

RESIDENTIAL DEVELOPMENT 38 UNDERCLIFF ROAD, FRESHWATER NSW

Prepared for:

MHNDU

Reference: P3371_01 Rev 1

17 October 2024

1 PROJECT BACKGROUND

Morrow Geotechnics Pty Ltd has undertaken a Geotechnical Investigation to provide geotechnical advice and recommendations for the proposed development at 38 Undercliff Road, Freshwater NSW (the site).

1.1 Proposed Development

Architectural drawings for the proposed development have been prepared by MHNDU with drawing number 5.2 to 5.4 Rev B-WIP, 5.5 Rev A-WIP, 5.10 Rev B-WIP, 5.11 Rev B-WIP, 5.13 to 5.16 Rev B-WIP, dated 28 August 2024. The drawings provided show that the proposed development involves the demolition of the existing dwelling and redevelopment of the site with a duplex two-storey residential development and an inground swimming pool at each property.

1.2 Investigation Intent

The purpose of the investigation is to provide geotechnical advice and recommendations for structural design. These recommendations include:

- Expected subsurface conditions;
- Lot classification in accordance with AS2870 and geotechnical parameters for foundation design;
- Excavation support options, including lateral earth pressures and pile design parameters;
- Advice on possible seepage water associated with construction;
- Earthquake site classification in accordance with AS1170.4; and
- Advice on geotechnical construction constraints.

1.3 Published Geological Mapping

Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 (Geological Series Sheet 9130) indicates that the site is underlain by (Rh) Hawkesbury Sandstone, which is typically comprised of medium to coarse-grained quartz sandstone, with very minor shale and laminite lenses.

1.4 Published Soil Landscapes

The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 (2nd Edition) indicates that the erosional landscape at the site likely comprises the Gymea Landscape. This landscape type typically includes undulating to rolling rises and low hills on Hawkesbury Sandstone. Soils are generally shallow to moderately deep (0.3 - 1 m) yellow earths and earthy sands. These soils are noted to present localized steep slopes, high soil erosion hazard, rock outcrop and shallow highly permeable soil.

2 OBSERVATIONS

2.1 Investigation Methods

Fieldwork was undertaken by Morrow Geotechnics on 23 September 2024. Work carried out as part of this investigation includes:

 Review of publicly available information from previous reports in the project area, published geological and soil mapping and government agency websites;

- Site walkover inspection by an experienced Geotechnical Engineer to assess topographical features, condition of surrounding structures and site conditions;
- Drilling of three boreholes (BH1 to BH3). The Boreholes were drilled using a track mounted drill rig
 using solid flight augers equipped with a tungsten-carbide bit (TC bit). The boreholes were extended
 beyond TC bit refusal by NMLC coring techniques to depths of 6.1, 8.1 and 12.1 mBGL. Rock core was
 boxed and photographed and point load tests were undertaken on selected core sample to assess
 rock strength;
- Groundwater observations within the borehole during drilling; and
- Installation of three groundwater monitoring wells within the boreholes immediately following drilling.

Borehole locations are shown on Figure 1 and borehole logs are presented in Appendix A.

2.2 Subsurface Conditions

The stratigraphy at the site is characterized by fill, colluvial soil, residual soil and sandstone bedrock. Observations taken during the investigation have been used to produce a stratigraphic model of the site. The observed stratigraphy has been divided into five geotechnical units.

A summary of the subsurface conditions across the site, interpreted from the investigation results, are presented in **Table 1** and **Table 2**. More detailed descriptions of subsurface conditions at the test locations are available in the borehole logs presented in **Appendix A**. The details of the method of soil and rock classification, explanatory notes and abbreviations adopted in the borehole logs are also presented in **Appendix A**.

TABLE 1 SUMMARY OF ENCOUNTERED SUBSURFACE CONDITIONS

Unit	Material	Comments
1	Topsoil/Fill	Gravelly sandy clay FILL, firm to stiff, fine to medium grained. Unit 1 is inferred to be uncontrolled and poorly compacted.
2	Colluvial Soil	Sandy CLAY, stiff, medium plasticity, fine to medium grained sand.
3	Residual Soil	Residual SAND, medium dense, fine to medium grained, grading to extremely weathered Sandstone with depth.
4	Class V-IV Sandstone	Extremely to highly weathered SANDSTONE, generally massive, extremely low to very low strength, fine to medium grained and iron stained. Defects within Unit 4 comprise subhorizontal bed partings and extremely weathered seams.
5	Class III Sandstone	Moderately to slightly weathered SANDSTONE, medium strength, generally massive. Defects within Unit 5 comprise iron stained sub-horizontal bed partings and joints inclined to between 30° and 90°.

TABLE 2 ENCOUNTERED GEOTECHNICAL CONDITIONS

	Unit	Approx. Depth Range of Unit ¹ mBGL (RL mAHD)										
		BH1	BH2	вн3								
	Tanasil /Eill	0.0 to 0.75	0.0 to 0.3	0.0 to 0.25								
1	Topsoil/Fill	(22.3 to 21.55)	(18.0 to 17.7)	(18.5 to 18.25)								
_			0.3 to 0.8	0.25 to 0.6								
2	Colluvial Soil	-	(17.7 to 17.2)	(18.25 to 17.9)								
_	5 11 16 11	0.75 to 1.0	0.8 to 1.0									
3	Residual Soil	(21.55 to 21.3)	(17.2 to 17.0)	-								
_	Class V-IV	1.0 to 11.6	1.0 to 3.6	0.6 to 3.3								
4	Sandstone	(21.3 to 10.7)	(17.0 to 14.4)	(17.9 to 15.2)								
_	Class III	11.6 +	3.6 +	3.3 +								
5	Sandstone	(sub 10.7)	(sub 14.4)	(Sub 15.2)								
Natas												

Notes:

- 1 Depths shown are based on material observed within test locations and will vary across the site.
- 2 Sandstone classed as per Pells (2004)

Sandstone outcrops at a cliff line approximately 1.5 m high near the centre of the site. The cliff line trends roughly east-west and comprises moderately weathered, medium strength Hawkesbury Sandstone.

