Crozier Geotechnical Consultants

ABN: 96 113 453 624

Unit 12/ 42-46 Wattle Road

Phone: (02) 9939 1882

Brookvale NSW 2100

Email: info@croziergeotech.com.au

Crozier Geotechnical Consultants, a division of PJC Geo-Engineering Pty Ltd

GEOTECHNICAL ASSESSMENT FOR ALTERATIONS AND ADDITIONS

at

138 PRINCE ALFRED PARADE, NEWPORT

Prepared For

Jamie Calder and Emily Wilcox

Project No.: 2025-016

February 2025

Document Revision Record

Issue No	Date	Details of Revisions
0	17 February, 2025	Original issue

Copyright

© This Report is the copyright of Crozier Geotechnical Consultants. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER FORM NO. 1 – To be submitted with Development Application

Development Application for Name of Applicant 138 Prince Alfred Parade, NSW Address of site Declaration made by geotechnical engineer or engineering geologist or coastal engineer (where applicable) as part of a geotechnical report Troy Crozier Crozier Geotechnical Consultants 17/02/2025 certify that I am a geotechnical on behalf of engineer or engineering geologist or coastal engineer as defined by the Geotechnical Risk Management Policy for Pittwater - 2009 and I am authorised by the above erganisation/company to issue this document and to certify that the erganisation/company has a current professional indemnity policy of at least \$2million. have prepared the detailed Geotechnical Report referenced below in accordance with the Australia Geomechanics Society's Landslide Risk Management Guidelines (AGS 2007) and the Geotechnical Risk Management Policy for Pittwater - 2009 am willing to technically verify that the detailed Geotechnical Report referenced below has been prepared in accordance with the Australian Geomechanics Society's Landslide Risk Management Guidelines (AGS 2007) and the Geotechnical Risk Management Policy for Pittwater - 2009 have examined the site and the proposed development in detail and have carried out a risk assessment in accordance with Section 6.0 of the Geotechnical Risk Management Policy for Pittwater - 2009. I confirm that the results of the risk assessment for the proposed development are in compliance with the Geotechnical Risk Management Policy for Pittwater - 2009 and further detailed geotechnical reporting is not required for the subject site. have examined the site and the proposed development/alteration in detail and I am of the opinion that the Development Application only involves Minor Development/Alteration that does not require a Geotechnical Report or Risk Assessment and hence my Report is in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009 requirements. have examined the site and the proposed development/alteration is separate from and is not affected by a Geotechnical Hazard and does not require a Geotechnical Report or Risk Assessment and hence my Report is in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009 requirements. have provided the coastal process and coastal forces analysis for inclusion in the Geotechnical Report **Geotechnical Report Details:** Report Title: Geotechnical Assessment for Proposed Alterations and Additions Project No.: 2025-016 Report Date: 17 February 2025 Author: Kieron Nicholson Author's Company/Organisation: Crozier Geotechnical Consultants Documentation which relate to or are relied upon in report preparation: Architectural Drawings - CplusC Workshop Pty Ltd, Project No.: 22-028, Drawing No.: DD 001 - DD023, Dated: 13/12/2024 Survey Drawing - Project Surveyors, Job Reference: 5449, Dated: 20/03/2023 Scope of Works - CplusC Workshop Pty Ltd, Pages: 2 I am aware that the above Geotechnical Report, prepared for the abovementioned site is to be submitted in support of a Development Application for this site and will be relied on by Pittwater Council as the basis for ensuring that the Geotechnical Risk Management aspects of the proposed development have been adequately addressed to achieve an "Acceptable Risk Management" level for the life of the structure, taken as at least 100 years unless otherwise stated and justified in the Report and that reasonable and practical measures have been identified to remove foreseeable risk. GLOS BY - IS Signature Name ... Troy Crozier Chartered Professional Status... RPGeo (AIG) Membership No.: ...10197..... Company... Crozier Geotechnical Consultants

10.137

GEOTECHNICAL RISK MANAGEMENT POLICY FOR PITTWATER
FORM NO. 1(a) - Checklist of Requirements For Geotechnical Risk Management Report for Development
Application

	Development Application for
	Name of Applicant Address of site138 Prince Alfred Parade, Newport, NSW
The follow checklist is	ving checklist covers the minimum requirements to be addressed in a Geotechnical Risk Management Geotechnical Report. This is to accompany the Geotechnical Report and its certification (Form No. 1).
Geotechn	nical Report Details:
	Report Title: Geotechnical Assessment for Proposed Alterations and Additions Report Date: 17/02/2025 Project No.: 2025-016 Author: Kieron Nicholson Author's Company/Organisation: Crozier Geotechnical Consultants
	ark appropriate box Comprehensive site mapping conducted30/01/2025
	Mapping details presented on contoured site plan with geomorphic mapping to a minimum scale of 1:200 (as appropriate) Subsurface investigation required
	✓ No Justification minor works only. ☐ Yes Date conducted
	Geotechnical model developed and reported as an inferred subsurface type-section Geotechnical hazards identified
	☐ Above the site
	☐ On the site
	☐ Below the site
	☐ Beside the site
	Geotechnical hazards described and reported Risk assessment conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009
	☐ Consequence analysis ☐ Frequency analysis
	Risk calculation
	Risk assessment for property conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009
□	Risk assessment for loss of life conducted in accordance with the Geotechnical Risk Management Policy for Pittwater - 2009 Assessed risks have been compared to "Acceptable Risk Management" criteria as defined in the Geotechnical Risk Management Policy for Pittwater - 2009
	Opinion has been provided that the design can achieve the "Acceptable Risk Management" criteria provided that the specified conditions are achieved.
	Design Life Adopted:
	☐ 100 years
	✓ 50 years as existing structure Geotechnical Conditions to be applied to all four phases as described in the Geotechnical Risk Management Policy for Pittwater -
	2009 have been specified
	Additional action to remove risk where reasonable and practical have been identified and included in the report. Risk assessment within Bushfire Asset Protection Zone.
geotechni for the life	re that Pittwater Council will rely on the Geotechnical Report, to which this checklist applies, as the basis for ensuring that the cal risk management aspects of the proposal have been adequately addressed to achieve an "Acceptable Risk Management" level of the structure, taken as at least 100 years unless otherwise stated, and justified in the Report and that reasonable and practical have been identified to remove foreseeable risk. Signature North Alana Report, to which this checklist applies, as the basis for ensuring that the call risk management aspects of the proposal have been adequately addressed to achieve an "Acceptable Risk Management" level to find the reasonable and practical that the call risk management aspects of the proposal have been adequately addressed to achieve an "Acceptable Risk Management" level to find the reasonable and practical risk management aspects of the proposal have been adequately addressed to achieve an "Acceptable Risk Management" level to find the Report and that reasonable and practical risk management aspects of the proposal have been adequately addressed to achieve an "Acceptable Risk Management" level to find the Report and that reasonable and practical risk management aspects of the proposal have been adequately addressed to achieve an "Acceptable Risk Management" level to find the Report and that reasonable and practical risk management aspects of the proposal risk management
	NameTroy Crozier
	Membership No10197
	Company Crozier Geote chuical Consultants
	10,197

