Bayview Golf Club



Acid Sulfate Soil Assessment: Green Renovation Works Bayview Golf Course, Cabbage Tree Road, Bayview, NSW

ENVIRONMENTAL





WASTEWATER







CIVIL



PROJECT MANAGEMENT

P2309440JR02V01 April 2023

#### **Copyright Statement**

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

The document may only be used for the purposes for which it was commissioned. Unauthorised use of this document in any form whatsoever is prohibited. Martens & Associates Pty Ltd assumes no responsibility where the document is used for purposes other than those for which it was commissioned.

#### **Limitations Statement**

The sole purpose of this report and the associated services performed by Martens & Associates Pty Ltd is to complete an Acid Sulfate Soil Assessment in accordance with the scope of services set out in the contract/quotation between Martens & Associates Pty Ltd and Bayview Golf Club (hereafter known as the Client). That scope of works and services were defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site.

Martens & Associates Pty Ltd derived the data in this report primarily from a number of sources including site inspections, correspondence regarding the proposal, examination of records in the public domain, interviews with individuals with information about the site or the project, and field explorations conducted on the dates indicated. The passage of time, manifestation of latent conditions or impacts of future events may require further examination / exploration of the site and subsequent data analyses, together with a re-evaluation of the findings, observations and conclusions expressed in this report.

In preparing this report, Martens & Associates Pty Ltd may have relied upon and presumed accurate certain information (or absence thereof) relative to the site. Except as otherwise stated in the report, Martens & Associates Pty Ltd has not attempted to verify the accuracy of completeness of any such information (including for example survey data supplied by others).

The findings, observations and conclusions expressed by Martens & Associates Pty Ltd in this report are not, and should not be considered an opinion concerning the completeness and accuracy of information supplied by others. No warranty or guarantee, whether express or implied, is made with respect to the data reported or to the findings, observations and conclusions expressed in this report. Further, such data, findings and conclusions are based solely upon site conditions, information and drawings supplied by the Client etc. in existence at the time of the investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Martens & Associates Pty Ltd and the Client. Martens & Associates Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.



© April 2023 Copyright Martens & Associates Pty Ltd All Rights Reserved

#### Head Office

Suite 201, 20 George Street Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 **Phone: +61-2-9476-9999** Fax: +61-2-9476-8767 Email: mail@martens.com.au Web: www.martens.com.au

| Document and Distribution Status |        |              |             |                      |                   |              |           |  |
|----------------------------------|--------|--------------|-------------|----------------------|-------------------|--------------|-----------|--|
| Author(s)                        |        |              | Reviewer(s) |                      | Project Manager   |              | Signature |  |
| Ben Cornish                      |        | Ben McGiffin |             | Gray Taylor          |                   | Abray Tayle. |           |  |
|                                  |        | a            |             |                      | Document Location |              |           |  |
| Revision No.                     | Status | Release Date | File Copy   | Bayview<br>Golf Club |                   |              |           |  |
| 1                                | Draft  | 21.04.2023   | 1E,1P,1H    | 1P                   |                   |              |           |  |
| 1                                | Final  | 27.04.2023   | 1E,1P,1H    | 1P                   |                   |              |           |  |
|                                  |        |              |             |                      |                   |              |           |  |

Distribution Types: F = Fax, H = Hard copy, P = PDF document, E = Other electronic format. Digits indicate number of document copies.



#### Contents

| 1   | INTRODUCTION                                       | . 5 |
|-----|----------------------------------------------------|-----|
| 1.1 | Overview and Scope of Work                         | 5   |
| 1.2 | Previous Assessments                               | 5   |
| 1.3 | Proposed Development                               | 5   |
| 1.4 | Guidelines                                         | 5   |
| 2   | SITE DESCRIPTION                                   | . 7 |
| 3   | PRELIMINARY ASSESSMENT                             | . 9 |
| 3.1 | Acid Sulfate Soil Risk Map Classification          | 9   |
| 3.2 | Geomorphic Setting                                 | 9   |
| 3.3 | Preliminary Conclusion                             | 10  |
| 4   | ASS ASSESSMENT CRITERIA                            | 11  |
| 4.1 | Action Criteria                                    | 11  |
| 5   | FIELD INVESTIGATIONS                               | 12  |
| 5.1 | Sub-Surface Conditions                             | 13  |
| 5.2 | Groundwater                                        | 13  |
| 6   | LABORATORY ANALYSIS                                | 14  |
| 6.1 | Soil Sampling Regime                               | 14  |
| 6.2 | Soil Analytical Results                            | 14  |
| 6.3 | Discussion and Conclusion                          | 14  |
| 7   | LIMITATIONS                                        | 17  |
| 8   | REFERENCES                                         | 18  |
| 9   | ATTACHMENT A – SITE PLANS                          | 19  |
| 10  | ATTACHMENT B – PROPOSED PLANS                      | 21  |
| 11  | ATTACHMENT C – BOREHOLE LOGS                       | 22  |
| 12  | ATTACHMENT D – LABORATORY ANALYTICAL DOCUMENTATION | 23  |



#### 1 Introduction

#### 1.1 Overview and Scope of Work

This report, prepared by Martens and Associates (MA), on behalf of Bayview Golf Club, documents the findings of an acid sulfate soil (ASS) assessment undertaken for proposed green renovation works at Bayview Golf Course, Cabbage Tree Road, Bayview, NSW (the site). The investigation area is shown on Figure 1, Attachment A.

The objectives of the ASS assessment were:

- Preliminary ASS assessment of the site (desktop assessment).
- Field investigations and targeted laboratory testing of soils.
- Determine if an ASS management plan (ASSMP) is required.

#### 1.2 Previous Assessments

In 2017 and 2021, MA completed ASS assessments for the site to inform proposed site development plans which including earthworks for flood mitigation measures and drainage works. Laboratory results from these assessments (MA, 2017, MA, 2021) have been considered as part of this current ASS assessment where necessary.

#### 1.3 Proposed Development

From the plans provided by the client (CC, 2023), we understand that the proposed development is to upgrade 12 greens, requiring varying amounts of cut and fill across the works areas. It is understood that the maximum proposed excavation depth is 1.75 mbgl. An assessment of maximum excavation at each green, soil strata at depth of excavation and ASS considerations is presented in Table 4 in Section 6.3 of this report.

The most recent proposed development plans are provided in Attachment B.

#### 1.4 Guidelines

This investigation was undertaken in general accordance with the following guidelines:

 Acid Sulfate Soil Management Advisory Committee (1998), Acid Sulfate Soil Manual. Referred to as ASSMAC (1998)



• Qld Natural Resources, Mines and Energy (2004) Acid Sulfate Soils Laboratory Methods Guidelines.



#### 2 Site Description

Site Details are summarised in Table 1.

#### Table 1: Site details.

| Item                          | Description / Detail                                                                                                                                                                                                                                                 |  |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Site address                  | Bayview Golf Club                                                                                                                                                                                                                                                    |  |  |  |  |
|                               | 1825 Pittwater Rd, Mona Vale NSW 2103                                                                                                                                                                                                                                |  |  |  |  |
| Legal Identifier              | Lot 1 DP 662920                                                                                                                                                                                                                                                      |  |  |  |  |
|                               | Lot 1 DP 19161                                                                                                                                                                                                                                                       |  |  |  |  |
|                               | Lot 5 DP 45114                                                                                                                                                                                                                                                       |  |  |  |  |
|                               | Lot 191 DP 1039481                                                                                                                                                                                                                                                   |  |  |  |  |
|                               | Lot A DP 339874                                                                                                                                                                                                                                                      |  |  |  |  |
|                               | Lot 150 DP 1003518                                                                                                                                                                                                                                                   |  |  |  |  |
|                               | Lot 191 DP 1039481<br>Lots 1, 2 and 3 DP 986894                                                                                                                                                                                                                      |  |  |  |  |
|                               | Lot 300 DP 1139238                                                                                                                                                                                                                                                   |  |  |  |  |
| Approximate Area              | Approximately 38.42 Ha (Six Maps, 2021).                                                                                                                                                                                                                             |  |  |  |  |
| Local Government              | Northern Beaches Council (formerly Pittwater Council).                                                                                                                                                                                                               |  |  |  |  |
| Area                          |                                                                                                                                                                                                                                                                      |  |  |  |  |
| Site description              | The site is developed and vegetated for golf course purposes. Cabbage<br>Tree Road bounds the site to the north, Parkland Road borders the site to                                                                                                                   |  |  |  |  |
|                               | the west.                                                                                                                                                                                                                                                            |  |  |  |  |
| Topography                    | The NSW Office of Environment and Heritage's (OEH) information system indicates the site topography to comprise as follows:                                                                                                                                          |  |  |  |  |
|                               | North, north east and north east portion                                                                                                                                                                                                                             |  |  |  |  |
|                               | • Terrain disturbed by human activity, with local relief < 2 m.                                                                                                                                                                                                      |  |  |  |  |
|                               | <ul> <li>Disturbed ground landscaped to include berms, cut faces,<br/>embankments, mounds, pits and trenches. Slopes levelled to &lt;<br/>3%.</li> </ul>                                                                                                             |  |  |  |  |
|                               | Eastern portion                                                                                                                                                                                                                                                      |  |  |  |  |
|                               | <ul> <li>Flooded valleys infilled with alluvium and surrounded by steep to<br/>precipitous Hawkesbury sandstone slopes.</li> </ul>                                                                                                                                   |  |  |  |  |
|                               | <ul> <li>Gently undulating alluvial floodplain with slopes &lt; 3 %. Elevation<br/>is &lt; 10 m.</li> </ul>                                                                                                                                                          |  |  |  |  |
|                               | South east portion                                                                                                                                                                                                                                                   |  |  |  |  |
|                               | <ul> <li>Gently undulating plains and rolling undulating rises of broad,<br/>level to very gently inclined, swales and dunes.</li> </ul>                                                                                                                             |  |  |  |  |
|                               | <ul> <li>Elevation and local relief is usually &lt; 20 m.</li> </ul>                                                                                                                                                                                                 |  |  |  |  |
|                               | <ul> <li>Isolated steep rises with slopes up to 35 % are present.</li> </ul>                                                                                                                                                                                         |  |  |  |  |
|                               | There are depressions and swamps at northern and eastern portion of the site where water gets collected during the rainfall events. The Cahill creek inside the site runs from northern to eastern portion of the site.                                              |  |  |  |  |
| Typical slopes,<br>elevation  | Slopes are generally low (<2%) and elevation generally ranges from approximately 1 to 2 mAHD.                                                                                                                                                                        |  |  |  |  |
| Expected geology<br>and soils | The published geological map covering this area indicates that the<br>development area is predominantly underlain by Quaternary deposits:<br>silty to peaty quartz sand, silt, and clay with ferruginous and humic<br>cementation in places and common shell layers. |  |  |  |  |



| Item       | Description / Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | The north western portion is indicated to be underlain by Hawkesbury sandstone: medium to coarse grained quartz sandstone, very minor shale and laminite lenses (Sydney 1:100 000 Geological Sheet 9130, 1st edition).                                                                                                                                                                                                                                                                     |
|            | The Sydney 1:100,000 Soil Landscape Map 9130 (Soil Conservation<br>Service of NSW) indicates the majority of the site as being part of the Erina<br>erosional landscape, consisting of undulating to rolling rises and low hills.<br>Soils are moderately deep to deep. The eastern corner of the site is<br>mapped as being part of the Deep Creek fluvial landscape, consisting of<br>level to gently undulating alluvial floodplains draining the Hawkesbury<br>Sandstone local relief. |
| Drainage   | Depressions and swamps in the northern and eastern portions of the site collect water during rainfall events. Cahill Creek flows from the northern to the eastern portion of the site.                                                                                                                                                                                                                                                                                                     |
|            | The site generally drains generally centrally to an inlet which ultimately connects to Winnererremy Bay, Pittwater, located approximately 260 m north east of the site.                                                                                                                                                                                                                                                                                                                    |
| Vegetation | Predominantly grass on fairways, edges of fairways have trees (typically<br>Casuarinas and Melaleucas). Mangroves on perimeter of some areas of<br>the inlet which connects to Winnererremy Bay.                                                                                                                                                                                                                                                                                           |



#### 3 Preliminary Assessment

#### 3.1 Acid Sulfate Soil Risk Map Classification

The Pittwater Council ASS risk map classifies the northwest portion of the site as typically Class 5 land, with a band of class 2 in the southeast corner. We note that this area is outside of the proposed development footprint.

The majority of the main golf course (including the greens proposed for upgrade works) is classified as Class 2 land, with a band of Class 3 land in the southern-most portion of the site.

Site location relating to ASS risk is presented in Figure 2 Attachment A.

#### 3.2 Geomorphic Setting

The likelihood of ASS occurrence at a site is a function of various geomorphic parameters, in particular those listed in ASSMAC (1998). Each is an indicator that ASS are likely to be present onsite.

|                                                                                                                                                     | Present on site?                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Geomorphic Feature                                                                                                                                  | Area of proposed development footprint                                                                |
| Holocene sediments                                                                                                                                  | Yes                                                                                                   |
| Soil horizons less than 5 m AHD                                                                                                                     | Yes                                                                                                   |
| Marine / estuarine sediments or tidal lakes                                                                                                         | Yes                                                                                                   |
| Coastal wetland; backwater swamps;<br>waterlogged or scaled areas; inter-dune swales<br>or coastal sand dunes (i.e. deep excavation is<br>required) | Yes                                                                                                   |
| Dominant vegetation is mangroves, reeds,<br>rushes and other swamp or marine tolerant<br>species.                                                   | Not currently. Remanent mangroves and acid tolerant species (Casuarinas and Melaleucas). <sup>1</sup> |
| Geologies containing sulfide bearing material /<br>coal deposits or former marine<br>shales/sediments                                               | Possible <sup>2</sup>                                                                                 |
| Deep older (Holocene or Pleistocene) estuarine<br>sediments > 10 mBGL<br>(if deep excavation or drainage is proposed)                               | No                                                                                                    |

Table 2: Geomorphic features indicative of acid sulfate soils.

#### <u>Notes:</u>

<sup>1</sup> May have been present prior to golf course development.

<sup>2</sup> Possibly in fill materials.



#### 3.3 Preliminary Conclusion

As the site is predominantly mapped as Class 2 and some of the geomorphic features listed are either present or may formerly have been on-site, indicating that the geomorphic site setting is indicative of potential ASS (PASS) or ASS, an intrusive investigation, with laboratory testing of soils, is required.



#### 4 ASS Assessment Criteria

#### 4.1 Action Criteria

Samples were selected for peroxide oxidation combined acidity and sulfate (sPOCAS) analysis and assessed using Table 4.4 of ASSMAC (1998). The proposed development excavation works at each green (treated as separate locations) have been assessed as generating less than 1000 tonnes of disturbed soil and therefore the analytical results are assessed against the following criteria:

- Sulfur Trail Oxidisable sulfur (SPOS) is > 0.03, 0.06, 0.1% for coarse, medium and fine textured soils respectively; or
- Acid Trail TPA or TSA is > 18, 36, 62 mol H<sup>+</sup>/tonne for coarse, medium and fine textured soils respectively.

If this criteria is exceeded, a detailed management plan and development consent is required.



#### 5 Field Investigations

Site investigation works were undertaken on 1 March, 2023 which included excavation of 18 boreholes (BH101a to BH112b) to a maximum of 1.6 mBGL, and collection of soil samples for laboratory testing.

Generally, a minimum of one borehole was excavated at each green with the exception of the 13<sup>th</sup> green, which had minimal proposed excavation. Data from previous ASS investigations (MA, 2017 and MA 2021) will be used to assess ASS risk at this location if excavation depth changes.

A summary of sampling completed at each green is provided in Table 3

| Green Number | Samples collected                                                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------|
| 1            | BH101a 0.1 – 0.3, BH101a 0.6 – 0.8, BH101a 1.2 – 1.4, BH101b 0.2 – 0.4,<br>BH101b 0.7 – 0.9, BH101b 1.4 – 1.5 |
| 2            | BH102 0.2 – 0.4, BH102 0.6 – 0.8, BH102 1.0 – 1.2                                                             |
| 3            | BH103 0.1 – 0.3, BH103 0.3 – 0.5, BH103 0.6 – 0.7                                                             |
| 4            | BH104 0.1 – 0.3, BH104 0.5 – 0.7, BH104 1.0 – 1.2                                                             |
| 5            | BH105a 0.1 – 0.2, BH105a 0.4 – 0.6, BH105a 0.7 – 0.9, BH105b 0.0 – 0.2,<br>BH105b 0.6 – 0.8, BH105b 1.0 – 1.2 |
| 6            | BH106 0.2 – 0.4, BH106 0.4 – 0.6                                                                              |
| 7            | BH107a 0.1 – 0.3, BH107b 0.5 – 0.7, BH107a 1.0 -1.2, BH107b 0.2 – 0.4,<br>BH107b 0.5 – 0.7, BH107b 1.0 – 1.2  |
| 8            | BH108 0.1 – 0.4, BH108 0.8 – 1.0, BH108 1.3 – 1.5                                                             |
| 10           | BH110 0.1 – 0.3, BH110 0.7 – 0.9, BH110 1.1 – 1.4                                                             |
| 11           | BH111a 0.2 – 0.4, BH111a 0.7 – 0.9, BH111a 1.0 – 1.2, BH111b 0.1 – 0.3, BH111b 0.5 – 0.7, BH111b 1.0 – 1.2    |
| 12           | BH112b 0.2 – 0.4, BH112b 0.5 – 0.7, BH112 1.1 – 1.3                                                           |
| 13           | Nil <sup>1</sup>                                                                                              |
| Notes:       |                                                                                                               |

 Table 3: Testing and Saple Summary

#### Notes:

1 No borehole undertaken at green 13 due to limited proposed excavation.

Soil sampling was completed in general accordance with guidance outlined in the ASSMAC (1998) guidelines. Based on our understanding of the proposed development (outlined in Section 1.3), excavation works are expected to extend to up to a maximum depth of 1.75 mBGL.

Site testing locations are shown in Attachment A.



#### 5.1 Sub-Surface Conditions

Intrusive investigations generally encountered fill and alluvial soils comprising silt, sandy silt, clayey silt, sand, silty sand and clayey sand to investigation depths of 1.6 mBGL. Residual soil (clay and sandy clay) was encountered beneath overlying fill and / or alluvium to investigation depths of 1.6 mBGL where encountered.

Borehole logs are provided in Attachment C.

#### 5.2 Groundwater

Saturated soils were encountered in the southeast portion of the site below depths ranging from 0.8 - 1.3 mBGL. Based on saturated soil depths and the existing 0.25 m contour site plan, a permanent water table is expected beneath the main golf course at a level of the order of 0.1 to 0.5 mAHD.



#### 6 Laboratory Analysis

#### 6.1 Soil Sampling Regime

13 samples taken from BH101a – BH112b were selected for laboratory analysis for Suspension Peroxide Oxidation Combined Acidity and Sulphur (sPOCAS).

#### 6.2 Soil Analytical Results

sPOCAS laboratory results are summarised in Table 4, with laboratory analytical documentation provided in Attachment D.

| Borehole<br>number    | Sample<br>Depth | Material            | pH₅  | $pH_{Fox}$ | ΔрН                  | TPA1              | TSA <sup>2</sup>  | S <sub>POS</sub> <sup>3</sup> |
|-----------------------|-----------------|---------------------|------|------------|----------------------|-------------------|-------------------|-------------------------------|
| Criteria (F,<br>M, C) |                 |                     | ≤4.0 | <3.5 or    | >1 pH unit<br>change | >18<br>>36<br>>62 | >18<br>>36<br>>62 | >0.03<br>>0.06<br>>0.10       |
| BH101a                | 1.2-1.4         | Silty CLAY          | 8.7  | 7.6        | 1.0                  | <5                | <5                | 0.11                          |
| BH101b                | 1.0-1.2         | Silty CLAY          | 8.9  | 7.6        | 0.7                  | <5                | <5                | 0.06                          |
| BH102                 | 1.4-1.5         | Sandy CLAY          | 6.2  | 5.2        | 1.0                  | <5                | <5                | 0.05                          |
| BH105a                | 0.7-0.9         | Silty CLAY          | 6.6  | 6.9        | 0.3                  | <5                | <5                | 0.02                          |
| BH105b                | 1.0-1.2         | Silty CLAY          | 4.3  | 3.9        | 0.4                  | <5                | <5                | 0.01                          |
| BH107a                | 1.0-1.2         | Clayey<br>SAND      | 5.5  | 3.9        | 1.6                  | <5                | <5                | 0.01                          |
| BH107b                | 1.0-1.2         | Silty CLAY          | 6.4  | 5.6        | 0.8                  | <5                | <5                | 0.07                          |
|                       | 0.8-1.0         | Sandy CLAY          | 5.7  | 5.4        | 0.3                  | <5                | <5                | 0.03                          |
| BH108                 | 1.3-1.5         | Clayey<br>SAND      | 5.6  | 2.8        | 2.8                  | 160               | 160               | 0.26                          |
|                       | 0.7-0.9         | Silty SAND          | 6.1  | 3.6        | 5 <b>2.5</b>         | <5                | <5                | 0.01                          |
| BH110                 | 1.1-1.4         | Sandy silty<br>CLAY | 4.4  | 2.4        | 4 2.0                | 820               | 800               | 1.3                           |
| BH111a                | 1.0-1.2         | Silty CLAY          | 6.3  | 5.0        | ) <b>1.3</b>         | <5                | <5                | 0.07                          |
| BH112b                | 1.1-1.4         | Clayey<br>SAND      | 8.7  | 5.2        | 2 <b>3.5</b>         | <5                | <5                | 0.28                          |

#### Table 4: ASS Analytical Results

#### Notes:

1 Titratable Peroxide Acidity (Moles H+/tonne); 2 Titratable Sulfidic Acidity (Moles H+/tonne); 3 Oxidisable sulfur (%); Highlighted/bold values exceed ASSMAC action criteria.

#### 6.3 Discussion and Conclusion

Table 5 provides a summary of the assessment findings relative to each green proposed for upgrade works.



#### Table 5: Results summary.

| Green<br>number | Maximum<br>Excavation<br>Depth | End<br>Excavation<br>Strata | Sample                            | ASS Consideration                                                                                                               |
|-----------------|--------------------------------|-----------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1               | 0.75                           | Fill                        | BH101a 1.2-1.4,<br>BH101b 1.0-1.2 | PASS material not reached by excavation.                                                                                        |
| 2               | 0.25                           | Fill                        | BH102 1.4-1.5                     | PASS material not encountered.                                                                                                  |
| 3               | 1.25                           | Inferred<br>Alluvium        | BH108 1.3-1.5                     | Inferred profile from nearby BH108<br>– PASS material highly likely to be<br>exposed by excavation.<br>Management plan required |
| 4               | 1.25                           | Residual Soil               | -                                 | Residual soil at elevation not<br>considered an ASS risk.                                                                       |
| 5               | 0.75                           | Residual Soil               | BH105a 0.7-0.9,<br>BH105b 1.0-1.2 | PASS material not encountered.                                                                                                  |
| 6               | 1.75                           | Inferred<br>Residual Soil   | -                                 | Residual soil at elevation not considered an ASS risk.                                                                          |
| 7               | 0.75                           | Fill                        | BH107a 1.0-1.2,<br>BH107b 1.0-1.2 | PASS material not reached by excavation.                                                                                        |
| 8               | 0.75                           | Alluvium                    | BH108 0.8-1.0                     | PASS material not reached by excavation.                                                                                        |
| 10              | 0.25                           | Fill                        | BH110 0.7-0.9<br>BH110 1.1 – 1.4  | PASS material not reached by excavation.                                                                                        |
| 11              | 1.75                           | Alluvium                    | BH111a 1.0-1.2                    | Laboratory indication of PASS likely<br>a result of natural soil pH levels,<br>not considered an ASS risk.                      |
| 12              | -                              | Fill                        | BH112b 1.1-1.4                    | PASS material not reached by excavation.                                                                                        |
| 13              | 0.25                           | Inferred Fill               | -                                 | Inferred profile indicates PASS<br>material not reached by<br>excavation.                                                       |

In light of the results of this assessment we make the following conclusions and recommendations:

- Laboratory results indicate that 9 of the 13 samples tested are PASS and 6 of the 12 samples have TPA, TSA or Spos above the ASSMAC (1998) action criteria.
- Laboratory results indicated that little to no acid neutralising capacity remained in the soil profile.



 Suggested liming rates (as outlined in the laboratory documentation) are highly variable ranging from 0.75 to 65 kg / tonne of disturbed soil.

Due to the variability of the site, elevations, proposed works and excavation depths, and the variability of laboratory testing results, each green has been evaluated individually.

A management plan (ASSMP) is required for the third green to address risks associated with PASS during site works. The works will fall under a low to medium treatment category as per Table 4.5 in ASMAC (1998).

Other greens are unlikely to intercept PASS at proposed depth of excavation, and / or have been assessed to have a negligible acid generation risk and low liming rate. If proposed excavation depths are changed, MA should be consulted to confirm new excavation depths to not required further ASS management.

Provided the ASSMP is implemented for works associated with the third green, acidic soil conditions should not restrict the proposed development.