Photo 1: Sandstone outcropping at centre of site.

2.1 Groundwater Observations

Groundwater seepage was not observed during the drilling of any boreholes during the investigation.

3 GEOTECHNICAL RECOMMENDATIONS FOR DESIGN

3.1 Excavation Retention

Where shoring systems are proposed the following Geotechnical parameters should be adopted for shoring design.

TABLE 4 EARTH PRESSURE PARAMETERS

		Unit 1	Unit 2	Unit 3	Unit 4	Unit 5
М	Material		Colluvial Soil	Residual Soil	Class V-IV Sandstone	Class III Sandstone
Unit We	eight (kN/m³)	18	18	19	24	24
sure nts	At Rest, K _o	0.58	0.50	0.56	0.46	0.36
Earth Pressure Coefficients	Passive, K _p	2.46	3.00	2.56	3.39	4.60
Eartl	Active, K _a	0.41	0.33	0.39	0.29	0.22
Drained C (kPa)	ohesion, c'	2	0	4	50	250
Friction A	ngle, φ' (°)	25	30	26	33	40
Elastic Mc	odulus (MPa)	5	15	20	100	600
Poisson's	Ratio	0.30	0.30	0.30	0.25	0.20

Notes

- 1 Unit Weight is based on visual assessment only and may vary by ±10%.
- 2 Earth pressures are provided on the assumption that the ground behind the retaining wall is flat and drained.

In addition, design of retaining walls should consider the following:

- Appropriate surcharge loading from construction equipment, vehicular traffic and neighbouring structures at finished surface level should be considered in the retention design. Surcharge loads on retention structures may be calculated using a rectangular stress block with an earth pressure coefficient of 0.5 applied to surcharge loads at ground surface level.
- Anchor design should ignore the contribution of any bonded length within a wedge which extends upwards at 45° from the base of Unit 5 material to account for a failure wedge forming behind the shoring system.

3.2 Soil and Rock Excavatability

The expected ability of equipment to excavate the soil and rock encountered at the site is summarised in **Table 5**. This assessment is based on available site investigation data and guidance on the assessment of excavatability of rock by Pettifer and Fookes (1994). The presence of medium to high strength bands in lower strength rock and the discontinuity spacing may influence the excavatability of the rock mass.

TABLE 5 SOIL AND ROCK EXCAVATABILITY

Unit	Material	Excavatability
1	Fill	Easy digging by 20t Excavator
2	Colluvial Soil	Easy to moderate digging by 20t Excavator
3	Residual Soil	Moderate to hard digging by 20t Excavator
4	Class V-IV Sandstone	Hard ripping by 20t Excavator with hydraulic hammering required where medium strength sandstone is encountered within Unit 4
5	Class III Sandstone	Hydraulic hammering will be required within Unit 5

The excavation methodology may also be affected by the following factors:

- Scale and geometry of the excavation;
- Availability of suitable construction equipment;
- Potential reuse of material on site; and
- Acceptable excavation methods, noise, ground vibration and other environmental criteria.

3.3 Excavation Vibration Considerations

As a guide, safe working distances for typical items of vibration intensive plant are listed in **Table 6**. The safe working distances are quoted for both "cosmetic" damage (refer British Standard BS 7385:1993) and human comfort (refer NSW Environmental Protection Agency Vibration Guideline). The safe working distances should be complied with at all times, unless otherwise mitigated to the satisfaction of the relevant stakeholders.

TABLE 6 RECOMMENDED SAFE WORKING DISTANCES FOR VIBRATION INTENSIVE PLANT

Plant Item	Rating/Description	Safe Working Dista	ance
		Cosmetic Damage (BS 7385:1993) 1	Human Response (EPA Vibration Guideline)
Vibratory Roller	< 50 kN (typically 1-2 tonnes)	5 m	15 m to 20 m
	< 100 kN (typically 2-4 tonnes)	6 m	20 m
	< 200 kN (typically 4-6 tonnes)	12 m	40 m
	< 300 kN (typically 7-13 tonnes)	15 m	100 m
	< 300 kN (typically 13-18 tonnes)	20 m	100 m
	< 300 kN (typically >18 tonnes)	25 m	100 m
Small Hydraulic Hammer	300 kg – 5 to 12 t excavator	2 m	7 m
Med Hydraulic Hammer	900 kg – 12 to 18 t excavator	7 m	23 m
Large Hydraulic Hammer	1600 kg – 18 to 34 t excavator	22 m	73 m
Vibratory Pile Driver	Sheet Piles	2 m to 20 m	20 m
Pile Boring	≤ 800 mm	2m (nominal)	N/A

Notes:

¹ More stringent conditions may apply to heritage buildings or other sensitive structures.

In relation to human comfort (response), the safe working distances in **Table 6** relate to continuous vibration and apply to residential receivers. For most construction activities, vibration emissions are intermittent in nature and for this reason, higher vibration levels, occurring over shorter periods are permitted, as discussed in British Standard BS 6472-1:2008.

The safe working distances provided in **Table 6** are given for guidance only. Monitoring of vibration levels may be required to ensure vibrations levels remain below threshold values during the construction period.

3.4 Foundation Design

It is not recommended that shallow footings or slabs found within Unit 1 or Unit 2 material due to the potential for differential settlement caused by footings bridging between materials of varying stiffness. Shallow footings and slabs at the site should be designed in accordance with AS2870:2011 based on a Site Classification of 'H1.' The site classification has been provided on the basis that the performance expectations set out in Appendix B of AS2870–2011 are acceptable and that future site maintenance will be undertaken in accordance with CSIRO BTF 18.

Ultimate geotechnical strengths are provided for use in limit state design. Allowable bearing pressures are provided for serviceability checks. These values have been determined to limit settlements to an acceptable level for conventional building structures, typically less than 1% of the minimum footing dimension.

The parameters given in **Table 7** may be used for the design of pad footings and deep footings (bored pile).

