

SPRING COVE ESTATE, MANLY

STORMWATER REPORT

December 2011

Spring Cove Developments Pty Ltd

SPRING COVE ESTATE, MANLY

STORMWATER REPORT

December 2011

Spring Cove Developments Pty Ltd

Level 10, 503-505 Kent Street Sydney NSW 2000

Issue and revision record

Revision	Date	Originator	Checker	Approver	Description
1	30/06/2004	TE	RH	RH	Draft
2	05/05/2006	SG	RH	RH	Draft
3	05/12/2011	СВ	RH	RH	Final

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose. We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Mott MacDonald Hughes Trueman Pty Limited, Level 2, 60 Pacific Highway, St Leonards, NSW 2065, Australia PO Box 151, St Leonards, NSW 1590, Australia T +61 (0)2 9439 2633 F +61 (0)2 9438 4505, www.hughestrueman.com.au

Content

Chapter Title Page **Executive Summary** i. 1. 1 Introduction 1.1 Background 1 Site Description 1.2 1 1.3 Scope 1 2. Proposed Stormwater Drainage Infrastructure 2 3. Stormwater Quantity Modelling 4 Model Data_____ 3.1 4 Hydrologic Parameters_____ 3.1.1 4 3.1.1.1 Rainfall Data 4 3.1.1.2 Depression Storage _____ 4 Soil Type ____ 3.1.1.3 4 Antecedent Moisture Condition (AMC) 5 3.1.1.4 3.1.2 Other Data _____ 5 3.2 _____6 Results ____ 3.2.1 Ponding Depths ______ 6 3.2.2 Flow Distribution from Pit A.8 _____ 7 8 Appendices Appendix A. Catchment Plans 9 Appendix B. Drains Model Input / Output 10

Executive Summary

The stormwater drainage for Spring Cove Estate described within this report has been designed to satisfy the requirements of Manly Councils 'Specification for Stormwater Drainage 2003'.

As site constraints dictate that major system flows will surcharge across private property, the pipe system has been designed to convey 100 year ARI flows. This approach is in accordance with Section 7.2 of the above Council document. Modelling of the stormwater drainage system has been undertaken using the DRAINS software package to estimate design flows and pipes sizes, and to check freeboard at sag locations.

Substantial re-use of stormwater on the site will occur which will have the effect of reducing stormwater flows from the development. This stormwater reuse has not been considered in the sizing of the proposed stormwater system. The details of the stormwater re-use and associated stormwater quality management facilities are contained in the companion report *Stormwater Quality Assessment Report, November 2011*.

1. Introduction

1.1 Background

This report has been prepared by Mott MacDonald Hughes Trueman to address the stormwater drainage requirements of the Spring Cove Estate development in Manly.

The report should be read in conjunction with the Mott MacDonald Hughes Trueman engineering plans.

1.2 **Site Description**

St Patrick's Estate Manly currently houses St Pauls College, Archbishops residence and extends south from Darley Road to Spring Cove. Until recently, Gilroy House was also one of the constructed features of the site, and there are also a number of historically significant features of the site including steps and pathways. Spring Cove Estate comprises the southern portion of the Estate south of Darley Road.

To the east of the site is the Sydney Harbour National Park, and to the west is residential development. Drainage from the site flows to Spring Cove which borders the North Harbour Aquatic Reserve. Spring Cove is a documented site for Fairy Penguin colonies, and is therefore an environment sensitive to any change in runoff quantity or quality resulting from the proposed development.

The existing flow paths and catchments for the site and the upstream catchment are shown on Drawing No. 291428C-SK02 in Appendix A. There are three (3) stormwater outlets to Spring Cove. The two (2) western outlets cater for a relatively small portion of the site while the eastern outlet caters for the majority of the site.

1.3 Scope

Previous drainage issues raised in the Land and Environment Court of NSW relate to both water quality and water quantity. Water quality issues are not addressed as part of this report. For details regarding water quality, reference should be made to the following report:

St Patrick's Estate, Spring Cove, Manly - Stormwater Quality Assessment Report November 2011.

2. Proposed Stormwater Drainage Infrastructure

The proposed stormwater system is shown on Drawing No. 291428C-CC231 – Stormwater Plan.

A piped stormwater collection system will be provided within the precincts to collect stormwater in accordance with Manly Council's document 'Specification for Stormwater Drainage 2003'. The layout of the site is constrained by existing trees that are to be retained and heritage features, particularly steps and pathway. The resulting site layout provides negligible opportunity to provide overland flowpaths along roads or drainage easements. Therefore the piped drainage system has been designed for a 100 year ARI.

Run-off from existing developed catchment above the site (i.e. St Paul's College and the Archbishop's Residence) flows in two directions. The majority (2.84 ha.) will be directed along the eastern boundary of the site to maintain the existing water regime to areas of significant vegetation. The remainder (1.1 ha.) is conveyed by Pipeline E along Road 1. Line E discharges just beyond the end of road 1 and the runoff is conveyed as overland flow along the heritage corridor. It is collected by Pit A8, just upstream of the lower section of Road 2.

Pit A8 is a bifurcation pit. Most flow from this pit will be conveyed by Line A to Outlet O3 at the south-eastern corner of the site, in order to maintain the existing flow distribution to the vegetation below the site and to Spring Cove. Flows exceeding the capacity of Line A will conveyed under Road 2 by a box culvert to Outlet O2.

Other stormwater management measures include:

- Bioretention swales and bioretention basins where run-off during minor storms from roads and hard surfaced areas are directed.
- Infiltration areas where run-off from minor storms from roads and hard surfaced areas are directed in order to replicate the existing water regime to areas of significant vegetation.
- Rainwater collection tanks will be provided at each house and for the apartments. These tanks will collect roof run-off in order to provide water for laundries and toilet flushing for the houses and apartments.
- The three (3) existing stormwater outlet locations are to be retained so that flow patterns to Spring Cove and the vegetation below the site remain similar to existing. The two (2) western outlets will cater for a relatively small portion of the site while the eastern outlet will cater for the majority of the site.

The pits immediately before the outlets from the site (A.1 & G.1) are designed to surcharge. This is to allow large flows to leave the site as overland flow and to prevent high velocity flow being directed at vegetation below the site.

The above stormwater management measures are described in more detail in St Patrick's Estate, Spring Cove, Manly - Stormwater Quality Assessment Report November 2011.