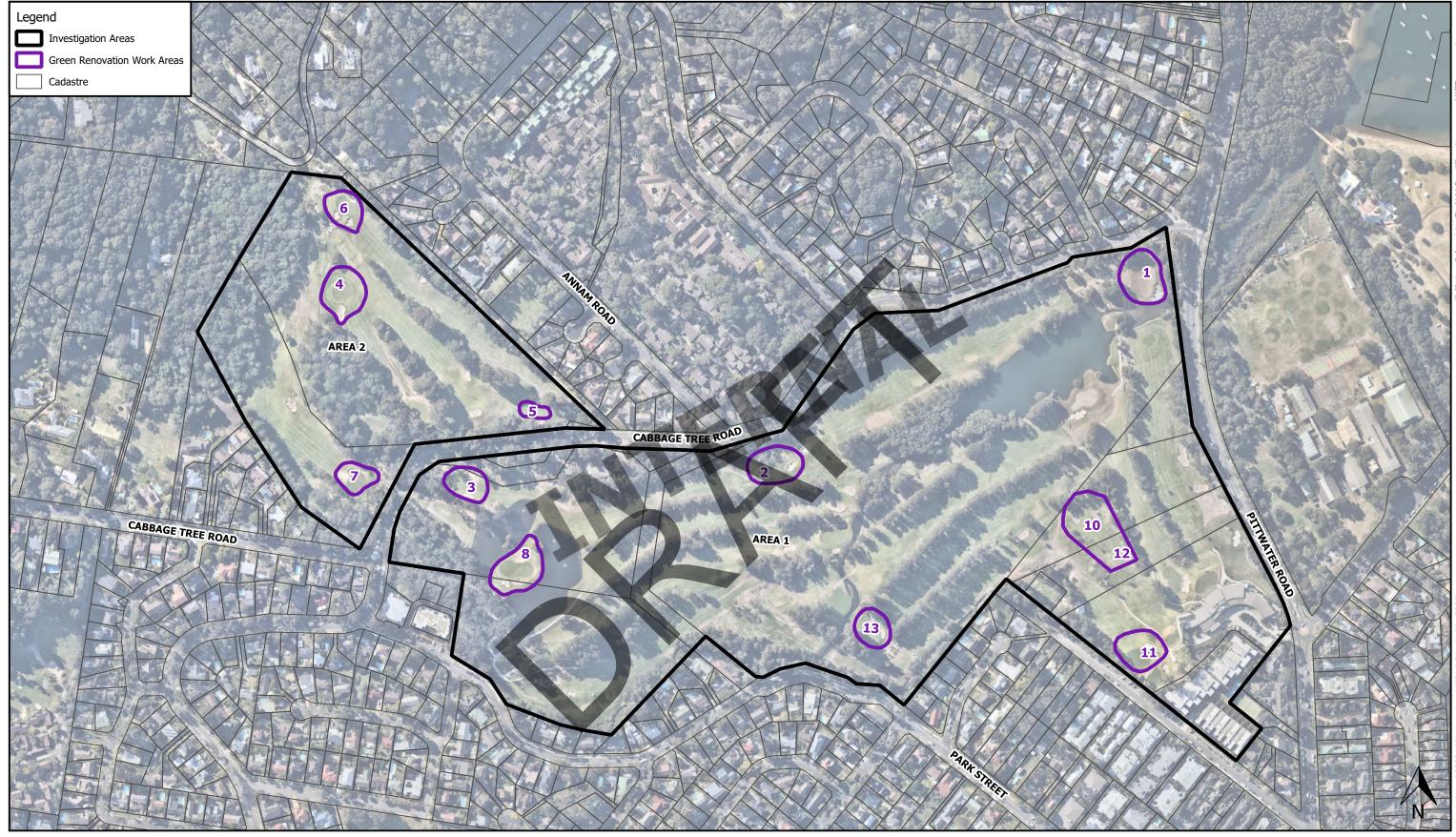


#### 7 Limitations

The recommendations presented in this report include specific issues to be addressed during the design and construction phases of the project. In the event that any of the recommendations presented in this report are not implemented, the general recommendations may become inapplicable and Martens & Associates Pty Ltd accept no responsibility whatsoever for the performance of the works undertaken where recommendations are not implemented in full and properly tested, inspected and documented.

Occasionally, sub-surface conditions between and below the completed boreholes or other tests may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact Martens & Associates Pty Ltd.




#### 8 References

- Acid Sulfate Soil Management Advisory Committee (1998) Acid Sulfate Soil Manual.
- Chrisp Consulting (2023), Sediment and Erosion Control Management, Bayview Golf Club Job No. 23003, drawing No. C100, C110 to C122, Revision B, dated 22 February 2023 (CC, 2023).
- Martens and Associates (2017), Acid Sulfate Soil Assessment: Proposed Flood Mitigation Earthworks, Bayview Golf Course, Cabbage Tree Road, Bayview, NSW, Report reference no. P1706099JR04V01, dated 29 November 2017 (MA, 2017).
- Martens and Associates (2021), Acid Sulfate Soil Assessment: Stormwater Harvesting and Irrigation Wworks, Bayview Golf Course, Cabbage Tree Road, Bayview, NSW, Report reference no. P2108584JR02V01, dated 17 October 2021 (MA, 2021).
- Northern Beaches Council (2015) Development Control Plan, Amendment 19.
- NSW Department of Mineral Resources (1983), Sydney 1:100,000 Geological Sheet 9130.
- Qld Natural Resources, Mines and Energy (2004) Acid Sulfate Soils Laboratory Methods Guidelines.



#### 9 Attachment A – Site Plans





0 40 80 120 160 200 m

1:4000 @ A3

Viewport

Notes: - Aerial from Nearmap (2021) - Cadastre from NSW DFSI Clip and Ship (2023)



#### Map Title / Figure: Site Layout

GE01 Cabbage Tree Road, Bayview, NSW Geotechnical and Acid Sulphate Soils Assessment Geotechnical Assessment Reporting Bayview Golf Club 31/03/2023

Map Site Project Sub-Project Client Date

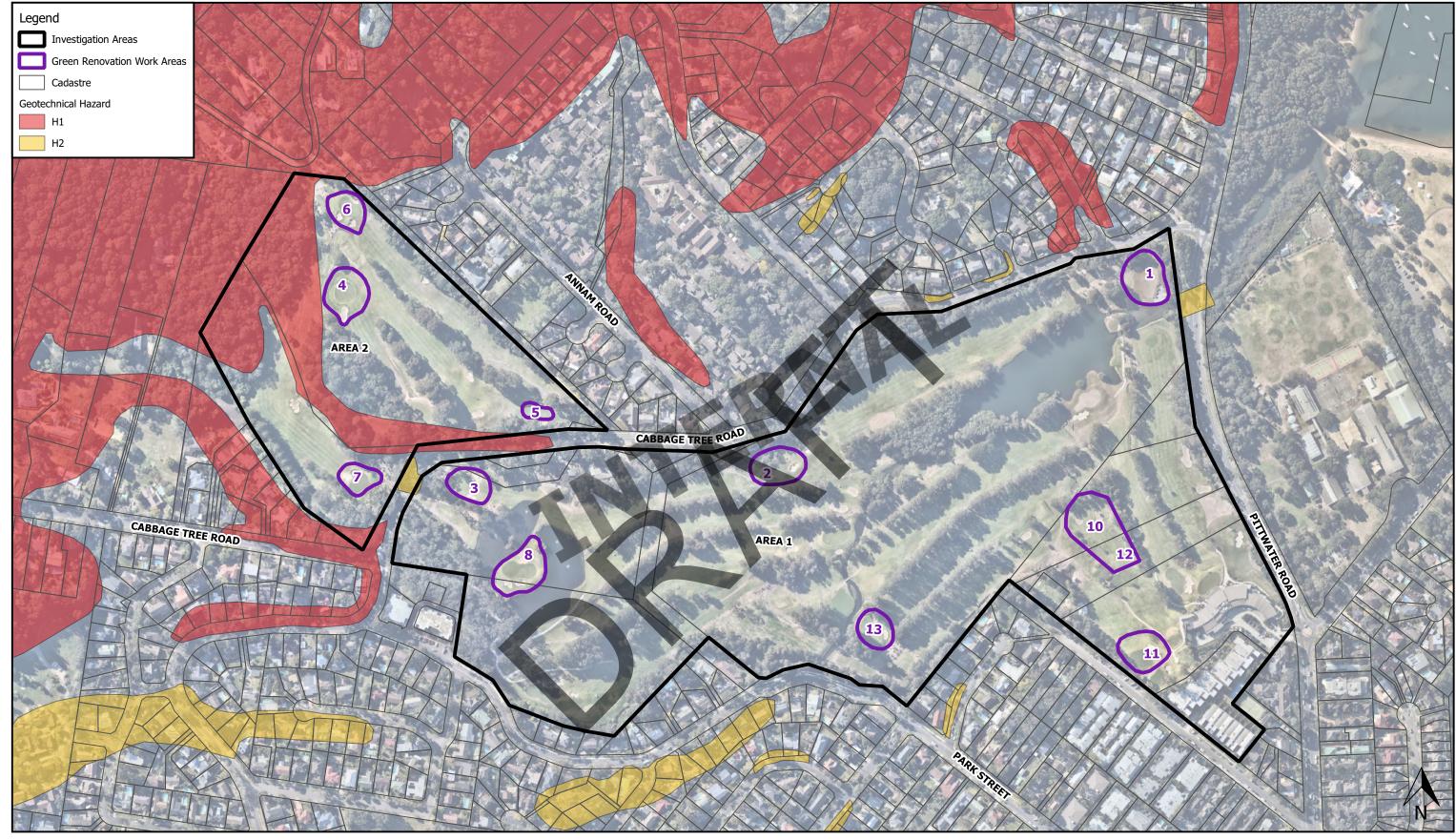


120 160 200 m 0 40 80

1:4000 @ A3

Viewport

Notes: - Aerial from Nearmap (2021) - Cadastre from NSW DFSI Clip and Ship (2023)




# Map Title / Figure: **Borehole Location Plan**

1S01

GE02 Cabbage Tree Road, Bayview, NSW Geotechnical and Acid Sulphate Soils Assessment Geotechnical Assessment Reporting Bayview Golf Club 31/03/2023

Мар Site Project Sub-Project Client Date

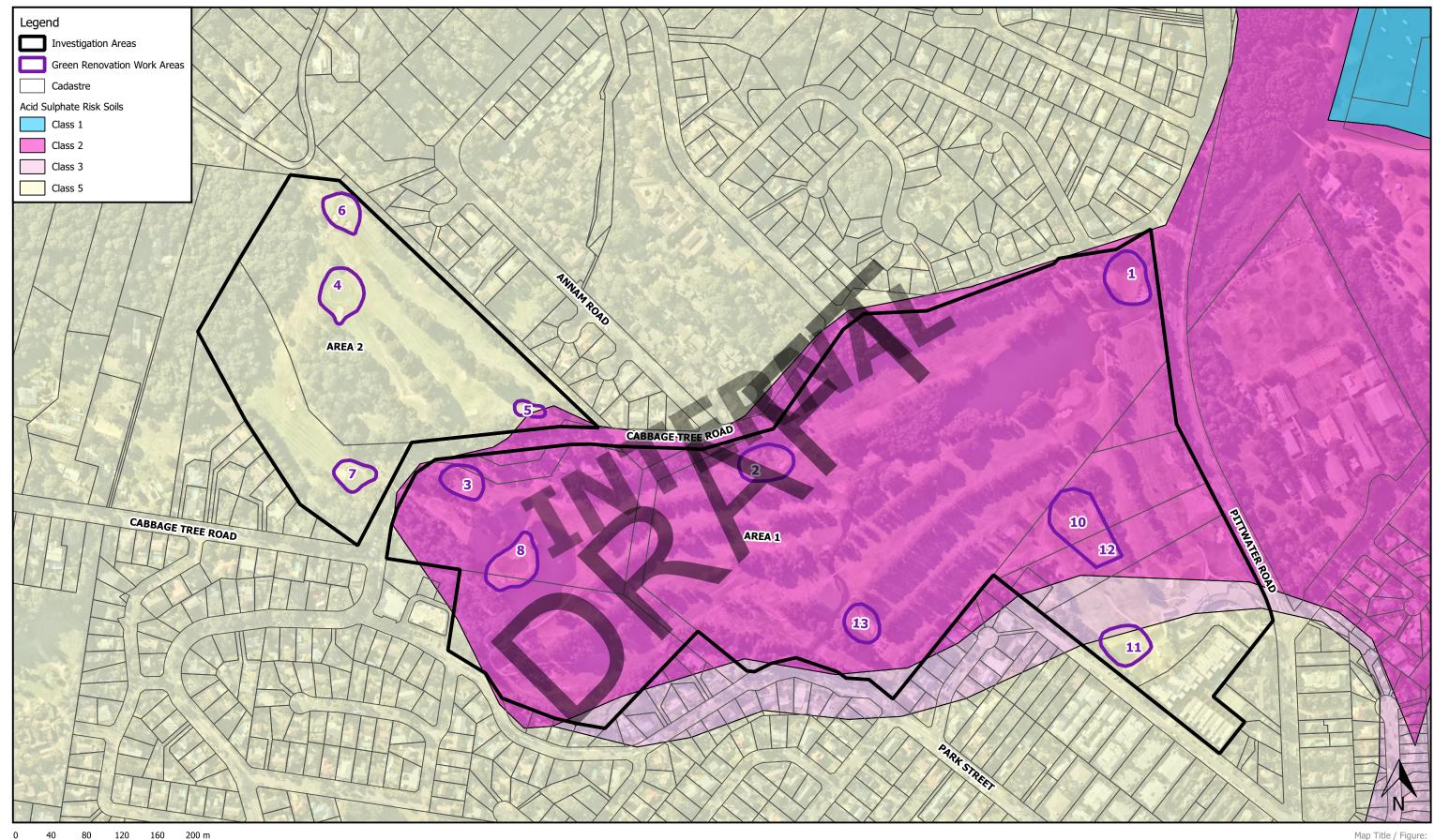


#### 120 160 200 m 0 40 80

1:4000 @ A3

Viewport

Notes: - Aerial from Nearmap (2021) - Cadastre from NSW DFSI Clip and Ship (2023) - Geotechnical hazard areas from Pittwater Local Environmental Plan LEP 2014




Map Title / Figure: Geotechnical Hazard Identification

Мар Site Project Sub-Project Client Date

#### GE03

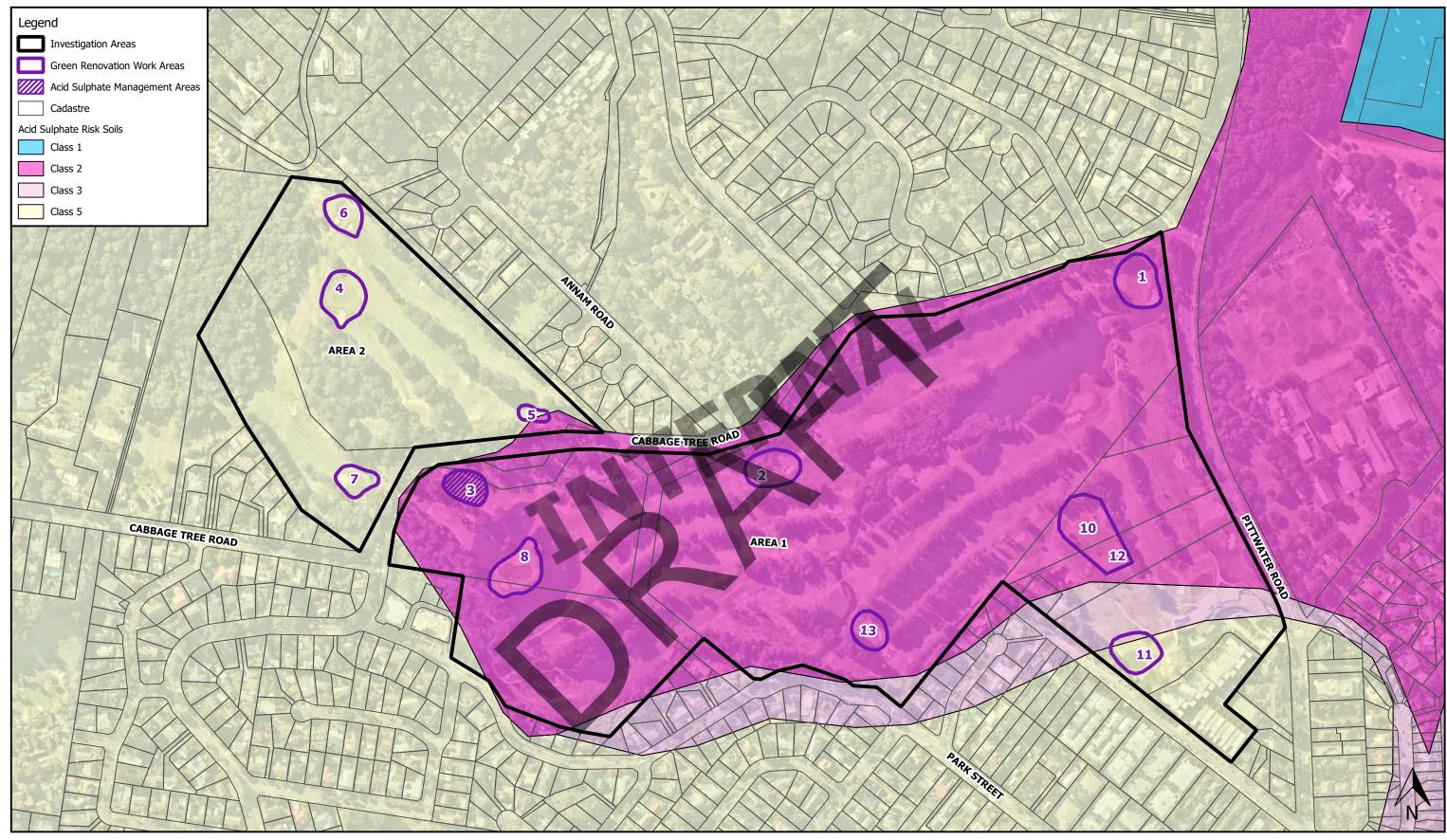
Cabbage Tree Road, Bayview, NSW Geotechnical and Acid Sulphate Soils Assessment Geotechnical Assessment Reporting Bayview Golf Club 31/03/2023



80 0 40

1:4000 @ A3 Viewport

Notes: - Aerial from Nearmap (2021) - Cadastre from NSW DFSI Clip and Ship (2023) - Acid Sulphate Soils from NSW DPIE (2020)




#### Map Title / Figure: Pittwater Acid Sulphate Risk Map

Cabbage Tree Road, Bayview, NSW Geotechnical and Acid Sulphate Soils Assessment Geotechnical Assessment Reporting Bayview Golf Club 31/03/2023

GE04

Мар Site Project Sub-Project Client Date



0 40 80 120 160 200 m

1:4000 @ A3

Viewport

Notes: - Aerial from Nearmap (2021) - Cadastre from NSW DFSI Clip and Ship (2023) - Acid Sulphate Soils from NSW DPIE (2020)

Environment | Water | Geotechnics | Civil | Projects

Map Title / Figure: Acid Sulphate Management Areas

Cabbage Tree Road, Bayview, NSW Geotechnical and Acid Sulphate Soils Assessment Geotechnical Assessment Reporting Bayview Golf Club 31/03/2023

#### GE05

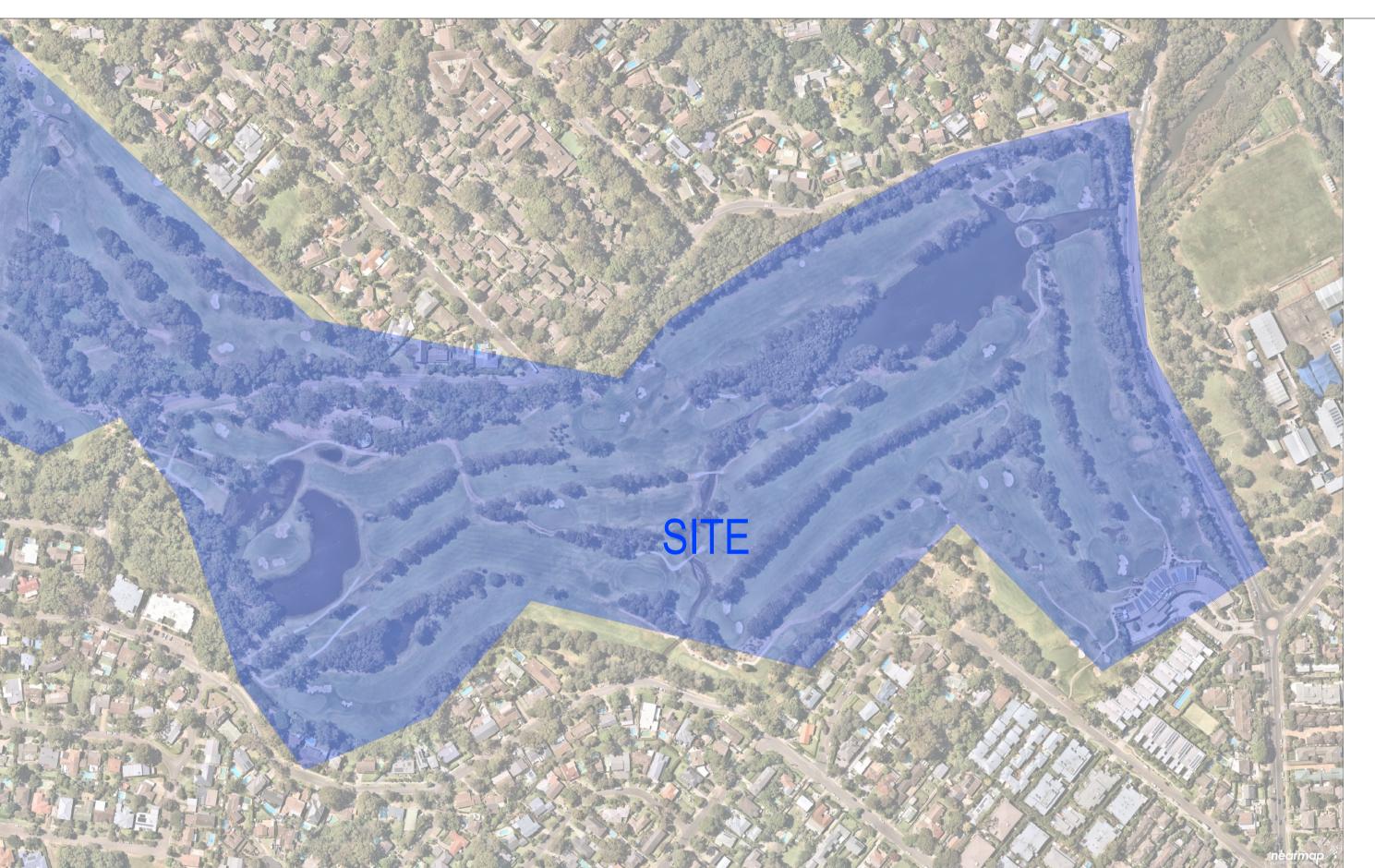
Map Site Project Sub-Project Client Date

#### 10 Attachment B – Proposed Plans



# SEDIMENT & EROSION CONTROL MANAGEMENT BAYVIEW GOLF CLUB

|             | DRAWING LIST                               |  |  |  |  |
|-------------|--------------------------------------------|--|--|--|--|
| DRAWING No. | DRAWING TITLE                              |  |  |  |  |
| C100        | TITLE PAGE & LOCALITY PLAN                 |  |  |  |  |
| C110        | ZONE MAP AREAS & GENERAL WORKS             |  |  |  |  |
| C111        | 1 <sup>ST</sup> GREEN DETAIL PLAN          |  |  |  |  |
| C112        | 2 <sup>ND</sup> GREEN DETAIL PLAN          |  |  |  |  |
| C113        | 3 <sup>RD</sup> GREEN DETAIL PLAN          |  |  |  |  |
| C114        | 4 <sup>TH</sup> GREEN DETAIL PLAN          |  |  |  |  |
| C115        | 5 <sup>TH</sup> GREEN DETAIL PLAN          |  |  |  |  |
| C116        | 6 <sup>TH</sup> GREEN DETAIL PLAN          |  |  |  |  |
| C117        | 7 <sup>TH</sup> GREEN DETAIL PLAN          |  |  |  |  |
| C118        | 8 <sup>TH</sup> GREEN DETAIL PLAN          |  |  |  |  |
| C119        | 10 <sup>TH</sup> GREEN DETAIL PLAN         |  |  |  |  |
| C120        | 11 <sup>TH</sup> GREEN DETAIL PLAN         |  |  |  |  |
| C121        | 12 <sup>TH</sup> GREEN DETAIL PLAN         |  |  |  |  |
| C122        | 13 <sup>TH</sup> GREEN DETAIL PLAN         |  |  |  |  |
| C130        | TYPICAL SEDIMENT & EROSION CONTROL DETAILS |  |  |  |  |




#### **BEFORE YOU DIG AUSTRALIA**



IMPORTANT: THE CONTRACTOR IS TO MAINTAIN A CURRENT SET OF "BEFORE YOU DIG AUSTRALIA" DRAWINGS ON SITE AT ALL TIMES.

