DETAILED SITE INVESTIGATION REPORT

Hills Marketplace 287 Mona Vale Road, Terrey Hills NSW

Hills Marketplace – November 2022

DOCUMENT CONTROL

DETAILED SITE INVESTIGATION REPORT

Hills Marketplace 287 Mona Vale Road, Terrey Hills NSW 2084

PREPARED FOR

Doug Balcomb Property Manager Hills Marketplace 287 Mona Vale Road, Terrey Hills NSW 2084

Report reference: 2201064Rpt01FinalV02_8Nov22

Date: 8 November 2022

DISTRIBUTION AND REVISION REGISTER

Revision Number	Date	Description	Recipient	Deliverables	
V01	8/11/2022	Final Report 2201064Rpt01FinalV02_8Nov22	Geo-Logix Pty Ltd	1 Electronic Copy	
V01	8/11/2022	Final Report 2201064Rpt01FinalV02_8Nov22	Hills Marketplace	1 Electronic Copy	

Issued by: Geo-Logix Pty Ltd

ABN: 86 116 892 936

Thara Polassery *BSc, MSc(Env)* Graduate Scientist

Shiffin

Edward Lilly *BSc Civil Engineering, MIEAust* Associate Engineer

EXECUTIVE SUMMARY

Geo-Logix Pty Ltd was commissioned by Hills Marketplace Pty Ltd (Hills Marketplace) to conduct a Detailed Site Investigation (DSI) of the property located at 287 Mona Vale Road, Terrey Hills NSW.

In 2021, Geo-Logix completed a Preliminary Site Investigation (PSI) for the property. The PSI identified numerous potential contaminating activities having occurred onsite including:

- Demolition of structures potentially containing asbestos and lead based paint;
- Historical market gardening;
- Importation of fill of unknown origin as part of the site redevelopment and to fill a former farm dam; and
- Minor mechanic repairs.

The objective of the DSI was to conduct an investigation of soil to assess the presence or otherwise of contamination of the land that may have resulted from onsite historical and current activities. Further, the assessment was to consider the suitability of the site for a redevelopment with additional retail, restaurants and basement carpark.

To assess for potential soil contamination on the site the following scope of works was completed:

- Drilling thirty boreholes across the site and collection of representative samples from fill and native soils at each location. The sampling grid meets minimum sampling standards for the site area (19,910 m²) as per NSW EPA (1995). The sampling grid will identify circular contamination hotspots equal to or greater than 30.39 m diameter at 95% statistical degree of certainty;
- A sample at each location was analysed for COPC including TRH, BTEXN, PAHs, heavy metals and OCPs.
- All fill samples were visually inspected for asbestos containing materials.

The results of the assessment did not identify any conditions requiring the site to be remediated. The site is considered suitable for the proposed redevelopment.

TABLE OF CONTENTS

1. INTRODUCTION1
2. SITE INFORMATION
3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS
3.1 Geo-Logix (2021) Preliminary Site Investigation Report
4. POTENTIAL SITE CONTAMINATION
5. PRELIMINARY CONCEPTUAL SITE MODEL
6. DATA QUALITY OBJECTIVES6
7. ASSESSMENT CRITERIA
7.1 Soil Assessment Criteria7
8. INVESTIGATION METHODOLOGIES
8.1 Sampling Analysis Plan9
8.2 Soil Sampling Methodology10
8.3 Quality Assurance
9. INVESTIGATION RESULTS10
9.1 Site Geology10
9.2 Site Hydrogeology11
9.3 Soil Analytical Results11
9.4 QA/QC Results11
10. DISCUSSION12
11. REVISED CONCEPTUAL SITE MODEL
12. CONCLUSIONS
13. LIMITATIONS
14. REFERENCES

FIGURES

Figure 1: Site Location Figure 2: Site Map Figure 3: Sampling Locations

TABLES

Table 1: Summary of Soil Analytical Data – Petroleum Hydrocarbons
Table 2: Summary of Soil Analytical Data – Polyaromatic Hydrocarbons
Table 3: Summary of Soil Analytical Data – Organochlorine Pesticides
Table 4: Summary of Soil Analytical Data –Heavy Metals

ATTACHMENTS

Attachment A: Photographic Log
Attachment B: Underground Utilities Plan
Attachment C: Borehole Logs
Attachment D: Laboratory Reports

1. INTRODUCTION

Geo-Logix Pty Ltd (Geo-Logix) was commissioned by Hills Marketplace Pty Ltd (Hills Marketplace) to conduct a Detailed Site Investigation (DSI) of the property located at 287 Mona Vale Road, Terrey Hills NSW (Figure 1). The DSI is required to support a development application (DA) for the proposed redevelopment.

Geo-Logix completed a Preliminary Site Investigation (PSI) for the subject site in December 2021. The PSI identified a number of historical activities that occurred onsite which had the potential to result in contamination of the land, including:

- Demolition of structures potentially containing asbestos and lead based paint;
- Historical market gardening;
- Importation of fill of unknown origin as part of the site redevelopment and to fill a former farm dam; and
- Minor mechanical repairs.

The objective of the DSI was to conduct an investigation to assess the presence or otherwise of contamination to the land associated with the above identified historical activities. Further, the assessment was to consider the suitability of the site for redevelopment with additional retail, restaurants, and basement carpark.

Address	287 Mona Vale Road, Terrey Hills NSW 2084				
Lot and Deposited Plan (DP)	Lot 1 DP 845094				
Approximate Area	19,910				
Coordinates	Lat: 33°41'21.16"S Long: 151°13'25.76"E				
Zoning	RU4 Primary Production Small Lots (Warringah Local Environmental Plan 2011)				
Current Land Use	Commercial and Residential				
	 North – Market gardening with mixed commercial, market gardening and residential properties beyond; South – Mona Vale Road with JJ Melbourne Hills Memorial Reserve, residential properties 				
Surrounding Land Use	and bushland beyond;				
	Recovery Centre beyond; and				
	West – Miramare Gardens is located directly to the west with mixed commercial, light industrial and resident properties beyond.				

2. SITE INFORMATION

	The following observations were made during site inspection and field works conducted by Geo-Logix in September 2022 (Figure 2):
	• The subject site is located in a commercial cum residential area in Terry Hills, NSW and comprises a square lot encompassing an area of 19,910 m2.
	 The property comprises the Hill Marketplace retail centre in the east of the property, two sheds for retail and storage in the northern corner and a residential house adjacent to the western boundary of the property.
	A stormwater retention dam was situated in the southern portion of the site.
Site Description	Landscape gardens are located in the southern and eastern portions of the site.
(Attachment A– Photographic Log)	 Remaining space is largely sealed with asphalt and concrete driveways with parking areas adjacent to most buildings. A sign at the site entry from Mona Vale Road indicates the marketplace was established in 1923.
	 The main commercial building was occupied mainly by florist shop, mower store, BBQ retail store, pool store and cafe. A greenhouse shed was located to the northern side of the commercial building.
	 The sheds located in the northern side of the site were occupied by Horselands equestrian supplies, garden supplies and a facility maintenance area.
	• There were a number of carparking areas located across the site, including an underground carpark beneath the eastern portion of the commercial building.
Topography and Elevation	The site slopes gently towards the west. A review of Google Earth indicates the site is located at an elevation of 192–184 m AHD.
Geology	Review of the NSW 1:100,000 Sydney Map (Geological Survey of NSW, 1983) indicates the site is underlain by Middle Triassic age Hawkesbury Sandstone comprising medium to coarse grained quartz sandstone with minor shale and laminate lenses.
Nearest Surface Water	The nearest surface water is an onsite dam and drainage line that flows westwards into Kierans Creek which then flows into an unknown dam and into Cowan Creek. Smiths Creek is located approximately 1,400 m north east of the site and flows northwards into Cowan Creek.
	It is expected that groundwater would follow the natural regional topography and generally flow west towards Kierans Creek.
Regional Hydrogeology	There are four registered groundwater bores within a 500 m radius of the site including one registered groundwater bore on-site. All four boreholes are authorised for household purposes.
	A Dial Before You Dig search was conducted to determine the presence of underground utilities which may act as conduits for contamination migration both onsite and offsite (Attachment B). The plans indicate:
Undergrou <u>nd Utilities</u>	 Ausgrid utilities run adjacent to the southern boundary of the site, underneath Mona Vale Road and the adjacent property;
(Attachment B – Underground Utilities Plan)	 Jemena and Sydney Water utilities run adjacent to the site underneath Mona Vale Road to the south and Myoora Road to the north;
	 NBN and Telstra utilities enter the site in the central south eastern portion of the site and run to the centre of the site; and
	Optus utilities run adjacent to the southern boundary of the site, underneath Mona Vale Road.

3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS

3.1 Geo-Logix (2021) Preliminary Site Investigation Report

Geo-Logix completed a PSI for the site in December 2021 (Geo-Logix, 2021). The findings of the report were based on a site inspection conducted and a review of site historical information.

Review of historical data indicates that the site was used for market gardening from at least 1920s to the late 1980s or early 1990s. One dwelling existed onsite until 2004, and one from 1996 to date. A dam existed onsite since earliest aerial image in 1947 and appears to have been filled in 1991. A new dam was constructed directly to the south of the former dam in 2002. The site began redevelopment as the Hills Marketplace in 2002. Results of the PSI indicate the site and surrounding areas had a mixed history of commercial/agricultural land use. Potentially contaminating land use activities that have been identified to have occurred onsite include:

- Demolition of structures potentially containing asbestos and lead based paint;
- Historical market gardening;
- Importation of fill of unknown origin as part of the site redevelopment and to fill a former farm dam; and
- Minor mechanical repairs.

Given the above site history Geo-Logix concluded there is a potential for land contamination at the site.

4. POTENTIAL SITE CONTAMINATION

4.1 Onsite Activities

Hazardous Building Materials

A residential dwelling in the southeast portion of the site constructed prior to 1947 was demolished between 1996 and 2002. Given the age of the dwelling hazardous building materials such as lead-based paint and asbestos may have been used in the building construction materials.

Potential exists for hazardous building materials in shallow soil in the footprint of the former dwelling resulting from demolition activities.

Market Gardening

The site has a history of broad scale market gardening from prior to 1947 (possibly 1923) until the late 1980s / early 1990s. Given this historical activity, there is potential for contamination to soil of the following contaminants of potential concern (COPC) associated with application of environmentally persistent pesticides comprising;

- Organochlorine Pesticides (OCPs); and
- Heavy Metals.

A greenhouse, landscaped gardens and nursery areas exist on site as part of the Hills Marketplace development post 2002. The potential for use of environmentally persistent herbicides and pesticides is considered low.

Fill of Unknown Origin

Fill is likely to have been applied to the site during construction of the commercial buildings, and landscaped areas and was identified at depth to one metre during concurrent geotechnical investigation. A farm dam in the southern portion of the site appears to have been filled. The origin of the fill across the site is unknown and there is potential for soil contamination arising from the following COPC:

- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX);
- Polyaromatic Hydrocarbons (PAHs);
- OCPs;
- Asbestos; and
- Heavy Metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn).

Existing Dam onsite

A new dam was constructed onsite between 1991 and 2002. The fill used for the construction of the dam appeared to be of poor quality with potential building debris and sediment from the former dam directly adjacent which would have received run off from the market gardening occurring in that period. The following COPCs potentially occurring within the dam include the following:

- TRH;
- BTEX;
- PAHs;
- OCPs;
- Asbestos;
- Heavy Metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn); and
- Nutrients.

Minor Mechanical Activities

An area at the northern portion of the site was being used as a maintenance area for site machinery and storage of used batteries. The area was unsealed gravel / soil. The potential for consequential contamination from these activities is considered low but cannot be ruled out. There is potential for contamination to exist in soil and potentially groundwater in this area, associated COPCs are:

- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX); and
- Heavy Metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn).

4.2 Offsite

Former Landfill

Review of aerial imagery and online resources (Warringah Council 2010) indicates a landfill used to occupy the current JJ Melbourne Hills Memorial Reserve to the southeast of the site until 1978. The report commissioned by Warringah Council states the site has been subject to rehabilitation including capping, recontouring and turfing to be re-established for public recreation by 1988.

JJ Melbourne Hills Memorial Reserve exists to the east and downgradient of a ridge along Mona Vale Road. Groundwater flow direction from the landfill site is expected to be to the east and is not expected to pose a risk to groundwater to the subject site.

5. PRELIMINARY CONCEPTUAL SITE MODEL

For site contamination to present a risk to human health and the environment there has to be a link between the contaminant and the receptor as detailed below.

Contaminant Pathway Receptor

If any of the links do not exist contaminant exposure cannot occur.

The conceptual models below were prepared prior to site investigation based on the results of PSI and consider an operating commercial centre.

Conceptual Site Model – Contaminants in Soil and Groundwater								
Pelevant Exposure	Receptors							
Pathways	Construction Workers Site Visitors / Staff		Offsite	Other				
Soil Ingestion/Dermal Contact/Dust	4	✓	x	Terrestrial Ecology ✓				
Inhalation of Vapours derived from Soil	4	~	х	Onsite Trench worker ✓				
Inhalation of Vapours Derived from Groundwater	√	~	х	Onsite Trench worker ✓				
Soils Leaching to Groundwater				Ongoing Groundwater Impact ✓				
Groundwater Ingestion/Dermal Contact	V	~	~					
Groundwater Discharge to Surface Water				Recreation/Aquatic ecosystem ✓				
Comments								
 X – exposure pathway incomplete no unacceptable risk ✓ – exposure pathway complete potential unacceptable risk, investigation is required 								

6. DATA QUALITY OBJECTIVES

The objective of the investigation was to assess the site for contamination that may have originated from historical site activities and to determine the suitability of the site for proposed redevelopment.

To achieve the objective, Geo-Logix has adopted the seven step Data Quality Objective (DQO) process as described in AS 4482.1–2005, US EPA (2000) and DEC (2006).

Step 1: State the problem.

The subject site may be contaminated as a result of historical and current land use and activities conducted on-site. Investigation of the site is required to determine the suitability for the proposed redevelopment.

Step 2: Identify the decision.

Contamination has not been identified in soil at concentrations above commercial land use standards. The site is considered suitable for the proposed commercial development without the requirement for remediation/management of site contamination.

Step 3: Identify inputs into the decision.

- Identification of issues of potential environmental concern (PSI);
- Appropriate identification of COPCs (PSI);
- Systematic soil sampling and analysis program of shallow soils across the site at a frequency consistent with minimum sampling requirements as defined in NSW EPA (1995);
- Visual inspection of systematic shallow soil samples for presence of Asbestos Containing Materials (ACM);
- Appropriate quality assurance/control to enable an evaluation of the reliability of the analytical data; and
- Screening sample analytical results against appropriate assessment criteria for the intended land use (Commercial/Industrial).

Step 4: Define the boundaries of the site.

The project boundary is defined as the area within the site boundary (287 Mona Vale Road, Terry Hills NSW) to a maximum bore depth of 3.6 metres below grade (mbg).

Step 5: Develop a decision rule.

To accept the assessment decision the shallow soils must be free of COPC hotspots of 30.39 m diameter or greater at a 95% statistical degree of certainty. The sampling data must meet the following qualifiers;

- The 95% Upper Confidence Limit of COPC concentration data does not exceed the soil assessment criteria;
- No single sample exceeds 250% of the soil COPC assessment criteria;
- The standard deviation of COPC analytical results is less than 50% of the soil assessment criteria; and
- No visible identification of ACM in soil samples.

Step 6: Specify acceptable limits on decision errors.

The field sampling methodology, sample preservation techniques, and laboratory analytical procedures must be appropriate to provide confidence in data quality so any comparison against assessment criteria can be considered reliable. This is achieved by defining and comparing results against the Data Quality Indicators (DQIs).

Step 7: Optimise the design for obtaining data.

This is achieved by sampling plan design in consideration of the available site history information, area of investigation, contaminant behaviour in the environment, and likely spatial distribution of contamination.

7. ASSESSMENT CRITERIA

The primary reference for environmental site assessment in Australia is the Amended Assessment of Site Contamination (ASC) National Environmental Protection Measure (NEPM) 1999 (NEPC, 2013). This document includes soil criteria for use in evaluating potential contamination risk to human health and the environment.

The application of these investigation levels and screening levels is subject to a range of limitations and their selection and use must be in the context of the conceptual site model (CSM) relating to the nature and distribution of impacts and potential exposure pathways. Each relevant guideline is discussed further below and the adopted screening criteria are presented in summary sample analytical tables attached to this report.

7.1 Soil Assessment Criteria

The following soil assessment criteria were adopted for the investigation.

NEPM Health Based Investigation Level D (HILs D)

HILs are Tier 1 risk based generic assessment criteria used for the assessment of potential risks to human health from chronic exposure to contaminants in soil. They are intentionally conservative and based on a reasonable worst-case scenario for generic land use settings including Low Density Residential (HILs A), High Density Residential (HILs B), Open Space/Recreational (HILs C) and Commercial Industrial (HILs D). HILs D soil assessment criteria were adopted on the basis the proposed site use is commercial.

NEPM Health Screening Levels D (HSLs D)

HSLs are Tier 1 risk based generic soil assessment criteria used for the assessment of potential risks to human health from chronic inhalation exposure of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). They are intentionally conservative and based on a reasonable worst-case scenario for generic soil types, contamination depth and land use settings including Residential (HSLs A/B), Open Space/Recreational (HSLs C) and Commercial Industrial (HSLs D). HSLs D soil assessment criteria were adopted. The generic soil types adopted included;

 HSL D Sand Soil 0 to 1 m and 1 to 2 m were adopted on basis of site geology and proposed land use;

Preliminary Asbestos Assessment Criteria

Asbestos assessment criteria are included in NEPM (1999) Amendment. Those criteria apply to the assessment of known and suspected asbestos contamination in soil and address friable and non-friable forms of asbestos. The presence of asbestos contamination was not known at the time of investigation therefore its investigation was of a preliminary nature. Given the preliminary assessment the following assessment criteria was adopted:

- No visible ACM on the site surface or in the subsurface at soil sampling locations; and
- No asbestos is detected in soil samples.

If ACM is encountered further assessment may be warranted.

NEPM Soil Ecological Assessment Levels

Ecological Investigation Levels (EILs) are used for the protection of terrestrial ecosystems and have been derived for common contaminants in soil based on a species sensitivity distribution model developed for Australian conditions. EILs apply principally to contaminants in the top 2 m of soil which corresponds to the root zone and habitation zone of many species. EILs have been developed for the following contaminants:

- Arsenic (As);
- Copper (Cu);
- Chromium III (CrIII);
- Nickel (Ni);
- Lead (Pb);
- Zinc (Zn);
- DDT; and
- Naphthalene.

EILs depend on specific soil physicochemical properties and land use scenarios. The protection levels for generic land use settings are:

- 99% for areas of ecological significance;
- 80% for urban residential areas and public open space; and
- 60% for commercial and industrial uses.

60% protection was adopted on the basis the proposed land use is commercial. Four soil samples (HA6, BH12, BH17 and BH26) collected from different locations across the site were sent to the laboratory for analysis of cation exchange capacity (CEC), clay content and pH to determine appropriate EILs for site soils.

A summary of EILs adopted for site and rationale are detailed below.

Contaminant	EIL (mg/kg)	Rationale
As	160	Value for commercial and industrial irrespective of physicochemical properties.
Cu	220	Value for commercial and industrial based on an average CEC of 6.8 and pH of 6.3.
CrIII	680	Value for commercial and industrial based on average clay content of 10%.

Contaminant	EIL (mg/kg)	Rationale
Ni	130	Value for commercial and industrial based on an average CEC of 7.
Pb	2,000	Value for commercial and industrial irrespective of physicochemical properties.
Zn	590	Value for commercial and industrial based on an average CEC of 7 and pH of 6.3.
DDT	640	Value for commercial and industrial irrespective of physicophemical properties
Naphthalene	370	

In addition, Ecological Screening Levels (ESLs) have been developed. The ESLs are based on a review of Canadian guidance for petroleum hydrocarbons contamination in coarse and fine-grained soil types and application of the Australian methodology. A summary of ESLs adopted for site and rationale are detailed below.

Contaminant	ESL (mg/kg)	Rationale
F1 C6-C10	215	
F2 C10-C16	170	
F3 C16-C34	1700	
F4 C34-C40	3,300	
Benzene	75	Value for commercial and industrial in coarse grained soil.
Toluene	135	
Ethylbenzene	165	
Xylenes (Total)	180	
Benzo(a)pyrene	172	

8. INVESTIGATION METHODOLOGIES

Geo-Logix conducted environmental investigation during the period 7th September to 13th September 2022. Sample locations are presented in Figure 3.

8.1 Sampling Analysis Plan

To assess for potential soil contamination Geo-Logix completed the following scope of works across the site:

- Systematic soil sampling at 30 locations (HA1-HA6 and BH7-BH30) across the site on a 25.75 m grid-based sampling plan. The sampling frequency meets NSW EPA (2005) minimum sampling density requirements and is sufficient to identify contamination hotspots of a minimum diameter of 30.39 m at a 95% degree of statistical certainty;
- A sample at each location was analysed for COPC including TRH, BTEXN, PAHs, heavy metals and OCPs;
- All fill samples were visually inspected for asbestos containing materials.

8.2 Soil Sampling Methodology

A total of thirty soil borings were completed across the investigation area as follows (Figure 3):

Soil borings (HA1, HA2, HA3, HA4, HA5, HA6, BH29 and BH30) were advanced via hand auger to natural soil, 1mbg or prior refusal. Soil borings (BH7 to BH28) were otherwise advanced using a track mounted GeoProbe equipped with push tubes to depths between 0 and 2.4 mbg. Soil samples were collected directly from the push tubes.

Soil samples were placed in laboratory prepared jars, labelled and placed on ice in an esky for transport. A chain of custody form was prepared to accompany the esky to a NATA Accredited Laboratory for the analysis of the COPC. Quality Control procedures included the decontamination of the auger between boring locations and changing disposable gloves between samples.

Soil borehole logs are presented in Attachment C.

8.3 Quality Assurance

Quality control (QC) sampling was undertaken in general accordance with specifications outlined in AS4482.1, Guide to Sampling and Investigation of Potentially Contaminated Soil. Field QC samples were collected and included the following:

Sample Identification	Sample Type	Sample Matrix	Rate of Collection
DS1	Field duplicate of HA4/0.1-0.4	Soil	1 in 20 samples
TS1	Field triplicate of HA4/0.1-0.4	Soil	1 in 20 samples
DS2	Field duplicate of BH15/0.3-0.6	Soil	1 in 20 samples
TS2	Field triplicate of BH15/0.3-0.6	Soil	1 in 20 samples
Blank	Transport blank sample	Water	1 per batch
Spike	Spike sample	Water	1 per batch
RW1	Soil sampling equipment rinsate	Water	1 per round of hand auger borings

Note – Rate of QC sample collection specified as 1 in 20 samples in AS4482.1

The laboratory internal QC procedures are consistent with NEPM policy on laboratory analysis of contaminated soils.

9. INVESTIGATION RESULTS

9.1 Site Geology

The encountered soils encountered across the site typically comprised:

- Fill comprised of light grey to medium dark grey, damp to moist, well compacted sandy clayey material.
- Underlain by pale brown to pale yellowish orange, damp to wet, dense to medium dense clayey sand (SC).

During the previous geotechnical investigation, sandstone bedrock was encountered below 2.4 to 3.8 mbg. Soil sample logs are found in Attachment C.

9.2 Site Hydrogeology

Groundwater was not encountered during the detailed site investigation. During the previous geotechnical investigation, groundwater was encountered at 2.0 to 4.5 mbg.

9.3 Soil Analytical Results

Soil analytical results are summarised in Tables 1 to 4. Laboratory reports are presented in Attachment D.

Petroleum Hydrocarbons

TRH and BTEX were not detected at concentrations above the assessment criteria in all soil samples analysed (Table 1).

PAHs

PAHs were not detected at concentrations above the assessment criteria in all soil samples analysed (Table 2).

OCPs

OCPs were not detected at concentrations above the assessment criteria in all soil samples analysed (Table 3).

Heavy Metals

Arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc were not detected at concentrations greater than the assessment criteria in all soil samples analysed (Table 4).

Asbestos

ACM was not identified in soil during visual inspection at any sample location.

9.4 QA/QC Results

Field Duplicates / Triplicates

Soil duplicate/triplicate results are within the adopted acceptance criteria of 30–50% (AS4482.1) relative percent difference (RPD) with the exception of copper in soil duplicate pair BH15/0.3-0.6 and DS2. The RPD exceedance is attributed to the low concentrations detected (<5 time LOR).

Rinsate Samples

COPC were not detected at concentrations above laboratory reporting limits in the rinsate samples collected from the hand auger indicating decontamination procedures were adequate to prevent cross contamination.

Field Blanks

Contaminants of Potential Concern (COPCs) were not detected at concentrations above laboratory reporting limits in the groundwater field blank samples indicating sample handling and transport techniques were sufficient to prevent cross contamination between samples (Table 11).

Field Spikes

BTEX recoveries were between 70% and 130 % in the field water spike samples (Table 11). The results indicate the groundwater handling, storage, transport and analytical procedures were sufficient to prevent volatile loss.

Report #	Analysis Within Holding Time	Surrogat Recover	:e У	Lab. Duplicate RPD %	Lab Matrix Spike Recovery	Lab. Control Sample	Lab Method Blank	
923657-S	\checkmark	\checkmark		\checkmark	Х	\checkmark	\checkmark	
926115-S-V2	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
928993-S	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
\checkmark = Pass X = Fail = not required * = refer to report text								
Quality Assurance Criteria			Qua	Quality Control Criteria				
Holding Times				Accuracy				
VOCs: 7 days soil, 7 days water SVOCs: 14 days soil, 7 days water				rogate, matrix spike, rogate recovery 50–1	control sample 70–1 150% and 20–130%	30% and 30–130 ^r for Phenols.	% for Phenols.	
TRH and BTEX: 14 days soil, 7 days water			Precision					
days water. Asbestos: no limit		Method Blank Not detected Duplicate – No limit (<10xEQL), 0–50% (10–20xEQL), 0–200% (>20xEQL)						

A summary of Laboratory QA/QC data is presented on the following table.

Report # 923657-S

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Geo-Logix accepts the integrity of the analytical data.

10. DISCUSSION

While lower levels of petroleum hydrocarbons, PAHs, OCPs and heavy metals were reported in soil, COPCs were not identified in soil at concentrations in excess of assessment criteria in all samples analysed. The risk that past site activities have contaminated on-site soils is considered low and acceptable.

As COPCs were not detected in on-site soil and all identified sources of potential contamination at the site are 'top down' processes expected to first affect surficial soils, it is considered that the risk of contamination to on-site groundwater and surface water is also low and acceptable.

11. REVISED CONCEPTUAL SITE MODEL

A summary of the revised CSM for contamination is presented below.

Conceptual Site Model								
Polovant Exposuro	Receptors							
Pathways	Construction Workers Site visitors/ Staff		Offsite	Other				
Soil Ingestion/Dermal Contact/Dust	Х	х	Х	Terrestrial Ecology X				
Inhalation of Vapours derived from Soil	Х	Х	Х					
Inhalation of Vapours Derived from Groundwater	Х	х	Х					
Soils Leaching to Groundwater				Ongoing Groundwater Impact X				
Groundwater Ingestion/Dermal contact	X	Х	Х					
Groundwater Discharge to Surface Water				Recreation/Aquatic ecosystem X				
Comments								
X – exposure pathway incomplete no unacceptable risk ✓ – exposure pathway complete potential unacceptable risk Not relevant								

12. CONCLUSIONS

Based on the results of investigation, the site is considered suitable for the proposed commercial development.

13. LIMITATIONS

This report should be read in full, and no executive summary, conclusion or other section of the report may be used or relied on in isolation, or taken as representative of the report as a whole. No responsibility is accepted by Geo-Logix, and any duty of care that may arise but for this statement is excluded, in relation to any use of any part of this report other than on this basis.

This report has been prepared for the sole benefit of and use by the Client. No other person may rely on the report for any purpose whatsoever except with Geo-Logix's express written consent. Any duty of care to third parties that would or may arise in respect of persons other than the Client, but for this statement, is excluded.

Geo-Logix owns the copyright in this report. No copies of this report are to be made or distributed by any person without express written consent to do so from Geo-Logix. If the Client provides a copy of this report to a third party, without Geo-Logix's consent, the Client indemnifies Geo-Logix against all loss, including without limitation consequential loss, damage and/or liability, howsoever arising, in connection with any use or reliance by a Third Party.

The works undertaken by Geo-Logix are based solely on the scope of works, as agreed by the Client (Scope of Works). No other investigations, sampling, monitoring works or reporting will be carried out other than as expressly provided in the Scope of Works. A COPY OF THE SCOPE OF WORKS IS AVAILABLE ON REQUEST.

To the extent permitted by law, Geo-Logix makes no warranties or representations as to the:

- a. suitability of the Site for any specific use, or category of use, or
- b. potential statutory requirements for remediation, if any, of the Site,
- c. approvals, if any, that may be needed in respect of any use or category of use, or
- d. level of remediation, if any, that is warranted to render the Site suitable for any specific use, or category of use, or
- e. level of ongoing monitoring of Site conditions, if any, that is required in respect of any specific use, or category of use, or
- f. presence, extent or absence of any substance in, on or under the Site, other than as expressly stated in this report.

The conclusions stated in this report are based solely on the information, Scope of Works, analysis and data that are stated or expressly referred to in this report.

To the extent that the information and data relied upon to prepare this report has been conveyed to Geo-Logix by the Client or third parties orally or in the form of documents, Geo-Logix has assumed that the information and data are completely accurate and has not sought independently to verify the accuracy of the information or data. Geo-Logix assumes no responsibility or duty of care in respect of any errors or omissions in the information or data provided to it.

Without limiting the paragraph above, where laboratory tests have been carried out by others on Geo-Logix's behalf, the tests are reproduced in this report on the assumption that the tests are accurate. Geo-Logix has not sought independently to verify the accuracy of those tests and assumes no responsibility in respect of them.

Geo-Logix assumes no responsibility in respect of any changes in the condition of the Site which have occurred since the time when Geo-Logix gathered data and/or took samples from the Site on its site inspections dated **7 to 13 September 2022**.