3. Stormwater Quantity Modelling

To demonstrate the peak site discharge for the above events in both the post developed site condition, Mott MacDonald Hughes Trueman has undertaken modelling using the "DRAINS" software package. DRAINS is a runoff routing program that converts rainfall patterns into runoff and routes flows through a drainage network.

DRAINS therefore offers a level of design superior to the rational method in that actual hydrographs for the 10 and 100 year storm events are produced rather than triangular hydrographs. Each catchment is analysed and hydrographs developed for the critical duration storm relating to the catchment characteristics.

3.1 **Model Data**

3.1.1 **Hydrologic Parameters**

The loss model in Drains represents hydrological processes such as interception, depression storage, evaporation and infiltration to determine runoff from a catchment. Losses are removed from the rainfall hyetograph to determine the rainfall excess, which is then converted to runoff.

3.1.1.1 **Rainfall Data**

The IFD data for Manly Council has been used as the initial input into drains for rainfall hyetographs. Storm temporal patterns, ranging in duration from 5 minutes to 2 hours, from Australian Rainfall and Runoff (ARR) (Institution of Engineers, Australia, 1987)

3.1.1.2 **Depression Storage**

Depression storage represents the initial losses from the catchment. The following inputs have been adopted:

- Grassed Areas 5mm
- Paved Areas 1mm

3.1.1.3 Soil Type

The infiltration capacity of grassed areas is partly dependent upon soil type. The four main soil types are as follows:

Table 3.1:	Soil Classification	
Classificat	ion	Description
1(A)		high infiltration – sand, gravels
2(B)		moderate infiltration
3(C)		slow infiltration
4(D)		very slow infiltration - clays

For Spring Cove Estate, the soil type adopted is Classification 3.

3.1.1.4 Antecedent Moisture Condition (AMC)

The infiltration capacity of grassed areas is also partly dependent upon AMC. The AMC is basically a measure of the wetness of the soil immediately prior to the storm event. The four main AMC conditions are as follows:

Number	Description	Total Rainfall in 5 days preceding storm (mm)
1	completely dry	0
2	rather dry	0 - 12.5
3	rather wet	12.5 - 25
4	saturated	Over 25

Table 3.2:AMC Conditions

For Spring Cove Estate, the AMC adopted is 3.

3.1.2 Other Data

The input data for the DRAINS model is listed in Appendix B. The adopted catchment boundaries are shown on Drawing No. 291428C-SK02.

Pit inlet capacities were determined using the relationships from *HEC22* (US Federal Highway Administration (FHWA), 2002) and *ARR* for ongrade and sag pits respectively. Where the majority of inflow to the pit is from house roofs, the pits were modelled as having unlimited inlet capacity. Building down pipes will be connected to the main drainage lines by interallotment pipes, however these have not been detailed at this stage.

The methods for estimating Pit losses listed in Manly Council's *Specification for Stormwater Drainage* (2003) do not cover drops or partially full pipes. The FHWA 'Composite Energy Loss Method' (*HEC22*, 2002) was used to estimate pit losses in these cases. Losses for all other pits were estimated using the Hare Equations.

Where overland flowpaths follow roads, the shape of the overland flowpath in DRAINS was determined from the from the road and swale cross-sections. However overland flow cross-sections in landscaped areas have not been determined at this stage.

For the purposes of sizing the piped stormwater system the effects of the rainwater collection tanks and infiltration areas were omitted from the DRAINS modelling. Likewise, bioretention swales and basins were assumed to be fully saturated at the start of the design storms. This is considered a more conservative approach.

3.2 Results

The outputs from the DRAINS model runs are at Appendix B. The model was run firstly run without any pit blockage factors in order to estimate pipe sizes. The results show that the proposed pipe system will convey the peak 100 year ARI flows.

A second model run was undertaken with pit blockage factors applied to estimate overland flows and to check ponding depths at sag locations. The adopted pit blockage are shown in Table 3.3 and derived from Manly Council's *Specification for Stormwater Drainage* (2003).

Table 3.3: Pit Blockage Factors

Pit Type	Blockage Factor
Sag, grate only	20%
On-grade, grate only	50%

3.2.1

6

Ponding Depths

As the proposed houses are located in close proximity to the road, there is a need to ensure that ponding at sag points does not cause flooding of houses and garages. Table 3.4 shows ponding levels in the 100 year ARI assuming the above pit blockage factors. The results show that Council's freeboard requirements are satisfied at these sag locations.

291428///02/3 05 November 2011 P:\St Leonards\Projects\29xxxx\291428\Documents\Working Files\Reports\SW Report\291428-111205-SW report V3.doc

Table 3.4:	Ponding Lev	vels at Sag	g Location	S			
Pit No.	Ponding Level	House	Gar	age	Ground Floor		
	(MAHD)	NO.	R.L.	Freeboard	R.L.	Freeboard	
A.6	18.51	19	19.27	0.76	21.92	3.41	
A.8	19.12	18	19.58	0.45	24.88	5.76	
A.14	30.20	1	30.60	0.40	33.40	3.20	
C.8	30.77	8, 9	31.00	0.23			

Flow Distribution from Pit A.8 3.2.2

Pit A.8 has significant impact on the distribution of flow between Outlet O2 and Outlet O3. Table 3.5 shows peak flows and the runoff volumes from Pit A.8 that are directed to outlets O2 and O3 respectively. The table shows that the majority of flow from Pit A.8 is directed to the eastern outlet, thus assisting to maintaining the existing flow regime to Spring Cove and the vegetation below the site.

Table 3.5: Flow Distribution from Pit A.8

ARI (years)	Peaks flows	(L/s) in critical storm duration	Proportion of Runoff Volume in 2 hour duration storm			
	To O2	To O3	To O2	To O3		
2	37	312	1%	99%		
10	214	317	10%	90%		
100	482	316	21%	79%		

291428///02/3 05 November 2011

P:\St Leonards\Projects\29xxxx\291428\Documents\Working Files\Reports\SW 7

Report\291428-111205-SW report V3.doc

Appendices

Appendix A.	. Catchment Plans	9
Appendix B.	. Drains Model Input / Output	10

Appendix A. Catchment Plans

300jmm A1 SHEET	
200 ^{4mm}	
100mm	
R	Image: constraint of the second for liss of the property of light of aving remains the property of lights Trueman Pty. Ltd. This draving remains the property of lights Trueman Pty. Ltd. This draving remains the property of lights Trueman Pty. Ltd. Proving Truema Pty. Ltd. Pr

