nellydavies

IMPACT RISK ASSESSMENT REPORT

23 ROBERTSON ROAD, SCOTLAND ISLAND

SCOPE OF WORKS:

This report was written to demonstrate that the construction of the proposed Sea Wall will not have a negative effect on the existing structures including the existing villa and Jetty foundations, or on the existing landscape through changes to tidal forces.

Neilly Davies & Partners Pty. Ltd. ABN: 711 216 235 50 1 December 2020

Date:	1 Dec. 20	Status:	Final	Reference:	J200093
Project Manager:	Mahfujur Rahman				
Author:	Eason Visvalingam				
Reviewer:	Dr Bala Muhunthan				
Division:	Engineering				

Revision Status			
Revision	Date Issued	Reviewer	Comment
В	1 Dec. 20	Dr Bala Muhunthan	Final

Confidential Information

This document is made available to the recipient on the express understanding that the information contained in it be regarded and treated by the recipient as strictly confidential. The content of this document is intended only for the sole use of the recipient and should not be disclosed or furnished to any other person.

Disclaimer of Liability

The information contained in this document is provided for the sole use of the recipient and no reliance should be placed on the information by any other person. In the event that the information is disclosed or furnished to any other person, Neilly Davies & Partners Pty Ltd accepts no liability for any loss or damage incurred by that person whatsoever as a result of using the information.

© Document Copyright

All rights reserved. No part of the content of this document may be reproduced, published, transmitted or adapted in any form or by any means without the written permission of the Neilly Davies & Partners Pty Ltd

Contents

1.	Introduction	4
2.	Description of structure	5
3.	Site plan	6
4.	Loading	7
5.	Impact Risk Assessment	8
5.1	Check for existing foundation of villa building	8
5.2	Check for existing structure (Jetty)	9
5.3	Check for wave tidal impact	
6 R	ecommendation	Error! Bookmark not defined.

1. INTRODUCTION

As requested, a structural inspection was carried out on 26 August 2020 at No 23, Robertson Road, Scotland Island NSW 2105 by Mahfujur Rahman, Senior Structural Engineer of Neilly Davies Consulting Engineers and Joshua McLeod, intern of Neilly Davies Consulting Engineers. The purpose of this inspection was to inspect the existing jetty, proposed sea wall location and surrounding area including adjacent existing villa. Several photographs have been taken. Based on the inspection, risk assessment of the proposed sea wall has been prepared considering the impact of wave tidal on the proposed sea wall and the associated risk of existing adjacent villa and jetty.

2. Description of structure

The aerial view of the property is given below.

Figure 1: Site Location

3. SITE PLAN

Figure 2: Plan View

The plan pictured above illustrates the key elements of this report, as well as giving context to the site. The area highlighted is the position of the proposed seawall, where there is currently a rock retaining wall (See photos 57-73 of Appendix A). Also pictured is the existing boat shed, and jetty. See clause 5.2 of the report, photographs 58-70 for reference. The plan involved topographical lines demonstrating height, and the slope of the grounds can also be viewed in appendix A.

4. LOADING

AS 1170.1 and AS 4997 were both used for the below calculations. Clause references to these documents where the information refers directly to the corresponding section of the standard.

Below are sets of provided data with reference to the standard:

AS 1170.1 2002

Dead Load 1 KPa

AS 4997 2005

Table 5.1 Maritime Structure Class 5 Imposed 5 KPa

Clause 5.6 Debris Action = 10 KN/m

AS/4997-2005 - Wave tidal Action Load

Clause 5.5.2 Current Actions - Calculation

This Section of the standard states that "for structures and vessels up to 10 000 t subject to currents, t equation"

$$F_S = \frac{1}{2} \times C_{SD} A \rho \times 10^{-3}$$

The Coefficient of Stream Drag (CSD), was provided in Table 5.3 of the Australian Standard, given that the Proposed Jetty would be utilizing circular Piles.

$$C_{SD} = 1.04$$
Assume, $v = 3ms^{-1}$
Assume, $A = bh$
h= 1.3m
b= 1.0 m
$$\rho = 1026 \text{kg/m}^3 \text{ for sea water}$$

$$A = 1.3m^2$$

$$F_s = \frac{1}{2} \times 1.04 \times 3^2 \times 1.3 \times \frac{1026}{1000}$$

$$F_s = 6.25 kN$$

From these calculations, we can consider the Wave impact Load to be = 6.25 kN

5. IMPACT RISK ASSESSMENT

5.1 CHECK FOR EXISTING FOUNDATION OF VILLA BUILDING

Existing foundation is situated more than 10m from the proposed foundation. In the above diagram it can be clearly seen that the inclined line isn't going to meet the new proposed sea wall and construction. This demonstrates that the new construction will not affect the existing foundation. There will be no effect on the existing villa building foundation because of the new construction works.

