

Whitehead & Associates Environmental Consultants

Alon Musael Isa Designs

(via email: alon@isadesigns.com.au)

3 December 2020

Dear Alon,

Onsite Wastewater Management Plan for The Noble Craft Home Distillery, 271 Powderworks Road, Ingleside, NSW

Whitehead & Associates (W&A) has been engaged to prepare an Onsite Wastewater Management Plan for The Noble Craft Home Distillery operation.

Introduction

We understand that you have lodged a Development Application with Northern Beaches Council ("Council") for a home distillery to operate at 271 Powderworks Road, Ingleside, NSW. Improvements on the property include a two storey plus attic 4 bedroom dwelling and an outbuilding with garaging on the ground floor and storage above, along with a small shed, water tanks and an onsite sewage management (OSSM) system. It is proposed to convert part of the outbuilding for the distillery. It is understood that the property is not connected to town water or sewer services and relies on on-site collection of water and wastewater disposal; however, some water will be imported onto the site for use in the distilling operation.

Inspection of aerial photography indicates that much of the site has very shallow soils or surface rock outcrop, with the exception of the garden area to the south-west of the garage building, where the soils have been improved and lawn is established.

In their review of documentation submitted, Council have requested that further information be provided relating to on-site wastewater management.

Environmental Health Referral Response - commercial use dated 9 October 2020 indicates that:

Wastewater from the processing of the products will dispose to the onsite wastewater system already approved. Town water supply is used in all sinks and preparation of the food products. Any rainwater use will be suitably conditioned.

Environmental Health Referral Response – unsewered land dated 12 October 2020 notes that:

Environmental Health has reviewed the information and plans submitted as part of the proposal and has determined limited information has been provided to effectively assess the disposal of waste on the property through an onsite sewage management system. This is due to an expected increase in litreage from the commercial operation.

The applicant is required to submit an on-site sewage management site and soil assessment by a suitably qualified person with the following information.

1. Number of staff proposed in the operation of the distillery, number of bedrooms in the dwelling and the expected litres per day.

2. Details on the current wastewater system and a recommendation on if it should be retained or if further system/s are required.

3. Design details on the existing onsite sewage management facility on the property including but not limited to the disposal area, soil types/ profiles.

In addition, the current onsite wastewater approval for the residential dwelling has expired (May 2020), therefore an application for approval to operate an onsite sewage management system will need to be submitted to Council as part of this proposal.

This report provides a capacity assessment of the existing onsite wastewater treatment and land application systems to determine if they have sufficient capacity for the proposed development and provides supporting documentation for Council in response to their request.

Capacity Assessment of Existing Onsite Wastewater System

Council records indicate that the existing onsite wastewater system at the property is a Taylex Clearwater 90 Compact Aerated Wastewater Treatment System (AWTS). The system was installed in 2000 and at the time of installation had a valid NSW Health Certificate of Accreditation. A copy of NSW Health Certificate of Accreditation AWTS003 is appended (Appendix 1). The system is designed to treat a daily hydraulic load of 1,500 litres. Council records and review of historic aerial photographs of the site indicate that the effluent is irrigated over an area of approximately 270m² of improved lawns to the south-west of the outbuilding and this area appears to be operating in a satisfactory manner.

The system services a four bedroom dwelling.

Based on a nominal occupancy of six persons in the four bedroom dwelling and a typical daily wastewater design flow of 120 litres/person/day for a dwelling with onsite roof water tank supply, the total daily hydraulic load is 720 litres/day. This represents a daily hydraulic load of 48% of the capacity of the treatment system, with a surplus treatment capacity of 780 litres/day.

The proposed distillery will operate as a home based business with two staff, one of whom is a resident of the property. A wastewater design flow allowance of 30 litres per day is made for the second, non-resident, staff member in line with the recommendations of the NSW Health Septic Tank and Collection Well Accreditation Guideline December 2001 and Australian New Zealand Standard AS/NZS1547:2012.

The distillery will utilise 2,000 litres per month of imported water to produce 70 litres per day (1,400 litres per month) of spirits. The distilling operation will generate of the order of 30 litres of spent wash per day. This will be captured in a 1,000L container, integral to the still, to be collected and disposed of offsite, by a licenced liquid waste disposal contractor.

Clean, new, sterilised bottles will be filled with spirit, so no water will be utilised in bottle washing and no sterilisation of bottles will take place on the premises.

The distillery will generate approximately 50 litres per day of washing up water.

The overall additional wastewater to be managed by the existing wastewater treatment system will comprise:

Allowance for one non-resident staff member:	30 litres per day
Washing up water:	50 litres per day

Total:

This additional quantity of wastewater is expected to be of domestic strength and is well within the limit of available capacity of the existing wastewater treatment system.

80 litres per day.

The combined total daily hydraulic load for the existing dwelling and the proposed distillery is 800 litres per day.

Site and Soil Assessment

No site inspection has been undertaken as part of this investigation. The following assessment has been made by desktop study.

The existing land application is by surface irrigation on an Effluent Management Area (EMA) of approximately 270m² of improved lawned garden to the south-west of the garage outbuilding to be used for the proposed distillery. This EMA appears to be operating satisfactorily. This site and soil assessment describes the current status of the EMA.

A description of the Site physical constraints and the degree of limitation they pose to OSSM is provided in the table below. Reference is made to the rating scale in Table 4 of NSW DLG (1998).