Given the nature of asbestos, and the difficulties involved in identifying asbestos fibres, despite the exercise of all reasonable due care and diligence, thorough investigations may not always reveal its presence in either buildings or fill. Even if asbestos has been tested for and those tests' results do not reveal the presence of asbestos at those specific points of sampling, asbestos or asbestos containing materials may still be present at the Site, particularly if fill has been imported at any time, buildings constructed prior to 1980 have been demolished on the Site or materials from such buildings have been disposed of on the Site.

Where the Scope of Works does not include offsite investigations, Geo-Logix provides no warranty as to offsite conditions, including the extent if any to which substances in the Site may be emanating off site, and if so whether any adjoining sites have been or may be impacted by contamination originating from the Site.

Where the Scope of Works does not include the investigation, sampling, monitoring or other testing of groundwater in, on or under the Site, Geo-Logix provides no warranty or representation as to the quality of groundwater on the Site or the actual or potential migration of contamination in groundwater across or off the Site.

Subsurface site conditions are typically heterogeneous, and may change with time. Samples taken from different points on the Site may not enable inferences to be drawn about the condition of areas of the Site significantly removed from the sample points, or about the condition of any part of the Site whatsoever, in particular where the proposed inferences are to be drawn a long time after the date of the report.

Geo-Logix has prepared this report with the diligence, care and skill which a reasonable person would expect from a reputable environmental consultancy and in accordance with environmental regulatory authority and industry standards, guidelines and assessment criteria applicable as at the date of this report. Industry standards and environmental criteria change frequently, and may change at any time after the date of this report.

14. REFERENCES

Australian Standard (2005) AS 4482.1–2005 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Volatile and Semi-volatile compounds. Standards Australia.

Australian Standard (2005) AS 4482.2–1999 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 2: Volatile substances. Standards Australia.

Before You Dig (2022), https://www.byda.com.au/

Geo-Logix (2021) Preliminary Site Investigation Report, 287 Mona Vale Road, Terrey Hills, NSW. Report Ref 2101130Rpt01FinalV01_21Dec21.

Google Earth (2022). Terrey Hills, NSW.

Nearmap (2022) Taree, https://www.nearmap.com/au/en

NEPC (1999) Amended National Environmental Protection Measure (2013), National Environmental Protection Council.

NSW DEC (2006) Guidelines for NSW Site Auditor Scheme, NSW Department of Environment and Conservation.

NSW EPA (1995) *Contaminated Sites Sampling Design Guidelines*, NSW Environmental Protection Authority.

NSW EPA (2020), Consultants Reporting on Contaminated Land, Contaminated Land Guidelines.

FIGURES

is strictly prohibited.

Project No. 2201064

Figure 2

Detailed Site Investigaiton 287 Mona Vale Road, Terrey Hills NSW 2084

Project No. 2201064

Figure 3

Geo-Logix

COPYRIGHT Other than for the sole purpose of work associated with the Detailed Site Investigation as detailed herein, the use, reproduction and/or publication of this figure wholly, or in part, whether or not modified or altered, is strictly prohibited. **TABLES**

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	HA1/0.7-0.8	HA2/0.2-0.3	HA3/0.25-0.45	HA4/0.1-0.4	DS1
	HSLs - D	Management	ESLs	EILs	Depth (m)	0.7-0.8	0.2-0.3	0.25-0.45	0.1-0.4	-
	Sand	Limits	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	-
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
TRH C ₆ -C ₁₀	-	700	-	-		< 20	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)	260	-	215	-		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-	-		< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	170	-		< 50	< 50	< 50	< 50	< 50
TRH >C ₁₆ -C ₃₄	-	3,500	1,700	-		< 100	< 100	< 100	< 100	< 100
TRH >C ₃₄ -C ₄₀	-	10,000	3,300	-		< 100	< 100	< 100	< 100	< 100
Benzene	3	-	/5	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	NL	-	135	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	NL	-	165	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	230	-	180	-		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene (MAH)	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	RPD_DS1	TS1	RPD_TS1	HA4/1.2-1.3	HA5/0.7-0.8
	HSLs - D	Management	ESLs	EILs	Depth (m)	-	-	-	1.2-1.3	0.7-0.8
	Sand	Limits	Comm/Ind	Commercial/	Туре	-	-	-	Fill	Fill
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	-	7/09/2022	-	7/09/2022	7/09/2022
TRH C ₆ -C ₁₀	-	700	-	-		пс	< 20	пс	< 20	< 20
TRH C6-C10 less BTEX (F1)	260	-	215	-		пс	< 20	пс	< 20	< 20
TRH >C10-C16	-	1,000	-	-		пс	< 50	пс	< 250	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	170	-		пс	< 50	пс	< 250	< 50
TRH >C ₁₆ -C ₃₄	-	3,500	1,700	-		пс	< 100	пс	< 500	< 100
TRH >C ₃₄ -C ₄₀	-	10,000	3,300	-		пс	< 100	пс	560	< 100
Benzene	3	-	75	-		пс	< 0.1	пс	< 0.1	< 0.1
Toluene	NL	-	135	-		пс	< 0.1	пс	1	< 0.1
Ethylbenzene	NL	-	165	-		пс	< 0.1	пс	0.1	< 0.1
m&p-Xylenes	-	-	-	-		пс	< 0.2	пс	0.7	< 0.2
o-Xylene	-	-	-	-		пс	< 0.1	пс	0.2	< 0.1
Xylenes - Total	230	-	180	-		пс	< 0.3	пс	0.8	< 0.3
Naphthalene (MAH)	NL	-	-	370		пс	< 0.5	пс	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	HA6/0.5-0.6	BH7/0.8-0.9	BH7/2.5-2.6	BH8/0.3-0.5	BH9/0.3-0.6
	HSLs - D	Management	ESLs	EILs	Depth (m)	0.5-0.6	0.8-0.9	2.5-2.6	0.3-0.5	0.3-0.6
	Sand	Limits	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
TRH C ₆ -C ₁₀	-	700	-	-		< 20	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	260	-	215	-		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-	-		< 50	< 50	< 50	< 250	< 250
TRH >C10-C16 less Naphthalene (F2)	NL	-	170	-		< 50	< 50	< 50	< 250	< 250
TRH >C ₁₆ -C ₃₄	-	3,500	1,700	-		< 100	< 100	< 100	< 500	< 500
TRH >C34-C40	-	10,000	3,300	-		< 100	< 100	< 100	< 500	< 500
Benzene	3	-	75	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	NL	-	135	-		0.4	< 0.1	< 0.1	0.1	0.2
Ethylbenzene	NL	-	165	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-	-		0.3	< 0.2	< 0.2	0.2	0.2
o-Xylene	-	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	230	-	180	-		0.4	< 0.3	< 0.3	0.3	0.3
Naphthalene (MAH)	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH10/0.9-1	BH11/1-1.2	BH12/0.2-0.4	BH13/0.3-0.5	BH14/0.3-0.7
	HSLs - D	Management	ESLs	EILs	Depth (m)	0.9-1.0	1.0-1.2	0.2-0.4	0.3-0.5	0.3-0.7
	Sand	Limits	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
TRH C ₆ -C ₁₀	-	700	-	-		< 20	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)	260	-	215	-		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-	-		< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	170	-		< 50	< 50	< 50	< 50	< 50
TRH >C16-C34	-	3,500	1,700	-		< 100	< 100	< 100	< 100	< 100
TRH >C34-C40	-	10,000	3,300	-		< 100	< 100	< 100	< 100	< 100
Benzene	3	-	75	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	NL	-	135	-		< 0.1	0.3	< 0.1	< 0.1	< 0.1
Ethylbenzene	NL	-	165	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	230	-	180	-		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene (MAH)	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH15/0.3-0.6	DS2	RPD_DS2	TS2	RPD_TS2
	HSLs - D	Management	ESLs	EILs	Depth (m)	0.3-0.6	-	-	-	-
	Sand	Limits	Comm/Ind	Commercial/	Туре	Fill	-	-	-	-
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	-	7/09/2022	-
TRH C ₆ -C ₁₀	-	700	-	-		< 20	< 20	пс	< 20	пс
TRH C6-C10 less BTEX (F1)	260	-	215	-		< 20	< 20	пс	< 20	пс
TRH >C10-C16	-	1,000	-	-		< 50	< 50	пс	< 50	пс
TRH >C10-C16 less Naphthalene (F2)	NL	-	170	-		< 50	< 50	пс	< 50	пс
TRH >C16-C34	-	3,500	1,700	-		< 100	120	пс	< 100	пс
TRH >C ₃₄ -C ₄₀	-	10,000	3,300	-		< 100	170	пс	< 100	пс
Benzene	3	-	75	-		< 0.1	< 0.1	пс	< 0.1	пс
Toluene	NL	-	135	-		< 0.1	< 0.1	пс	0.2	пс
Ethylbenzene	NL	-	165	-		< 0.1	< 0.1	пс	< 0.1	пс
m&p-Xylenes	-	-	-	-		< 0.2	< 0.2	пс	0.2	пс
o-Xylene	-	-	-	-		< 0.1	< 0.1	пс	< 0.1	пс
Xylenes - Total	230	-	180	-		< 0.3	< 0.3	пс	< 0.3	пс
Naphthalene (MAH)	NL	-	-	370		< 0.5	< 0.5	пс	< 0.5	пс

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6 BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH16/0.55-0.7	BH17/0.6-0.8	BH18/0.2-0.5	BH19/0.1-0.3	BH20/0.6-0.7
	HSLs - D	Management	ESLs	EILs	Depth (m)	0.55-0.7	0.6-0.8	0.2-0.5	0.1-0.3	0.6-0.7
	Sand	Limits	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
TRH C ₆ -C ₁₀	-	700	-	-		< 20	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)	260	-	215	-		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-	-		< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	170	-		< 50	< 50	< 50	< 50	< 50
TRH >C16-C34	-	3,500	1,700	-		< 100	< 100	< 100	180	< 100
TRH >C ₃₄ -C ₄₀	-	10,000	3,300	-		100	< 100	< 100	< 100	< 100
Benzene	3	-	75	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	NL	-	135	-		0.6	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	NL	-	165	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-	-		0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	230	-	180	-		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene (MAH)	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH21/0.3-0.5	BH21/3.0-3.2	BH22/0.3-0.6	BH23/1-1.2	BH24/0.3-0.6
	HSLs - D	Management	ESLs	EILs	Depth (m)	0.3-0.5	3.0-3.2	0.3-0.6	1.0-1.2	0.3-0.6
	Sand	Limits	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
TRH C6-C10	-	700	-	-		< 20	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	260	-	215	-		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-	-		< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	170	-		< 50	< 50	< 50	< 50	< 50
TRH >C ₁₆ -C ₃₄	-	3,500	1,700	-		< 100	< 100	< 100	< 100	< 100
TRH >C34-C40	-	10,000	3,300	-		< 100	< 100	< 100	< 100	< 100
Benzene	3	-	75	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	NL	-	135	-		< 0.1	< 0.1	0.2	< 0.1	< 0.1
Ethylbenzene	NL	-	165	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	230	-	180	-		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene (MAH)	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH25/0.5-0.8	BH26/0.4-0.6	BH27/0.2-0.5	BH28/0.3-0.6	BH29/0.8-0.9
	HSLs - D	Management	ESLs	EILs	Depth (m)	0.5-0.8	0.4-0.6	0.2-0.5	0.3-0.6	0.8-0.9
	Sand	Limits	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
TRH C ₆ -C ₁₀	-	700	-	-		< 20	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	260	-	215	-		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-	-		< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	170	-		< 50	< 50	< 50	< 50	< 50
TRH >C16-C34	-	3,500	1,700	-		< 100	260	210	< 100	< 100
TRH >C34-C40	-	10,000	3,300	-		< 100	240	180	< 100	< 100
Benzene	3	-	75	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	NL	-	135	-		< 0.1	0.2	< 0.1	< 0.1	< 0.1
Ethylbenzene	NL	-	165	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	230	-	180	-		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene (MAH)	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH30/1-1.2	BLANK1	SPIKE1	
	HSLs - D	Management	ESLs	EILs	Depth (m)	1.0-1.2	-	-	
	Sand	Limits	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	
	0 to <1 m	Comm/Ind	Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	
TRH C ₆ -C ₁₀	-	700	-	-		< 20	< 20	110%	
TRH C6-C10 less BTEX (F1)	260	-	215	-		< 20	< 20		
TRH >C10-C16	-	1,000	-	-		< 50			
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	NL	-	170	-		< 50			
TRH >C16-C34	-	3,500	1,700	-		< 100			
TRH >C34-C40	-	10,000	3,300	-		< 100			
Benzene	3	-	75	-		< 0.1	< 0.1	100%	
Toluene	NL	-	135	-		< 0.1	< 0.1	110%	
Ethylbenzene	NL	-	165	-		< 0.1	< 0.1	100%	
m&p-Xylenes	-	-	-	-		< 0.2	< 0.2	100%	
o-Xylene	-	-	-	-		< 0.1	< 0.1	110%	
Xylenes - Total	230	-	180	-		< 0.3	< 0.3	110%	
Naphthalene (MAH)	NL	-	-	370		< 0.5	< 0.5	100%	

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. SPIKE1 = spike sample Criteria 2 = NEPC (1999) Amended, Commercial/industrial Management Limits for TPH fractions in soil, coarse material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6 TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	HA1/0.7-0.8	HA2/0.2-0.3	HA3/0.25-0.45	HA4/0.1-0.4	DS1
	HSLs - D		ESLs	EILs	Depth (m)	0.7-0.8	0.2-0.3	0.25-0.45	0.1-0.4	-
	Sand	HILs - D	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	-
	0 to <1 m		Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Acenaphthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	-	172¹	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ	-	40	-	-		0.6	0.6	0.6	0.6	0.6
Total PAH	-	4,000	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	RPD_DS1	TS1	RPD_TS1	HA4/1.2-1.3	HA5/0.7-0.8
	HSLs - D		ESLs	EILs	Depth (m)	-	-	-	1.2-1.3	0.7-0.8
	Sand	HILs - D	Comm/Ind	Commercial/	Туре	-	-	-	Fill	Fill
	0 to <1 m		Coarse Soil	Industrial	Date	-	7/09/2022	-	7/09/2022	7/09/2022
Acenaphthene	-	-	-	-		пс	< 0.5	пс	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		пс	< 0.5	пс	< 0.5	< 0.5
Anthracene	-	-	-	-		пс	< 0.5	пс	< 0.5	< 0.5
Benz(a)anthracene	-	-	-	-		пс	< 0.5	пс	< 0.5	< 0.5
Benzo(a)pyrene	-	-	172¹	-		пс	< 0.5	пс	0.7	< 0.5
Benzo(b&j)fluoranthene	-	-	-	-		пс	< 0.5	пс	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		пс	< 0.5	пс	1	< 0.5
Benzo(k)fluoranthene	-	-	-	-		пс	< 0.5	пс	0.7	< 0.5
Chrysene	-	-	-	-		пс	< 0.5	пс	0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-	-		пс	< 0.5	пс	< 0.5	< 0.5
Fluoranthene	-	-	-	-		пс	< 0.5	пс	0.7	< 0.5
Fluorene	-	-	-	-		пс	< 0.5	пс	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		пс	< 0.5	пс	0.7	< 0.5
Naphthalene	NL	-	-	370		пс	< 0.5	пс	< 0.5	< 0.5
Phenanthrene	-	-	-	-		пс	< 0.5	пс	< 0.5	< 0.5
Pyrene	-	-	-	-		пс	< 0.5	пс	0.5	< 0.5
Benzo(a)pyrene TEQ	-	40	-	-		0%	0.6	0%	1.2	0.6
Total PAH	-	4,000	-	-		пс	< 0.5	пс	4.8	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

- DS1 = duplicate of HA4/0.1-0.4
- TS1 = triplicate of HA4/0.1-0.4
- DS2 = duplicate of BH15/0.3-0.6
- TS2 = triplicate of BH15/0.3-0.6

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	HA6/0.5-0.6	BH7/0.8-0.9	BH7/2.5-2.6	BH8/0.3-0.5	BH9/0.3-0.6
	HSLs - D		ESLs	EILs	Depth (m)	0.5-0.6	0.8-0.9	2.5-2.6	0.3-0.5	0.3-0.6
	Sand	HILs - D	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m		Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Acenaphthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	1.3	0.7
Benzo(a)pyrene	-	-	172¹	-		< 0.5	< 0.5	< 0.5	1.8	0.7
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	1.2	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	< 0.5	< 0.5	1.3	< 0.5
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	2.1	0.7
Chrysene	-	-	-	-		< 0.5	< 0.5	< 0.5	1.8	0.9
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	3.2	1.7
Fluorene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	0.8	< 0.5
Naphthalene	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-	-		< 0.5	< 0.5	< 0.5	0.6	< 0.5
Pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	3.9	2
Benzo(a)pyrene TEQ	-	40	-	-		0.6	0.6	0.6	2.6	1.2
Total PAH	-	4,000	-	-		< 0.5	< 0.5	< 0.5	18	6.7

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH10/0.9-1	BH11/1-1.2	BH12/0.2-0.4	BH13/0.3-0.5	BH14/0.3-0.7
	HSLs - D		ESLs	EILs	Depth (m)	0.9-1.0	1.0-1.2	0.2-0.4	0.3-0.5	0.3-0.7
	Sand	HILs - D	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m		Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Acenaphthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	-	172¹	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ	-	40	-	-		0.6	0.6	0.6	0.6	0.6
Total PAH	-	4,000	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

- DS1 = duplicate of HA4/0.1-0.4
- TS1 = triplicate of HA4/0.1-0.4
- DS2 = duplicate of BH15/0.3-0.6
- TS2 = triplicate of BH15/0.3-0.6

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH15/0.3-0.6	DS2	RPD_DS2	TS2	RPD_TS2
	HSLs - D		ESLs	EILs	Depth (m)	0.3-0.6	-	-	-	-
	Sand	HILs - D	Comm/Ind	Commercial/	Туре	Fill	-	-	-	-
	0 to <1 m		Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	-	7/09/2022	-
Acenaphthene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Anthracene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Benzo(a)pyrene	-	-	172¹	-		< 0.5	< 0.5	пс	< 0.5	пс
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Chrysene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Fluoranthene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Fluorene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Naphthalene	NL	-	-	370		< 0.5	< 0.5	пс	< 0.5	пс
Phenanthrene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Pyrene	-	-	-	-		< 0.5	< 0.5	пс	< 0.5	пс
Benzo(a)pyrene TEQ	-	40	-	-		0.6	0.6	0%	0.6	0%
Total PAH	-	4,000	-	-		< 0.5	< 0.5	пс	< 0.5	пс

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH16/0.55-0.7	BH17/0.6-0.8	BH18/0.2-0.5	BH19/0.1-0.3	BH20/0.6-0.7
	HSLs - D		ESLs	EILs	Depth (m)	0.55-0.7	0.6-0.8	0.2-0.5	0.1-0.3	0.6-0.7
	Sand	HILs - D	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m		Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Acenaphthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	-	172¹	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	0.6	< 0.5
Chrysene	-	-	-	-		< 0.5	< 0.5	< 0.5	0.6	< 0.5
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	1.2	< 0.5
Fluorene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-	-		< 0.5	< 0.5	< 0.5	1	< 0.5
Pyrene	-	-	-	-		< 0.5	< 0.5	< 0.5	1.2	< 0.5
Benzo(a)pyrene TEQ	-	40	-	-		0.6	0.6	0.6	0.6	0.6
Total PAH	-	4,000	-	-		< 0.5	< 0.5	< 0.5	4.6	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

- DS1 = duplicate of HA4/0.1-0.4
- TS1 = triplicate of HA4/0.1-0.4
- DS2 = duplicate of BH15/0.3-0.6
- TS2 = triplicate of BH15/0.3-0.6

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

HSLs - DESLsEILsDepth (m) $0.3-0.5$ $3.0-3.2$ $0.3-0.6$ $1.0-1.2$ $0.3-0.6$ SandHILs - DComm/IndCommercial/<TypeFill <th>3-0.6</th> <th>BH24/0</th> <th>BH23/1-1.2</th> <th>BH22/0.3-0.6</th> <th>BH21/3.0-3.2</th> <th>BH21/0.3-0.5</th> <th>Sample ID</th> <th>Criteria 4</th> <th>Criteria 3</th> <th>Criteria 2</th> <th>Criteria 1</th> <th></th>	3-0.6	BH24/0	BH23/1-1.2	BH22/0.3-0.6	BH21/3.0-3.2	BH21/0.3-0.5	Sample ID	Criteria 4	Criteria 3	Criteria 2	Criteria 1	
SandHILs - DComm/IndCommercial/TypeFill <th< th=""><th>1.6</th><th>0.3-0</th><th>1.0-1.2</th><th>0.3-0.6</th><th>3.0-3.2</th><th>0.3-0.5</th><th>Depth (m)</th><th>EILs</th><th>ESLs</th><th></th><th>HSLs - D</th><th></th></th<>	1.6	0.3-0	1.0-1.2	0.3-0.6	3.0-3.2	0.3-0.5	Depth (m)	EILs	ESLs		HSLs - D	
0 to <1 m	ł	Fil	Fill	Fill	Fill	Fill	Туре	Commercial/	Comm/Ind	HILs - D	Sand	
Acenaphthene - - - <th<< th=""><th>022</th><th>7/09/2</th><th>7/09/2022</th><th>7/09/2022</th><th>7/09/2022</th><th>7/09/2022</th><th>Date</th><th>Industrial</th><th>Coarse Soil</th><th></th><th>0 to <1 m</th><th></th></th<<>	022	7/09/2	7/09/2022	7/09/2022	7/09/2022	7/09/2022	Date	Industrial	Coarse Soil		0 to <1 m	
Acenaphthene - - - <th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>												
Acenaphthylene - - - - <	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Acenaphthene
Anthracene - - - </td <td>5</td> <td>< 0</td> <td>< 0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>Acenaphthylene</td>	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Acenaphthylene
Benz(a)anthracene - - -	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Anthracene
Benzo(a)pyrene - 172' - <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Benz(a)anthracene
Benzo(b&j)fluoranthene - - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	172¹	-	-	Benzo(a)pyrene
Benzo(g.h.i)perylene - - - < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Benzo(b&j)fluoranthene
Benzo(k)fluoranthene - - - < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5 0.5 < 0.5 0.5 < 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 </td <td>5</td> <td>< 0</td> <td>< 0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>Benzo(g.h.i)perylene</td>	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Benzo(g.h.i)perylene
	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Benzo(k)fluoranthene
Chrysene < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Chrysene
Dibenz(a.h)anthracene <0.5 <0.5 <0.5 <0.5 <0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Dibenz(a.h)anthracene
Fluoranthene <0.5 <0.5 <0.5 <0.5 <0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Fluoranthene
Fluorene <0.5 <0.5 <0.5 <0.5 <0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Fluorene
Indeno(1.2.3-cd)pyrene < < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Indeno(1.2.3-cd)pyrene
Naphthalene NL - 370 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		370	-	-	NL	Naphthalene
Phenanthrene - - < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Phenanthrene
Pyrene <0.5 <0.5 <0.5 <0.5 <0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	-	-	Pyrene
Benzo(a)pyrene TEQ - 40 0.6 0.6 0.6 0.6 0.6 0.6	j	0.6	0.6	0.6	0.6	0.6		-	-	40	-	Benzo(a)pyrene TEQ
Total PAH - 4,000 - < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5	< 0	< 0.5	< 0.5	< 0.5	< 0.5		-	-	4,000	-	Total PAH

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

- DS1 = duplicate of HA4/0.1-0.4
- TS1 = triplicate of HA4/0.1-0.4
- DS2 = duplicate of BH15/0.3-0.6
- TS2 = triplicate of BH15/0.3-0.6

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH25/0.5-0.8	BH26/0.4-0.6	BH27/0.2-0.5	BH28/0.3-0.6	BH29/0.8-0.9
	HSLs - D		ESLs	EILs	Depth (m)	0.5-0.8	0.4-0.6	0.2-0.5	0.3-0.6	0.8-0.9
	Sand	HILs - D	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m		Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Acenaphthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	-	172¹	-		< 0.5	< 0.5	0.8	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-	-		< 0.5	1	1.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-	-		< 0.5	< 0.5	0.7	< 0.5	< 0.5
Chrysene	-	-	-	-		< 0.5	< 0.5	0.6	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-	-		< 0.5	< 0.5	1	< 0.5	< 0.5
Fluorene	-	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5	0.5	0.7	< 0.5	< 0.5
Naphthalene	NL	-	-	370		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-	-		< 0.5	< 0.5	0.6	< 0.5	< 0.5
Pyrene	-	-	-	-		< 0.5	< 0.5	1	< 0.5	< 0.5
Benzo(a)pyrene TEQ	-	40	-	-		0.6	0.6	1.3	0.6	0.6
Total PAH	-	4,000	-	-		< 0.5	1.5	6.9	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	BH30/1-1.2	BLANK1	SPIKE1	
	HSLs - D		ESLs	EILs	Depth (m)	1.0-1.2	-	-	
	Sand	HILs - D	Comm/Ind	Commercial/	Туре	Fill	Fill	Fill	
	0 to <1 m		Coarse Soil	Industrial	Date	7/09/2022	7/09/2022	7/09/2022	
Acenaphthene	-	-	-	-		< 0.5			
Acenaphthylene	-	-	-	-		< 0.5			
Anthracene	-	-	-	-		< 0.5			
Benz(a)anthracene	-	-	-	-		< 0.5			
Benzo(a)pyrene	-	-	172¹	-		< 0.5			
Benzo(b&j)fluoranthene	-	-	-	-		< 0.5			
Benzo(g.h.i)perylene	-	-	-	-		< 0.5			
Benzo(k)fluoranthene	-	-	-	-		< 0.5			
Chrysene	-	-	-	-		< 0.5			
Dibenz(a.h)anthracene	-	-	-	-		< 0.5			
Fluoranthene	-	-	-	-		< 0.5			
Fluorene	-	-	-	-		< 0.5			
Indeno(1.2.3-cd)pyrene	-	-	-	-		< 0.5			
Naphthalene	NL	-	-	370		< 0.5			
Phenanthrene	-	-	-	-		< 0.5			
Pyrene	-	-	-	-		< 0.5			
Benzo(a)pyrene TEQ	-	40	-	-		0.6			
Total PAH	-	4,000	-	-		< 0.5			

Notes:

Criteria 1 = NEPC (1999) Amended, 'D' Commercial/industrial Soil Health Screening Levels for vapour intrusion, sand 0 to <1m. BLANK1 = blank sample

Criteria 2 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for commercial/industrial, coarse soil.

Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

NL = not limiting

¹CRC CRE High Reliability Ecological Guideline for fresh benzo(a)pyrene

- DS1 = duplicate of HA4/0.1-0.4
- TS1 = triplicate of HA4/0.1-0.4
- DS2 = duplicate of BH15/0.3-0.6
- TS2 = triplicate of BH15/0.3-0.6

- SPIKE1 = spike sample
- RPD = relative percent difference of duplicate/triplicate
- nc = RPD not calculated, one or both samples below laboratory reporting limit
- < # or ND = analyte(s) not detected in excess of laboratory reporting limit
- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	HA1/0.7-0.8	HA2/0.2-0.3	HA3/0.25-0.45	HA4/0.1-0.4	DS1
		EILs	Depth (m)	0.7-0.8	0.2-0.3	0.25-0.45	0.1-0.4	-
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	-
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-		< 0.05	0.08	< 0.05	< 0.05	< 0.05
4.4'-DDT	-	640		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	530	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	100	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	_	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	50	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	80	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	HA1/0.7-0.8	HA2/0.2-0.3	HA3/0.25-0.45	HA4/0.1-0.4	DS1
		EILs	Depth (m)	0.7-0.8	0.2-0.3	0.25-0.45	0.1-0.4	-
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	-
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Methoxychlor	2,500	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	160	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin + Dieldrin	45	-		ND	ND	ND	ND	ND
Endosulfans - Total	2,000	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	3,600	-		ND	0.08	ND	ND	ND
Scheduled Chemical Wastes	-	-		ND	0.08	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	RPD_DS1	TS1	RPD_TS1	HA4/1.2-1.3	HA5/0.7-0.8
		EILs	Depth (m)	-	-	-	1.2-1.3	0.7-0.8
	HILs - D	Commercial/	Туре	-	-	-	Fill	Fill
		Industrial	Date	-	7/09/2022	-	7/09/2022	7/09/2022
4.4'-DDD	-	-		пс	< 0.05	пс	< 0.5	< 0.05
4.4'-DDE	-	-		пс	< 0.05	пс	< 0.5	< 0.05
4.4'-DDT	-	640		пс	< 0.05	пс	< 0.5	< 0.05
a-BHC	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Aldrin	-	-		пс	< 0.05	пс	< 0.5	< 0.05
b-BHC	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Chlordanes - Total	530	-		пс	< 0.1	пс	< 1	< 0.1
d-BHC	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Dieldrin	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Endosulfan I	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Endosulfan II	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Endosulfan sulphate	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Endrin	100	-		пс	< 0.05	пс	< 0.5	< 0.05
Endrin aldehyde	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Endrin ketone	-	-		пс	< 0.05	пс	< 0.5	< 0.05
g-BHC (Lindane)	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Heptachlor	50	-		пс	< 0.05	пс	< 0.5	< 0.05
Heptachlor epoxide	-	-		пс	< 0.05	пс	< 0.5	< 0.05
Hexachlorobenzene	80	-		пс	< 0.05	пс	< 0.5	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	RPD_DS1	TS1	RPD_TS1	HA4/1.2-1.3	HA5/0.7-0.8
		EILs	Depth (m)	-	-	-	1.2-1.3	0.7-0.8
	HILs - D	Commercial/	Туре	-	-	-	Fill	Fill
		Industrial	Date	-	7/09/2022	-	7/09/2022	7/09/2022
Methoxychlor	2,500	-		пс	< 0.05	пс	< 0.5	< 0.05
Toxaphene	160	-		пс	< 0.5	пс	< 10	< 0.5
Aldrin + Dieldrin	45	-		пс	ND	пс	ND	ND
Endosulfans - Total	2,000	-		пс	ND	пс	ND	ND
DDD + DDE + DDT	3,600	-		пс	ND	пс	ND	ND
Scheduled Chemical Wastes	-	-		пс	ND	пс	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	HA6/0.5-0.6	BH7/0.8-0.9	BH7/2.5-2.6	BH8/0.3-0.5	BH9/0.3-0.6
		EILs	Depth (m)	0.5-0.6	0.8-0.9	2.5-2.6	0.3-0.5	0.3-0.6
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
4.4'-DDE	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
4.4'-DDT	-	640		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Chlordanes - Total	530	-		< 0.1	< 0.1	< 0.1	< 1	< 1
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Dieldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Endrin	100	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Heptachlor	50	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Hexachlorobenzene	80	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	HA6/0.5-0.6	BH7/0.8-0.9	BH7/2.5-2.6	BH8/0.3-0.5	BH9/0.3-0.6
		EILs	Depth (m)	0.5-0.6	0.8-0.9	2.5-2.6	0.3-0.5	0.3-0.6
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Methoxychlor	2,500	-		< 0.05	< 0.05	< 0.05	< 0.5	< 0.5
Toxaphene	160	-		< 0.5	< 0.5	< 0.5	< 10	< 10
Aldrin + Dieldrin	45	-		ND	ND	ND	ND	ND
Endosulfans - Total	2,000	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	3,600	-		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-	-		ND	ND	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH10/0.9-1	BH11/1-1.2	BH12/0.2-0.4	BH13/0.3-0.5	BH14/0.3-0.7
		EILs	Depth (m)	0.9-1.0	1.0-1.2	0.2-0.4	0.3-0.5	0.3-0.7
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-	640		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	530	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	100	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	50	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	80	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH10/0.9-1	BH11/1-1.2	BH12/0.2-0.4	BH13/0.3-0.5	BH14/0.3-0.7
		EILs	Depth (m)	0.9-1.0	1.0-1.2	0.2-0.4	0.3-0.5	0.3-0.7
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Methoxychlor	2,500	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	160	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin + Dieldrin	45	-		ND	ND	ND	ND	ND
Endosulfans - Total	2,000	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	3,600	-		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-	-		ND	ND	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH15/0.3-0.6	DS2	RPD_DS2	TS2	RPD_TS2
		EILs	Depth (m)	0.3-0.6	-	-	-	-
	HILs - D	Commercial/	Туре	Fill	-	-	-	-
		Industrial	Date	7/09/2022	7/09/2022	-	7/09/2022	-
4.4'-DDD	-	-		< 0.05	< 0.5	пс	< 0.05	nc
4.4'-DDE	-	-		< 0.05	< 0.5	пс	0.07	nc
4.4'-DDT	-	640		< 0.05	< 0.5	пс	< 0.05	пс
a-BHC	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Aldrin	-	-		< 0.05	< 0.5	пс	< 0.05	пс
b-BHC	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Chlordanes - Total	530	-		< 0.1	< 1	пс	< 0.1	пс
d-BHC	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Dieldrin	-	-		0.1	< 0.5	пс	< 0.05	пс
Endosulfan I	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Endosulfan II	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Endosulfan sulphate	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Endrin	100	-		< 0.05	< 0.5	пс	< 0.05	пс
Endrin aldehyde	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Endrin ketone	-	-		< 0.05	< 0.5	пс	< 0.05	пс
g-BHC (Lindane)	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Heptachlor	50	-		< 0.05	< 0.5	пс	< 0.05	пс
Heptachlor epoxide	-	-		< 0.05	< 0.5	пс	< 0.05	пс
Hexachlorobenzene	80	-		< 0.05	< 0.5	пс	< 0.05	пс

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH15/0.3-0.6	DS2	RPD_DS2	TS2	RPD_TS2
		EILs	Depth (m)	0.3-0.6	-	-	-	-
	HILs - D	Commercial/	Туре	Fill	-	-	-	-
		Industrial	Date	7/09/2022	7/09/2022	-	7/09/2022	-
Methoxychlor	2,500	-		< 0.05	< 0.5	пс	< 0.05	пс
Toxaphene	160	-		< 0.5	< 10	пс	< 0.5	пс
Aldrin + Dieldrin	45	-		0.1	ND	пс	ND	пс
Endosulfans - Total	2,000	-		ND	ND	пс	ND	пс
DDD + DDE + DDT	3,600	-		ND	ND	пс	0.07	пс
Scheduled Chemical Wastes	-	-		0.1	ND	пс	0.07	35%

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH16/0.55-0.7	BH17/0.6-0.8	BH18/0.2-0.5	BH19/0.1-0.3	BH20/0.6-0.7
		EILs	Depth (m)	0.55-0.7	0.6-0.8	0.2-0.5	0.1-0.3	0.6-0.7
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
4.4'-DDD	-	-		0.17	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-		0.72	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-	640		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	530	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-		1	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	100	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	50	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	80	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH16/0.55-0.7	BH17/0.6-0.8	BH18/0.2-0.5	BH19/0.1-0.3	BH20/0.6-0.7
		EILs	Depth (m)	0.55-0.7	0.6-0.8	0.2-0.5	0.1-0.3	0.6-0.7
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Methoxychlor	2,500	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	160	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin + Dieldrin	45	-		1	ND	ND	ND	ND
Endosulfans - Total	2,000	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	3,600	-		0.89	ND	ND	ND	ND
Scheduled Chemical Wastes	-	-		1.89	ND	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH21/0.3-0.5	BH21/3.0-3.2	BH22/0.3-0.6	BH23/1-1.2	BH24/0.3-0.6
		EILs	Depth (m)	0.3-0.5	3.0-3.2	0.3-0.6	1.0-1.2	0.3-0.6
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-		< 0.05	< 0.05	0.13	< 0.05	< 0.05
4.4'-DDT	-	640		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	530	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-		< 0.05	< 0.05	0.07	< 0.05	< 0.05
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	100	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	50	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	80	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH21/0.3-0.5	BH21/3.0-3.2	BH22/0.3-0.6	BH23/1-1.2	BH24/0.3-0.6
		EILs	Depth (m)	0.3-0.5	3.0-3.2	0.3-0.6	1.0-1.2	0.3-0.6
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Methoxychlor	2,500	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	160	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin + Dieldrin	45	-		ND	ND	0.07	ND	ND
Endosulfans - Total	2,000	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	3,600	-		ND	ND	0.13	ND	ND
Scheduled Chemical Wastes	-	-		ND	ND	0.2	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH25/0.5-0.8	BH26/0.4-0.6	BH27/0.2-0.5	BH28/0.3-0.6	BH29/0.8-0.9
		EILs	Depth (m)	0.5-0.8	0.4-0.6	0.2-0.5	0.3-0.6	0.8-0.9
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
4.4'-DDE	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
4.4'-DDT	-	640		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
a-BHC	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Aldrin	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
b-BHC	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Chlordanes - Total	530	-		< 0.1	< 0.1	< 1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Dieldrin	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Endosulfan I	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Endrin	100	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Heptachlor	50	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Hexachlorobenzene	80	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH25/0.5-0.8	BH26/0.4-0.6	BH27/0.2-0.5	BH28/0.3-0.6	BH29/0.8-0.9
		EILs	Depth (m)	0.5-0.8	0.4-0.6	0.2-0.5	0.3-0.6	0.8-0.9
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Methoxychlor	2,500	-		< 0.05	< 0.05	< 0.5	< 0.05	< 0.05
Toxaphene	160	-		< 0.5	< 0.5	< 10	< 0.5	< 0.5
Aldrin + Dieldrin	45	-		ND	ND	ND	ND	ND
Endosulfans - Total	2,000	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	3,600	-		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-	-		ND	ND	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH30/1-1.2	BLANK1	SPIKE1	
		EILs	Depth (m)	1.0-1.2	-	-	
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	
4.4'-DDD	-	-		< 0.05			
4.4'-DDE	-	-		< 0.05			
4.4'-DDT	-	640		< 0.05			
a-BHC	-	-		< 0.05			
Aldrin	-	-		< 0.05			
b-BHC	-	-		< 0.05			
Chlordanes - Total	530	-		< 0.1			
d-BHC	-	-		< 0.05			
Dieldrin	-	-		< 0.05			
Endosulfan I	-	-		< 0.05			
Endosulfan II	-	-		< 0.05			
Endosulfan sulphate	-	-		< 0.05			
Endrin	100	-		< 0.05			
Endrin aldehyde	-	-		< 0.05			
Endrin ketone	-	-		< 0.05			
g-BHC (Lindane)	-	-		< 0.05			
Heptachlor	50	-		< 0.05			
Heptachlor epoxide	-	-		< 0.05			
Hexachlorobenzene	80	-		< 0.05			

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH30/1-1.2	BLANK1	SPIKE1	
		EILs	Depth (m)	1.0-1.2	-	-	
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	
Methoxychlor	2,500	-		< 0.05			
Toxaphene	160	-		< 0.5			
Aldrin + Dieldrin	45	-		ND			
Endosulfans - Total	2,000	-		ND			
DDD + DDE + DDT	3,600	-		ND			
Scheduled Chemical Wastes	-	-		ND			

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg - = assessment criteria not available DS1 = duplicate of HA4/0.1-0.4 TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	HA1/0.7-0.8	HA2/0.2-0.3	HA3/0.25-0.45	HA4/0.1-0.4	DS1
		EILs	Depth (m)	0.7-0.8	0.2-0.3	0.25-0.45	0.1-0.4	-
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	-
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Arsenic	3,000	160		32	10	< 2	< 2	< 2
Cadmium	900	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	3,600¹	310 ²		54	70	13	16	13
Copper	240,000	85		< 5	< 5	< 5	< 5	8.1
Lead	1,500	1,800		< 5	12	7.1	9.7	7.3
Mercury	730	-		< 0.1	0.8	0.6	< 0.1	< 0.1
Nickel	6,000	55		< 5	< 5	< 5	< 5	< 5
Zinc	400,000	110		< 5	11	6.2	14	12

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

¹Guideline for Chromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	RPD_DS1	TS1	RPD_TS1	HA4/1.2-1.3	HA5/0.7-0.8
		EILs	Depth (m)	-	-	-	1.2-1.3	0.7-0.8
	HILs - D	Commercial/	Туре	-	-	-	Fill	Fill
		Industrial	Date	-	7/09/2022	-	7/09/2022	7/09/2022
Arsenic	3,000	160		пс	< 2	пс	< 2	< 2
Cadmium	900	-		пс	< 0.4	пс	< 0.4	< 0.4
Chromium	3,600¹	310 ²		21%	15	6%	42	7.9
Copper	240,000	85		пс	5.1	пс	29	< 5
Lead	1,500	1,800		28%	8.1	18%	10	< 5
Mercury	730	-		пс	< 0.1	пс	< 0.1	< 0.1
Nickel	6,000	55		пс	< 5	пс	40	< 5
Zinc	400,000	110		15%	12	15%	34	< 5

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

¹Guideline for Chromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	HA6/0.5-0.6	BH7/0.8-0.9	BH7/2.5-2.6	BH8/0.3-0.5	BH9/0.3-0.6
		EILs	Depth (m)	0.5-0.6	0.8-0.9	2.5-2.6	0.3-0.5	0.3-0.6
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Arsenic	3,000	160		< 2	< 2	< 2	2.9	3.2
Cadmium	900	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	3,600¹	310 ²		9	5.4	18	16	23
Copper	240,000	85		< 5	< 5	< 5	15	19
Lead	1,500	1,800		21	6.5	7.6	40	26
Mercury	730	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	6,000	55		< 5	< 5	< 5	11	8.7
Zinc	400,000	110		17	9.8	< 5	56	48

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

¹Guideline for Chromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH10/0.9-1	BH11/1-1.2	BH12/0.2-0.4	BH13/0.3-0.5	BH14/0.3-0.7
		EILs	Depth (m)	0.9-1.0	1.0-1.2	0.2-0.4	0.3-0.5	0.3-0.7
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Arsenic	3,000	160		3.2	3.6	18	12	15
Cadmium	900	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	3,600 ¹	310 ²		< 5	30	54	50	43
Copper	240,000	85		< 5	< 5	< 5	< 5	< 5
Lead	1,500	1,800		6	7.2	< 5	6.9	< 5
Mercury	730	-		< 0.1	0.1	< 0.1	< 0.1	< 0.1
Nickel	6,000	55		< 5	< 5	< 5	5.3	< 5
Zinc	400,000	110		< 5	< 5	< 5	< 5	< 5

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

¹Guideline for Chromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH15/0.3-0.6	DS2	RPD_DS2	TS2	RPD_TS2
		EILs	Depth (m)	0.3-0.6	-	-	-	-
	HILs - D	Commercial/	Туре	Fill	-	-	-	-
		Industrial	Date	7/09/2022	7/09/2022	-	7/09/2022	-
Arsenic	3,000	160		< 2	< 2	пс	2.1	пс
Cadmium	900	-		< 0.4	< 0.4	пс	< 0.4	пс
Chromium	3,600 ¹	310 ²		15	21	33%	22	38%
Copper	240,000	85		6	14	80%	8.6	36%
Lead	1,500	1,800		7.8	8.9	13%	9.9	24%
Mercury	730	-		< 0.1	< 0.1	пс	< 0.1	пс
Nickel	6,000	55		< 5	7.1	пс	< 5	пс
Zinc	400,000	110		13	18	32%	21	47%

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

¹Guideline for Chromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH16/0.55-0.7	BH17/0.6-0.8	BH18/0.2-0.5	BH19/0.1-0.3	BH20/0.6-0.7
		EILs	Depth (m)	0.55-0.7	0.6-0.8	0.2-0.5	0.1-0.3	0.6-0.7
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Arsenic	3,000	160		< 2	16	2.1	3.2	< 2
Cadmium	900	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	3,600 ¹	310 ²		22	10	17	16	8.7
Copper	240,000	85		14	< 5	9.8	10	< 5
Lead	1,500	1,800		13	42	7.5	17	7.3
Mercury	730	-		25	0.2	0.1	< 0.1	< 0.1
Nickel	6,000	55		13	< 5	7.8	7.9	< 5
Zinc	400,000	110		28	9.8	20	33	12

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

¹Guideline for Chromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH21/0.3-0.5	BH21/3.0-3.2	BH22/0.3-0.6	BH23/1-1.2	BH24/0.3-0.6
		EILs	Depth (m)	0.3-0.5	3.0-3.2	0.3-0.6	1.0-1.2	0.3-0.6
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Arsenic	3,000	160		< 2	< 2	< 2	< 2	2.4
Cadmium	900	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	3,600 ¹	310 ²		13	20	19	15	13
Copper	240,000	85		< 5	< 5	6.1	< 5	9.3
Lead	1,500	1,800		32	6.9	17	11	9.2
Mercury	730	-		< 0.1	< 0.1	0.7	0.2	< 0.1
Nickel	6,000	55		< 5	< 5	< 5	< 5	< 5
Zinc	400,000	110		16	< 5	39	27	17

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

¹Guideline for Chromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH25/0.5-0.8	BH26/0.4-0.6	BH27/0.2-0.5	BH28/0.3-0.6	BH29/0.8-0.9
		EILs	Depth (m)	0.5-0.8	0.4-0.6	0.2-0.5	0.3-0.6	0.8-0.9
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	Fill	Fill
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	7/09/2022	7/09/2022
Arsenic	3,000	160		< 2	3.2	< 2	< 2	< 2
Cadmium	900	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	3,600 ¹	310 ²		15	15	8.4	11	11
Copper	240,000	85		8.2	14	15	5.3	8.2
Lead	1,500	1,800		11	53	14	< 5	8.8
Mercury	730	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	6,000	55		< 5	14	7.5	< 5	< 5
Zinc	400,000	110		19	31	35	< 5	10

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

 $^{1}\mbox{Guideline}$ for Chromium (VI) used conservatively.

 $^{2}\mbox{Guideline}$ for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

287 Mona Vale Road Terrey Hills, NSW

	Criteria 1	Criteria 2	Sample ID	BH30/1-1.2	BLANK1	SPIKE1	
		EILs	Depth (m)	1.0-1.2	-	-	
	HILs - D	Commercial/	Туре	Fill	Fill	Fill	
		Industrial	Date	7/09/2022	7/09/2022	7/09/2022	
Arsenic	3,000	160		4.4			
Cadmium	900	-		< 0.4			
Chromium	3,600 ¹	310²		11			
Copper	240,000	85		13			
Lead	1,500	1,800		37			
Mercury	730	-		< 0.1			
Nickel	6,000	55		5.9			
Zinc	400,000	110		44			

Notes:

Criteria 1 = NEPC (1999) Amended, Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for commercial/industrial, site specific values. Total concentrations in mg/kg

- = assessment criteria not available

¹Guideline for Chromium (VI) used conservatively.

 $^{2}\mbox{Guideline}$ for Chromium (III) used conservatively.

DS1 = duplicate of HA4/0.1-0.4

TS1 = triplicate of HA4/0.1-0.4

DS2 = duplicate of BH15/0.3-0.6

TS2 = triplicate of BH15/0.3-0.6

BLANK1 = blank sample

SPIKE1 = spike sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

ATTACHMENT A
PHASE 2 DETAILED SITE INVESTIGATION

287 Mona Vale Road, Terrey Hills

Plate 1 – View of south corner car park in the site.

Plate 3 – View of southern portion of the site near the car park.

Plate 5 – Collection of soil samples into glass jars from the bore.

Plate 2 – Drill rig set up near to the entrance of the site from Mona Vale road in the south-east side.

Plate 4 – Soil from the bore in one of the locations.

Plate 6 – Soil at different depths from same location.

PHASE 2 DETAILED SITE INVESTIGATION

287 Mona Vale Road, Terrey Hills

Plate 7 – Driveway at west corner of the site connecting Myoora Road.

Plate 9 – View of the driveway at the north of the site near to the market garden.

Plate 8 – Drill rig set up near the storm water retention dam at south-west side of the site.

Plate 10 - View of waste storage location in the Northwest portion of site.

Plate 11 – View of boreholes refilled with concrete after concrete cutting and soil sampling.

ATTACHMENT B

Job No 30878181

Caller Details Contact: Alyson Bannister Caller Id: 3030718 Phone: 0431 918 282 Company: Geo-Logix Email: abannister@geo-logix.com.au Company: Address: Unit 2309 4 Daydream Street Warriewood NSW 2102 Email: abannister@geo-logix.com.au Company:

Dig Site and Enquiry Details

WARNING: The map below only displays the location of the proposed dig site and does not display any asset owners' pipe or cables. The area highlighted has been used only to identify the participating asset owners, who will send information to you directly.

whers, who will send information to you	directly.			
User Reference:	287 Mona Vale Road			
Working on Behalf of:	Private			
Enquiry Date:	Start Date:	End Date:		
10/11/2021	15/11/2021	15/12/2021		
Address:				
287 Mona Vale Road Terrey Hills NSW 2084				
Job Purpose: Onsite Activities:				
Excavation	Mechanical Excava	tion		
Location of Workplace:	Location in Road:			
Private				
 Check that the location of the dig s Should the scope of works change, enquiry. 	ite is correct. If not you must or plan validity dates expire, y	submit a new enquiry. ou must submit a new		
• Do NOT dig without plans. Safe excavation is your responsibility. If you do not understand the plans or how to proceed safely, please contact the relevant asset owners.				

Notes/Description of Works:

Not supplied

Your Responsibilities and Duty of Care

- The lodgement of an enquiry does not authorise the project to commence. You must obtain all necessary information from any and all likely impacted asset owners prior to excavation.
- If plans are not received within 2 working days, contact the asset owners directly & quote their Sequence No.
- ALWAYS perform an onsite inspection for the presence of assets. Should you require an onsite location, contact the asset owners directly. Please remember, plans do not detail the exact location of assets.
- Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.
- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using this service, you agree to Privacy Policy and the terms and disclaimers set out at www.1100.com.au
- · For more information on safe excavation practices, visit www.1100.com.au

Asset Owner Details

The assets owners listed below have been requested to contact you with information about their asset locations within 2 working days.

Additional time should be allowed for information issued by post. It is your responsibility to identify the presence of any underground assets in and around your proposed dig site. Please be aware, that not all asset owners are registered with the Dial Before You Dig service, so it is your responsibility to identify and contact any asset owners not listed here directly.

** Asset owners highlighted by asterisks ** require that you visit their offices to collect plans.

Asset owners highlighted with a hash # require that you call them to discuss your enquiry or to obtain plans.

Seq. No.	Authority Name	Phone	Status
205121892	Ausgrid	(02) 4951 0899	NOTIFIED
205121893	Jemena Gas North	1300 880 906	NOTIFIED
205121890	NBN Co NswAct	1800 687 626	NOTIFIED
205121894	Optus and or Uecomm Nsw	1800 505 777	NOTIFIED
205121895	Sydney Water	13 20 92	NOTIFIED
205121891	Telstra NSW Central	1800 653 935	NOTIFIED

END OF UTILITIES LIST

Emergency Phone Number 131388

Underground Cable Location Search Advice

-- Ausgrid Assets Affected -

To:	Alyson Bannister		
	Geo-Logix	Phone No:	+61431918282
	Unit 2309,4 Daydream Street	Issue Date:	11/11/2021
	Warriewood NSW 2102		

In response to your enquiry, Sequence No: 205121892 the records of Ausgrid disclose that there <u>are</u> Ausgrid underground cables in the defined search location and relevant Ausgrid plans have been provided.

This search is based on the geographical position of the dig site as denoted in the Dial Before You Dig caller confirmation sheet and an overview is provided:

Address:	287 Mona Vale Road Terrey Hills NSW 2084
Job #:	30878181

Important

- All information provided to you is **ONLY VALID FOR <u>30 DAYS</u>** from the date of issue
- You must keep Ausgrid plans on site during excavation works. If the people actually performing the excavation works do not know how to read and interpret Ausgrid's plans, then the work must be directed by a person who knows how to read and interpret plans.
- If you require a full size print of A0 plans and don't have the resources to do so please contact our office on 49510899 to request a hard copy to be posted. Please allow 3 working days for delivery.
- Please note you will ONLY receive portions of your search area that contain Ausgrid Underground Assets

YOU MUST READ AND UNDERSTAND THE <u>SUPPLEMENTARY MATERIAL</u> CONTAINED IN THIS ADVICE <u>BEFORE</u> PROCEEDING WITH ANY WORKS.

Material	Purpose	Location
Important Information.pdf	Details important information	Attached
Working near Ausgrid Cables.pdf	Summary of NS156	Attached
COMN0119 How to Read Ausgrid Plans.pdf	Details how to read Ausgrid plans	Attached
SafeWork NSW "Work near underground assets: Guide"	To assist you in deciding appropriate measures to eliminate or control risks when working near underground assets.	Web Link [Click Here]
Ausgrid's Network Standard NS156	For important information for work near or around underground cables	Web Link [Click Here]
Ausgrid's Network Standard NS199	This Network Standard applies to specific work on Ausgrid Low Voltage Underground Assets and associated Hazards	Web Link [Click Here]
Working in Confined Spaces	For important information when working in confined spaces	Web Link [Click Here]

Reading Ausgrid Plans

1 Property Lines

"property line" (PL), sometimes referred to as "building line" (BL), is the standard dimensioning reference point on all Ausgrid plans and represents property boundaries.

Typically, the PL is the boundary between private property and local council's footpath area or nature reserve. Most residential fences and office blocks are erected along the PL.

"kerb line" (KL) is less frequently referred to on Ausgrid plans, and where used will be identified clearly as KL.

Numbers listed within property boundaries should correspond to recognised "street numbers" (refer to figure 1).

2 Datum References

"datum references" identify distances (in metres) from significant features (such as corners of property boundaries) to reference points such as Ausgrid assets (eg: "conduits", "cables", "joints") (refer to figure 2).

Figure 2

3 Cross Sections

A "cross sections" displayed on Ausgrid plans detail information relating to the relative position (ie: distance from the **"property line"**, and the depth of **"cover"**) of Ausgrid assets.

"Cover" is a term used to refer to the depth of cables underground.

A "cross section" leader line will be drawn indicating the location of the displayed **"cable"** or **"conduit"** information on Ausgrid plans.

The distance from **"property line"** (in metres) and depth of **"cover"** (in metres) references are displayed as; ie: 0.6 metres from PL and 0.5 metres underground.

Where distance and cover are not recorded, they will be clearly marked as "NR".

NOTE: Distance and cover where indicated may be different to the actual position of the cables (eg: fill may have been placed at site that has changed the ground level).

"PL" distance shown in cross sections is an indicative measure to the centre of the trench allocation from the adjacent property line.

On some plans the "cross sections" may also be shown with a specific number (eg: HR1). This number will match with a cross section detail found in the border of the plot or on a separate plot page (refer to figures 3 and 4).

Figure 3

Figure 4

4 Cable Joints and Joint Reports

"cable joints" (numbered individually) and "joint reports" (attached to Ausgrid plans) can provide information relating to the relative position of Ausgrid assets, distance from the "property line" (in metres), and the depth of "cover" (in metres) (refer to figures 5 and 6).

Figure 6

5 Cross Section Detail Boxes

"cross section" detail boxes on the sides of an Ausgrid plan are used when there is insufficient room to display "cable" and/or "conduit" information on the Ausgrid plan.

Ausgrid plans (refer to figure 7) are bordered by numeric identifiers along the top and bottom borders and alpha identifiers along the side borders.

6 Pits

Underground **"pits"** are numbered on Ausgrid plans, positioned relative to the **"property line"** (PL), and can be found on either the footpath (nature strip) or the road (refer figure 8).

7 Proposal Areas

section" detail boxes. There are areas where underground work may have been issued for construction by Ausgrid, but details are not yet completely displayed on Ausgrid plans. In such cases a shaded "proposal area" is displayed on the Ausgrid plan, indicating underground work may have commenced in the vicinity but is not yet complete.

In some instances, cables and other assets within the shaded **"proposal area"** will be shown in a **bright magenta** colour, indicating that the proposed new work displayed within the shaded area is based on initial planning documentation (refer to figure 9).

Figure 9

In other instances, the shaded **"proposal area"** itself may be shown as a blue colour, indicating that the new work displayed within the shaded area on the Ausgrid plan is yet to include details regarding final depths and dimensioning (refer to figure 10).

NOTE: In cases where these shaded **"proposal areas"** are displayed on Ausgrid plans.

"Ausgrid's design plans showing the proposed position of its underground cables, overhead lines and structures have been prepared solely for Ausgrid's own planning use. They show the proposed position of such underground cables, overhead lines and structures as proposed at the time of planning and have not necessarily been corrected to take into account any changes to road widths, road levels, fences and buildings subsequent to proposed installation.

Actual installations may vary from proposed installations as it may be necessary to take account of unforeseen above ground or subterranean constructions. Therefore, Ausgrid does not hold out that the design plans show more than the proposed presence or absence of its underground cables, overhead lines and structures in the street and will accept no liability for inaccuracies in the information shown on such design plans from any cause whatsoever."

Any further information regarding information displayed for "proposal areas" can be obtained by contacting the Ausgrid Dial Before You Dig (DBYD) office at the number indicated on the response to your DBYD enquiry for further information.

8 Ausgrid Maps

Depending on the size of the DBYD request, the response will either be a **single map area** or **a cover sheet** and several standard maps.

8.1 Single Map Area Response

The single map area response will have a buffer area shown on the plan that should relate to the original Dial Before You Dig request.

The **map grid index box** on Ausgrid plans should be used when reading the **"joint report"** (see part 4 of this document for more detail) to accurately locate underground cables. The buffer area will display on the grid index box for single map area responses

There are two different size maps that can be produced – A3 will be issued if there are no cross sections in the area, and an A0 will be issued if there are cross sections that are required to be displayed in the detail boxes on the side.

A single map area response could include two maps in the Sydney region. Ausgrid plans are separately labelled as "**Distribution – nnnnnn**" and "**Transmission – nnnnnn**", where "**nnnnnn**" refers to the DBYD sequence number quoted. If the request does not include any Transmission assets, then only one Distribution map will be issued.

In the Hunter region, the Ausgrid plans show combined **"distribution"** and **"transmission"** voltage assets, are clearly labelled as **"Distr + Trans – nnnnnn"** where **"nnnnnn"** refers to the DBYD sequence number.

Some Hunter plans may have transmission cables in the area, when these cables are present there will be a warning printed at the top of the plan supplied: ""You are working near Transmission Cables. You must contact Ausgrid on (02) 4951 9200 at least two weeks before work commences. See Ausgrid Network Standard NS156"

8.2 Cover Sheet Response

On a response that includes a cover sheet, the buffer area will only be shown on the cover sheet and it will not appear on the standard maps. The cover sheet will indicate which standard maps have been included and provide a high-level view of the location of the underground details (Figure 12). The standard maps will have the detail of the underground assets (Figure 13).

Figure 12

A **map grid index box** has been included in the cover sheet and on the standard maps. The buffer area will only display on the grid index box on the cover sheet and not on standard maps (Figure 12 + Figure 13).

9. Shifting Land Base" on Ausgrid Distribution and Transmission Plans

In some instances, the plans supplied may indicate road or property outlines that appear to have shifted in relation to the Ausgrid assets displayed (refer to figure 14).

In such instances, always refer to the **"property line"** (in metres) and depth of **"cover"** (in metres) references displayed on the nearest relevant **"cross sections"** to obtain Ausgrid asset location information (*see* Reading Ausgrid Plans, clause 3, Cross Sections for more detail).

10. "Underground Earthing Infrastructure"

In some instances, the plans supplied may also indicate the presence of underground earthing infrastructure associated with underground and/or overhead Ausgrid assets.

The **"Earth Point"** symbol (refer to figure 15) will be shown on plans to minimize risk of disturbance or damage to any Ausgrid underground earthing infrastructure in the vicinity. Figure 15

Figure 15

11. Hazardous Cables – Specific Excavation Hazard

Certain low voltage cables are susceptible to deterioration or defects that may pose a risk of electric shock when working near them particularly in damp ground. Other low voltage cables may have an exposed conductive sheath or armour which may, under certain conditions, become energised. These cables may pose a significant risk and will be illustrated as in figures 15 and 16 below. For all work on or near Ausgrid's network where workers have been trained in Ausgrid's "Working near or around underground cables" course the work practices outlined in NS156 "Working near or around underground cables", NS199 "Safe Electrical Work on Low Voltage Underground Assets" for low voltage cables susceptible to deterioration and the Electrical Safety Rules for low voltage exposed conductive sheath or armoured cables must be adhered to. All other persons must contact Ausgrid before excavating near or accessing areas where these cables are present to arrange for appropriate precautions to be applied.

The **"star"** symbols over the cable indicates that it may be susceptible to deterioration or defects or the cable may contain an exposed conductive sheath or armour which could pose an electrical risk to workers.