THIS TEXT TO BE PRINTED IN COLOUR



LOCALITY PLAN 1825 PITTWATER ROAD, MONA VALE NSW, 2103, AUSTRALIA

# **ISSUE FOR DEVELOPMENT APPLICATION**

Turramurra

|     | -          |                              |              |
|-----|------------|------------------------------|--------------|
| REV | DATE       | REVISION DESCRIPTION         |              |
| А   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT | TITLE        |
|     |            |                              | DRAWN        |
|     |            |                              |              |
|     |            |                              | Designed     |
|     |            |                              | DRG CHECK    |
|     |            |                              | DESIGN CHECK |
|     |            |                              |              |

APPROVED

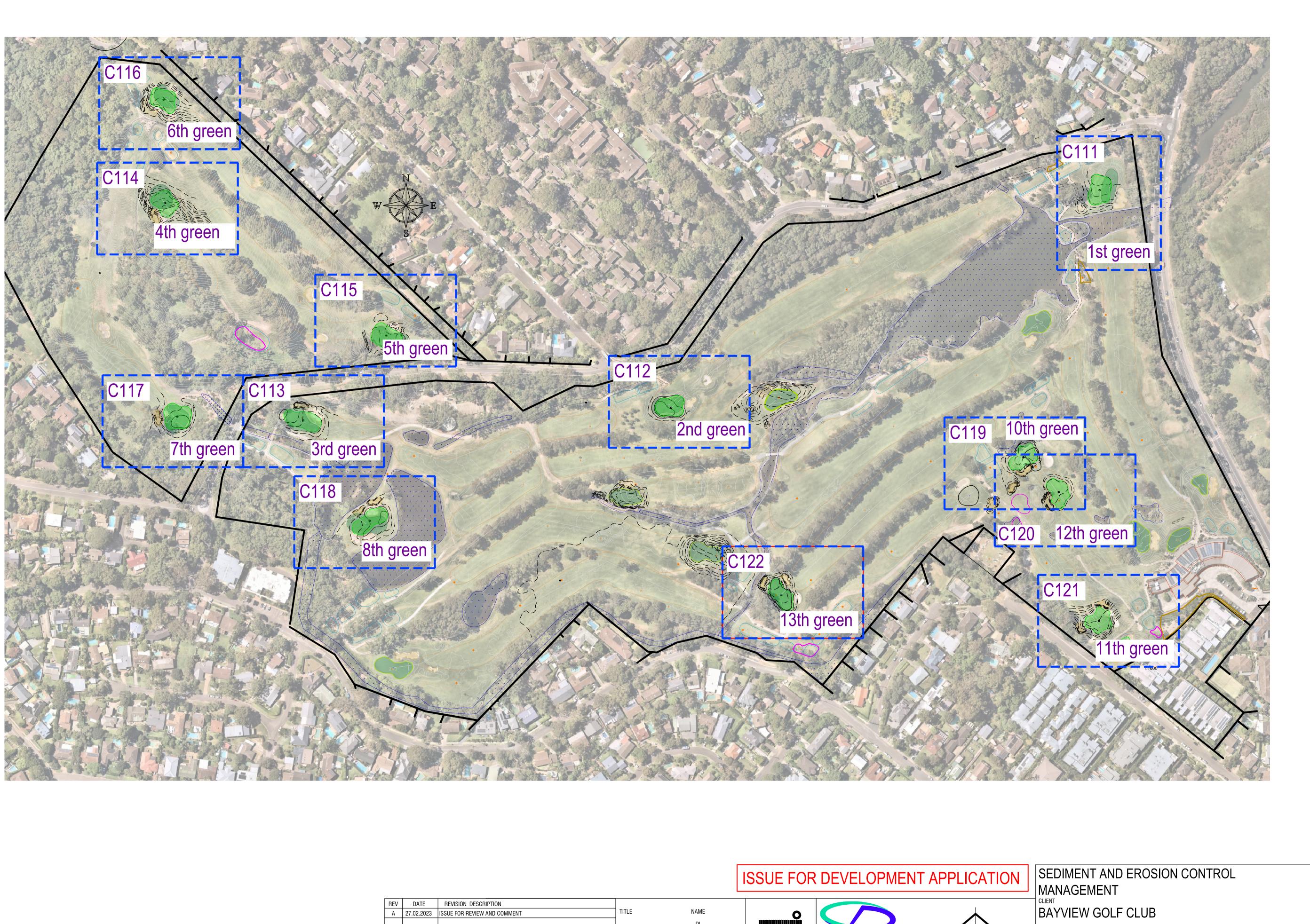
| NAME | 0         |
|------|-----------|
| DI   |           |
| СР   | BAYVIEW   |
| CP   | GOLF CLUB |
| AL   |           |
| СР   |           |







#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB


# TITLE PAGE & LOCALITY PLAN

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED. SCALE @ A1 SHEET No NTS C100 JOB NUMBER: 23003

Telephone: 0408 696 526 A.B.N. 11 164 806 044 New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

REV

A



Turramurra

BAYVIEW

GOLF CLUB

| V | DATE       | REVISION DESCRIPTION         |              |      |
|---|------------|------------------------------|--------------|------|
|   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT | TITLE        | NAME |
|   |            |                              | DRAWN        | DI   |
|   |            |                              | DESIGNED     | СР   |
|   |            |                              | DRG CHECK    | CP   |
|   |            |                              | DESIGN CHECK | AL   |
|   |            |                              | APPROVED     | СР   |
|   |            |                              |              |      |



ZONE MAP AREAS & GENERAL WORKS

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED. SCALE @ A1 SHEET No REV A JOB NUMBER: 23003

Telephone: 0408 696 526 A.B.N. 11 164 806 044 New South Wales, Australia 2074 www.chrispconsulting.com.au CCopyright

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

## CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |

#### CUT AND FILL VOLUMES

| Assessment Surfaces | Volumes |     |     |     |       |     | Ho   | ole |      |      |       |      |      | TOTAL |
|---------------------|---------|-----|-----|-----|-------|-----|------|-----|------|------|-------|------|------|-------|
|                     | m3      | 1st | 2nd | 3rd | 4th   | 5th | 6th  | 7th | 8th  | 10th | 11th  | 12th | 13th | m3    |
| Final Surface       | Cut     | 26  | 40  | 102 | 1230  | 35  | 1026 | 103 | 193  | 5    | 1060  | 0    | 6    | 3826  |
| v                   | Fill    | 461 | 149 | 188 | 3     | 199 | 38   | 125 | 44   | 549  | 7     | 470  | 432  | 2665  |
| Existing Surface    | Balance | 435 | 109 | 86  | -1227 | 164 | -988 | 22  | -149 | 544  | -1053 | 470  | 426  | -1161 |
|                     |         |     |     |     |       |     |      |     |      |      |       |      |      |       |
|                     |         |     |     |     |       |     |      |     |      |      |       |      |      |       |



| DATE       | REVISION DESCRIPTION                            |              |      |
|------------|-------------------------------------------------|--------------|------|
| 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    | TITLE        | NAME |
| 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES | DRAWN        | DI   |
|            |                                                 | DESIGNED     | СР   |
|            |                                                 |              | СР   |
|            |                                                 | DRG CHECK    |      |
|            |                                                 | DESIGN CHECK | AL   |

DESIGN CHECK

APPROVED

СР

REV A

В

# ISSUE FOR DEVELOPMENT APPLICATION





Telephone: 0408 696 526 A.B.N. 11 164 806 044



#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

# 1<sup>ST</sup> GREEN DETAIL PLAN

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED. JOB NUMBER:

New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

23003

SCALE @ A1 SHEET No REV B

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

# CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |



#### CUT AND FILL VOLUMES

| Assessment Surfaces | Volumes |     |     |     |       |     | Hc   | ble |      |      |       |      |      | TOTAL |
|---------------------|---------|-----|-----|-----|-------|-----|------|-----|------|------|-------|------|------|-------|
|                     | m3      | 1st | 2nd | 3rd | 4th   | 5th | 6th  | 7th | 8th  | 10th | 11th  | 12th | 13th | m3    |
| Final Surface       | Cut     | 26  | 40  | 102 | 1230  | 35  | 1026 | 103 | 193  | 5    | 1060  | 0    | 6    | 3826  |
| v                   | Fill    | 461 | 149 | 188 | 3     | 199 | 38   | 125 | 44   | 549  | 7     | 470  | 432  | 2665  |
| Existing Surface    | Balance | 435 | 109 | 86  | -1227 | 164 | -988 | 22  | -149 | 544  | -1053 | 470  | 426  | -1161 |
|                     |         |     |     |     |       |     |      |     |      |      |       |      |      |       |
|                     |         |     |     |     |       |     |      |     |      |      |       |      |      |       |

THIS TEXT TO BE PRINTED IN COLOUR

| REV | DATE       | REVISION DESCRIPTION                            |          |
|-----|------------|-------------------------------------------------|----------|
| А   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    | TITLE    |
| В   | 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES | DRAWN    |
|     |            |                                                 |          |
|     |            |                                                 | DESIGNED |

| <br>TITLE     | NAME |
|---------------|------|
| DRAWN         | DI   |
| <br>DESIGNED  | СР   |
| <br>DRG CHECK | CP   |
| DESIGN CHECK  | AL   |
| <br>APPROVED  | СР   |
|               |      |

# ISSUE FOR DEVELOPMENT APPLICATION

BAYVIEW

GOLF CLUB



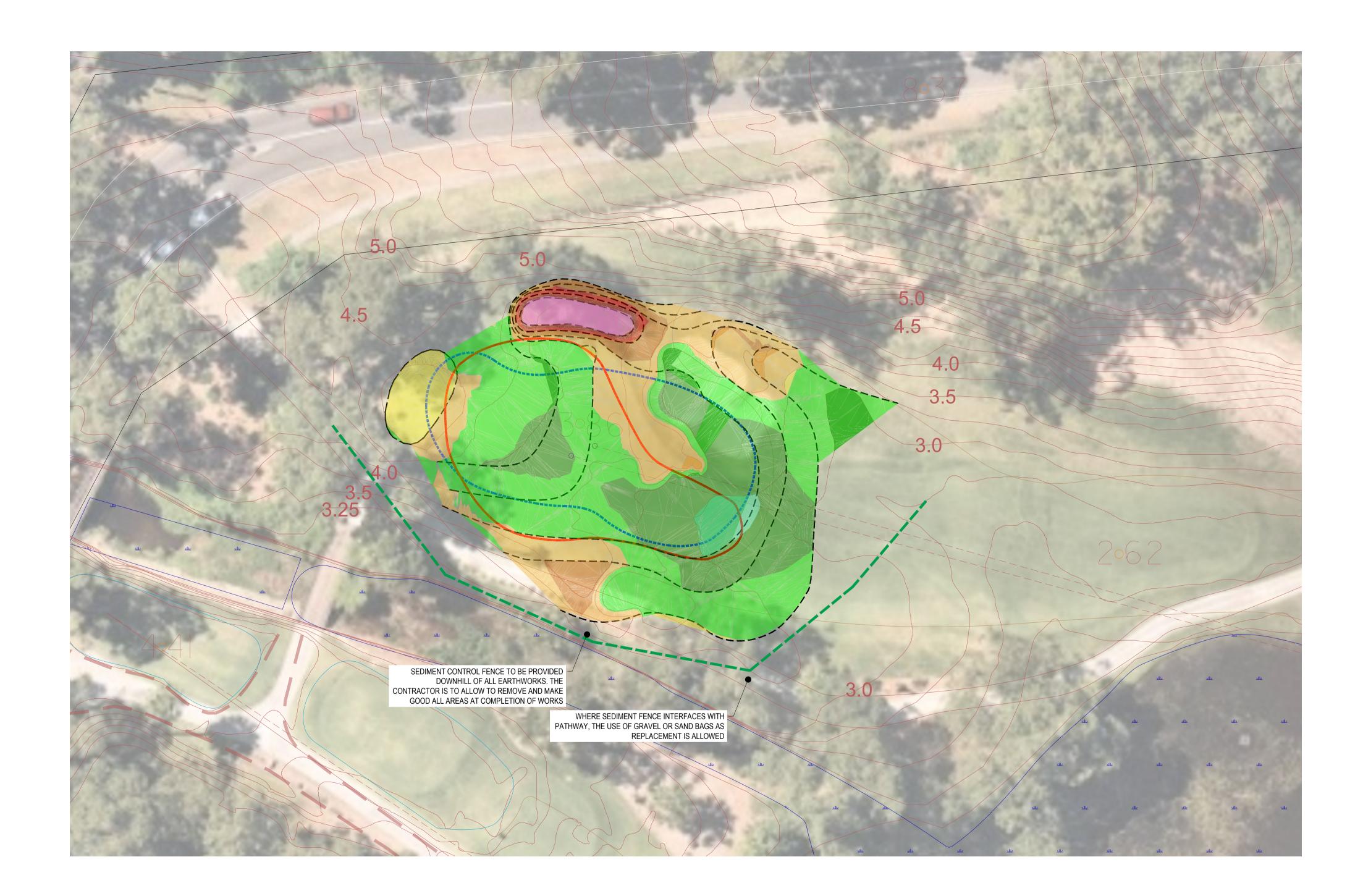
Telephone: 0408 696 526 A.B.N. 11 164 806 044 Turramurra New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

# 2<sup>ND</sup> GREEN DETAIL PLAN

JOB NUMBER:

23003


THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED. 
 SCALE @ A1
 SHEET No
 REV

 1:250
 C112
 B

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

# CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |



#### CUT AND FILL VOLUMES

| ssment Surfaces Hole |                   |                              |                                                |                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     | TOTAL                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|-------------------|------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| m3                   | 1st               | 2nd                          | 3rd                                            | 4th                                                                                                                                       | 5th                                                                                                                                                                          | 6th                                                                                                                                                                                                             | 7th                                                                                                                                                                                                                                                 | 8th                                                                                                                                                                                                                                                                                     | 10th                                                                                                                                                                                                                                                                                                                       | 11th                                                                                                                                                                                                                                                                                                | 12th                                                                                                                                                                                                                                                                                                                                                                                              | 13th                                                                                                                                                                                                                                                                                                                                                           | m3                                                                                                                                                                                                                                                                                                                                                                                          |
| Cut                  | 26                | 40                           | 102                                            | 1230                                                                                                                                      | 35                                                                                                                                                                           | 1026                                                                                                                                                                                                            | 103                                                                                                                                                                                                                                                 | 193                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                          | 1060                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                              | 3826                                                                                                                                                                                                                                                                                                                                                                                        |
| Fill                 | 461               | 149                          | 188                                            | 3                                                                                                                                         | 199                                                                                                                                                                          | 38                                                                                                                                                                                                              | 125                                                                                                                                                                                                                                                 | 44                                                                                                                                                                                                                                                                                      | 549                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                   | 470                                                                                                                                                                                                                                                                                                                                                                                               | 432                                                                                                                                                                                                                                                                                                                                                            | 2665                                                                                                                                                                                                                                                                                                                                                                                        |
| Balance              | 435               | 109                          | 86                                             | -1227                                                                                                                                     | 164                                                                                                                                                                          | -988                                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                  | -149                                                                                                                                                                                                                                                                                    | 544                                                                                                                                                                                                                                                                                                                        | -1053                                                                                                                                                                                                                                                                                               | 470                                                                                                                                                                                                                                                                                                                                                                                               | 426                                                                                                                                                                                                                                                                                                                                                            | -1161                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |                   |                              |                                                |                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                   |                              |                                                |                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |                   |                              |                                                |                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | m3<br>Cut<br>Fill | m3 1st<br>Cut 26<br>Fill 461 | m3 <u>1st</u> 2nd<br>Cut 26 40<br>Fill 461 149 | m3         1st         2nd         3rd           Cut         26         40         102           Fill         461         149         188 | m3         1st         2nd         3rd         4th           Cut         26         40         102         1230           Fill         461         149         188         3 | m3         1st         2nd         3rd         4th         5th           Cut         26         40         102         1230         35           Fill         461         149         188         3         199 | m3         1st         2nd         3rd         4th         5th         6th           Cut         26         40         102         1230         35         1026           Fill         461         149         188         3         199         38 | m3         1st         2nd         3rd         4th         5th         6th         7th           Cut         26         40         102         1230         35         1026         103           Fill         461         149         188         3         199         38         125 | m3         1st         2nd         3rd         4th         5th         6th         7th         8th           Cut         26         40         102         1230         35         1026         103         193           Fill         461         149         188         3         199         38         125         44 | m3       1st       2nd       3rd       4th       5th       6th       7th       8th       10th         Cut       26       40       102       1230       35       1026       103       193       5         Fill       461       149       188       3       199       38       125       44       549 | m3         1st         2nd         3rd         4th         5th         6th         7th         8th         10th         11th           Cut         26         40         102         1230         35         1026         103         193         5         1060           Fill         461         149         188         3         199         38         125         44         549         7 | m3       1st       2nd       3rd       4th       5th       6th       7th       8th       10th       11th       12th         Cut       26       40       102       1230       35       1026       103       193       5       1060       0         Fill       461       149       188       3       199       38       125       44       549       7       470 | m3       1st       2nd       3rd       4th       5th       6th       7th       8th       10th       11th       12th       13th         Cut       26       40       102       1230       35       1026       103       193       5       1060       0       6         Fill       461       149       188       3       199       38       125       44       549       7       470       432 |

25 metres

20

10 15

# ISSUE FOR DEVELOPMENT APPLICATION

BAYVIEW

GOLF CLUB

| REV | DATE       | REVISION DESCRIPTION                            |              |      |
|-----|------------|-------------------------------------------------|--------------|------|
| А   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    | TITLE        | NAME |
| В   | 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES | DRAWN        | DI   |
|     |            |                                                 | DESIGNED     | CP   |
|     |            |                                                 | DRG CHECK    | CP   |
| 3   |            |                                                 | DESIGN CHECK | AL   |
|     |            |                                                 |              | CP   |

APPROVED



Telephone: 0408 696 526 A.B.N. 11 164 806 044 Turramurra New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

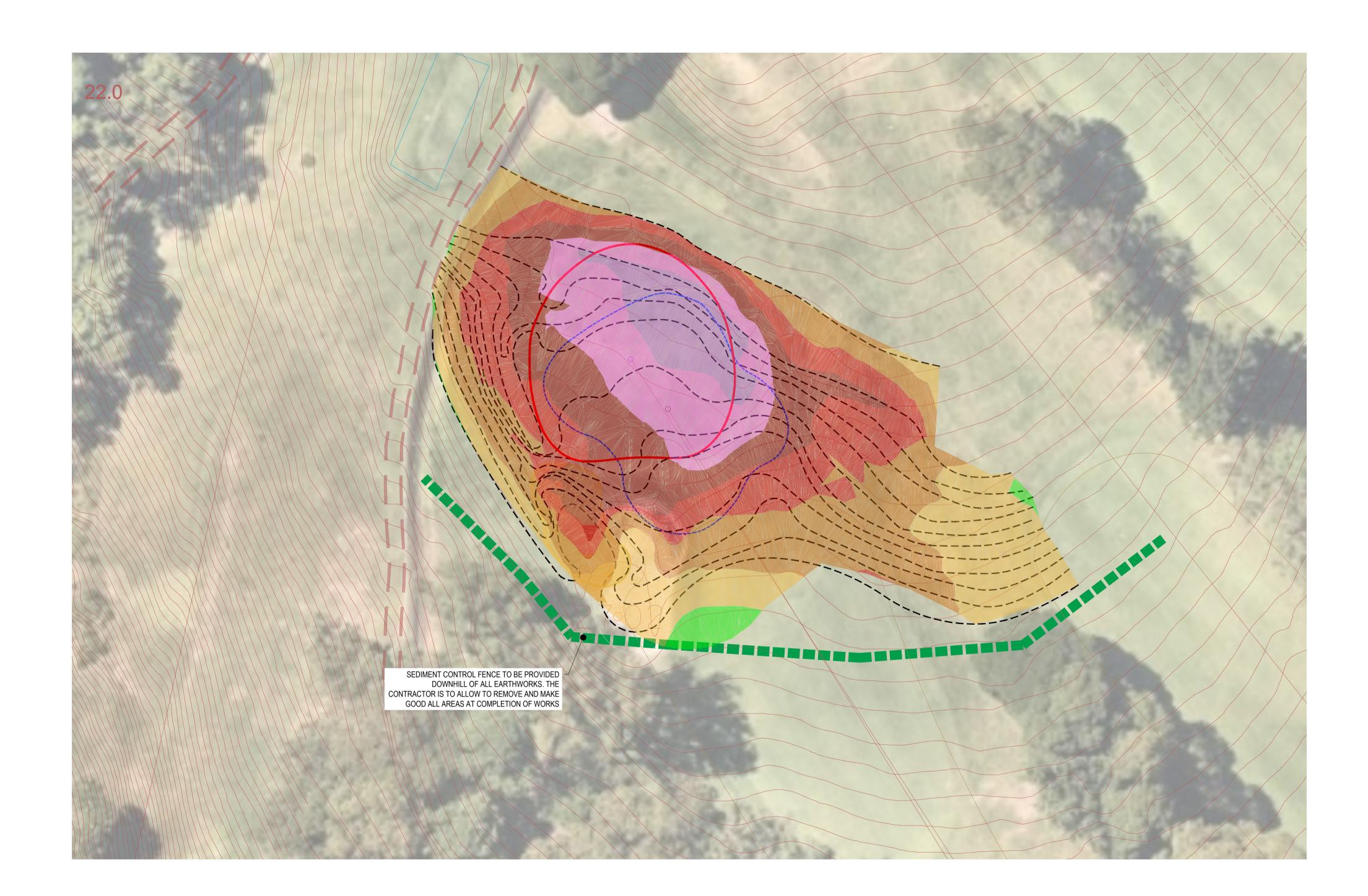
#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

# 3<sup>RD</sup> GREEN DETAIL PLAN

JOB NUMBER:

23003

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED.


 SCALE @ A1
 SHEET No
 REV

 1:250
 C113
 B

| PROPOSED SANDTRAP    |
|----------------------|
| EXISTING GREEN       |
| PROPOSED GREEN       |
| <br>EXISTING CONTOUR |
| <br>PROPOSED CONTOUR |
| <br>SEDIMENT FENCE   |

# CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |



#### CUT AND FILL VOLUMES

| Assessment Surfaces | Volumes |     |     |     |       |     | Ho          | ole    |       |      |       |      |      | TOTAL     |             |                                       |              |              |      |
|---------------------|---------|-----|-----|-----|-------|-----|-------------|--------|-------|------|-------|------|------|-----------|-------------|---------------------------------------|--------------|--------------|------|
| Assessment surraces | m3      | 1st | 2nd | 3rd | 4th   | 5th | 6th         | 7th    | 8th   | 10th | 11th  | 12th | 13th | m3        |             |                                       |              |              |      |
| Final Surface       | Cut     | 26  | 40  | 102 | 1230  | 35  | 1026        | 103    | 193   | 5    | 1060  | 0    | 6    | 3826      |             |                                       |              |              |      |
| v                   | Fill    | 461 | 149 | 188 | 3     | 199 | 38          | 125    | 44    | 549  | 7     | 470  | 432  | 2665      |             |                                       |              |              |      |
| Existing Surface    | Balance | 435 | 109 | 86  | -1227 | 164 | -988        | 22     | -149  | 544  | -1053 | 470  | 426  | -1161     |             |                                       |              |              |      |
|                     |         |     |     |     |       |     |             |        |       |      |       |      |      |           |             |                                       |              |              |      |
|                     |         |     |     |     |       |     |             |        |       |      |       |      |      |           | REV DATE    | REVISION DESCRIPTION                  |              |              |      |
|                     |         |     |     |     |       |     |             |        |       |      |       |      |      |           | A 27.02.202 | 3 ISSUE FOR REVIEW AND COMMENT        |              | TITLE        | NAME |
|                     |         |     |     |     |       |     |             |        |       |      |       |      |      |           | B 28.02.202 | 3 CUT & FILL COLOURS ADDED AND UPDATE | D QUANTITIES | - DRAWN      | DI   |
|                     |         |     |     |     |       |     |             |        |       |      |       |      |      |           |             |                                       |              |              | CP   |
|                     |         |     |     |     |       |     |             |        |       |      |       |      |      |           |             |                                       |              | DESIGNED     | СР   |
|                     |         |     |     |     |       |     |             |        |       |      |       |      |      |           |             |                                       |              | DRG CHECK    |      |
|                     |         |     |     |     |       |     | SCALE 1:250 | )@A1 0 | 2.5 5 | 5    | 10    | 15   | 20   | 25 metres |             |                                       |              | DESIGN CHECK | AL   |
| TEXT TO BE PRINTE   |         | JR  |     |     |       |     | SCALE 1:500 | @ A3   |       |      |       |      |      |           |             |                                       |              | APPROVED     | CP   |
|                     |         |     |     |     |       |     |             |        |       |      |       |      |      |           |             |                                       |              |              |      |

THIS TEXT TO BE PRINTED IN COLOUR

# ISSUE FOR DEVELOPMENT APPLICATION





Telephone: 0408 696 526 A.B.N. 11 164 806 044 Turramurra New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

# 4<sup>TH</sup> GREEN DETAIL PLAN

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED. 
 SCALE @ A1
 SHEET No
 REV

 1:250
 C114
 B
 JOB NUMBER:

23003

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

# CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |



## CUT AND FILL VOLUMES

| Assessment Surfaces | Volumes |     |     |     |       |     | Ho   | le  |      |      |       |      |      | TOTAL |
|---------------------|---------|-----|-----|-----|-------|-----|------|-----|------|------|-------|------|------|-------|
|                     | m3      | 1st | 2nd | 3rd | 4th   | 5th | 6th  | 7th | 8th  | 10th | 11th  | 12th | 13th | m3    |
| Final Surface       | Cut     | 26  | 40  | 102 | 1230  | 35  | 1026 | 103 | 193  | 5    | 1060  | 0    | 6    | 3826  |
| v                   | Fill    | 461 | 149 | 188 | 3     | 199 | 38   | 125 | 44   | 549  | 7     | 470  | 432  | 2665  |
| Existing Surface    | Balance | 435 | 109 | 86  | -1227 | 164 | -988 | 22  | -149 | 544  | -1053 | 470  | 426  | -1161 |

| REV | DATE       | REVISION DESCRIPTION                            |           |      |
|-----|------------|-------------------------------------------------|-----------|------|
| Α   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    | TITLE N   | IAME |
| В   | 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES | DRAWN     | DI   |
|     |            |                                                 | DESIGNED  | СР   |
|     |            |                                                 |           | 00   |
|     |            |                                                 | DRG CHECK | CP   |