2

3

AGS Terms and Descriptions

Hillside Construction Guidelines

Maintenance Program

TABLE OF CONTENTS

1.0	INTR	ODUCTIO	ON	Page 1
2.0	SITE	FEATUR	ES	
	2.1	Descri	ption	Page 2
	2.2	Geolog	gy	Page 3
3.0	FIELI	D WORK		
	3.1	Metho	ds	Page 4
	3.2	Site St	tability Observations	Page 4
4.0	COM	MENTS		
	4.1	Geotec	chnical Assessment	Page 5
	4.2	Site Sp	pecific Risk Assessment	Page 5
	4.3	Design	n and Construction Recommendations	
		4.3.1	New Footings	Page 6
		4.3.2	Drainage and Hydrogeology	Page 6
	4.4	Condit	tions Relating to Design & Construction Monitoring	Page 7
	4.5	Design	n Life of Structure	Page 7
5.0	CON	CLUSION	1	Page 8
6.0	REFE	RENCES		Page 9
4 DDT		c c		
APPE	ENDICE		Deleter and the December	
	1	Notes R	Relating to this Report	

Crozier Geotechnical Consultants
Unit 12/ 42-46 Wattle Road
Brookvale NSW 2100

Brookvale NSW 2100 Email: info@croziergeotech.com.au Crozier Geotechnical Consultants a division of PJC Geo-Engineering Pty Ltd

ABN: 96 113 453 624

Phone: (02) 9939 1882

Date: 17 February 2025 **Project No:** 2025-016

Page: 1 of 9

GEOTECHNICAL ASSESSMENT FOR ALTERATIONS AND ADDITIONS
138 PRINCE ALFRED PARADE, NEWPORT, NSW

1. INTRODUCTION:

This report details the results of a geotechnical assessment carried out for proposed alterations and additions at 138 Prince Alfred Parade, NSW. The assessment was undertaken by Crozier Geotechnical Consultants (CGC) at the written request of CplusC Architects and Builders on behalf of the client, Jamia Calder and

Emily Wilcox.

It is understood that the proposed works involve alterations and additions across the main structure and

detached garage structure with a new garage and workshop to be formed at the approximate street level. The

proposed works all appear to be predominately internal and will not require any bulk excavation.

The site is located within the H1 (highest category) landslip hazard zone as identified within Northern Beaches

Councils precinct (Geotechnical Risk Management Policy for Pittwater – 2009). To meet the Councils Policy

requirements for land classified as H1 a detailed Geotechnical Report which meets the requirements of

Paragraph 6.5 of that policy is required to be submitted with the DA.

A site inspection and assessment were undertaken in accordance with the Fee Proposal Ref. No.: P25-011,

Dated: 14 January 2025.

The investigation comprised:

a) A detailed geotechnical inspection and mapping of the site and limited inspection of adjacent

properties by a Senior Engineering Geologist.

b) A photographic record of site conditions.

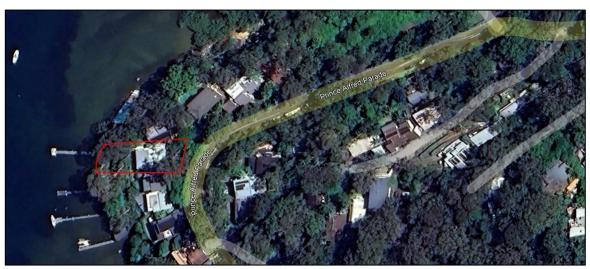
The following plans and drawings were supplied for the work:

• Architectural Drawings – CplusC Workshop Pty Ltd, Project No.: 22-028, Drawing No.: DD 001 –

DD023, Dated: 13/12/2024

• Survey Drawing – Project Surveyors, Job Reference: 5449, Dated: 20/03/2023

• Scope of Works - CplusC Workshop Pty Ltd, Pages: 2


Project No: 2025-016, Newport, February 2025

2. SITE FEATURES:

2.1. Description:

The site is broadly trapezoidal in shape and covers an area of approximately 639m² in plan as referenced from the supplied survey drawing. It is located on the low west side of the road within moderately west dipping topography and the elevation varies between a high of RL17.5m adjacent to the east boundary of the site and a low of RL1.3m near the west boundary of the site adjacent to Pittwater Foreshore. It has north, east, south and west boundaries of 44.8m, 11.3m, 46.6m and 16.0m (scaled from survey) respectively as determined from the survey plan provided and partially defined to the Mean High-Water Mark of the site. An aerial photograph of the site and its surrounds is provided below (Photograph 1), as sourced from Google Earth.

