   | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed                   | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Arsenic                         | mg/kg | 5          | <4         | 10         |
| Cadmium                         | mg/kg | <0.4       | <0.4       | <0.4       |
| Chromium                        | mg/kg | 6          | 10         | 6          |
| Copper                          | mg/kg | 11         | 16         | 6          |
| Lead                            | mg/kg | 27         | 27         | 14         |
| Mercury                         | mg/kg | <0.1       | <0.1       | <0.1       |
| Nickel                          | mg/kg | 2          | 3          | 2          |
| Zinc                            | mg/kg | 48         | 33         | 26         |

| Moisture       |       |            |            |            |
|----------------|-------|------------|------------|------------|
| Our Reference  |       | 217051-3   | 217051-6   | 217051-16  |
| Your Reference | UNITS | B1         | B1         | B2         |
| Depth          |       | 1.5        | 3.5        | 0.5        |
| Date Sampled   |       | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample |       | Soil       | Soil       | Soil       |
| Date prepared  | -     | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed  | -     | 10/05/2019 | 10/05/2019 | 10/05/2019 |
| Moisture       | %     | 13         | 23         | 6.5        |

| Asbestos ID - soils |       |                                                             |
|---------------------|-------|-------------------------------------------------------------|
| Our Reference       |       | 217051-3                                                    |
| Your Reference      | UNITS | B1                                                          |
| Depth               |       | 1.5                                                         |
| Date Sampled        |       | 08/05/2019                                                  |
| Type of sample      |       | Soil                                                        |
| Date analysed       | -     | 09/05/2019                                                  |
| Sample mass tested  | g     | Approx. 30g                                                 |
| Sample Description  | -     | Brown sandy soil<br>& rocks                                 |
| Asbestos ID in soil | -     | No asbestos<br>detected at<br>reporting limit of<br>0.1g/kg |
|                     |       | Organic fibres detected                                     |
| Trace Analysis      | -     | No asbestos<br>detected                                     |