	SITE ASSESS	MENT		
Parameter	Data / Observation		Reference	Classification / Outcome
Climate	Median Rainfall – 2004-2020 (16 yea Mean Evaporation – 1955-1966 (11 y Temperate climate with median annu- 880.8mm; monthly minimum 27.6mm maximum 128.6mm (March). Rainfall potential evaporation for four months Mean annual evaporation is 1,068.9m	rs) /ears) al rainfall of (May) and exceeds of the year. nm.	BoM Stations 066059 and 066062	Minor /Moderate limitation
Hydraulic baland	ce (monthly) attached:	Yes		
Nutrient balance	e (annual) attached:	Yes	(See I	pelow)
Land application	area sizing attached:	Yes	per NSW DL AS/NZS 1547:2	G (1998) and 012 procedures
Wet weather sto	prage requirement:	Possible		
Flooding Land application	n area above 1:20 ARI flood level: n area above 1:100 ARI flood level:	Yes Yes	Northern Beaches Council (2019) Flood Study indicates the	Minor limitation
Electrical compo	onents above 1:100 ARI flood level:	Yes	Site is not flood affected.	
Exposure	Majority of the available EMA is clear lawn throughout. Northerly aspect; good exposure to se prevailing wind.	ed with un and	Minor limitation	
Slope	~2-4% slope across the EMA.		Minor limitation	
Landform	Exposed plateau surfaces, convex ric	lges.	Minor limitation	
Run-on and Seepage	No evidence of run-on or up-slope se observed from aerial photography.	epage	Minor limitation	

Erosion Potential	No erosion evident within the good vegetation cover.	EMA; genera	ally	Minor limitation
Site Drainage	Well-drained. No signs of sur	face saturatio	on.	Minor limitation
Fill	Landscaped garden area has soils improved.	been levelle	d and	Minor limitation
Groundwater	Bureau of Meteorology Grour bore registry indicates no bor within 250m of the Site. The I recommended 250m buffer d groundwater bores can there Permanent groundwater is ex >10m depth within the availab	ndwater Explo es are locate NSW DLG (1 istance to do fore be achie spected to be ble EMA.	orer d 998) mestic ved. at	Minor limitation
Applicable Buf	fers			
Permanent river	s and creeks (100m):	Yes	Achiev	able
Intermittent wate and dams (40m	ercourses, drainage channels):	Yes	Achiev	able
Domestic groun	dwater bores (250m):	Yes	Achiev	able
Other sensitive	receptors:	N/A	N/A	
Lot boundaries EMA upslope):	(3m if EMA downslope-6m if	Yes	Achiev	able
Buildings, drivev (3m if EMA dow	ways and swimming pools nslope-6m if EMA upslope):	Yes	Achiev	able
Limiting horizon (0.6m):	(groundwater, bedrock etc.)	Yes	Achiev	able
Surface Rock / Outcrop	No surface rocks or rock outo on aerial photography of the	rops were vis EMA.	sible	Minor limitation
Effluent Management Area (EMA)	Majority of the Site is improve driveway or open heathland). available EMA is within the ex gardens. Approximately 270m ² of avail identified on the property.	ed (buildings, The only cur xisting landsc able EMA is	rrently caped	Minor/Moderate limitation

Concluding Remarks

No major constraints to OSSM appear to exist at the Site. See further discussion below about required EMA. Identified limitations can be mitigated and/or accommodated through appropriate OSSM system location, possible wet weather storage and conservative EMA sizing and design.

A description of the soil constraints and the degree of limitation they pose to OSSM is provided in the table below. Reference is made to the rating scale in Table 6 of NSW DLG (1998).

	SOIL ASSESSMENT (physical)		
Parameter	Data / Observation	Reference	Classification / Outcome
Soil Depth	Natural soil depths vary from 200mm - 1,000mm. Soils in the existing EMA have been improved.	Moderate limitat	ion
Soil Profile	A: 0-250mm, loamy sand (Cat 2). B: 250-1,000mm, clayey sand to sandy clay loam (Cat 3/4).	Minor limitation	
Depth to Water Table	Permanent groundwater is expected to be at >10m depth within the available EMA. Seasonally perched watertables may occur above the bedrock.	Minor/Moderate	limitation
Coarse Fragments (%)	<0-20% (<50mm).	Minor limitation	
Soil Permeability	<0.5-1.5m/day (inferred).	Based on high to moderately structured sandy clay loam (Cat 4)	Minor limitation
Modified Emerson Aggregate Class (EAT)	Topsoil: stable. Subsoil: occasional slight dispersion.	Minor/Moderate	limitation
Soil Landscape	The Site is located on the Lambert (Ia) Soil Landscape. Topography consists of exposed plateau surfaces and broad convex crests on Hawkesbury Sandstone with local relief 20- 120m and slope gradients generally <20%. Limitations include seasonal waterlogging, rock outcrop, shallow depth, erosion hazard and perched watertables (localised).	eSPAE	DE v2.1

Concluding Remarks

Site soils are characterised by loamy sand topsoil to ~250mm, underlain by clayey sand to sandy clay loam subsoil to ~1,000mm. Soil structure is generally apedal massive to moderately pedal.

No additional soil sampling or testing has been undertaken as part of this investigation.

Based on identified soil characteristics a (maximum) design irrigation rate (DIR) of 3.5mm/day is recommended for irrigation systems, with reference to Table M1 AS/NZS 1547:2012 for Category 4

subsoils.

Natural soil conditions have been improved across the current EMA as is evident by the uniform grass cover.

Available and Required Effluent Management Area

On the basis of the above site and soil assessment the available EMA is 270m². A DIR of 3.5mm/day is recommended.

The OSSM system was approved for installation in 2000 according to regulatory requirements prevailing at the time.

If the required EMA is calculated using the loading rate approach described in the Standard AS/NZS 1547:2012; the expected daily hydraulic load of 800 litres (with increase for the distillery operation included), applied at an appropriate DIR of 3.5mm/day for the Category 4 soils, results in a required EMA of 229m², in which case the existing EMA would be sufficient to manage the hydraulic load. If the required EMA is calculated by water balance (Appendix 2), the water balance indicates that the EMA is likely to become saturated in six months of the year.

This could be remedied by retaining the current 270m² of EMA and providing wet weather storage of 20m³ (20m³ wet weather storage tank) and soil moisture sensors to automatically manage irrigation from the wet weather storage following periods of rain when the soil moisture level permits.

This is the preferred option and is justified on the basis that the current EMA is operating satisfactorily and that it can be demonstrated by water balance that the available area is adequate to manage the daily hydraulic load at an appropriate design loading rate with 20m³ of wet weather storage.

The following other alternatives have been explored.