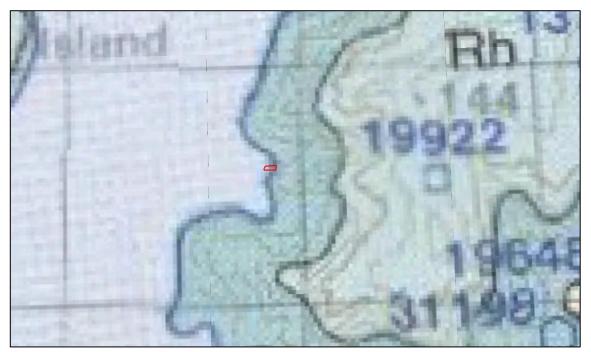
Photograph 1: Aerial photo of site (outlined red) and surrounds

The site contains the main site dwelling, a moderately west sloping vegetated rear garden which is retained by a series of brick/masonry retaining walls, a zig-zag path leading to the foreshore and a relatively flat lawn adjacent to the west boundary. The site dwelling comprises a two-storey rendered and clad structure.

A timber jetty extends into Pittwater foreshore from within the west of the site. A garage with storage room under is located within the east of the site and is accessed via a suspended concrete driveway adjoining Prince Alfred Parade easement to the east.

The site is bordered to the north, east, south and west by No.140 Prince Alfred Parade, Prince Alfred Parade easement, No.136 Prince Alfred Parade and Pittwater Foreshore respectively.

No.140 Prince Alfred Parade contains a residential dwelling with front and rear gardens and pool within the rear of the property. The house structure is approximately 2.0m from the shared property boundary and the ground surface is at similar level to the site immediately adjacent to the boundary.


Prince Alfred easement to the east comprises a gently north dipping asphalt carriageway with a vegetated easement adjacent along with a timber walkway (providing site access) and concrete driveway.

No.136 Prince Alfred Parade to the south of the site contains a single storey clad and rendered dwelling with front garage. The house structure is approximately 2.0m from the shared boundary and the ground surface appears similar to site immediately adjacent to the shared boundary.

2.2. Geology:

Reference to the Sydney 1:100,000 Geological Series sheet (9130) indicates that the site is underlain by Newport Formation (Upper Narrabeen Group) rock (Rnn) which is of middle Triassic Age. The Newport Formation typically comprises interbedded laminite, shale and quartz to lithic quartz sandstones and pink clay pellet sandstones. The rock unit was identified and mapped on the present and adjacent sites.

Narrabeen Group rocks are dominated by shales and thin siltstone beds and often form rounded convex ridge tops with moderate angle ($<20^{\circ}$) side slopes. These side slopes can be either concave or convex depending on geology, internally they comprise interbedded shale and siltstone beds with close spaced bedding partings that have either close spaced vertical joints or in extreme cases large space convex joints. The shale often forms deeply weathered silty clay soil profiles (medium to high plasticity) with thin silty colluvial cover containing cobble to boulder size fragments of sandstone from the overlying unit. An extract of the relevant geological map is provided as Extract 1.

Extract 1: Geological map extract and the site (outlined red)

3. FIELD WORK:

3.1. Methods:

The field investigation comprised a walk over inspection and mapping of the site and inspection of adjacent properties on the 30 January 2025 by a Senior Engineering Geologist. It included a photographic record of site conditions as well as geological/geotechnical inspection of soil cuttings and existing structures. Explanatory notes are included in Appendix: 1.

3.2. Site Stability Observations:

The site is located on the low west side of Prince Alfred Parade which is gently north dipping and comprises an asphalt surfaced carriageway and sloping vegetated easement. Both the carriageway and easement appeared in good condition with no indications of distress/settlement observed.

The rear of the site contains a moderately sloping garden which is supported by a series of masonry retaining walls which were between 0.5m and 2.5m in height and generally appeared in good condition with no noticeable rotation or displacement observed in the structures. The overall site crossfall is approximately 12° at the front of the site to the rear.

The existing house comprises a rendered brick residence which appeared in good condition with no cracking or signs of movement observed. Some rotation was observed within a planter bed adjacent to the garage however it is considered to be a result of construction technique rather than a stability issue. (See Photograph 2).

5

CROZIER GEOTECHNICAL CONSULTANTS

Photograph 2: Rotation of low retaining wall adjacent to site garage.

No indications of back-scars or movement were observed in the rear or front garden and significantly deformed/warped trees were not observed.

Drainage (downpipes) appeared to have been constructed within the site to a subsurface disposal system and signs of erosion or uncontrolled surface water were not observed.

Limited observation of the surrounding properties was feasible due to access restrictions however no signs of instability were observed within the surrounding properties to the north or south.

4. COMMENTS:

4.1. Geotechnical Assessment:

Based on the inspection, signs of slope instability (back-scars/creep/uncontrolled erosion etc) or other major geotechnical concerns where not observed which may impact the site. The existing house which appears at least 20 years of age did not display any indication of distress (cracking etc).

The proposed works do not involve significant bulk excavation with only minor excavation anticipated for new footings only.

Bedrock was not exposed within the site either internally or external to the dwelling however new footings should extend to bedrock to mitigate future creep movements. Where the strength and depth to bedrock is required to assist in preliminary design a subsurface investigation would be required. Where additional investigation is not undertaken, proposed footing design should be relatively flexible to avoid incurring additional costs during construction.

The recommendations and conclusions in this report are based on an investigation utilising only surface observations. Therefore, some minor variation to the interpreted sub-surface conditions is possible, especially in currently unexposed portions of the excavation. However, the results of the investigation provide a reasonable basis for the Development Application analysis and subsequent preliminary design of the proposed

works.

4.2. Site Specific Risk Assessment:

No geotechnical hazards were identified on site which may impact the proposed development whilst the development is not expected to create any new hazards. As such the proposed works are separate from and not affected by a geotechnical hazard. Therefore, no risk analysis is required as per Council policy.