| sPOCAS + %S w/w             |             |            |            |            |
|-----------------------------|-------------|------------|------------|------------|
| Our Reference               |             | 217051-4   | 217051-12  | 217051-19  |
| Your Reference              | UNITS       | B1         | B1         | B2         |
| Depth                       |             | 2.0        | 8.0        | 3.0        |
| Date Sampled                |             | 08/05/2019 | 08/05/2019 | 08/05/2019 |
| Type of sample              |             | Soil       | Soil       | Soil       |
| Date prepared               | -           | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| Date analysed               | -           | 09/05/2019 | 09/05/2019 | 09/05/2019 |
| pH <sub>kcl</sub>           | pH units    | 8.2        | 4.6        | 5.5        |
| TAA pH 6.5                  | moles H+ /t | <5         | 6          | <5         |
| s-TAA pH 6.5                | %w/w S      | <0.01      | 0.01       | <0.01      |
| pH ox                       | pH units    | 8.0        | 4.6        | 2.8        |
| TPA pH 6.5                  | moles H+ /t | <5         | 12         | 68         |
| s-TPA pH 6.5                | %w/w S      | <0.01      | 0.02       | 0.11       |
| TSA pH 6.5                  | moles H+ /t | <5         | 6          | 64         |
| s-TSA pH 6.5                | %w/w S      | <0.01      | 0.01       | 0.10       |
| ANCE                        | % CaCO₃     | 0.44       | <0.05      | <0.05      |
| a-ANC <sub>E</sub>          | moles H+ /t | 88         | <5         | <5         |
| s-ANC <sub>E</sub>          | %w/w S      | 0.14       | <0.05      | <0.05      |
| Skci                        | %w/w S      | 0.01       | <0.005     | 0.02       |
| Sp                          | %w/w        | 0.16       | 0.007      | 0.29       |
| Spos                        | %w/w        | 0.14       | 0.007      | 0.27       |
| a-Spos                      | moles H+ /t | 90         | <5         | 170        |
| Саксі                       | %w/w        | 0.12       | 0.01       | 0.04       |
| Сар                         | %w/w        | 0.45       | 0.02       | 0.20       |
| Сад                         | %w/w        | 0.33       | 0.008      | 0.15       |
| Мдксі                       | %w/w        | 0.005      | 0.022      | 0.007      |
| Mg <sub>P</sub>             | %w/w        | 0.026      | 0.029      | 0.018      |
| MgA                         | %w/w        | 0.021      | 0.007      | 0.011      |
| Sнсі                        | %w/w S      | <0.005     | <0.005     | <0.005     |
| Snas                        | %w/w S      | <0.005     | <0.005     | <0.005     |
| a-S <sub>NAS</sub>          | moles H+ /t | <5         | <5         | <5         |
| s-Snas                      | %w/w S      | <0.01      | <0.01      | <0.01      |
| Fineness Factor             | -           | 1.5        | 1.5        | 1.5        |
| a-Net Acidity               | moles H+ /t | <5         | 11         | 170        |
| s-Net Acidity               | %w/w S      | <0.01      | 0.02       | 0.27       |
| Liming rate                 | kg CaCO₃/t  | <0.75      | 0.81       | 13         |
| s-Net Acidity without -ANCE | %w/w S      | 0.14       | 0.017      | 0.27       |
| a-Net Acidity without ANCE  | moles H+ /t | 90         | 11         | 170        |
| Liming rate without ANCE    | kg CaCO₃/t  | 6.7        | 0.81       | 13         |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASB-001    | Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.                                                                      |
| Inorg-008  | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                         |
| Inorg-064  | sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.                                                                                                                                                         |
| Metals-020 | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                             |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                            |
| Org-003    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.<br>F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. |
| Org-003    | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                                                                                                                                                         |
|            | F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.                                                                                                                    |
|            | Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).                                                                                                                            |
| Org-005    | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                                                                                                                                                             |
| Org-005    | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual                                                                                                                                                                                    |
|            | ECD's.<br>Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of<br>the positive individually report DDD+DDE+DDT.                                                                                                                     |
| Org-006    | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                                                                                                                                                         |
| Org-006    | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.<br>Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.                           |
| Org-008    | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                                                                                                                                                             |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-012   | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.<br>Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.<br>For soil results:-<br>1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.<br/>2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL.<br/>3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above.<br/>Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of<br/>the positive individual PAHs.</pql></pql></pql> |
| Org-014   | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Org-016   | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Org-016   | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.<br>Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| QUALITY CONT                         | ROL: vTRH | (C6-C10)/ | BTEXN in Soil |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|--------------------------------------|-----------|-----------|---------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                     | Units     | PQL       | Method        | Blank      | # | Base       | Dup.       | RPD | LCS-1      | 217051-6   |
| Date extracted                       | -         |           |               | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019 | 09/05/2019 |
| Date analysed                        | -         |           |               | 10/05/2019 | 3 | 10/05/2019 | 10/05/2019 |     | 10/05/2019 | 10/05/2019 |
| TRH C <sub>6</sub> - C <sub>9</sub>  | mg/kg     | 25        | Org-016       | <25        | 3 | <25        | <25        | 0   | 109        | 100        |
| TRH C <sub>6</sub> - C <sub>10</sub> | mg/kg     | 25        | Org-016       | <25        | 3 | <25        | <25        | 0   | 109        | 100        |
| Benzene                              | mg/kg     | 0.2       | Org-016       | <0.2       | 3 | <0.2       | <0.2       | 0   | 105        | 96         |
| Toluene                              | mg/kg     | 0.5       | Org-016       | <0.5       | 3 | <0.5       | <0.5       | 0   | 108        | 101        |
| Ethylbenzene                         | mg/kg     | 1         | Org-016       | <1         | 3 | <1         | <1         | 0   | 111        | 100        |
| m+p-xylene                           | mg/kg     | 2         | Org-016       | <2         | 3 | <2         | <2         | 0   | 110        | 101        |
| o-Xylene                             | mg/kg     | 1         | Org-016       | <1         | 3 | <1         | <1         | 0   | 113        | 101        |
| naphthalene                          | mg/kg     | 1         | Org-014       | <1         | 3 | <1         | <1         | 0   | [NT]       | [NT]       |
| Surrogate aaa-Trifluorotoluene       | %         |           | Org-016       | 115        | 3 | 112        | 109        | 3   | 118        | 115        |