5.2 CHECK FOR EXISTING STRUCTURE (JETTY)

Load Assessment of existing structure

Resultant pressure due to loads (P)

=
$$10kPa + \frac{1}{3}\gamma h$$

= $10kpa + (\frac{1}{3} \times 18 \times 1.5)$
= $10kPa + 9kPa$
P = $19kPa$
 $19kN/m$

Assume $\theta = 45$,

At the depth of 2.5m,

 $P_{2.5} = 25 k N/m$

Say,

So, impact pressure at the column/pile (S₁)

$$S_1 = \frac{25}{9} = 2.78$$
kPa < fc' = 18kPa for F8 grade

And inclined line stress line is not going to touch the column/pier due to the new sea wall/ retaining wall construction. According to Risk Assessment check the proposed construction is safe.

5.3 CHECK FOR WAVE TIDAL IMPACT

In accordance with AS4678-2002 incorporating Amendment No.2 dated August 2008

Retaining wall details	
Stem type;	Cantilever
Stem height;	h _{stem} = 1300 mm
Stem thickness;	t _{stem} = 200 mm
Angle to rear face of stem;	α = 90 deg
Stem density;	γ _{stem} = 23.6 kN/m ³
Toe length;	l _{toe} = 288 mm
Heel length;	I _{heel} = 608 mm
Base thickness;	t _{base} = 500 mm
Base density;	γ _{base} = 23.6 kN/m ³
Height of retained soil;	h _{ret} = 1300 mm
Angle of soil surface;	$\beta = 0 \deg$
Depth of cover;	d _{cover} = 0 mm
Height of water;	h _{water} = 0 mm
Water density;	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil conditions;	In situ
Moist density;	$\gamma_{mr} = 18 \text{ kN/m}^3$
Saturated density;	γ _{sr} = 20.8 kN/m ³
Effective internal friction angle;	$\phi'_r = 30 \text{ deg}$
External wall friction angle;	$\delta_r = 15 \text{ deg}$
Base soil properties	
Soil type;	Medium dense coarse and medium sand
Soil conditions;	In situ
Soil density;	γ _b = 17.5 kN/m ³
Effective cohesion;	$c'_{b} = 0 \text{ kN/m}^{2}$
Effective internal friction angle;	φ' _b = 30 deg
External wall friction angle;	$\delta_b = 15 \text{ deg}$
External base friction angle;	$\delta_{bb} = 20 \text{ deg}$
Ultimate design bearing capacity;	P _{bearing} = 250 kN/m ²
Loading details	
Live surcharge load;	Surcharge _Q = 5 kN/m ²
Horizontal Debris Action load at 300 mm;	P _{Q1} = -10 kN/m
Horizontal Wave Tidal Impact load at 500 mm;	P _{Q2} = -6.2 kN/m

Calculate retaining wall geometry	
Base length;	I _{base} = I _{toe} + t _{stem} + I _{heel} = 1095 mm
Saturated soil height;	$h_{sat} = h_{water} + d_{cover} = 0 mm$
Moist soil height;	h _{moist} = h _{ret} - h _{water} = 1300 mm
Length of surcharge load;	I _{sur} = I _{heel} = 608 mm
- Distance to vertical component;	x _{sur_v} = I _{base} - I _{heel} / 2 = 791 mm
Effective height of wall;	$h_{eff} = h_{base} + d_{cover} + h_{ret} = 1800 \text{ mm}$
- Distance to horizontal component;	x _{sur_h} = h _{eff} / 2 = 900 mm
Area of wall stem;	$A_{stem} = h_{stem} \times t_{stem} = 0.26 m^2$
- Distance to vertical component;	x _{stem} = I _{toe} + t _{stem} / 2 = 388 mm
Area of wall base;	$A_{\text{base}} = I_{\text{base}} \times t_{\text{base}} = 0.548 \text{ m}^2$
- Distance to vertical component;	x _{base} = I _{base} / 2 = 548 mm
Area of moist soil;	$A_{moist} = h_{moist} \times I_{heel} = 0.79 \text{ m}^2$
- Distance to vertical component;	$x_{moist_v} = I_{base} - (h_{moist} \times I_{heel}^2 / 2) / A_{moist} = 791 \text{ mm}$
- Distance to horizontal component;	$x_{moist_h} = (h_{moist} \times (t_{base} + h_{sat} + h_{moist} / 3) / 2 + (h_{sat} + h_{moist_h} / 3) / 2 + (h_{sat} + h_{moist_h} / 3) / 2 + (h_{moist_h} / 3) / 2 + (h_{moist_h} + h_{moist_h} / 3) / 2 + (h_{moist_h} / 3) / 2 + (h_{moist_h} + h_{moist_h} / 3) / 2 + (h_{moist_h} + h_{moist_h} / 3) / 2 + (h_{moist_h} / 3) / 2 + (h_{moist_h}$
	$t_{base})^2/2) / (h_{sat} + t_{base} + h_{moist} / 2) = 636 \text{ mm}$