TABLE 7 PAD FOOTING AND PILE DESIGN PARAMETERS

		Unit 1	Unit 2	Unit 3	Unit 4	Unit 5
Ma	aterial	Fill	Colluvial Soil	Residual Soil	Class V-IV Sandstone	Class III Sandstone
Allowable B Pressure (kl	•	N/A	N/A	200	1200	3500
Ultimate Ve Bearing Pre		N/A	N/A	600	3600	10500
Elastic Mod	lulus (MPa)	5	15	20	100	600
Ultimate Shaft	In Compression	0	20	30	250	800
Adhesion (kPa)	In Tension	0	10	15	125	400
Susceptibili Liquefaction	•	Medium	Low	Low	Low	Low

Notes:

- 1 Side adhesion values given assume there is intimate contact between the pile and foundation material. Design engineer to check both 'piston' pull-out and 'cone' pull-out mechanics in accordance with AS4678-2002 Earth Retaining Structures.
- 2 Susceptibility to liquefaction during an earthquake is based on the following definition:

Low - Medium to very dense sands, stiff to hard clays, and rock

Medium - Loose to medium dense sands, soft to firm clays, or uncontrolled fill below the water table

High - Very loose sands or very soft clays below the water table.

To adopt these parameters, we have assumed that the bases of all footings are cleaned of loose debris and

water and inspected by a suitably qualified Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions.

Selection of footing types and founding depth will need to consider the risk of adverse differential ground movements within the foundation footprint and between high level and deeper footings. Unless an allowance for such movement is included in the design of the proposed development, we recommend that all new structures be found on natural materials with comparable end bearing capacities and elastic moduli.

3.5 AS1170 Earthquake Site Risk Classification

Assessment of the material encountered during the investigation in accordance with the guidelines provided in AS1170.4-2007 indicates an earthquake subsoil class of Class B_e – Rock for the site.

4 STATEMENT OF LIMITATIONS

The adopted investigation scope was limited by site access restrictions due to presence of structures at the site at the time of our investigation and by the investigation intent. Further geotechnical inspections should be carried out during construction to confirm both the geotechnical model and the design parameters provided in this report.

Your attention is drawn to the document "Important Information", which is included in **Appendix B** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Morrow Geotechnics, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

5 REFERENCES

AS1726:1993, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling – Design and Installation, Standards Australia.

AS2870:2011, Residential Slabs and Footings, Standards Australia.

AS3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Chapman, G.A. and Murphy, C.L. (1989), Soil Landscapes of the Sydney 1:100000 sheet. Soil Conservation Services of NSW, Sydney.

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1981) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

Pells (2004) Substance and Mass Properties for the Design of Engineering Structures in the Hawkesbury Sandstone, Australian Geomechanics Journal, Vol 39 No 3

6 CLOSURE

Please do not hesitate to contact Morrow Geotechnics if you have any questions about the contents of this report.

For and on behalf of Morrow Geotechnics Pty Ltd,

Jordan Andonoski

Geotechnical Engineer

Alan Morrow

Principal Geotechnical Engineer

02 8599 7579

Sydney Gadigal Land. 2/5-7 Malta Steet, Fairfield Ea: NSW 2155

info@morrowgeo.com.au

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

P: 02 8599 7579

Borehole Location Plan

Client No:

Job No: P3371

Client: MHNDU

Project: Freshwater

Address: 38 Undercliff Road, Freshwater NSW

Legend:

Borehole Locations

Image Source: NearMap

Viewed: 2024-10-08

Drawn By: Jordan Andonoski

Checked By: Date: Alan Morrow 2024-10-08 1

Figure:

BOREHOLE LOGS AND EXPLANATORY NOTES

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH1

 UTM
 : 56H
 Drill Rig
 : GEO205 - Comacchio
 Job Number
 : P3371

 Easting (m)
 : 341,315.28
 Driller Supplier
 : GEOSENSE
 Client
 : MHNDU

 Northing (m)
 : 6,260,908.32
 Logged By
 : Jordan Andonoski
 Project
 : Freshwater

	Elevation :		Reviewed	Ву :	Alan Morro	ow		Location : 38 Undercliff Road, Freshw	ater NSW			
Total De	pth :	12.1 m BGL	Date	:	24/09/2024			Loc Comment :				
Drilling Method	Water	Well Diagram	Testing	Soil Origin	Graphic Log	Classification Code	Depth (m)	Material Description	Elevation Depth (m)	Weathering	Consistency	Moisture
				TOPSOI L		SM	-	Topsoil Silty SAND SM: loose, brown, fine to medium grained, with fine to coarse sized gravel, dry, with rootlets and sub angular sandstone gravels.			L	D
—— ADT		. 50mm PVC Solid	5,5,10 (N=15)	Residual		SW	0.75	Residual SAND SW: medium dense, orange, fine to medium grained, trace low plasticity clay, dry.	21.6 0.75		MD	
		2057829187 738705787		Rock		SST	1	Extremely weathered, rock SAND SST: very dense, orange, fine to medium grained, low resistance.	21.1	xw	VD	
			6			SST	-	Extremely weathered, rock SAND SST: very dense, orange and white, fine to medium grained, medium resistance .	1.2	xw		D
		35 S	(N=12)						20.6			
								For continuation go to next page	1.7			

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH1

 UTM
 : 56H
 Drill Rig
 : GEO205 - Comacchio
 Job Number
 : P3371

 Easting (m)
 : 341,315.28
 Driller Supplier
 : GEOSENSE
 Client
 : MHNDU

 Northing (m)
 : 6,260,908.32
 Logged By
 : Jordan Andonoski
 Project
 : Freshwater