Appendix B. Drains Model Input / Output

PIT / NOD	E DETAILS		Version 2	10						
Name	Туре	Family	Size	Pondin	g	Pressure	Surface	Max Pond	Base	Blocking
				Volume	9	Change	Elev (m)	Depth (m)	Inflow	Factor
				(cu.m)		Coeff. Ku			(cu.m/s)	
B.1	OnGrade	Bio-Swale	BS225 -	600x900		4	19.675		0	0.2
A.5	Sag	Bio-Swale	BS225 -	60	5.1	2.6	19.331	0.25	0	0.5
A.4	OnGrade	Dummy	UNLIMIT	ED		0.3	17.192		0	0.2
A.3	OnGrade	Dummy	UNLIMIT	ED		0.8	15.454		0	0.2
A.2	OnGrade	Dummy	UNLIMIT	ED		1.2	14.729		0	0.2
A.1	OnGrade	Dummy	UNLIMIT	ED		2	13.578		0	0.2
3	Node						13.124		0	
C.10	OnGrade	Dummy	UNLIMIT	ED		4	34.086		0	0.2
C.9	OnGrade	Dummy	UNLIMIT	ED		1.6	33.06		0	0.2
C.8	Sag	Bio-Swale	BS225 -	60 4	.08	2.3	32.33	0.26	0	0.5
C.7	OnGrade	Junction	JP			0.5	30.693		0	0.2
C.6	OnGrade	Junction	JP			1.4	29.481		0	0.2
C.5	OnGrade	Dummy	UNLIMIT	ED		2	26.366		0	0.2
C.4	OnGrade	Junction	JP			1.7	24.148		0	0.2
C.3	OnGrade	Junction	JP			2.4	24.083		0	0.2
C.2	OnGrade	Dish Drain	AWY_DE)G		1	20.563		0	0.2
C.1	Node						18.801		0	
F.1	OnGrade	Dummy	UNLIMIT	ED		4	25.285		0	0.2
D.4	OnGrade	Dish Drain	AWY DE)G		2.5	25.796		0	0.2
D.3	OnGrade	NSW Dept	.1.8 m lint	tel (all gra	des	1.5	23.602		0	0.2
D.2	OnGrade	Dish Drain	AWY DE	ŊĠÙ		1.5	23.093		0	0.2
D.1	OnGrade	Dish Drain	AWY DE	DG		1.2	21.97		0	0.2
G.3	OnGrade	Bio-Swale	BS225 -	600x900		1.5	19.018		0	0.2
G.2	OnGrade	NSW Dept	1.8 m lint	tel (all gra	des	1.5	16.112		0	0.2
1	Node					,	15.025		0	
House 15	OnGrade	Dummy	UNI IMIT	FD		0	19		0	0.2
H.1	OnGrade	Bio-Swale	BS225 -	 600x900		2.5	18.55		0	0.2
A.7	OnGrade	Dish Drain	AWY D)G		2	19.372		0	0.2
A 6	OnGrade	NSW Dept	1.8 m lint	tel (all gra	des	15	19 198		0	0.2
DP 19	OnGrade	Dummy	UNI IMIT	FD		0	19.27		0	0.2
DP 2	OnGrade	Dummy		ED.		0	30.6		0	0.2
A.15	OnGrade	Bio-Swale	BS225 -	 600x900		0.5	32.228		0	0.2
A 14	Sag	Bio-Swale	BS225 -	60	06	2	32 924	0.1	0	0.5
A.13	Sag	Dish Drain	DDG		2	1.2	30.175	0.15	0	0.5
A 12	OnGrade	Dummy		FD	-	1.5	30 417	00	0	0.2
A 11	OnGrade	Dummy		FD		1.5	26 165		0	0.2
A 10	OnGrade	Junction	JP	20		1.5	22 954		0	0.2
A 9	OnGrade	Dummy	UNI IMIT	FD		1.5	21 28		0	0.2
A 8	Sag	Surface In	900 x 90	0:	3	1.5	19 643	0.5	0	0.5
DP 3	OnGrade	Dummy		FD	•	0	31 75	010	0	0.2
A 16	OnGrade	Bio-Swale	BS225 -	600x900		4	31 114		0	0.2
DP 1	OnGrade	Dummy		FD		. 0	33.4		0	0.2
.12	OnGrade	NSW Dent	1.8 m lint	tel (all ora	des	. ŭ	29 416		0	0.2
.11	OnGrade	Dummy		TED	400	25	26 884		0	0.2
M 1	OnGrade	NSW Dent	1.8 m lint	tel (all ara	des	<u> </u>	28.395		0	0.2
H 2	OnGrade	NSW Dept	1.8 m lini	tel (all ara	dee dee	1.0	18 15		0	0.2
	OnGrade	NSW Dept	1.0 m lini	tol (all gra	doe	1.5	40.4		0	0.2
E.0	OnGrade	NSW Dept	1.0 m lini	tel (all gra	des des	, 1.5 . 4	40.4		0	0.2
	OnGrade	NSW Dept	1.0 m lini	tol (all gra	doe	, – – , – – – – – – – – – – – – – – – –	38.2		0	0.2
L./ E.6	OnGrade	NSW Dept	1.0 m lini	tel (all gra	des des	1.5	35.7		0	0.2
	OnGrade	lunction	IP	ici (ali yia	463	 	3/ 2/1		0	0.2
L. 1	OnGrade	Bio Swale	01 B6335	6002000		0.9	32 834		0	0.2
E.0 E 2	OnGrade		BS220 -	6002900		10	32.034		0	0.2
∟.∠ D 7	OnGrada	NGW/ Doot	1.8 m lint	tol (all are	doo	۱.۲ ۲	3U EU		0	0.2
	OnGrade	Dieh Drain		nor (all yra NG	005	 ג	20.09		0	0.2
D.5	OnGrade	Dish Drain				4	20.004		0	0.2
2.0	Node		,DL			1.4	19 1		0	0.2

DETENTION BASIN DETAILS Volume Init Vol. (cuOutlet Type K Name Elev Dia(mm) Centre RL Pit Family Pit Type E.5 0 0 Culvert 1 36 36.2 35.4 36.4 70.8 36.6 105 E.1 29 0 0 None 29.2 30 29.4 60 29.6 90