A nutrient balance undertaken for the site indicates that areas of 350m² and 538m² are required respectively for assimilation of nitrogen and phosphorus. Currently no additional area allowance for nutrients is made, however, the site is plenty large enough to allow for a suitably sized downslope (to the south-west of the existing EMA) nutrient buffer of approximately 270m².

To manage the nutrients in a more formal EMA would require an increase of the current EMA by a further 270m².

By increasing the EMA to 540m², the nutrients would be appropriately managed, but there would still be a requirement for wet weather storage, albeit reduced to some 12m³ (12m³ wet weather storage tank).

To adequately manage the entire daily hydraulic and nutrient loads by irrigation, without recourse to wet weather storage, an EMA of 1,015m² is required. This option would require an additional 745m² of EMA to be installed.

The additional EMAs described above are shown on Figure 1. The north-eastern portion of this area is underlain by soils of the Lambert soil profile, typically 200-1,000mm of sandy loam, overlying 100-400mm of sandy clay loam. The south-western portion of this area is underlain by soils of the Oxford Falls soil landscape, typically 300mm of loamy sand overlying 200-1,000mm of clayey sand. The boundary between the soil landscapes is shown on Figure 1 and roughly bisects the proposed area of additional EMA. Both soil profiles are suitable for the additional EMA and for irrigation at a DIR of 3.5mm/day.

As soil depths are variable, these should be checked throughout the additional EMA and, for any of the above increases of EMA, it will be necessary to improve the otherwise heathland soils and

vegetation to a similar extent and standard to the current EMA, i.e. with a minimum of 600mm of clay loam soil and turf, to extend the available area for irrigation.

Figure 1 Location of existing and proposed EMA

The various options are tabulated below and relevant water and nutrient balances presented in Appendix 2.

Option	Total EMA required	Additional EMA required	Wet Weather Storage (Tank)	Nutrient Assimilation Area
	m²	m²	m³	m²
1	270	0	20	Downslope nutrient buffer
2	540	270	12	Adequate
3	1,015	745	0	Adequate

Effluent Management Area Options

The client has identified Option 1 as the preferred option.

If either of the Options 2 or 3 requiring construction of additional EMA are selected, it is recommended that the additional EMA be installed to the south-west of the existing EMA, where sufficient additional land is available.

Irrigation of the additional EMA would be best managed by installation of an indexing valve to divide the required area into 3 or 4 zones. The location of the existing and proposed additional EMA is shown in Figure 1.

Approval Status of Existing Treatment System

It is noted that the Approval to Operate the existing Taylex Clearwater 90 Compact AWTS has expired (May 2020). This is most probably because there is not a current service contract in place. It is a requirement that a current service contract be in place for an Approval to Operate to be issued and that the Council be in possession of certification from a Council approved service agent that the OSSM be in sound order and operating sustainably.

It is recommended that the owner engage a Council approved service agent to service the system and provide necessary documentation to Council and that an application for an Approval to Operate be submitted to Council.

The existing AWTS is considered suitable for continued use subject to it being serviced and any necessary maintenance undertaken to enable Council to issue an Approval to Operate.

Conclusions and Recommendations

- The existing dwelling and the proposed distillery operation with one additional non-resident staff member are expected to generate a total daily hydraulic load of 800 litres. This is well within the treatment capacity of the existing Taylex Clearwater 90 Compact AWTS.
- The existing Taylex Clearwater 90 Compact AWTS is suitable for continued use subject to it being serviced and any necessary maintenance undertaken to enable Council to issue an Approval to Operate.
- The existing EMA is of 270m² in area, is operating satisfactorily and should continue to operate. The soils in the existing EMA are conservatively assessed to be moderately structured sandy clay loam (Cat 4), suitable for irrigation with secondary treated and disinfected effluent at a DIR of 3.5mm/day.
- The existing EMA is of a sufficient area to manage the daily hydraulic load based on a loading rate of 3.5mm/day, but nutrients which require 350m² and 538m² for assimilation of

nitrogen and phosphorus respectively are managed by a nominal downslope nutrient buffer of approximately 270m².

- A water balance indicates that an EMA of 1,015m² is required to sustainably manage the hydraulic and nutrient loads, with no wet weather storage.
- Should an EMA of less than 1,015m² be installed, wet weather storage will be required.
- Should the EMA be extended to accommodate the above, it will be necessary to improve the soils in the extended EMA so that the area is level, the soils are a minimum of 600mm deep, are of clay loam or better in texture, and that the area is turfed.
- The surface irrigation system should be extended to enable uniform irrigation of the entire EMA.
- It is recommended that, if the irrigation area is expanded, irrigation be managed in 3 or 4 zones of equal size using an indexing valve.
- As treatment will be to secondary standard with disinfection, no reserve irrigation area is required.

If you have any questions or require any further information, please do not hesitate to contact me.

Yours Sincerely,

O. H. White Lead

Joe Whitehead Principal

Appendix 1

NSW Health Accreditation

DEPARTMENT

CERTIFICATE OF ACCREDITATION Aerated Wastewater Treatment System

This is to certify that the

Taylex Clearwater 90 compact Aerated Wastewater Treatment System

manufactured by:

Taylex Queensland Pty Ltd 14 Activity Crescent Ernest QLD 4214

has been accredited by the NSW Department of Health as a Sewage Management Facility under the provisions of Clause 43(1), Local Government (Approvals) Regulation 1999 subject to the conditions of accreditation specified in Schedule 1, and in accordance with the AWTS Accreditation Guidelines of September 1998.

Plans and Specifications:

The Taylex Clearwater 90 compact one tank aerated wastewater treatment system consists of:

- A primary sedimentation chamber with a capacity of 2886 litres;
- A contact aeration chamber with a capacity at LWL of 2367 litres;
- A sedimentation/clarifier chamber with a capacity of 757 litres containing Taylex standard PVC Biomass panels;
- A Zabel A100 effluent filter located on the outlet of the clarifier;
- A irrigation pump chamber with a capacity of 710 litres incorporating a capacity of 300 litres for chlorine contact of the effluent;
- A chlorine disinfection unit installed on the outlet pipe of the clarifier after the Zabel filter;
- Air is supplied to the contact aeration chamber by a Taylex fine bubble aerator at a rate of 70 litres/min;
- An Easypump model 700A submersible irrigation pump.

