

REFER TO SHEET CO1 FOR NOTES

OSD - HYDROLOGY CALCULATIONS

DEVELOPMENT AREA $= 363.4 \text{m}^2$

PRE DEVELOPMENT:

IMPERVIOUS AREA

EXISTING ROOF EXISTING PAVEMENT

 $= 0.0 \, \text{m}^2$

 $= 0.0 \, \text{m}^2$ TOTAL IMPERVIOUS AREA $= 0.0 \text{m}^2$

FRACTION IMPERVIOUS = 0.0% (EXISTING SITE MODELLED AS "STATE OF NATURE")

OSD STRATEGY:

BYPASS EXCLUDING POOL: NOTE: <u>IN OSD</u> 1: POST - DEVELOPMENT IN OSD 2 <u>BYPASS</u>: IMPERVIOUS AREA GIVEN THAT THE SWIMMING POOL WILL BE = 196.9m² = 186.9m² = 9.9m² $= 0.0 \, \text{m}^2$ $= 0.0 \,\mathrm{m}^2$ PROPOSED ROOF CONNECTED TO THE $= 27.7 \text{m}^2$ PROPOSED PAVE = 91.1m² $= 0.0 \,\mathrm{m}^2$ = 51.3m² $= 16.1 \text{m}^2$ SEWER, AN ADDITIONAL SET OF CALCULATIONS = 37.6m² (53.9%) = 51.3 m^2 (48.1%) $= 288.0 \text{ m}^2$ = 186.9m² (100%) = 16.1m² (22.5%) TOTAL IMP. AREA HAVE BEEN MODELLED TO FRACTION IMP. = 79.2% EXCLUDE THE SWIMMING POOL AREA FOR THE POST $= 0.0 \text{ m}^2 (0.0\%)$ = 55.4m² (51.9%) = 55.4m² (42.7%) $= 75.4 \text{m}^2$ = 32.2m² (46.1%) LANDSCAPE AREA $= 106.7 \text{ m}^2$ TOTAL AREA = 363.4m² = 186.9m² = 69.8m² = 71.5m² DEVELOPMENT SCENARIO