SUB-CATCHMENT DETAILS

29.8

120

Name	Pit or	Total	Paved	Grass	Supp	Paved	Grass	Supp	Paved
	Node	Area	Area	Area	Area	lime	lime	lime	Length
		(ha)	%	%	%	(min)	(min)	(min)	(m)
C B.1	B.1	0.1326	15	85	5 O		5	15	0
C A.5	A.5	0.0642	69	31	0		3	10	0
C A.2	A.2	0.0785	75	25	6 0		3	6	0
C A.1	A.1	0.0001	99	1	0		1	5	0
C C.10	C.10	0.1762	75	25	6 O		3	5	0
C C.9	C.9	0.0515	58	42	2 0		3	5	0
C C.8	C.8	0.0868	58	42	2 0		3	5	0
C C.5	C.5	0.1903	75	25	6 O		2	5	0
C C.2	C.2	0.033	25	75	5 0) !	5	10	0
C F.1	F.1	0.0444	60	40) 0) !	5	10	0
C D.3	D.4	0.0063	95	5	i 0		2	2	0
C D.2	D.2	0.0301	35	65	5 O		2	10	0
C D.1	D.1	0.006	80	20	0 0		2	5	0
C G.3	G.3	0.2961	60	40	0 0) :	3	10	0
C House18	House 15	0.0225	100	0	0		2	0	0
C H.1	H.1	0.0124	72	28	s 0		2	5	0
C A.7	A.7	0.0089	100	0	0		2	5	0
C Houses	DP 19	0.0702	100	0	0		2	0	0
House 2	DP 2	0.02	100	0	0		2	0	0
C A.15	A.15	0.0576	27	73	s 0) (3	10	0
C A.14	A.14	0.0858	33	67	, O) ;	3	10	0
C A.13	A.13	0.0254	100	0	0		2	5	0
C A.11	A.11	0.16	78	22	2 0) (3	5	0
C A.8	A.8	0.156	10	90	0 0) :	5	15	0
House 3, 4	DP 3	0.04	100	0	0 0		2	0	0
C A.16	A.16	0.0852	21	79	0 0) (3	10	0
House 1	DP 1	0.02	100	0	0) ;	3	0	0
C J.2	J.2	0.475	75	25	i 0) !	5	10	0
C M.1	M.1	0.06	90	10	0 0) !	5	5	0
C E8	E.8	0.085	75	25	5 0) !	5	10	0
C E.5	E.5	1.1199	0	80	20		1	10	1
C E.3	E.3	0.0885	81	19	0)	2	5	5
C E.2	E.2	0.0223	95	5	; O		1	5	0
C E.1	E.1	0.0244	100	0	0		1	5	0
C D.7	D.7	0.0192	95	5	i 0) :	2	2	0
C D.5	D.5	0.0054	95	5	5 O		2	2	0

PIPE DET/	AILS											
Name	From	То		Length	U/S IL	D/S IL	Slope	Туре	Dia	I	.D.	
				(m)	(m)	(m)	(%)		(mm)	(mm)	
P B.1	B.1	A.5		21.194	18.06	17.578	2.27	RCP		225		225
P A.5	A.5	A.4		14.874	15.99	15.75	1.61	RCP		525		525
P A.4	A.4	A.3		13.512	15.7	13.95	12.95	RCP		525		525
P A.3	A.3	A.2		5.08	13.9	13.38	10.24	RCP		525		525
P A.2	A.2	A.1		37.848	13.15	12.3	2.25	RCP		525		525
P A.1	A.1		3	4.678	12.25	12.2	1.07	uPVC HD		150		154
P C.10	C.10	C.9		27.98	31.2	30.41	2.82	RCP		375		375
P C.9	C.9	C.8		13.583	30.36	29.709	4.79	RCP		375		375
P C.8	C.8	C.7		19.632	29.57	29.35	1.12	RCP		450		450
P C.7	C.7	C.6		14.521	29.3	28.3	6.89	RCP		450		450
P C.6	C.6	C.5		5.293	26.381	25.5	16.64	RCP		450		450
P C.5	C.5	C.4		4.585	24.206	23.3	19.76	RCP		450		450
P C.4	C.4	C.3		15.68	23	22.4	3.83	RCP		450		450
P C.3	C.3	C.2		17.04	20.8	19.46	7.86	RCP		450		450
P C.2	C.2	C.1		11.978	19.4	18.8	5.01	RCP		450		450
P F.1	F.1	D.4		2.715	24.23	24.2	1.1	RCP		375		375
P D.4	D.4	D.3		11.68	24.15	22.574	13.49	RCP		300		300
PD.3	D.3	D.2		5.15	22.574	22	11.15	RCP		375		375
P D.2	D.2	D.1		11.54	21.92	20.8	9.71	RCP		375		375
P D.1	D.1	C.2		14.382	20.75	19.5	8.69	RCP		375		375
PG2	G 3	G 2		25 399	17	14 65	9 25	RCP		375		375
PG1	G 2	0.2	1	1 151	14 45	14 4	4 34	RCP		375		375
DP 15	House 15	Н1	•	1	18.4	18.2	20			150		154
PH1	H 1	Α 7		14 935	17 16	17	1 07	RCP		525		525
P A 7	Δ 7	A 6		2 719	17	16 85	5 52	RCP		525		525
P A 6	A 6	Δ 5		33 674	16.8	16.00	1 46	RCP		525		525
P H18-19	DP 19	Δ 5		1	18.2	17.85	35			100		105
P DP2		Δ 15		1	30.3	30.25	5			100		105
P Δ 15	Δ 15	Δ 14		16 955	29.52	29.15	2 18			375		375
ΡΔ1/	Δ 1/	Δ 13		9 1/6	20.02	20.10	0.03	RCP		375		375
D Δ 13	Δ 13	Δ 12		6 256	23.1	28.807	1 01	RCP		375		375
P Δ 12	Δ 12	Δ 11		24 766	20.00	20.007	1/ 25	RCP		375		375
Γ Α.12 Ρ Δ 11	Δ 11	Δ 10		7 780	20.00	20.0	20			375		375
	Δ 10	Δ 0		12 682	20.000	22.1	6 31			450		450
	A.10 A.0	A.9 A.9		16 196	10 334	20 19.9	0.01			450		450
	A.9 A Q	A.0 A 7		2 032	19.554	17.05	15 35			450		450
F A.0 Box Culver	A.0	A.1	2	2.952	17.5	18.04	0.06	Roy Culve	r 0 6\M	400 v 0.45	ц	450
	A.0	A 16	2	10.00	20.75	20.7	0.90		10.000	150		151
		A.10 A.15		16 252	30.75	20.7	2 00			275		275
		A.15 A.14		10.200	30.07	29.07	5.06			100		105
		A. 14		10 000	29.0	29.75	0 1 / 70			275		275
P J.Z	J.Z	J. I A 10		10.999	27.220	20.0	14.70			375		3/3
	J. I M 1	A. 10		40.00Z	25.02	21.0	9.4			430		450
		J.I		0.137	20.05	23.942	1.70			375		3/3
Р п.2	п.2			10.040	17.3	17.10	1.13	RCP		450		450
	E.9			12.104	39.2	38.55	5.34	RCP		375		3/5
	E.0	E./		10.10	38.5	30.05	10.18	RCP		375		3/5
PE.7	E./	E.0		20.065	30.0	34.85	8.72	RCP		375		3/5
PE.6	E.0	E.5		15.876	34.8	34.3	3.15	RCP		375		3/5
PE.5	E.5	E.4		19.097	34.25	33.8	2.36	RCP		450		450
PE.4	E.4	E.3		21.844	33.75	31.802	8.92	RCP		450		450
PE.3	E.3	E.2		6.679	31.73	30.37	20.36	RCP		450		450
P E.2	E.2	E.1		17.041	30.25	30.012	1.4	RCP		525		525
Pipe582	D./	D.6		11.62	27.6	26.85	6.45	RCP		375		375
P D.6	D.6	D.5		11.62	26.85	26.1	6.45	RCP		300		300
P D.5	D.5	D.4		11.62	26.05	24.75	11.19	RCP		300		300