| QUALITY CONTROL: svTRH (C10-C40) in Soil |       |     |         |            |   | Du         | plicate    |     | Spike Recovery % |            |  |
|------------------------------------------|-------|-----|---------|------------|---|------------|------------|-----|------------------|------------|--|
| Test Description                         | Units | PQL | Method  | Blank      | # | Base       | Dup.       | RPD | LCS-1            | 217051-6   |  |
| Date extracted                           | -     |     |         | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019       | 09/05/2019 |  |
| Date analysed                            | -     |     |         | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019       | 09/05/2019 |  |
| TRH C <sub>10</sub> - C <sub>14</sub>    | mg/kg | 50  | Org-003 | <50        | 3 | <50        | <50        | 0   | 104              | 105        |  |
| TRH C <sub>15</sub> - C <sub>28</sub>    | mg/kg | 100 | Org-003 | <100       | 3 | <100       | <100       | 0   | 106              | 117        |  |
| TRH C <sub>29</sub> - C <sub>36</sub>    | mg/kg | 100 | Org-003 | <100       | 3 | <100       | <100       | 0   | 114              | 108        |  |
| TRH >C <sub>10</sub> -C <sub>16</sub>    | mg/kg | 50  | Org-003 | <50        | 3 | <50        | <50        | 0   | 104              | 105        |  |
| TRH >C <sub>16</sub> -C <sub>34</sub>    | mg/kg | 100 | Org-003 | <100       | 3 | <100       | <100       | 0   | 106              | 117        |  |
| TRH >C <sub>34</sub> -C <sub>40</sub>    | mg/kg | 100 | Org-003 | <100       | 3 | <100       | <100       | 0   | 114              | 108        |  |
| Surrogate o-Terphenyl                    | %     |     | Org-003 | 90         | 3 | 86         | 88         | 2   | 102              | 100        |  |
| QUALI                     | TY CONTRC | L: PAHs | in Soil |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------|-----------|---------|---------|------------|---|------------|------------|-----|------------|------------|
| Test Description          | Units     | PQL     | Method  | Blank      | # | Base       | Dup.       | RPD | LCS-1      | 217051-6   |
| Date extracted            | -         |         |         | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019 | 09/05/2019 |
| Date analysed             | -         |         |         | 10/05/2019 | 3 | 10/05/2019 | 10/05/2019 |     | 10/05/2019 | 10/05/2019 |
| Naphthalene               | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | <0.1       | <0.1       | 0   | 106        | 108        |
| Acenaphthylene            | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Acenaphthene              | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Fluorene                  | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | <0.1       | <0.1       | 0   | 100        | 102        |
| Phenanthrene              | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | 0.2        | 0.2        | 0   | 90         | 92         |
| Anthracene                | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Fluoranthene              | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | 0.3        | 0.4        | 29  | 90         | 90         |
| Pyrene                    | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | 0.3        | 0.4        | 29  | 92         | 92         |
| Benzo(a)anthracene        | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | 0.1        | 0.1        | 0   | [NT]       | [NT]       |
| Chrysene                  | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | 0.2        | 0.2        | 0   | 116        | 118        |
| Benzo(b,j+k)fluoranthene  | mg/kg     | 0.2     | Org-012 | <0.2       | 3 | 0.3        | 0.3        | 0   | [NT]       | [NT]       |
| Benzo(a)pyrene            | mg/kg     | 0.05    | Org-012 | <0.05      | 3 | 0.2        | 0.2        | 0   | 104        | 104        |
| Indeno(1,2,3-c,d)pyrene   | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | <0.1       | 0.1        | 0   | [NT]       | [NT]       |
| Dibenzo(a,h)anthracene    | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Benzo(g,h,i)perylene      | mg/kg     | 0.1     | Org-012 | <0.1       | 3 | 0.1        | 0.2        | 67  | [NT]       | [NT]       |
| Surrogate p-Terphenyl-d14 | %         |         | Org-012 | 95         | 3 | 99         | 94         | 5   | 97         | 93         |