10 November 1999CofA AWTS 003Date of issueCertificate No

AL.H

Manager Environmental Health Branch for Director-General (delegation PH335)

This Certificate of Accreditation is in force until 31 December 2005.

Schedule 1: Conditions of Accreditation

- 1 For each installation the owner/occupier of a premises shall make an application to the Local Authority to install an Taylex Clearwater 90 compact AWTS as a waste management facility in accordance with Section 68, Part C of the Local Government Act 1993 and Clause 28 of the Local Government (Approvals) Regulation 1999.
- 2 The Certificate of Accreditation does not apply to the land application system used in conjunction with the AWTS.
- 3 The Taylex Clearwater 90 compact AWTS shall be supplied, constructed and installed in accordance with the design as submitted and accredited by the NSW Health Department.
- 4 Any modification or variations of such accreditation design of the Taylex Clearwater 90 compact AWTS shall be submitted for separate consideration and variation of accreditation by the Director-General of NSW Health.
- 5 Each Taylex Clearwater 90 compact AWTS shall be permanently and legibly marked on a non- corrosive metal plaque attached to the lid with the following information:
 - The brand name of the system; and
 - The manufacturer's name or registered trademark;
 - The month and year of manufacture.
- 6 Effluent from the Taylex Clearwater 90 compact AWTS taken in any random grab sample shall comply with the following standard:

•	BOD⁵	less than 30 mg/L
•	SS	less than 45 mg/L
•	Free residual chlorine	greater than 0.2 and
		less than 2.0 mg/L
•	Thermotolerant coliforms	less than 100 cfu/100 m

- 7 The Local Authority shall require the owner/occupier of a premises to enter into an annual service contract with a service contractor or company acceptable to the Local Authority.
- 8 The Taylex Clearwater 90 compact AWTS shall be serviced at three monthly intervals in accordance with the details set out in the service manual.
- 9 At each anniversary of accreditation date the manufacturer shall provide a list of all their installed AWTS by anniversary year of installation to NSW Health. NSW Health will randomly select up to 5 (number) or 10% of the installed AWTS

(which ever is the greater) from each year of installation. The manufacturer, at its own cost, shall arrange sampling of these locations to be performed within two months. Sampling is to be organised by an independent JAS/ANZ accredited agency. Samples for BOD5, SS, thermotolerant coliforms are to be determined by a NATA registered laboratory, and samples for disinfectant concentration, if appropriate, are to be determined on site. The results are to be reported to NSW Health by:

- address of premises,
- date sampled,
- sample identification number,
- BOD5,
- SS,
- thermotolerant coliforms,
- disinfectant concentration,
- service history, and
- graphs of accumulative data for BOD, SS, thermotolerant coliforms and disinfection concentration results for each anniversary group.
- 10 A copy of the following information shall be provided by the manufacturer to each local authority where it is intended to install AWTS in their area once Departmental accreditation has been obtained:
 - Statement of warranty
 - Statement of service life
 - Quality Assurance Certification
 - Installation Manual
 - Service Manual
 - Household Operators Manual
 - Service Report Form
 - Engineering Drawings on A3 format
 - Detailed Specifications
 - A4 Plans
 - Accreditation documentation from NSW Health.
- 11 Product Approval to the StandardsMark Quality Assurance Program or equivalent (including accreditation to ISO 9000) shall be obtained within twelve months of the date of the certificate of accreditation.