DETAILS	of SERVICE	ES CROSSI	NG PIPES							
Pipe	Chg	Bottom	Height of S	SChg	E	Bottom	Height of S	Chg	Bottom	Height of S
	(m)	Elev (m)	(m)	(m)	E	lev (m)	(m)	(m)	Elev (m)	(m)
CHANNEI	DETAILS									
Name	From	То	Type	l enath	U	/S II	D/S II	Slope	Base Width	I B Slope
Nume	1 Iom	10	Type	(m)	(r	n)	(m)	(%)	(m)	(1:?)
				()		,				
OVERFLC	W ROUTE	DETAILS								
Name	From	То	Travel	Spill	С	rest	Weir	Cross	Safe Depth	SafeDepth
			Time	Level	L	ength	Coeff. C	Section	Major Stori	Minor Storr
			(min)	(m)	(r	n)			(m)	(m)
OF B.1	B.1	A.5	1					Bioswale	0.1	0.1
OF A.5	A.5	A.4	1					Dummy us	0.2	0.05
OF A.4	A.4	A.3	1					Dummy us	0.2	0.05
OF A.3	A.3	A.2	0.5	5				Dummy us	0.2	0.05
OF A.2	A.2	A.1	1					Dummy us	0.2	0.05
OF A.1	A.1	3	0.5	5				Dummy us	0.2	0.05
OF C10	C.10	D.7	2	2				Accessway	0.14	0.075
OF C.9	C.9	C.8	0.5	5				Bioswale	0.1	0.1
OF C.2	C.2	B.1	1					Bioswale	0.1	0.1
OF D.3	D.4	D.2	0.5	5				Accessway	0.14	0.075
OF D.2	D.2	D.1	0.5	5				Accessway	0.14	0.075
OF D.1	D.1	C.2	0.5	5				Accessway	0.14	0.075
OF G.2	G.3	G.2	3	3				Dummy us	0.2	0.05
OF H.1	H.1	A.7	1					Accessway	0.14	0.075
OF A.7	A.7	A.6	0.5	5				Bioswale	0.1	0.1
OF A.6	A.6	A.5	1					Dummy us	0.2	0.05
OF A.15	A.15	A.14	0.5	5				Bioswale	0.1	0.1
OF A.14	A.14	A.13	0.1					Dummy us	0.2	0.05
OF A.13	A.13	A.11	0.1					Dummy us	0.2	0.05
OF A.16	A.16	A.15	0.5	5				Bioswale	0.1	0.1
OF J2	J.2	J.1	0.5	5				Dummy us	0.2	0.05
OF H.2	H.2	H.1	0.5	5				Dummy us	0.2	0.05
OF E7	E.8	E.5	1					Dummy us	0.2	0.05
OF E.5	E.5	E.3	0.5	5 3	6.4	9.2	2 1.65	Dummy us	0.2	0.05
OF E.3	E.3	E.2	1					Dummy us	0.2	0.05
OF E.2	E.2	C.8	0.5	5				Bioswale	0.1	0.1
OF E.1	E.1	A.8	15	5 2	9.4	9.25	5 1.6	Dummy us	0.2	0.05
OF D.6	D.6	D.5	0.5	5				Accessway	0.14	0.075
OF D.5	D.5	D.4	0.5	5				Accessway	0.14	0.075
OF D.5	D.5	D.4	0.5	5				Accessway	0.14	0.075
								,		