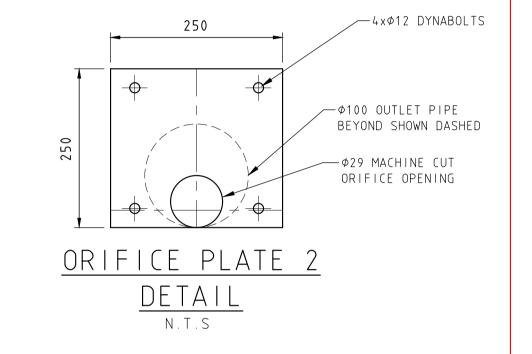
OSD HAS BEEN MODELLED TO LIMIT POST

STATE OF NATURE FLOWS FOR THE ENTIRE

DESIGN STORM EVENTS. REFER TO DRAINS

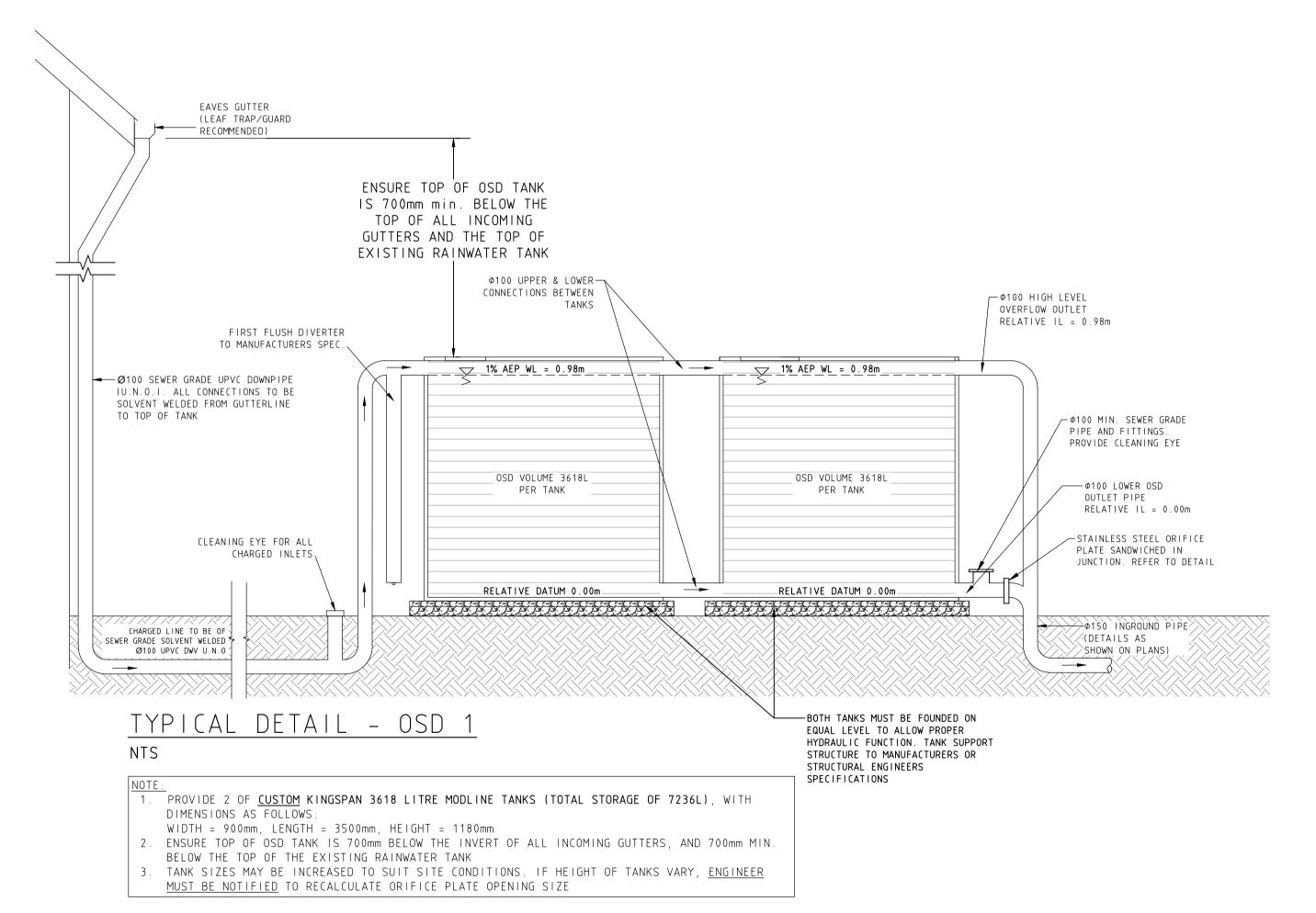
DEVELOPMENT SITE FLOWS TO MATCH

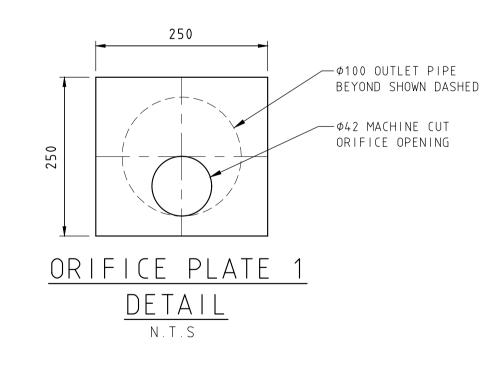
SITE FOR THE 1%, 5% AND 20% AEP

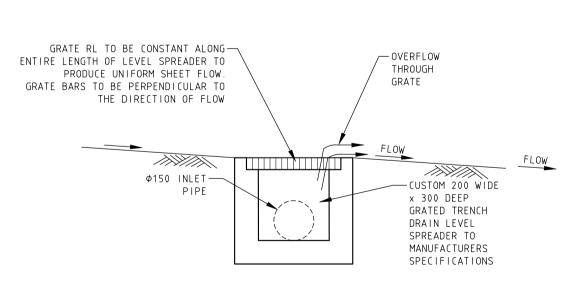

MODEL OUTPUT SUMMARY TABLE

RATING CLASS TO BE -1% AEP WL = 0.97m IN ACCORDANCE WITH AUSTRALIAN STANDARDS AS PER PLAN/SCHEDULE (RELATIVE TWL = 1.00m) OSD 2 VOLUME INLET PIPE SHOWN INDICATIVELY ---CALCULATIONS: PRECAST CONCRETE --ORIFICE PLATE. 900x600 GSIP BY "MASCOT REFER TO ORIFICE $AREA = 0.9 \times 0.6 = 0.54 \text{m}^2$ ENGINEERING" OR PLATE 2 DETAIL APPROVED EQUIVALENT DEPTH = 1m VOLUME PROVIDED = 0.54m^3 BENCH PIT TO SUIT AS PER PLAN/SCHEDULE (RELATIVE DATUM = 0.00m) 900x600 GSIP

TYPICAL PIT DETAIL


GRATE COVER LOAD ---


N . T . S



DRAINS OUTPUT SUMMARY - ILSAX METHOD

	DRAINS MODEL OUTPUT SUMMARY										
AEP	PRE DEV TOTAL SITE DISCHARGE (L/S)	OSD 1 ORIFICE DISCHARGE (L/S)	OSD 1 OVERFLOW (L/S)	OSD 1 VOLUME REQUIRED (M3)	OSD 2 ORIFICE DISCHARGE (L/S)	OSD 2 OVERFLOW (L/S)	OSD 2 VOLUME REQUIRED (M3)	TOTAL BYPASS (L/s)	TOTAL BYPASS EXCLUDING POOL (L/s)	POST DEV TOTAL SITE DISCHARGE (L/s)	POST DEV TOTAL SITE DISCHARGE EXCLUDING POOL (L/s)