Cables that are in duct lines have this symbology covered so an at-risk cable is indicated only within a cross section by a "#" appended to its cable code as illustrated below.

Ausgrid Underground Map Symbology

NOTE: Please note symbology is subject to change. This document provides underground (UG) related objects only. In cases where you are unsure of the data presented, please contact Ausgrid's DBYD for clarification *prior* to any planning/excavation works.

Ol	bject	Symbol	O	bject	Symbol	Ol	oject	Symbol
HV Cable	HV (High Voltage) 5kV-22kV	In Service Out of Service		Straight Through, Parallel Branch	-	Auxiliary Fix	Pilot Window Straight	
	TR (Transmission) 33kV – 330kV	In Service	HV UG Joint	or Tee Switchgear, End Box or		Auxiliary Joint	Through, Parallel Branch or Tee	
LV Cable (Low	Mains (Dark blue)	In Service		Transition		Auxiliary	UGOH or Pole Termination	•
Voltage)	Street Lighting	Out of Service	HV UG	Sealed end		Termination	Pilot UGOP-ADSS	
	(Green) Note: Mains	In Service	Termination	цеон		Cable Pit	Auxiliary	
	as Street Lighting (dark blue)		HV Cable	5kV-330kV		various shapes)	Transmission	
	(Light blue)	Out of Service	Repair	Straight	*		Distribution	
	Stars are used to	In Service Risk	LV UG Joint	Through, Parallel Branch,			Switch	1-3 WAY
	cables	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Tee or Service Network Box		LV Pillar	SL Pillar	+ NO SLCP
		In Service Risk	LV UG	Switchgear, End			SL Cubicle Fargo	F
	Unknown		Termination	Transition			Private	P
	Comms	In Service		Sealed end		LV Auxiliary	All Types	
Auxiliary Cable	Telco Protection	Out of Service		Pot End		Pillar		
	Fibre Optic Pilot			UGOH		LV Link Box	2 Way & 4 Way	

Ausgrid Underground Map Symbology

O	bject	Symbol
Trench	Centreline	
Conduit _	Coverage	
(Can be	(Distribution)	
various	Coverage	
shapes)	(Transmission)	
	Coverage	
	(Underbore –	
	cross hatched)	
Cross	Marker (Staple)	
Section	User Line	
Measure-		
ment Point		
Miscella-	Cable Clamp	
neous Point		
Feature	Cable Core split	
	(Trifurcation)	
	Cable Marker	
		+
	Electrolysis	
	Foint	
	End Of Pipe	
		\mathbf{Q}
	Frequency	\bigcirc
	Injection Unit	(\cup)
	Gas Charger	
	-	G
	Gas Control	
	Cabinet	
	Gas Control	
	Kiosk	
	Gas Control	
	Point	
	Gas Control	GV
	Valve	U V
	Gatic Pit lid	

O	bject	Symbol
Miscella- neous Point	Inspection Box	
Feature	Link point	
	Oil Control Valve	iði
	Oil Gauge	\mathbf{O}
	Oil Tank	
	Sniffer Box	Ū.
	Thermocouple Box	
	Transmission Cable Marker	Note and Sound St MILLSP
	Transmission Link Point	
Miscella- neous Linear Feature	All Geometries	
Map Note	Location & Text	🔆 Text about note
Dimension Feature	Placement Change	-
	Oil/Gas/ Thermocouple	
Lead Cable	Bonding	
	Electrolysis	1

	11	12	
1			
			A
			В
			С
			U
			E
			F
3			
			G
⁻ he			
n d N			
e vrk e			
ws e used			
892 1			н
19 metres			
grid	11	12	
		16	N_205121892_GMLA0_1.hpgl2

Jemena Gas Network Protection

High Pressure - Assets Affected

This information is only valid for 28 days from the date of issue

In reply to your enquiry, there are **High Pressure Gas Mains** in the vicinity of your intended work, as generally illustrated on the attached map. There may also be other mains or services at the location, as discussed in the warning below. For an explanation of the map, please see the information below and the legend attachment.

Excavation Guidelines

Prior to **any** excavations in this area, you **must** contact the High Pressure Response Coordinator to arrange a survey via:

http://mygasservices.jemena.com.au (High Pressure Works / High Pressure Standby)

Please note that a duty of care exists to ensure gas assets are not compromised or damaged. Jemena's expectation is the excavator operator holds a current Verification of Competency (VOC) or equivalent for the machine to be used near Jemena High Pressure Gas Assets.

Further standby enquiries can be directed to the High Pressure Coordinator -

E: infrastructureprotection@jemena.com.au or PH: 1300 665 380

Appointments will be coordinated with availability of a Jemena Representative to arrange a survey. For all works in the vicinity of High Pressure Gas Mains you <u>must</u> arrange for a Jemena Representative to attend and supervise all excavations. Charges may apply.

In accordance with clause 34(5) of the Gas Supply (Safety and Network Management) Regulation 2013 (NSW), you should be informed that all excavation, (including pot-holing by hand to confirm the location of pipes) should be performed in accordance with "*Work Near Underground Assets Guideline*" published in 2007 by the Work Cover Authority.

A copy of this Guideline is available at: www.safework.nsw.gov.au

Warning: The enclosed plans show the position of Jemena Gas Networks (NSW) Ltd's underground gas mains and installations in public gazetted roads only. Individual customers' services and services belonging to other third parties are not included on these plans. These plans have been prepared solely for the use of Jemena Gas Networks (NSW) Ltd and Jemena Asset Management Pty Ltd (together "Jemena") and any reliance placed on these plans by you is entirely at your own risk. The plans may show the position of underground mains and installations relative to fences, buildings etc., as they existed at the time the mains etc were installed. The plans may not have been updated to take account of any subsequent change in the location or style of those features since the time at which the plans were initially prepared. Jemena makes no warranty as to the accuracy or completeness of the enclosed plans and does not assume any duty of care to you nor any responsibility for the accuracy, adequacy, suitability or completeness of the plans or for any error, omission, lack of detail, transmission failure or corruption in the information provided. Jemena does not accept any responsibility for any loss that you or anyone else may suffer in connection with the provision of these plans, however that loss may arise (including whether or not arising from the negligence of Jemena, its employees, agents, officers or contractors). The recipient of these plans must use their own care and diligence in carrying out their works and must carry out further surveys to locate services at their work site. Persons excavating or carrying out other earthworks will be held responsible for any damage caused to Jemena's underground mains and equipment. Jemena advises that you may be required to carry out potholing by hand if required by a Jemena Representative to confirm the location of Jemena's main and installations. This must also be performed by you under the supervision of a Jemena Representative and be carried out in accordance with the Working Near Underground Assets Guideline published in 2007 by Work Cover Authority

In case of Emergency Phone 131 909 (24 hours)

Admin 1300 880 906

Dec 2020 ver2

Network Mains

 Proposed New Main (coloured as per kPa)
 Proposed Isolate (coloured as per kPa)
 Unknown kPa
 2kPa Low Pressure gas main
 7kPa Low Pressure gas main
 30kPa Medium pressure gas main
 100kPa Medium Pressure gas main
 210kPa Medium Pressure gas main
 300kPa Medium Pressure gas main
 400kPa Medium Pressure gas main
 1050kPa High Pressure gas main
 3500kPa High Pressure gas main
7000kPa High Pressure gas main
 >7000kPa Transmission pipeline
 Isolated Service - Former Med/High Pressure
 Isolated Steel Main -Treat as High Pressure

Conduit or Casing Size & Material (see conduit material codes)

Critical Main -Treat as High Pressure (Main coloured as per kPa)

Exposed Main section

- PE Plate Concrete Slab

Network Assets

\$ Siphon
Network Valve
High Pressure Main Line Valve (=>1050kPa)
High Pressure Automatic Line Break Valve (>1050kPa)
Distribution Regulator Set (=<1050kPa)
High Pressure Regulating Station (>1050kPa)

Q

	Annotations				
<u>Pipe ar</u>	Pipe and Conduit Material Codes				
NY	Nylon		NB	Nominal Bore – Cast Iron	
PE	Polyethy	lene	ST	Steel	
P/PL	Plastic (u	undefined)	C/CO	Copper	
PVC	Polyvinyl Chloride				
Pipe code combinations and dimension references					
(6)NB 50MM NY 50mm Nylon main inserted into 6 inch (Nominal Bore) Cast Iron pipe					

50MM 32MM NY 32mm Nylon main inserted into 50mm Steel pipe

- ~1.5 Distance (in metres) of main from Boundary Line (MBL)
- MBK Distance in Metres Back of Kerb
- MKL Distance in Metres from Kerb Line
- MEBL Distance in Metres from Eastern Boundary Line (North/South/West)
- MCL Distance in Metres from Centre Line of Road
- MFL Distance in Metres from Fence Line

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. The information contained on this plan is only valid for 28 days from the date of issue.

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. This plan is diagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. The information contained on this plan is only valid for 28 days from the date of issue.

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. This plan is diagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. The information contained on this plan is only valid for 28 days from the date of issue.

WARNING: This is a representation of Jemena Gas Networks underground assets only and may not indicate all assets in the area. It must not be used for the purpose of exact asset location in order to undertake any type of excavation. This plan is diagramatic only, and distances scaled from this plan may not be accurate. Please read all conditions and information on the attached information sheet. This extract is subject to those conditions. The information contained on this plan is only valid for 28 days from the date of issue.

То:	Alyson Bannister
Phone:	Not Supplied
Fax:	Not Supplied
Email:	abannister@geo-logix.com.au

Dial before you dig Job #:	30878181	
Sequence #	205121890	
Issue Date:	11/11/2021	www.1100.com.au
Location:	287 Mona Vale Road , Terrey Hills , NSW , 2084	

Information

The area of interest requested by you contains one or more assets.

nbn™ Assets	Search Results
Communications	Asset identified
Electricity	No assets

In this notice **nbn™ Facilities** means underground fibre optic, telecommunications and/or power facilities, including but not limited to cables, owned and controlled by **nbn™**

Location of **nbn™** Underground Assets

We thank you for your enquiry. In relation to your enquiry at the above address:

- nbn's records indicate that there <u>ARE</u> nbn[™] Facilities in the vicinity of the location identified above ("Location").
- nbn indicative plan/s are attached with this notice ("Indicative Plans").
- The Indicative Plan/s show general depth and alignment information only and are not an exact, scale or accurate depiction of the location, depth and alignment of **nbn™** Facilities shown on the Plan/s.
- In particular, the fact that the Indicative Plans show that a facility is installed in a straight line, or at uniform depth along its length cannot be relied upon as evidence that the facility is, in fact, installed in a straight line or at uniform depth.
- You should read the Indicative Plans in conjunction with this notice and in particular, the notes below.
- You should note that, at the present time, the Indicative Plans are likely to be more accurate in showing location of fibre optics and telecommunications cables than power cables. There may be a variation between the line depicted on the Indicative Plans and the location of any power cables. As such, consistent with the notes below, particular care must be taken by you to make your own enquiries and investigations to precisely locate any power cables and manage the risk arising from such cables accordingly.
- The information contained in the Indicative Plan/s is valid for 28 days from the date of issue set out above.You are expected to make your own inquiries and perform your own investigations (including engaging appropriately qualified plant locators, e.g DBYD Certified Locators, at your cost to locate nbn[™]

Facilities during any activities you carry out on site).

We thank you for your enquiry and appreciate your continued use of the Dial Before You Dig Service. For any enquiries related to moving assets or Planning and Design activities, please visit the **nbn** <u>Commercial Works</u> website to complete the online application form. If you are planning to excavate and require further information, please email <u>dbyd@nbnco.com.au</u> or call 1800 626 329.

Notes:

- 1. You are now aware that there are **nbn™** Facilities in the vicinity of the above property that could be damaged as a result activities carried out (or proposed to be carried out) by you in the vicinity of the Location.
- 2. You should have regard to section 474.6 and 474.7 of the *Criminal Code Act 1995* (CoA) which deals with the consequences of interfering or tampering with a telecommunications facility. Only persons authorised by **nbn** can interact with **nbn's** network facilities.
- 3. Any information provided is valid only for **28 days** from the date of issue set out above.

Referral Conditions

The following are conditions on which **nbn** provides you with the Indicative Plans. By accepting the plans, you are agreeing to these conditions. These conditions are in addition, and not in replacement of, any duties and obligations you have under applicable law.

- nbn does not accept any responsibility for any inaccuracies of its plans including the Indicative Plans. You are
 expected to make your own inquiries and perform your own investigations (including engaging appropriately qualified
 plant locators, e.g DBYD Certified Locators, at your cost to locate nbn[™] Facilities during any activities you carry out
 on site).
- 2. You acknowledge that **nbn** has specifically notified you above that the Indicative Plans are likely to be more accurate in showing location of fibre optics and telecommunications cables than power cables. There may be a variation between the line depicted on the Indicative Plans and the location of any power cables.
- 3. You should not assume that **nbn™** Facilities follow straight lines or are installed at uniformed depths along their lengths, even if they are indicated on plans provided to you. Careful onsite investigations are essential to locate the exact position of cables.
- 4. In carrying out any works in the vicinity of **nbn™** Facilities, you must maintain the following minimum clearances:
 - 300mm when laying assets inline, horizontally or vertically.
 - 500mm when operating vibrating equipment, for example: jackhammers or vibrating plates.
 - 1000mm when operating mechanical excavators.
 - Adherence to clearances as directed by other asset owner's instructions and take into account any uncertainty for power cables.
- 5. You are aware that there are inherent risks and dangers associated with carrying out work in the vicinity of underground facilities (such as nbn[™] fibre optic,copper and coaxial cables,and power cable feed to nbn[™] assets).Damage to underground electric cables may result in:
 - Injury from electric shock or severe burns, with the possibility of death.
 - Interruption of the electricity supply to wide areas of the city.
 - Damage to your excavating plant.
 - Responsibility for the cost of repairs.
- 6. You must take all reasonable precautions to avoid damaging **nbn™** Facilities. These precautions may include but not limited to the following:
 - All excavation sites should be examined for underground cables by careful hand excavation. Cable cover slabs if present must not be disturbed. Hand excavation needs to be undertaken with extreme care to minimise the likelihood of damage to the cable, for example: the blades of hand equipment should be aligned parallel to the line of the cable rather than digging across the cable.
 - If any undisclosed underground cables are located, notify **nbn** immediately.

- All personnel must be properly briefed, particularly those associated with the use of earth-moving equipment, trenching, boring and pneumatic equipment.
- The safety of the public and other workers must be ensured.
- All excavations must be undertaken in accordance with all relevant legislation and regulations.
- 7. You will be responsible for all damage to **nbn™** Facilities that are connected whether directly, or indirectly with work you carry out (or work that is carried out for you or on your behalf) at the Location. This will include, without limitation, all losses expenses incurred by **nbn** as a result of any such damage.
- 8. You must immediately report any damage to the **nbn™** network that you are/become aware of. Notification may be by telephone 1800 626 329.
- 9. Except to the extent that liability may not be capable of lawful exclusion, **nbn** and its servants and agents and the related bodies corporate of **nbn** and their servants and agents shall be under no liability whatsoever to any person for any loss or damage (including indirect or consequential loss or damage) however caused (including, without limitation, breach of contract negligence and/or breach of statute) which may be suffered or incurred from or in connection with this information sheet or any plans(including Indicative Plans) attached hereto. Except as expressly provided to the contrary in this information sheet or the attached plans(including Indicative Plans), all terms, conditions, warranties, undertakings or representations (whether expressed or implied) are excluded to the fullest extent permitted by law.

State/Territory	Documents
	Work Health and Safety Act 2011
	Work Health and Safety Regulations 2011
National	Safe Work Australia - Working in the Vicinity of Overhead and Underground Electric
	Lines (Draft)
	Occupational Health and Safety Act 1991
	Electricity Supply Act 1995
NSW	Work Cover NSW - Work Near Underground Assets Guide
	Work Cover NSW - Excavation Work: Code of Practice
VIC	Electricity Safety Act 1998
	Electricity Safety (Network Asset) Regulations 1999
QLD	Electrical Safety Act 2002
	Code of Practice for Working Near Exposed Live Parts
SA	Electricity Act 1996
TAS	Tasmanian Electricity Supply Industry Act 1995
WA	Electricity Act 1945
	Electricity Regulations 1947
NT.	Electricity Reform Act 2005
	Electricity Reform (Safety and Technical) Regulations 2005
ACT	Electricity Act 1971

All works undertaken shall be in accordance with all relevant legislations, acts and regulations applicable to the particular state or territory of the Location. The following table lists all relevant documents that shall be considered and adhered to.

Thank You,

nbn DBYD

Date: 11/11/2021

This document is provided for information purposes only. This document is subject to the information classification set out on this page. If no information classification has been included, this document must be treated as UNCLASSIFIED, SENSITIVE and must not be disclosed other than with the consent of nbn co. The recipient (including third parties) must make and rely on their own inquiries as to the currency, accuracy and completeness of the information contained herein and must not use this document other than with the consent of nbn co.

Copyright © 2021 nbn co Limited. All rights reserved.

То:	Alyson Bannister
Phone:	Not Supplied
Fax:	Not Supplied
Email:	abannister@geo-logix.com.au

Dial before you dig Job #:	30878181	
Sequence #	205121890	
Issue Date:	11/11/2021	
Location:	287 Mona Vale Road , Terrey Hills , NSW , 2084	

Indicative Plans

·+·			
34	Parcel and the location		
3	Pit with size "5"		
25	Power Pit with size "2E". Valid PIT Size: e.g. 2E, 5E, 6E, 8E, 9E, E, null.		
	Manhole		
\otimes	Pillar		
2 PO - T- 25.0m P40 - 20.0m	Cable count of trench is 2. One "Other size" PVC conduit (PO) owned by Telstra (-T-), between pits of sizes, "5" and "9" are 25.0m apart. One 40mm PVC conduit (P40) owned by NBN, between pits of sizes, "5" and "9" are 20.0m apart.		
-0 10.0m	2 Direct buried cables between pits of sizes ,"5" and "9" are 10.0m apart.		
-0	Trench containing any INSERVICE/CONSTRUCTED (Copper/RF/Fibre) cables.		
-0	Trench containing only DESIGNED/PLANNED (Copper/RF/Fibre/Power) cables.		
-00	Trench containing any INSERVICE/CONSTRUCTED (Power) cables.		
BROADWAY ST	Road and the street name "Broadway ST"		
Scale	0 20 40 60 Meters 1:2000 1 cm equals 20 m		

Emergency Contacts

You must immediately report any damage to the **nbn**[™] network that you are/become aware of. Notification may be by telephone - 1800 626 329.

Optus Contract Management Team Unit 9, 677 Springvale Road Mulgrave, Victoria, 3178

Date:11 Nov 2021To:Alyson BannisterCompany:Geo-LogixAddress:Unit 2309,4 Daydream StreetWarriewood, NSW 2102

ENQUIRY DETAILS Location: 287 Mona Vale Road, Terrey Hills, NSW 2084 Sequence No.: 205121894 DBYD Reference: 30878181

In relation to your enquiry concerning the above location, Optus advises as follows:

Optus records indicate that there ARE underground Optus FIBRE OPTIC TELECOMMUNICATIONS ASSETS in the vicinity of the above location as per the attached drawing(s).

PLEASE NOTE THAT THE ASSETS IN THIS AREA ARE OF NATIONAL SIGNIFICANCE. Any interference with these assets has the potential to significantly disrupt communications in Australia and may be considered an offence under the Criminal Code Act 1995 (Cth). Optus reserves the right to seek compensation for loss or damage to its assets including consequential loss.

This reply is valid for a period of 30 days from the date above.

IMPORTANT INFORMATION

Asset location drawings provided by Optus are reference diagrams and are provided as a guide only. The completeness of the information in these drawings cannot be guaranteed. Exact ground cover and alignments cannot be provided with any certainty as these may have altered over time. Depths of telecommunications assets vary considerably as do alignments. It is essential to identify the location of any Optus assets in the vicinity prior to engaging in any works.

All Optus assets in the vicinity of any planned works will need to be electronically located to ascertain their general location. Depending on the scope of planned works in the vicinity, the assets may also need to be physically located.

YOU <u>MUST</u> ENGAGE THE SERVICES OF ONE OF THE OPTUS ASSET ACCREDITED LOCATORS TO CARRY OUT ASSET LOCATION (REFER LIST OF ACCREDITED LOCATORS AT THE END OF THIS OPTUS RESPONSE).

Unless otherwise agreed with Optus, where an on-site asset location is required, the requestor is responsible for all costs associated with the locating service including (where required) physically exposing the Optus asset.

DUTY OF CARE

When working in the vicinity of telecommunications assets you have a legal "Duty of Care" and non-interference that must be observed.

It is your responsibility as the requesting party (as a landowner or any other party involved in the planned works) to design for minimal impact to any existing Optus asset. Optus can assist at the design stage through consultation.

It is also your, as the requesting party (or your representative's), responsibility to:

- a) Obtain location drawings (through the Dial Before You Dig process) of any existing Optus assets at a reasonable time before any planned works begin;
- b) Have an Optus Accredited Asset Locator identify the general location of the Optus asset and physically locate the asset where planned works may encroach on its alignment; and
- c) Contact Optus for further advice where requested to do so by this letter.

DAMAGE TO ANY OPTUS ASSET MUST BE REPORTED TO 1800 500 253 IMMEDIATELY

You, your head contractor and any relevant subcontractor are all responsible for any Optus asset damage as a result of planned activities in the vicinity of Optus assets.

This applies where works commence prior to obtaining Optus drawings, where there is failure to follow instructions or during any construction activities.

Optus reserves the right to seek compensation for loss or damage to its assets including consequential loss. Also, you, your head contractor and any relevant subcontractor may also be liable for prosecution under the Criminal Code Act 1995 (Cth).

ASSET RELOCATIONS

You are <u>not permitted</u> by law to relocate, alter or interfere with any Optus asset under any circumstance. Any unauthorised interference with an Optus asset may lead to prosecution under the Criminal Code Act 1995 (Cth). Enquiries relating to the relocation of Optus assets must be referred to the relevant Optus Damages and Relocations Team (refer to "FURTHER ASSISTANCE").

APPROACH DISTANCES

On receipt of Optus asset location drawings and prior to commencing any planned works near an Optus asset, engage an Optus Accredited Locator to undertake a general location of the Optus asset.

Physical location of the Optus asset by an Optus Accredited Locator will also be required where planned works are within the following approach distances of the general location of the Optus asset:

- a) In built up metropolitan areas where road and footpaths are well defined by kerbs or other features a minimum clear distance of 1 meter must be maintained from the general location of the Optus asset.
- b) In non-established or unformed metropolitan areas, a minimum <u>clear distance of 3 meters</u> must be maintained from the general location of the Optus asset.
- c) In country or rural areas where wider variations may exist between the general and actual location of an Optus asset may exist, then a minimum <u>clear distance of 5 meters</u> must be maintained from the general location of the Optus asset.

If planned works are parallel to the Optus asset, then the Optus asset must be physically located by an Optus Accredited Locator at a <u>minimum of 5 meter intervals</u> along the length of the parallel works prior to work commencing.

<u>Under no circumstances</u> is crossing of any Optus asset permitted without physical location of the asset being carried out by an Optus Accredited Locator. Depending on the asset involved an Optus representative may be required onsite.

The minimum clearances to the physical location of Optus assets for the following specific types of works must be maintained at all times.

Note: Where the clearances in the following table cannot be maintained or where the type of work differs from those listed then advice must be sought from the relevant Optus Damages and Relocations Team (refer to "FURTHER ASSISTANCE").

Type of Works	Clearance to Physical Location of Optus Asset
Jackhammers / Pneumatic Breakers	Not within 1 meter.
Light duty Vibrating Plate or Wacker Packer type compactors (not heavy road construction vibrating rollers etc.)	500mm compact clearance cover before a light duty compactor can be used over any Optus conduit. No compaction permitted over Optus direct buried cable without prior approval from Optus.
Boring Equipment (in-line, horizontal and vertical)	Not within 5 meters parallel of the Optus asset location without an Accredited Optus Asset Locator physically exposing the Optus asset and with an Optus representative onsite. Not to cross the Optus asset without an Accredited Optus Asset Locator physically exposing the Optus asset and with an Optus representative onsite.

Type of Works	Clearance to Physical Location of Optus Asset
Heavy vehicle Traffic (over 3 tonnes)	Not to be driven across Optus conduits with less than 600mm of cover. Not to be driven across Optus direct buried cable with less than 1.2 meters of
	Once off crossings permitted, multiple crossing (e.g. road construction or logging) will require Optus approval.
	Accredited Optus Asset Locator to physically expose the Optus asset to verify actual depth.
Mechanical Excavators, Farm Ploughing, Vertical Hole installation for water bore or fencing etc.	Not within 1 meter. Accredited Optus Asset Locator to physically expose the Optus asset to verify actual location.

ASSET CLEARANCES AFTER COMPLETION OF WORKS

All Optus pits and manholes must be a minimum of 1 meter from the back of any kerb, 3.5 meters of the road surface without a kerb or not within 15 meters of street intersection.

In urban areas Optus conduit must have the following minimum depth of cover:

- Footway 600mm;
- Roadway 1 meter at drain invert and at road centre crown.

In rural areas Optus conduit must have a minimum depth of cover of 1 meter and direct buried cable 1.2 meters.

In cases where it is considered that the above clearances cannot be maintained at the completion of works, advice must be sought from the relevant Optus Damages and Relocations Team (refer "Further Assistance").

FURTHER ASSISTANCE

Further assistance on asset clearances, protection works or relocation requirements can be obtained by contacting the relevant Optus Damages and Relocations Team on the following email address:

NFODamages&RelocationsDropbox@optus.com.au

Further assistance relating to asset location drawings etc. can be obtained by contacting the Optus Network Operations Asset Analysis Team on 1800 505 777.

OPTUS ENGINEERING DRAWING SYMBOLS

	Optus underground cable	\boxtimes	Optus manhole/pit
	Optus underground IOF cable		Other Utility manhole/pit
	Optus conduit	▼	Optus marker post
OR	Optus cable in Other Utility conduit	····	Railway / Tram line Highway / Maior Road
•••••	Southern Cross conduit		Arterial Road
AAAAAA	Indigo conduit		Council Road - minor
	Uecomm conduit		
x x x	Optus aerial fibre cable		
— в — в —	Optus underground cable	DW1234	Optus marker post number
— вј—— вј —	Optus cable buried jointly with third party utility	1. 3.	Depth of Optus cable Offset to Optus cable
	Optus cable in conduit		Optus cable depth (approx)

WARNING: This document is confidential and may also be privileged. Confidentiality nor privilege is not waived or destroyed by virtue of it being transmitted to an incorrect addressee. Unauthorised use of the contents is therefore strictly prohibited. Any information contained in this document that has been extracted from our records is believed to be accurate, but no responsibility is assumed for any error or omission. Optus Plans and information supplied are valid for 30 days from the date of issue. If this timeline has elapsed, please raise a new enquiry.

Sequence Number: 205121894

For all Optus DBYD plan enquiries – Email: <u>Fibre.Locations@optus.net.au</u> For urgent onsite assistance contact 1800 505 777 Optus Limited ACN 052 833 208 Date Generated: 11 Nov 2021

Optus Contract Management Team Unit 9, 677 Springvale Road Mulgrave, Victoria, 3178

Date:11 Nov 2021To:Alyson BannisterCompany:Geo-LogixAddress:Unit 2309,4 Daydream Street
Warriewood, NSW 2102

ENQUIRY DETAILS

Location: 287 Mona Vale Road, Terrey Hills, NSW 2084 Sequence No.: 205121894 DBYD Reference: 30878181

In relation to your enquiry concerning the above location, Optus advises as follows:

Optus records indicate that there ARE underground Optus FIBRE OPTIC TELECOMMUNICATIONS ASSETS in the vicinity of the above location as per the attached drawing(s).

PLEASE NOTE that any interference with these assets may be considered an offence under the Criminal Code Act 1995 (Cth). Optus reserves the right to seek compensation for loss or damage to its assets including consequential loss.

This reply is valid for a period of 30 days from the date above.

IMPORTANT INFORMATION

Asset location drawings provided by Optus are reference diagrams and are provided as a guide only. The completeness of the information in these drawings cannot be guaranteed. Exact ground cover and alignments cannot be provided with any certainty as these may have altered over time. Depths of telecommunications assets vary considerably as do alignments. It is essential to identify the location of any Optus assets in the vicinity prior to engaging in any works.

All Optus assets in the vicinity of any planned works will need to be electronically located to ascertain their general location. Depending on the scope of planned works in the vicinity, the assets may also need to be physically located.

YOU <u>MUST</u> ENGAGE THE SERVICES OF ONE OF THE OPTUS ASSET ACCREDITED LOCATORS TO CARRY OUT ASSET LOCATION (REFER LIST OF ACCREDITED LOCATORS AT THE END OF THIS OPTUS RESPONSE).

Unless otherwise agreed with Optus, where an on-site asset location is required, the requestor is responsible for all costs associated with the locating service including (where required) physically exposing the Optus asset.

DUTY OF CARE

When working in the vicinity of telecommunications assets you have a legal "Duty of Care" and non-interference that must be observed.

It is your responsibility as the requesting party (as a landowner or any other party involved in the planned works) to design for minimal impact to any existing Optus asset. Optus can assist at the design stage through consultation.

It is also your, as the requesting party (or your representative's), responsibility to:

- a) Obtain location drawings (through the Dial Before You Dig process) of any existing Optus assets at a reasonable time before any planned works begin;
- b) Have an Optus Accredited Asset Locator identify the general location of the Optus asset and physically locate the asset where planned works may encroach on its alignment; and
- c) Contact Optus for further advice where requested to do so by this letter.

DAMAGE TO ANY OPTUS ASSET MUST BE REPORTED TO 1800 500 253 IMMEDIATELY

You, your head contractor and any relevant subcontractor are all responsible for any Optus asset damage as a result of planned activities in the vicinity of Optus assets.

This applies where works commence prior to obtaining Optus drawings, where there is failure to follow instructions or during any construction activities.

Optus reserves the right to recover compensation for loss or damage to its assets including consequential loss. Also, you, your head contractor and any relevant subcontractor may also be liable for prosecution under the Criminal Code Act 1995 (Cth).

ASSET RELOCATIONS

You are <u>not permitted</u> by law to relocate, alter or interfere with any Optus asset under any circumstance. Any unauthorised interference with an Optus asset may lead to prosecution under the Criminal Code Act 1995 (Cth). Enquiries relating to the relocation of Optus assets must be referred to the relevant Optus Damages and Relocations Team (refer to "FURTHER ASSISTANCE").