North		: 6,260,908.32 fon : 22.3 (m) : 12.1 m BGL	Lo Re	ogged By eviewed By ate	: Jordan Ar : Alan Morr : 24/09/2024	ow	ski					ıd, Freshwateı	r NSW
Drilling Method	Water	A Well Diagram	RQD% and TCR%	Testing (05)sı	VLS LS MS Estimated HS Strength EHS	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation Depth (m)	Weathering	30 100 Defect Spacing 300 (mm)	Defect Description
MMLC Coring ────────────────────────────────────		50mm PVC Solid	RQD = 18% TCR = 45%	d: 0.06, a:0.08		2		SST	Commenced Coring at 1.7m As above, but highly weathered, very low to low strength, and white orange, fine to medium grained, high resistance. As above, but slightly weathered, very low strength, white and orange, generally massive. Coreloss 1047 mm thk	20.5 1.82	HW		—1.75, P, 2°, PL, RO, STN, OP, —1.82, P, 2°, PL, RO, STN, OP, —1.9, P, 2°, PL, RO, CL, OP, —2.05-2.06, P, 10°, PL, RO, CL, OP, —2.15-2.19, J, 45°, PL, RO, CT, OP, rootlets, —2.3, P, 3°, IR, RO, CL, OP, —2.41-2.43, P, 20°, PL, RO, CL, OP, —2.52-2.58, J, 50°, PL, RO, CL, OP, —2.66-2.73, J, 50°, PL, RO, CL, OP, —2.73-2.83, XWS, 2.73, IS, sand, —2.91-2.94, XWS, —2.94-4.62, CORELOSS, Core Loss (notes),

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH1

UTM : 56H Drill Rig : GEO205 - Comacchio Job Number : P3371

Easting (m) : 341,315.28 Driller Supplier : GEOSENSE Client : MHNDU

Northing (m) : 6,260,908.32 Logged By : Jordan Andonoski Project : Freshwater

	ing (m) ning (m)	: 341,315.28 : 6,260,908.32		riller Supplier ogged By	: GEOSENS : Jordan Ar		ski		Client Project	: MHNDU : Freshwat	er		
		ion : 22.3 (m)		eviewed By	: Alan Morr				Location			d, Freshwater	NSW
Total	Depth	: 12.1 m BGL	Da	ate	: 24/09/202	4			Loc Comment	t:			
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (05)si	VLS LS MS Estimated HS Strength EHS	Depth (m)	Graphic Log		Material Description	Elevation Depth (m)	Weathering	30 100 Defect Spacing 300 (mm) 3000	Defect Description
NMLC Coring		3. Somm PVC Slotted	RQD = 18% TCR = 45% RQD = 21% TCR = 36% TCR = 86%	d:0.23, a:0.28		4.63_ 5	SS SS	Rock SAND weathered, low orange, coarse ma T Co Co	STONE: slightly strength, white and grained, generally ssive . STONE: highly low strength, white coarse grained, y massive .	16.6 5.71	sw		—4.96, P, 5°, PL, RO, STN, OP, —5.1, P, 2°, PL, RO, CL, OP, —5.15-5.16, P, 5°, PL, Very Rough, CL, OP, —5.28-5.45, J, 80°, PL, RO, STN, OP, —5.6, P, 2°, UN, RO, CL, OP, —5.65-5.7, J, 45°, PL, RO, CL, OP, —5.7-7.75, CORELOSS, Core Loss (notes),

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH1

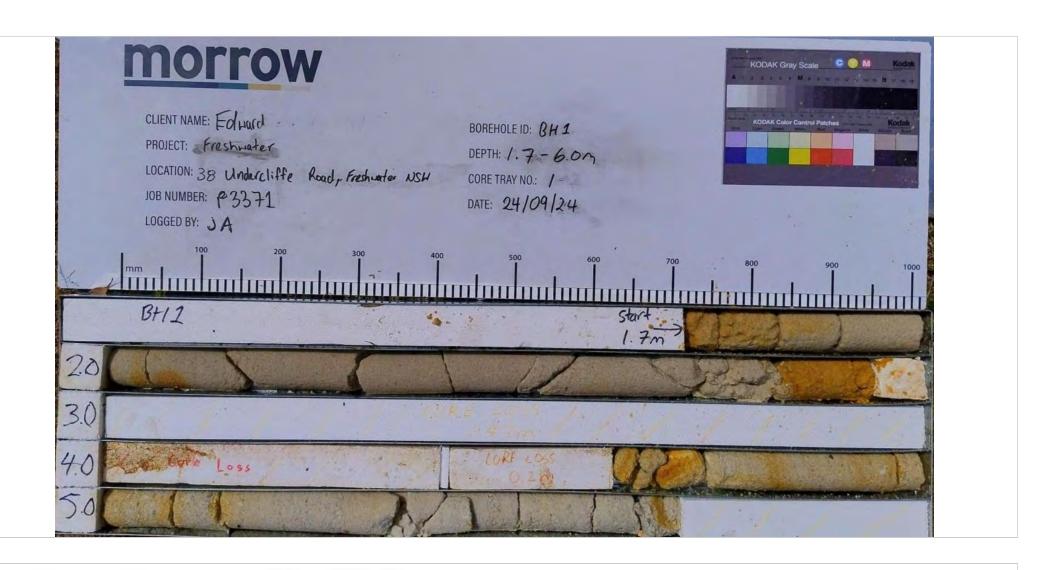
UTM : 56H Drill Rig : GEO205 - Comacchio Job Number : P3371

Easting (m) : 341,315.28 Driller Supplier : GEOSENSE Client : MHNDU

Northing (m) : 6,260,908.32 Logged By : Jordan Andonoski Project : Freshwater

	ng (m) d Elevati	: 341,315.28 : 6,260,908.32 on : 22.3 (m) : 12.1 m BGL	Lo Re	iller Supplier egged By eviewed By	: GEOSENS : Jordan Ai : Alan Morr : 24/09/202	ndonosk ow	ki .		Project			d, Freshwater	nsw
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (09)sı	VLS LS MS Estimated HS Strength EHS	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation Depth (m)	Weathering	30 100 Defect Spacing 300 (mm) 1000 3000	Defect Description
ju j			RQD = 20% TCR = 86%	d:0.26, a:10		9		SST	As above, but slightly weathered, very low to low strength, white and orange, generally massive .	8	sw		—8.11, P. 2°, PL, RO, CL, OP, —8.16-8.88, J, 90°, CV, RO, STN, OP, —9.02, P. 2°, UN, RO, CL, OP, —9.08-9.13, J, 40°, PL, RO, STN, OP, —9.32-9.35, XWS, —9.55-9.6, J, 45°, PL, RO, STN, OP, —9.61-9.68, J, 70°, PL, Very Rough, STN, OP, —9.68-9.73, J, 45°, CV, RO, STN, OP, —9.68-9.73, J, 45°, CV, RO, STN, OP, —9.81-9.85, J, 40°, PL, RO, CL, OP,
MMLC Coring		J. 50mm PVC Slotted	RQD = 28% TCR = 69%	d:0.29, a:0.65		10.66		SST	Rock SANDSTONE: highly weathered, very low strength, white and pale grey, fine to medium grained, generally massive . As above, but moderately weathered, low strength. As above, but slightly to fresh weathered, medium strength, and white grey, generally massive with some carbonaceous layers.	11.6 10.66 11.1 11.25 10.9 11.45	HW MW		—— 10-10.66, CORELOSS, Core Loss (notes), —— 11.1, P, 2°, PL, RO, CL, OP, —— 11.18-11.23, J, 45°, PL, RO, CL, OP, —— 11.28-11.35, J, 50°, CV, RO, CL, OP, —— 11.35-11.44, IS, —— 11.64, P, 5°, PL, RO, CL, OP,