100 YEAR ARI RESULTS

DRAINS results prepared 05 December, 2011 from Version 2011.12

PIT / NODE DETAILS				Version 8				
Name	Ν	/lax HGL	Max Pond	Max Surfac	Max Pond	Min	Overflow	Constraint
			HGL	Flow Arrivir	Volume	Freeboard	(cu.m/s)	
				(cu.m/s)	(cu.m)	(m)	,	
B.1		18.58		0.069	()	1.09	0.021	Inlet Capacity
A 5		17 33	19 46	0.057	19	2	0	Inlet Capacity
Δ Δ		16 12	10.10	0.001	1.0	1 07	0	None
Δ3		1/ 03		0		0.52	0	None
Δ 2		1/ 62		0.054		0.52	0	None
A 1		12 50		0.034		0.11	0 527	Outlet System
A.1	2	10.00		0 5 2 7		0	0.557	Outlet System
0.40	3	12.30		0.537		0.00	0	Nama
0.10		31.83		0.123		2.26	0	None
0.9		30.9	00.47	0.036	4 5	2.10	0	None
0.8		30	32.47	0.06	1.5	2.33		Inlet Capacity
C.7		29.58		0		1.12		None
C.6		26.75		0		2.73		None
C.5		25.14		0.133		1.23		None
C.4		23.86		0		0.29		None
C.3		21.83		0		2.25		None
C.2		20.21		0.02		0.35	0.005	Inlet Capacity
C.1		19.05		0				
F.1		24.52		0.028		0.77		None
D.4		24.51		0.005		1.29	0.001	Inlet Capacity
D.3		22.82		0		0.78		None
D.2		22.17		0.018		0.92	0.004	Inlet Capacity
D 1		21.02		0.008		0.95	0 001	Inlet Capacity
G 3		17 22		0 188		1.8	0 1 1 4	Inlet Canacity
C 2		1/ 01		0.100		1.0	0.114	None
0.2	1	14.51		0.114		1.2		None
	5	19.00		0 017		0.56		Nono
	5	10.44		0.017		0.00	0.024	
		10.17		0.075		0.38	0.024	Inlet Capacity
A.7		18.19		0.026		1.18	0.007	Inlet Capacity
A.6		17.8		0.007		1.4	0	None
DP 19		18.28		0.052		0.99		None
DP 2		30.36		0.015		0.24		None
A.15		30.13		0.041		2.1	0.004	Inlet Capacity
A.14		30.04	33.02	0.054	0.6	2.88	0.017	Inlet Capacity
A.13		29.73	30.23	0.034	0.5	0.44	0	Inlet Capacity
A.12		29.46		0		0.96		None
A.11		24.63		0.112		1.53		None
A.10		22.89		0		0.06		None
A.9		21.1		0		0.18		None
A.8		18.87	20.09	0.646	2.5	0.78		Inlet Capacity
DP 3		30.83		0.03		0.92		None
A.16		30.52		0.049		0.59	0.008	Inlet Capacity
DP 1		30.04		0.015		3.36		None
.12		27 59		0.313		1 83	0 212	Inlet Capacity
.11		26.7		0.212		0.19	0.212	None
M 1		26.7		0.042		1 60		None
ил. 1 Ц 2		10.71		0.042		1.05	0.072	Outlot System
		20.10		0		1 2	0.072	Nono
с.9 го		20 74		0.056		1.2	0.006	
		30.74		0.056		1.30	0.006	Mene
		36.85		0		1.35		None
E.6		35.7		0		0		Outlet System
E.4		34.66		0		-0.32		Outlet System
E.3		32.79		0.062		0.04	0.016	Inlet Capacity
E.2		31.26		0.031		0.74	0	None
D.7		27.73		0.014		2.86		None
D.6		26.98		0		1.89	0	None
		06 10		0.004		1 07	<u>^</u>	None

SUB-CATC	SUB-CATCHMENT DETAILS								
Name	Max	Paved	Grassed	Paved		Grassed	Supp.		Due to Storm
	Flow Q	Max Q	Max Q	Тс		Тс	Тс		
	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)		(min)	(min)		
C B.1	0.066	0.014	0.052		5	15	5	0	AR&R 100 year, 1 hou
C A.5	0.042	0.031	0.011		3	10)	0	AR&R 100 year, 25 mi
C A.2	0.054	0.042	0.012		3	6	6	0	AR&R 100 year, 1.5 ho
C A.1	0	0	0		1	5	5	0	AR&R 100 year, 5 min
C C.10	0.123	0.094	0.029		3	5	5	0	AR&R 100 year, 1.5 ho
C C.9	0.036	0.021	0.014		3	5	5	0	AR&R 100 year, 1.5 ho
C C.8	0.06	0.036	0.024		3	5	5	0	AR&R 100 year, 1.5 ho
C C.5	0.133	0.102	0.032		2	5	5	0	AR&R 100 year, 1.5 ho
C C.2	0.019	0.006	0.013		5	10)	0	AR&R 100 year, 25 mi
C F.1	0.028	0.019	0.01		5	10)	0	AR&R 100 year, 25 mi
C D.3	0.005	0.004	0		2	2	2	0	AR&R 100 year, 5 min
C D.2	0.018	0.007	0.011		2	10)	0	AR&R 100 year, 25 mi
C D.1	0.004	0.003	0.001		2	5	5	0	AR&R 100 year, 1.5 ho
C G.3	0.188	0.124	0.064		3	10)	0	AR&R 100 year, 25 mi
C House15	0.017	0.017	0		2	C)	0	AR&R 100 year, 5 min
C H.1	0.009	0.006	0.002		2	5	5	0	AR&R 100 year, 1.5 ho
C A.7	0.007	0.007	0		2	5	5	0	AR&R 100 year, 5 min
C Houses	0.052	0.052	0		2	C)	0	AR&R 100 year, 5 min
House 2	0.015	0.015	0		2	C)	0	AR&R 100 year, 5 min
C A.15	0.034	0.011	0.023		3	10)	0	AR&R 100 year, 25 mi
C A.14	0.051	0.02	0.031		3	10)	0	AR&R 100 year, 25 mi
C A.13	0.019	0.019	0		2	5	5	0	AR&R 100 year, 5 min
C A.11	0.112	0.089	0.023		3	5	5	0	AR&R 100 year, 1.5 ho
C A.8	0.075	0.011	0.065		5	15	5	0	AR&R 100 year, 1 hou
House 3, 4	0.03	0.03	0		2	C)	0	AR&R 100 year, 5 min
C A.16	0.049	0.013	0.036		3	10)	0	AR&R 100 year, 25 mi
House 1	0.015	0.015	0		3	C)	0	AR&R 100 year, 5 min
C J.2	0.313	0.249	0.064		5	10)	0	AR&R 100 year, 25 mi
C M.1	0.042	0.038	0.004		5	5	5	0	AR&R 100 year, 1.5 ho
C E8	0.056	0.045	0.011		5	10)	0	AR&R 100 year, 25 mi
C E.5	0.626	0	0.626		1	10)	1	AR&R 100 year, 20 mi
C E.3	0.062	0.051	0.011		2	5	5	5	AR&R 100 year, 1.5 ho
C E.2	0.016	0.016	0.001		1	5	5	0	AR&R 100 year, 5 min
C E.1	0.018	0.018	0		1	5	5	0	AR&R 100 year, 5 min
C D.7	0.014	0.013	0.001		2	2	2	0	AR&R 100 year, 5 min
C D.5	0.004	0.004	0		2	2	2	0	AR&R 100 year, 5 min

Outflow Volumes for Total Catchment (1.97 impervious + 1.89 pervious = 3.86 total ha) Storm Total Rainf Total Runo Impervious Pervious Runoff