APPROACH DISTANCES

On receipt of Optus asset location drawings and prior to commencing any planned works near an Optus asset, engage an Optus Accredited Locator to undertake a general location of the Optus asset.

Physical location of the Optus asset by an Optus Accredited Locator will also be required where planned works are within the following approach distances of the general location of the Optus asset:

- a) In built up metropolitan areas where road and footpaths are well defined by kerbs or other features a minimum clear distance of 1 meter must be maintained from the general location of the Optus asset.
- b) In non-established or unformed metropolitan areas, a minimum <u>clear distance of 3 meters</u> must be maintained from the general location of the Optus asset.
- c) In country or rural areas where wider variations may exist between the general and actual location of an Optus asset may exist, then a minimum <u>clear distance of 5 meters</u> must be maintained from the general location of the Optus asset.

If planned works are parallel to the Optus asset, then the Optus asset must be physically located by an Optus Accredited Locator at a <u>minimum of 5 meter intervals</u> along the length of the parallel works prior to work commencing.

<u>Under no circumstances</u> is crossing of any Optus asset permitted without physical location of the asset being carried out by an Optus Accredited Locator. Depending on the asset involved an Optus representative may be required onsite.

The minimum clearances to the physical location of Optus assets for the following specific types of works must be maintained at all times.

Note: Where the clearances in the following table cannot be maintained or where the type of work differs from those listed then advice must be sought from the relevant Optus Damages and Relocations Team (refer to "FURTHER ASSISTANCE").

Type of Works	Clearance to Physical Location of Optus Asset
Jackhammers / Pneumatic Breakers	Not within 1 meter.
Light duty Vibrating Plate or Wacker Packer type compactors (not heavy road construction vibrating rollers etc.)	500mm compact clearance cover before a light duty compactor can be used over any Optus conduit. No compaction permitted over Optus direct buried cable without prior approval from Optus.
Boring Equipment (in-line, horizontal and vertical)	Not within 5 meters parallel of the Optus asset location without an Accredited Optus Asset Locator physically exposing the Optus asset and with an Optus representative onsite. Not to cross the Optus asset without an Accredited Optus Asset Locator physically exposing the Optus asset and with an Optus representative onsite.

Type of Works	Clearance to Physical Location of Optus Asset
Heavy vehicle Traffic (over 3 tonnes)	Not to be driven across Optus conduits with less than 600mm of cover. Not to be driven across Optus direct buried cable with less than 1.2 meters of cover. Once off crossings permitted, multiple crossing (e.g. road construction or logging) will
	require Optus approval. Accredited Optus Asset Locator to physically expose the Optus asset to verify actual depth.
Mechanical Excavators, Farm Ploughing, Vertical Hole installation for water bore or fencing etc.	Not within 1 meter. Accredited Optus Asset Locator to physically expose the Optus asset to verify actual location.

ASSET CLEARANCES AFTER COMPLETION OF WORKS

All Optus pits and manholes must be a minimum of 1 meter from the back of any kerb, 3.5 meters of the road surface without a kerb or not within 15 meters of street intersection.

In urban areas Optus conduit must have the following minimum depth of cover:

- Footway 600mm;
- Roadway 1 meter at drain invert and at road centre crown.

In rural areas Optus conduit must have a minimum depth of cover of 1 meter and direct buried cable 1.2 meters.

In cases where it is considered that the above clearances cannot be maintained at the completion of works, advice must be sought from the relevant Optus Damages and Relocations Team (refer "Further Assistance").

FURTHER ASSISTANCE

Further assistance on asset clearances, protection works or relocation requirements can be obtained by contacting the relevant Optus Damages and Relocations Team on the following email address:

NFODamages&RelocationsDropbox@optus.com.au

Further assistance relating to asset location drawings etc. can be obtained by contacting the Optus Network Operations Asset Analysis Team on 1800 505 777.

OPTUS ENGINEERING DRAWING SYMBOLS

WARNING: This document is confidential and may also be privileged. Confidentiality nor privilege is not waived or destroyed by virtue of it being transmitted to an incorrect addressee. Unauthorised use of the contents is therefore strictly prohibited. Any information contained in this document that has been extracted from our records is believed to be accurate, but no responsibility is assumed for any error or omission. Optus Plans and information supplied are valid for 30 days from the date of issue. If this timeline has elapsed, please raise a new enquiry.

Sequence Number: 205121894

For all Optus DBYD plan enquiries – Email: <u>Fibre.Locations@optus.net.au</u> For urgent onsite assistance contact 1800 505 777 Optus Limited ACN 052 833 208 Date Generated: 11 Nov 2021

Guide to reading Sydney Water DBYD Plans

This guide will help you understand our plans and what our services are.

Symbol	Meaning	Symbol	Meaning
225 PVC	Sewer main with flow arrow and size type text.	- FOI	Sewer vertical
	Disuses sewer main This means the sewer has been disused but remains in the ground.	 SP0882	Sewer pumping station
1.7	Sewer maintenance hole with upstream depth invert.		
	Sewer Sub-surface chamber		Pressure sewer main These are also found in Vacuum sewer areas.
-	Sewer Maintenance hole with overflow chamber	₫•	Pressure sewer Pump unit Alarm, electrical cable and pump unit.
	Sewer Ventshaft EDUCT		Pressure sewer property valve boundary assembly
	Sewer Ventshaft IDUCT	— ×—	Pressure sewer stop valve
10.6	Sewer property connection point With chainage to downstream maintenance hole.		Pressure sewer reducer / taper
Concrete Encound	Sewer concrete encased section	®	Pressure sewer flushing point
	Sewer Rehabilitation		Vacuum sewer division valve
тиs ———©	Sewer terminal maintenance shaft	ф	Vacuum sewer vacuum chamber
%	Sewer maintenance shaft	<u> </u>	Vacuum sewer clean out pot
•**	Sewer rodding point		Stormwater pipe
	Sewer lamphole		Stormwater channel

Symbol	Meaning	Symbol	Meaning
	Stormwater gully		Potable water stop valves with Tapers
	Stormwater maintenance hole		Potable water closed stop valve
200 PVC	Watermain – potable drinking water With size type text.		
	Disconnected watermain potable drinking water This means the watermain has been disused but remains in the ground.		Potable water air valve
	Recycled watermain	—2 —	Potable water valve
	Special supply conditions – potable drinking water	<u>&</u>	Potable water scour
	Special supply conditions – recycled water		Potable water reducer / taper
	Restrained joints – Potable drinking water	→ ←	Potable water vertical bends
	Sewer concrete encased section		Potable water reservoir
	Restrained joints – Potable drinking water		Recycled water is shown as per potable above. Colour as indicated
	Potable water hydrant	<u> </u>	Private potable water main
	Potable water maintenance hole		Private recycled water main
×	Potable water stop valve		Private sewer main
<u> </u>	Potable water stop valve with By- pass		

Further Information

Please consult the Dial Before You Dig enquiries page on our website.

For general enquiries please call the Customer Contact Centre on 132 092

In an emergency, or to notify Sydney Water of damage or threats to its structures, call 13 20 90 (24 hours, 7 days)

DBYD Address: 287 Mona Vale Road Terrey Hills NSW 2084	DBYD Job No: 30878181 DBYD Sequence No: 205121895	Copyright Reserved Sydney Water 2021 No warranty is given that the information shown is complete or accurate. SYDNEY WATER CORPORATION	Scale: 1:1500 Date of Production: 11/11/
		Convicts Descend Outloan Write 2004	
		succe	
		NOW VALE	
¢			
		the state of the s	
* 0 . 10	\$ 5 7		stor.
	and the second sec		

LEGEND

IT'S HOW WE CONNECT

For more info contact a Certified Locating Organisation or Telstra Plan Services 1800 653 935

WARNING: Telstra plans and location information conform to Quality Level 'D' of the Australian Standard AS 5488 -Classification of Subsurface Utility Information. As such, Telstra supplied location information is indicative only. Spatial accuracy is not applicable to Quality Level D. Refer to AS 5488 for further details. Telstra does not warrant or

245.0

(C100) along

hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans. FURTHER ON SITE INVESTIGATION IS REQUIRED TO VALIDATE THE EXACT LOCATION OF TELSTRA PLANT PRIOR TO COMMENCING CONSTRUCTION WORK. A plant location service is an essential part of the process to validate the exact location of Telstra assets and to ensure the asset is protected during construction works. The exact position of Telstra assets can only be validated by physically exposing it. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

Telstra Map Legend v3_3

TELSTRA CORPORATION ACN 051 775 556

		0m 10m 20m 30m 40m 50m 60m 70m				
Telstra	For all Telstra DBYD plan enquiries -	Sequence Number: 205121891				
U ersti u	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present in plot area. Please read the Duty of Care and				
TELSTRA C	ORPORATION LIMITED A.C.N. 051 775 556					
Gene	erated On 11/11/2021 11:02:25	any assistance.				

The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

Telstra	For all Telstra DBYD plan enquiries -	Sequence Number: 205121891				
	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present in plot area. Please read the Duty of Care and				
TELSTRA C	ORPORATION LIMITED A.C.N. 051 775 556					
Gene	erated On 11/11/2021 11:02:27	anv assistance.				

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

ATTACHMENT C

Project Number:	2201064
Hole Depth:	1.20 m
Date Started:	07/09/2022
Date Completed:	07/09/2022

Project Name:	Detailed Site Investigation			
Location / Site:	287 Mona Vale Road, Terrey Hills NSW			
Client:	Hills Marketplace Pty Ltd			
Contractor:	Terratest Pty Ltd			
Method:	Hand Auger			

Mathod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material D	escription		Moisture	Observations / Comments
		0.10	D	z	HA1/0.0-0.2		F		FILL- reddish brown / moderat	e brown (5YR 4/4), mpacted.	40%	moist	
		-		z			F		FILL- yellowish brown / moder 5/4), 20% clay, 80% sand, mod	ate yellowish brown derately compacted	i (10YR I.	moist	
		0.35					┝		FILL- brownish yellow / dark ye	ellowish orange (10	YR 6/6),	moist	
		0.5	D	Z	HA1/0.4-0.5	Ē	_		20% clay, 80% sand, moderate excavated natural material.	ely compacted, virgi	in		
Ē		È											
		0.80	D	Z	HA1/0.7-0.8		┝		FILL- brownish yellow / dark ye	ellowish orange (10)	YR 6/6)	wet	
		- 1.00					F		and light red (5R 6/6), 20% cla moderately compacted, sandst	y, 40% sand, 40% one fragments.	gravel,		
		ŀ	D	Z	HA1/1.0-1.1	Natural	sc		Clayey SAND- light grey (N7), medium dense.	20% clay, 80% sar	nd,	moist	
ne		-						<u> </u>	Terminated at 1.200 m				
ad.com.a		-											
w.reum:		-											
ite at ww		-											
aurie wh		F											
awn by li		2.0											
PM - dra		L											
3:49:25		-											
0/12/22													
GDT 10		ŀ											
3PJ GL		-											
HILLS.(Abbre	viation arbon C	S: dour	Sar	nple Type Strer	ngth T	estina			Abandonment Method	: Backfill with	soil and cor	npact.
ERREY	H Hig M Me L Lov	h dium v		D U B	Disturbed SPT Undisturbed DCP Bulk PP	Star Dyn Poo	ndard P Iamic C ket Pen	enetration one Penet etrometer	i Test trometer	Auditional Comments:			
01064 T	∠ Zer	0		R C J	Kepresentative Continuous Jar	er Lev Enc	els countere	d Ground	water				
2022 22				ASL		Stal	bilised (Groundwat	ter				
3LLOG2	Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au			Logged By: Checked By:	Kiran Baby / Thara Polas	Thara Pol	assery Date: 07/09/2022 Date: 12/10/2022						

2201064	Project Number:
0.90 m	Hole Depth:
07/09/2022	Date Started:
07/09/2022	Date Completed:

Project Name:	Detailed Site Investigation			
Location / Site:	287 Mona Vale Road, Terrey Hills NSW			
Client:	Hills Marketplace Pty Ltd			
Contractor:	Terratest Pty Ltd			
Method:	Hand Auger			

Mothod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material D	escription		Moisture	Observations / Comments
		0.20		z			F		FILL- reddish brown / moderat clay, 60% sand, 20% gravel, r	e brown (5YR 4/4), noderately compact	, 20% ted.	damp	
		0.20	D	z	HA2/0.2-0.3	Fill	F		FILL- pinkish white / greyish o clay, 80% sand, moderately co	range pink (10R 8/2 ompacted.	2), 20%	damp	
ŝ		0.5		z			F		FILL- light reddish brown / ligh clay, 60% sand, 80% gravel, r	nt brown (5YR 6/4), noderately compact	10% ted.	damp	
		<u>0.70</u>	D	z	HA2/0.7-0.8				20% sand, 80% gravel, ironsto	one layers.			
		_							Terminated at 0.900 m				
		<u>1</u> .0							Refusal in ironstone.				
		-											
.com.au		_											
reumad		<u>1</u> .5											
at www		_											
rie white		-											
'n by lau		2.0											
M - draw		-											
49:26 PI		_											
12/22 3:		-											
DT 10/													
PJ GL.G		-											
	Abbre	viation	s:							Abandonment Method	d: Backfill with	n soil and cor	npact.
2201064 TERREY HI	Hydrod H Hig M Me L Lov Z Zei	carbon C gh dium w ro	ldour	Sar D U B R C J Ast	mple Type Strem Disturbed SPT Undisturbed DCP Bulk PP Representative Wate Continuous V Jar V O Asbestos V	ngth T Star Dyn Poc r Leve Enc Stat	esting ndard P amic C ket Pen els ountere bilised C	enetration one Penel etrometer d Ground Groundwa) Test trometer vater ter	Additional Comments			
DG2022	b.f	: 1 1	N		Log Drawn	n By:	La	urie V	Vhite	Logged By:	Kiran Baby	/ Thara Pol	assery Date: 07/09/2022
J 1	Contact: laurie.white@reumad.com.au			Checked By: Thara Polassery Date: 12/10/2022									

2201064	Project Number:
0.80 m	Hole Depth:
07/09/2022	Date Started:
07/09/2022	Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Hand Auger

1	Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description		Moisture	Observations / Comments
				D	z	HA3/0.0-0.25		F		FILL- medium grey (N5), 20% clay, 809 compacted.	6 sand, moderately d	lamp	
4	HA	-	0.25	D	z	HA3/0.25-0.45	E	F		FILL- yellowish red / light brown (5YR 5 10% sand, 10% gravel, moderately con FILL- medium dark grey (N4), 10% clay moderately compacted	/6), 80% clay,d. pactedn , 90% sand,	lamp noist	
	Z	⊻	<u>0.60</u>		7					reddish brown / moderate brown (5YR 4 gravel, dense, gravel layers.	/4), 30% sand, 70%	wet	
				U	۷	HA3/0.7-0.0				Terminated at 0.800 m Refusal.			
		_											
Imad.com.au		-	- - _ <u>1</u> .5										
lite at www.reu		-											
n by laurie wh		-											
::27 PM - draw		-											
10/12/22 3:49		-	- 										
PJ GL.GDT		-											
2 2201064 TERREY HILLS.GI	Image: Construction of Column 2 Sample Type Strength Testing Abandonment Method: Backfill with soil and compact. Abbreviations: Hydrocarbon Odour Sample Type Strength Testing Additional Comments: H High D Disturbed SPT Standard Penetration Test Additional Comments: H High D Disturbed SPT Standard Penetration Test Additional Comments: L L.ow B Bulk PP Pocket Penetrometer Z Zero R Representative Water Levels C Continuous Fencountered Groundwater Facoundwater J Jar Asb Asbestos Stabilised Groundwater									pact.			
GLLOG202.	Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au						: La lau	urie W ırie.wł	/hite Log hite@reumad.com.au Chec	ged By: Kiran Baby ked By: Thara Polassery	у	Date: 07/09/2022 Date: 12/10/2022	

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

2201064	Project Number:
1.40 m	Hole Depth:
07/09/2022	Date Started:
07/09/2022	Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Hand Auger

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
Lau HA Method	Water Lev	BE) H1490 	D D Sample Ti	Z Z Z	HA4/0.1-0.4 DS1, TS1 HA4/1.1-1.2 HA4/1.2-1.3	Fill Material T	F F F	Graphic Li	FILL- medium light grey (N6), 25% clay, 75% sand, moderately compacted. FILL- light grey (N7), 30% clay, 70% sand, poorly compacted. FILL- light grey (N7) and light red / moderate reddish orange (10R 6/6), 20% clay, 70% sand, 10% gravel, moderately compacted. FILL- brownish black (5YR 2/1), 20% clay, 50% sand,	damp damp moist damp	Observations / Comments
1064 TERREY HILLS.GPJ GL.GDT 10/12/22 3:49:28 PM- drawn by laurie white at www.reumad.com.r	Abbree High Meessawa Zerr	1.5 2.0 	s:	Sar D U B R C J	mple Type Stren Disturbed SPT Undisturbed DCP Bulk PP Representative Wate Continuous Jar ✓	gth To Star Dyn Poc Fnce	esting Indard P amic C ket Pen	enetration one Penetration d Ground	Abandonment Method: Backfir Test romeler water	with soil and co	mpact.
Asb Asbestos 🔮 Stabilised Groundwater Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au Checked By: Thara Polassery Date: 12/10/2022							Date: 07/09/2022 Date: 12/10/2022				

2201064	Project Number:
1.40 m	Hole Depth:
07/09/2022	Date Started:
07/09/2022	Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Hand Auger

	Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material D	escription	Moisture	Observations / Comments
		-	<u>0</u> .5	D	Z	HA5/0.2-0.3	Fil	F		FILL- medium dark grey (N4), moderately compacted.	30% clay, 70% sand,	damp	
	НА	_ _ _ 1	0.60 1.00	D	Z	HA5/0.7-0.8		F		FILL- light grey (N7), 20% clay moderately compacted, sands	/, 60% sand, 20% gravel, one fragments.	damp	Crushed brick.
com.au		-		D	Z	HA5/1.2-1.4	Natural	sc		Clayey SAND- dark grey / bro clay, 80% sand, medium dens	wnish grey (5YR 4/1), 20% e.	moist	
ie white at www.reumad.			<u>1</u> .5							Terminated at 1.400 m			
19:29 PM - drawn by Iau		-	<u>2</u> .0										
J GL.GDT 10/12/22 3:4		-	<u>2</u> .5										
2 2201064 TERREY HILLS.GP	Abbreviations: Hudrocarbon Odour Sample Type Strength Testing H High D Disturbed SPT L Low B Bulk PP Z Zero R Representative J Jar Encountered Groundwater Ababestos X						npact.						
GLLOG202	Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au						: La : lau	urie W urie.wł	/hite hite@reumad.com.au	Logged By: Kiran Bab Checked By: Thara Pola	/ assery	Date: 07/09/2022 Date: 12/10/2022	

2201064	Project Number:
1.40 m	Hole Depth:
07/09/2022	Date Started:
07/09/2022	Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	Hand Auger

Mothod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material D	escription	Moisture	Observations / Comments
		-		z			F		FILL- light grey (N7), 30% clay compacted.	/, 70% sand, poorly	damp	
¢ I	5	- - 1.00	D	Z	HA6/0.5-0.6	li	F		FILL- medium dark grey (N4), gravel, moderately compacted	30% clay, 60% sand, 10%	damp	
om.au		_	D	Z	HA6/1.0-1.2	Natural	sc		Clayey SAND- brownish yello (10YR 6/6), 20% clay, 80% sa	w / dark yellowish orange nd, medium dense.	damp	
by laurie white at www.reumad.c		 2.0							Terminated at 1.400 m			
0/12/22 3:49:31 PM - drawr		- - 2.5										
S.GPJ GL.GDT 1		-										
2201064 TERREY HILL	Abbreviations: Hydrocarbon Odour Sample Type Strength Testing Hydrocarbon Odour D Disturbed SPT Standard Penetration Test M Medium U Undisturbed DCP Dynamic Cone Penetrometer L Low B Bulk PP Pocket Penetrometer Z Zero R Representative Water Levels J Jar V Encountered Groundwater Asb Asbestos V Stabilised Groundwater				n Test trometer r water ter	Abandonment Method: Backfill w Additional Comments:	ith soil and cor	npact.				
SLLOG202	Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au						: La : lau	urie W ırie.wł	/hite nite@reumad.com.au	Logged By: Kiran Bab Checked By: Thara Pole	/ assery	Date: 07/09/2022 Date: 12/10/2022

2201064

3.00 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd** Method:

	Method Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Observations / Comments
-		0.03 0.20 0.40 0.5 0.65 - 0.80 - 1.0	D	z z z z z	BH7/0.4-0.5 BH7/0.8-0.9	III	F F F		BITUMEN. FILL- dark reddish brown / greyish brown (5YR 3/2), 10% clay, sand, 60% gravel, well compacted. FILL- dusky brown (5YR 2/2), 10% clay, 40% sand, 50% gravel compacted. FILL- red / moderate reddish brown (10R 4/6), 60% sand, 40% gravel, moderately compacted. FILL- medium grey (N5), 20% sand, 80% gravel, moderately compacted. FILL- yellowish brown / moderate yellowish brown (10YR 5/4), 1 clay, 60% sand, 30% gravel, moderately compacted.	30% , well 1, well
		- - - <u>1.50</u>	D	z	BH7/1.8-1.2		F		Clavey SAND- medium light grey (N6) 30% clay 70% sand	
² M - drawn by laurie white at www.reumad.com.au		- - - - - - - - - - - - - - - - - - -	D	Z	BH7/2.5-2.6	Natural	sc		medium dense.	
S.GPJ GL.GDT 10/12/22 3:49:32 F		 						- <i>/- X</i> -	Terminated at 3.000 m	
22 2201064 TERREY HILL	Abbre Hydro H Hii M Me L Lo Z Ze	eviation ccarbon C gh edium w ero	IS: Ddour	Sar D U B R C J Ast	mple Type Strem Disturbed SPT Undisturbed DCP Bulk PP Representative Wate Continuous Jar D Asbestos Y	ngth T Star Dyn Poc r Leve Enc Stat	esting ndard F amic C ket Per els countere bilised	Penetratior Cone Pene netrometer ed Ground Groundwa	Abandonment Method: Backfill with s Additional Comments: ometer vater er	soil and compact.
3LLOG20	Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au						: La : la	aurie V urie.wl	'hite Logged By: Kiran Baby ite@reumad.com.au Checked By: Thara Polasse	Date: ery Date: 12/10/2022

• geotech Geo-Li Building (Unit 2305 Warriewo

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au Project Number: Hole Depth: Date Started:

Date Completed:

2201064 1.20 m

 Project Name:
 Detailed Site Investigation

 Location / Site:
 287 Mona Vale Road, Terrey Hills NSW

 Client:
 Hills Marketplace Pty Ltd

 Contractor:
 Terratest Pty Ltd

 Method:
 Method:

USCS Symbol Depth (mBGL Material Type Sample Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Method Sample 0.03 BITUMEN Ζ F FILL- medium dark grey (N4), 10% clay, 30% sand, 60% gravel, well compacted. 0.20 FILL- very pale brown / greyish orange (10YR 7/4), 10% clay, 60% sand, 30% gravel, well compacted. Ē F D Ζ BH8/0.3-0.5 0.50 Clayey SAND- yellow / pale yellowish orange (10YR 8/6) and red / moderate reddish brown (10R 4/6), 30% clay, 60% sand, 10% gravel, medium dense, ironstone gravel. Natural SC 1.0 D Ζ BH8/1.0-1.2 Terminated at 1.200 m 10/12/22 3:49:33 PM - drawn by laurie white at www.reumad.com.au 1.5 2.0 2.5 GDT G 2201064 TERREY HILLS.GPJ Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hydrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇ Encountered Groundwater J Jar Asb Asbestos V Stabilised Groundwater

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd** Method:

USCS Symbol Depth (mBGL) Sample Type Material Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Method Moisture Sample CONCRETE. g 0.30 FILL- light brownish grey / pale yellowish brown (10YR 6/2), 10% clay, 50% sand, 40% gravel, well compacted. Ζ Ē F D BH9/0.3-0.6 0.5 0.60 **CLAY with Sand-** very pale brown / greyish orange (10YR 7/4), 70% clay, 30% sand, medium plasticity, stiff. damp Natural D BH9/0.8-1.0 Ζ CL 1.0 Terminated at 1.200 m 10/12/22 3:49:34 PM - drawn by laurie white at www.reumad.com.au 1.5 2.0 2.5 GDT Ŀ G 2201064 TERREY HILLS.GPJ Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hvdrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇ Encountered Groundwater J Jar Asb Asbestos V Stabilised Groundwater L0G2022

2201064

2.40 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd**

Method:

No Image: Solution of the solution of		Wethod Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
Image: Section of the section of th												
Image: Section of the section of th	ł	3	0.03		z			F	\otimes	CONCRETE.	damp	
Image: Section 1 Image: Section 2 BH100.3-0.6 Image: Section 2 F Image: Section 2 Sec									\bigotimes	FILL- medium grey (N5), 10% clay, 30% sand, 60% gravel, well compacted.	damp	
Image: Section 1 Image: Section 1 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>\bigotimes</td><td>FILL- reddish brown / moderate brown (5YR 4/4), 10%</td><td></td><td></td></td<>			-						\bigotimes	FILL- reddish brown / moderate brown (5YR 4/4), 10%		
Image: Section 1000 - 1.0 F FILL-yellow/ pale yellowish crange (10VR 8/6), 10% day, damp Image: Section 1000 - 1.0 F FILL-yellow/ pale yellowish crange (10VR 8/6), 10% day, damp damp Image: Section 1000 - 1.0 F FILL-yellow/ pale yellowish crange (10VR 8/6), 10% day, damp damp Image: Section 1000 - 1.0 F FILL-yellow/ pale yellowish crange (10VR 8/6), 10% day, damp damp Image: Section 1000 - 1.0 F FILL-yellow/ pale yellowish crange (10VR 8/6), 10% day, 80% sand, damp damp Image: Section 1000 - 1.0 F FILL-yellow/ pale yellowish crange (10VR 8/6), 10% day, 80% sand, damp damp Image: Section 1000 - 1.0 F FILL-medium light gray (N6), 20% day, 80% sand, damp damp Image: Section 1000 - 1.0 F FILL-medium light gray (N6), 20% day, 80% sand, damp damp Image: Section 1000 - 1.0 F FILL-medium light gray (N6), 20% day, 80% sand, damp damp Image: Section 1000 - 1.0 F F FILL-medium light gray (N6), 20% day, 80% sand, damp damp Image: Section 1000 - 1.0 F F F F F F Image: Section 1000 - 1.0 F F F F F F			-						\bigotimes	clay, 60% sand, 30% gravel, well compacted.		
Image: Provide of the second secon			-	_	_			F	\bigotimes			
Image: Section of the secting of the secting of t			0.5	D	Ζ	BH10/0.3-0.6			\bigotimes			
Image: Section of the section of th			-						\bigotimes			
Image: Second			0.75						\bigotimes			
Image: Part of the second constraints Image: Part of the second constraints Better Part of the second constraints Better Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constraints Image: Part of the second constrate Image: Part of the second con			-				Ē		XX	FILL- yellow / pale yellowish orange (10YR 8/6), 10% clay,	damp	
Image: Degree of the second			_						\bigotimes	80% sand, 10% gravel, moderately compacted.		
Image: Section of the section of th			<u>1</u> .0	D	Z	BH10/0.9-1.0		F	\bigotimes			
Image: Section of the section of th									\bigotimes			
Image: Section of the section of th			1.20						\bigotimes			
Image: Section of the section of th									\bigotimes	FILL- medium light grey (N6), 20% clay, 80% sand,	damp	
1 1 2 BH10/1.3.1.5 1 <	m.au		_	_	_			F	\bigotimes	moderately compacted.		
Image: Description of the second s	ad.co		-	D	Z	BH10/1.3-1.5			\bigotimes			
1 1	reum		1.50						<i>77</i> ,	Clayey SAND- brownish yellow / dark yellowish orange	damp	
Image: Section of the sectin of the section of the section of the section of the	www		_							(10YR 6/6), 10% clay, 90% sand, medium dense.		
Image: Section of the section of th	te at		-									
Image: Section 1000 1000 1000 1000 1000 1000 1000 10	e whi		-									
Abbreviations: Providence Strength Testing Hydrocaton Cdour Strength Testing Strength Testing Hydrocaton Cdour B Bukk Strength Testing M Medium D Disturbed Strength Testing L Down B Bukk Strength Testing M Medium D Disturbed Strength Testing M Medium D Disturbed Strength Testing Provide Tenseronative Strength Testing M Medium D Disturbed L Down R. Representative Provide Tenseronative Provide Tenseronative Strength Testing Strength Testing Strength Testing Strength Testing Strength Testing Strength Testing Provide Tenseronative Provide Tenseronative Very Lown R. Representative Stables d Groundwater Stables d Groundwater Stables d Groundwater Stables d Groundwater Stables d Groundwater Stables d Groundwater	lauri		-					SC				
Image: Structure of the st	(d nv		2.0				-					
Abbreviations: Image: Strength Testing Terminated at 2.400 m Abbreviations: Image: Strength Testing Abandonment Method: Backfill with soil and compact. Additional Comments: Image: Strength Testing Strength Testing Abandonment Method: Backfill with soil and compact. M Medium U U U U U Distributed DP Y Zero R Representiones: Mittage: Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Jar Jar Jar Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Additional Comments:	- drav		-	D	Z	BH10/2.0-2.2	atura		//			
Image: Second Upper Contract Abandonment Method: Backfill with soil and compact. Abbreviations: High Image: Second Upper Contract Second Upper Contract Second Upper Contract Abandonment Method: Backfill with soil and compact. High Image: Disturbed Second Upper Contract Second Upper Contract Second Upper Contract Additional Comments: Image: Disturbed Image: Disturbed Upper Contract Second Upper Contract Second Upper Contract Second Upper Contract Additional Comments: Image: Disturbed Image: Disturbed Upper Contract Image: Disturbed Upper Contract Second Upper Contract Second Upper Contract Second Upper Contract Second Upper Contract Date: Image: Disturbed Contract Image: Disturbed Upper Contract Image: Disturbed Upper Contract Date:	PM		_				z					
Abbreviations: Hydrocarbon Odour Strength Testing Abandonment Method: Backfill with soil and compact. Abbreviations: Hydrocarbon Odour Strength Testing Abandonment Method: Backfill with soil and compact. H High D Disturbed Strength Testing Abandonment Method: Backfill with soil and compact. Additional Comments: D Disturbed Strength Testing Abandonment Method: Backfill with soil and compact. Additional Comments: D Disturbed Disturbed Disturbed Disturbed J Jar Ab Abdeormeter PP Ponotel Penetrometer PP Ponotel Penetrometer Viate Levels Encountered Groundwater Encountered Groundwater Encountered Groundwater Encountered Groundwater Viate Levels Encountered Groundwater Encountered Groundwater Encountered Groundwater Encountered Groundwater Encountered Groundwater Viate Levels Encountered Groundwater Encountered Groundwater Encountered Groundwater Encountered Groundwater Encountered Groundwater Viate Levels Encountered Groundwater Encountered Groundwater Encountered Groundwater Encountered Groundwater	49:35		-									
Image: Second	22 3								////	T		
Abbreviations: Abbreviations: Abbreviations: Abbreviations: H High D Disturbed D Standard Penetration Test Abandonment Method: Backfill with soil and compact. M Medium D Disturbed U Undisturbed Bark SPT Standard Penetration Test Abandonment Method: Backfill with soil and compact. M Medium D Disturbed U Undisturbed PP Poket Penetrometer PP Poket Penetrometer Mater Levels V Log Drawn By: Laurie White Contact: Laurie White Logged By: Kiran Baby Date: Checked By: Thate Penetorenet Date: Date: Date: Date:	10/12/		2.5							rerminated at 2.400 m		
Abbreviations: Hydrocarbon Odour Sample Type Strength Testing Abbandonment Method: Backfill with soil and compact. H High D Disturbed SPT Stradard Penetration Test Additional Comments: L Low B Bulk Or Pocket Penetrometer Procet Penetrometer Procet Penetrometer Y Zero R Representative Procet Penetrometer Procet Penetrometer Y Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Y Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater	μ		-									
Abbreviations: Hydrocarbon Odour Sample Type Strength Testing Abandonment Method: Backfill with soil and compact. H High D Disturbed DP Disturbed DP Disturbed L Low B Bulk DP Pocket Penetrometer PP Pocket Penetrometer Viater Levels C Continuous Jar Encountered Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Date: Date: Contact: Laurie White Logged By: Kiran Baby Date:	GL.G		Ļ									
Abbreviations: Abandonment Method: Backfill with soil and compact. H High D Disturbed SPT Standard Penetration Test L Low B Bulk PP Poket Penetrometer Var Vertex Encountered Groundwater J Jar Abandon water Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Operation Logged By: Kiran Baby Date: Contract: Laurie White @resumed com au Contact: Logged By: Kiran Baby Date:	Ъ											
Hydrocarbon Odour H High M Medium Sample Type D Disturbed Strength Testing D Disturbed Additional Comments: V M Medium D Disturbed SPT Standard Penetration Test Additional Comments: V V M Medium D Undisturbed DP Pocket Penetrometer P V Z Zero R Representative D J Jar P Pocket Penetrometer Vater Levels V C Continuous J Jar V Encountered Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Date: Contact: Laurie White Logged By: Kiran Baby Date: Contact: Laurie white@(reumad.com.au Checked By: Tara Polescopy Date:	-S-I	Abbrev	viation	s:						Abandonment Method: Backfill wit	h soil and cor	npact.
M Medium U U Undisturded DCP Dynamic Cone Penetrometer V L Low B Bulk PP Pocket Penetrometer V Z Zero R Representative C Continuous J Jar PP Pocket Penetrometer V Jar Asb Asbestos P Fnountered Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater V Log Drawn By: Laurie White Logged By: Kiran Baby Date: Contact: Jaurie white@(reumad.com.au Checked By: Tara Pelaescony Date:	ЕΥН	Hydroca H High	arbon O	dour	Sa D	mple Type Strer Disturbed SPT	n gth T Star	esting ndard P	enetratior	Test Additional Comments:		
2 Zero K kepresentative C. Continuous Asb Asbestos Water Levels Discussion of the content of t	'ERR	M Mec	lium		UB	Undisturbed DCP Bulk PP	Dyn Poc	amic C ket Pen	one Penei etrometer	rometer		
Asb Asbestos Asb Asbestos Stabilised Groundwater Logged By: Kiran Baby Contact: Laurie White Contact: Laurie white/@reumad.com.au Contact: Laurie white/@reumad.com.au Contact: Laurie white/@reumad.com.au Contact: Laurie white/@reumad.com.au	064 T	Z Zero R Representative Water Levels C Continuous Continuous										
Log Drawn By: Laurie White Logged By: Kiran Baby Date:	2201				J Ast	Asbestos $\overline{\underline{v}}$	Stat	oilised (Groundwa	ler		
Bog Drawn By: Laurie White Logged By: Kiran Baby Date: Contact: Laurie white@reumad.com.au Checked By: Thara Polasconv Date:	2022									Γ		
	TOG	R	U	M	A	Log Drawr	n By:	: La	urie W	/hite Logged By: Kiran Baby		Date:

2201064

2.40 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method [.]	

Continuous

J Jar Asb Asbestos

 ∇

▼

Encountered Groundwater

Stabilised Groundwater

USCS Symbol Depth (mBGL Material Type Sample Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Moisture Method Sample N . . CONCRETE. ö 0.15 FILL- dark greyish brown / dark yellowish brown (10YR damp 4/2) and red / moderate reddish brown (10R 4/6), 10% clay, 50% sand, 40% gravel, well compacted. F Ζ D BH11/0.3-0.6 0.5 Ē 0.70 FILL- medium grey (N5), 10% clay, 50% sand, 40% damp gravel, moderately compacted, ironstone gravel. F 1.0 1.10 D Ζ BH11/1.0-1.2 IRONSTONE- red / moderate reddish brown (10R 4/6). Ē ĴÊ 3:49:37 PM - drawn by laurie white at www.reumad.com.au BH11/1.4-1.5 D Ζ 1.50 Clayey SAND- light red / moderate reddish orange (10R 6/6), 20% clay, 80% sand. SC Natural 1.80 IRONSTONE- red / moderate reddish brown (10R 4/6). Ē 2.0 F Ē 10/12/22 Terminated at 2.400 m 2.5 GDT G 2201064 TERREY HILLS.GPJ Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hvdrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels

L0G2022 Log Drawn By: Laurie White Logged By: Date: Kiran Baby REU Contact: laurie.white@reumad.com.au Checked By: Thara Polassery Date: 12/10/2022

2201064

1.20 m

Geo-Logix environment · geotech

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd**

Method:

Mothod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
L L	3	0.15							CONCRETE.	dawa	
		-	D	z	BH12/0.2-0.4		F		clay, 50% sand, 40% gravel, well compacted.	damp	
		0.50				E.				dawa	
		-		Z			F		gravel.	damp	
		0.80							Clayey SAND- 20% clay, 80% sand, medium dense.	damp	
		<u>1</u> .0				Natural	sc				
		-	D	Z	BH12/1.0-1.2				Terminated at 1.200 m		
.com.au		-									
w.reumad		<u>1</u> .5									
hite at ww		-									
y laurie w		-									
- drawn b											
49:38 PM		-									
0/12/22 3:		2.5									
L.GDT 10		-									
S.GPJ G											
Abbreviations: Abbreviations: Abareviations: Abareviations: H High D Disturbed Strength Testing Additional Comments: H High U Undisturbed DCP Dynamic Cone Penetrometer L Low B Bulk P Pocket Penetrometer Z Zero R Representative J Jar Encountered Groundwater Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater									npact.		

GLOG2022 Logged By: Log Drawn By: Laurie White Kiran Baby Date: REUMAD Thara Polassery Contact: laurie.white@reumad.com.au Checked By: Date: 12/10/2022

2201064

1.20 m

au.

GDT G

2201064 TERREY HILLS.GPJ

Geo-Logix environment · geotech

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Project Name: **Detailed Site Investigation** Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd** Method:

USCS Symbol Depth (mBGL Material Type Sample Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Method Moisture Sample CONCRETE. ö 0.15 FILL- reddish brown / moderate brown (5YR 4/4), 10% damp Ζ F clay, 30% sand, 60% gravel, well compacted. 0.30 FILL- red / moderate reddish brown (10R 4/6), 20% clay, damp D Ζ BH13/0.3-0.5 50% sand, 30% gravel, well compacted. F 0.5 0.55 Clayey SAND- very pale brown / greyish orange (10YR 7/4), 20% clay, 80% sand, medium dense. damp Natural SC 1.0 D Ζ BH13/1.0-1.2 Terminated at 1.200 m 10/12/22 3:49:39 PM - drawn by laurie white at www.reumad.com 1.5 2.0 2.5 Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hydrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇ Encountered Groundwater J Jar Asb Asbestos V Stabilised Groundwater

L0G2022 Log Drawn By: Laurie White Logged By: Date: Kiran Baby REUM Contact: laurie.white@reumad.com.au Checked By: Thara Polassery Date: 12/10/2022

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	

Method:

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
								500 K.C.	00100575		
C	8	0.20							CONCRETE		
		0.5	D	z	BH14/0.3-0.7	Fill	F		FILL- yellowish brown (10YR 5/6), 10% clay, 50% sand 40% gravel, well compacted.	l, damp	
С. Ч	5	1.0	D	Z	BH14/1.0-1.2	Natural	sc		Clayey SAND- very pale brown / greyish orange (10YF 7/4), 20% clay, 80% sand, medium dense.	damp	
drawn by laurie white at www.reumad.com.au		1.5 2.0							Terminated at 1.200 m		
GPJ GL.GDT 10/12/22 3:49:40 PM -		- - _2.5 -									
Abbreviations: Abandonment N Hydrocarbon Odour Sample Type Strength Testing Additional Comm H High D Disturbed SPT Standard Penetration Test Additional Comm W Medium U Undisturbed DCP Dynamic Cone Penetrometer Additional Comm L L. Low B Bulk PP Pocket Penetrometer Water Levels Z Zero R Representative Water Levels Encountered Groundwater J Jar Image: Stabilised Groundwater Stabilised Groundwater Stabilised Groundwater					esting ndard Pa amic Ca ket Pen els ountere bilised C	enetration one Penet etrometer d Ground Groundwat	Abandonment Method: Bar Additional Comments: rometer water er	kfill with soil and co	mpact.		
Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au						By tact	: La : lau	urie W ırie.wł	/hite Logged By: Kirar hite@reumad.com.au Checked By: Thar	Baby Polassery	Date: Date: 12/10/2022

2201064

2.40 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd**

Method:

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
_								×××	FILL- vellowish brown / moderate vellowish brown (10YR	damp	
		0.5 	D	Z	BH15/0.3-0.6 DS2, TS2	Fill	F		5/4), 15% clay, 70% sand, 15% gravel, moderately compacted.		
		_ 1.00	D	Z	BH15/0.9-1.0		sc		Clayey SAND- light red / moderate reddish orange (10R 6/6), 20% clay, 80% sand, medium dense.	damp	
m.au		- - 1 40		Z				E	IRONSTONE- red / moderate reddish brown (10R 4/6).		
22 3:49:42 PM - drawn by laurie white at www.reumad.co 		<u>1.40</u> <u>1.5</u> - - <u>2.0</u> - - -	D	Z	BH15/1.4-1.5	Natural	SC		Clayey SAND- very pale brown / very pale orange (10YR 8/2), 20% clay, 80% sand, medium dense.	damp	
DT 10/12/2		_ <u>2</u> .5							Terminated at 2.400 m		
CPJ GLG		-									
2201064 TERREY HILLS	Abbreviations: Abandonment Method: Backfill with soil and compact. Hydrocarbon Odour Sample Type Strength Testing Abandonment Method: Backfill with soil and compact. H High D Disturbed SPT Standard Penetration Test Additional Comments: M Medium U Undisturbed DCP Dynamic Cone Penetrometer Additional Comments: L Low B Buik PP Pocket Penetrometer P Z Zero R Representative C Continuous J Encountered Groundwater Abb Asbestos V Stabilised Groundwater										

GLOG2022 Log Drawn By: Laurie White Logged By: Kiran Baby Date: REUMAD Thara Polassery Contact: laurie.white@reumad.com.au Checked By: Date: 12/10/2022

2201064

1.90 m

Geo-Logix environment · geotech

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd**

Method:

Mathod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
c c	S	0.15							CONCRETE.		
		-		z			F		FILL- dark reddish brown / moderate brown (5YR 3/4), 30% sand, 70% gravel, well compacted.	damp	
		0.5	D	z	BH16/0.3-0.5	Fill	F		FILL- pinkish white / greyish orange pink (10R 8/2), 90% clay, 10% sand, moderately compacted.	damp	
		-	D	z	BH16/0.55-0.7		F		FILL- dark grey (N3), 40% sand, 60% gravel, moderately compacted.	damp	With tar.
		<u>1.0</u>	D	Z	BH16/1.0-1.2		sc		Clayey SAND - brownish yellow / dark yellowish orange (10YR 6/6), 20% clay, 80% sand, medium dense.	damp	
t www.reumad.com.au		1.5 1.70		z		Natural	sc		Clayey SAND - very pale brown / very pale orange (10YR 8/2) and yellow / pale yellowish orange (10YR 8/6), 10% clay, 90% sand, medium dense.	damp	
rie white a		-		_				ĒĒ	IRONSTONE.		
GPJ GL.GDT 10/12/22 3:49:43 PM - drawn by Iau		_2.0 _ _ _ _ _ 		Z					Terminated at 1.900 m Refusal.		
2201064 TERREY HILLS.C	Abbreviations: Sample Type Strength Testing Abandonment Method: Backfill with soil and compact. Hydrocarbon Odour D Disturbed SPT Standard Penetration Test Additional Comments: H High D D Disturbed SPT Standard Penetration Test M Medium U Undisturbed D/D D/Dynamic Cone Penetrometer L Low B Bulk PP Z Zero R Representative C Continuous J Jar Encountered Groundwater Stabilised Groundwater Stabilised Groundwater										

GLOG2022 Log Drawn By: Laurie White Logged By: Kiran Baby Date: REUMAD Thara Polassery Contact: laurie.white@reumad.com.au Checked By: Date: 12/10/2022

2201064

2.40 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	

3:49:44 PM - drawn by laurie white at www.reumad.com.au

10/12/22

GDT G

2201064 TERREY HILLS.GPJ

USCS Symbol Depth (mBGL) Material Type Sample Type Graphic Log Water Level ₽ HC Odour Material Description Observations / Comments Method Sample I Moisture FILL- light red / moderate reddish orange (10R 6/6), 60% damp clay, 30% sand, 10% gravel, moderately compacted. Ē F 0.5 D Ζ BH17/0.6-0.8 0.80 Clayey SAND- brownish yellow / dark yellowish orange (10YR 6/6), 20% clay, 80% sand, medium dense. damp 1.0 SC Ζ BH17/1.0-1.2 D 1.20 Clayey SAND- pinkish white / greyish orange pink (10R damp 8/2), 20% clay, 80% sand, medium dense, with ironstone fragments. 1.5 Natural Ζ SC 2.0 Terminated at 2.400 m 2.5 Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hvdrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇

Encountered Groundwater

Stabilised Groundwater

▼

J Jar Asb Asbestos

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd** Method:

Mothod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
		-		z			F		FILL- medium grey (N5), 15% clay, 80% sand, 5% gravel, moderately compacted.	damp	
SEA	5	0.5	D	Z	BH18/0.2-0.4	Fill	F		FILL- pinkish white / greyish orange pink (10R 8/2), 80% clay, 20% sand, poorly compacted.	damp	
		<u>0.70</u> - _ _ _	D	Z	BH18/1.0-1.2	Natural	SC		Clayey SAND - brownish yellow / dark yellowish orange (10YR 6/6), 20% clay, 80% sand, medium dense.	damp	
S.GPJ GL.GDT 10/12/22 3:49:45 PM - drawn by laurie white at www.reumad.com.au									Terminated at 1.200 m		
Abbreviations: Abareviations: Abareviations: Abandonment Method: Backfill with soil and compact. H Hydrocarbon Odour Sample Type Strength Testing Additional Comments: Additional Comments: H H D Disturbed DCP Dynamic Cone Penetrometer P L Low B Bulk P Pocket Penetrometer P Z Zero R Representative J Jar Encountered Groundwater Sabeleto Jar V Stabilised Groundwater Stabilised Groundwater									npact.		

GLOG2022 Logged By: Log Drawn By: Laurie White Kiran Baby Date: REUMAD Thara Polassery Contact: laurie.white@reumad.com.au Checked By: Date: 12/10/2022

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au Project Number: Hole Depth: Date Started: Date Completed:

 Project Name:
 Detailed Site Investigation

 Location / Site:
 287 Mona Vale Road, Terrey Hills NSW

 Client:
 Hills Marketplace Pty Ltd

 Contractor:
 Terratest Pty Ltd

 Method:
 Hills Marketplace Pty Ltd

USCS Symbol Depth (mBGL Sample Type Material Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Method Moisture Sample 0.03 ASPHALT. dry FILL- medium grey (N5), 30% sand, 70% gravel, well compacted. D z BH19/0.1-0.3 Ē F 0.40 Clayey SAND- brownish yellow / dark yellowish orange (10YR 6/6), 20% clay, 80% sand, dense. damp ľ, 0.5 Natural SC BH19/0.7-1.0 D Ζ 1.0 Terminated at 1.200 m 10/12/22 3:49:46 PM - drawn by laurie white at www.reumad.com.au 1.5 2.0 2.5 GDT Ŀ G 2201064 TERREY HILLS.GPJ Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hvdrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇ Encountered Groundwater J Jar Asb Asbestos V Stabilised Groundwater

 Log Drawn By:
 Laurie White
 Logged By:
 Kiran Baby
 Date:

 Contact:
 laurie.white@reumad.com.au
 Checked By:
 Thara Polassery
 Date:
 12/10/2022

2201064

2.40 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd**

Method:

Method	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
		0.20		Z			F		FILL- light reddish brown / light brown (5YR 6/4), 50% clay, 40% sand, 10% gravel, moderately compacted.	damp	
		- 0.50	D	Z	BH20/0.2-0.4	Fill	F		FILL- very pale brown / greyish orange (10YR 7/4), 25% clay, 70% sand, 5% gravel, moderately compacted.	damp	
		0.75	D	Z	BH20/0.6-0.7		F		FILL- reddish brown / moderate brown (5YR 4/4), 20% clay, 50% sand, 30% gravel, moderately compacted.	damp	
		- 1.0 	D	Z	BH20/1.0-1.2		sc		Clayey SAND- medium light grey (N6), 20% clay, 80% sand, medium dense.	damp	
A - drawn by laurie white at www.reumad.com.au		<u>1.5</u> 		Ζ		Natural	sc		Clayey SAND- brownish yellow / dark yellowish orange (10YR 6/6) and red / moderate reddish brown (10R 4/6), 25% clay, 75% sand, medium dense, with ironstone fragments.	damp	
3:49:48 PN		-									
GL.GDT 10/12/22		_2.5 							Terminated at 2.400 m		
Abbreviations: Abbreviations: Abandonment Method: Backfill with soil and compact. Hydrocarbon Odour Sample Type Strength Testing Additional Comments: H High D Disturbed SPT L Low B Bulk PP Z Zero R Representative J Fenctoreler Vater Levels Stabilised Groundwater Stabilised Groundwater Abbreviations: Stabilised Groundwater Stabilised Groundwater									npact.		

2201064

3.60 m

L0G2022

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Project Name: **Detailed Site Investigation** Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd** Method:

USCS Symbol Depth (mBGL Material Type Sample Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Moisture Method Sample CONCRETE. g 0.20 FILL- dark reddish brown / greyish brown (5YR 3/2), 10% damp clay, 50% sand, 40% gravel, well compacted. Ē D Ζ BH21/0.3-0.5 F 0.5 0.60 Clayey SAND- medium dark grey (N4), 20% clay, 80% moist sand, medium dense. SC 1.0 Ζ BH21/1.0-1.2 D ∇ 1.20 Clayey SAND- medium grey (N5) and dark reddish brown / greyish brown (5YR 3/2), 20% clay, 80% sand, medium dense. wet 1.5 3:49:49 PM - drawn by laurie white at www.reumad.com.au D Ζ BH21/1.8-2.0 2.0 Natural SC 2.5 3.0 D Ζ BH21/3.0-3.2 10/12/22 3.5 GDT G Terminated at 3.600 m GPJ 2201064 TERREY HILLS. Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hydrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇ Encountered Groundwater J Jar Asb Asbestos V Stabilised Groundwater Log Drawn By: Laurie White Logged By: Date: Kiran Baby REUM

Checked By:

Thara Polassery

Contact: laurie.white@reumad.com.au

Date:

12/10/2022

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	

USCS Symbol Depth (mBGL) Sample Type Material Type Graphic Log Water Level ₽ HC Odour Material Description Observations / Comments Method Sample I Moisture 0.03 BITUMEN damp FILL- dark reddish brown / greyish brown (5YR 3/2), 60% silt, 40% gravel, well compacted. Ζ F 0.40 1 FILL- very pale brown / greyish orange (10YR 7/4), 30% Ζ damp D BH22/0.3-0.6 0.5 clay, 70% sand, well compacted. F 0.80 Clayey SAND- brownish yellow / dark yellowish orange (10YR 6/6), 40% clay, 60% sand, medium dense. damp BH22/0.8-1.0 D Ζ Natural 1.0 SC Terminated at 1.200 m 10/12/22 3:49:50 PM - drawn by laurie white at www.reumad.com.au 1.5 2.0 2.5 GDT Ŀ G 2201064 TERREY HILLS.GPJ Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hvdrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇

J Jar Asb Asbestos ▼ Stabilised Groundwater L0G2022 Log Drawn By: Laurie White Logged By: Date: Kiran Baby REUM Contact: laurie.white@reumad.com.au Checked By: Thara Polassery Date: 12/10/2022

Encountered Groundwater

2201064

2.40 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Project Name:	Detailed Site Investigation
Location / Site:	287 Mona Vale Road, Terrey Hills NSW
Client:	Hills Marketplace Pty Ltd
Contractor:	Terratest Pty Ltd
Method:	

▼

Stabilised Groundwater

USCS Symbol Depth (mBGL) Material Type Sample Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Method Moisture Sample FILL- light red / moderate reddish orange (10R 6/6), 65% moist clay, 25% sand, 10% gravel, poorly to moderately compacted. D Ζ BH23/0.1-0.4 F 0.50 FILL- medium grey (N5), 20% clay, 80% sand, poorly to moist moderately compacted. Ē Ζ F 1.00 FILL- medium grey (N5), 20% clay, 50% sand, 30% moist Ζ gravel, moderately compacted. D BH23/1.0-1.2 F 1.30 3:49:51 PM - drawn by laurie white at www.reumad.com.au Clayey SAND- medium light grey (N6), 20% clay, 70% sand, 10% gravel, medium dense. wet 1.5 Natural sc Ζ BH23/1.8-2.0 D 2.0 10/12/22 Terminated at 2.400 m 2.5 GDT G 2201064 TERREY HILLS.GPJ Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hvdrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇ J Jar Asb Asbestos Encountered Groundwater

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd**

Method:

Γ		er)	e			e	lod				
Mothod	Water Leve	Depth (mB0	Sample Typ	HC Odour	Sample ID	Material Ty	USCS Sym	Graphic Loo	Material Description	Moisture	Observations / Comments
		_ _ 0.5	D	Z	BH24/0.3-0.6	Fill	F		FILL- medium grey (N5), 25% clay, 60% sand, 15% gravel, moderately compacted.	damp	
		0.60 - 0.80		Z			F		FILL- dark reddish brown / greyish brown (5YR 3/2), 20% clay, 70% sand, 10% gravel, moderately compacted.	moist	
		 		7		Natural	sc		Clayey SAND- medium light grey (N6), 20% clay, 80% sand, medium dense.	moist	
-			D	Ζ	BH24/1.0-1.2		SC		Clayey SAND- yellow / pale yellowish orange (10YR 8/6) and red / moderate reddish brown (10R 4/6), 20% clay, 80% sand. medium dense. with ironstone fragments.	moist	-
LLS.GPJ GL.GDT 10/12/22 3:49:53 PM - drawn by laurie white at www.reumad.com.au	Abbrev		5:						Terminated at 1.200 m	with soil and co	mpact.
2 2201064 TERREY HII	ADDreviations: Hydrocarbo Odour Sample Type Strength Testing H High D Disturbed SPT X M Medium U Undisturbed DCP L Low B Bulk PP Pocket Penetrometer Z Zero R Representative Water Levels C Continuous Jar Encountered Groundwater Asb Asbestos Y Stabilised Groundwater						esting ndard P amic C ket Per els ountere bilised (enetratior one Penel letrometer ed Ground Groundwa	Additional Comments: Test Additional Comments: water ler		
Log Drawn By: Laurie White Contact: laurie.white@reumad.com.au						By tact	: La	urie W urie.wł	/hite Logged By: Kiran Ba nite@reumad.com.au Checked By: Thara P	by blassery	Date: Date: 12/10/2022

2201064

2.40 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd**

Method:

BLLOG20

REUMAD

Log Drawn By: Laurie White

Mathod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description	Moisture	Observations / Comments
		-		Z			F		FILL- yellowish red / light brown (5YR 5/6), 25% clay, 65% sand, 10% gravel, moderately compacted.	damp	
			D	Z	BH25/0.5-0.8	Fil	F		FILL- medium grey (N5), 40% clay, 55% sand, 5% gravel, moderately compacted.	damp	
Jm.au		1.0 	D	Z	BH25/1.2-1.4		F		FILL- medium grey (N5), 30% clay, 60% sand, 10% gravel, moderately compacted.	damp	
2/22 3:49:54 PM - drawn by laurie white at www.reumad.cc			D	Ζ	BH25/1.4-1.6	Natural	SC		Clayey SAND- brownish yellow / dark yellowish orange (10YR 6/6), 20% clay, 80% sand, medium dense.	damp	
S.GPJ GL.GDT 10/1:		_2.5 _									
2 2201064 TERREY HILLS	Abbreviations: Abandonment Method: Backfill with soil and compact. Hydrocarbon Odour Sample Type Strength Testing Additional Comments: H High D Disturbed SPT Standard Penetration Test Additional Comments: H Medium U Undisturbed DCP Dynamic Cone Penetrometer Additional Comments: L Low B Bulk PP Pocket Penetrometer Z Zero R Representative Water Levels J Jar Encountered Groundwater Stabilised Groundwater Asb Asbestos Stabilised Groundwater										

Kiran Baby

Logged By:

Date:

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Detailed Site Investigation Project Name: Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd**

Method:

GLOG2022

Mathod	Water Level	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description		Observations / Comments
		0.03		z			F		► BITUMEN	dry	
		0.20 - 0.5 - 0.70	D	Z	BH26/0.4-0.6	Fill	F		FILL- dark reddish brown / greyish brown (5YR 3/2) and medium grey (N5), 10% clay, 60% sand, 30% gravel, moderately compacted.	damp	
		-		z			F		FILL- dark grey / brownish grey (5YR 4/1), 20% clay, 80% sand, moderately compacted.	damp	
		<u>1</u> .0	D	Z	BH26/1.0-1.2	Natural	sc		Clayey SAND- reddish yellow (5YR 6/6), 20% clay, 80% sand, medium dense.	damp	
.GPJ GL.GDT 10/12/22 3:49:55 PM - drawn by laurie white at www.reumad.com.au		- - - - - - - - - - - - - - - - - - -							Terminated at 1.200 m		
Abbreviations: Hydrocarbon Odour H High M Medium L Low Z Zero				Sai D U B R C J Ast	mple Type Strem Disturbed SPT Undisturbed DCP Bulk PP Representative Wate Continuous Jar Jar Y Asbestos Y	ngth Te Star Dyna Pocl er Leve Enco Stab	esting ndard P amic Co ket Pen els ountere bilised C	enetratior one Penel etrometer d Ground	Abandonment Method: Backfill with Additional Comments: rometer water ter	n soil and cor	npact.