Appendix 2

Water and Nutrient Balance

Site address: 211 Powderworks Road, Ingleside Instrument Instrument<	Irrigation Area /	Water	Balanc	e & Sto	prage Ca	alcula	tions													Whitehead	& Assoc	iates
MUTUAL Mutualization Solution Solution Solution Number	Site Address:	271 Po	wderwor	ks Road,	Ingleside																al consulta	UIS
Design Tright Magneting Finder 0 0.00 <t< th=""><th>INPUT DATA</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	INPUT DATA																					
Omelliable land Appellation Name Display a model 3.5 modely consists of a modely relative protection of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI of a model of an exponential on the ANX SI GAT/SI OF ANX SI GAT/SI SI S	Design Wastewater Flow	σ	800	L/day													Soil C	ategory (A:	S1547:20	12)	DIR	Units
Consistely Lud Application Area L Zoo minute L Minute	Design Irrigation Rate	DIR	3.5	mm/day	Litres/m ² /day - b	ased on Tab	e M1 AS/Ni	ZS 1547:20	12 for secc	undary efflue	ant						Grave	s and Sand	s (1)		2	mm/day
CDC C3-03-0 (cmc) Unitse (cmc) Errors to cmms() Cmms()	Available Land Application Area	_	270	m²	Used for iterative	> purposes to	determine	storage red	uirements t	for nominate	ed areas						Sandy	Loams (2)			2	mm/day
Employer Eco OS	Crop Factor	o	0.5-0.8	unitiess	Estimates evapo	otranspiration	n as a fractio	in of pan ev	aporation; v	varies with s	season and	crop type					Loam	\$ (3)			4	mm/day
Temper lise in the integration of the integration integrate in the integrate int	Runoff Coefficient	RC	0.85	unitless	Proportion of rai	nfall that rem.	ains onsite a	and infiltrate	s; function (of slope/cov	ver, allowing	g for any ru	noff				Clay L	oams (4)			3.5	mm/day
Consider the system with the system wit	Rainfall Data	Terrey H	lills AWS 0660	159 - Median	Median Monthly	data (16 yea	-s)										Light (clays (5)			e	mm/day
Fundance Symbol Formula Units Jun For Mar Mor	Evaporation Data	Sydney Ob	servatory Hill C	066062 - Mean	Mean Daily data	(11 years)											Mediu	m to Heavy	Clays (6)		7	mm/day
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	May	unr	Inc	Aug	Sep	Dct	٥ ۵	- - -	n Feb	Mar	Apr	May	nn	Total
Time Rame R mm/mom 714 144	Days in Month	٥		days	31	28	31	30	31	30	31	31	30	31	3	1 3	1 28	31	30	31	30	546
Exponsion Exponsion <t< td=""><td>Rainfall</td><td>۲</td><td></td><td>mm/month</td><td>71.4</td><td>114.4</td><td>128.6</td><td>70.6</td><td>27.6</td><td>116.9</td><td>52.9</td><td>40.8</td><td>46.4 £</td><td>1.0 7</td><td>5.6 74</td><td>.6</td><td>.4 114.</td><td>128.6</td><td>70.6</td><td>27.6</td><td>116.9</td><td>880.8</td></t<>	Rainfall	۲		mm/month	71.4	114.4	128.6	70.6	27.6	116.9	52.9	40.8	46.4 £	1.0 7	5.6 74	.6	.4 114.	128.6	70.6	27.6	116.9	880.8
	Evaporation			mm/day	4.6	3.9	3.1	2.6	1.9	1.2	1.5	1.9	2.5	3.3 4	.3	4						
Cop Face C 0	Evaporation	ш		mm/month	142.6	109.2	96.1	78.0	58.9	36.0	46.5	58.9	75.0 1	02.3 12	9.0 13	3.4 14	2.6 109.	96.1	78.0	58.9	36.0	1068.9
OUTUNS (LOSSES) I Image	Crop Factor	υ			0.80	0.80	0.70	0.70	0.50	0.50	0.60	0.60	0.70	.70 0	80	.0 0	80 0.80	0.70	0.70	0.50	0.50	
Enconsisticity ET EC minimation 101.1 101.3 50.4 103.5 103.6 103.5 103.6	OUTPUTS (LOSSES)																					
Production B DRAD mm/month 108.5 106.5	E vapotrans piration	ET	ExC	mm/month	114.1	87.4	67.3	54.6	29.5	18.0	27.9	35.3	52.5 7	1.6 10	3.2 10	9.1 11	4.1 87.4	67.3	54.6	29.5	18.0	770.43
Output ET-IB mm/month 22.6 155.36 175.8 157.5 180.1 22.6 155.8 175.8 155.8 175.8 155.8 175.8 155.8 175.8 155.8	Percolation	æ	DIRXD	mm/month	108.5	86	108.5	105.0	108.5	105.0	108.5 1	108.5 1	05.0 1	38.5 10	5.0 10	3.5 10	3.5 98.0	108.5	105.0	108.5	105.0	1277.5
INPUTS (GAINS) Return through 606 97.4 60.1 24.6 93.65 44.66 54.6 64.4 66.6 97.4 60.01 23.46 93.95 143.8 Retained Railed Retained Railed Retained Railed Retained Railed 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 91.9 86.9 165.1 168.3 168.3 165.1 165.1 168.3 168.3 168.3 165.1 165.1 168.3 168.3 168.3 165.3 168.3 165.3 168.3 165.3 168.3 168.3 168.3 168.3 168.3 168.3 168.3 168.3 168.3 168.3 168.3 168.3 168.3 168.3	Outputs		ET+B	mm/month	222.6	185.36	175.8	159.6	138.0	123.0	136.4 1	143.8 1	57.5 1.	30.1 20	8.2 21	.6 22	2.6 185.3	6 175.8	159.6	138.0	123.0	2047.9
Featnet Randal Rx, kc mm/mm/m 6000 97.24 108.31 60.01 23.46 93.26 61.436 63.41 61.63 60.69 72.4 109.31 60.01 23.46 93.36 73.46 93.36 73.46 93.36 73.46 93.36 73.46 93.36 73.46 93.36 73.46 93.36 73.46 93.36 73.46 93.36 73.47 70.36 73.46 <td>INPUTS (GAINS)</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	INPUTS (GAINS)															_						
Inductingation W CXD/L mm/month 919 889 919 893 1633	Retained Rainfall	RR	RxRC	mm/month	60.69	97.24	109.31	60.01	23.46	99.365 4	44.965 3	34.68 3	9.44 5	1.85 64	.26 63.	41 60	69 97.2	109.31	60.01	23.46	99.365	748.68
Indust RR+W/ mm/month 125.5 180.2 201.2 148.9 155.6 128.3 145.7 155.3 165.2 165.3 163.3 155.3	Effluent Irrigation	>	(0×D)/L	mm/month	91.9	83.0	91.9	88.9	91.9	88.9	91.9	91.9	88.9 5	1.9 8	3.9 91	.9 9	.9 83.0	91.9	88.9	91.9	88.9	1081.5
STORAGE CALCULATION (A) mmmonth mmmmonth mmmonth mmmonth <	Inputs		RR+W	mm/month	152.5	180.2	201.2	148.9	115.3	188.3	136.8 1	126.5 1	28.3 1-	43.7 1.5	3.1 15	5.3 15	2.5 180.	201.2	148.9	115.3	188.3	1830.2
Stronge Remaining mm/month 00 00 254 147 00 651 644 192 00 00 00 254 147 00 Stronge Remaining Mm/month 700 00 204 143 624 700 52 651 444 192 00 00 00 254 147 00 Maximum 00 00 52 524 613 651 614 173 232 561 614 700 52 137 00 52 633 633 631	STORAGE CALCULATION (A)																					
Consider to the month S RR4W/J(ET4B) mm/month 700 52.2 25.4 -10.7 22.6 65.3 0.4 -17.3 22.2 -36.4 -52.1 22.6 -10.7 -22.6 65.3 -21.7 22.6 -10.7 -22.6 65.3 -21.6 -21.6 -22.6 55.3 -21.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -22.6 -21.7 -22.6	Storage Remaining from Previous Month	~		mm/month	0.0	0.0	0.0	25.4	14.7	0.0	65.3	65.7	48.4 1	9.2	0	0	0.0	0.0	25.4	14.7	0.0	
Cumulative Solution M 00 00 25.4 14.7 00 65.3 65.7 48.4 19.2 0.0 0.0 0.0 25.4 14.7 0.0 65.3 85.3 13.2 0.0 0.0 0.0 0.0 0.0 0.0 65.3 14.7 0.0 65.3 14.7 0.0 65.3 14.7 0.0 65.3 14.7 0.0 65.3 14.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 65.4 14.7 0.0 65.3 14.7 0.0 14.7 0.0 65.3 14.7 0.0 14.7 0.0 65.3 14.7 0.0 65.3 14.7 0.0 65.3 14.7 0.0 14.7 0.0 65.3 14.7 14.7 14.7 10.0 16.3 14.7 16.1 15.3 14.7 16.1 15.3 14.7 10.15 17.7 10.15 17.3 10.15 17.3 10.15 17.3 10.15	Storage for the Month	S	(RR+W)-(ET+B)	mm/month	-70.0	-5.2	25.4	-10.7	-22.6	65.3	0.4	-17.3 -	29.2	36.4 -5	5.1 -62	-7	0.0 -5.2	25.4	-10.7	-22.6	65.3	
Maintain Area N mm 65.7 mm mm 65.7 mm <	Cumulative Storage	Σ		шш	0:0	0.0	25.4	14.7	0:0	65.3	65.7	48.4	19.2	0.0	0	。 。	0.0	25.4	14.7	0.0	65.3	
Storage Volume mediated V (twU/1000 m ³) 177 254 373 241 217 1015 271 227 203 193 167 161 153 254 373 241 217 1015 217 1015 MINIMUM AREA REQUIRED FOR ZERO STORAGE m ² 1,015 m ² This value is based on the worst month of the year, so the balance overestimates the area/storage requirements and is therefore conservative for all other months of the year, so the balance overestimates the area/storage requirements and is therefore conservative for all other months of the year, so the balance overestimates the area/storage requirements and is therefore conservative for all other months of the year, so the balance overestimates the area/storage requirements and is therefore conservative for all other months and the province of th	Maximum Storage for Nominated Area	z		Ē	65.7																	
LAND AREA REQUIRED FOR ZERO STORAGE m² 163 254 373 241 217 1015 277 203 193 167 161 153 241 217 1015 MINIMUM AREA REQUIRED FOR ZERO STORAGE: 1,015 m² 115 1015 271 2015 273 203 193 167 161 153 241 217 1015 1015	Storage Volume required	>	(NxL)/1000	m ³	17.7																	
MINIMUM AREA REQUIRED FOR ZERO STORAGE: $1,015$ m ² This value is based on the worst month of the year, so the balance overestimates the area/storage requirements and is therefore conservative for all other months	LAND AREA REQUIRED FOR ZI	ERO STORA	GE	m²	153	254	373	241	217	1015	271	227	203	193 1	67 16	÷ z	53 254	373	241	217	1015	
	MINIMUM AREA REQUIRED	D FOR ZER	O STORAG	ij	1.015	m²	This value	is based of	othe worst	month of the	e vear. so th	he balance	overestim	ates the ar	ea/storade	reauireme	ents and is th	erefore con	servative f	or all other	months	
																-						