Storm	Total Raini	Total Rund	impervious	Pervious Rur	1011
	cu.m	cu.m (Run	cu.m (Runo	cu.m (Runoff	·%)
AR&R 100	855.59	652.05 (76	369.33 (84	282.73 (67.4	%)
AR&R 100	1357.36	1115.74 (8	596.16 (86	519.58 (78.1	%)
AR&R 100	1736.91	1463.10 (8	767.74 (86	695.36 (81.7	%)
AR&R 100	2045.69	1743.85 (8	907.32 (87	836.54 (83.5	%)
AR&R 100	2315.88	1984.70 (8	1029.47 (8	955.23 (84.2	%)
AR&R 100	2566.77	2210.82 (8	1142.87 (8	1067.95 (84.	9%)
AR&R 100	3155.39	2738.77 (8	1408.94 (8	1329.83 (86.	0%)
AR&R 100	3666.81	3202.15 (8	1640.16 (8	1562.00 (87.	0%)
AR&R 100	4226.48	3685.14 (8	1893.21 (8	1791.93 (86.	5%)
AR&R 100	4708.96	4102.87 (8	2111.23 (8	1991.65 (86.	3%)

PIPE DETAILS Name Max Q Max V Max U/S Max D/S Due to Storm (cu.m/s) (m/s) HGL (m) HGL (m) P B.1 0.048 2.11 18.186 17.704 AR&R 100 year, 1 hour storm, average 95 mr P A.5 0.543 3.17 16.45 16.137 AR&R 100 year, 1 hour storm, average 95 mr P A.4 0.543 7.04 15.903 14.933 AR&R 100 year, 1 hour storm, average 95 mr P A.3 0.543 2.51 14.678 14.615 AR&R 100 year, 1 hour storm, average 95 mr P A.2 13.578 AR&R 100 year, 1.5 hours storm, average 73 0.595 2.75 14.152 P A.1 12.354 AR&R 100 year, 1.5 hours storm, average 73 0.058 3.13 12.587 P C.10 30.899 AR&R 100 year. 1.5 hours storm. average 73 0.123 2.8 31.357 P C.9 30.516 30.002 AR&R 100 year. 1.5 hours storm. average 73 0.159 3.64 P C.8 29.608 AR&R 100 year. 1.5 hours storm. average 73 0.218 2.32 29.828 P C.7 0.218 4.48 29.455 28.455 AR&R 100 year, 1.5 hours storm, average 73 P C.6 0.218 6.47 26.5 25.619 AR&R 100 year, 1.5 hours storm, average 73 P C.5 0.35 7.52 24.356 23.856 AR&R 100 year, 1.5 hours storm, average 73 P C.4 0.35 4.13 23.237 22.637 AR&R 100 year, 1.5 hours storm, average 73 P C.3 0.35 5.34 20.994 20.209 AR&R 100 year, 1.5 hours storm, average 73 P C.2 0.433 4.85 19.647 19.047 AR&R 100 year, 1.5 hours storm, average 73 P F.1 0.028 0.32 24.511 24.511 AR&R 100 year, 25 minutes storm, average 1 P D.4 0.049 4.27 24.216 22.822 AR&R 100 year, 25 minutes storm, average 1 P D.3 0.049 4.01 22.637 22.172 AR&R 100 year, 25 minutes storm, average 1 P D.2 0.063 3.99 21.995 21.018 AR&R 100 year, 25 minutes storm, average 1 P D.1 0.07 3.93 20.832 20.209 AR&R 100 year, 25 minutes storm, average 1 17.079 P G.2 0.074 4.34 14.908 AR&R 100 year, 25 minutes storm, average 1 P G.1 0.143 3.6 14.78 14.546 AR&R 100 year, 25 minutes storm, average 1 DP 15 0.017 4.85 18.437 18.237 AR&R 100 year, 5 minutes storm, average 26 P H.1 0.053 18.172 0.25 18.189 AR&R 100 year, 1 hour storm, average 95 mr P A.7 0.431 1.99 17.82 17.802 AR&R 100 year, 1 hour storm, average 95 mr P A.6 0.434 17.553 17.331 AR&R 100 year, 45 minutes storm, average 1 2 P H18-19 0.052 7.51 18.278 17.928 AR&R 100 year, 5 minutes storm, average 26 P DP2 0.015 2.66 30.364 30.314 AR&R 100 year, 5 minutes storm, average 26 30.103 P A.15 0.12 1.09 30.041 AR&R 100 year, 25 minutes storm, average 1 29.798 P A.14 0.17 29.732 AR&R 100 year, 25 minutes storm, average 1 1.54 P A.13 0.204 1.85 29.523 29.458 AR&R 100 year, 25 minutes storm, average 1 P A.12 0.204 5.81 28.963 25.433 AR&R 100 year, 25 minutes storm, average 1 P A.11 0.314 7.38 23.812 22.89 AR&R 100 year, 25 minutes storm, average 1 P A.10 0.659 21.575 21.099 AR&R 100 year, 25 minutes storm, average 1 4.15 19.784 P A.9 0.659 4.15 19.25 AR&R 100 year, 25 minutes storm, average 1 P A.8 0.461 2.9 18.237 18.189 AR&R 100 year, 1 hour storm, average 95 mr 18.868 18.321 AR&R 100 year, 45 minutes storm, average 1 Box Culver 0.466 2.8 P DP3 30.828 30.778 AR&R 100 year, 5 minutes storm, average 26 0.03 3.13 30.181 30.133 AR&R 100 year, 25 minutes storm, average 1 P A.16 0.069 2.52 P DP1 0.015 30.042 30.041 AR&R 100 year, 5 minutes storm, average 26 1.71 P J.2 0.106 5.66 27.311 26.696 AR&R 100 year, 15 minutes storm, average 1 P J.1 0.356 5.71 25.807 22.89 AR&R 100 year, 25 minutes storm, average 1 P M.1 0.041 0.37 26.698 26.696 AR&R 100 year, 1.5 hours storm, average 73 P H.2 0 0 18.15 18.172 AR&R 100 year, 5 minutes storm, average 26 Pipe572 0 0 39.2 38.736 AR&R 100 year, 5 minutes storm, average 26 P E.8 0.05 4.15 38.563 36.851 AR&R 100 year, 25 minutes storm, average 1 P E.7 0.05 3.67 36.668 35.7 AR&R 100 year, 25 minutes storm, average 1 36.012 AR&R 100 year, 10 minutes storm, average 2 P E.6 35.704 0.032 0.29 P E.5 0.52 3.27 35.157 34.664 AR&R 100 year, 20 minutes storm, average 1 32.793 AR&R 100 year, 20 minutes storm, average 1 P E.4 0.52 6.25 33.983 P E.3 0.565 31.924 31.258 AR&R 100 year, 25 minutes storm, average 1 8.61 0.596 30.794 30.537 AR&R 100 year, 1.5 hours storm, average 73 P E.2 2.75 Pipe582 0.014 2.02 27.643 26.978 AR&R 100 year, 5 minutes storm, average 26 P D.6 0.014 2.34 26.892 26.188 AR&R 100 year, 5 minutes storm, average 26 P D.5 0.018 3.03 26.091 24.791 AR&R 100 year, 5 minutes storm, average 26