| QUALITY CONTR       | ROL: Organc | chlorine I | Pesticides in soil |            |   | Du         | plicate    |     | Spike Recovery % |            |  |
|---------------------|-------------|------------|--------------------|------------|---|------------|------------|-----|------------------|------------|--|
| Test Description    | Units       | PQL        | Method             | Blank      | # | Base       | Dup.       | RPD | LCS-1            | 217051-6   |  |
| Date extracted      | -           |            |                    | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019       | 09/05/2019 |  |
| Date analysed       | -           |            |                    | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019       | 09/05/2019 |  |
| НСВ                 | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| alpha-BHC           | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 92               | 86         |  |
| gamma-BHC           | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| beta-BHC            | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 99               | 89         |  |
| Heptachlor          | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 100              | 95         |  |
| delta-BHC           | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Aldrin              | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 93               | 89         |  |
| Heptachlor Epoxide  | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 105              | 100        |  |
| gamma-Chlordane     | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| alpha-chlordane     | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Endosulfan I        | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| pp-DDE              | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 99               | 96         |  |
| Dieldrin            | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 110              | 106        |  |
| Endrin              | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 97               | 83         |  |
| pp-DDD              | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 103              | 78         |  |
| Endosulfan II       | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| pp-DDT              | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Endrin Aldehyde     | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Endosulfan Sulphate | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | 102              | 99         |  |
| Methoxychlor        | mg/kg       | 0.1        | Org-005            | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]             | [NT]       |  |
| Surrogate TCMX      | %           |            | Org-005            | 101        | 3 | 94         | 95         | 1   | 95               | 87         |  |

| QUALITY CONT              | ROL: Organ | ophospho | orus Pesticides |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------|------------|----------|-----------------|------------|---|------------|------------|-----|------------|------------|
| Test Description          | Units      | PQL      | Method          | Blank      | # | Base       | Dup.       | RPD | LCS-1      | 217051-6   |
| Date extracted            | -          |          |                 | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019 | 09/05/2019 |
| Date analysed             | -          |          |                 | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019 | 09/05/2019 |
| Azinphos-methyl (Guthion) | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Bromophos-ethyl           | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Chlorpyriphos             | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | 106        | 105        |
| Chlorpyriphos-methyl      | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Diazinon                  | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Dichlorvos                | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | 106        | 101        |
| Dimethoate                | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | [NT]       | [NT]       |
| Ethion                    | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | 102        | 112        |
| Fenitrothion              | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | 102        | 99         |
| Malathion                 | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | 97         | 75         |
| Parathion                 | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | 99         | 96         |
| Ronnel                    | mg/kg      | 0.1      | Org-008         | <0.1       | 3 | <0.1       | <0.1       | 0   | 103        | 100        |
| Surrogate TCMX            | %          |          | Org-008         | 101        | 3 | 94         | 95         | 1   | 96         | 96         |