Nutrient Balan	<u>ce</u>					W	White	nead & Ass	ociates
Site Address:	271 P	owderw	orks Ro	oad, Ingleside			Environ		litants
Please read the attached notes	before using t	his spreadsł	neet.						
SUMMARY - LAND APPL		REA REQ	UIRED BA	ASED ON THE MO	ST LIMIT	ING BALA	ANCE =	538	m ²
Waster	water Loading				N	utrient Crop U	ptake		. 2
Hydraulic Load		800	L/day	Crop N Uptake	200	kg/ha/yr	which equals	54.79	mg/m²/day
Effluent N Concentration	8 Carda as 1000)	30	mg/L	Crop P Uptake	20	kg/ha/yr	which equals	5.48	mg/m²/day
% Lost to Soll Processes (Geary	& Gardner 1996)	0.2	Decimai mg/day	P contion recult	Pr 400	nosphorus Sor	ption	5 600	ka/ba
Pompining N L	and after soil loss	4,000	mg/day	P-solption lesuit	400	nig/kg	which equals	5,000	кула
Effluent P Concentration	Jau alter Soli 1055	19,200	mg/uay	Depth of Soil	1.4	g/cm m			
			ilig/E	[2]					
Design Life of System		50	yrs	% of Predicted P-sorp."	0.5	Decimal			
METHOD 1: NUTRIENT	BALANCE E	BASED OF	N ANNUAL	CROP UPTAKE	RATES				
			I						
Minimum Area required with z	zero buffer		Determinatio	on of Buffer Zone Size for	a Nominated	Land Applica	tion Area (I /	AA)	
Nitrogen	350	m ²	Nominated I A		u Hommateu	1 015	m ²	1	
Phoenborue	538	m ²	Predicted N F	Export from LAA		-13 20	ka/vear		
riospiloids	530		Predicted P F	Export from LAA		-13.23	kg/year	_	
			Phosphorus I	ondevity for LAA		-3.03	Years		
			Minimum Buf	fer Required for excess nutri	ent	0	m ²		
PHOSPHORUS BALANCI	E								
STEP 1: Using the nomi	nated LAA	Size							
Nominated I AA Size	1.015	m ²							
Daily P Load	0.0112	kg/dav		Phosphorus generated over	life of system		204.4	ka	
Daily Uptake	0.0055616	kg/day		Phosphorus vegetative upta	ake for life of s	vstem	0.100	ka/m ²	
Measured p-sorption capacity	0.56	ka/m ²		Jan Strangerster Strangerster Strangerster					
Assumed p-sorption capacity	0.280	ka/m ²		Phosphorus adsorbed in 50) vears		0.280	ka/m ²	
Site P-sorption capacity	284.20	ka		Desired Annual P Applicati	on Rate		7.714	kg/vear	
						which equals	0.02113	kg/day	
P-load to be sorbed	2.06	kg/year							
NOTES									
[1]. Model sensitivity to input paramete	ers will affect the a	accuracy of the	result obtained	I. Where possible site spec	ific data shoul	d be used. Oth	nerwise data		
should be obtained from a reliable sour	rce such as,								
- Environment and Health Protection G	uidelines: Onsite	Sewage Manag	ement for Sing	gle Households					
- Appropriate Peer Reviewed Papers									
- EPA Guidelines for Effluent Irrigation	1								
- USEPA Onsite Systems Manual.									