Name	Max Q	Max V	Chainage	Max	Due to Storm
	(cu.m/s)	(m/s)	(m)	HGL (m)	

OVERFLOW ROUTE DETAILS

Name	Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V Due to) Stor
OF B.1	0.021	0.034	0.03	0.11	0.05	1.03	0.44 AR&R	100
OF A.5	0	0	7.665	0	0	0	0	
OF A.4	0	0	7.665	0	0	0	0	
OF A.3	0	0	7.665	0	0	0	0	
OF A.2	0	0	7.665	0	0	0	0	
OF A.1	0.537	0.537	7.665	0.068	0.05	17.56	0.8 AR&R	100
OF C10	0	0.014	0.555	0.035	0.01	2.36	0.34 AR&R	100
OF C.9	0	0.042	0.066	0.075	0.06	0.7	0.8 AR&R	100
OF C.2	0.005	0.069	0.03	0.143	0.08	2.13	0.53 AR&R	100
OF D.3	0.001	0.018	1.719	0.025	0.02	1.7	0.83 AR&R	100
OF D.2	0.004	0.008	1.719	0.018	0.01	1.23	0.69 AR&R	100
OF D.1	0.001	0.02	1.719	0.026	0.02	1.74	0.88 AR&R	100
OF G.2	0.114	0.114	7.665	0.036	0.02	11.27	0.53 AR&R	100
OF H.1	0.024	0.026	0.961	0.036	0.02	2.4	0.6 AR&R	100
OF A.7	0.007	0.007	0.03	0.041	0.01	0.7	0.26 AR&R	100
OF A.6	0	0	7.665	0	0	0	0	
OF A.15	0.004	0.028	0.046	0.073	0.04	0.7	0.55 AR&R	100
OF A.14	0.017	0.017	7.665	0.018	0.01	6.14	0.3 AR&R	100
OF A.13	0	0	7.665	0	0	0	0	
OF A.16	0.008	0.024	0.06	0.055	0.03	0.7	0.62 AR&R	100
OF J2	0.212	0.212	7.665	0.046	0.03	13.25	0.63 AR&R	100
OF H.2	0.072	0.072	7.665	0.031	0.01	10.2	0.45 AR&R	100
OF E7	0.006	0.006	7.665	0.012	0	4.04	0.23 AR&R	100
OF E.5	0	0	7.665	0	0	0	0	
OF E.3	0.016	0.016	7.665	0.018	0.01	5.84	0.32 AR&R	100
OF E.2	0	0	0.03	0	0	0	0	
OF E.1	0.607	0.607	7.665	0.07	0.06	18.1	0.84 AR&R	100
OF D.6	0	0.004	2.075	0.013	0.01	0.88	0.69 AR&R	100
OF D.5	0	0.005	2.075	0.014	0.01	0.96	0.67 AR&R	100

DETENT	FION BASIN	DETAILS			
Name	Max WL	MaxVol	Max Q	Max Q	Max Q
			Total		High Lo

			Total	Low Level	High Level
E.5	36.01	1.7	0.52	0.52	0
E.1	29.52	77.8	0.607	0	0.607

CONTINUITY CHECK for AR&R 100 year, 1.5 hours storm, average 73 mm/h, Zone 1 Node Inflow Outflow Storage Cr Difference

				0		
		(cu.m)	(cu.m)	(cu.m)	%	
B.1		116.43	116.41		0	0
A.5		3580.2	3579.4		0	0
A.4		3579.4	3581.73		0	-0.1
A.3		3581.73	3580.39		0	0
A.2		3660.39	3659.05		0	0
A.1		3659.11	3658.26		0	0
	3	3649.4	3649.4		0	0
C.10		179.56	179.56		0	0
C.9		229.73	229.74		0	0
C.8		314.31	314.3		0	0
C.7		314.3	314.3		0	0
C.6		314.3	314.3		0	0
C.5		508.24	508.23		0	0
C.4		508.23	508.26		0	0
C.3		508.26	508.28		0	0
C.2		647.46	647.25		0	0
C.1		644.55	644.55		0	0
F 4		10 10	10 10		^	^

D.3		76.4	76.4	0	0	
D.2		103.96	103.81	0	0.2	
D.1		110	109.94	0	0.1	
G.3		289.81	289.81	0	0	
G.2		289.81	279.39	0	3.6	
	1	279.39	279.39	0	0	
House 1	5	24.41	24.41	0	0	
H.1		36.94	36.93	0	0	
A.7		3325.2	3324.26	0	0	
A.6		3324.26	3323.24	0	0	
DP 19		76.17	76.17	0	0	
DP 2		21.7	21.7	0	0	
A.15		190.98	190.96	0	0	
A.14		290.49	290.46	0	0	
A.13		318.02	318	0	0	
A.12		318	318	0	0	
A.11		482.32	482.33	0	0	
A.10		1029.52	1029.55	0	0	
A.9		1029.55	1029.56	0	0	
A.8		4745.85	4737.67	0	0.2	
DP 3		43.4	43.4	0	0	
A.16		117.96	117.95	0	0	
DP 1		21.7	21.7	0	0	
J.2		483.84	483.82	0	0	
J.1		547.22	547.2	0	0	
M.1		63.52	63.4	0	0.2	
H.2		0	-0.01	0	0	
E.9		0	0	0	0	
E.8		86.58	86.55	0	0	
E.7		85.52	85.52	0	0	
E.6		85.52	-1571.31	0	1937.4	
E.5		-593.68	3833.03	0	0	
E.4		3833.03	3928.64	0	-2.5	
E.3		4020.24	4065.74	0	-1.1	
E.2		4089.67	4100.17	0	-0.3	
E.1		4126.65	4050.59	76.04	0	
D.7		20.58	20.58	0	0	
D.6		20.58	20.58	0	0	
D.5		26.37	26.33	0	0.2	
	2	1459.07	1459.07	0	0	