| QUALIT           | Y CONTRO | L: PCBs | in Soil |            | Du | plicate    |            | Spike Recovery % |            |            |
|------------------|----------|---------|---------|------------|----|------------|------------|------------------|------------|------------|
| Test Description | Units    | PQL     | Method  | Blank      | #  | Base       | Dup.       | RPD              | LCS-1      | 217051-6   |
| Date extracted   | -        |         |         | 09/05/2019 | 3  | 09/05/2019 | 09/05/2019 |                  | 09/05/2019 | 09/05/2019 |
| Date analysed    | -        |         |         | 09/05/2019 | 3  | 09/05/2019 | 09/05/2019 |                  | 09/05/2019 | 09/05/2019 |
| Aroclor 1016     | mg/kg    | 0.1     | Org-006 | <0.1       | 3  | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Aroclor 1221     | mg/kg    | 0.1     | Org-006 | <0.1       | 3  | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Aroclor 1232     | mg/kg    | 0.1     | Org-006 | <0.1       | 3  | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Aroclor 1242     | mg/kg    | 0.1     | Org-006 | <0.1       | 3  | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Aroclor 1248     | mg/kg    | 0.1     | Org-006 | <0.1       | 3  | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Aroclor 1254     | mg/kg    | 0.1     | Org-006 | <0.1       | 3  | <0.1       | <0.1       | 0                | 117        | 117        |
| Aroclor 1260     | mg/kg    | 0.1     | Org-006 | <0.1       | 3  | <0.1       | <0.1       | 0                | [NT]       | [NT]       |
| Surrogate TCLMX  | %        |         | Org-006 | 101        | 3  | 94         | 95         | 1                | 96         | 96         |

| QUALITY CONT     | ROL: Acid E | xtractabl | e metals in soil |            |   | Du         | plicate    |     | Spike Recovery % |            |  |
|------------------|-------------|-----------|------------------|------------|---|------------|------------|-----|------------------|------------|--|
| Test Description | Units       | PQL       | Method           | Blank      | # | Base       | Dup.       | RPD | LCS-1            | 217051-6   |  |
| Date prepared    | -           |           |                  | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019       | 09/05/2019 |  |
| Date analysed    | -           |           |                  | 09/05/2019 | 3 | 09/05/2019 | 09/05/2019 |     | 09/05/2019       | 09/05/2019 |  |
| Arsenic          | mg/kg       | 4         | Metals-020       | <4         | 3 | 5          | <4         | 22  | 87               | 105        |  |
| Cadmium          | mg/kg       | 0.4       | Metals-020       | <0.4       | 3 | <0.4       | <0.4       | 0   | 111              | 105        |  |
| Chromium         | mg/kg       | 1         | Metals-020       | <1         | 3 | 6          | 6          | 0   | 120              | 112        |  |
| Copper           | mg/kg       | 1         | Metals-020       | <1         | 3 | 11         | 17         | 43  | 108              | 108        |  |
| Lead             | mg/kg       | 1         | Metals-020       | <1         | 3 | 27         | 35         | 26  | 109              | 117        |  |
| Mercury          | mg/kg       | 0.1       | Metals-021       | <0.1       | 3 | <0.1       | <0.1       | 0   | 95               | 102        |  |
| Nickel           | mg/kg       | 1         | Metals-020       | <1         | 3 | 2          | 2          | 0   | 109              | 104        |  |
| Zinc             | mg/kg       | 1         | Metals-020       | <1         | 3 | 48         | 57         | 17  | 111              | 105        |  |