25 metres

20

10

15

# ISSUE FOR DEVELOPMENT APPLICATION



AL

CP

DESIGN CHECK

APPROVED

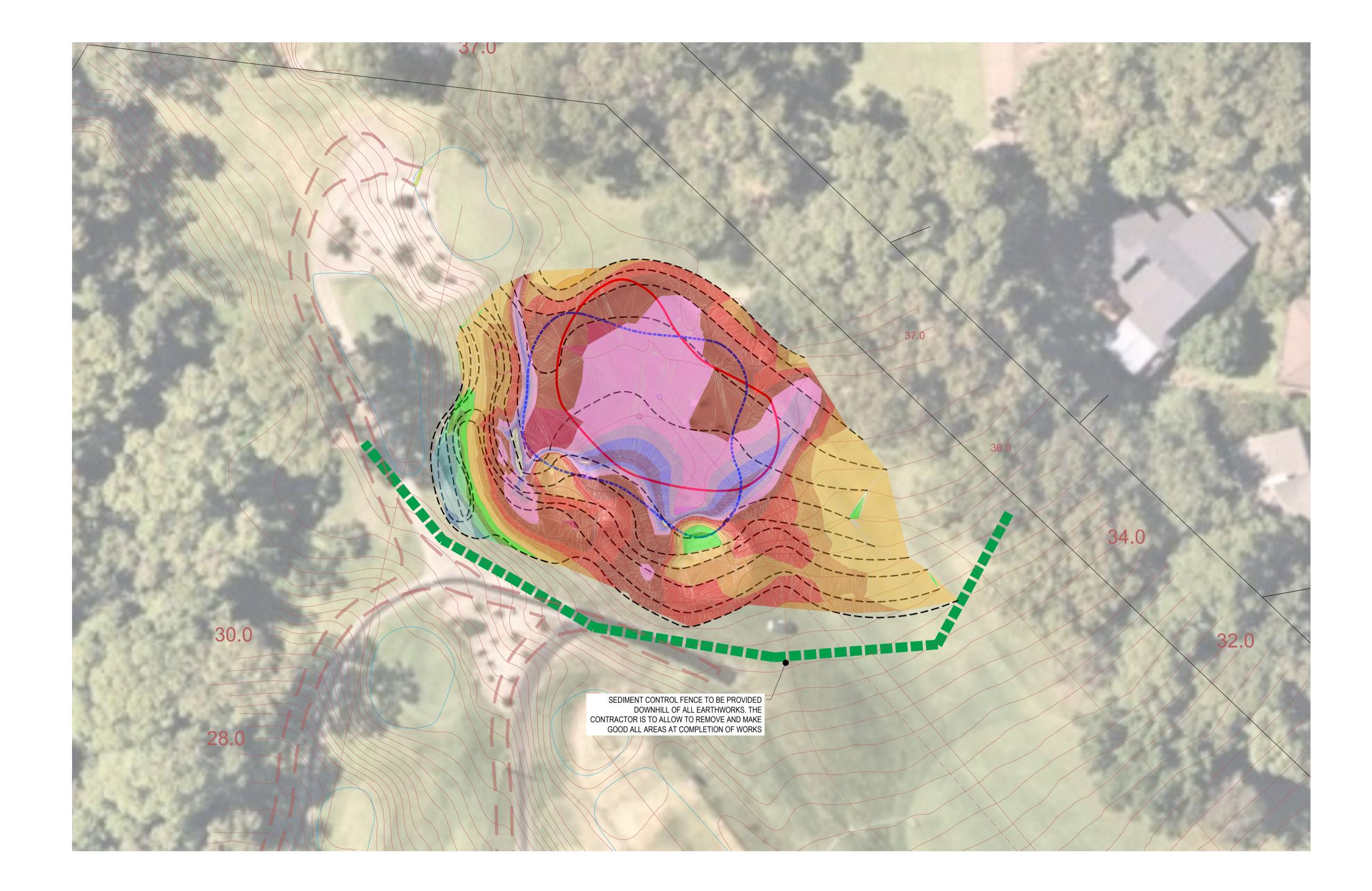


Telephone: 0408 696 526 A.B.N. 11 164 806 044 Turramurra New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

# 5<sup>TH</sup> GREEN DETAIL PLAN

23003


THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED. 
 SCALE @ A1
 SHEET No
 REV

 1:250
 C115
 B
 JOB NUMBER:

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

# CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |



#### CUT AND FILL VOLUMES

| Assessment Surfaces m3     | · · · · · · · · · · · · · · · · · · · |     |     |       |     | Но   | le  |      |      |       |      |      | TOTAL |
|----------------------------|---------------------------------------|-----|-----|-------|-----|------|-----|------|------|-------|------|------|-------|
|                            | 1st                                   | 2nd | 3rd | 4th   | 5th | 6th  | 7th | 8th  | 10th | 11th  | 12th | 13th | m3    |
| Final Surface Cut          | 26                                    | 40  | 102 | 1230  | 35  | 1026 | 103 | 193  | 5    | 1060  | 0    | 6    | 3826  |
| V Fill 4                   | 461                                   | 149 | 188 | 3     | 199 | 38   | 125 | 44   | 549  | 7     | 470  | 432  | 2665  |
| Existing Surface Balance 4 | 435                                   | 109 | 86  | -1227 | 164 | -988 | 22  | -149 | 544  | -1053 | 470  | 426  | -1161 |

# ISSUE FOR DEVELOPMENT APPLICATION

| BAYVIEW<br>GOLF CLUB |            |
|----------------------|------------|
|                      | Turramurra |



 REV
 DATE
 REVISION DESCRIPTION

 A
 27.02.2023
 ISSUE FOR REVIEW AND COMMENT

 B
 28.02.2023
 CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES

25 metres

20

10 15

| <br>TITLE     | NAME |
|---------------|------|
| DRAWN         | DI   |
| <br>DESIGNED  | СР   |
| <br>DRG CHECK | СР   |
| DESIGN CHECK  | AL   |
| APPROVED      | СР   |
|               |      |

#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

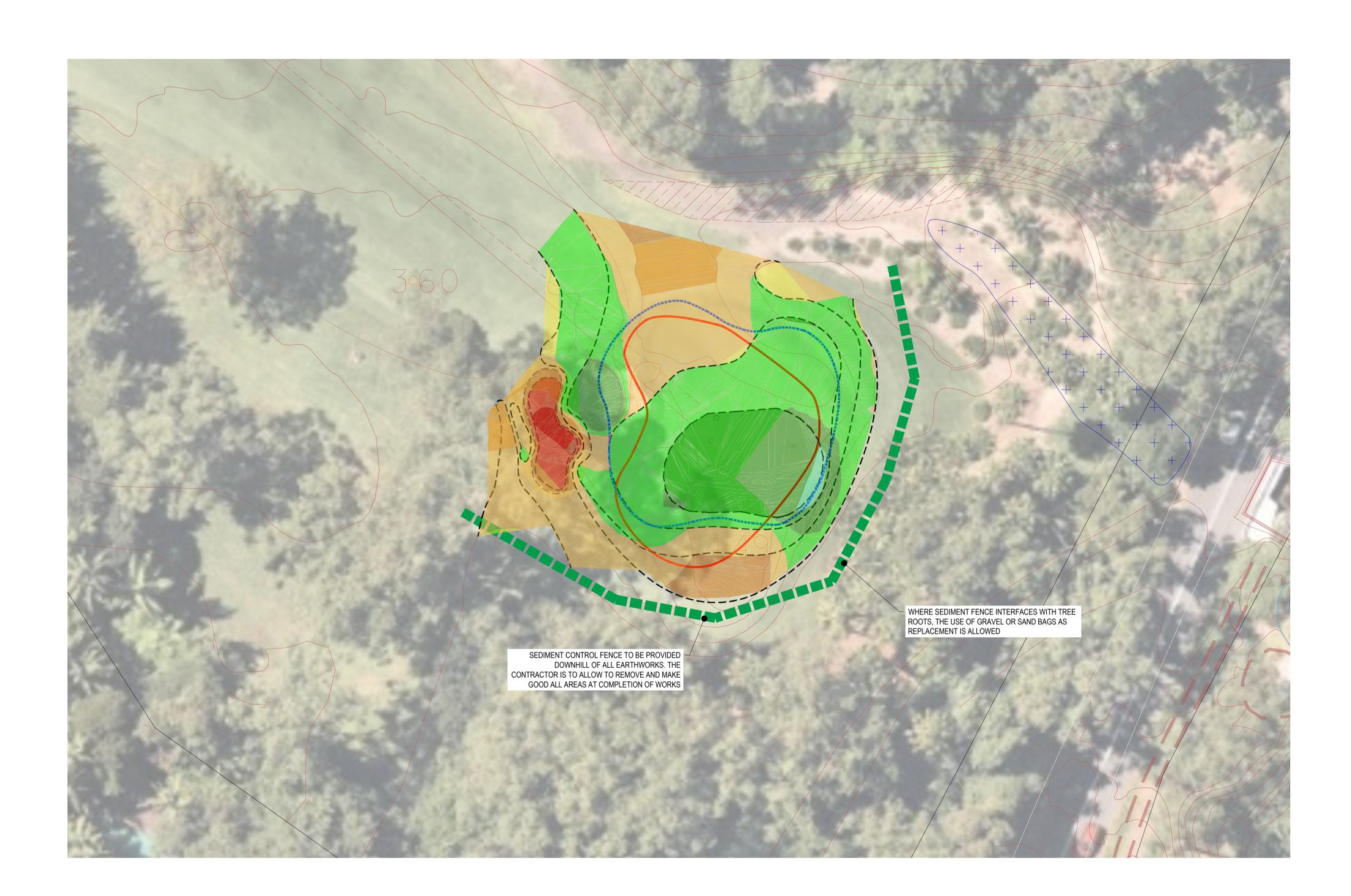
# 6<sup>TH</sup> GREEN DETAIL PLAN

23003

 THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED.

 JOB NUMBER:
 SCALE @ A1
 SHEET NO
 REV

TurramurraTelephone:0408 696 526A.B.N. 11 164 806 044New South Wales, Australia 2074www.chrispconsulting.com.au© Copyright


 SCALE @ A1
 SHEET No
 REV

 1:250
 C116
 B

| PROPOSED SANDTRAP    |
|----------------------|
| EXISTING GREEN       |
| PROPOSED GREEN       |
| <br>EXISTING CONTOUR |
| <br>PROPOSED CONTOUR |
| <br>SEDIMENT FENCE   |

# CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |



#### CUT AND FILL VOLUMES

| Assessment Surfaces  | olumes |     |     |     |       |     | Но   | le  |      |      |       |      |      | TOTAL |
|----------------------|--------|-----|-----|-----|-------|-----|------|-----|------|------|-------|------|------|-------|
| n                    | m3     | 1st | 2nd | 3rd | 4th   | 5th | 6th  | 7th | 8th  | 10th | 11th  | 12th | 13th | m3    |
| Final Surface C      | Cut    | 26  | 40  | 102 | 1230  | 35  | 1026 | 103 | 193  | 5    | 1060  | 0    | 6    | 3826  |
| V F                  | Fill   | 461 | 149 | 188 | 3     | 199 | 38   | 125 | 44   | 549  | 7     | 470  | 432  | 2665  |
| Existing Surface Bal | alance | 435 | 109 | 86  | -1227 | 164 | -988 | 22  | -149 | 544  | -1053 | 470  | 426  | -1161 |

# ISSUE FOR DEVELOPMENT APPLICATION

| DATE       | REVISION DESCRIPTION                            |           |
|------------|-------------------------------------------------|-----------|
| 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    | TITLE     |
| 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES | DRAWN     |
|            |                                                 |           |
|            |                                                 | DESIGNED  |
|            |                                                 | DRG CHECK |

NAME

DI

CP

CP

AL

CP

DESIGN CHECK

APPROVED

BAYVIEW

GOLF CLUB

REV A

В

25 metres

20

10 15

| CHRISP<br>CONSULTING | G |
|----------------------|---|

Turramurra



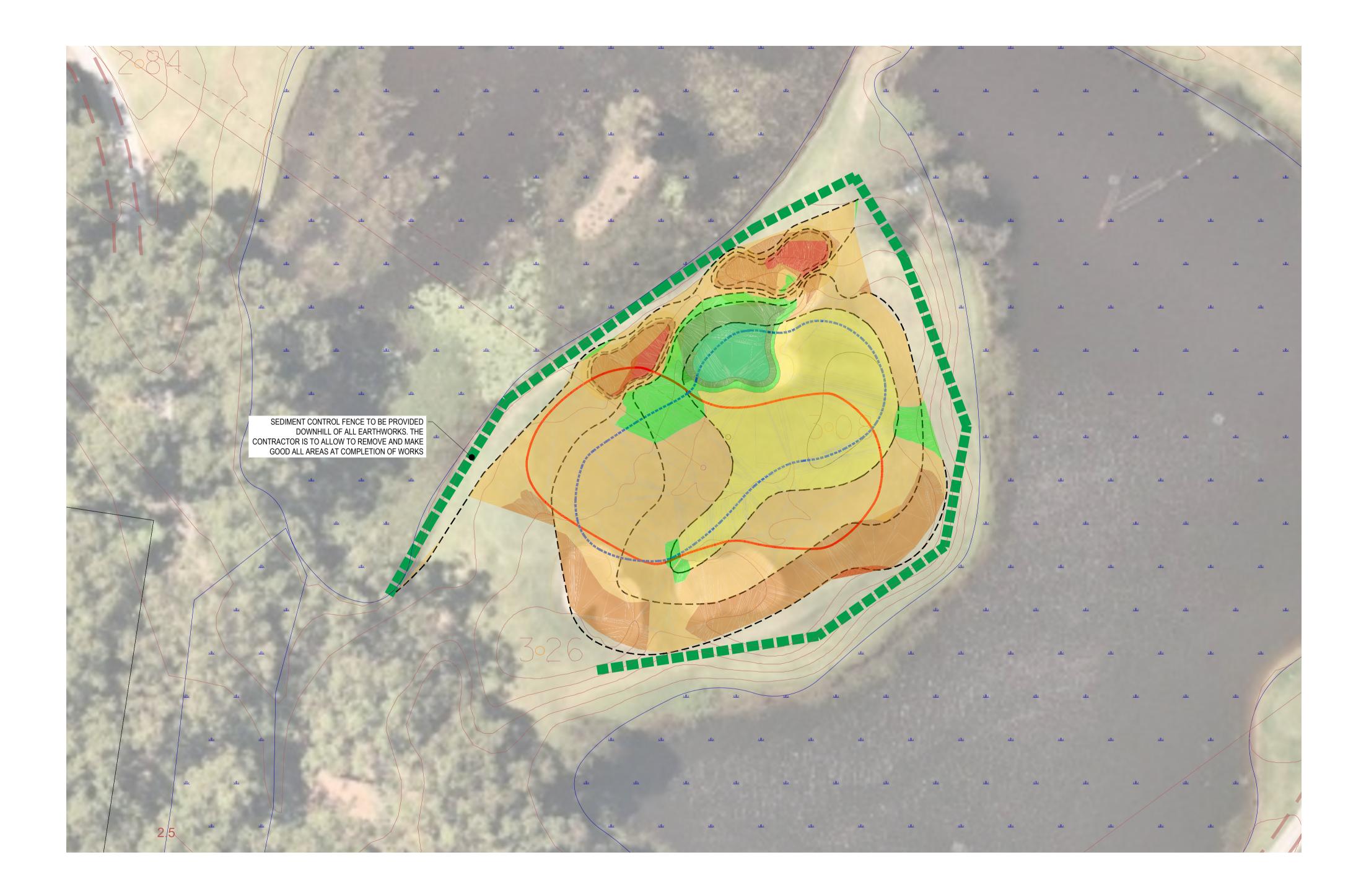
#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

# 7<sup>TH</sup> GREEN DETAIL PLAN

23003

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED. JOB NUMBER:

New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright


 SCALE @ A1
 SHEET No
 REV

 1:250
 C117
 B

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

## CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |
|        |           |



#### CUT AND FILL VOLUMES

|         | mes Hole        |                                                                |                      |                           |                                 |                                       |                                            |                                                |                                                     |                                                         | TOTAL                                                       |
|---------|-----------------|----------------------------------------------------------------|----------------------|---------------------------|---------------------------------|---------------------------------------|--------------------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|
| 1st 2nd | 3rd             | 4th                                                            | 5th                  | 6th                       | 7th                             | 8th                                   | 10th                                       | 11th                                           | 12th                                                | 13th                                                    | m3                                                          |
| 26 40   | 102             | 1230                                                           | 35                   | 1026                      | 103                             | 193                                   | 5                                          | 1060                                           | 0                                                   | 6                                                       | 3826                                                        |
| 461 149 | 188             | 3                                                              | 199                  | 38                        | 125                             | 44                                    | 549                                        | 7                                              | 470                                                 | 432                                                     | 2665                                                        |
| 435 109 | 86              | -1227                                                          | 164                  | -988                      | 22                              | -149                                  | 544                                        | -1053                                          | 470                                                 | 426                                                     | -1161                                                       |
| 2       | 26 40<br>61 149 | 26         40         102           61         149         188 | 26401021230611491883 | 2640102123035611491883199 | 2640102123035102661149188319938 | 2640102123035102610361149188319938125 | 264010212303510261031936114918831993812544 | 2640102123035102610319356114918831993812544549 | 264010212303510261031935106061149188319938125445497 | 2640102123035102610319351060061149188319938125445497470 | 26401021230351026103193510600661149188319938125445497470432 |

| EV | DATE       | REVISION DESCRIPTION                            |          |
|----|------------|-------------------------------------------------|----------|
| A  | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    | TITLE    |
| В  | 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES | DRAWN    |
|    |            |                                                 | DIAWN    |
|    |            |                                                 | DESIGNED |

25 metres

10 15 20

| TITLE         | NAME |
|---------------|------|
| DRAWN         | DI   |
| <br>DESIGNED  | СР   |
| <br>DRG CHECK | СР   |
| DESIGN CHECK  | AL   |
| <br>APPROVED  | СР   |
|               |      |

# **ISSUE FOR DEVELOPMENT APPLICATION**

BAYVIEW

GOLF CLUB



Turramurra New South Wales, Australia 2074 www.chrispconsulting.com.au © Copyright

#### SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

# 8<sup>TH</sup> GREEN DETAIL PLAN

23003

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED. JOB NUMBER:

Telephone: 0408 696 526 A.B.N. 11 164 806 044

 SCALE @ A1
 SHEET No
 REV

 1:250
 C118
 B

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

# CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |



#### CUT AND FILL VOLUMES

| Assessment Surfaces | Volumes  |     | Hole |     |       |     |      |     |      |      |       | TOTAL |      |               |
|---------------------|----------|-----|------|-----|-------|-----|------|-----|------|------|-------|-------|------|---------------|
|                     | m3       | 1st | 2nd  | 3rd | 4th   | 5th | 6th  | 7th | 8th  | 10th | 11th  | 12th  | 13th | m3            |
| Final Surface       | Cut      | 26  | 40   | 102 | 1230  | 35  | 1026 | 103 | 193  | 5    | 1060  | 0     | 6    | 38            |
| v                   | Fill     | 461 | 149  | 188 | 3     | 199 | 38   | 125 | 44   | 549  | 7     | 470   | 432  | 26            |
| Existing Surface    | Balance  | 125 | 400  |     |       |     |      |     |      |      |       |       | (    |               |
|                     | Datalice | 435 | 109  | 86  | -1227 | 164 | -988 | 22  | -149 | 544  | -1053 | 470   | 426  | -11           |
|                     | Datalice | 435 | 109  | 86  | -1227 | 164 | -988 | 22  | -149 | 544  | -1053 | 470   | 426  | <u>  -1</u> 1 |

| REV | DATE       | REVISION DESCRIPTION                            |
|-----|------------|-------------------------------------------------|
| А   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    |
| В   | 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES |
|     |            |                                                 |
|     |            |                                                 |

| TITLE         | NAME |
|---------------|------|
| DRAWN         | DI   |
| <br>DESIGNED  | СР   |
| <br>DRG CHECK | СР   |
| DESIGN CHECK  | AL   |
| APPROVED      | CP   |
|               |      |

# ISSUE FOR DEVELOPMENT APPLICATION



Turramurra

BAYVIEW

GOLF CLUB

Telephone: 0408 696 526 A.B.N. 11 164 806 044 New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

# SEDIMENT AND EROSION CONTROL BAYVIEW GOLF CLUB

# 10<sup>TH</sup> GREEN DETAIL PLAN

JOB NUMBER:

23003

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED.

 SCALE @ A1
 SHEET No
 REV


 1:250
 C119
 B

## LEGEND

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

## CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |
|        |           |



## CUT AND FILL VOLUMES

| Assessment Surfaces m3 1st 2nd 3rd 4th 5th 6th 7th 8                                                                    |      | Hole |       |      |      |       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|------|------|-------|------|------|-------|--|--|--|--|--|
|                                                                                                                         | 8th  | 10th | 11th  | 12th | 13th | m3    |  |  |  |  |  |
| Final Surface         Cut         26         40         102         1230         35         1026         103         19 | 193  | 5    | 1060  | 0    | 6    | 3826  |  |  |  |  |  |
| v Fill 461 149 188 3 199 38 125 4                                                                                       | 44   | 549  | 7     | 470  | 432  | 2665  |  |  |  |  |  |
| Existing Surface Balance 435 109 86 -1227 164 -988 22 -1                                                                | -149 | 544  | -1053 | 470  | 426  | -1161 |  |  |  |  |  |

25 metres

20

| REV | DATE       | REVISION DESCRIPTION                            |
|-----|------------|-------------------------------------------------|
| А   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    |
| В   | 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES |
|     |            |                                                 |
|     |            |                                                 |

| <br>TITLE     | NAME |
|---------------|------|
| DRAWN         | DI   |
| <br>DESIGNED  | CP   |
| <br>DRG CHECK | СР   |
| DESIGN CHECK  | AL   |
| <br>APPROVED  | CP   |
|               |      |

# **ISSUE FOR DEVELOPMENT APPLICATION**



Turramurra

BAYVIEW

GOLF CLUB

Telephone: 0408 696 526 A.B.N. 11 164 806 044

# SEDIMENT AND EROSION CONTROL BAYVIEW GOLF CLUB

# 11<sup>TH</sup> GREEN DETAIL PLAN

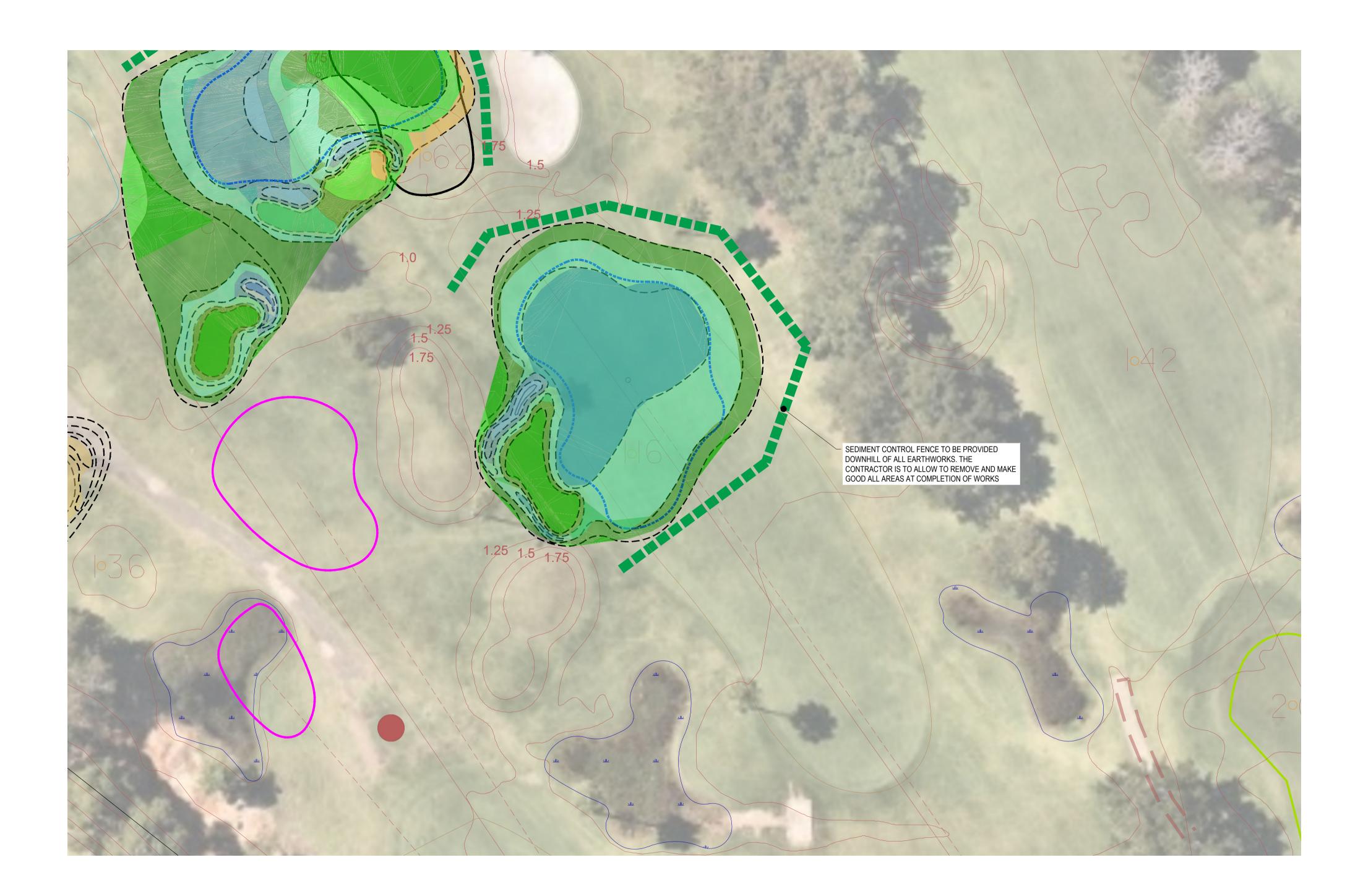
JOB NUMBER:

23003

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED.