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number: Hole Depth: Date Started:

Date Completed:

Project Name: **Detailed Site Investigation** Location / Site: 287 Mona Vale Road, Terrey Hills NSW Client: Hills Marketplace Pty Ltd Contractor: **Terratest Pty Ltd** Method:

Log Drawn By: Laurie White

REUM

USCS Symbol Depth (mBGL Material Type Sample Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Method Moisture Sample BITUMEN 0.03 damp Ζ F FILL- medium light grey (N6), 20% sand, 80% gravel, well compacted. 0.20 FILL- dark reddish brown / greyish brown (5YR 3/2), 10% damp clay, 70% sand, 20% gravel, moderately compacted. 1 D Ζ BH27/0.2-0.5 F 0.5 0.60 Clayey SAND- reddish yellow (5YR 6/6), 20% clay, 80% moist sand, medium dense. Natural BH27/0.8-1.0 D Ζ SC 1.0 Terminated at 1.200 m au. 10/12/22 3:49:56 PM - drawn by laurie white at www.reumad.com 1.5 2.0 2.5 GDT G 2201064 TERREY HILLS.GPJ Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hydrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇ Encountered Groundwater J Jar Asb Asbestos V Stabilised Groundwater L0G2022

Logged By:

Date:

2201064

1.20 m

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au Project Number: Hole Depth: Date Started:

Date Completed:

Project Name:Detailed Site InvestigationLocation / Site:287 Mona Vale Road, Terrey Hills NSWClient:Hills Marketplace Pty LtdContractor:Terratest Pty LtdMethod:

USCS Symbol Depth (mBGL Material Type Sample Type Water Level Graphic Log ₽ HC Odour Material Description Observations / Comments Method Moisture Sample FILL- medium light grey (N6), 20% clay, 60% sand, 20% damp Ζ F gravel, moderately compacted. 0.20 FILL- brownish yellow / dark yellowish orange (10YR 6/6) and medium light grey (N6), 30% clay, 70% sand, moderately compacted, with ironstone & crushed damp Ē F sandstone. Ζ D BH28/0.3-0.6 0.5 0.60 Clayey SAND- brownish yellow / dark yellowish orange (10YR 6/6) and red / moderate reddish brown (10R 4/6), 20% clay, 80% sand, medium dense. damp Natural BH28/0.8-1.0 D Ζ SC 1.0 Terminated at 1.200 m au 3:49:58 PM - drawn by laurie white at www.reumad.com 1.5 2.0 10/12/22 2.5 GDT G 2201064 TERREY HILLS.GPJ Abbreviations: Abandonment Method: Backfill with soil and compact. Sample Type D Disturbed U Undisturbed
 Strength Testing

 SPT
 Standard Penetration Test

 DCP
 Dynamic Cone Penetrometer
 Hydrocarbon Odour Additional Comments: H High M Medium L Low Z Zero Bulk Representative PP Pocket Penetrometer B R C Wate Levels Continuous ∇ Encountered Groundwater J Jar Asb Asbestos V Stabilised Groundwater

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2201064
Hole Depth:	0.95 m
Date Started:	13/09/2022
Date Completed:	13/09/2022

Project Name:	Detailed Site Investigation			
Location / Site:	287 Mona Vale Road, Terrey Hills NSW			
Client:	Hills Marketplace Pty Ltd			
Contractor:	Terratest Pty Ltd			
Method:	Hand Auger			

	Metrod Mater Levial	Depth (mBGL)	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material Description		Moisture	Observations / Comments
ſ		0.0	D	z	BH29/0.00-0.1		F F		FILL- very pale brown / greyis clay, 40% sand, 60% gravel, v	h orange (10YR 7/4), 10% vell compacted.	dry damp /	
		- Z	z			F		FILL- dark grey (N3), 20% clay moderately compacted.	y, 60% sand, 20% gravel,	damp		
		_	D	z	BH29/0.3-0.4				FILL- dark reddish brown / gre clay, 60% sand, moderately co	pmpacted.	moist	
		0.5				μ	F		70% sand, moderately compa	cted.		
		0.6	;)	z			F		FILL- medium grey (N5), 80%	sand, 20% gravel,	damp /	
		-	D	z	BH29/0.8-0.9		F		FILL- medium dark grey (N4),	40% clay, 60% sand,	damp	
╞		_ _ <u>1</u> .0						***	Terminated at 0.950 m			
		-							Refusal.			
σ												
d.com.a		-										
v.reuma		_1.5										
e at ww		-										
urie whit		_										
vn by la		2.0										
M - drav		-										
:49:59 F		_										
12/22 3		-										
3DT 10/												
D GL.G		-										
LLS.GF	Abbr	reviatio	ns:							Abandonment Method: Backfill w	ith soil and cor	npact.
2201064 TERREY HI	Hydro H H M M L Lo Z Z	ocarbon ligh ledium ow ero	Odour	Sai D B R C J Ast	mple Type Strer Disturbed SPT Undisturbed DCP Bulk PP Representative Wate Continuous U Jar U D Asbestos Y	uple Type Strength Testing Disturbed SPT Standard Penetration Test Undisturbed DCP Dynamic Cone Penetrometer Bulk PP Pocket Penetrometer Representative Water Levels Continuous Jar Encountered Groundwater Absetsos Stabilised Groundwater				Additional Comments:		
G2022	in I	6-0	1.61		Log Drawr	n By	: La	urie W	/hite	Logged By: Kiran Bab	1	Date: 13/09/2022
Contact: laurie.white@reumad.com.au						: lau	ırie.wł	nite@reumad.com.au	Checked By: Thara Pola	issery	Date: 12/10/2022	

Geo-Logix Pty Ltd Building Q2, Level 3 Unit 2309 / 4 Daydream Street Warriewood NSW 2102 www.geo-logix.com.au

Project Number:	2201064
Hole Depth:	1.50 m
Date Started:	13/09/2022
Date Completed:	13/09/2022

Project Name:	Detailed Site Investigation			
Location / Site:	287 Mona Vale Road, Terrey Hills NSW			
Client:	Hills Marketplace Pty Ltd			
Contractor:	Terratest Pty Ltd			
Method:	Hand Auger			

	Method	Water Level	Sample Type	HC Odour	Sample ID	Material Type	USCS Symbol	Graphic Log	Material De	scription	Moisture	Observations / Comments
		0.	20 D	z	BH30/0.0-0.2		F		FILL- reddish brown / moderate clay, 70% sand, 10% gravel, m	e brown (5YR 4/4), 20% oderately compacted.	damp	
		-	10	z			F		FILL- very pale brown / greyish clay, 50% sand, 10% gravel, m	orange (10YR 7/4), 40% oderately compacted.	moist	
		0.	<u>0.40</u> 0.5 - D Z BH30/0 <u>0.70</u> Z	BH30/0.5-0.7	7	F		FILL- brownish yellow / dark ye 35% clay, 60% sand, 5% grave	llowish orange (10YR 6/6), I, moderately compacted.	moist		
	₹	0.		z		Ε	F	×	FILL- medium light grey (N6), 9	00% clay, 10% sand, poorly	moist	
		0.	90 90	z			F	ÌX	<u>compacted.</u> FILL- 20% clay, 80% sand, mo	Compacted.		-
		1.	00	z			F		FILL- dark reddish brown / moderate brown (5YR 3/4),		damp	
		-	D	z	BH30/1.0-1.2				FILL- dark reddish brown / grey clay, 70% sand, 20% gravel, m	rish brown (5YR 3/2), 10% oderately compacted.	damp	
m.au		-	D	z	BH30/1.2-1.4							
nad.co		1.	5 D	z	BH30/1.4-1.5	Nat.	sc		Clayey SAND- dark grey (N3),	20% clay, 80% sand,	damp	
r HILLS.GPJ GL.GDT 10/12/22 3:50:00 PM - drawn by laurie white at www.r	Ab		0 5 n Odour	Sa	mple Type Stree	ngth T	esting		Terminated at 1.500 m	Abandonment Method: Backfill w Additional Comments:	ith soil and cor	npact.
2 2201064 TERREY	H M L Z	tydrocarbon Odour Sample Type Strength Testing 1 High D Disturbed SPT Standard Penetration Test 1 Medium U Undisturbed DCP Dynamic Cone Penetrometer 2 Low B Bulk PP Pocket Penetrometer 2 Zero R Representative C Continuous J Jar Asb Asbestos Encountered Groundwater							i Test trometer r water ter			
Log Drawn By: Laurie White Logged By: Kiran Baby Date:								Date: 13/09/2022				
GLL	U	Contact: laurie.white@reumad.com.au					urie.wl	nite@reumad.com.au	Checked By: Thara Pol	assery	Date: 12/10/2022	
ATTACHMENT D

🛟 eurofins

Environment Testing

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Kiran Baby

Report Project name Project ID Received Date **923657-S** TERRY HILLS-PRIMARY 2201064 Sep 14, 2022

Client Sample ID			HA1/0.7 0.8	HA2/0.2 0.3	HA3/0.25 0.45	^{G01} HA4/1.2 1.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032229	S22-Se0032230	S22-Se0032231	S22-Se0032232
Date Sampled			Sep 07 2022	Sep 07 2022	Sep 07 2022	Sep 07 2022
Tast/Deference		Linit	000 01, 2022	000 01, 2022	000 01, 2022	000 01, 2022
Test/Relefence	LUK	Unit				
			. 20	. 20	. 20	. 20
	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 100
	50	mg/kg	< 50	< 50	< 50	< 250
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 250
IRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 250
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{NU4}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 250
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 250
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 500
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	560
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	560
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	1.0
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	0.7
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.2
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	0.8
4-Bromofluorobenzene (surr.)	1	%	87	108	110	98
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.9
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	1.2
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Benzo(b&i)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/ka	< 0.5	< 0.5	< 0.5	1.0
Benzo(k)fluoranthene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	0.7
Chrysene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	0.5
Dibenz(a b)anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			HA1/0.7_0.8	HA2/0.2_0.3	HA3/0.25_0.45	G01HA4/1.2_1.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032229	S22-Se0032230	S22-Se0032231	S22-Se0032232
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit		•	•	•
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	4.8
2-Fluorobiphenyl (surr.)	1	%	89	87	89	109
p-Terphenyl-d14 (surr.)	1	%	89	86	95	91
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDE	0.05	mg/kg	< 0.05	0.08	< 0.05	< 0.5
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	0.08	< 0.05	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Dibutylchlorendate (surr.)	1	%	95	88	88	108
Tetrachloro-m-xylene (surr.)	1	%	91	88	89	104
Heavy Metals						
Arsenic	2	mg/kg	32	10	< 2	< 2
	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
	5	mg/kg	54	70	13	42
Copper	5	mg/kg	< 5	< 5	< 5	29
	5	mg/kg	< 5	12	7.1	10
	0.1	mg/kg	< 0.1	0.8	0.6	< 0.1
	5	mg/kg	< 5	< 5	< 5	40
	5	mg/kg	< 5	11	6.2	34
	,	<u> </u>		40	42	
% IVIOISTURE	1	%	9.8	13	13	/.4

Client Sample ID			HA5/0.7_0.8	HA6/0.5_0.6	BH7/0.8_0.9	G01BH8/0.3_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032233	S22-Se0032234	S22-Se0032235	S22-Se0032236
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
	LOR	Unit				
Total Recoverable Hydrocarbons	LOIX	Onit				
TRH C6-C9	20	ma/ka	< 20	< 20	< 20	< 20
TRH C10-C14	20	ma/ka	< 20	< 20	< 20	< 100
TRH C15-C28	50	ma/ka	< 50	< 50	< 50	< 250
TRH C29-C36	50	ma/ka	< 50	65	< 50	< 250
TRH C10-C36 (Total)	50	ma/ka	< 50	65	< 50	< 250
Naphthalene ^{N02}	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	ma/ka	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	ma/ka	< 20	< 20	< 20	< 20
TRH >C10-C16	50	ma/ka	< 50	< 50	< 50	< 250
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	ma/ka	< 50	< 50	< 50	< 250
TRH >C16-C34	100	ma/ka	< 100	< 100	< 100	< 500
TRH >C34-C40	100	ma/ka	< 100	< 100	< 100	< 500
TRH >C10-C40 (total)*	100	ma/ka	< 100	< 100	< 100	< 500
BTEX						
Benzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	ma/ka	< 0.1	0.4	< 0.1	0.1
Ethylbenzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	ma/ka	< 0.2	0.3	< 0.2	0.2
o-Xylene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Xvlenes - Total*	0.3	ma/ka	< 0.3	0.4	< 0.3	0.3
4-Bromofluorobenzene (surr.)	1	<u>%</u>	103	106	108	104
Polycyclic Aromatic Hydrocarbons	-	,.				
Benzo(a)pyrene TEQ (lower bound) *	0.5	ma/ka	< 0.5	< 0.5	< 0.5	24
Benzo(a)pyrene TEQ (medium bound) *	0.5	ma/ka	0.6	0.6	0.6	2.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	ma/ka	1.2	1.2	1.2	2.9
Acenaphthene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	1.3
Benzo(a)pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	1.8
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.2
Benzo(g.h.i)perylene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	1.3
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.1
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.8
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.2
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.8
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.9
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	18
2-Fluorobiphenyl (surr.)	1	%	89	93	91	107
p-Terphenyl-d14 (surr.)	1	%	84	88	85	84
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5

Client Sample ID			HA5/07 08	HA6/0 5 0 6	BH7/0.8 0.9	G01BH8/0 3 0 5
Sample Matrix			Soil	Soil	Soil	Soil
			600 600 600000000	500 5000000000 A	600 600 600000005	600 600 600000000
Euronns Sample No.			Szz-Se0032233	Szz-Se003zz34	Szz-Se003zz35	Szz-Se0032230
			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
lest/Reference	LOR	Unit				
Organochlorine Pesticides						
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Dibutylchlorendate (surr.)	1	%	74	76	90	75
Tetrachloro-m-xylene (surr.)	1	%	90	94	92	101
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	2.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	7.9	9.0	5.4	16
Copper	5	mg/kg	< 5	< 5	< 5	15
Lead	5	mg/kg	< 5	21	6.5	40
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	11
Zinc	5	mg/kg	< 5	17	9.8	56
			-		-	-
% Moisture	1	%	15	16	6.9	15
% Clay	1	%	-	9.2	-	-
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	-	< 10	-	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	5.0	-	-

Client Sample ID			G01BH9/0.3_0.6	BH10/0.9_1	BH11/1_1.2	BH12/0.2_0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032237	S22-Se0032238	S22-Se0032239	S22-Se0032240
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	ma/ka	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 100	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 250	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 250	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 250	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 250	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 250	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 500	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 500	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 500	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	0.2	< 0.1	0.3	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	112	109	101	107
Polycyclic Aromatic Hydrocarbons		1				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.9	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.2	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.5	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ¹⁰⁷	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo((g.n.i))perviene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Dibonz(a b)anthracono	0.5	mg/kg	0.9	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	17	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrepe	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	ma/ka	2.0	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	ma/ka	6.7	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	96	85	81	85
p-Terphenyl-d14 (surr.)	1	%	99	84	83	83
Organochlorine Pesticides				-		
Chlordanes - Total	0,1	ma/ka	< 1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	ma/ka	< 0.5	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/ka	< 0.5	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05

Client Sample ID			G01BH9/0.3 0.6	BH10/0.9 1	BH11/1 1.2	BH12/0.2 0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032237	S22-Se0032238	S22-Se0032239	S22-Se0032240
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
	LOR	Unit			,	,
Organochlorine Pesticides	LOR	Onit				
	0.05	ma/ka	< 0.5	< 0.05	< 0.05	< 0.05
	0.05	ma/ka	< 0.5	< 0.05	< 0.05	< 0.05
h-HCH	0.05	ma/ka	< 0.5	< 0.05	< 0.05	< 0.05
d-HCH	0.05	ma/ka	< 0.5	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	ma/ka	< 0.5	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
Endrin kotono	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
g-nch (Lindane)	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
Heptachlor enovide	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
Methowychlor	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
Texephone	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 10	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
$V_{ic} EPA WPC 621 OCP (Total)*$	0.05	mg/kg	< 0.5	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	<1	< 0.1	< 0.1	< 0.1
	1	0/	00	< 0.1	< 0.1	02
	1	/0	04	90	00	92
	I	70	94	00	00	00
	0					40
	2	mg/kg	3.2	3.2	3.6	18
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Contromium	5 5	mg/kg	23	< 5	30	54
Copper	5 5	mg/kg	19	< 5	< 5	< 5
	5	mg/kg	26	6.0	1.2	< 5
Nieleel	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1
	5 5	mg/kg	8.7	< 5	< 5	< 5
	5	mg/kg	48	< 5	< 5	< 5
% Moisture	1	%	14	10	12	7.8
% Clay	1	%	-	-	-	2.5
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	-	-	_	50
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	-	1.3

Client Sample ID			BH13/0.3_0.5	BH14/0.3_0.7	BH15/0.3_0.6	BH16/0.55_0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032241	S22-Se0032242	S22-Se0032243	S22-Se0032244
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit		•	•	•
Total Recoverable Hydrocarbons	-0.1	0				
TRH C6-C9	20	ma/ka	< 20	< 20	< 20	< 20
TRH C10-C14	20	ma/ka	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	82	80
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	82	80
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	100
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.6
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	94	91	100	89
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	<u>%</u>	88	79	86	84
P-Ierphenyl-d14 (surr.)	1	%	78	80	81	80
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	0.17
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	0.72
[4.4 ⁻ -DD1	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			BH13/0.3_0.5	BH14/0.3_0.7	BH15/0.3_0.6	BH16/0.55_0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032241	S22-Se0032242	S22-Se0032243	S22-Se0032244
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides		0				
a-HCH	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	0.10	1.0
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	0.1	1
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	0.89
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	0.1	1.89
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	80	90	77	66
Tetrachloro-m-xylene (surr.)	1	%	90	84	86	82
Heavy Metals						
Arsenic	2	mg/kg	12	15	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	50	43	15	22
Copper	5	mg/kg	< 5	< 5	6.0	14
Lead	5	mg/kg	6.9	< 5	7.8	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	25
Nickel	5	mg/kg	5.3	< 5	< 5	13
Zinc	5	mg/kg	< 5	< 5	13	28
% Moisture	1	%	7.8	11	7.6	8.3

Client Sample ID			BH17/0.6_0.8	BH18/0.2_0.5	BH19/0.1_0.3	BH20/0.6_0.7
Eurofins Sample No			S22-Se0032245	S22-Se0032246	S22-Se0032247	S22-Se0032248
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	120	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	110	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	230	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			BH17/0.6_0.8	BH18/0.2_0.5	BH19/0.1_0.3	BH20/0.6_0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032245	S22-Se0032246	S22-Se0032247	S22-Se0032248
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
	LOR	Linit			,	
Total Recoverable Hydrocarbons	LOIN	Offic				
TRH C6-C10 less BTEX (F1) ^{N04}	20	ma/ka	~ 20	~ 20	~ 20	~ 20
TRH >C10-C16	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	ma/ka	< 50	< 50	< 50	< 50
TRH >C16-C34	100	ma/ka	< 100	< 100	180	< 100
TRH >C34-C40	100	ma/ka	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	ma/ka	< 100	< 100	180	< 100
BTEX	1					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	79	91	97	88
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	1.2	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Prienanthrene	0.5	mg/kg	< 0.5	< 0.5	1.0	< 0.5
Total DAH*	0.5	mg/kg	< 0.5	< 0.5	1.2	< 0.5
2 Eluorobiohonyl (surr.)	0.5	0/.	< 0.5 70	< 0.5 67	4.0	< 0.5 91
2-Fluorobiphenyi (surr.)	1	- 70 - 0/	79	9/	79	01
Organochlorine Pesticides	I	70	00	04	10	02
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDF	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			BH17/0.6_0.8	BH18/0.2_0.5	BH19/0.1_0.3	BH20/0.6_0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032245	S22-Se0032246	S22-Se0032247	S22-Se0032248
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	101	107	95	112
Tetrachloro-m-xylene (surr.)	1	%	85	87	86	87
Heavy Metals						
Arsenic	2	mg/kg	16	2.1	3.2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	10	17	16	8.7
Copper	5	mg/kg	< 5	9.8	10	< 5
Lead	5	mg/kg	42	7.5	17	7.3
Mercury	0.1	mg/kg	0.2	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	7.8	7.9	< 5
Zinc	5	mg/kg	9.8	20	33	12
% Moisture	1	%	20	16	8.3	11
% Clay	1	%	19	-	-	-
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	< 10	-	-	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	11	-	-	-

Client Sample ID Sample Matrix			BH21/0.3_0.5 Soil	BH22/0.3_0.6 Soil	BH23/1_1.2 Soil	BH24/0.3_0.6 Soil
Eurofins Sample No.			S22-Se0032249	S22-Se0032250	S22-Se0032251	S22-Se0032252
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	62	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	62	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50

Client Sample ID			BH21/0.3_0.5	BH22/0.3_0.6	BH23/1_1.2	BH24/0.3_0.6	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S22-Se0032249	S22-Se0032250	S22-Se0032251	1 S22-Se0032252	
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	
Test/Reference	LOR	Unit	•			•	
Total Recoverable Hydrocarbons	Lon	Offic					
TRH >C16-C34	100	ma/ka	< 100	< 100	< 100	< 100	
TRH >C34-C40	100	ma/ka	< 100	< 100	< 100	< 100	
TRH >C10-C40 (total)*	100	ma/ka	< 100	< 100	< 100	< 100	
BTEX							
Benzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	ma/ka	< 0.1	0.2	< 0.1	< 0.1	
Ethylbenzene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xvlene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1	
Xvlenes - Total*	0.3	ma/ka	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	81	91	87	87	
Polycyclic Aromatic Hydrocarbons		,.					
Benzo(a)pyrene TEQ (lower bound) *	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (nedium bound) *	0.5	ma/ka	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	ma/ka	1.2	1.2	1.2	1.2	
Acenaphthene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pvrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&i)fluoranthene ^{N07}	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	83	83	85	83	
p-Terphenyl-d14 (surr.)	1	%	74	79	80	78	
Organochlorine Pesticides							
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
4.4'-DDE	0.05	mg/kg	< 0.05	0.13	< 0.05	< 0.05	
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Dieldrin	0.05	mg/kg	< 0.05	0.07	< 0.05	< 0.05	
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	

Client Sample ID			BH21/0.3_0.5	BH22/0.3_0.6	BH23/1_1.2	BH24/0.3_0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032249	S22-Se0032250	S22-Se0032251	S22-Se0032252
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	0.07	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	0.13	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	84	73	79	62
Tetrachloro-m-xylene (surr.)	1	%	87	86	85	89
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	2.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	13	19	15	13
Copper	5	mg/kg	< 5	6.1	< 5	9.3
Lead	5	mg/kg	32	17	11	9.2
Mercury	0.1	mg/kg	< 0.1	0.7	0.2	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	16	39	27	17
% Moisture	1	%	16	10	16	16

Client Sample ID			BH25/0.5_0.8	BH26/0.4_0.6	^{G01} BH27/0.2_0. 5	BH28/0.3_0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Se0032253	S22-Se0032254	S22-Se0032255	S22-Se0032256
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	110	100	< 50
TRH C29-C36	50	mg/kg	< 50	240	180	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	350	280	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	260	210	< 100
TRH >C34-C40	100	mg/kg	< 100	240	180	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	500	390	< 100

Client Sample ID					^{G01} BH27/0.2_0.	
Samle Matrix			BH25/0.5_0.8	BH26/0.4_0.6	5 Soil	BH28/0.3_0.6
Eurofine Semple No			600 600 600020252	600 622 60022254	600 600 600020255	500 500 50000005556
			322-300032255	322-300032234	322-300032255	322-300032230
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - I otal*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromotiuorobenzene (surr.)	1	%	90	98	91	92
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	1.0	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	1.3	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.6	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.8	< 0.5
Benzo(a ki)perdene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.n.i)peryiene	0.5	mg/kg	< 0.5	1.0	1.5	< 0.5
Chrysono	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Dihanz(a h)anthracana	0.5	mg/kg	< 0.5	< 0.5	0.0	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	1.0	< 0.5
Fluorene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	ma/ka	< 0.5	0.5	0.7	< 0.5
Naphthalene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	ma/ka	< 0.5	< 0.5	0.6	< 0.5
Pyrene	0.5	ma/ka	< 0.5	< 0.5	1.0	< 0.5
Total PAH*	0.5	ma/ka	< 0.5	1.5	6.9	< 0.5
2-Fluorobiphenyl (surr.)	1	%	78	79	78	88
p-Terphenyl-d14 (surr.)	1	%	82	78	58	80
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH25/0.5_0.8 Soil S22-Se0032253 Sep 07, 2022	BH26/0.4_0.6 Soil S22-Se0032254 Sep 07, 2022	^{G01} BH27/0.2_0. 5 Soil S22-Se0032255 Sep 07, 2022	BH28/0.3_0.6 Soil S22-Se0032256 Sep 07, 2022
Cranoshloring Posticides	LOR	Unit				
Heyachlorobenzene	0.05	ma/ka	< 0.05	< 0.05	< 0.5	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Toxanhene	0.00	ma/ka	< 0.5	< 0.5	< 10	< 0.05
Aldrin and Dieldrin (Total)*	0.05	ma/ka	< 0.05	< 0.05	< 0.5	< 0.05
DDT + DDE + DDD (Total)*	0.05	ma/ka	< 0.05	< 0.05	< 0.5	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	ma/ka	< 0.1	< 0.1	< 1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Dibutylchlorendate (surr.)	1	%	97	101	Q09INT	Q09INT
Tetrachloro-m-xylene (surr.)	1	%	87	80	81	97
Heavy Metals						
Arsenic	2	mg/kg	< 2	3.2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	15	15	8.4	11
Copper	5	mg/kg	8.2	14	15	5.3
Lead	5	mg/kg	11	53	14	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	14	7.5	< 5
Zinc	5	mg/kg	19	31	35	< 5
% Moisture	1	%	16	6.0	11	13
% Clay	1	%	-	8.2	-	-
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	-	41	-	-
Cation Exchange Capacity		1				
Cation Exchange Capacity	0.05	meq/100g	-	9.8	-	-

Client Sample ID			BH30/1_1.2	DS1	G01 DS2	SPIKE1
Sample Matrix			Soil	Soil	Soil	Trip Spike (solid)
Eurofins Sample No.			S22-Se0032257	S22-Se0032258	S22-Se0032259	S22-Se0032260
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	51	-
TRH C29-C36	50	mg/kg	56	< 50	130	-
TRH C10-C36 (Total)	50	mg/kg	56	< 50	181	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	120	-
TRH >C34-C40	100	mg/kg	< 100	< 100	170	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	290	-

Client Sample ID			BH30/1_1.2	DS1	^{G01} DS2	SPIKE1
Sample Matrix			Soil	Soil	Soil	Trip Spike (solid)
Furofins Sample No.			S22-Se0032257	S22-Se0032258	S22-Se0032259	S22-Se0032260
Date Sampled			Sop 07, 2022	Sop 07, 2022	Sop 07, 2022	Sop 07, 2022
	1.05		Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
lest/Reterence	LOR	Unit				
	0.4		0.1	0.1	0.1	
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-xyiene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total"	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromotiuorobenzene (surr.)	1	%	95	97	89	-
	0.5				0.5	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N0}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Prenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
1 otal PAH	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyi (surr.)	1	%	84	76	82	-
p-representative Resticides	I	70	71	70	04	-
	0.4		.0.1	. 0.1		
	0.1	mg/kg	< 0.1	< 0.1	< 1	-
	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
	0.05	mg/kg	< 0.05	< 0.05	~ 0.5	
	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
Endrin	0.00	mg/kg	< 0.05		< 0.0	-
	0.05	mg/kg	< 0.05		< 0.5 - 0.5	-
Endrin ketope	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
a-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	~ 0.5	
Hentachlor	0.05	ma/ka	< 0.05	< 0.05	~ 0.5	
	0.00	ing/ky	1 10.00	~ 0.00	< 0.5	-

Client Sample ID			BH30/1_1.2	DS1	^{G01} DS2	SPIKE1
Sample Matrix			Soil	Soil	Soil	Trip Spike (solid)
Eurofins Sample No.			S22-Se0032257	S22-Se0032258	S22-Se0032259	S22-Se0032260
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 10	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.5	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 1	-
Dibutylchlorendate (surr.)	1	%	Q09INT		81	-
Tetrachloro-m-xylene (surr.)	1	%	90	84	85	-
Heavy Metals						
Arsenic	2	mg/kg	4.4	< 2	< 2	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	11	13	21	-
Copper	5	mg/kg	13	8.1	14	-
Lead	5	mg/kg	37	7.3	8.9	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	5.9	< 5	7.1	-
Zinc	5	mg/kg	44	12	18	-
% Moisture	1	%	8.6	12	8.2	-
TRH C6-C10	1	%	-	-	-	110
Total Recoverable Hydrocarbons						
Naphthalene	1	%	-	-	-	100
TRH C6-C9	1	%	-	-	-	110
втех						
Benzene	1	%	-	-	-	100
Ethylbenzene	1	%	-	-	-	100
m&p-Xylenes	1	%	-	-	-	100
o-Xylene	1	%	-	-	-	110
Toluene	1	%	-	-	-	110
Xylenes - Total	1	%	-	-	-	110
4-Bromofluorobenzene (surr.)	1	%	-	-	-	82

Client Sample ID			BLANK1	BH29/0.8_0.9
Sample Matrix			Trip Blank (solid)	Soil
Eurofins Sample No.			S22-Se0032261	S22-Se0032264
Date Sampled			Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	-	< 20
TRH C15-C28	50	mg/kg	-	< 50
TRH C29-C36	50	mg/kg	-	56
TRH C10-C36 (Total)	50	mg/kg	-	56
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID			BLANK1	BH29/0.8_0.9
Sample Matrix			Trip Blank (solid)	Soil
Eurofins Sample No.			S22-Se0032261	S22-Se0032264
Date Sampled			Sep 07 2022	Sep 07 2022
Test/Deference		Linit		000 01, 2022
Test/Relefence	LUR	Unit		
	20	malka	< 20	- 20
TPH C6 C10 Iooo PTEX (E1)N04	20	mg/kg	< 20	< 20
	50	mg/kg	< 20	< 20
TPH \sim C10 C16 loss Nanhthalana (E2) ^{N01}	50	mg/kg	-	< 50
	100	mg/kg	-	< 100
TRH \C34_C40	100	mg/kg		< 100
TRH >C10-C40 (total)*	100	mg/kg		< 100
BTEX	100	шу/ку	_	< 100
Banzana	0.1	ma/ka	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&n-Xylenes	0.1	ma/ka	< 0.2	< 0.2
	0.2	mg/kg	< 0.2	< 0.2
Xvlenes - Total*	0.1	ma/ka	< 0.1	< 0.1
4-Bromofluorobenzene (surr.)	1	//////////////////////////////////////	03	86
Polycyclic Aromatic Hydrocarbons	I	70		00
Benzo(2)pyrene TEO (lower bound) *	0.5	ma/ka	_	< 0.5
Benzo(a)pyrene TEQ (nedium bound) *	0.5	mg/kg		0.6
Benzo(a)pyrene TEQ (interdial bound) *	0.5	mg/kg		1.2
	0.5	mg/kg		- 0.5
	0.5	ma/ka	_	< 0.5
Anthracene	0.5	ma/ka	_	< 0.5
Benz(a)anthracene	0.5	ma/ka	_	< 0.5
Benzo(a)pyrene	0.5	ma/ka	_	< 0.5
Benzo(b&i)fluoranthene ^{N07}	0.5	ma/ka	_	< 0.5
Benzo(a, h, i)pervlene	0.5	ma/ka	-	< 0.5
Benzo(k)fluoranthene	0.5	ma/ka	-	< 0.5
Chrysene	0.5	ma/ka	-	< 0.5
Dibenz(a,h)anthracene	0.5	ma/ka	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5
Fluorene	0.5	ma/ka	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	ma/ka	-	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	80
p-Terphenyl-d14 (surr.)	1	%	-	65
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05
a-HCH	0.05	mg/kg	_	< 0.05
Aldrin	0.05	mg/kg	_	< 0.05
b-HCH	0.05	mg/kg	-	< 0.05
d-HCH	0.05	mg/kg	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05

Client Sample ID			BLANK1	BH29/0.8_0.9
Comple Metrix			Trip Blank	Call
Eurorins Sample No.			S22-Se0032261	S22-Se0032264
Date Sampled			Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
Endosulfan I	0.05	mg/kg	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05
Toxaphene	0.5	mg/kg	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	106
Tetrachloro-m-xylene (surr.)	1	%	-	87
Heavy Metals				
Arsenic	2	mg/kg	-	< 2
Cadmium	0.4	mg/kg	-	< 0.4
Chromium	5	mg/kg	-	11
Copper	5	mg/kg	-	8.2
Lead	5	mg/kg	-	8.8
Mercury	0.1	mg/kg	-	< 0.1
Nickel	5	mg/kg	-	< 5
Zinc	5	mg/kg	-	10
% Moisture	1	%	-	13