| QUA                         | LITY CONTROL: s         | POC <u>AS +</u> | + %S w/w  |            |      | Du   | plicate |      | Spike Re   | coverv % |
|-----------------------------|-------------------------|-----------------|-----------|------------|------|------|---------|------|------------|----------|
| Test Description            | Units                   | PQL             | Method    | Blank      | #    | Base | Dup.    | RPD  | LCS-1      | [NT]     |
| Date prepared               | -                       |                 |           | 09/05/2019 | [NT] |      | [NT]    | [NT] | 09/05/2019 |          |
| Date analysed               | -                       |                 |           | 09/05/2019 | [NT] |      | [NT]    | [NT] | 09/05/2019 |          |
| pH <sub>kcl</sub>           | pH units                |                 | Inorg-064 | [NT]       | [NT] |      | [NT]    | [NT] | 90         |          |
| TAA pH 6.5                  | moles H+/t              | 5               | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | 105        |          |
| s-TAA pH 6.5                | %w/w S                  | 0.01            | Inorg-064 | < 0.01     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| pH <sub>Ox</sub>            | pH units                |                 | Inorg-064 | [NT]       | INT  |      | [NT]    | [NT] | 101        |          |
| TPA pH 6.5                  | moles H+/t              | 5               | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | 88         |          |
|                             |                         |                 | -         |            |      |      |         |      |            |          |
| s-TPA pH 6.5                | %w/w S                  | 0.01            | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |          |
| TSA pH 6.5                  | moles H <sup>+</sup> /t | 5               | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |          |
| s-TSA pH 6.5                | %w/w S                  | 0.01            | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |          |
| ANCE                        | % CaCO <sub>3</sub>     | 0.05            | Inorg-064 | <0.05      | [NT] |      | [NT]    | [NT] | [NT]       |          |
| a-ANC <sub>E</sub>          | moles H* /t             | 5               | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |          |
| s-ANC <sub>E</sub>          | %w/w S                  | 0.05            | Inorg-064 | <0.05      | [NT] |      | [NT]    | [NT] | [NT]       |          |
| SKCI                        | %w/w S                  | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Sp                          | %w/w                    | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Spos                        | %w/w                    | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| a-S <sub>POS</sub>          | moles H+/t              | 5               | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Саксі                       | %w/w                    | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Ca <sub>P</sub>             | %w/w                    | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Ca <sub>A</sub>             | %w/w                    | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Мдксі                       | %w/w                    | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Mg <sub>P</sub>             | %w/w                    | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Mg <sub>A</sub>             | %w/w                    | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| S <sub>HCI</sub>            | %w/w S                  | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Snas                        | %w/w S                  | 0.005           | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| a-S <sub>NAS</sub>          | moles H+/t              | 5               | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |          |
| s-Snas                      | %w/w S                  | 0.01            | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Fineness Factor             | -                       | 1.5             | Inorg-064 | <1.5       | [NT] |      | [NT]    | [NT] | [NT]       |          |
| a-Net Acidity               | moles H+/t              | 5               | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |          |
| s-Net Acidity               | %w/w S                  | 0.01            | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |          |
| Liming rate                 | kg CaCO <sub>3</sub> /t | 0.75            | Inorg-064 | < 0.75     | [NT] |      | [NT]    | [NT] | [NT]       |          |
| -                           |                         |                 | -         |            |      |      |         |      |            |          |
| s-Net Acidity without -ANCE | %w/w S                  | 0.01            | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |          |
| a-Net Acidity without ANCE  | moles H+ /t             | 5               | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |          |

| QUALITY (                               |            | Du   | Spike Recovery % |       |      |      |      |      |       |      |
|-----------------------------------------|------------|------|------------------|-------|------|------|------|------|-------|------|
| Test Description Units PQL Method Blank |            |      |                  |       |      | Base | Dup. | RPD  | LCS-1 | [NT] |
| Liming rate without ANCE                | kg CaCO₃/t | 0.75 | Inorg-064        | <0.75 | [NT] |      | [NT] | [NT] |       | [NT] |
|                                         |            |      |                  |       |      |      |      |      |       |      |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |
| Australian Drinking                | Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than                                                                                                                       |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

# **Report Comments**

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicativeof the entire sample.

Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004. Note: Sample 217051-3 was sub-sampled from a bag provided by the client.