4.3. Design & Construction Recommendations:

Design and construction recommendations are tabulated below subject to confirmation during construction.

4.3.1. New Footings:	
Site Classification as per AS2870 – 2011 for	Class 'A where new footings found in bedrock
new footing design	
Type of Footing	Piers where founding depths required to extend to greater
	depths
Sub-grade material and Maximum Allowable	- Weathered ELS bedrock: 600kPa
Bearing Capacity	- Weathered VLS Sandstone: 800kPa
Site sub-soil classification as per Structural	B _e – rock site
design actions AS1170.4 - 2007, Part 4:	Hazard factor $(z) = 0.08$
Earthquake actions in Australia	

Remarks:

All footings should be founded off bedrock of similar strength to reduce the potential for differential settlement.

All new footings must be inspected by an experienced geotechnical professional before concrete or steel are placed to verify their bearing capacity and the in-situ nature of the founding strata. This is mandatory to allow them to be 'certified' at the end of the project.

4.3.2. Drainage and Hydrogeology				
Groundwater Table or Seepage identified		No		
Excavation likely to intersect Water Table		No		
	Seepage	Minor (≤0.50 L/min), on defects and at residual		
		soil/bedrock interface		
Site Location and Topography		Low west side of road within moderately west dipping		
		topography.		
Impact of development on local hydrogeology		Negligible		
Onsite Stormwater Disposal		Via existing site drainage directed into Pittwater would		
		likely be adequate.		

Remarks:

Trenches, as well as all new building gutters, down pipes and stormwater intercept trenches should be connected to a stormwater system designed by a Hydraulic Engineer which preferably discharges to the Council's stormwater system off site. Where this is not possible an OSD and subsequent dispersion outlet greater than 5m from the rear boundary is recommended.

4.4. Conditions Relating to Design and Construction Monitoring:

To allow certification at the completion of the project it will be necessary for Crozier Geotechnical Consultants to:

- 1. Review and approve the structural drawings, construction methodology, and stormwater system plans for compliance with the recommendations of this report,
- 2. Inspect all new footings to confirm compliance with design assumptions with respect to allowable bearing pressure, basal cleanliness and stability prior to the placement of steel or concrete,

The client and builder should make themselves familiar with the Councils Policy and the requirements spelled out in this report for inspections during the construction phase. Crozier Geotechnical Consultants cannot complete the certification if it has not been called to site to undertake the required inspections.

4.5. Design Life of Structure:

We have interpreted the design life requirements specified within Councils Risk Management Policy to refer to structural elements designed to support the house etc, the adjacent slope, control stormwater and maintain the risk of instability within acceptable limits. Specific structures and features that may affect the maintenance and stability of the site in relation to the proposed and existing development are considered to comprise:

- stormwater and subsoil drainage systems,
- retaining walls and soil slope erosion and instability,
- maintenance of trees/vegetation on this and adjacent properties,

Man-made features should be designed and maintained for a design life consistent with surrounding structures (as per AS2870 – 1996 (50 years)). In order to attain a design life of 100 years as required by the Councils Risk Management Policy, it will be necessary for the structural and geotechnical engineers to incorporate appropriate design and inspection procedures during the construction period. Additionally, the property owner should adopt and implement a maintenance and inspection program. It should be noted that timber log/sleeper retaining walls will not remain stable for 100 years. It is considered that the existing house will have a design life of 50 years from its upgrade following the proposed works.

If this maintenance and inspection schedule are not maintained the design life of the property cannot be attained. A recommended program is given in Table: A and should also include the following guidelines.

- The conditions on the block don't change from those present at the time this report was prepared, except for the changes due to this development.
- There is no change to the property due to an extraordinary event external to this site, and the property is maintained in good order and in accordance with the guidelines set out in;

8

CROZIER GEOTECHNICAL CONSULTANTS

a) CSIRO sheet BTF 18

b) Australian Geomechanics "Landslide Risk Management" Volume 42, March 2007.

c) AS 2870 – 2011, Australian Standard for Residential Slabs and Footings

Where changes to site conditions are identified during the maintenance and inspection program, reference should be made to relevant professionals (e.g. structural engineer, geotechnical engineer or Council). It is assumed that Pittwater Council will control development on neighbouring properties, carry out regular inspections and maintenance of the road verge, stormwater systems and large trees on public land adjacent to the site to ensure that stability conditions do not deteriorate with potential increase in risk level to the site. Also, individual Government Departments will maintain public utilities in the form of power lines, water and sewer mains to ensure they don't leak and increase either the local groundwater level or landslide potential.

5. CONCLUSION:

No hazards were identified on site or adjacent properties and no new hazards are likely to be created by the proposed works. The risks assessed for the site and proposed development works were therefore considered to be within 'Acceptable' risk management criteria (AGS, 2007 and Council Policy) for the design life of the development, taken as 50 years, provided the property is maintained. The proposed works can be carried out within the existing site conditions with negligible impact to the site and neighbouring properties or structures provided the recommendations of this report are adhered to.

The depth to bedrock underlying the proposed additions is not confirmed however new piers should found within at least very low strength bedrock. A subsurface investigation would be required if confirmation of founding depths is required prior to footing excavation.

Prepared By:

Kieron Nicholson

Senior Engineering Geologist

Lieron Nicholan

Reviewed By:

Troy Crozier

Principal

MIE Aust, CPEng (NER – Geotechnical)

6. REFERENCES:

- Australian Geomechanics Society 2007, "Landslide Risk Assessment and Management", Australian Geomechanics Journal Vol. 42, No 1, March 2007.
- 2. Geological Society Engineering Group Working Party 1972, "The preparation of maps and plans in terms of engineering geology" Quarterly Journal Engineering Geology, Volume 5, Pages 295 382.
- 3. E. Hoek & J.W. Bray 1981, "Rock Slope Engineering" By The Institution of Mining and Metallurgy, London.
- 4. C. W. Fetter 1995, "Applied Hydrology" by Prentice Hall. V. Gardiner & R. Dackombe 1983, "Geomorphological Field Manual" by George Allen & Unwin.