New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

 SCALE @ A1
 SHEET No
 REV


 1:250
 C120
 B

## LEGEND

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
|    | SEDIMENT FENCE    |

# CUT & FILL LEGEND

| FROM   | TO     |
|--------|--------|
| -2.00  | -1.75  |
| -1.75  | -1.50  |
| -1.50  | -1.25  |
| -1.25  | -1.00  |
| -1.00  | -0.75  |
| -0.75  | -0.50  |
| -0.50  | -0.25  |
| -0.25  | -0.001 |
| -0.000 | 0.000  |
| 0.001  | 0.25   |
| 0.25   | 0.50   |
| 0.50   | 0.75   |
| 0.75   | 1.00   |
| 1.00   | 1.25   |
| 1.25   | 1.50   |



## CUT AND FILL VOLUMES

| Assessment Surfaces | Volumes | Hole |     |     |       |     |      |     |      |      |       |      | TOTAL |       |
|---------------------|---------|------|-----|-----|-------|-----|------|-----|------|------|-------|------|-------|-------|
|                     | m3      | 1st  | 2nd | 3rd | 4th   | 5th | 6th  | 7th | 8th  | 10th | 11th  | 12th | 13th  | m3    |
| Final Surface       | Cut     | 26   | 40  | 102 | 1230  | 35  | 1026 | 103 | 193  | 5    | 1060  | 0    | 6     | 3826  |
| v                   | Fill    | 461  | 149 | 188 | 3     | 199 | 38   | 125 | 44   | 549  | 7     | 470  | 432   | 2665  |
| Existing Surface    | Balance | 435  | 109 | 86  | -1227 | 164 | -988 | 22  | -149 | 544  | -1053 | 470  | 426   | -1161 |

10 15

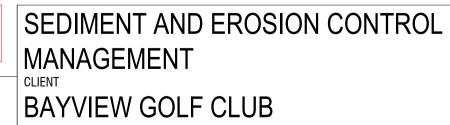
25 metres

20

## REV DATE REVISION DESCRIPTION A 27.02.2023 ISSUE FOR REVIEW AND COMMENT B 28.02.2023 CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES

| <br>TITLE     | NAME |
|---------------|------|
| DRAWN         | DI   |
| <br>DESIGNED  | CP   |
| <br>DRG CHECK | СР   |
| DESIGN CHECK  | AL   |
| APPROVED      | CP   |
|               |      |

# ISSUE FOR DEVELOPMENT APPLICATION


Turramurra

BAYVIEW

GOLF CLUB



Telephone: 0408 696 526 A.B.N. 11 164 806 044 New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright



# 12<sup>TH</sup> GREEN DETAIL PLAN

JOB NUMBER:

23003

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED.

 SCALE @ A1
 SHEET No
 REV

 1:250
 C121
 B

## LEGEND

|    | PROPOSED SANDTRAP |
|----|-------------------|
|    | EXISTING GREEN    |
| [] | PROPOSED GREEN    |
|    | EXISTING CONTOUR  |
|    | PROPOSED CONTOUR  |
| _  | SEDIMENT FENCE    |

# CUT & FILL LEGEND

| FROM   | <u>T0</u> |
|--------|-----------|
| -2.00  | -1.75     |
| -1.75  | -1.50     |
| -1.50  | -1.25     |
| -1.25  | -1.00     |
| -1.00  | -0.75     |
| -0.75  | -0.50     |
| -0.50  | -0.25     |
| -0.25  | -0.001    |
| -0.000 | 0.000     |
| 0.001  | 0.25      |
| 0.25   | 0.50      |
| 0.50   | 0.75      |
| 0.75   | 1.00      |
| 1.00   | 1.25      |
| 1.25   | 1.50      |



## CUT AND FILL VOLUMES

| ent Surfaces Hole |     |                                           |                                                                  |                                                                                          |                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|-----|-------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| m3                | 1st | 2nd                                       | 3rd                                                              | 4th                                                                                      | 5th                                                                                                             | 6th                                                                                                                                    | 7th                                                                                                                                                                                                                                                 | 8th                                                                                                                                                                                                                                                                                     | 10th                                                                                                                                                                                                                                                                                                                       | 11th                                                                                                                                                                                                                                                                                                                                                          | 12th                                                                                                                                                                                                                                                                                                                                                                                              | 13th                                                                                                                                                                                                                                                                                                                                                                                                                                 | m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cut               | 26  | 40                                        | 102                                                              | 1230                                                                                     | 35                                                                                                              | 1026                                                                                                                                   | 103                                                                                                                                                                                                                                                 | 193                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                          | 1060                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3826                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fill              | 461 | 149                                       | 188                                                              | 3                                                                                        | 199                                                                                                             | 38                                                                                                                                     | 125                                                                                                                                                                                                                                                 | 44                                                                                                                                                                                                                                                                                      | 549                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                             | 470                                                                                                                                                                                                                                                                                                                                                                                               | 432                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2665                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Balance           | 435 | 109                                       | 86                                                               | -1227                                                                                    | 164                                                                                                             | -988                                                                                                                                   | 22                                                                                                                                                                                                                                                  | -149                                                                                                                                                                                                                                                                                    | 544                                                                                                                                                                                                                                                                                                                        | -1053                                                                                                                                                                                                                                                                                                                                                         | 470                                                                                                                                                                                                                                                                                                                                                                                               | 426                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1161                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |     |                                           |                                                                  |                                                                                          |                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |     |                                           |                                                                  |                                                                                          |                                                                                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                 |     | Cut         26           Fill         461 | Cut         26         40           Fill         461         149 | Cut         26         40         102           Fill         461         149         188 | Cut         26         40         102         1230           Fill         461         149         188         3 | Cut         26         40         102         1230         35           Fill         461         149         188         3         199 | m3         1st         2nd         3rd         4th         5th         6th           Cut         26         40         102         1230         35         1026           Fill         461         149         188         3         199         38 | m3         1st         2nd         3rd         4th         5th         6th         7th           Cut         26         40         102         1230         35         1026         103           Fill         461         149         188         3         199         38         125 | m3         1st         2nd         3rd         4th         5th         6th         7th         8th           Cut         26         40         102         1230         35         1026         103         193           Fill         461         149         188         3         199         38         125         44 | m3         1st         2nd         3rd         4th         5th         6th         7th         8th         10th           Cut         26         40         102         1230         35         1026         103         193         5           Fill         461         149         188         3         199         38         125         44         549 | m3         1st         2nd         3rd         4th         5th         6th         7th         8th         10th         11th           Cut         26         40         102         1230         35         1026         103         193         5         1060           Fill         461         149         188         3         199         38         125         44         549         7 | m3         1st         2nd         3rd         4th         5th         6th         7th         8th         10th         11th         12th           Cut         26         40         102         1230         35         1026         103         193         5         1060         0           Fill         461         149         188         3         199         38         125         44         549         7         470 | m3         1st         2nd         3rd         4th         5th         6th         7th         8th         10th         11th         12th         13th           Cut         26         40         102         1230         35         1026         103         193         5         1060         0         6           Fill         461         149         188         3         199         38         125         44         549         7         470         432 |

THIS TEXT TO BE PRINTED IN COLOUR

| V | DATE       | REVISION DESCRIPTION                            |
|---|------------|-------------------------------------------------|
|   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT                    |
|   | 28.02.2023 | CUT & FILL COLOURS ADDED AND UPDATED QUANTITIES |
|   |            |                                                 |
|   |            |                                                 |

RE\

25 metres

10 15 20

| TITLE         | NAME |
|---------------|------|
| DRAWN         | DI   |
| <br>DESIGNED  | CP   |
| <br>DRG CHECK | CP   |
| DESIGN CHECK  | AL   |
| <br>APPROVED  | CP   |
|               |      |

# **ISSUE FOR DEVELOPMENT APPLICATION**

BAYVIEW

GOLF CLUB



Telephone: 0408 696 526 A.B.N. 11 164 806 044 Turramurra New South Wales, Australia 2074 www.chrispconsulting.com.au C Copyright

## SEDIMENT AND EROSION CONTROL MANAGEMENT CLIENT BAYVIEW GOLF CLUB

# 13<sup>TH</sup> GREEN DETAIL PLAN

JOB NUMBER:

23003

THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREATED SOLELY FOR A PARTICULAR PURPOSE AND CLIENT. THIS IS PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FORM WITHOUT THE WRITTEN PERMISSION BY CHRISP CONSULTING. IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR YOU MAY BE PROSECUTED.

 SCALE @ A1
 SHEET No
 REV

 1:250
 C122
 B

## **EROSION AND SEDIMENT CONTROL**

## GENERAL INSTRUCTIONS

- 1. THIS PLAN IS TO BE READ IN CONJUNCTION WITH THE ENGINEERING PLANS, AND ANY OTHER PLANS OR WRITTEN INSTRUCTIONS THAT MAY BE ISSUED AND RELATING TO DEVELOPMENT AT THE SUBJECT SITE.
- 2. THE SITE SUPERINTENDENT WILL ENSURE THAT ALL SOIL AND WATER MANAGEMENT WORKS ARE LOCATED AS INSTRUCTED IN THIS SPECIFICATION.
- 3. ALL BUILDERS AND SUB-CONTRACTORS WILL BE INFORMED OF THEIR RESPONSIBILITIES IN MINIMISING THE POTENTIAL FOR SOIL EROSION AND POLLUTION TO DOWNSLOPE LANDS AND WATERWAYS.

## CONSTRUCTION SEQUENCE

- 4. THE SOIL EROSION POTENTIAL ON THIS SITE SHALL BE MINIMISED. HENCE WORKS SHALL BE UNDERTAKEN IN THE FOLLOWING SEQUENCE :
- a. INSTALL SEDIMENT FENCES, TEMPORARY CONSTRUCTION EXIT AND
- SANDBAG KERB INLET SEDIMENT TRAP.
- b. UNDERTAKE SITE DEVELOPMENT WORKS IN ACCORDANCE WITH THE ENGINEERING PLANS. PHASE DEVELOPMENT SO THAT LAND
- DISTURBANCE IS CONFINED TO AREAS OF WORKABLE SIZE.

## EROSION CONTROL

- 5. DURING WINDY CONDITIONS, LARGE, UNPROTECTED AREAS WILL BE KEPT MOIST (NOT WET) BY SPRINKLING WITH WATER TO KEEP DUST UNDER CONTROL.
- 6. FINAL SITE LANDSCAPING WILL BE UNDERTAKEN AS SOON AS POSSIBLE AND WITHIN 20 WORKING DAYS FROM COMPLETION OF CONSTRUCTION ACTIVITIES.

## FENCING

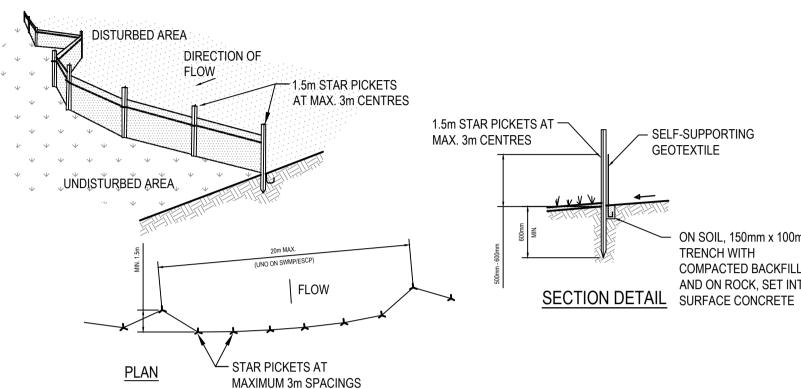
- 7. STOCKPILES WILL NOT BE LOCATED WITHIN 2 METRES OF HAZARD AREAS, INCLUDING LIKELY AREAS OF CONCENTRATED OR HIGH VELOCITY FLOWS SUCH AS WATERWAYS. WHERE THEY ARE BETWEEN 2 AND 5 METRES FROM SUCH AREAS, SPECIAL SEDIMENT CONTROL MEASURES SHOULD BE TAKEN TO MINIMISE POSSIBLE POLLUTION TO DOWNSLOPE WATERS, E.G. THROUGH INSTALLATION OF SEDIMENT FENCING.
- 8. ANY SAND USED IN THE CONCRETE CURING PROCESS (SPREAD OVER THE SURFACE) WILL BE REMOVED AS SOON AS POSSIBLE AND WITHIN 10 WORKING DAYS FROM PLACEMENT.
- 9. WATER WILL BE PREVENTED FROM ENTERING THE PERMANENT DRAINAGE SYSTEM UNLESS IT IS RELATIVELY SEDIMENT FREE, I.E. THE CATCHMENT AREA HAS BEEN PERMANENTLY LANDSCAPED AND/OR ANY LIKELY SEDIMENT HAS BEEN FILTERED THROUGH AN APPROVED STRUCTURE.
- 10. TEMPORARY SOIL AND WATER MANAGEMENT STRUCTURES WILL BE REMOVED ONLY AFTER THE LANDS THEY ARE PROTECTING ARE REHABILITATED.

### **OTHER MATTERS**

- 11. ACCEPTABLE RECEPTORS WILL BE PROVIDED FOR CONCRETE AND MORTAR SLURRIES, PAINTS, ACID WASHINGS, LIGHT-WEIGHT WASTE MATERIALS AND LITTER.
- 12. RECEPTORS FOR CONCRETE AND MORTAR SLURRIES, PAINTS, ACID WASHINGS, LIGHT-WEIGHT WASTE MATERIALS AND LITTER ARE TO BE EMPTIED AS NECESSARY. DISPOSAL OF WASTE SHALL BE IN A MANNER APPROVED BY THE SITE SUPERINTENDENT.

## SITE INSPECTION & MAINTENANCE

- 13. EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSPECTED AFTER RAINFALL EVENTS TO ENSURE THAT THEY OPERATE EFFECTIVELY. REPAIR AND OR MAINTENANCE SHALL BE UNDERTAKEN AS REQUIRED.
- ALL STRIPPED TOPSOIL AND EARTHWORKS IS TO BE RELOCATED ON SITE AT THE DISCRETION OF THE CLIENT AND ARBORIST. FOR MATERIAL WHICH CANNOT BE RE-USED ON SITE, IT IS TO BE STOCKPILED AND REMOVED FROM SITE


# SEDIMENT & EROSION CONTROL LEGEND

SEDIMENT FENCE

5

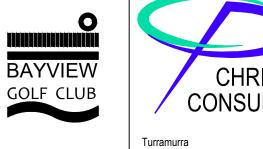
SAND BAG SEDIMENT TRAP TO BE USED AT ALL CONSTRUCTED OR EXISTING PITS SAND BAG CAN BE USED FOR SUBSTITUTE TO SEDIMENT FENCE WHERE INSTALLATION OF STAKES IS NOT POSSIBLE SUCH AS ADJACENT TO TREES, IN

ROCK OR AT INTERFACE WITH PATHWAYS



## CONSTRUCTION NOTES

- 1. CONSTRUCT SEDIMENT FENCE AS CLOSE AS POSSIBLE TO PARALLEL TO THE CONTOURS OF THE SITE.
- DRIVE 1.5m LONG STAR PICKETS INTO GROUND, 3 METERS APART. 3. DIG A 150mm DEEP TRENCH ALONG THE UPSLOPE LINE OF THE FENCE FOR THE BOTTOM OF THE FABRIC TO BE ENTRENCHED.
- 4. BACKFILL TRENCH OVER BASE OF FABRIC.
- 5. FIX SELF-SUPPORTING GEOTEXTILE TO UPSLOPE SIDE OF POSTS WITH WIRE TIES OR AS RECOMMENDED BY GEOTEXTILE MANUFACTURER. 6. JOIN SECTIONS OF FABRIC AT A SUPPORT POST WITH A 150mm OVERLAP.


## SEDIMENT CONTROL FENCE N.T.S.

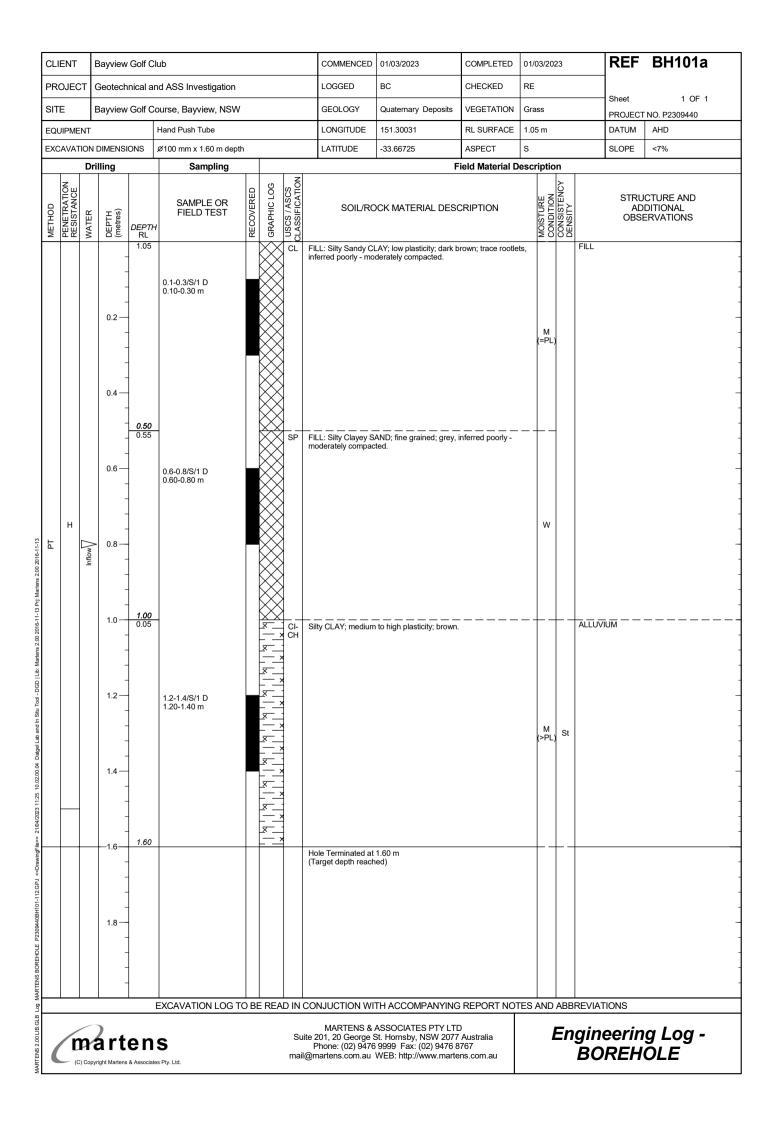


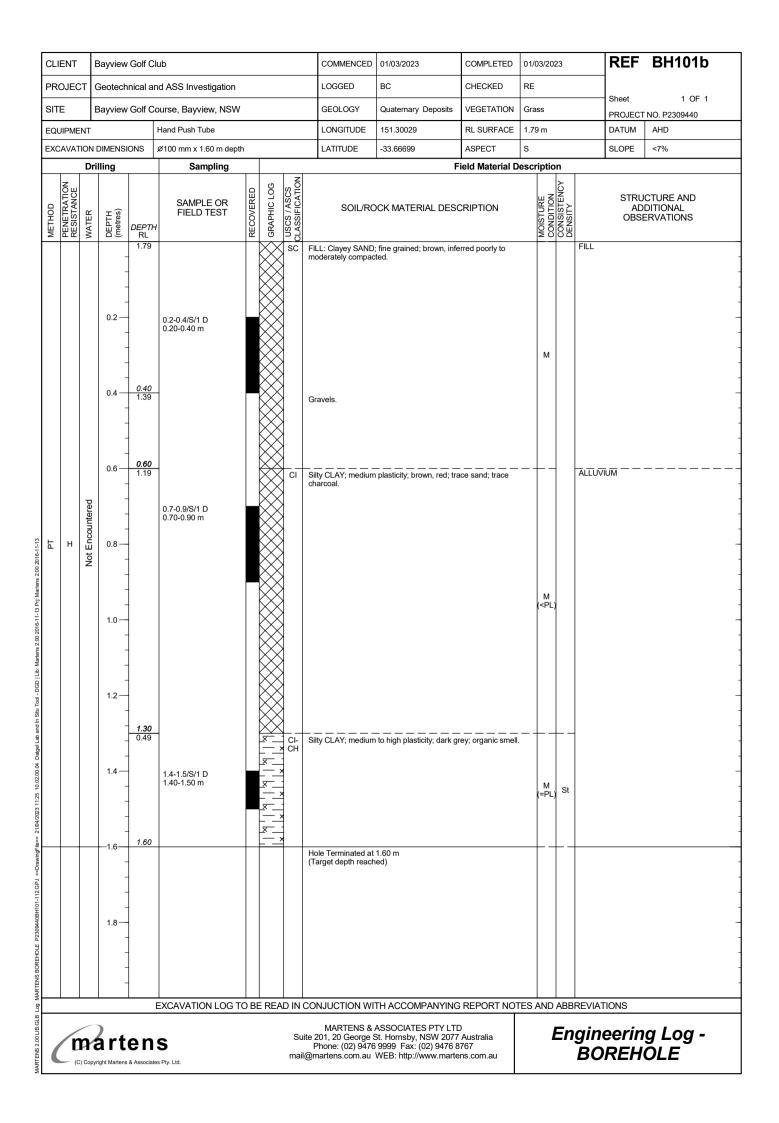
ON SOIL, 150mm x 100mm TRENCH WITH COMPACTED BACKFILL AND ON ROCK, SET INTO

# **ISSUE FOR DEVELOPMENT APPL**

| / | DATE       | REVISION DESCRIPTION         |              |      |
|---|------------|------------------------------|--------------|------|
|   | 27.02.2023 | ISSUE FOR REVIEW AND COMMENT | TITLE        | NAME |
|   |            |                              | DRAWN        | DI   |
|   |            |                              | DESIGNED     | СР   |
|   |            |                              | DRG CHECK    | СР   |
|   |            |                              | DESIGN CHECK | AL   |
|   |            |                              | APPROVED     | СР   |
|   |            |                              |              |      |







Telephone: 0408 696 526 New South Wales, Australia 2074 www.chrispconsulting.com.au

| ICATION                              | SEDIMENT AND EROSION C                                                                                                                                                                                        | ONTRO               | L                       |     |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|-----|
|                                      | MANAGEMENT                                                                                                                                                                                                    |                     |                         |     |
|                                      | BAYVIEW GOLF CLUB                                                                                                                                                                                             |                     |                         |     |
|                                      | TYPICAL SEDIMENT & EROSION C                                                                                                                                                                                  | ONTROL              | DETAILS                 |     |
|                                      | THIS DRAWING AND THE INFORMATION CONTAINED THEREON HAVE BEEN CREA<br>PROTECTED BY COPYRIGHT. YOU MAY NOT REPRODUCE ANY OF IT IN ANY FOR<br>IF YOU DO, YOU MAY HAVE TO PAY FOR DAMAGES TO CHRISP CONSULTING OR | A WITHOUT THE WRITT | EN PERMISSION BY CHRISP |     |
| A.B.N. 11 164 806 044<br>ⓒ Copyright | JOB NUMBER:<br>23003                                                                                                                                                                                          | SCALE @ A1<br>NTS   | SHEET NO C110           | REV |