# Appendix I Bore Logs

Canopy Enterprises PSI/WC Part of Abbott Road Fields, Curl Curl 2096 Ref: CUAB-19-PSI



|                                                               | BORE LOG                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| CANOPY                                                        | Project: Curl Curl Date: 8/05/2019 Bore ID: B1                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| Site: Abbot Road Fields<br>Curl Curl NSW 2095                 | Project ID: CUAB-19                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| Logged by: Gunnar Haid<br>Driller: D Hart<br>Company:         | Method: Full flight auger<br>Water Level: 1.9 m Static: Page 1 of 2                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| Depth [m]<br>Groundwater<br>Sample<br>PID (PPM)<br>UCSC Class | Description                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
| -                                                             | Top soil loam, grass, organics, roots                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 0.5                                                           | Fill, layers of fine to medium grained sand, rock fragments, some foreign                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| 1m 1.0                                                        | material, light brown, getting darker with depth, damp                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| -<br>_ 1.5<br>-                                               |                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| _<br>_2m GW 2.0                                               |                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|                                                               | Fill, fine to medium grained sand with silt, dark grey, wet<br>Organic decay odour                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
| -   3.5<br>_ 3.5<br>_ 4m<br>_ 1                               |                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| -<br>5m 5.0<br>-   5.5<br>-   5.5<br>5.5<br>6m<br>6m          | Fine to medium grained sand with clay and silt content<br>increasing with depth, dark grey, wet<br>Continue next sheet                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|                                                               | Spenous Dr Very soft Non plastic Very Boulders Poorly And (35-50%)   ogeneous y Soft Low plasticity loose Cobbles Sorted Some (20-35%)   fied Dam Firm Mod plasticity Loose Coabbles (well Little (10-20%)   nated P Stiff High plasticity Medium graded) Trace (0-10%)   holes Wet Hard Dense gravel well Contamination |  |  |  |  |  |  |  |  |  |  |

Disclaimer: This bore log is intended for environmental not geotechnical purposes

|                                                                         |                                          |                                                                       |                                                                                              | I                                                                                            | BORE L                                                                  | .0G                                                                       |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
|-------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
|                                                                         |                                          |                                                                       |                                                                                              | Project:                                                                                     | Curl Cur                                                                | 1                                                                         | Date:                                                                           | 8/05/2019                                                                            | Bor                                                                          | re ID:                                                            | B1                                                           |  |  |  |  |
| Site: Abbot<br>Curl Curl NS                                             | SW 209                                   | 95                                                                    |                                                                                              | Project ID:                                                                                  | CUAB-1                                                                  | 9                                                                         |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| Logged by:<br>Driller: D H<br>Company:                                  |                                          |                                                                       |                                                                                              | Method:<br>Water Level:                                                                      |                                                                         |                                                                           |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| Depth [m]<br>Groundwater                                                | Sample                                   | (Mdd) Old                                                             | UCSC Class                                                                                   | Description                                                                                  |                                                                         |                                                                           |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| -<br>-<br>-                                                             | 6.5                                      |                                                                       |                                                                                              | Fine to medium grained sand with clay and silt content increasing with depth, dark grey, wet |                                                                         |                                                                           |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| _  <br>7m                                                               | 7.0                                      |                                                                       |                                                                                              |                                                                                              |                                                                         |                                                                           |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| -<br>-<br>-                                                             | 7.5                                      |                                                                       |                                                                                              |                                                                                              |                                                                         |                                                                           |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| _  <br>8m<br>_  <br>_                                                   | 8.0                                      |                                                                       |                                                                                              | Sandy clay, medium plasticity, light grey, wet                                               |                                                                         |                                                                           |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| _  <br>9m<br>_  <br>_  <br>_  <br>_ 10m                                 | 9.0                                      |                                                                       |                                                                                              |                                                                                              |                                                                         |                                                                           |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| 10m<br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>- | 10.0                                     |                                                                       |                                                                                              | EOH @ 10.0 n                                                                                 |                                                                         |                                                                           |                                                                                 |                                                                                      |                                                                              |                                                                   |                                                              |  |  |  |  |
| Clay Si<br>Silt Sa<br>Sand Gr                                           | ayey<br>lly<br>ındy<br>ravelly<br>rganic | Colour<br>Red<br>Yellow<br>White<br>Black<br>Brown<br>Grey<br>Mottled | Structure<br>Homoger<br>Heteroge<br>Stratified<br>Laminate<br>Lens<br>Root hole<br>occasiona | nous Dr<br>neous y<br>Dam<br>ed p<br>Moist<br>es Wet                                         | Cohesive So<br>Very soft<br>Soft<br>Firm<br>Stiff<br>Very stiff<br>Hard | ils<br>Non plastic<br>Low plasticity<br>Mod plasticity<br>High plasticity | Sand & G<br>Very<br>loose<br>Loose<br>Medium<br>loose<br>Dense<br>Very<br>dense | ravel<br>Boulders<br>Cobbles<br>Coarse<br>gravel<br>Fine<br>gravel<br>Coarse<br>sand | Poorly<br>sorted<br>(well<br>graded)<br>well<br>sorted<br>(poorly<br>graded) | Seconda<br>And (35<br>Some (2<br>Little (1)<br>Trace (0<br>Contam | -50%)<br>(0-35%)<br>(0-20%)<br>(0-20%)<br>(0-10%)<br>(0-10%) |  |  |  |  |