Appendix 1

Crozier Geotechnical Consultants

ABN: 96 113 453 624
Unit 12/ 42-46 Wattle Road

Phone: (02) 9939 1882
Brookvale NSW 2100

Email: info@croziergeotech.com.au
Crozier Geotechnical Consultants, a division of PJC Geo-Engineering Pty Ltd

NOTES RELATING TO THIS REPORT

Introduction

These notes have been provided to amplify the geotechnical report in regard to classification methods, specialist field procedures and certain matters relating to the Discussion and Comments section. Not all, of course, are necessarily relevant to all reports.

Geotechnical reports are based on information gained from limited subsurface test boring and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Description and classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, Geotechnical Site Investigation Code. In general, descriptions cover the following properties - strength or density, colour, structure, soil or rock type and inclusions.

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (eg. Sandy clay) on the following bases:

Soil Classification	<u>Particle Size</u>
Clay	less than 0.002 mm
Silt	0.002 to 0.06 mm
Sand	0.06 to 2.00 mm
Gravel	2.00 to 60.00mm

Cohesive soils are classified on the basis of strength either by laboratory testing or engineering examination. The strength terms are defined as follows:

Classification	Undrained Shear Strength kPa
Very soft	Less than 12
Soft	12 - 25
Firm	25 – 50
Stiff	50 – 100
Very stiff	100 - 200
Hard	Greater than 200

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration tests (SPT) or Dutch cone penetrometer tests (CPT) as below:

	<u>SPT</u>	<u>CPT</u>
Relative Density	"N" Value	Cone Value
	(blows/300mm)	(Qc – MPa)
Very loose	less than 5	less than 2
Loose	5 – 10	2 – 5
Medium dense	10 – 30	5 -15
Dense	30 – 50	15 – 25
Very dense	greater than 50	greater than 25

Rock types are classified by their geological names. Where relevant, further information regarding rock classification is given on the following sheet.

Sampling

Sampling is carried out during drilling to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling to allow information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thin-walled sample tube into the soil and withdrawing a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Drilling Methods

The following is a brief summary of drilling methods currently adopted by the company and some comments on their use and application.

Test Pits – these are excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils if it is safe to descent into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Large Diameter Auger (eg. Pengo) – the hole is advanced by a rotating plate or short spiral auger, generally 300mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

Continuous Sample Drilling – the hole is advanced by pushing a 100mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling soils, since moisture content is unchanged and soil structure, strength, etc. is only marginally affected.

Continuous Spiral Flight Augers – the hole is advanced using 90 – 115mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPT's or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

Non-core Rotary Drilling - the hole is advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from 'feel' and rate of penetration.

Rotary Mud Drilling – similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. From SPT).

Continuous Core Drilling – a continuous core sample is obtained using a diamond-tipped core barrel, usually 50mm internal diameter. Provided full core recovery is achieved (which is not always possible in very weak rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

Standard Penetration Tests

Standard penetration tests (abbreviated as SPT) are used mainly in non-cohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample. The test procedures is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test 6.3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken

as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

- In the case where full penetration is obtained with successive blow counts for each 150mm of say 4, 6 and 7 as 4, 6, 7 then N = 13
- In the case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm then as 15, 30/40mm.

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the test method is used to obtain samples in 50mm diameter thin wall sample tubes in clay. In such circumstances, the test results are shown on the borelogs in brackets.

Cone Penetrometer Testing and Interpretation

Cone penetrometer testing (sometimes referred to as Dutch Cone – abbreviated as CPT) described in this report has been carried out using an electrical friction cone penetrometer. The test is described in Australia Standard 1289, Test 6.4.1.

In tests, a 35mm diameter rod with a cone-tipped end is pushed continually into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on a separte 130mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected buy electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20mm per second) their information is plotted on a computer screen and at the end of the test is stored on the computer for later plotting of the results.

The information provided on the plotted results comprises: -

- Cone resistance the actual end bearing force divided by the cross-sectional area of the cone expressed in MPa.
- Sleeve friction the frictional force on the sleeve divided by the surface area expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed in percent.

There are two scales available for measurement of cone resistance. The lower scale (0 - 5 MPa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main scale (0 - 50 MPa) is less sensitive and is shown as a full line. The ratios of the sleeve friction to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios 1% - 2% are commonly encountered in sands and very soft clays rising to 4% - 10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range: -

Qc (MPa) = (0.4 to 0.6) N blows (blows per 300mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range: -

Qc = (12 to 18) Cu

Interpretation of CPT values can also be made to allow estimation of modulus or compressibility values to allow calculations of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes, etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on soil classification is required, direct drilling and sampling may be preferable.

Dynamic Penetrometers

Dynamic penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150mm increments of penetration. Normally, there is a depth limitation of 1.2m but this may be extended in certain conditions by the use of extension rods.

Two relatively similar tests are used.

- Perth sand penetrometer a 16mm diameter flattened rod is driven with a 9kg hammer, dropping 600mm (AS1289, Test 6.3.3). The test was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling.
- Cone penetrometer (sometimes known as Scala Penetrometer) a 16mm rod with a 20mm diameter cone end is driven with a 9kg hammer dropping 510mm (AS 1289, Test 6.3.2). The test was developed initially for pavement sub-grade investigations, and published correlations of the test results with California bearing ratio have been published by various Road Authorities.

Laboratory Testing

Laboratory testing is generally carried out in accordance with Australian Standard 1289 "Methods of Testing Soil for Engineering Purposes". Details of the test procedure used are given on the individual report forms.