## 11 Attachment C – Borehole Logs







|     | IENT                     | - | Bayview               |                      |                                     |        |      |        | COMMENCED                              | 01/03/2023                                                                                    | COMPLETED           | 01/03/20 | 123   |           |                    | BH102                                    |
|-----|--------------------------|---|-----------------------|----------------------|-------------------------------------|--------|------|--------|----------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|----------|-------|-----------|--------------------|------------------------------------------|
|     | OJEC                     | - |                       |                      | nd ASS Investigation                |        |      |        | LOGGED                                 | BC                                                                                            | CHECKED             | RE       |       |           | Sheet              | 1 OF 1                                   |
| SIT | E                        | E | Bayview               | v Golf C             | ourse, Bayview, NSW                 |        |      |        | GEOLOGY                                | Quaternary Deposits                                                                           | VEGETATION          | Grass    |       |           | PROJECT            | NO. P2309440                             |
|     | JIPME                    |   |                       |                      | Hand Push Tube                      |        |      |        | LONGITUDE                              | 151.296019                                                                                    | RL SURFACE          | 1.85 m   |       |           | DATUM              | AHD                                      |
| EXC | CAVAT                    |   | DIMENS                | IONS                 | Ø100 mm x 1.60 m dept               | h<br>I |      |        | LATITUDE                               | -33.668715                                                                                    | ASPECT              | E        |       |           | SLOPE              | 5%                                       |
|     | H PENETRATION RESISTANCE |   | DIMENS                | DEPTI-<br>RL<br>1.85 | Sampling<br>SAMPLE OR<br>FIELD TEST |        |      | CI     | SOIL/RC                                | CK MATERIAL DESC<br>fine to medium grained;<br>compacted.                                     | CRIPTION            |          |       | FILL      | STRU<br>AD<br>OBSI | 5%<br>CTURE AND<br>DITIONAL<br>ERVATIONS |
|     |                          |   | 1.8-                  | -                    |                                     |        |      |        |                                        |                                                                                               |                     |          |       |           |                    |                                          |
|     |                          |   |                       |                      | EXCAVATION LOG T                    | O BE   | READ | D IN C | ONJUCTION WI                           | TH ACCOMPANYING                                                                               | G REPORT NOT        | TES AND  | ) ABB | REVIA     | TIONS              |                                          |
| (   |                          |   | art<br>rright Martens |                      |                                     |        |      |        | e 201, 20 George S<br>Phone: (02) 9476 | ASSOCIATES PTY LT[<br>5t. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | 7 Australia<br>3767 |          | En    | gin<br>BO | eerin<br>REH       | g Log -<br>OLE                           |

| CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENT                       | E                   | Bayview           | Golf Cl             | ub                                                                                           |           |             |                               | COMMENCED                                           | 01/03/2023                                                                                                       | COMPLETED             | 01/03/2  | 023                                 |       | REF              | BH103                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|-------------------|---------------------|----------------------------------------------------------------------------------------------|-----------|-------------|-------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------|-------------------------------------|-------|------------------|------------------------------------|
| PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OJEC                      | т                   | Geotech           | nical ar            | nd ASS Investigation                                                                         |           |             |                               | LOGGED                                              | BC                                                                                                               | CHECKED               | RE       |                                     |       |                  |                                    |
| SIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                         | E                   | Bayview           | Golf Co             | ourse, Bayview, NSW                                                                          |           |             |                               | GEOLOGY                                             | Quaternary Deposits                                                                                              | VEGETATION            | Grass    |                                     |       | Sheet<br>PROJECT | 1 OF 1<br>NO. P2309440             |
| EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JIPME                     | INT                 |                   |                     | Hand Push Tube                                                                               |           |             |                               | LONGITUDE                                           | 151.292353                                                                                                       | RL SURFACE            | 3.99 m   |                                     |       | DATUM            | AHD                                |
| EXC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAVAT                     | FION I              | DIMENSI           | ONS                 | Ø100 mm x 0.70 m dept                                                                        | ı         |             |                               | LATITUDE                                            | -33.668813                                                                                                       | ASPECT                | s        |                                     |       | SLOPE            | 10%                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | I                   | lling             |                     | Sampling                                                                                     | <b>—</b>  |             | z                             |                                                     | F                                                                                                                | ield Material D       |          | -                                   |       |                  |                                    |
| METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PENETRATION<br>RESISTANCE | WATER               | DEPTH<br>(metres) | DEPTH<br>RL         | SAMPLE OR<br>FIELD TEST                                                                      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION |                                                     | OCK MATERIAL DESC                                                                                                |                       |          | CONDITION<br>CONSISTENCY<br>DENSITY |       | AD               | CTURE AND<br>DITIONAL<br>ERVATIONS |
| MARTENS 200LIB Ltg. MARTENS BOREHOLE P2309440BH101-112.0FV <-OnawingFilex> 2104/2023 1125 10.02.00.04 DargeLute and In Stu Tod - DGD Ltb. Martens 2.00 2016-11-13 Prj. Martens 2.00 2016-11-13 | H PEN                     | Not Encountered Wa1 |                   | <u>0.50</u><br>3.99 | 0.1-0.2/S/1 D<br>0.10-0.20 m<br>0.3-0.5/S/1 D<br>0.30-0.50 m<br>0.6-0.7/S/1 D<br>0.60-0.70 m |           |             | SP 1                          | rown; trace rootlets                                | sticity; grey, brown, red, t                                                                                     |                       | w -<br>M |                                     | ALLUV | ium — — — —      |                                    |
| MARTEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                     | -                 |                     |                                                                                              |           |             |                               |                                                     |                                                                                                                  |                       |          |                                     |       |                  | -                                  |
| MARTENS 2.00 LIB.GLB Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                     | art (             | en                  | S                                                                                            | O BI      | E REA       | Suite                         | MARTENS & 2<br>201, 20 George S<br>Phone: (02) 9476 | TH ACCOMPANYING<br>ASSOCIATES PTY LTE<br>5t. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | )<br>Australia<br>767 |          |                                     | gin   |                  | g Log -<br>OLE                     |

| CLIENT                           | Ba | ayview             | Golf C               | ub                                                           |           |             |                                                                                 | COMMENCED                                 | 01/03/2023                                                                                    | COMPLETED           | 01/0  | 3/20                                                                         | 23             |           | REF          | BH104                                |
|----------------------------------|----|--------------------|----------------------|--------------------------------------------------------------|-----------|-------------|---------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|-------|------------------------------------------------------------------------------|----------------|-----------|--------------|--------------------------------------|
| PROJECT                          | Ge | eotech             | nical ar             | nd ASS Investigation                                         |           |             |                                                                                 | LOGGED                                    | BC                                                                                            | CHECKED             | RE    |                                                                              |                |           | Sheet        | 1 OF 1                               |
| SITE                             | Ba | ayview             | Golf C               | ourse, Bayview, NSW                                          | /         |             |                                                                                 | GEOLOGY                                   | Narrabeen Formation                                                                           | VEGETATION          | Gras  | ss                                                                           |                |           |              | T NO. P2309440                       |
| QUIPMENT                         | -  |                    |                      | Hand Push Tube                                               |           |             |                                                                                 | LONGITUDE                                 | 151.29091                                                                                     | RL SURFACE          | 28.5  | 5 m                                                                          |                |           | DATUM        | AHD                                  |
| XCAVATIO                         |    |                    | ONS                  | Ø100 mm x 1.30 m dep                                         | th        |             |                                                                                 | LATITUDE                                  | -33.6671                                                                                      | ASPECT              | s     |                                                                              |                |           | SLOPE        | 10%                                  |
| METRATION<br>RESISTANCE<br>WATER |    | DEPTH bit (metres) | DEPTH<br>RL          | SAMPLE OR<br>FIELD TEST                                      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION                                                   |                                           | OCK MATERIAL DES                                                                              |                     |       | -                                                                            | CONSISTENCY UC |           | AD           | ICTURE AND<br>IDITIONAL<br>ERVATIONS |
| H<br>MAt Encountered             |    |                    | <u>0.80</u><br>27.75 | 0.1-0.3/S/1 D<br>0.10-0.30 m<br>0.5-0.7/S/1 D<br>0.50-0.70 m |           |             | SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>SP<br>S | yellow - brown; traci                     | ; fine to medium grained;<br>e rootlets.                                                      |                     |       | M<br>( <pl< td=""><td>, St</td><td>FILL</td><td>ŪAL SOIL</td><td></td></pl<> | , St           | FILL      | ŪAL SOIL     |                                      |
|                                  |    |                    |                      |                                                              |           |             |                                                                                 | Hole Terminated at<br>(Target depth reach | ed)                                                                                           |                     |       |                                                                              |                |           |              |                                      |
|                                  |    |                    |                      | EXCAVATION LOG                                               | TO BI     | E REA       | D IN (                                                                          | CONJUCTION WI                             | TH ACCOMPANYING                                                                               | REPORT NO           | TES A | ND                                                                           | ABB            | REVIA     | TIONS        |                                      |
|                                  |    |                    | en<br>& Associate    |                                                              |           |             |                                                                                 | te 201, 20 George \$<br>Phone: (02) 9476  | ASSOCIATES PTY LTL<br>St. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | ' Australia<br>3767 |       |                                                                              | En             | gin<br>BO | eerin<br>REH | ng Log -<br>OLE                      |

| CLIENT                                       | Ba     | ayview                  | Golf Cl             | ub                           |           |             |                               | COMMENCED                               | 01/03/2023                                                                                    | COMPLETED           | 01/0  | 03/202                                                                                       | 23                     |           | REF              | BH105a                             |
|----------------------------------------------|--------|-------------------------|---------------------|------------------------------|-----------|-------------|-------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|-------|----------------------------------------------------------------------------------------------|------------------------|-----------|------------------|------------------------------------|
| PROJECT                                      | Ge     | eotech                  | nical ar            | nd ASS Investigation         |           |             |                               | LOGGED                                  | BC                                                                                            | CHECKED             | RE    |                                                                                              |                        |           | Oheert           |                                    |
| SITE                                         | Ba     | ayview                  | Golf Co             | ourse, Bayview, NSV          | V         |             |                               | GEOLOGY                                 | Narrabeen Formation                                                                           | VEGETATION          | Gra   | SS                                                                                           |                        |           | Sheet<br>PROJECT | 1 OF 1<br>NO. P2309440             |
| QUIPMENT                                     |        |                         |                     | Hand Push Tube               |           |             |                               | LONGITUDE                               | 151.2932                                                                                      | RL SURFACE          | 8.43  | 3 m                                                                                          |                        |           | DATUM            | AHD                                |
| XCAVATIO                                     | N DI   | IMENSI                  | ONS                 | ø100 mm x 0.90 m dep         | th        |             |                               | LATITUDE                                | -33.66803                                                                                     | ASPECT              | SE    |                                                                                              |                        |           | SLOPE            | <7%                                |
|                                              | )rilli | ing                     |                     | Sampling                     |           |             |                               |                                         | F                                                                                             | ield Material D     |       | ŕ i                                                                                          |                        |           |                  |                                    |
| METHOD<br>PENETRATION<br>RESISTANCE<br>WATER |        | DEPTH<br>(metres)       | DEPTH<br>RL         | SAMPLE OR<br>FIELD TEST      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION | SOIL/RC                                 | OCK MATERIAL DES                                                                              | CRIPTION            |       | MOISTURE<br>CONDITION                                                                        | CONSISTENCY<br>DENSITY |           | AD               | CTURE AND<br>DITIONAL<br>ERVATIONS |
|                                              |        | <br><br><br>0.2<br><br> | 8.43                | 0.1-0.2/S/1 D<br>0.10-0.20 m |           |             | SP                            | FILL: Clayey SAND;                      | ; fine grained; grey, brow                                                                    | n; trace rootlets.  |       | м                                                                                            |                        | FILL      |                  |                                    |
| Not Encountered                              |        |                         | <u>0.40</u><br>8.03 | 0.4-0.6/S/1 D<br>0.40-0.60 m |           |             | CL-<br>CI                     | Silty Sandy CLAY; k                     | w to medium plasticity; I                                                                     | brown, black.       |       | M<br>( <pl)< td=""><td></td><td>ALLUV</td><td>ium — —</td><td></td></pl)<>                   |                        | ALLUV     | ium — —          |                                    |
|                                              |        | 0.6                     | <u>0.70</u><br>7.73 | 0.7-0.9/S/1 D<br>0.70-0.90 m |           |             | CI                            | Silty CLAY; medium                      | plasticity; dark brown, b                                                                     |                     |       | M<br>( <pl)< td=""><td></td><td>RESIDI</td><td>JAL SOIL -</td><td>alluvium — — —</td></pl)<> |                        | RESIDI    | JAL SOIL -       | alluvium — — —                     |
|                                              |        | -                       | 0.30                |                              |           | x ·         |                               | Hole Terminated at                      | 0.90 m                                                                                        |                     |       |                                                                                              |                        | 0.90: P   | ush Tube re      | fusal on white clay.               |
|                                              |        |                         |                     |                              |           |             |                               |                                         |                                                                                               |                     |       |                                                                                              |                        |           |                  |                                    |
|                                              |        |                         |                     | EXCAVATION LOG               | TO B      | E REA       | D IN (                        | CONJUCTION WI                           | TH ACCOMPANYING                                                                               | GREPORT NO          | TES / | AND                                                                                          | ABB                    | REVIAT    | TIONS            |                                    |
|                                              |        |                         | en<br>& Associate   |                              |           |             |                               | te 201, 20 George S<br>Phone: (02) 9476 | ASSOCIATES PTY LTI<br>St. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | ' Australia<br>3767 |       | E                                                                                            | Ξn                     | gin<br>BO | eerin<br>REH     | g Log -<br>OLE                     |

| CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IENT                      | E               | Bayview              | Golf Cl     | ub                           |           |             |                               | COMMENCED                                           | 01/03/2023                                                                                                       | COMPLETED             | 01/03/2        | 023                                 |         | REF              | BH106                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|----------------------|-------------|------------------------------|-----------|-------------|-------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|-------------------------------------|---------|------------------|-----------------------------------|
| PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OJEC                      | т               | Geotech              | nical ar    | nd ASS Investigation         |           |             |                               | LOGGED                                              | BC                                                                                                               | CHECKED               | RE             |                                     |         |                  |                                   |
| SIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                         | E               | Bayview              | Golf Co     | ourse, Bayview, NSW          |           |             |                               | GEOLOGY                                             | Narrabeen Formation                                                                                              | VEGETATION            | Grass          |                                     |         | Sheet<br>PROJECT | 1 OF 1<br>NO. P2309440            |
| EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UIPME                     | NT              |                      |             | Hand Push Tube               |           |             |                               | LONGITUDE                                           | 151.29111                                                                                                        | RL SURFACE            | 36.02 r        | n                                   |         | DATUM            | AHD                               |
| EXC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAVAT                     | ION             | DIMENSI              | ONS         | Ø100 mm x 0.60 m dept        | h         |             |                               | LATITUDE                                            | -33.66641                                                                                                        | ASPECT                | SE             |                                     |         | SLOPE            | 15%                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                 | illing               |             | Sampling                     |           |             | 2                             |                                                     | F                                                                                                                | ield Material D       |                | -                                   |         |                  |                                   |
| METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PENETRATION<br>RESISTANCE | WATER           | DEPTH<br>(metres)    | DEPTH<br>RL | SAMPLE OR<br>FIELD TEST      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION |                                                     | OCK MATERIAL DESC                                                                                                |                       |                | CONDITION<br>CONSISTENCY<br>DENSITY |         | ADI              | CTURE AND<br>DITIONAL<br>RVATIONS |
| MARTENS 200LIB (Lig MARTENS BOREHOLE P2309440BH101-112GPJ < <drawingfile>&gt; 2104/2023 11:25 10.0200.04 Dagget Leb and in Siu Tod - DGD (Lib. Martens 2.00 2016-11-13 Pr; Martens 2.00 2016-11-12 Pr; Martens 2.00 2016-11-13 Pr; Mar</drawingfile> | н                         | Not Encountered |                      | 0.60        | 0.2-0.4/S/1 D<br>0.20-0.40 m |           |             | SP F                          | ole Terminated at                                   |                                                                                                                  | stone.                |                |                                     | 0.60: P | ush Tube ref     | usal on fill.                     |
| MARTENS 2.00 LIB.GLB LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                 | art<br>right Martens | en          | S                            |           |             | Suite                         | MARTENS & 2<br>201, 20 George S<br>Phone: (02) 9476 | TH ACCOMPANYING<br>ASSOCIATES PTY LTC<br>35. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | )<br>Australia<br>767 | . <u>20 AN</u> |                                     | gin     |                  | g Log -<br>OLE                    |

| CLIE        | NT         |                 | Bayview               | Golf C                       | lub                                                          |           |             |                               | COMMENCED                                             | 01/03/2023                                                                                                         | COMPLETED                | 01/0  | 3/20 | 23            |      | REF   | BH107a                               |
|-------------|------------|-----------------|-----------------------|------------------------------|--------------------------------------------------------------|-----------|-------------|-------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------|-------|------|---------------|------|-------|--------------------------------------|
| RO          | JEC        | т               | Geotech               | nical a                      | nd ASS Investigation                                         |           |             |                               | LOGGED                                                | вс                                                                                                                 | CHECKED                  | RE    |      |               |      | Sheet | 1 OF 1                               |
| ITE         |            |                 | Bayview               | Golf C                       | ourse, Bayview, NSV                                          | /         |             |                               | GEOLOGY                                               | Narrabeen Formation                                                                                                | VEGETATION               | Gras  | s    |               |      |       | NO. P2309440                         |
| QUII        | PME        | NT              |                       |                              | Hand Push Tube                                               |           |             |                               | LONGITUDE                                             | 151.29096                                                                                                          | RL SURFACE               | 3.32  | m    |               |      | DATUM | AHD                                  |
| KCA         | VAT        |                 | DIMENS                | IONS                         | ø100 mm x 1.40 m dep                                         | th        | 1           |                               | LATITUDE                                              | -33.6687                                                                                                           | ASPECT                   | s     |      |               |      | SLOPE | <7%                                  |
| DENETDATION | RESISTANCE | WATER           | DEPTH<br>(metres)     | DEPTH<br>RL<br>3.32          | SAMPLE OR<br>FIELD TEST                                      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION |                                                       | CK MATERIAL DES                                                                                                    |                          |       | -    | CONSISTENCY B | FILL | AD    | ICTURE AND<br>IDITIONAL<br>ERVATIONS |
|             | Н          | Not Encountered |                       | 0.40<br>2.92<br>0.70<br>2.62 | 0.1-0.3/S/1 D<br>0.10-0.30 m<br>0.5-0.7/S/1 D<br>0.50-0.70 m |           |             | GP-SSC                        | FILL: Crushed IROI                                    | NSTONE; trace clay.                                                                                                |                          |       | м    |               |      |       |                                      |
|             |            |                 |                       | 1.40                         |                                                              |           |             | >                             | Hole Terminated at<br>(Target depth reach             |                                                                                                                    |                          |       |      |               |      |       |                                      |
|             |            |                 | art<br>rright Martens | en                           | S                                                            | IO B      | E REA       | Sui                           | MARTENS &<br>te 201, 20 George \$<br>Phone: (02) 9476 | TH ACCOMPANYING<br>ASSOCIATES PTY LTI<br>St. Hornsby, NSW 2077<br>5 9999 Fax: (02) 9476 8<br>WEB: http://www.marte | )<br>′ Australia<br>3767 | TES A |      | En            | gin  | eerin | g Log -<br>OLE                       |

| CLIENT                    |           | Bayview               | Golf C                       | lub                                                          |           |             |             | COMMENCED                                             | 01/03/2023                                                                                      | COMPLETED                | 01/0 | 03/20                                                                     | 23             |            | REF    | BH107b                              |
|---------------------------|-----------|-----------------------|------------------------------|--------------------------------------------------------------|-----------|-------------|-------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|------|---------------------------------------------------------------------------|----------------|------------|--------|-------------------------------------|
| PROJEC                    | т         | Geotech               | inical a                     | nd ASS Investigation                                         |           |             |             | LOGGED                                                | BC                                                                                              | CHECKED                  | RE   |                                                                           |                |            | Sheet  | 1 OF 1                              |
| SITE                      |           | Bayview               | Golf C                       | ourse, Bayview, NSW                                          | 1         |             |             | GEOLOGY                                               | Narrabeen Formation                                                                             | VEGETATION               | Gra  | SS                                                                        |                |            |        | NO. P2309440                        |
| QUIPMEI                   | NT        |                       |                              | Hand Push Tube                                               |           |             |             | LONGITUDE                                             | 151.29092                                                                                       | RL SURFACE               | 4.2  | 1 m                                                                       |                |            | DATUM  | AHD                                 |
| XCAVATI                   | ION       | DIMENS                | ONS                          | ø100 mm x 1.30 m dep                                         | th        |             |             | LATITUDE                                              | -33.66888                                                                                       | ASPECT                   | s    |                                                                           |                |            | SLOPE  | <7%                                 |
| PENETRATION<br>RESISTANCE | WATER     | DEPTH<br>(metres)     | DEPTH<br>RL<br>4.21          | SAMPLE OR<br>FIELD TEST                                      | RECOVERED | GRAPHIC LOG | USCS / ASCS |                                                       | DCK MATERIAL DES                                                                                |                          |      | · ·                                                                       | CONSISTENCY UC | FILL       | AD     | ICTURE AND<br>DITIONAL<br>ERVATIONS |
| . н                       |           |                       | 0.40<br>3.81<br>0.80<br>3.41 | 0.2-0.4/S/1 D<br>0.20-0.40 m<br>0.5-0.7/S/1 D<br>0.50-0.70 m |           |             | CCH         | FILL: Silty CLAY; m<br>crushed ironstone.             | ; fine to medium grained;<br>edium plasticity; grey - br<br>n to high plasticity; dark g        | rown, brown; trace       |      | M<br>( <pl< td=""><td>)</td><td>ALLUVI</td><td>ŪM — —</td><td></td></pl<> | )              | ALLUVI     | ŪM — — |                                     |
|                           | [] Inflow | 1.0—<br>              | 1.30                         | 1.0-1.2/S/1 D<br>1.00-1.20 m                                 |           |             |             |                                                       |                                                                                                 |                          |      | M<br>(=PL                                                                 | St -<br>) VSt  |            |        |                                     |
|                           |           | 1.4                   |                              |                                                              |           |             |             | Hole Terminated at<br>(Target depth reach             |                                                                                                 |                          |      |                                                                           |                |            |        |                                     |
|                           |           |                       |                              |                                                              |           | E RFA       |             | CONJUCTION WI                                         | TH ACCOMPANYING                                                                                 |                          | TES  |                                                                           | ABR            | <br>REVIAT | IONS   |                                     |
|                           |           | art<br>gright Martens | en                           | S                                                            |           |             | Sui         | MARTENS &<br>te 201, 20 George \$<br>Phone: (02) 9476 | ASSOCIATES PTY LTI<br>St. Hornsby, NSW 2077<br>3 9999 Fax: (02) 9476 8<br>WEB: http://www.marte | D<br>′ Australia<br>3767 | 0 /  |                                                                           | En             | gine       | erin   | g Log -<br>OLE                      |

| CLIE   | NT         | 1     | Bayview              | Golf C                       | lub                                                                                          |           |             |                               | COMMENCED                                             | 01/03/2023                                                                                                       | COMPLETED                | 01/0 | )3/20    | 23                     | R            | EF  | BH                          | 108             |
|--------|------------|-------|----------------------|------------------------------|----------------------------------------------------------------------------------------------|-----------|-------------|-------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|------|----------|------------------------|--------------|-----|-----------------------------|-----------------|
| PRO    | JEC        | т     | Geotech              | nical a                      | nd ASS Investigatior                                                                         | ı         |             |                               | LOGGED                                                | BC / WX                                                                                                          | CHECKED                  | RE   |          |                        |              |     |                             | 1.05.1          |
| SITE   |            | E     | Bayview              | Golf C                       | ourse, Bayview, NS                                                                           | N         |             |                               | GEOLOGY                                               | Quaternary Deposits                                                                                              | VEGETATION               | Gra  | SS       |                        | She<br>PRC   |     | NO. P23                     | 1 OF 1<br>09440 |
| EQUI   | PME        | NT    |                      |                              | Hand Push Tube                                                                               |           |             |                               | LONGITUDE                                             | 151.29282                                                                                                        | RL SURFACE               | 2.57 | 7 m      |                        | DAT          |     | AHD                         |                 |
| EXCA   | VAT        |       | DIMENSI              | ONS                          | ø100 mm x 1.50 m de                                                                          | pth       |             |                               | LATITUDE                                              | -33.66988                                                                                                        | ASPECT                   | s    |          |                        | SLC          | PE  | <5%                         |                 |
|        | 7          | Dri   | illing               |                              | Sampling                                                                                     |           |             | Z                             |                                                       | F                                                                                                                | Field Material D         |      | · ·      |                        |              |     |                             |                 |
| METHOD | RESISTANCE | WATER | DEPTH<br>(metres)    | DEPTH<br>RL                  | SAMPLE OR<br>FIELD TEST                                                                      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION | SOIL/RC                                               | OCK MATERIAL DES                                                                                                 | CRIPTION                 |      | MOISTURE | CONSISTENCY<br>DENSITY |              | AD  | CTURE<br>DITION/<br>ERVATIO | AL.             |
| PT     | т          |       |                      | 2.57<br>0.40<br>2.17<br>1.50 | 0.1-0.4/S/1 D<br>0.10-0.40 m<br>0.8-1.0/S/1 D<br>0.80-1.00 m<br>1.3-1.5/S/1 D<br>1.30-1.50 m |           |             | CL                            | Sandy CLAY; medi                                      |                                                                                                                  | race rootlets.           |      | W W      | )<br>)                 |              |     |                             |                 |
|        |            |       | -                    |                              |                                                                                              |           |             |                               |                                                       |                                                                                                                  |                          |      |          |                        |              |     |                             |                 |
| (      |            |       | art<br>right Martens | en                           | S                                                                                            | TO BE     | EREA        | Sui                           | MARTENS &<br>te 201, 20 George \$<br>Phone: (02) 9476 | TH ACCOMPANYING<br>ASSOCIATES PTY LTI<br>5t. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | D<br>7 Australia<br>8767 | TES  |          | Eng                    | inee<br>BORE | rin | g Lo<br>OLE                 | og -            |