Material strength uncertainty factors for Soil - Table 5.1(A)

Uncertainty factor for friction of the retained soil;	$\Phi_{u\phir}=0.85$
Uncertainty factor for friction of the base soil;	$\Phi_{u\phi b} = 0.85$
Uncertainty factor for cohesion of the base soil;	$\Phi_{uc} = 0.7$
Retained soil properties	
Design effective internal friction angle;	$\phi^*_r = \operatorname{atan}(\Phi_{u\phi r} \times \operatorname{tan}(\phi'_r)) = 26.1 \text{ deg}$
Design external wall friction angle;	$\delta^*_r = atan(\Phi_{u\phi r} \times tan(\delta_r)) = 12.8 \text{ deg}$
Base soil properties	
Design effective internal friction angle;	$\phi^*_b = \operatorname{atan}(\Phi_{u\phi b} \times \operatorname{tan}(\phi'_b)) = 26.1 \text{ deg}$
Design cohesion;	$c^*_b = \Phi_{uc} \times c'_b = 0 \text{ kN/m}^2$
Design external wall friction angle;	$\delta^*_{b} = \text{atan}(\Phi_{u\phi b} \times \text{tan}(\delta_{b})) = 12.8 \text{ deg}$
Design external base friction angle;	$\delta^*_{bb} = \operatorname{atan}(\Phi_{u\phi b} \times \operatorname{tan}(\delta_{bb})) = 17.2 \text{ deg}$
Using Coulomb theory	
Active pressure coefficient;	$K_A = \sin(\alpha + \phi^*_r)^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta^*_r) \times [1 + $
	$\sqrt{[\sin(\phi^*_r + \delta^*_r) \times \sin(\phi^*_r - \beta) / (\sin(\alpha - \delta^*_r) \times \sin(\alpha + \alpha)))}$
	$\beta))]]^2) = 0.352$
Passive pressure coefficient;	$K_{P} = sin(90 - \phi^{*}_{b})^{2} \times cos(\delta^{*}_{b}) / (sin(90 + \delta^{*}_{b}) \times [1 - \delta^{*}_{b}]) \times [1 - \delta^{*}_{b}] \times [1 - \delta^$
	$\sqrt{[\sin(\phi^*_b + \delta^*_b) \times \sin(\phi^*_b) / (\sin(90 + \delta^*_b))]]^2)} = 3.696$
Load combinations for stability limit states - A	ppendix J3
Load combination 1;	$1.25 \times \text{Dead}^{\text{C}}$ + $1.5 \times \text{Live}^{\text{C}}$ < $0.8 \times \text{Dead}^{\text{R}}$
Overturning check	
Vertical forces on wall	
Wall stem;	$F_{stem} = 0.8 \times A_{stem} \times \gamma_{stem} = \textbf{4.9} \text{ kN/m}$
Wall base;	$F_{\text{base}} = 0.8 \times A_{\text{base}} \times \gamma_{\text{base}} = \textbf{10.3 kN/m}$
Moist retained soil;	$F_{moist_v} = 0.8 \times A_{moist} \times \gamma_{mr} = \textbf{11.4 kN}/m$
Total;	$F_{total_v} = F_{stem} + F_{base} + F_{water_v} - F_{water_u} + F_{moist_v} =$
	26.6 kN/m