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155


Phone: 02 8599 7579

Geotechnical Log - Borehole

BH1

UTM : 56H Drill Rig : GEO205 - Comacchio Job Number : P3371

North Grou	ng (m) ning (m) nd Elevat Depth	: 341,315.28 : 6,260,908.32 ion : 22.3 (m) : 12.1 m BGL	Dr Lo Re	ill Rig riller Supplier ogged By eviewed By ate	: GI : Jo : Al	EOSEN	Andono rrow			Client Project			d, Freshwat	er NSW
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (02)sı		MS ESUmated HS Strength	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation Depth (m)	Weathering	30 100 Defect Spacing 300 (mm)	Defect Description
NM C	٠	50mm PVC Slotted	RQD = 28%	d:0.33, a:0.36	۳.	215			SST	As above, but slightly to fresh weathered, medium strength, and		SW-F	8 7 8 7	on
			TCR = 69%				13			white grey, generally massive with some carbonaceous layers. BH1 Terminated at 12.1m (Target Depth Reached)				

02 8599 7579

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

info@morrowgeo.com.au

Photo description	BH1 Box 1									
Client	t Edward Eve									
Location	38 Undercliff Road, Freshwater NSW									
Project name	Freshwater									
Project No	P3371	Scale	Not to Scale							
BH No	BH1	BH1 BH Depth 1.7m - 6.0m								

02 8599 7579

Sydney Gadigal Land-2/5-7 Malta Steet, Fairfield East NSW 2155

info@morrowgeo.com.au

Photo description	BH1 Box 2 and	3	
Client	MHNDU		
Location	38 Undercliff Ro	oad, Freshwater NSW	
Project name	Freshwater		
Project No	P3371	Scale	Not to Scale
BH No	BH1	BH Depth	6.0m - 12.1m

Geotechnical Log - Borehole

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

BH2

UTM	: 56H	Drill Rig	: GEO205 - Comacchio	Job Number	: P3371
Easting (m)	: 341,332.29	Driller Supplier	: GEOSENSE	Client	: Edward Eve
Northing (m)	: 6,260,926.77	Logged By	: Jordan Andonoski	Project	: Freshwater

Ground Total De	Elevation :	18.5 (m) 8.1 m BGL	Reviewed Date		Alan Morr			Location : 38 Undercliff Road, Freshw Loc Comment :	ater NSW			
Total De	, pui .	U.T III BGE	Testing	<u> </u>	23/03/202-							
Drilling Method	Water	C Well Diagram	TAS	Soil Origin	Graphic Log	Classification Code	Depth (m)	Material Description	Elevation Depth (m)	Weathering	Consistency	Moisture
†		7		TOPSOI L		SM	0.3	Topsoil Silty SAND SM: loose, brown, fine to medium grained, dry, no resistance .	18.2		L	D
		50mm	PVC					Colluvial Sandy CLAY CI: stiff, medium plasticity, yellow pale brown, fine to medium grained sand, w ≈ pl.	0.3			
ADT		. ,50mm Solid	2,3,7 (N=10)	Colluvial		CI					St	w≈PL
				Residual		sw	0.8	Residual SAND SW: medium dense, white and orange, medium to coarse grained, dry, low resistance .	17.7 0.8		MD	D
								For continuation go to next page	1			

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH2

UTM : 56H Drill Rig : GEO205 - Comacchio Job Number : P3371
Easting (m) : 341,332.29 Driller Supplier : GEOSENSE Client : MHNDU
Northing (m) : 6,260,926.77 Logged By : Jordan Andonoski Project : Freshwater

		: 6,260,926.77 ion : 18.5 (m) : 8.1 m BGL	Re	ogged By eviewed By ate	: Jordan Ar : Alan Morr : 23/09/2024	ow	ski					nd, Freshwater	nsw
Drilling Method	Water	C Well Diagram	RQD% and TCR%	Testing (05)si	VLS LS MS Estimated HS Strength EHS	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation Depth (m)	Weathering	30 100 Defect Spacing 300 (mm) 1000 3000	Defect Description
- NMLC Coring			RQD = 34% TCR = 47%	d:0.37, a:0.19		1,01		SST / PAV	Commenced Coring at 1m Rock SANDSTONE: highly weathered, very low to low strength, and white orange, medium to coarse grained, 10° bedding at 20mm spacing . Core Loss 700mm As above, but rock SANDSTONE: moderately weathered, medium strength, white and orange, medium to coarse grained, generally massive.	17.5 1.01	МW		1.1.7, CORELOSS, 1.1.7.1.73, CRF, 1.76, P, 2°, PL, RO, CL, OP, 1.8, P, 2°, PL, RO, CL, OP, 1.87, P, 5°, PL, RO, STN, OP, 2. P, 10°, CV, RO, STN, OP, 2.03, P, 10°, PL, RO, STN, OP, 2.37-2.57, J, 75°, UN, RO, STN, OP, 0.365, 363, CORELOSS, 76°, UN, RO, STN, OP,
N			4170	d:0.31, a:0.38		3.52_		PAV	Rock SANDSTONE: slightly weathered, medium strength, white and pale orange, medium to coarse grained, 10° bedding at 20mm spacing.	15.8 2.65	SW		—2.65-3.52, CORELOSS, 75°, UN, RO, STN, OP,