Borehole Logs

The bore logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable, or possible to justify on economic grounds. In any case, the boreholes represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes, the frequency of sampling and the possibility of other than 'straight line' variations between the boreholes.

Details of the type and method of sampling are given in the report and the following sample codes are on the borehole logs where applicable:

D Disturbed Sample E Environmental sample DT Diatube
B Bulk Sample PP Pocket Penetrometer Test

U50 50mm Undisturbed Tube Sample SPT Standard Penetration Test

U63 63mm " " " " C Core

Ground Water

Where ground water levels are measured in boreholes there are several potential problems:

- In low permeability soils, ground water although present, may enter the hole slowly or perhaps not at all during the time it is left open
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made. More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be interference from a perched water table.

Engineering Reports

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. A three-storey building), the information and interpretation may not be relevant if the design proposal is changed (eg. to a twenty-storey building). If this happens, the Company will be pleased to review the report and the sufficiency of the investigation work.

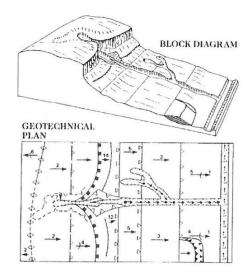
Every care is taken with the report as it relates to interpretation of subsurface condition, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

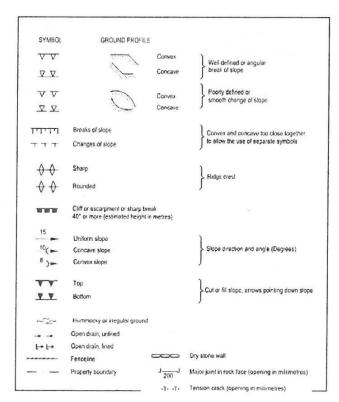
- unexpected variations in ground conditions the potential for this will depend partly on bore spacing and sampling frequency,
- changes in policy or interpretation of policy by statutory authorities,
- the actions of contractors responding to commercial pressures,

If these occur, the Company will be pleased to assist with investigation or advice to resolve the matter.

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed than at some later stage, well after the event.

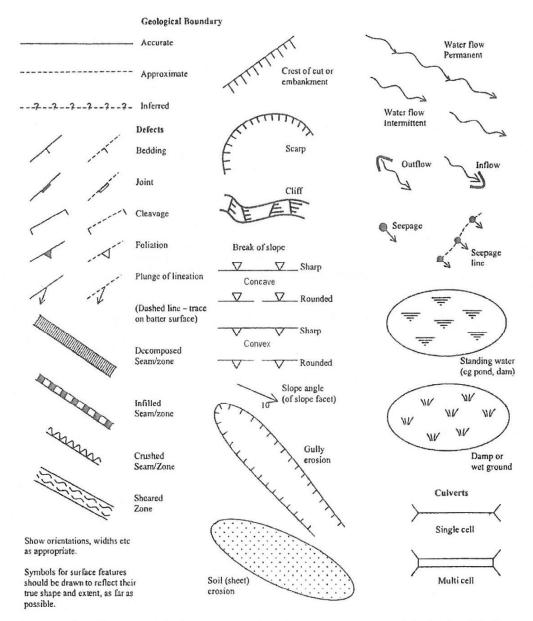

Reproduction of Information for Contractual Purposes


Attention is drawn to the document "Guidelines for the Provision of Geotechnical Information in Tender Documents", published by the Institution of Engineers Australia. Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a special ally edited document. The Company would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007



Example of Mapping Symbols (after V Gardiner & R V Dackombe (1983).Geomorphological Field Manual. George Allen & Unwin).

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX E - GEOLOGICAL AND GEOMORPHOLOGICAL MAPPING SYMBOLS AND TERMINOLOGY

Examples of Mapping Symbols (after Guide to Slope Risk Analysis Version 3.1 November 2001, Roads and Traffic Authority of New South Wales).

Appendix 2

APPENDIX A

DEFINITION OF TERMS

INTERNATIONAL UNION OF GEOLOGICAL SCIENCES WORKING GROUP ON LANDSLIDES, COMMITTEE ON RISK ASSESSMENT

- **Risk** A measure of the probability and severity of an adverse effect to health, property or the environment. Risk is often estimated by the product of probability x consequences. However, a more general interpretation of risk involves a comparison of the probability and consequences in a non-product form.
- **Hazard** A condition with the potential for causing an undesirable consequence (*the landslide*). The description of landslide hazard should include the location, volume (or area), classification and velocity of the potential landslides and any resultant detached material, and the likelihood of their occurrence within a given period of time.
- **Elements at Risk** Meaning the population, buildings and engineering works, economic activities, public services utilities, infrastructure and environmental features in the area potentially affected by landslides.
- **Probability** The likelihood of a specific outcome, measured by the ratio of specific outcomes to the total number of possible outcomes. Probability is expressed as a number between 0 and 1, with 0 indicating an impossible outcome, and 1 indicating that an outcome is certain.
- **Frequency** A measure of likelihood expressed as the number of occurrences of an event in a given time. See also Likelihood and Probability.
- **Likelihood** used as a qualitative description of probability or frequency.
- **Temporal Probability** The probability that the element at risk is in the area affected by the landsliding, at the time of the landslide.
- **Vulnerability** The degree of loss to a given element or set of elements within the area affected by the landslide hazard. It is expressed on a scale of 0 (no loss) to 1 (total loss). For property, the loss will be the value of the damage relative to the value of the property; for persons, it will be the probability that a particular life (the element at risk) will be lost, given the person(s) is affected by the landslide.
- **Consequence** The outcomes or potential outcomes arising from the occurrence of a landslide expressed qualitatively or quantitatively, in terms of loss, disadvantage or gain, damage, injury or loss of life.
- **Risk Analysis** The use of available information to estimate the risk to individuals or populations, property, or the environment, from hazards. Risk analyses generally contain the following steps: scope definition, hazard identification, and risk estimation.
- **Risk Estimation** The process used to produce a measure of the level of health, property, or environmental risks being analysed. Risk estimation contains the following steps: frequency analysis, consequence analysis, and their integration.
- **Risk Evaluation** The stage at which values and judgements enter the decision process, explicitly or implicitly, by including consideration of the importance of the estimated risks and the associated social, environmental, and economic consequences, in order to identify a range of alternatives for managing the risks.
- **Risk Assessment** The process of risk analysis and risk evaluation.
- **Risk Control or Risk Treatment** The process of decision making for managing risk, and the implementation, or enforcement of risk mitigation measures and the re-evaluation of its effectiveness from time to time, using the results of risk assessment as one input.
- **Risk Management** The complete process of risk assessment and risk control (or risk treatment).

