

Our Ref: 213427 Waste Water Report

08 June 2021

The General Manager Pittwater Council PO Box 882 Mona Vale NSW 1660

Dear Sir

Report on Required Sewage Management Facility for

Proposed Residence 41 Coasters Retreat, Ku-Ring-Gai Chase

A wastewater treatment system is required for on-site effluent disposal at 34 Coasters Retreat, Ku-Ring-Gai Chase.

The Site

The site consists of a new 3 bedroom dwelling with 5 persons in occupancy. The dwelling has a combined greywater/blackwater drainage system which conveys waste by gravity to a waste water treatment system located external to the building. The waste water treatment system discharges to $48m^2$ of discharge control trenching as shown on the site plan.

The site has an area of 2229m² and has a north west aspect. It is located on the moderate to steeply graded lower reaches of a hill slope. The natural slope rises from the downhill boundary of the property at an angle of 14° before increasing in grade to a maximum angle of 33° near the uphill boundary of the property. The slope above and below the property increase in grade.

A moderately sloping lawn is located on the downhill side of the property. Detached sandstone joint blocks that originate from the slope above are embedded in the lawn.

Soil tests carried out on the site have identified the subsurface conditions consist of sandy dark brown top soil, fine to medium grained, moist with fine trace organic matter to a depth of 0 to 0.7m. Underlying these soils rock was encountered to the depth of auger refusal at 0.7m. there was no water table encountered.

Proposed Dwelling

This report is based on these figures and the allowances outlined in Table H1 – AS1547:2012 "Typical domestic wastewater flow design allowances - Australia", recommends an allowance of 120 litres/person/day for households with on-site roof water tank supply.

The occupants will be issued with information regarding water conservation and the use of products which are low in phosphorus to minimize the amount of wastewater generated. A site assessment in shown in Table 1 below:

Site Feature	Assessment
Flood Potential	Nil
Soil Type	Sandy soil, dark brown, fine to medium grained
Exposure	Northwest facing, high sun & wind exposure
Slope %	14° to 30°
Land Form	Linear divergent slope
Erosion Potential	No signs of erosion potential present
Run-on and up slope seepage	Possible, not evident
Site Drainage	Good – site stormwater easily diverted from proposed absorption area
Land filling	Nil

Table One: Site Assessment

Land available for application areas and buffers	Sufficient area available
Rocks and rock outcrops	<10% of land surface contains rock >200mm diameter
Buffers	>50 metres buffer distance to water source

The system

1. 'Fujiclean' CE-1500 EX on-site waste water treatment system and 45m² of discharge control trenching.

The Disposal Area

The disposal area consists of 48m² total of discharge control trenching with a width of 500mm distributed between 4 trenches 1000mm apart.

<u>Sizing</u>

L	=	Length in m
Q	=	Design daily flow in L/day
DLR	=	Design loading rate in mm/day
W	=	Width in m

 $L = 600 / (30 \times 0.5)$

L = 40 metres required

Proposed Dwelling

For a 3 bedroom house with up to 5 users, a design combined wastewater flow rate of 600litres/day is adopted.

Table L1, "Recommended Design Loading Rates for Trenches and Beds" from AS 1547-2012, indicates a DLR of 50mm/day for sandy loam soils weakly structured for secondary treated effluent, but due to the slope of the land we have adopted a more conservative figure of 30mm/day.

Expected Quality of Wastewater

Effluent Quality

The expected quality of wastewater after partial treatment in a waste water treatment system is shown in Table Two below:

Table 2 Expected Quality of Wastewater after Treatment in a Waste Water Treatment System

Parameter	Concentration
Biochemical Oxygen Demand BOD	<10 mg/L
Suspended solids	<10 mg/L
Total Nitrogen (TN)	18.11 mg/L
Total Phosphorous	1.33 mg/L
Faecal Coliforms	<10 cfu/100ml

Source: NSW Health 2014

Maintenance:

DO

Have your system serviced once a year

Learn the location and layout of your on-site waste water treatment system and land application area.

Use biodegradable liquid detergents such as concentrates wit low sodium and phosphorus levels.

Conserve water.

DON'T

Don't put bleaches, disinfectants, whiteners, nappy soakers and spot removers in large quantities into your septic tank via the sink, Washing machine or toilet.

Don't allow any foreign materials such as nappies, sanitary napkins, condom's and other hygiene products to enter the system.

Don't use more than the recommended amounts of detergents.

Don't put fats and oils down the drain and keep food waste out of your system.