[2]. A multiplier, normally between 0.25 and 0.75, is used to estimate actual P-sorption under field conditions which is assumed to be less than laboratory estimates.

Irrigation Area V	Vater	Balanc	e & Sto	prage Ca	alcula	tions												\geq	Whitehe	ad & Ass	ociates	
Site Address:	271 Po	wderwor	ks Road,	Ingleside																intal consu	Itants	
INPUT DATA																						
Design Wastewater Flow	σ	800	L/day													Soil	Category (AS1547:2	012)	DIR	Units	
Design Irrigation Rate	DIR	3.5	mm/day	Litres/m ² /day - b.	ased on Tat	IN AS/N	ZS 1547:20	12 for sect	ondary efflu	ent						Grav	els and San	ds (1)		5	mm/da	≥
Available Land Application Area		540	m²	Used for iterative	purposes t	o determine	storage rec	quirements	for nominat	ted areas						San	dy Loams (2	_		5	mm/da	≥
Crop Factor	o	0.5-0.8	unitiess	Estimates evapo	ntranspiratio	n as a fractic	n of pan ev	'aporation;	varies with	season and	I crop type					Loar	ns (3)			4	mm/da	≥
Runoff Coefficient	RC	0.85	unitiess	Proportion of rail	nfall that ren	ains onsite	and infiltrate	es; function	of slope/co	ver, allowin	g for any ru	Inoff				Clay	Loams (4)			3.5	mm/da	≥
Rainfall Data	Terrey H	lills AWS 0660	159 - Median	Median Monthly	data (16 yea	IS)										Ligh	t Clays (5)			e	mm/da	≥
Evaporation Data	Sydney Ob	servatory Hill C	166062 - Mean	Mean Daily data	(11 years)											Med	ium to Heav	/ Clays (6)		2	mm/da	≥
Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	May	որ	Jul	Aug	Sep	Oct	Vov C	lec	an Fi	sb Mar	Apr	May	nn	Total	
Days in Month	٥		days	31	28	31	30	31	30	31	31	30	31	30	31	1	8 31	30	31	30	546	Γ
Rainfall	æ		mm/month	71.4	114.4	128.6	70.6	27.6	116.9	52.9	40.8	46.4	31.0	75.6 7	4.6 7	1.4 11	4.4 128.0	3.07	3 27.6	116.9	880.8	
Evaporation			mm/day	4.6	3.9	3.1	2.6	1.9	1.2	1.5	1.9	2.5	3.3	4.3	1.4							
Evaporation	ш		mm/month	142.6	109.2	96.1	78.0	58.9	36.0	46.5	58.9	75.0	02.3 1	29.0 1.	36.4 14	2.6 10	9.2 96.1	78.0	58.5	36.0	1068.9	6
Crop Factor	υ			0.80	0.80	0.70	0.70	0.50	0.50	0.60	0.60	0.70	0.70	3.80 C	.80 C	80 0.	80 0.70	0.70	0.5(0.50		
OUTPUTS (LOSSES)																						
E vapotranspiration	ET	ExC	mm/month	114.1	87.4	67.3	54.6	29.5	18.0	27.9	35.3	52.5	71.6 1	03.2 1(79.1 1í	4.1 8	.4 67.3	54.6	3.9.6	18.0	770.4	
Percolation	æ	DIRxD	mm/month	108.5	98	108.5	105.0	108.5	105.0	108.5	108.5	05.0	08.5 1	05.0 11	38.5 1(8.5 96	3.0 108.	105.0	0 108.	5 105.0	1277.5	ŝ
Outputs		ET+B	mm/month	222.6	185.36	175.8	159.6	138.0	123.0	136.4	143.8	57.5	80.1 2	08.2 2	17.6 22	2.6 18	5.36 175.4	3 159.0	6 138.	0 123.0	2047.9	6
INPUTS (GAINS)																						
Retained Rainfall	RR	RxRC	mm/month	60.69	97.24	109.31	60.01	23.46	99.365	44.965	34.68	39.44 5	1.85 6	4.26 6;	3.41 60	69 69	.24 109.3	1 60.0	1 23.4	5 99.36	5 748.6	
Effluent Irrigation	×	(OxD)/L	mm/month	45.9	41.5	45.9	44.4	45.9	44.4	45.9	45.9	44.4	45.9 4	14.4	5.9 4	5.9 4'	.5 45.9	44.4	45.9	44.4	540.7	
Inputs		RR+W	mm/month	106.6	138.7	155.2	104.5	69.4	143.8	90.9	80.6	83.9	97.8 1	08.7 1	J9.3 1(6.6 13	8.7 155.3	104.	5 69.4	143.8	3 1289.4	4
STOR AGE CALCULATION (A)																						
Storage Remaining from Previous Month			mm/month	0.0	0.0	0.0	0.0	0.0	0.0	20.8	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0		
Storage for the Month	s	(RR+W)-(ET+B)	mm/month	-116.0	-46.6	-20.5	-55.1	-68.6	20.8	-45.5	-63.2	-73.6	82.3	99.5 -1	08.3 -1	6.0	3.6 -20.5	-55.	-68	20.8		
Cumulative Storage	Σ		ш	0.0	0.0	0:0	0.0	0.0	20.8	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	20.8		
Maximum Storage for Nominated Area	z		шш	20.8																		
Storage Volume required	>	(NxL)/1000	m3	11.2														_				
LAND AREA REQUIRED FOR ZEI	RO STOR AC	GE	m²	153	254	373	241	217	1015	271	227	203	193	167	161 1	53	54 373	241	217	1015		
					c																	
MINIMUM AREA REQUIRED	FOR ZER	IN STORAC	ij	1,015	a^	This value	is based c	on the worst	t month of th	ne year, so t	the balance	e overestin.	lates the al	rea/storagu	e requirem	ents and is	therefore co	nservative	tor all othe	er months		_
													-			_	_			_		1