AGS SUB-COMMITTEE

- Individual Risk The risk of fatality or injury to any identifiable (named) individual who lives within the zone impacted by the landslide; or who follows a particular pattern of life that might subject him or her to the consequences of the landslide.
- **Societal Risk** The risk of multiple fatalities or injuries in society as a whole: one where society would have to carry the burden of a landslide causing a number of deaths, injuries, financial, environmental, and other losses.
- **Acceptable Risk** A risk for which, for the purposes of life or work, we are prepared to accept as it is with no regard to its management. Society does not generally consider expenditure in further reducing such risks justifiable.
- **Tolerable Risk** A risk that society is willing to live with so as to secure certain net benefits in the confidence that it is being properly controlled, kept under review and further reduced as and when possible.
 - In some situations risk may be tolerated because the individuals at risk cannot afford to reduce risk even though they recognise it is not properly controlled.
- **Landslide Intensity** A set of spatially distributed parameters related to the destructive power of a landslide. The parameters may be described quantitatively or qualitatively and may include maximum movement velocity, total displacement, differential displacement, depth of the moving mass, peak discharge per unit width, kinetic energy per unit area.
- <u>Note:</u> Reference should also be made to Figure 1 which shows the inter-relationship of many of these terms and the relevant portion of Landslide Risk Management.

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX C: LANDSLIDE RISK ASSESSMENT

QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY

QUALITATIVE MEASURES OF LIKELIHOOD

Approximate A Indicative Value	nnual Probability Notional Boundary	Implied Indicative Landslide Recurrence Interval		Description	Descriptor	Level
10 ⁻¹	5x10 ⁻²	10 years	• •	The event is expected to occur over the design life.	ALMOST CERTAIN	A
10-2	5x10 ⁻³	100 years	20 years 200 years	The event will probably occur under adverse conditions over the design life.	LIKELY	В
10^{-3}		1000 years	200 years 2000 years	The event could occur under adverse conditions over the design life.	POSSIBLE	C
10 ⁻⁴	5x10 ⁻⁴	10,000 years	20,000 years	The event might occur under very adverse circumstances over the design life.	UNLIKELY	D
10 ⁻⁵	$5x10^{-5}$ $5x10^{-6}$	100,000 years		The event is conceivable but only under exceptional circumstances over the design life.	RARE	Е
10 ⁻⁶	3,110	1,000,000 years	200,000 years	The event is inconceivable or fanciful over the design life.	BARELY CREDIBLE	F

Note: (1) The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa.

QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

Approximate Cost of Damage		Description	Descriptor	Level
Indicative Value	Notional Boundary	Description	Descriptor	Level
value	Doundary			
200%	1000/	Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.	CATASTROPHIC	1
60%	100%	Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage.	MAJOR	2
20%	40%	Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.	MEDIUM	3
5%	1%	Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.	MINOR	4
0.5%	170	Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)	INSIGNIFICANT	5

Notes:

- (2) The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the unaffected structures.
- (3) The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property.
- (4) The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX C: – QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY (CONTINUED)

QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY

LIKELIHO	CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage)					
	Indicative Value of Approximate Annual Probability	1: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%
A - ALMOST CERTAIN	10 ⁻¹	VH	VH	VH	Н	M or L (5)
B - LIKELY	10 ⁻²	VH	VH	Н	М	L
C - POSSIBLE	10 ⁻³	VH	Н	M	M	VL
D - UNLIKELY	10 ⁻⁴	Н	М	L	L	VL
E - RARE	10 ⁻⁵	M	L	L	VL	VL
F - BARELY CREDIBLE	10 ⁻⁶	L	VL	VL	VL	VL

Notes: (5) For Cell A5, may be subdivided such that a consequence of less than 0.1% is Low Risk.

When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current time.

RISK LEVEL IMPLICATIONS

	Risk Level	Example Implications (7)		
VH	VERY HIGH RISK	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the property.		
Н	HIGH RISK	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.		
M	MODERATE RISK	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as practicable.		
L	LOW RISK	Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is required.		
VL	VERY LOW RISK	Acceptable. Manage by normal slope maintenance procedures.		

Note: (7) The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide.