APPENDIX

- Table L1 AS1547:2012, "Recommended Design Loading Rates For Trenches and Beds"
- Table H1 AS1547:2012, "Typical domestic wastewater flow design allowances-Australia"
- Table L2 AS1547:2012 "Typical Dimensions of Conventional Trenches and Beds"
- Figure L4 AS1547:2012 Discharge Control Trench

AS/NZS 1547:2012

TABLE L1

145

RECOMMENDED DESIGN LOADING RATES FOR TRENCHES AND BEDS

				Desi	ign loading ra	te (DLR) (mm/	d)
Soil	Soil		Indicative	Tre	nches and be	ds	
category texture	Structure	permeability (K _{sat})(m/d)	Primary treated effluent		Secondary	ETA/ETS beds and	
			Salvera	Conservative rate	Maximum rate	treated effluent	trenches
1	Gravels and sands	Structureless (massive)	> 3.0	20 (see Note 1)	35 (see Note 1)	50 (see Note 1)	
2	Sandy loams	Weakly structured	> 3.0	20 (see Note 1)	30 (see Note 1)	50 (see Note 1)	
		Massive	1.4 - 3.0	15	25	50	(see
3 Loams	High/ moderate structured	1.5 - 3.0	15	25	50	Note 4)	
	Weakly structured or massive	0.5 - 1.5	10	15	30		
	High/ moderate structured	0.5 - 1.5	10	15	30	12	
4	Clay loams	Weakly structured	0.12 - 0.5	6	10	20	8
		Massive	0.06 - 0.12	4	5	10	5
		Strongly structured	0.12 - 0.5	5	8	12	8
5	Light clays	Moderately structured	0.06 - 0.12		5	10	
	Weakly structured or massive	< 0.06			8	-	
6		Strongly structured	0.06 - 0.5				5 (see Notes 2, 3, & 5)
	Medium to heavy clays	Moderately structured	< 0.06	(S	ee Notes 2 & 3)	2, 3, a 3)
	,,	Weakly structured or massive	< 0.06				

NOTES:

1

The treatment capacity of the soil and not the hydraulic capacity of the soil or the growth of the clogging layer govern the effluent loading rate in Category 1 and weakly structured Category 2 soils. Land application systems in these soils require design by a suitably qualified and experienced person, and distribution techniques to help achieve even distribution of effluent over the full design surface (see L6.2 and Figure L4 for recommended discharge method by discharge control trench). These soils have low nutrient retention capacities, often allowing accession of nutrients to groundwater.

2 To enable use of such soils for on-site wastewater land application systems, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.

3 If K_{sat} < 0.06 m/d, a full water balance for the land application can be used to calculate trench/bed size (see Appendix Q).</p>

4 ETA/ETS systems are not normally used on soil Categories 1 to 3.

5 For Category 6 soils ETA/ETS systems are suitable only for use with secondary treated effluent.

Table L1 – AS1547: 2012

TABLE H1

TYPICAL DOMESTIC WASTEWATER DESIGN FLOW ALLOWANCES - AUSTRALIA

Source	Typical wastewater design flows (L/person/day)		
Decidential promises	On-site roof water tank supply	Reticulated water supply	
Residential premises	120	150	
Source: Australian Bureau of Statistics. Water Account 2004/2005. Chapter 7 Figure 7.3			

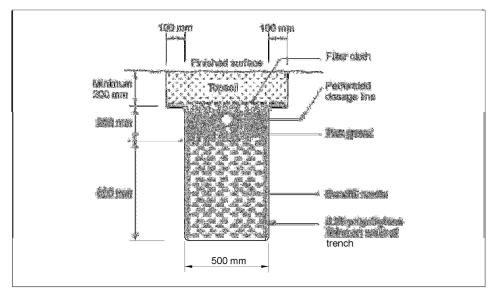
Table H1 – AS1547:2012, "Typical domestic wastewater flow design allowances-Australia"

AS/NZS 1547:2012

146

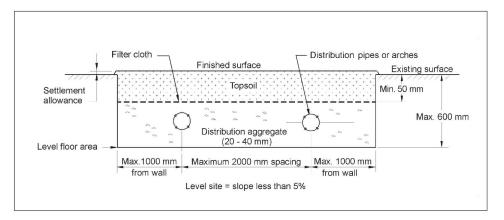
TABLE L2 TYPICAL DIMENSIONS OF CONVENTIONAL TRENCHES AND BEDS

	Typical dimensions (mm)	Maximum (mm)	Minimum (mm)	
Trench dimensions				
Width	300 - 450	600	200	
Depth of aggregate	200 - 400	400	200	
Depth of topsoil	100 – 150	150	100	
Spacing between adjacent trenches (sidewall to sidewall)	_	N/A	1000	
Bed dimensions				
Width	1000 – 4000	4000	1000	
Depth of aggregate	300 - 600	600	300	
Depth of topsoil	100 – 150	150	100	
Spacing between adjacent beds (sidewall to sidewall)	_	N/A	1000	


L5.3 Construction details

Typical details of construction are shown in:

Trenches	Figure L1 Conventional piped trench		
	Figure L2 Self-supporting arch trench (two versions)		
	Figure L3 Boxed trench		
	Figure L4 Discharge control trench		
Beds	Figure L5 Conventional bed		
ETA/ETS trenches and beds	Figure L6 ETA/ETS bed details		
	Figure L7 ETA/ETS trenches		


Table L2 – AS1547:2012 "Typical Dimensions of Conventional Trenches and Beds" $% \mathcal{A} = \mathcal{A} + \mathcal{A}$

NOTE: An LPED line can be used for dose loading instead of the perforated line.

NOTE: LPED lines can be used instead of distribution pipes when dose loading effluent into beds.

FIGURE L5 CONVENTIONAL BED