197 Main Road Cardiff NSW 2285 Australia Telephone + 61 2 4954 4996 Email mail@whiteheadenvironmental.com.au Website www.whiteheadenvironmental.com.au

Irrigation Area W	ater	Balanc	te & Sti	orage Ca	alculat	ions												≥	White	iead & As	sociates	
Site Address:	271 Po	wderwor	ks Road,	Ingleside]	Environ	nental Con	sultants	
INPUT DATA																						
Design Wastewater Flow	σ	800	L/day													Š	il Categor	/ (AS1547	:2012)	□	R Unit	s
Design Irrigation Rate	DIR	3.5	mm/day	Litres/m ² /day - t	ased on Tabl	∳M1 AS/Nž	'S 1547:20	112 for seci	ondary efflu	lent						ō	avels and S	ands (1)		4)	2 mm/	day
Available Land Application Area	_	1,015	m²	Used for iterativ	e purposes to	determine (storage req	luirements	for nomina	ted areas						Sa	ndy Loams	(2)		4)	2 mm/	(day
Crop Factor	U	0.5-0.8	unitess	Estimates evap	otranspiration	as a fractio	n of pan ev	aporation;	varies with	season an	d crop typ	0				٢	ams (3)			7	F mm/	(day
Runoff Coefficient	RC	0.85	unitless	Proportion of rai	nfall that rems	ins onsite a	nd infiltrate	s; function	of slope/co	over, allowir	ng for any	unoff				ö	iy Loams (4	(с,	5 mm/	(day
Rainfall Data	Terrey H	fills AWS 0660	159 - Median	Median Monthly	data (16 year.	;;										Ľi	ht Clays (5)				8 mm/	(day
Evaporation Data	Sydney Ob.	servatory Hill C	066062 - Mean	Mean Daily dats	(11 years)											¥	dium to He	avy Clays	(9)		ymm/	day
Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb N	lar /	Vpr N	ay Ju	n To	otal
Days in Month	٥		days	31	28	31	30	31	30	31	31	30	31	30	31	31	28	31	30	1 3	2	46
Rainfall	ĸ		mm/month	71.4	114.4	128.6	70.6	27.6	116.9	52.9	40.8	46.4	61.0	75.6	74.6	71.4	14.4 12	28.6	0.6	7.6 116	5.9 88I	0.8
Evaporation			mm/day	4.6	3.9	3.1	2.6	1.9	1.2	1.5	1.9	2.5	3.3	4.3	4.4							
Evaporation	ш		mm/month	142.6	109.2	96.1	78.0	58.9	36.0	46.5	58.9	75.0	102.3	129.0	136.4	142.6	09.2	6.1	8.0	3.9 36	.0 10	68.9
Crop Factor	υ			0.80	0.80	0.70	0.70	0.50	0.50	0.60	0.60	0.70	0.70	0.80	0.80	0.80	0.80	02.	0	50 0.5	00	
OUTPUTS (LOSSES)																						
Evapotranspiration	ET	ExC	mm/month	114.1	87.4	67.3	54.6	29.5	18.0	27.9	35.3	52.5	71.6	103.2	109.1	114.1	87.4 E	7.3 €	4.6 2	9.5 18	0.77	0.43
Percolation	æ	DIRXD	mm/month	108.5	86	108.5	105.0	108.5	105.0	108.5	108.5	105.0	108.5	105.0	108.5	108.5	98.0 10	10.5	05.0 10	8.5 105	5.0 127	77.5
Outputs		ET+B	mm/month	222.6	185.36	175.8	159.6	138.0	123.0	136.4	143.8	157.5	180.1	208.2	217.6	222.6 1	85.36 17	5.8	59.6 10	8.0 123	3.0 204	47.9
INPUTS (GAINS)																						
Retained Rainfall	RR	RxRC	mm/month	60.69	97.24	109.31	60.01	23.46	99.365	44.965	34.68	39.44	51.85	54.26	63.41	30.69	37.24 10	9.31 6	0.01 23	.46 99.3	365 748	8.68
Effluent Irrigation	v	(OxD)/L	mm/month	24.4	22.1	24.4	23.6	24.4	23.6	24.4	24.4	23.6	24.4	23.6	24.4	24.4	22.1 2	4.4	3.6 2	4.4 23	.6 28	7.7
Inputs		RR+W	mm/month	85.1	119.3	133.7	83.7	47.9	123.0	69.4	59.1	63.1	76.3	87.9	87.8	85.1	19.3 10	33.7	3.7 4	7.9 123	3.0 103	36.4
STORAGE CALCULATION (A)																						
Storage Remaining from Previous Month			mm/month	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0	0	
Storage for the Month	s	(RR+W)-(ET+B)	mm/month	-137.5	-66.1	-42.0	-75.9	-90.1	0.0	-67.0	-84.7	-94.4	-103.8	120.3	129.8	137.5	66.1	2.0	5.9	0.1 0.	0	
Cumulative Storage	Σ		mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0 0.	0	
Maximum Storage for Nominated Area	z		mm	0.0																		
Storage Volume required	>	(N×L)/1000	"E	0.0																		
LAND AREA REQUIRED FOR ZER	O STORAC	GE	m²	153	254	373	241	217	1015	271	227	203	193	167	161	153	254 3	23	241 2	17 10	15	
MINIMUM AREA REQUIRED I	FOR ZER	O STORAG	ü	1,015	mž	This value	is based o.	n the worst	t month of t.	he year, so	the baland	e overesti	mates the a	area/stora	ge require	nents and	s therefore	conservat	ve for all o	her months		
																						٦

197 Main Road Cardiff NSW 2285 Australia Telephone + 61 2 4954 4996 Email mail@whiteheadenvironmental.com.au Website www.whiteheadenvironmental.com.au