| CLIEN  | ١T         |       | Bayview              | Golf C                       | lub                                                                                          |           |             |                               | COMMENCED                              | 01/03/2023                                                                                    | COMPLETED           | 01/0  | 03/20                                                                     | 23                     |             | REF              | BH110                              |
|--------|------------|-------|----------------------|------------------------------|----------------------------------------------------------------------------------------------|-----------|-------------|-------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|-------|---------------------------------------------------------------------------|------------------------|-------------|------------------|------------------------------------|
| PROJ   | JEC        | т     | Geotech              | nical a                      | nd ASS Investigation                                                                         |           |             |                               | LOGGED                                 | BC / WX                                                                                       | CHECKED             | RE    |                                                                           |                        |             |                  |                                    |
| SITE   |            | 1     | Bayview              | Golf C                       | ourse, Bayview, NSV                                                                          | V         |             |                               | GEOLOGY                                | Quaternary Deposits                                                                           | VEGETATION          | Gra   | SS                                                                        |                        |             | Sheet<br>PROJECT | 1 OF 1<br>NO. P2309440             |
| EQUIP  | MEN        | NT    |                      |                              | Hand Push Tube                                                                               |           |             |                               | LONGITUDE                              | 151.29958                                                                                     | RL SURFACE          | 1.44  | 4 m                                                                       |                        |             | DATUM            | AHD                                |
| EXCA   | VATI       | ION   | DIMENSI              | ONS                          | ø100 mm x 1.50 m dep                                                                         | th        |             |                               | LATITUDE                               | -33.669306                                                                                    | ASPECT              | NE    |                                                                           |                        |             | SLOPE            | <5%                                |
|        |            | Dr    | illing               |                              | Sampling                                                                                     |           |             | z                             |                                        | F                                                                                             | Field Material D    |       | -                                                                         |                        |             |                  |                                    |
| METHOD | RESISTANCE | WATER | DEPTH<br>(metres)    | DEPTH<br>RL                  | SAMPLE OR<br>FIELD TEST                                                                      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION | SOIL/RC                                | OCK MATERIAL DES                                                                              | CRIPTION            |       | MOISTURE                                                                  | CONSISTENCY<br>DENSITY |             | AD               | CTURE AND<br>DITIONAL<br>ERVATIONS |
| PT     | н          |       |                      | 1.44<br>0.30<br>1.14<br>1.50 | 0.1-0.3/S/1 D<br>0.10-0.30 m<br>0.7-0.9/S/1 D<br>0.70-0.90 m<br>1.1-1.4/S/1 D<br>1.10-1.40 m |           |             | SM                            | FILL: Silty SAND; fir                  |                                                                                               |                     |       | м<br>( <pl< th=""><th></th><th>ĀLĪŪVĪL</th><th>JM — —</th><th></th></pl<> |                        | ĀLĪŪVĪL     | JM — —           |                                    |
|        |            |       | 1.8                  |                              |                                                                                              |           |             |                               |                                        |                                                                                               |                     |       |                                                                           |                        |             |                  |                                    |
|        |            |       |                      |                              | EXCAVATION LOG                                                                               | TO BI     | E REA       | D IN C                        | ONJUCTION WI                           | TH ACCOMPANYING                                                                               | GREPORT NOT         | res / | AND                                                                       | ABBF                   | REVIATI     | IONS             |                                    |
| (      |            |       | art<br>right Martens |                              |                                                                                              |           |             |                               | e 201, 20 George S<br>Phone: (02) 9476 | ASSOCIATES PTY LTI<br>St. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | 7 Australia<br>3767 |       |                                                                           | Eng                    | gine<br>BOl | erin<br>REH      | g Log -<br>OLE                     |

| CLIE   | ENT                                                                                      | E               | Bayview              | Golf Cl                              | ub                                                                                           |           |             |                               | COMMENCED                                                                                                        | 01/03/2023                                                                                    | COMPLETED           | 01/0 | 03/20                                                                                     | )23            |           | REF          | BH111a                             |
|--------|------------------------------------------------------------------------------------------|-----------------|----------------------|--------------------------------------|----------------------------------------------------------------------------------------------|-----------|-------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|------|-------------------------------------------------------------------------------------------|----------------|-----------|--------------|------------------------------------|
| PRC    | JEC                                                                                      | т               | Geotech              | nical an                             | d ASS Investigation                                                                          |           |             |                               | LOGGED                                                                                                           | BC / WX                                                                                       | CHECKED             | RE   |                                                                                           |                |           |              |                                    |
| SITE   | Ξ                                                                                        | 1               | Bayview              | Golf Co                              | ourse, Bayview, NSW                                                                          | ,         |             |                               | GEOLOGY                                                                                                          | Quaternary Deposits                                                                           | VEGETATION          | Gra  | SS                                                                                        |                |           | Sheet        | 1 OF 1<br>NO. P2309440             |
| EQU    | IPME                                                                                     | INT             |                      |                                      | Hand Push Tube                                                                               |           |             |                               | LONGITUDE                                                                                                        | 151.30041                                                                                     | RL SURFACE          | 8.78 | 3 m                                                                                       |                |           | DATUM        | AHD                                |
| EXC    | AVAT                                                                                     | ION             | DIMENSI              | SNS .                                | ø100 mm x 1.50 m dept                                                                        | h         |             |                               | LATITUDE                                                                                                         | -33.67059                                                                                     | ASPECT              | N    |                                                                                           |                |           | SLOPE        | 15%                                |
|        |                                                                                          |                 | lling                |                                      | Sampling                                                                                     | _         |             | 7                             |                                                                                                                  | F                                                                                             | ield Material D     |      | · ·                                                                                       |                |           |              |                                    |
| МЕТНОD | PENETRATION<br>RESISTANCE                                                                | WATER           | DEPTH<br>(metres)    | DEPTH<br>RL                          | SAMPLE OR<br>FIELD TEST                                                                      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION | SOIL/RC                                                                                                          | OCK MATERIAL DES                                                                              | CRIPTION            |      | CONDITION                                                                                 | CONSISTENCY    |           | AD           | CTURE AND<br>DITIONAL<br>ERVATIONS |
|        | т                                                                                        | Not Encountered |                      | 0.70<br>8.08<br>1.00<br>7.78<br>1.50 | 0.2-0.4/S/1 D<br>0.20-0.40 m<br>0.7-0.9/S/1 D<br>0.70-0.90 m<br>1.0-1.2/S/1 D<br>1.00-1.20 m |           |             | CL<br>SM<br>CH                | FILL: Silty SAND; fir<br>Silty CLAY; high pla<br>Silty CLAY; medium<br>Hole Terminated at<br>(Target depth reach | ed)                                                                                           | rey, yellow.        |      | M<br>( <pl< td=""><td>St to<br/>) VSt</td><td>TALLUV</td><td>ŪĀL ŠÕIL</td><td></td></pl<> | St to<br>) VSt | TALLUV    | ŪĀL ŠÕIL     |                                    |
|        | EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS |                 |                      |                                      |                                                                                              |           |             |                               |                                                                                                                  |                                                                                               |                     |      |                                                                                           |                |           |              |                                    |
| (      |                                                                                          |                 | art<br>right Martens |                                      |                                                                                              |           |             |                               | te 201, 20 George S<br>Phone: (02) 9476                                                                          | ASSOCIATES PTY LTI<br>St. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | ' Australia<br>3767 |      |                                                                                           | En             | gin<br>BO | eerin<br>REH | g Log -<br>OLE                     |

| LIENT                              | в    | ayview                                                                               | Golf C                 | lub                                                          |           |             |                               | COMMENCED                               | 01/03/2023                                                                                 | COMPLETED           | 01/0  | 3/20                                                                   | 23                     |           | REF          | BH111b                              |
|------------------------------------|------|--------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------|-----------|-------------|-------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|---------------------|-------|------------------------------------------------------------------------|------------------------|-----------|--------------|-------------------------------------|
| ROJECT                             | G    | Beotech                                                                              | nical ai               | nd ASS Investigation                                         |           |             |                               | LOGGED                                  | BC / WX                                                                                    | CHECKED             | RE    |                                                                        |                        |           | Sheet        | 1 OF 1                              |
| ITE                                | в    | ayview                                                                               | Golf C                 | ourse, Bayview, NSV                                          | /         |             |                               | GEOLOGY                                 | Quaternary Deposits                                                                        | VEGETATION          | Gras  | s                                                                      |                        |           |              | Г NO. P2309440                      |
| QUIPMENT                           | Г    |                                                                                      |                        | Hand Push Tube                                               |           |             |                               | LONGITUDE                               | 151.30026                                                                                  | RL SURFACE          | 10.7  | 7 m                                                                    |                        |           | DATUM        | AHD                                 |
| KCAVATIO                           |      |                                                                                      | ONS                    | Ø100 mm x 1.30 m dep                                         | th        |             |                               | LATITUDE                                | -33.67059                                                                                  | ASPECT              | Ν     |                                                                        |                        |           | SLOPE        | 15%                                 |
|                                    | Dril | ling                                                                                 |                        | Sampling                                                     |           |             | Z                             |                                         | F                                                                                          | Field Material D    |       | •                                                                      | 1                      |           |              |                                     |
| PENETRATION<br>RESISTANCE<br>WATEP |      | DEPTH<br>(metres)                                                                    | DEPTH<br>RL            | SAMPLE OR<br>FIELD TEST                                      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION | SOIL/RC                                 | OCK MATERIAL DES                                                                           | CRIPTION            |       | CONDITION                                                              | CONSISTENCY<br>DENSITY |           | AD           | JCTURE AND<br>DITIONAL<br>ERVATIONS |
|                                    |      |                                                                                      | 10.77<br>0.30<br>10.47 | 0.1-0.3/S/1 D<br>0.10-0.30 m<br>0.5-0.7/S/1 D<br>0.50-0.70 m |           |             | CL<br>SM                      | FILL: Silty Clayey S                    | AY; low plasticity; dark o                                                                 | ained; grey.        |       | м<br>( <pl)< td=""><td></td><td>ALLUV</td><td>īum</td><td></td></pl)<> |                        | ALLUV     | īum          |                                     |
|                                    |      | -                                                                                    | 1.30                   |                                                              |           | ;<br>;      |                               | Hole Terminated at                      | 1.30 m                                                                                     |                     |       |                                                                        |                        | 1.30: P   | ush Tube R   | efusal.                             |
|                                    |      | -<br>1.4 —<br>-<br>-<br>1.6 —<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                        |                                                              |           |             |                               |                                         |                                                                                            |                     |       |                                                                        |                        |           |              |                                     |
|                                    |      | 1.8<br>-<br>-<br>-                                                                   |                        |                                                              |           |             |                               |                                         |                                                                                            |                     |       |                                                                        |                        |           |              |                                     |
|                                    |      |                                                                                      |                        | EXCAVATION LOG                                               | ГО В      | E REA       | DIN                           |                                         | TH ACCOMPANYING                                                                            |                     | TES A | ND                                                                     | ABB                    | REVIA     | TIONS        |                                     |
|                                    |      | art<br>ght Martens                                                                   |                        |                                                              |           |             |                               | te 201, 20 George S<br>Phone: (02) 9476 | ASSOCIATES PTY LT<br>St. Hornsby, NSW 2077<br>9999 Fax: (02) 9476<br>WEB: http://www.marte | 7 Australia<br>8767 |       |                                                                        | En                     | gin<br>BO | eerin<br>REH | ng Log -<br>OLE                     |

| PROLECT         Becade initial and ADS Investigation         DODE TO<br>SUC         Desch         Desch         I or 1<br>PROLECT         I or 1<br>PROLECT <thi 1<br="" or="">PROLECT         I or 1<br/>PROLEC</thi> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STIE         Baydwork Colf Currents, Baydwork, NSW         ECOLOPY         Quentmary Deposite         VECETATION         Cores         PROJECTION 2938940           COUPLING         Tand Punt Table         LONGTUDE         151.0031         RL SURFACE         1107         N         APP           COUPLING         Sampling         Tand Punt Table         33.670         ASPECT         N         SCULTRE AND ADDITIONAL         159           Diffing         Sampling         Sampling         Sampling         Field Material Description         Sign 200         STRUCTURE AND ADDITIONAL         SSTRUCTURE AND ADDITIONAL         SSTRUCTURE AND ADDITIONAL           Sign 2007         Sampling         Sampling         Sampling         SOULROCK MATERIAL DESCRIPTION         STRUCTURE AND ADDITIONAL         STRUCTURE AND ADDITIONAL         STRUCTURE AND ADDITIONAL           Sign 2007         Sampling         Samplin                                                                                                                                                                                                                                                                                                                      |
| EXCAVATION DIMENSIONE         9100 mm x1.40 m degth         LATTUDE         358708         ASPECT         N         SLOPE         19%           UNITED TOTAL DIMENSIONE         Sampling         Field Material Description         SIGPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| CLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ва     | ayview            | Golf C                                | lub                     |           |             |                               | COMMENCED                            | 01/03/2023                                                                                   | COMPLETED           | 01/ | 03/20     | 23                     |           | REF              | BH112a                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|---------------------------------------|-------------------------|-----------|-------------|-------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------|---------------------|-----|-----------|------------------------|-----------|------------------|--------------------------------------|--|
| PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G      | eotech            | nical ar                              | nd ASS Investigation    |           |             |                               | LOGGED                               | BC / WX                                                                                      | CHECKED             | RE  |           |                        |           | Chart            |                                      |  |
| SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ва     | ayview            | Golf C                                | ourse, Bayview, NSW     |           |             |                               | GEOLOGY                              | Quaternary Deposits                                                                          | VEGETATION          | Gra | ass       |                        |           | Sheet<br>PROJECT | 1 OF 1<br>F NO. P2309440             |  |
| EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Г      |                   |                                       | Hand Push Tube          |           |             |                               | LONGITUDE                            | 151.29995                                                                                    | RL SURFACE          | 1.1 | 9 m       |                        |           | DATUM            | AHD                                  |  |
| EXCAVATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                   | SNC                                   | Ø100 mm x 1.50 m dept   | ۱         | 1           |                               | LATITUDE                             | -33.66973                                                                                    | ASPECT              | Ν   |           |                        |           | SLOPE            | <5%                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drilli | ing               |                                       | Sampling                |           |             | z                             |                                      | F                                                                                            | ield Material D     |     |           | 1                      |           |                  |                                      |  |
| METHOD<br>PENETRATION<br>RESISTANCE<br>WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | DEPTH<br>(metres) | DEPTH<br>RL                           | SAMPLE OR<br>FIELD TEST | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION | SOIL/RC                              | OCK MATERIAL DES                                                                             | CRIPTION            |     | CONDITION | CONSISTENCY<br>DENSITY |           | AD               | JCTURE AND<br>DDITIONAL<br>ERVATIONS |  |
| PT<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmm<br>μnmmm<br>μnmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmm<br>μnmmmm<br>μnmmmm<br>μnmmmm<br>μnmmmmm<br>μnmmmmmmm<br>μnmmmmmmmmmm | Anonin |                   | 1.19<br>0.30<br>0.89<br>-0.01<br>1.50 |                         |           |             | SP (                          | ILL: SAND; fine gr                   | ed)                                                                                          | e silt and clay.    |     | M         | F                      | ALTUV     |                  |                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                   |                                       | EXCAVATION LOG T        | O BE      | E REA       | D IN CO                       |                                      |                                                                                              |                     | TES | AND       | ABB                    | REVIA     | TIONS            |                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | nt Martens        |                                       |                         |           |             |                               | 201, 20 George S<br>Phone: (02) 9476 | ASSOCIATES PTY LTI<br>St. Homsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | ' Australia<br>3767 |     | 1         | En                     | gin<br>BO | eerin<br>REH     | ig Log -<br>OLE                      |  |

| CLIENT                                       | в | ayview                | Golf C                             | ub                           |           |             |                               | COMMENCED                            | 01/03/2023                                                                                    | COMPLETED               | 01/   | 03/20 | )23           |           | REF                                         | BH112b                 |  |
|----------------------------------------------|---|-----------------------|------------------------------------|------------------------------|-----------|-------------|-------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------|-------|-------|---------------|-----------|---------------------------------------------|------------------------|--|
| PROJECT                                      | G | eotechr               | nical ai                           | nd ASS Investigation         |           |             |                               | LOGGED                               | BC / WX                                                                                       | CHECKED                 | RE    |       |               |           | Chart                                       |                        |  |
| SITE                                         | в | ayview                | Golf C                             | ourse, Bayview, NSV          | V         |             |                               | GEOLOGY                              | Quaternary Deposits                                                                           | VEGETATION              | Gra   | ass   |               |           | Sheet<br>PROJEC1                            | 1 OF 1<br>NO. P2309440 |  |
| EQUIPMENT                                    | - |                       |                                    | Hand Push Tube               |           |             |                               | LONGITUDE                            | 151.29999                                                                                     | RL SURFACE              | 1.2   | 1 m   |               |           | DATUM                                       | AHD                    |  |
| EXCAVATION                                   |   |                       | ONS                                | Ø100 mm x 1.50 m dep         | oth       |             |                               | LATITUDE                             | -33.66963                                                                                     | ASPECT                  | Ν     |       |               |           | SLOPE                                       | <5%                    |  |
| METHOD<br>PENETRATION<br>RESISTANCE<br>WATER |   | DEPTH<br>(metres)     | DEPTH<br>RL                        | SAMPLE OR<br>FIELD TEST      | RECOVERED | GRAPHIC LOG | USCS / ASCS<br>CLASSIFICATION | SOIL/RC                              | F<br>DCK MATERIAL DESC                                                                        | <b>Field Material D</b> |       | Ľ.    | CONSISTENCY U |           | STRUCTURE AND<br>ADDITIONAL<br>OBSERVATIONS |                        |  |
| PT<br>Infla√                                 |   |                       | <u>0.40</u><br>0.81<br><u>1.50</u> | 0.2-0.4/S/1 D<br>0.20-0.40 m |           |             | SP F                          | ILL: SAND; fine gr                   | ed)                                                                                           | ze silt and clay.       |       | M     | F             | ALEUV     |                                             |                        |  |
|                                              |   |                       |                                    | EXCAVATION LOG               | TO B      | EREA        | D IN CO                       | DNJUCTION WI                         | TH ACCOMPANYING                                                                               |                         | res . | AND   | ABB           | REVIAT    | TIONS                                       |                        |  |
|                                              |   | arte<br>ght Martens & |                                    |                              |           |             |                               | 201, 20 George S<br>Phone: (02) 9476 | ASSOCIATES PTY LTI<br>5t. Hornsby, NSW 2077<br>9999 Fax: (02) 9476 8<br>WEB: http://www.marte | 7 Australia<br>3767     |       |       | En            | gin<br>BO | eerin<br>REH                                | g Log -<br>OLE         |  |

## 12 Attachment D – Laboratory Analytical Documentation





Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 317873**

| Client Details |                                             |
|----------------|---------------------------------------------|
| Client         | Martens & Associates Pty Ltd                |
| Attention      | William Xu                                  |
| Address        | Suite 201, 20 George St, Hornsby, NSW, 2077 |

| Sample Details                       |                            |
|--------------------------------------|----------------------------|
| Your Reference                       | P2309440-Bayview Golf Club |
| Number of Samples                    | 15 Soil                    |
| Date samples received                | 03/03/2023                 |
| Date completed instructions received | 03/03/2023                 |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                 |                                                                      |  |
|--------------------------------|----------------------------------------------------------------------|--|
| Date results requested by      | 10/03/2023                                                           |  |
| Date of Issue                  | 10/03/2023                                                           |  |
| NATA Accreditation Number 29   | 01. This document shall not be reproduced except in full.            |  |
| Accredited for compliance with | SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |

Results Approved By Jenny He, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager



| sPOCAS + %S w/w             |             |            |            |            |            |            |
|-----------------------------|-------------|------------|------------|------------|------------|------------|
| Our Reference               |             | 317873-1   | 317873-2   | 317873-3   | 317873-4   | 317873-5   |
| Your Reference              | UNITS       | BH101a     | BH101b     | BH102      | BH105a     | BH105b     |
| Depth                       |             | 1.2-1.4    | 1.0-1.2    | 1.4-1.5    | 0.7-0.9    | 1.0-1.2    |
| Date Sampled                |             | 01/03/2023 | 01/03/2023 | 01/03/2023 | 01/03/2023 | 01/03/2023 |
| Type of sample              |             | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared               | -           | 10/03/2023 | 10/03/2023 | 10/03/2023 | 10/03/2023 | 10/03/2023 |
| Date analysed               | -           | 10/03/2023 | 10/03/2023 | 10/03/2023 | 10/03/2023 | 10/03/2023 |
| pH <sub>kcl</sub>           | pH units    | 8.7        | 8.9        | 6.2        | 6.6        | 4.3        |
| TAA pH 6.5                  | moles H+/t  | <5         | <5         | <5         | <5         | 22         |
| s-TAA pH 6.5                | %w/w S      | <0.01      | <0.01      | <0.01      | <0.01      | 0.04       |
| pH <sub>ox</sub>            | pH units    | 7.6        | 7.6        | 5.2        | 6.9        | 3.9        |
| TPA pH 6.5                  | moles H+/t  | <5         | <5         | <5         | <5         | 45         |
| s-TPA pH 6.5                | %w/w S      | <0.01      | <0.01      | <0.01      | <0.01      | 0.07       |
| TSA pH 6.5                  | moles H+/t  | <5         | <5         | <5         | <5         | 23         |
| s-TSA pH 6.5                | %w/w S      | <0.01      | <0.01      | <0.01      | <0.01      | 0.04       |
| ANCE                        | % CaCO₃     | 1.3        | 5.1        | [NT]       | 0.26       | [NT]       |
| a-ANC <sub>E</sub>          | moles H+/t  | 260        | 1,000      | [NT]       | 52         | [NT]       |
| s-ANC <sub>E</sub>          | %w/w S      | 0.42       | 1.6        | [NT]       | 0.08       | [NT]       |
| SKCI                        | %w/w S      | 0.02       | 0.01       | 0.009      | 0.006      | 0.006      |
| SP                          | %w/w        | 0.13       | 0.07       | 0.06       | 0.02       | 0.02       |
| Spos                        | %w/w        | 0.11       | 0.06       | 0.05       | 0.02       | 0.01       |
| a-S <sub>POS</sub>          | moles H+/t  | 70         | 39         | 30         | 12         | 9          |
| Саксі                       | %w/w        | 0.19       | 0.28       | 0.24       | 0.10       | 0.15       |
| Сар                         | %w/w        | 0.68       | 2.0        | 0.15       | 0.12       | 0.12       |
| Сад                         | %w/w        | 0.49       | 1.7        | <0.005     | 0.020      | <0.005     |
| Мдксі                       | %w/w        | <0.005     | 0.010      | 0.030      | 0.015      | 0.043      |
| Mg₽                         | %w/w        | 0.008      | 0.073      | 0.022      | 0.019      | 0.034      |
| Mg <sub>A</sub>             | %w/w        | <0.005     | 0.063      | <0.005     | <0.005     | <0.005     |
| S <sub>HCI</sub>            | %w/w S      | [NT]       | [NT]       | [NT]       | [NT]       | 0.008      |
| SNAS                        | %w/w S      | [NT]       | [NT]       | [NT]       | [NT]       | <0.005     |
| a-Snas                      | moles H+/t  | [NT]       | [NT]       | [NT]       | [NT]       | <5         |
| S-SNAS                      | %w/w S      | [NT]       | [NT]       | [NT]       | [NT]       | <0.01      |
| Fineness Factor             | -           | 1.5        | 1.5        | 1.5        | 1.5        | 1.5        |
| a-Net Acidity               | moles H+/t  | <5         | <5         | 30         | <5         | 33         |
| s-Net Acidity               | %w/w S      | <0.01      | <0.01      | 0.05       | <0.01      | 0.05       |
| Liming rate                 | kg CaCO₃ /t | <0.75      | <0.75      | 2.3        | <0.75      | 2.4        |
| s-Net Acidity without -ANCE | %w/w S      | 0.11       | 0.06       | 0.05       | 0.02       | 0.05       |
| a-Net Acidity without ANCE  | moles H+ /t | 70         | 39         | 30         | 12         | 33         |
| Liming rate without ANCE    | kg CaCO₃ /t | 5.3        | 3.0        | 2.3        | 0.88       | 2.4        |

| sPOCAS + %S w/w             |             |            |            |            |            |            |
|-----------------------------|-------------|------------|------------|------------|------------|------------|
| Our Reference               |             | 317873-6   | 317873-7   | 317873-8   | 317873-9   | 317873-10  |
| Your Reference              | UNITS       | BH107a     | BH107b     | BH108      | BH110      | BH110      |
| Depth                       |             | 1.0-1.2    | 1.0-1.2    | 1.3-1.5    | 0.7-0.9    | 1.1-1.4    |
| Date Sampled                |             | 01/03/2023 | 01/03/2023 | 01/03/2023 | 01/03/2023 | 01/03/2023 |
| Type of sample              |             | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared               | -           | 10/03/2023 | 10/03/2023 | 10/03/2023 | 10/03/2023 | 10/03/2023 |
| Date analysed               | -           | 10/03/2023 | 10/03/2023 | 10/03/2023 | 10/03/2023 | 10/03/2023 |
| pH <sub>kcl</sub>           | pH units    | 5.5        | 6.4        | 5.6        | 6.1        | 4.4        |
| TAA pH 6.5                  | moles H+/t  | <5         | <5         | <5         | <5         | 26         |
| s-TAA pH 6.5                | %w/w S      | <0.01      | <0.01      | <0.01      | <0.01      | 0.04       |
| pH <sub>Ox</sub>            | pH units    | 3.9        | 5.6        | 2.8        | 3.6        | 2.4        |
| TPA pH 6.5                  | moles H+ /t | <5         | <5         | 160        | <5         | 820        |
| s-TPA pH 6.5                | %w/w S      | <0.01      | <0.01      | 0.25       | <0.01      | 1.3        |
| TSA pH 6.5                  | moles H⁺/t  | <5         | <5         | 160        | <5         | 800        |
| s-TSA pH 6.5                | %w/w S      | <0.01      | <0.01      | 0.25       | <0.01      | 1.3        |
| ANCE                        | % CaCO₃     | [NT]       | [NT]       | [NT]       | [NT]       | [NT]       |
| a-ANC <sub>E</sub>          | moles H+ /t | [NT]       | [NT]       | [NT]       | [NT]       | [NT]       |
| s-ANC <sub>E</sub>          | %w/w S      | [NT]       | [NT]       | [NT]       | [NT]       | [NT]       |
| S <sub>KCI</sub>            | %w/w S      | <0.005     | 0.01       | 0.03       | <0.005     | 0.1        |
| Sp                          | %w/w        | 0.01       | 0.08       | 0.29       | 0.01       | 1.4        |
| Spos                        | %w/w        | 0.01       | 0.07       | 0.26       | 0.01       | 1.3        |
| a-Spos                      | moles H⁺/t  | 6          | 42         | 160        | 6          | 840        |
| Саксі                       | %w/w        | 0.06       | 0.19       | 0.1        | 0.04       | 0.04       |
| Ca⊦                         | %w/w        | 0.04       | 0.17       | 0.10       | 0.04       | 0.04       |
| Сад                         | %w/w        | <0.005     | <0.005     | 0.006      | <0.005     | 0.008      |
| Мдксі                       | %w/w        | 0.008      | 0.010      | <0.005     | <0.005     | <0.005     |
| Mg <sub>P</sub>             | %w/w        | 0.007      | 0.012      | 0.005      | <0.005     | 0.005      |
| Mg <sub>A</sub>             | %w/w        | <0.005     | <0.005     | <0.005     | <0.005     | <0.005     |
| S <sub>HCI</sub>            | %w/w S      | [NT]       | [NT]       | [NT]       | [NT]       | 0.092      |
| S <sub>NAS</sub>            | %w/w S      | [NT]       | [NT]       | [NT]       | [NT]       | <0.005     |
| a-Snas                      | moles H⁺/t  | [NT]       | [NT]       | [NT]       | [NT]       | <5         |
| s-Snas                      | %w/w S      | [NT]       | [NT]       | [NT]       | [NT]       | <0.01      |
| Fineness Factor             | -           | 1.5        | 1.5        | 1.5        | 1.5        | 1.5        |
| a-Net Acidity               | moles H+ /t | 8          | 42         | 160        | 6          | 870        |
| s-Net Acidity               | %w/w S      | 0.01       | 0.07       | 0.26       | 0.01       | 1.4        |
| Liming rate                 | kg CaCO₃ /t | <0.75      | 3.2        | 12         | <0.75      | 65         |
| s-Net Acidity without -ANCE | %w/w S      | 0.01       | 0.07       | 0.26       | 0.01       | 1.4        |
| a-Net Acidity without ANCE  | moles H⁺/t  | 8.2        | 42         | 160        | 6.0        | 870        |
| Liming rate without ANCE    | kg CaCO₃ /t | <0.75      | 3.2        | 12         | <0.75      | 65         |