Horizontal forces on wall	
Surcharge load;	$\label{eq:sur_h} \begin{split} F_{sur_h} = K_A \times cos(\delta_r) \times 1.5 \times Surcharge_Q \times h_{eff} = \textbf{4.6} \\ kN/m \end{split}$
Saturated retained soil;	$ \begin{aligned} F_{sat_h} = 1.25 \times K_A \times cos(\delta_r) \times (\gamma_{sr} - \gamma_w) \times (h_{sat} + h_{base})^2 \\ / & 2 = \textbf{0.6} \ kN/m \end{aligned} $
Water;	$F_{water h} = \gamma_W \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 1.2 \text{ kN/m}$
Moist retained soil;	$F_{moist_h} = 1.25 \times K_A \times cos(\delta_r) \times \gamma_{mr} \times ((h_{eff} - h_{sat} -$
	$(h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})) = 11.4$ kN/m
Base soil;	$\begin{split} F_{exc_h} &= \textbf{-0.8} \times K_P \times cos(\delta_b) \times \gamma_b \times (h_{pass} + h_{base})^2 \ / \ 2 \\ &= \textbf{-6.2} \ kN/m \end{split}$
Total;	F _{total_h} = F _{sur_h} + F _{sat_h} + F _{water_h} + F _{moist_h} + F _{exc_h} = 11.6 kN/m
Overturning moments on wall	
Surcharge load;	$M_{sur_OT} = F_{sur_h} \times x_{sur_h} = 4.1 \text{ kNm/m}$
Saturated retained soil;	$M_{sat_OT} = F_{sat_h} \times x_{sat_h} = 0.1 \text{ kNm/m}$
Water;	$M_{water_OT} = F_{water_h} \times x_{water_h} + 0 \text{ kNm/m} = 0.2$
	kNm/m
Moist retained soil;	$M_{moist_OT} = F_{moist_h} \times x_{moist_h} = 7.3 \text{ kNm/m}$
Total;	$M_{total_OT} = M_{sur_OT} + M_{sat_OT} + M_{water_OT} + M_{moist_OT} =$
	11.7 kNm/m
Restoring moments on wall	
Wall stem;	M _{stem_R} = F _{stem} × x _{stem} = 1.9 kNm/m
Wall base;	$M_{base_R} = F_{base} \times x_{base} = 5.7 \text{ kNm/m}$
Moist retained soil;	$M_{moist_R} = F_{moist_v} \times x_{moist_v} = 9 \text{ kNm/m}$
Base soil;	$M_{exc_R} = -F_{exc_h} \times x_{exc_h} = 1 \text{ kNm/m}$
Total;	$M_{total_R} = M_{stem_R} + M_{base_R} + M_{moist_R} + M_{exc_R} =$
	17.6 kNm/m
Check stability engines eventuming	

Check stability against overturning Factor of safety;

FoSot = Mtotal_R / Mtotal_OT = 1.505

PASS - Maximum restoring moment is greater than overturning moment

Therefore the Sea wall is safe & adequate against any Wave impact load & Debris action

6 RECOMMENDATION

As requested, a structural inspection was carried out on 26 August 2020 at No 23, Robertson Road, Scotland Island NSW 2105 by Mahfujur Rahman, Senior Structural Engineer of Neilly Davies Consulting Engineers and Joshua McLeod, Engineering Intern of Neilly Davies Consulting Engineers. The purpose of this inspection was to inspect the existing jetty, proposed sea wall location and surrounding area including the adjacent existing villa. Based on the inspection, risk assessment of the proposed sea wall has been prepared considering the impact of wave and tidal effect on the proposed sea wall and the associated risk of existing adjacent villa and jetty.

The existing nearest villa is about 10m away from the proposed sea wall. The influence line of foundation load of the villa is away from the proposed sea wall. It indicates that the proposed construction of sea wall will have no effect on the existing villa. (Appendix 5.1).

The existing nearest jetty is about 2m away from the proposed sea wall. The influence line of foundation load of the proposed sea wall is away from the existing jetty. It indicates that the proposed construction of sea wall will have no effect on the existing jetty structure. (Appendix 5.2).

A detailed analysis of sea wave tidal effect on the proposed sea wall has been carried out as per Australian Standard AS4678. The proposed sea wall is safe & adequate against the wave impact load & debris action (Appendix 5.3).

In conclusion, there is no adverse effect or potential risk involved with the proposed sea wall.

Appendices:

- **Appendix A** Estuarine Risk Management report for "Yamba", by Dr David Wainwright of SAM Crawford Architects
- **Appendix B** Inspection Photographs
- Appendix C Geotechnical Report
- Appendix D Structural Drawings J200093, S01 S02 Rev C (Dated 23-11-2020)

References:

- AS 1170.1 2002
- AS 4997 2005
- AS 4678.2 2008