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH2

UTM : 56H Drill Rig : GEO205 - Comacchio Job Number : P3371

Easting (m) : 341,332.29 Driller Supplier : GEOSENSE Client : MHNDU

Northing (m) : 6,260,926.77 Logged By : Jordan Andonoski Project : Freshwater

Northi Groun		: 6,260,926.77 on : 18.5 (m)	Lo Re	gged By viewed By	: Jordan Ar : Alan Morr	ow	ski		Location			ad, Freshwater	nsw
Drilling Method	Water	Mell Diagram	RQD% and TCR%	Testing (0s)s ₁	S Estimated S Strength S S Strength S S Strength S S Strength S S S S S S S S S S S S S S S S S S S	Depth (m)	Graphic Log	Classification Code	Material Description Output Description	Elevation Depth (m)	Weathering	00 Defect Spacing 00 (mm)	Defect Description
NMLC Coring D		- 50mm PVC Slotted	RQD = 95% TCR = 100%	d:0.45, a:0.57 d:0.45, a:0.49 d:0.95, a:1.28	SHA	6.5 <u>6</u>		SST SST	Rock SANDSTONE: slightly weathered, medium strength, white and pale orange, medium to coarse grained, 10° bedding at 20mm spacing. As above, but slightly to fresh weathered, medium to high strength, white and pale grey, medium grained. Coreloss 440mm thk Rock SANDSTONE: fresh weathered, medium strength, white and pale grey, medium grained.	11.9 6.56	SW-F	0000 0000 001	—5.21, P, 2°, PL, RO, CL, OP, —5.49, P, 10°, PL, RO, CL, C, —5.53, P, 10°, PL, RO, CL, OP, CL, OP, 7.55, P, 10°, PL, RO, CL, OP, 7.7, P, 10°, PL, RO, CL, OP, 7.7, P, 10°, PL, RO, CL, OP,
•													

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH2

UTM : 56H Drill Rig : GEO205 - Comacchio Job Number : P3371
Easting (m) : 341,332.29 Driller Supplier : GEOSENSE Client : MHNDU
Northing (m) : 6,260,926.77 Logged By : Jordan Andonoski Project : Freshwater

Easting		: 341,332.29		iller Supplier	: GEOSENS					: MHNDU					
Northi	ng (m)	: 6,260,926.77	Lo	gged By	: Jordan An	dono	ski		Project	: Freshwat	er				
Ground	d Elevati	ion : 18.5 (m)	Re	viewed By	: Alan Morro	ow			Location	: 38 Under	cliff Roa	d, Fres	hwat	ter N	sw
Total D	epth	: 8.1 m BGL	Da	ite	: 23/09/2024	4			Loc Comment	:					
			9	Testing				e	E .			5	ກ		u,
Drilling Method		аш	RQD% and TCR%		Estimated Strength	_	og	Classification Code	Material Description		<u>p</u>	acin	(mm)		Defect Description
Met	Water	Well Diagram	T pu		tima	Depth (m)	Graphic Log	ıtion	Ses	Elevation	Weathering	S.	E E		escr
ling	W		a %	ls(50)	St)e pt	raph	ifica	al D	Depth (m)	/eatl	pefec			t o
Dril		W	Zab			_	ō	ass	ateri		>				Defe
					MS HS			0				30	300	3000	_
NML		50mm PVC Slotted	RQD = 32%	d:0.81, a:1.14				SST	Rock SANDSTONE: fresh weathered, medium strength, white		F				
		Slotted	TCR =						and pale grey, fine to medium						
1 /			78%						grained, 10° bedding at 20 mm spacing.						
									BH2 Terminated at 8.1m						
									(Target Depth Reached)						
						9									
						10									
						11									

02 8599 7579

Sydney Gadigal Land-2/5-7 Malta Steet, Fairfield East NSW 2155

info@morrowgeo.com.au

Photo description	BH2 Box 1 and 2		
Client	MHNDU		
Location	38 Undercliff Road, Fre	eshwater NSW	
Project name	Freshwater		
Project No	P3371	Scale	Not to Scale
BH No	BH2	BH Depth	1.0m - 8.1m

Geotechnical Log - Borehole

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

вн3

 UTM
 : 56H
 Drill Rig
 : GEO205 - Comacchio
 Job Number
 : P3371

 Easting (m)
 : 341,322.99
 Driller Supplier
 : GEOSENSE
 Client
 : MHNDU

 Northing (m)
 : 6,260,930.42
 Logged By
 : Jordan Andonoski
 Project
 : Freshwater

Ground Elevation: 18.0 (m) Reviewed By: Alan Morrow Location: 38 Undercliff Road, Freshwater NSW

	d Elevation		Reviewed I		Alan Morro			Location : 38 Undercliff Road, Freshwa	ater NSW			
Total D	epth	: 6.1 m BGL	Date Testing	:	23/09/2024			Loc Comment :				
Drilling Method	Water	Well Diagram	TAS	Soil Origin	Graphic Log	Classification Code	Depth (m)	Material Description	Elevation Depth (m)	Weathering	Consistency	Moisture
1		8		TOPSOI L		SM	0.25	Topsoil Silty SAND SM: loose, brown, fine to medium grained, dry, trace rootlets no resistance . Colluvial Sandy CLAY CI: stiff, medium plasticity, pale brown yellow,	17.8 0.25		L	D
ADT			3,25,25	Colluvial		CI	- <u>0.6</u>	fine to medium grained sand, w ≈ pl, no resistance .	17.4 0.6		St	w≈PL
<u> </u>			(N=50)	Rock		SST	0.7	Rock SANDSTONE: moderately weathered, low strength, yellow and orange, fine to medium grained, high resistance .	0.6	MW	LS	
								For continuation go to next page				