Appendix 3

TABLE: A

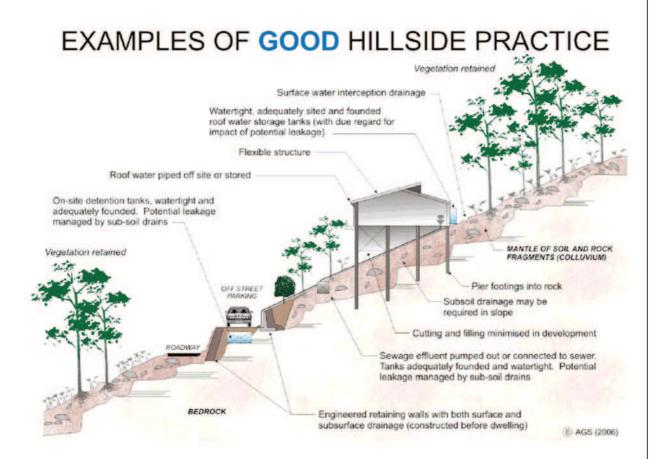
Recommended Maintenance and Inspection Program

Structure	Maintenance/ Inspection Item	Frequency
Stormwater drains.	Owner to inspect to ensure that the open drains, and pipes are free of debris & sediment build-up. Clear surface grates and litter. Owner to check and flush retaining wall drainage pipes/systems	Every year or following each major rainfall event. Every 7 years or where dampness/moisture issues
Retaining Walls. or remedial measures	Owner to inspect walls for deveation from as constructed condition and repair/replace. Replace non engineered rock/timber walls prior to collapse	Every two years or following major rainfall event. As soon as practicable
Large Trees on or adjacent to site	Arborist to check condition of trees and remove as required. Where tree within steep slopes (>18°) or adjacent to structures requires geotechincal inspection prior to removal	Every five years
Slope Stability	Geotechnical Engineering Consultant to check on site stability and maintenance	Five years after construction is completed.

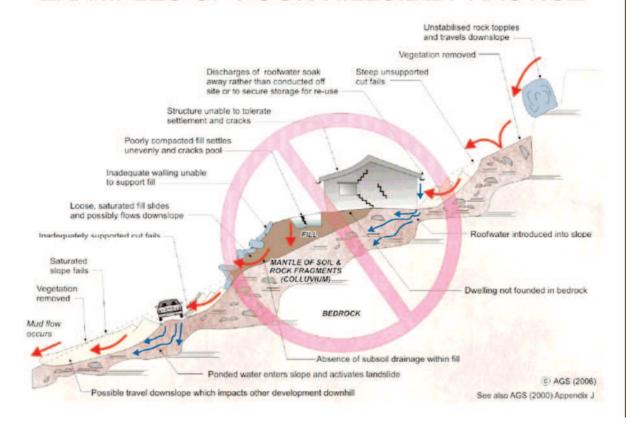
N.B. Provided the above shedule is maintained the design life of the property should conform with Councils Risk Management Policy.

Appendix 4

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007


APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

GOOD ENGINEERING PRACTICE


ADVICE

POOR ENGINEERING PRACTICE

GEOTECHNICAL	Obtain advice from a qualified, experienced geotechnical practitioner at early	Prepare detailed plan and start site works before	
ASSESSMENT	stage of planning and before site works.	geotechnical advice.	
PLANNING	1 8-100 to primary and treatment	8	
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.	Plan development without regard for the Risk.	
DESIGN AND CON			
HOUSE DESIGN	Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding.	Floor plans which require extensive cutting and filling.	
	Consider use of split levels. Use decks for recreational areas where appropriate.	Movement intolerant structures.	
SITE CLEARING	Retain natural vegetation wherever practicable.	Indiscriminately clear the site.	
ACCESS &	Satisfy requirements below for cuts, fills, retaining walls and drainage.	Excavate and fill for site access before	
DRIVEWAYS	Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.	geotechnical advice.	
EARTHWORKS	Retain natural contours wherever possible.	Indiscriminatory bulk earthworks.	
Cuts	Minimise depth.	Large scale cuts and benching.	
	Support with engineered retaining walls or batter to appropriate slope.	Unsupported cuts.	
	Provide drainage measures and erosion control.	Ignore drainage requirements	
FILLS	Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall. Provide surface drainage and appropriate subsurface drainage.	Loose or poorly compacted fill, which if it fails, may flow a considerable distance including onto property below. Block natural drainage lines. Fill over existing vegetation and topsoil.	
		Include stumps, trees, vegetation, topsoil,	
n —		boulders, building rubble etc in fill.	
ROCK OUTCROPS & BOULDERS	Remove or stabilise boulders which may have unacceptable risk. Support rock faces where necessary.	Disturb or undercut detached blocks or boulders.	
RETAINING WALLS	Engineer design to resist applied soil and water forces. Found on rock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above.	Construct a structurally inadequate wall such as sandstone flagging, brick or unreinforced blockwork. Lack of subsurface drains and weepholes.	
	Construct wall as soon as possible after cut/fill operation.		
FOOTINGS	Found within rock where practicable. Use rows of piers or strip footings oriented up and down slope. Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.	Found on topsoil, loose fill, detached boulders or undercut cliffs.	
SWIMMING POOLS	Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.		
DRAINAGE			
SURFACE	Provide at tops of cut and fill slopes. Discharge to street drainage or natural water courses. Provide general falls to prevent blockage by siltation and incorporate silt traps. Line to minimise infiltration and make flexible where possible.	Discharge at top of fills and cuts. Allow water to pond on bench areas.	
SUBSURFACE	Special structures to dissipate energy at changes of slope and/or direction. Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.	Discharge roof runoff into absorption trenches.	
SEPTIC & SULLAGE	Usually requires pump-out or mains sewer systems; absorption trenches may be possible in some areas if risk is acceptable. Storage tanks should be water-tight and adequately founded.	Discharge sullage directly onto and into slopes. Use absorption trenches without consideration of landslide risk.	
EROSION CONTROL & LANDSCAPING	Control erosion as this may lead to instability. Revegetate cleared area.	Failure to observe earthworks and drainage recommendations when landscaping.	
	ITE VISITS DURING CONSTRUCTION		
DRAWINGS	Building Application drawings should be viewed by geotechnical consultant		
SITE VISITS	Site Visits by consultant may be appropriate during construction/		
INSPECTION AND MAINTENANCE BY OWNER			
OWNER'S	Clean drainage systems; repair broken joints in drains and leaks in supply		
RESPONSIBILITY	pipes. Where structural distress is evident see advice.		
	If seepage observed, determine causes or seek advice on consequences.		

EXAMPLES OF POOR HILLSIDE PRACTICE