20%	8	2	0	3.2	1	0	0.2	3	2	6	5
5%	14	3	0	4.7	1	0	0.3	5	3	8	6
1%	19	4	0	6.6	2	0	0.5	6	4	10	8

TYPICAL DETAIL - LEVEL SPREADER

NB: LOCALLY REGRADE SURROUNDING AREA TO TIE IN NEATLY WITH ADJACENT SURFACES. ENSURE RUNOFF FLOWS UNIMPEDED & NO PONDING RESULTS FROM REGRADRING. NOTIFY ENGINEER IF THERE ARE ANY INCONSITENCIES

NOT FOR CONSTRUCTION

STRUCTURAL ENGINEERS **Suite 28, 185-187 Airds Road Leumeah, NSW, 2560** PO BOX 7426, MOUNT ANNAN, NSW, 2567

P: (02) 4760 0760 E: adam@gilconse.com

W: gilconeng.com ABN: 73 931 889 644

CLIENT: CLIFFORD LEESON

PROJECT: PROPOSED ALTERATIONS AND ADDITIONS, AND SWIMMING POOL AT 52 SEAVIEW STREET, BALGOWLAH NSW

APPROVED:

ADAM GILLETT

B.E (Hons) M.I.E. AUST CPEng NER

DRAWING TITLE: OSD & LEVEL

L.	OSD & LEVEL
	SPREADER DETAILS
	AND CALCULATIONS

			DRAWN BY: TM	ENGINEER: TM		
В	07/03/2024	UPDATED TO COUNCIL COMMENTS - REISSUED FOR DA	DATE: 31/08/2023			
A	31/08/2023	ISSUE FOR DEVELOPMENT APPLICATION	SCALE: AS SHOWN ON	A1 SHEET No:		
ISSUE	DATE	REVISIONS:	JOB NO: 2306	26 C02		