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH3

UTM : 56H Drill Rig : GEO205 - Comacchio Job Number : P3371

Easting (m) : 341,322.99 Driller Supplier : GEOSENSE Client : MHNDU

Northing (m) : 6,260,930.42 Logged By : Jordan Andonoski Project : Freshwater

Nor Gro		/ation : 18.0 (r	930.42 n)	Lo Re	iller Supplier ogged By eviewed By	: GEOSENS : Jordan Ar : Alan Morr	ndono ow	ski		Client Project Location			ad, Freshwater	· NSW
Drilling Method	Mater Mater	: 6.1 m	Well Diagram	RQD% and TCR%	Testing (09)s	VLS Estimated Strength Strength Strength EHS	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation Depth (m)	Weathering	30 100 Defect Spacing 300 (mm) 3000	Defect Description
<u> </u>		120	, 50mm PVC Solid		d:0.23, a:0.12					Commenced Coring at 0.7m				—0.74, P. 3°, PL, RO, STN, OP, —0.8-0.81, P, 5°, PL, RO, STN, OP,
NMLC Coring			. 50mm PVC Slotted	RQD = 30% TCR = 58%	d:0.23, a:0.12		2.82_		SST	Rock SANDSTONE: moderately weathered, low strength, orange and white, medium to coarse grained, 10° bedding at 20mm spacing . As above, but medium strength.	16.0 2.02	MW		— 1.11-2.02, CORELOSS, Core Loss (notes), — 2.02-2.06, XWS, — 2.14-2.15, P, 10°, PL, RO, STN, OP, — 2.33-2.36, J, 30°, PL, RO, STN, OP, — 2.65, P, 10°, PL, RO, STN, OP, — 2.65, P, 10°, PL, RO, STN, OP, — 2.71-2.74, XWS, — 2.84, P, 10°, PL, RO, CL, OP, — 2.87, P, 2°, PL, RO, CL, OP, — 3.04, P, 10°, PL, RO, STN, OP, — 3.04, P, 10°, PL, RO, STN, OP, — 3.12, P, 10°, PL, RO, STN, OP, — 3.12, P, 10°, PL, RO, STN, OP, — 3.3, P, 10°, PL, RO, STN, OP,
														——3.92, P, 10°, PL, RO, STN, OP,

Sydney Gadigal Land: 2/5-7 Malta Steet, Fairfield East NSW 2155

Phone: 02 8599 7579

Geotechnical Log - Borehole

BH3

 UTM
 : 56H
 Drill Rig
 : GEO205 - Comacchio
 Job Number
 : P3371

 Easting (m)
 : 341,322.99
 Driller Supplier
 : GEOSENSE
 Client
 : MHNDU

 Northing (m)
 : 6,260,930.42
 Logged By
 : Jordan Andonoski
 Project
 : Freshwater

		: 6,260,930.42 on : 18.0 (m) : 6.1 m BGL		gged By eviewed By ate	: Jordan Ar : Alan Morr : 23/09/202	ow	ski		Project Location Loc Commen			d, Freshwater	nsw
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (09)sl	VLS LLS MS Estimated MS Strength VHS Strength EHS	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation Depth (m)	Weathering	30 100 Defect Spacing 300 (mm) 1000 (mm)	Defect Description
MMLC Coring ────────────────────────────────────		50mm PVC Siotted	RQD = 97% TCR = 100%	d:0.33, a:0.37	A 3 W H A 1 W A 1	5		SST	As above, but slightly weathered, white and pale orange.	14.0	sw	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	—4.15, P, 10°, PL, RO, STN, OP, —4.17, P, 10°, PL, RO, CT, OP, clay, —4.23, P, 10°, PL, RO, STN, OP, —4.38-4.41, XWS, —4.72, P, 10°, PL, RO, CL, OP, —5.15, P, 10°, PL, RO, CL, OP, —5.27, P, 10°, PL, RO, CL, OP, —6, P, 10°, PL, RO, CL, OP,
						7			BH3 Terminated at 6.1m (Target Depth Reached)				

02 8599 7579

Sydney Gadigal Land-2/5-7 Malta Steet, Fairfield East NSW 2155

info@morrowgeo.com.au

Photo description	BH3 Box 1 and	2	
Client	MHNDU		
Location	38 Undercliff Ro	oad, Freshwater NSW	
Project name	Freshwater		
Project No	P3371	Scale	Not to Scale
BH No	вн3	BH Depth	0.7m - 6.1m

GENERAL

Information obtained from site investigations is recorded on log sheets. The "Cored Drill Hole Log" presents data from an operation where a core barrel has been used to recover material - commonly rock. The "Non-Core Drill Hole - Geological Log" presents data from an operation where coring has not been used and information is based on a combination of regular sampling and insitu testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Excavation - Geological Log" presents data and drawings from exposures of soil and rock resulting from excavation of pits, trenches, etc.

The heading of the log sheets contains information on Project Identification, Hole or Pit Identification, Location and Elevation. The main section of the logs contains information on methods and conditions, material substance description and structure presented as a series of columns in relation to depth below the ground surface which is plotted on the left side of the log sheet. The common depth scale is 8m per drill log sheet and about 3-5m for excavation logs sheets.

As far as is practicable the data contained on the log sheets is factual. Some interpretation is inevitable in the identification of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classifications are based on SAA Site Investigation Code AS 1726 - 1993 with some modifications as defined below.

These notes contain an explanation of the terms and abbreviations commonly used on the log sheets.

DRILLING

Drilling & Casing

ADV	Auger Drilling with V-Bit
ADT	Auger Drilling with TC Bit
WB	Wash-bore drilling
RR	Rock Roller
NMLC	NMLC core barrel
NQ	NQ core barrel
HMLC	HMLC core barrel
HQ	HQ core barrel

Drilling Fluid/Water

The drilling fluid used is identified and loss of return to the surface estimated as a percentage.

Drilling Penetration/Drill Depth

Core lifts are identified by a line and depth with core loss per run as a percentage. Ease of penetration in non-core drilling is abbreviated as follows:

VE	Very Easy
E	Easy
М	Medium
Н	High
VH	Very High

Groundwater Levels

Date of measurement is shown.