Disclaimer: This bore log is intended for environmental not geotechnical purposes

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                               |           |            |                                                                                                   | I                                                                   | BORE I   | .0G |         |                                                 |     |        |    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------|-----------|------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------|-----|---------|-------------------------------------------------|-----|--------|----|--|--|--|
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                               |           |            | Projec                                                                                            | :t:                                                                 | Curl Cur | 1   | Date: 8 | 3/05/2019                                       | Вог | re ID: | B2 |  |  |  |
| Curl (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Curl NS     | Road I<br>SW 209                              | 95        |            | Projec                                                                                            | t ID:                                                               | CUAB-1   | 9   |         |                                                 |     |        |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r: D H      |                                               | ar Haid   |            |                                                                                                   | Nethod: Full flight auger<br>Vater Level: 1.9 m Static: Page 1 of 1 |          |     |         |                                                 |     |        |    |  |  |  |
| Depth [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Groundwater | Sample                                        | (MAd) DId | UCSC Class |                                                                                                   | Description                                                         |          |     |         |                                                 |     |        |    |  |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                               |           |            | Top so                                                                                            | Fop soil loam, grass, organics, roots                               |          |     |         |                                                 |     |        |    |  |  |  |
| <br><br><br><br><br><br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 0.5                                           |           |            | Fill, la<br>mater                                                                                 | ome for                                                             | eign     |     |         |                                                 |     |        |    |  |  |  |
| 2m<br><br><br><br><br><br>3m<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | <ul><li>2.0</li><li>2.5</li><li>3.0</li></ul> |           |            | Fill, fine to medium grained sand with silt, dark grey, wet<br>Organic decay odour<br>EOH @ 3.0 m |                                                                     |          |     |         |                                                 |     |        |    |  |  |  |
| Description Colour Structure Moisture Cohesive Soils Sand & Gravel Secondary   Clay Silly Red Homogenous Dr Very soft Non plastic Very Boulders Poorly And (35-50%) Some (20-35%)   Silt Sandy White Stratified Dam Firm Mod plasticity Mod plasticity Loose Cobles Sorted Some (20-35%) Some (20-35%) Little (10-20%) Some (20-35%) Little (10-20%) Firm Mod plasticity Mod plasticity Modeline gravel graded) Trace (0-10%) |             |                                               |           |            |                                                                                                   |                                                                     |          |     |         | -50%)<br>0-35%)<br>0-20%)<br>(-10%)<br>nination |     |        |    |  |  |  |

Disclaimer: This bore log is intended for environmental not geotechnical purposes