| sPOCAS + %S w/w             |                         |            |            |
|-----------------------------|-------------------------|------------|------------|
| Our Reference               |                         | 317873-11  | 317873-12  |
| Your Reference              | UNITS                   | BH111a     | BH112b     |
| Depth                       |                         | 1.0-1.2    | 1.1-1.3    |
| Date Sampled                |                         | 01/03/2023 | 01/03/2023 |
| Type of sample              |                         | Soil       | Soil       |
| Date prepared               | -                       | 10/03/2023 | 10/03/2023 |
| Date analysed               | -                       | 10/03/2023 | 10/03/2023 |
| pH kd                       | pH units                | 6.3        | 8.7        |
| TAA pH 6.5                  | moles H+/t              | <5         | <5         |
| s-TAA pH 6.5                | %w/w S                  | <0.01      | <0.01      |
| pH ox                       | pH units                | 5.0        | 5.2        |
| TPA pH 6.5                  | moles H+/t              | <5         | <5         |
| s-TPA pH 6.5                | %w/w S                  | <0.01      | <0.01      |
| TSA pH 6.5                  | moles H+ /t             | <5         | <5         |
| s-TSA pH 6.5                | %w/w S                  | <0.01      | <0.01      |
| ANCE                        | % CaCO₃                 | [NT]       | [NT]       |
| a-ANC <sub>E</sub>          | moles H+/t              | [NT]       | [NT]       |
| s-ANC <sub>E</sub>          | %w/w S                  | [NT]       | [NT]       |
| Skci                        | %w/w S                  | 0.007      | 0.07       |
| SP                          | %w/w                    | 0.08       | 0.36       |
| Spos                        | %w/w                    | 0.07       | 0.28       |
| a-S <sub>POS</sub>          | moles H+/t              | 43         | 180        |
| Саксі                       | %w/w                    | 0.25       | 0.27       |
| Ca <sub>P</sub>             | %w/w                    | 0.20       | 0.37       |
| Сад                         | %w/w                    | <0.005     | 0.10       |
| Мдксі                       | %w/w                    | 0.011      | 0.022      |
| Mg <sub>P</sub>             | %w/w                    | 0.012      | 0.035      |
| Mg <sub>A</sub>             | %w/w                    | <0.005     | 0.013      |
| Shci                        | %w/w S                  | [NT]       | [NT]       |
| Snas                        | %w/w S                  | [NT]       | [NT]       |
| a-Snas                      | moles H+/t              | [NT]       | [NT]       |
| s-Snas                      | %w/w S                  | [NT]       | [NT]       |
| Fineness Factor             | -                       | 1.5        | 1.5        |
| a-Net Acidity               | moles H+/t              | 43         | 180        |
| s-Net Acidity               | %w/w S                  | 0.07       | 0.28       |
| Liming rate                 | kg CaCO₃/t              | 3.2        | 13         |
| s-Net Acidity without -ANCE | %w/w S                  | 0.07       | 0.28       |
| a-Net Acidity without ANCE  | moles H+ /t             | 43         | 180        |
| Liming rate without ANCE    | kg CaCO <sub>3</sub> /t | 3.2        | 13         |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-064 | sPOCAS determined using titrimetric and ICP-AES techniques.<br>Based on National acid sulfate soils identification and laboratory methods manual June 2018.<br>Ideally samples should be received in the laboratory at <4oC. Please refer to SRA for sample temperature on receipt.<br>Net acidity including ANC has a safety factor of 1.5 applied.<br>Neutralising value (NV) of 100% is assumed for liming rate<br>The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not<br>underestimated, has not been applied in the SHCL results reported. |

| QUALIT                      | Y CONTROL: s            | POCAS | + %S w/w  |            |   | Du         | plicate    |     | Spike Re   | covery % |
|-----------------------------|-------------------------|-------|-----------|------------|---|------------|------------|-----|------------|----------|
| Test Description            | Units                   | PQL   | Method    | Blank      | # | Base       | Dup.       | RPD | LCS-1      | [NT]     |
| Date prepared               | -                       |       |           | 10/03/2023 | 1 | 10/03/2023 | 10/03/2023 |     | 10/03/2023 |          |
| Date analysed               | -                       |       |           | 10/03/2023 | 1 | 10/03/2023 | 10/03/2023 |     | 10/03/2023 |          |
| pH <sub>kcl</sub>           | pH units                |       | Inorg-064 | [NT]       | 1 | 8.7        | 8.9        | 2   | 98         |          |
| TAA pH 6.5                  | moles H+/t              | 5     | Inorg-064 | <5         | 1 | <5         | <5         | 0   | 105        |          |
| s-TAA pH 6.5                | %w/w S                  | 0.01  | Inorg-064 | <0.01      | 1 | <0.01      | <0.01      | 0   | [NT]       |          |
| pH <sub>Ox</sub>            | pH units                |       | Inorg-064 | [NT]       | 1 | 7.6        | 7.4        | 3   | 90         |          |
| TPA pH 6.5                  | moles H+/t              | 5     | Inorg-064 | <5         | 1 | <5         | <5         | 0   | 121        |          |
| s-TPA pH 6.5                | %w/w S                  | 0.01  | Inorg-064 | <0.01      | 1 | <0.01      | <0.01      | 0   | [NT]       |          |
| TSA pH 6.5                  | moles H*/t              | 5     | Inorg-064 | <5         | 1 | <5         | <5         | 0   | [NT]       |          |
| s-TSA pH 6.5                | %w/w S                  | 0.01  | Inorg-064 | <0.01      | 1 | <0.01      | <0.01      | 0   | [NT]       |          |
| ANCE                        | % CaCO <sub>3</sub>     | 0.05  | Inorg-064 | <0.05      | 1 | 1.3        | 1.5        | 14  | [NT]       |          |
| a-ANC <sub>E</sub>          | moles H*/t              | 5     | Inorg-064 | <5         | 1 | 260        | 300        | 14  | [NT]       |          |
| s-ANC <sub>E</sub>          | %w/w S                  | 0.05  | Inorg-064 | <0.05      | 1 | 0.42       | 0.47       | 11  | [NT]       |          |
| SKCI                        | %w/w S                  | 0.005 | Inorg-064 | <0.005     | 1 | 0.02       | 0.02       | 0   | [NT]       |          |
| Sp                          | %w/w                    | 0.005 | Inorg-064 | <0.005     | 1 | 0.13       | 0.16       | 21  | [NT]       |          |
| S <sub>POS</sub>            | %w/w                    | 0.005 | Inorg-064 | <0.005     | 1 | 0.11       | 0.14       | 24  | [NT]       |          |
| a-S <sub>POS</sub>          | moles H+/t              | 5     | Inorg-064 | <5         | 1 | 70         | 89         | 24  | [NT]       |          |
| Ca <sub>KCI</sub>           | %w/w                    | 0.005 | Inorg-064 | <0.005     | 1 | 0.19       | 0.18       | 5   | [NT]       |          |
| Ca <sub>P</sub>             | %w/w                    | 0.005 | Inorg-064 | <0.005     | 1 | 0.68       | 0.77       | 12  | [NT]       |          |
| Ca <sub>A</sub>             | %w/w                    | 0.005 | Inorg-064 | <0.005     | 1 | 0.49       | 0.59       | 19  | [NT]       |          |
| Mg <sub>KCl</sub>           | %w/w                    | 0.005 | Inorg-064 | <0.005     | 1 | <0.005     | <0.005     | 0   | [NT]       |          |
| Mg <sub>P</sub>             | %w/w                    | 0.005 | Inorg-064 | <0.005     | 1 | 0.008      | 0.009      | 12  | [NT]       |          |
| Mg <sub>A</sub>             | %w/w                    | 0.005 | Inorg-064 | <0.005     | 1 | <0.005     | 0.006      | 18  | [NT]       |          |
| S <sub>HCI</sub>            | %w/w S                  | 0.005 | Inorg-064 | <0.005     | 1 |            | [NT]       |     | [NT]       |          |
| S <sub>NAS</sub>            | %w/w S                  | 0.005 | Inorg-064 | <0.005     | 1 |            | [NT]       |     | [NT]       |          |
| a-S <sub>NAS</sub>          | moles H <sup>+</sup> /t | 5     | Inorg-064 | <5         | 1 |            | [NT]       |     | [NT]       |          |
| s-Snas                      | %w/w S                  | 0.01  | Inorg-064 | <0.01      | 1 |            | [NT]       |     | [NT]       |          |
| Fineness Factor             | -                       | 1.5   | Inorg-064 | <1.5       | 1 | 1.5        | 1.5        | 0   | [NT]       |          |
| a-Net Acidity               | moles H*/t              | 5     | Inorg-064 | <5         | 1 | <5         | <5         | 0   | [NT]       |          |
| s-Net Acidity               | %w/w S                  | 0.01  | Inorg-064 | <0.01      | 1 | <0.01      | <0.01      | 0   | [NT]       |          |
| Liming rate                 | kg CaCO₃/t              | 0.75  | Inorg-064 | <0.75      | 1 | <0.75      | <0.75      | 0   | [NT]       |          |
| s-Net Acidity without -ANCE | %w/w S                  | 0.01  | Inorg-064 | <0.01      | 1 | 0.11       | 0.14       | 24  | [NT]       |          |

| QUALITY CONTROL: sPOCAS + %S w/w |             |      |           |       | Duplicate |      |      | Spike Recovery % |       |      |
|----------------------------------|-------------|------|-----------|-------|-----------|------|------|------------------|-------|------|
| Test Description                 | Units       | PQL  | Method    | Blank | #         | Base | Dup. | RPD              | LCS-1 | [NT] |
| a-Net Acidity without ANCE       | moles H⁺ /t | 5    | Inorg-064 | <5    | 1         | 70   | 89   | 24               |       | [NT] |
| Liming rate without ANCE         | kg CaCO₃/t  | 0.75 | Inorg-064 | <0.75 | 1         | 5.3  | 6.7  | 23               |       | [NT] |

| QUALITY                     | CONTROL: s              | POCAS · | + %S w/w  |       |    | Du         | plicate    |     | Spike Re | covery % |
|-----------------------------|-------------------------|---------|-----------|-------|----|------------|------------|-----|----------|----------|
| Test Description            | Units                   | PQL     | Method    | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared               | -                       |         |           | [NT]  | 11 | 10/03/2023 | 10/03/2023 |     |          | [NT]     |
| Date analysed               | -                       |         |           | [NT]  | 11 | 10/03/2023 | 10/03/2023 |     |          | [NT]     |
| pH <sub>kcl</sub>           | pH units                |         | Inorg-064 | [NT]  | 11 | 6.3        | 6.3        | 0   |          | [NT]     |
| TAA pH 6.5                  | moles H+/t              | 5       | Inorg-064 | [NT]  | 11 | <5         | <5         | 0   |          | [NT]     |
| s-TAA pH 6.5                | %w/w S                  | 0.01    | Inorg-064 | [NT]  | 11 | <0.01      | <0.01      | 0   |          | [NT]     |
| pH <sub>Ox</sub>            | pH units                |         | Inorg-064 | [NT]  | 11 | 5.0        | 5.0        | 0   |          | [NT]     |
| TPA pH 6.5                  | moles H+/t              | 5       | Inorg-064 | [NT]  | 11 | <5         | <5         | 0   |          | [NT]     |
| s-TPA pH 6.5                | %w/w S                  | 0.01    | Inorg-064 | [NT]  | 11 | <0.01      | <0.01      | 0   |          | [NT]     |
| TSA pH 6.5                  | moles H*/t              | 5       | Inorg-064 | [NT]  | 11 | <5         | <5         | 0   |          | [NT]     |
| s-TSA pH 6.5                | %w/w S                  | 0.01    | Inorg-064 | [NT]  | 11 | <0.01      | <0.01      | 0   |          | [NT]     |
| S <sub>KCI</sub>            | %w/w S                  | 0.005   | Inorg-064 | [NT]  | 11 | 0.007      | 0.007      | 0   |          | [NT]     |
| S <sub>P</sub>              | %w/w                    | 0.005   | Inorg-064 | [NT]  | 11 | 0.08       | 0.06       | 29  |          | [NT]     |
| S <sub>POS</sub>            | %w/w                    | 0.005   | Inorg-064 | [NT]  | 11 | 0.07       | 0.06       | 15  |          | [NT]     |
| a-S <sub>POS</sub>          | moles H+/t              | 5       | Inorg-064 | [NT]  | 11 | 43         | 36         | 18  |          | [NT]     |
| Ca <sub>KCI</sub>           | %w/w                    | 0.005   | Inorg-064 | [NT]  | 11 | 0.25       | 0.24       | 4   |          | [NT]     |
| Ca <sub>P</sub>             | %w/w                    | 0.005   | Inorg-064 | [NT]  | 11 | 0.20       | 0.14       | 35  |          | [NT]     |
| Ca <sub>A</sub>             | %w/w                    | 0.005   | Inorg-064 | [NT]  | 11 | <0.005     | <0.005     | 0   |          | [NT]     |
| Мдксі                       | %w/w                    | 0.005   | Inorg-064 | [NT]  | 11 | 0.011      | 0.011      | 0   |          | [NT]     |
| Mg <sub>P</sub>             | %w/w                    | 0.005   | Inorg-064 | [NT]  | 11 | 0.012      | 0.011      | 9   |          | [NT]     |
| Mg <sub>A</sub>             | %w/w                    | 0.005   | Inorg-064 | [NT]  | 11 | <0.005     | <0.005     | 0   |          | [NT]     |
| Fineness Factor             | -                       | 1.5     | Inorg-064 | [NT]  | 11 | 1.5        | 1.5        | 0   |          | [NT]     |
| a-Net Acidity               | moles H <sup>+</sup> /t | 5       | Inorg-064 | [NT]  | 11 | 43         | 37         | 15  |          | [NT]     |
| s-Net Acidity               | %w/w S                  | 0.01    | Inorg-064 | [NT]  | 11 | 0.07       | 0.06       | 15  |          | [NT]     |
| Liming rate                 | kg CaCO₃/t              | 0.75    | Inorg-064 | [NT]  | 11 | 3.2        | 2.8        | 13  |          | [NT]     |
| s-Net Acidity without -ANCE | %w/w S                  | 0.01    | Inorg-064 | [NT]  | 11 | 0.07       | 0.06       | 15  |          | [NT]     |
| a-Net Acidity without ANCE  | moles H⁺/t              | 5       | Inorg-064 | [NT]  | 11 | 43         | 37         | 15  |          | [NT]     |
| Liming rate without ANCE    | kg CaCO₃/t              | 0.75    | Inorg-064 | [NT]  | 11 | 3.2        | 2.8        | 13  |          | [NT]     |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

## **Report Comments**

POCAS\_S\_%SWW:Sample 317873-3,5,6 and 11 have been observed CaKCI>CaP and/or MgKCI>MgP, this may be considered acceptable due to heterogeneity.



#### Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 317873-A**

| Client Details |                                             |
|----------------|---------------------------------------------|
| Client         | Martens & Associates Pty Ltd                |
| Attention      | Ben Cornish                                 |
| Address        | Suite 201, 20 George St, Hornsby, NSW, 2077 |

| Sample Details                       |                            |
|--------------------------------------|----------------------------|
| Your Reference                       | P2309440-Bayview Golf Club |
| Number of Samples                    | additional analysis        |
| Date samples received                | 03/03/2023                 |
| Date completed instructions received | 13/03/2023                 |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

| Report Details                                                                                       |            |  |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Date results requested by                                                                            | 20/03/2023 |  |  |  |  |
| Date of Issue                                                                                        | 20/03/2023 |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |  |  |

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager



| sPOCAS + %S w/w             |             |             |
|-----------------------------|-------------|-------------|
| Our Reference               |             | 317873-A-15 |
| Your Reference              | UNITS       | BH08        |
| Depth                       |             | 0.8-1.0     |
| Date Sampled                |             | 01/03/2023  |
| Type of sample              |             | Soil        |
| Date prepared               | -           | 20/03/2023  |
| Date analysed               | -           | 20/03/2023  |
| рН ксі                      | pH units    | 5.7         |
| ТАА рН 6.5                  | moles H+/t  | <5          |
| s-TAA pH 6.5                | %w/w S      | <0.01       |
| pH <sub>Ox</sub>            | pH units    | 5.4         |
| TPA pH 6.5                  | moles H+/t  | <5          |
| s-TPA pH 6.5                | %w/w S      | <0.01       |
| TSA pH 6.5                  | moles H+/t  | <5          |
| s-TSA pH 6.5                | %w/w S      | <0.01       |
| ANCE                        | % CaCO₃     | [NT]        |
| a-ANC <sub>E</sub>          | moles H+/t  | [NT]        |
| s-ANC <sub>E</sub>          | %w/w S      | [NT]        |
| SKCI                        | %w/w S      | <0.005      |
| Sp                          | %w/w        | 0.03        |
| Spos                        | %w/w        | 0.03        |
| a-S <sub>POS</sub>          | moles H+/t  | 17          |
| Саксі                       | %w/w        | 0.01        |
| Ca <sub>P</sub>             | %w/w        | 0.12        |
| Ca <sub>A</sub>             | %w/w        | 0.11        |
| Мдксі                       | %w/w        | <0.005      |
| Mg <sub>P</sub>             | %w/w        | 0.014       |
| Mg <sub>A</sub>             | %w/w        | 0.014       |
| S <sub>HCI</sub>            | %w/w S      | [NT]        |
| S <sub>NAS</sub>            | %w/w S      | [NT]        |
| a-Snas                      | moles H+/t  | [NT]        |
| s-Snas                      | %w/w S      | [NT]        |
| Fineness Factor             | -           | 1.5         |
| a-Net Acidity               | moles H⁺ /t | 19          |
| s-Net Acidity               | %w/w S      | 0.03        |
| Liming rate                 | kg CaCO₃/t  | 1.4         |
| s-Net Acidity without -ANCE | %w/w S      | 0.03        |
| a-Net Acidity without ANCE  | moles H+ /t | 19          |
| Liming rate without ANCE    | kg CaCO₃ /t | 1.4         |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-064 | sPOCAS determined using titrimetric and ICP-AES techniques.<br>Based on National acid sulfate soils identification and laboratory methods manual June 2018.<br>Ideally samples should be received in the laboratory at <4oC. Please refer to SRA for sample temperature on receipt.<br>Net acidity including ANC has a safety factor of 1.5 applied.<br>Neutralising value (NV) of 100% is assumed for liming rate<br>The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not<br>underestimated, has not been applied in the SHCL results reported. |

| QUALITY                     | CONTROL: s              | POCAS + | ⊦ %S w/w  |            |      | Du   | plicate |      | Spike Rec  | overy % |
|-----------------------------|-------------------------|---------|-----------|------------|------|------|---------|------|------------|---------|
| Test Description            | Units                   | PQL     | Method    | Blank      | #    | Base | Dup.    | RPD  | LCS-1      | [NT]    |
| Date prepared               | -                       |         |           | 20/03/2023 | [NT] |      | [NT]    | [NT] | 20/03/2023 |         |
| Date analysed               | -                       |         |           | 20/03/2023 | [NT] |      | [NT]    | [NT] | 20/03/2023 |         |
| pH <sub>kcl</sub>           | pH units                |         | Inorg-064 | [NT]       | [NT] |      | [NT]    | [NT] | 100        |         |
| TAA pH 6.5                  | moles H+/t              | 5       | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | 105        |         |
| s-TAA pH 6.5                | %w/w S                  | 0.01    | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |         |
| pH <sub>Ox</sub>            | pH units                |         | Inorg-064 | [NT]       | [NT] |      | [NT]    | [NT] | 97         |         |
| TPA pH 6.5                  | moles H+/t              | 5       | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | 111        |         |
| s-TPA pH 6.5                | %w/w S                  | 0.01    | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |         |
| TSA pH 6.5                  | moles H <sup>+</sup> /t | 5       | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| s-TSA pH 6.5                | %w/w S                  | 0.01    | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |         |
| ANCE                        | % CaCO <sub>3</sub>     | 0.05    | Inorg-064 | <0.05      | [NT] |      | [NT]    | [NT] | [NT]       |         |
| a-ANC <sub>E</sub>          | moles H <sup>+</sup> /t | 5       | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| s-ANC <sub>E</sub>          | %w/w S                  | 0.05    | Inorg-064 | <0.05      | [NT] |      | [NT]    | [NT] | [NT]       |         |
| S <sub>KCI</sub>            | %w/w S                  | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| S <sub>P</sub>              | %w/w                    | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| S <sub>POS</sub>            | %w/w                    | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| a-S <sub>POS</sub>          | moles H+/t              | 5       | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Саксі                       | %w/w                    | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Ca <sub>P</sub>             | %w/w                    | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Ca <sub>A</sub>             | %w/w                    | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Мдксі                       | %w/w                    | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Mg <sub>P</sub>             | %w/w                    | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Mg <sub>A</sub>             | %w/w                    | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| S <sub>HCI</sub>            | %w/w S                  | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| S <sub>NAS</sub>            | %w/w S                  | 0.005   | Inorg-064 | <0.005     | [NT] |      | [NT]    | [NT] | [NT]       |         |
| a-S <sub>NAS</sub>          | moles H <sup>+</sup> /t | 5       | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| s-Snas                      | %w/w S                  | 0.01    | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Fineness Factor             | -                       | 1.5     | Inorg-064 | <1.5       | [NT] |      | [NT]    | [NT] | [NT]       |         |
| a-Net Acidity               | moles H <sup>+</sup> /t | 5       | Inorg-064 | <5         | [NT] |      | [NT]    | [NT] | [NT]       |         |
| s-Net Acidity               | %w/w S                  | 0.01    | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |         |
| Liming rate                 | kg CaCO₃/t              | 0.75    | Inorg-064 | <0.75      | [NT] |      | [NT]    | [NT] | [NT]       |         |
| s-Net Acidity without -ANCE | %w/w S                  | 0.01    | Inorg-064 | <0.01      | [NT] |      | [NT]    | [NT] | [NT]       |         |

| QUALITY CONTROL: sPOCAS + %S w/w |                         |      |           | Duplicate |      |      |      | Spike Recovery % |       |      |
|----------------------------------|-------------------------|------|-----------|-----------|------|------|------|------------------|-------|------|
| Test Description                 | Units                   | PQL  | Method    | Blank     | #    | Base | Dup. | RPD              | LCS-1 | [NT] |
| a-Net Acidity without ANCE       | moles H <sup>+</sup> /t | 5    | Inorg-064 | <5        | [NT] |      | [NT] | [NT]             |       |      |
| Liming rate without ANCE         | kg CaCO₃/t              | 0.75 | Inorg-064 | <0.75     | [NT] |      | [NT] | [NT]             |       |      |

| Result Definitions |                                           |  |  |  |  |
|--------------------|-------------------------------------------|--|--|--|--|
| NT                 | Not tested                                |  |  |  |  |
| NA                 | Test not required                         |  |  |  |  |
| INS                | Insufficient sample for this test         |  |  |  |  |
| PQL                | Practical Quantitation Limit              |  |  |  |  |
| <                  | Less than                                 |  |  |  |  |
| >                  | Greater than                              |  |  |  |  |
| RPD                | Relative Percent Difference               |  |  |  |  |
| LCS                | Laboratory Control Sample                 |  |  |  |  |
| NS                 | Not specified                             |  |  |  |  |
| NEPM               | National Environmental Protection Measure |  |  |  |  |
| NR                 | Not Reported                              |  |  |  |  |

| Quality Control Definitions        |                                                                                                                                                                                                                                  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |  |  |  |  |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |  |  |  |  |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |  |  |  |  |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |  |  |  |  |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |  |  |  |  |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.