Standing water level measured in completed borehole

Level taken during or immediately after drilling

D	Disturbed
В	Bulk
U	Undisturbed
SPT	Standard Penetration Test
N	Result of SPT (sample taken)
PBT	Plate Bearing Test
PZ	Piezometer Installation
HP	Hand Penetrometer Test

EXCAVATION LOGS

Explanatory notes are provided at the bottom of drill log sheets. Information about the origin, geology and pedology may be entered in the "Structure and other Observations" column. The depth of the base of excavation (for the logged section) at the appropriate depth in the "Material Description" column. Refusal of excavation plant is noted should it occur. A sketch of the exposure may be added.

MATERIAL DESCRIPTION - SOIL

Classification Symbol - In accordance with the Unified Classification System (AS 1726-1993, Appendix A, Table A1)

Material Description - In accordance with AS 1726-1993, Appendix A2.3

Moisture Condition

D	Dry, looks and feels dry
М	Moist, No free water on remoulding
W	Wet, free water on remoulding

Consistency - In accordance with AS 1726-1993, Appendix A2.5

VS	Very Soft	< 12.5 kPa
S	Soft	12.5 – 25 kPa
F	Firm	25 – 50 kPa
St	Stiff	50 – 100 kPa
VSt	Very Stiff	100 – 200 kPa
Н	Hard	> 200 kPa

Strength figures quoted are the approximate range of undrained shear strength for each class.

Density Index. (%) is estimated or is based on SPT results.

VL	Very Loose	< 15 %
L	Loose	15 – 35 %
MD	Medium Dense	35 – 65 %
D	Dense	65 – 85 %
VD	Very Dense	> 85 %

MATERIAL DESCRIPTION - ROCK

Material Description

Identification of rock type, composition and texture based on visual features in accordance with AS 1726-1993, Appendix A3.1-A3.3 and Tables A6a, A6b and A7.

Core Loss

Is shown at the bottom of the run unless otherwise indicated.

Bedding

	_
Thinly Laminated	< 6 mm
Laminated	6 - 20
Very Thinly Bedded	20 - 60
Thinly Bedded	60 - 200
Medium Bedded	200 – 600
Thickly Bedded	600 – 2000
Very Thickly Bedded	> 2000

Weathering - No distinction is made between weathering and alteration. Weathering classification assists in identification but does not imply engineering properties.

Fresh (F)	Rock substance unaffected by weathering
Slightly Weathered	Rock substance partly stained or
(SW)	discoloured. Colour and texture of fresh
	rock recognisable.
Moderately	Staining or discolouration extends
Weathered (MW)	throughout rock substance. Fresh rock
	colour not recognisable.
Highly Weathered	Stained or discoloured throughout. Signs of
(HW)	chemical or physical alteration. Rock texture
	retained.
Extremely	Rock texture evident but material has soil
Weathered (EW)	properties and can be remoulded.

Strength - The following terms are used to described rock strength:

Rock Strength	Abbreviation	Point Load Strength
Class		Index, Is(50)
		(MPa)
Extremely Low	EL	< 0.03
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	М	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	EH	≥ 10

Strengths are estimated and where possible supported by Point Load Index Testing of representative samples. Test results are plotted on the graphical estimated strength by using:

Axial Point Load Test

Where the estimated strength log covers more than one range it indicates the rock strength varies between the limits shown.

MATERIALS STRUCTURE/FRACTURES

ROCK

Natural Fracture Spacing - A plot of average fracture spacing excluding defects known or suspected to be due to drilling, core boxing or testing. Closed or cemented joints, drilling breaks and handling breaks are not included in the Natural Fracture Spacing.

Visual Log - A diagrammatic plot of defects showing type, spacing and orientation in relation to core axis.

Defects	 Defects open in-situ or clay sealed
	 Defects closed in-situ
	 Breaks through rock substance

Additional Data - Description of individual defects by type, orientation, in-filling, shape and roughness in accordance with AS 1726-1993, Appendix A Table A10, notes and Figure A2.

Orientation - angle relative to the plane normal to the core axis.

Type BP Bedding Parting JT Joint SM Seam FZ Fracture Zone SZ Shear Zone VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break DB Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral
SM Seam FZ Fracture Zone SZ Shear Zone VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
FZ Fracture Zone SZ Shear Zone VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
SZ Shear Zone VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
FL CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
HB DB Drilling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
Infilling CN Clean X Carbonaceous Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz
CA Calcite Fe Iron Oxide Qz Quartz
Fe Iron Oxide Qz Quartz
Qz Quartz
MS Socondary Minoral
Secondary Millerar
MU Unidentified Mineral
Shape PR Planar
CU Curved
UN Undulose
ST Stepped
IR Irregular
DIS Discontinuous
Rougness POL Polished
SL Slickensided
S Smooth
RF Rough
VR Very Rough

SOIL

Structures - Fissuring and other defects are described in accordance with AS 1726-1993, Appendix A2.6, using the terminology for rock defects.

Origin - Where practicable an assessment is provided of the probable origin of the soil, eg fill, topsoil, alluvium, colluvium, residual soil.

[°] Diametral Point Load Test

IMPORTANT INFORMATION

This Document has been provided by Morrow Geotechnics Pty Ltd subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Morrow Geotechnics' proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Morrow Geotechnics' Services are as described in Morrow Geotechnics' proposal, and are subject to restrictions and limitations. Morrow Geotechnics did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. The scope of services may have been limited by such factors as time, budget, site access or other site conditions. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Morrow Geotechnics in regards to it. Any advice given within this document is limited to geotechnical considerations only. Other constraints particular to the project, including but not limited to architectural, environment, heritage and planning matters may apply and should be assessed independently of this advice.

Conditions may exist which were undetectable given the limited nature of the enquiry Morrow Geotechnics was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required. No geotechnical investigation can provide a full understanding of all possible subsurface details and anomalies at a site.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Morrow Geotechnics' opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Morrow Geotechnics to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Morrow Geotechnics for incomplete or inaccurate data supplied by others.

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that Morrow Geotechnics be notified of any variations and be provided with an opportunity to review the recommendations of this report.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Morrow Geotechnics accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.