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Sep 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Sep 20, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 20, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Sep 20, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Sep 20, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Sep 15, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			
% Clay	Brisbane	Sep 26, 2022	14 Days
- Method: LTM-GEN-7040			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	Sydney	Sep 26, 2022	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Sep 27, 2022	28 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			

		ABN: 50 005 08	v ironme 5 521	nt Testing Aus	tralia Pty Ltd										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn NZBN: 942904602495	nent Testing NZ Ltd 4	
web: w email:	ww.eurofins.com.au	.com	Melbourne 6 Monterey Roa Dandenong Sou VIC 3175 Tel: +61 3 8564 NATA# 1261 Sit	ud uth 5000 te# 1254	Geelong 19/8 Lewalan Str Grovedale VIC 3216 Tel: +61 3 8564 5 NATA# 1261 Site	Sydney reet 179 Mag Girrawee NSW 214 5000 Tel: +61 e# 1254 NATA# 1	owar Ro n 15 2 9900 8 261 Site	oad 8400 e# 1821	Canb Unit 1 Mitch ACT Tel: +	erra I,2 Dacr ell 2911 -61 2 61	e Stree 13 809	t 1/ M Q 1 Te N	risbane 21 Sma urarrie LD 417 el: +61 7 ATA# 1	e allwood Place 72 7 3902 4600 261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Co Ad	ompany Name: Idress:	Geo-Logix F Bld Q2 Leve Warriewood NSW 2102	P/L ei 3, 2309/4 C I	Daydrea	am St			O Re Pl Fa	rder N eport hone: ax:	No.: #:	F 9 ()	P0560 92365 92 997 92 997	3TP 7 '9 172 '9 122	22 22		Received: Due: Priority: Contact Name:	Sep 14, 2022 1:25 Sep 21, 2022 5 Day Kiran Baby	РМ
Pro Pro	oject Name: oject ID:	TERRY HIL 2201064	LS-PRIMAR`	Y												Eurofins Analytical	Services Manager	: Asim Khan
			% Clay	HOLD	Moisture Set	Cation Exchange Capacity	Eurofins Suite B9	BTEXN and Volatile TRH	BTEXN and Volatile TRH									
Melk	oourne Laborate	ory - NATA # 12	261 Site # 12	254						х	Х	х						
Sydi	ney Laboratory	- NATA # 1261	Site # 18217	7				X	Х	X	X	Х	X					
Bris	bane Laborator	y - NATA # 126	51 Site # 207	94			Х											
Exte No	ernal Laboratory Sample ID	Sample Date	Sampling	M	latrix	LAB ID								-				
			Time	0.11					X		X			_				
1	HA1/0.7_0.8	Sep 07, 2022		Soil	S22	2-Se0032229		-	X		X			_				
2	HA2/0.2_0.3	Sep 07, 2022		Soil	52	2-500032230												
3	$HA3/0.25_0.45$	Sep 07, 2022		Soil	S22	2-300032231			X		×			_				
5	$HA4/1.2_1.3$ $HA5/0.7_0.8$	Sep 07, 2022		Soil	S22	2-300032232			X		x			_				
6	HA6/0.5_0.6	Sep 07, 2022		Soil		2-Se0032233	x		X	x	X			_				
7	BH7/0.8 0.9	Sep 07, 2022		Soil	S22	2-Se0032235	Ê	1	x		X			1				
8	BH8/0.3 0.5	Sep 07, 2022		Soil	S22	2-Se0032236			X		X			1				
9	BH9/0.3 0.6	Sep 07. 2022		Soil	S22	2-Se0032237			X		х			1				
10	BH10/0.9 1	Sep 07, 2022		Soil	S22	2-Se0032238	1	1	х	1	х			1				
11	BH11/1 1.2	Sep 07, 2022		Soil	S22	2-Se0032239	İ		Х		Х			1				
			1		1021													

🔅 eurofins 📲		Eurofins Environme ABN: 50 005 085 521	ent Testing Australia I	Pty Ltd										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	ent Testing NZ Ltd
web: www.eurofins.com.au email: EnviroSales@eurofins.c	com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Sydney 179 Mago Girraweer NSW 214 Tel: +61 2 NATA# 12	war Ro 5 9900 8 261 Site	ad 3400 # 1821	Cank Unit 7 Mitch ACT Tel: 4 7	erra I,2 Dacı ell 2911 -61 2 61	e Stree 13 809	Bi 1/ Q 1 Te N	risbane 21 Sma urarrie LD 417 el: +61 7 ATA# 12	Ilwood Place 2 7 3902 4600 261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name: Address:	Geo-Logix Bld Q2 Lev Warriewood NSW 2102	P/L el 3, 2309/4 Daydre d	am St			O Re Pi Fa	rder I eport hone: ax:	No.: #:	 () ()	P0560 92365 02 997 02 997	3TP 7 79 172 79 122	22		Received: Due: Priority: Contact Name:	Sep 14, 2022 1:25 Sep 21, 2022 5 Day Kiran Baby	PM
Project Name: Project ID:	TERRY HIL 2201064	LLS-PRIMARY												Eurofins Analytical	Services Manager :	Asim Khan
	s	ample Detail			% Clay	HOLD	Moisture Set	Cation Exchange Capacity	Eurofins Suite B9	BTEXN and Volatile TRH	BTEXN and Volatile TRH					
Melbourne Laborator	ry - NATA # 1	261 Site # 1254						Х	Х	Х						
Sydney Laboratory -	NATA # 1261	1 Site # 18217				Х	Х	Х	Х	Х	Х					
Brisbane Laboratory	- NATA # 12	61 Site # 20794	r		Х											
12 BH12/0.2_0.4	Sep 07, 2022	Soil	S22-Se00	032240	Х		Х	Х	Х							
13 BH13/0.3_0.5	Sep 07, 2022	Soil	S22-Se00	032241			Х		Х							
14 BH14/0.3_0.7	Sep 07, 2022	Soil	S22-Se00	032242			Х		X							
15 BH15/0.3_0.6	Sep 07, 2022	Soil	S22-Se00	032243			Х		X							
16 BH16/0.55_0.7	Sep 07, 2022	Soil	S22-Se00	032244			Х		X							
17 BH17/0.6_0.8	Sep 07, 2022	Soil	S22-Se00	032245	Х		Х	Х	X							
18 BH18/0.2_0.5	Sep 07, 2022	Soil	S22-Se00	032246			Х		X							
19 BH19/0.1_0.3	Sep 07, 2022	Soil	S22-Se00	032247			X		X							
20 BH20/0.6_0.7	Sep 07, 2022	Soil	S22-Se00	032248			X		X							
21 BH21/0.3_0.5	Sep 07, 2022	Soil	S22-Se00	032249			Х		X							
22 BH22/0.3_0.6	Sep 07, 2022	Soil	S22-Se00	032250			Х		X							
23 BH23/1_1.2	Sep 07, 2022	Soil	S22-Se00	032251			Х		X							
24 BH24/0.3_0.6	Sep 07, 2022	Soil	S22-Se00	032252			Х		X							
25 BH25/05 08	0 07 0000	Soil	622 600	122252		1		1	1	1	1	1				

🔅 eurofins	Eurofins Environme ABN: 50 005 085 521	ent Testing Australia	Pty Ltd										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	ent Testing NZ Ltd		
web: w email: I	ww.eurofins.com.au	.com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 4 NATA# 1261 Site# 1254	Sydney 179 Mago Girrawee NSW 214 Tel: +61 2 NATA# 1	owar Ro n 5 2 9900 8 261 Site	ad 3400 # 1821	Canb Unit 1 Mitch ACT 2 Tel: +	erra ,2 Dacr ell 2911 61 2 61	e Stree 13 809	t 1/ M Q 1 T N	risbane 21 Sma urarrie LD 417 el: +61 7 ATA# 1:	Newca Ilwood Place 4/52 In Mayfiel 2 2 PO Boy 7 3902 4600 Tel: +6 261 Site# 20794 NATA#	stle dustrial Drive d East NSW 2304 < 60 Wickham 2293 1 2 4968 8448 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Co Ad	mpany Name: dress:	Geo-Logix Bld Q2 Lev Warriewood NSW 2102	P/L el 3, 2309/4 Daydre d	eam St			O Re Pl Fa	rder N eport none: ax:	lo.: #:	F 9 ()	P0560 92365 92 997 92 997	3TP 7 79 172 79 122	2 2		Received: Due: Priority: Contact Name:	Sep 14, 2022 1:25 Sep 21, 2022 5 Day Kiran Baby	PM
Pro Pro	oject Name: oject ID:	TERRY HIL 2201064	LS-PRIMARY												Eurofins Analytical S	Services Manager :	Asim Khan
	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254							Moisture Set	Cation Exchange Capacity	Eurofins Suite B9	BTEXN and Volatile TRH	BTEXN and Volatile TRH					
Melb	ourne Laborato	ory - NATA # 1	261 Site # 1254						Х	Х	Х						
Sydı	ney Laboratory	- NATA # 1261	Site # 18217				Х	Х	Х	Х	Х	Х					
Bris	bane Laborator	y - NATA # 12	61 Site # 20794			Х											
26	BH26/0.4_0.6	Sep 07, 2022	Soil	S22-Se0	032254	Х		Х	Х	Х							
27	BH27/0.2_0.5	Sep 07, 2022	Soil	S22-Se0	032255			х		Х							
28	BH28/0.3_0.6	Sep 07, 2022	Soil	S22-Se0	032256			х		Х							
29	BH30/1_1.2	Sep 07, 2022	Soil	S22-Se0	032257			Х		Х							
30	DS1	Sep 07, 2022	Soil	S22-Se0	032258			х		Х							
31	DS2	Sep 07, 2022	Soil	S22-Se0	032259			х		Х							
32	SPIKE1	Sep 07, 2022	Trip S (solic	Spike S22-Se0	032260							х					
33	BLANK1	Sep 07, 2022	Trip I (solic	Blank S22-Se0 1)	032261						х						
34	RW1	Sep 07, 2022	Wate	er S22-Se0	032263					Х							
35	BH29/0.8_0.9	Sep 07, 2022	Soil	S22-Se0	032264			Х		Х							
36	HA1/0_0.2	Sep 07, 2022	Soil	S22-Se0	032267		Х										
37	HA1/0.4_0.5	Sep 07, 2022	Soil	S22-Se0	032268		Х										

Eurofins ABN: 50	Eurofins Environme ABN: 50 005 085 521	ent Testing Australia F	Pty Ltd										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	ent Testing NZ Ltd		
web: w email:	ww.eurofins.com.au	s.com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Sydney 179 Mago Girraween NSW 2145 Tel: +61 2 NATA# 12	war Ro 5 9900 8 61 Site	ad 3400 2# 1821	Canb Unit 1 Mitch ACT Tel: + 7	erra 1,2 Dac ell 2911 -61 2 61	re Stree	t 1, N Q 1 T	risbane /21 Sma lurarrie LD 417 el: +61 ATA# 1	e allwood Place 72 7 3902 4600 261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Eurofins Environment Testir NZBN: 9429046024954 Auckland Christch 35 O'Rorke Road Rollestor Auckland 1061 Christch Tel: +64 9 526 45 51 Tel: 0800 IANZ# 1327 IANZ# 1327 Sep 14, 2022 1:25 PM Sep 21, 2022 5 Day Kiran Baby	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tei: 080 856 450 IANZ# 1290
Co Ad	mpany Name: dress:	Geo-Logix Bld Q2 Lev Warriewoo NSW 2102	P/L el 3, 2309/4 Daydre: d	am St			O Re Pl Fa	rder N eport hone: ax:	No.: #:	 ((90560 92365 02 997 02 997	03TP 7 79 172 79 122	22 22		Received: Due: Priority: Contact Name:	Sep 14, 2022 1:25 Sep 21, 2022 5 Day Kiran Baby	PM
Pro Pro	oject Name: oject ID:	TERRY HII 2201064	LS-PRIMARY												Eurofins Analytical	Services Manager :	Asim Khan
	Melbourne Laboratory - NATA # 1261 Site # 1254						HOLD	Moisture Set	Cation Exchange Capacity	Eurofins Suite B9	BTEXN and Volatile TRH	BTEXN and Volatile TRH					
Melk	ourne Laborate	ory - NATA # 1	261 Site # 1254						X	X	Х		_				
Sydi	ney Laboratory	- NATA # 1261	Site # 18217				X	X	X	X	X	X	4				
Bris	bane Laborator	y - NATA # 12	61 Site # 20794			Х							-				
38	HA1/1_1.1	Sep 07, 2022	Soil	S22-Se00	32269		X						-				
39	HA2/0.7_0.8	Sep 07, 2022	Soil	S22-Se00	32270		X						4				
40	HA3/0_0.25	Sep 07, 2022	Soil	S22-Se00	32271		X						4				
41	HA3/0.7_0.8	Sep 07, 2022	Soll	S22-Se00	32272								-				
42	$HA4/0.1_0.4$	Sep 07, 2022	Soil	522-5e00	22273								-				
43	HA5/0 2 0 3	Sep 07, 2022	Soil	S22-Se00	32274		x						-				
45	HA5/1 2 1 4	Sep 07, 2022	Soil	S22-Se00	32276		X						1				
46	HA6/1 1 2	Sep 07, 2022	Soil	S22-Se00	32270		X						1				
40	BH7/0.4.0.5	Sep 07, 2022	Soil	S22-Se00	32278		X						1				
48	BH7/1.8 2	Sep 07, 2022	Soil	S22-Se00	32279		x		1	1			1				
49	BH7/2.5 2.6	Sep 07, 2022	Soil	S22-Se00	32280		x		1				1				
50	BH8/1 1.2	Sep 07, 2022	Soil	S22-Se00	32281		x		1				1				
51	BH9/0.8 1	Sep 07, 2022	Soil	S22-Se00	32282		x						1				
		1000 01, 2022		1022 0000				1	1		1	1					

🔅 eurofins 📲	ABN: 50 005 085 521	ent Testing Australia F	Pty Ltd										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	ent Testing NZ Ltd		
web: ww email: E	ww.eurofins.com.au	s.com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Sydney 179 Mago Girraweer NSW 214 Tel: +61 2 NATA# 12	war Ro 5 29900 8 261 Site	ad 3400 # 1821	Canb Unit 1 Mitch ACT Tel: + 7	erra 1,2 Dac ell 2911 -61 2 61	re Stree 13 809	t 1/ M Q 1 To N	risbane 21 Sma urarrie LD 417 el: +61 ATA# 1	allwood Place 72 7 3902 4600 261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Image: Services Manager : Asim Ki Services Manager : Asim Ki	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tei: 0800 856 450 IANZ# 1290
Coi Ade	mpany Name: dress:	Geo-Logix Bld Q2 Lev Warriewoo NSW 2102	P/L el 3, 2309/4 Daydre: d	am St			O Re Pi Fa	rder N eport hone: ax:	No.: #:	 9 (P0560 92365 02 997 02 997	3TP 7 79 172 79 122	22 22		Received: Due: Priority: Contact Name:	Sep 14, 2022 1:25 Sep 21, 2022 5 Day Kiran Baby	PM
Pro Pro	oject Name: oject ID:	TERRY HII 2201064	LS-PRIMARY												Eurofins Analytical S	Services Manager :	Asim Khan
		s	ample Detail			% Clay	HOLD	Moisture Set	Cation Exchange Capacity	Eurofins Suite B9	BTEXN and Volatile TRH	BTEXN and Volatile TRH					
Melb	ourne Laborate	ory - NATA # 1	261 Site # 1254						X	X	Х		_				
Sydr	ey Laboratory	- NATA # 1261	Site # 18217				X	Х	X	X	Х	X	_				
Brisk	pane Laborator	y - NATA # 12	61 Site # 20794			Х							_				
52	BH10/0.3_0.6	Sep 07, 2022	Soil	S22-Se00)32283		X						_				
53	BH10/1.3_1.5	Sep 07, 2022	Soil	S22-Se00	032284		X						_				
54	BH10/2_2.2	Sep 07, 2022	Soil	S22-Se00)32285		X						_				
55	BH11/0.3_0.6	Sep 07, 2022	Soil	S22-Se00	032286		X										
56	BH11/1.4_1.5	Sep 07, 2022	Soil	S22-Se00)32287		X						-				
57	BH12/1_1.2	Sep 07, 2022	Soll	S22-Se00	032288		X						_				
58	BH13/1_1.2	Sep 07, 2022	Soll	S22-Se00	032289		X						_				
59	BH14/1_1.2	Sep 07, 2022	Soll	S22-Se00	032290												
61		Sop 07, 2022	50ll	522-500	132291								4				
62	BU16/02 05	Sop 07, 2022	501	522-500	132282								4				
62		Sop 07, 2022		522-500	132283								4				
64		Sop 07, 2022	30II 8cii	522-500	132294								4				
04 65		Sep 07, 2022	50II	322-300	132280								4				
00	1.2_1 /01 הט	13ep 07, 2022		322-3000	197790		L ^	1	1	1	1	I	L				

A eurofins	Eurofins Environme ABN: 50 005 085 521	ent Testing Australia F	Pty Ltd										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environm NZBN: 9429046024954	ent Testing NZ Ltd		
web: w email: l	ww.eurofins.com.au	.com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Sydney 179 Mago Girraweer NSW 214 Tel: +61 2 NATA# 12	owar Ro 5 2 9900 8 261 Site	ad 3400 # 1821	Canb Unit 1 Mitch ACT Tel: + 7	erra 1,2 Dac ell 2911 -61 2 61	re Stree 13 809	t 1/ M Q 1 To N	risbane 21 Sma urarrie LD 417 el: +61 7 ATA# 1	ullwood Place 2 7 3902 4600 261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	d Eurofins Environment Testii NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Rollesto Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327 Sep 14, 2022 1:25 PM Sep 21, 2022 5 Day Kiran Baby I Services Manager : Asim K	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Co Ad	mpany Name: dress:	Geo-Logix Bld Q2 Lev Warriewood NSW 2102	P/L el 3, 2309/4 Daydre d	am St			O Re Pi Fa	rder N eport hone: ax:	No.: #:	F 9 () ()	P0560 92365 02 997 02 997	3TP 7 ′9 172 ′9 122	22		Received: Due: Priority: Contact Name:	Sep 14, 2022 1:25 Sep 21, 2022 5 Day Kiran Baby	PM
Pro Pro	oject Name: oject ID:	TERRY HIL 2201064	LS-PRIMARY												Eurofins Analytical \$	Services Manager :	Asim Khan
		s	ample Detail			% Clay	HOLD	Moisture Set	Cation Exchange Capacity	Eurofins Suite B9	BTEXN and Volatile TRH	BTEXN and Volatile TRH					
Melb	ourne Laborate	ory - NATA # 1	261 Site # 1254						X	X	Х		4				
Sydi	ney Laboratory	- NATA # 1261	Site # 18217				X	Х	X	X	Х	X	-				
Bris	bane Laborator	y - NATA # 12	61 Site # 20794			Х							-				
66	BH19/0.7_1	Sep 07, 2022	Soil	S22-Se00	032297		X						-				
67	BH20/0.2_0.4	Sep 07, 2022	Soil	S22-Se00)32298		X						-				
68	BH20/1_1.2	Sep 07, 2022	Soil	S22-Se00)32299		X						-				
69	BH21/1_1.2	Sep 07, 2022	Soil	S22-Se00	032300		X						-				
70	BH21/1.8_2	Sep 07, 2022	Soil	S22-Se00	032301		X						-				
71	BH21/3_3.2	Sep 07, 2022	Soll	S22-Se00	032302		X						-				
72	BH22/0.8_1	Sep 07, 2022	Soll	S22-Se00	032303		X						-				
73	BH23/0.1_0.4	Sep 07, 2022	Soll	S22-Se00	032304								-				
75	BH24/1 4 2	Sep 07, 2022	5011	522-500	132305								4				
76		Son 07, 2022	501	<u></u>	132300								{				
77	BH25/1.2_1.4	Son 07, 2022	50ll	S22-SEU	132300								{				
79	BH26/1 4 2	Son 07, 2022	50ll	<u>322-3600</u>	122200								{				
70		Sep 07, 2022	30II	322-300	132308								{				
19		13ep 07, 2022	50	322-3000	132310		L ^	1	1	1	1]				

	Cine o	Eurofins Environm ABN: 50 005 085 521	ent Testing Australia F	Pty Ltd										Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environn NZBN: 942904602495	nent Testing NZ Ltd 4
web: www.eurofins.com.au email: EnviroSales@eurofins.	.com	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254	Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 4 NATA# 1261 Site# 1254	Sydney 179 Mago Girraweer NSW 214 Tel: +61 2 NATA# 12	owar Ro 5 2 9900 8 261 Site	oad 8400 e# 1821	Canb Unit 1 Mitch ACT 2 Tel: +	erra I,2 Daci ell 2911 -61 2 61	re Stree	t 1, M Q 1 T N	risbane /21 Sma lurarrie /LD 417 el: +61 7 ATA# 12	llwood Place 2 3902 4600 261 Site# 2079	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 44 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	td Eurofins Environm NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327 Sep 14, 2022 1:25 Sep 21, 2022 5 Day Kiran Baby Al Services Manager :	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Company Name: Address:	Geo-Logix Bld Q2 Lev Warriewood NSW 2102	P/L el 3, 2309/4 Daydre d	eam St			O Re Pl Fa	rder N eport hone: ax:	No.: #:	F S C C	P0560 92365 92 997 92 997	03TP 7 79 172 79 122	2 2		Received: Due: Priority: Contact Name:	Sep 14, 2022 1:25 Sep 21, 2022 5 Day Kiran Baby	РМ
Project Name: TERRY HILLS-PRIMARY Project ID: 2201064														Eurofins Analytical	Services Manager	: Asim Khan
	s	ample Detail			% Clay	HOLD	Moisture Set	Cation Exchange Capacity	Eurofins Suite B9	BTEXN and Volatile TRH	BTEXN and Volatile TRH					
Melbourne Laborato	ory - NATA # 1	261 Site # 1254						х	х	х						
Sydney Laboratory -	- NATA # 1261	Site # 18217				X	Х	X	X	Х	X					
Brisbane Laboratory	/ - NATA # 12	61 Site # 20794			Х											
80 BH28/0.8_1	Sep 07, 2022	Soil	S22-Se00	032311		X										
81 BH29/0_0.1	Sep 07, 2022	Soil	S22-Se00)32312		X										
82 BH29/0.3_0.4	Sep 07, 2022	Soil	S22-Seul	132313		×										
84 BH30/0 5 0 7	Sep 07, 2022	Soil	S22-Se00	132314		x										
85 BH30/1.2 1.4	Sep 07, 2022	Soil	S22-Se00	032316		X										
86 BH30/1.4 1.5	Sep 07, 2022	Soil	S22-Se00	032317		X										
						1	1	1	1	1	1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank			1 1	1		
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank		1				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank				1		
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
а-НСН	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Conductivity (1:5 aqueous extract at 25 °C as rec.)	uS/cm	< 10	10	Pass	
LCS - % Recovery				•	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	84	70-130	Pass	
TRH C10-C14	%	70	70-130	Pass	
Naphthalene	%	83	70-130	Pass	
Naphthalene	%	81	70-130	Pass	
TRH C6-C10	%	89	70-130	Pass	
TRH C6-C10	%	94	70-130	Pass	
TRH >C10-C16	%	75	70-130	Pass	
LCS - % Recovery					
втех					
Benzene	%	98	70-130	Pass	
Toluene	%	101	70-130	Pass	
Ethylbenzene	%	97	70-130	Pass	
m&p-Xylenes	%	101	70-130	Pass	
o-Xylene	%	102	70-130	Pass	
Xylenes - Total*	%	102	70-130	Pass	
LCS - % Recovery		-	-	-	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	89	70-130	Pass	
Acenaphthylene	%	85	70-130	Pass	
Anthracene	%	93	70-130	Pass	
Benz(a)anthracene	%	87	70-130	Pass	
Benzo(a)pyrene	%	80	70-130	Pass	
Benzo(b&j)fluoranthene	%	82	70-130	Pass	
Benzo(g.h.i)perylene	%	84	70-130	Pass	
Benzo(k)fluoranthene	%	88	70-130	Pass	
Chrysene	%	90	70-130	Pass	
Dibenz(a.h)anthracene	%	83	70-130	Pass	
Fluoranthene	%	87	70-130	Pass	
Fluorene	%	91	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	85	70-130	Pass	1

Test		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code	
Naphthalene			%	90		70-130	Pass	
Phenanthrene			%	89		70-130	Pass	
Pyrene			%	90		70-130	Pass	
LCS - % Recovery					• •			
Organochlorine Pesticides								
Chlordanes - Total			%	100		70-130	Pass	
4.4'-DDD			%	93		70-130	Pass	
4.4'-DDE			%	98		70-130	Pass	
4.4'-DDT			%	97		70-130	Pass	
а-НСН			%	86		70-130	Pass	
Aldrin			%	86		70-130	Pass	
b-HCH			%	98		70-130	Pass	
d-HCH			%	101		70-130	Pass	
Dieldrin			%	89		70-130	Pass	
Endosulfan I			%	95		70-130	Pass	
Endosulfan II			%	86		70-130	Pass	
Endosulfan sulphate			%	76		70-130	Pass	
Endrin			%	91		70-130	Pass	
Endrin aldehyde			%	75		70-130	Pass	
Endrin ketone			%	91		70-130	Pass	
g-HCH (Lindane)			%	103		70-130	Pass	
Heptachlor			%	118		70-130	Pass	
Heptachlor epoxide			%	104		70-130	Pass	
Hexachlorobenzene			%	92		70-130	Pass	
Methoxychlor			%	125		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	96		80-120	Pass	
Cadmium			%	94		80-120	Pass	
Chromium			%	87		80-120	Pass	
Copper			%	83		80-120	Pass	
Lead			%	103		80-120	Pass	
Mercury			%	100		80-120	Pass	
Nickel			%	82		80-120	Pass	
Zinc			%	85		80-120	Pass	
LCS - % Recovery					1 1			
% Clay			%	123		70-130	Pass	
Conductivity (1:5 aqueous extract at	25 °C as rec.)		%	90		70-130	Pass	
Teet	Lab Commis ID	QA	Unite	Decult 4		Acceptance	Pass	Qualifving
Test	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery				1	1 1	T		
Heavy Metals	1			Result 1				
Arsenic	S22-Se0032230	CP	%	100		75-125	Pass	
Cadmium	S22-Se0032230	CP	%	112		75-125	Pass	
Copper	S22-Se0032230	CP	%	110		75-125	Pass	
Lead	S22-Se0032230	CP	%	111		75-125	Pass	
Nickel	S22-Se0032230	CP	%	110		75-125	Pass	
Zinc S22-Se0032230 CP		%	113		75-125	Pass		
Spike - % Recovery								
Total Recoverable Hydrocarbons	I			Result 1				
TRH C6-C9	S22-Se0032247	CP	%	73		70-130	Pass	
Naphthalene	S22-Se0032247	CP	%	72		70-130	Pass	
TRH C6-C10	S22-Se0032247	CP	%	78		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzene	S22-Se0032247	CP	%	83			70-130	Pass	
Toluene	S22-Se0032247	CP	%	90			70-130	Pass	
Ethylbenzene	S22-Se0032247	CP	%	79			70-130	Pass	
m&p-Xylenes	S22-Se0032247	CP	%	86			70-130	Pass	
o-Xylene	S22-Se0032247	CP	%	86			70-130	Pass	
Xylenes - Total*	S22-Se0032247	CP	%	86			70-130	Pass	
Spike - % Recovery									
Organochlorine Pesticides				Result 1					
Chlordanes - Total	S22-Se0032247	CP	%	71			70-130	Pass	
4.4'-DDE	S22-Se0032247	CP	%	70			70-130	Pass	
b-HCH	S22-Se0032247	CP	%	64			70-130	Fail	Q08
d-HCH	S22-Se0032247	CP	%	70			70-130	Pass	
Endosulfan I	S22-Se0032247	CP	%	76			70-130	Pass	
Endrin	S22-Se0032247	CP	%	76			70-130	Pass	
g-HCH (Lindane)	S22-Se0032247	CP	%	85			70-130	Pass	
Heptachlor	S22-Se0032247	CP	%	93			70-130	Pass	
Hexachlorobenzene	S22-Se0032247	CP	%	70			70-130	Pass	
Methoxychlor	S22-Se0032247	CP	%	97			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S22-Se0032250	CP	%	92			75-125	Pass	
Cadmium	S22-Se0032250	CP	%	93			75-125	Pass	
Chromium	S22-Se0032250	CP	%	118			75-125	Pass	
Copper	S22-Se0032250	CP	%	82			75-125	Pass	
Lead	S22-Se0032250	CP	%	123			75-125	Pass	
Mercury	S22-Se0032250	CP	%	89			75-125	Pass	
Nickel	S22-Se0032250	CP	%	81			75-125	Pass	
Zinc	S22-Se0032250	CP	%	104			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S22-Se0032259	CP	%	86			75-125	Pass	
Cadmium	S22-Se0032259	CP	%	86			75-125	Pass	
Chromium	S22-Se0032259	CP	%	92			75-125	Pass	
Copper	S22-Se0032259	CP	%	75			75-125	Pass	
Lead	S22-Se0032259	CP	%	80			75-125	Pass	
Mercury	S22-Se0032259	CP	%	99			75-125	Pass	
Nickel	S22-Se0032259	CP	%	89			75-125	Pass	
Zinc	S22-Se0032259	CP	%	80			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	S22-Se0032234	СР	uS/cm	< 10	< 10	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S22-Se0032236	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S22-Se0032236	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-Se0032236	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S22-Se0032236	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Se0032236	CP	mg/kg	0.1	0.1	7.9	30%	Pass	
Ethylbenzene	S22-Se0032236	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Se0032236	CP	mg/kg	0.2	0.2	3.9	30%	Pass	

Duplicate									
BTEX			-	Result 1	Result 2	RPD			
o-Xylene	S22-Se0032236	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Se0032236	CP	mg/kg	0.3	< 0.3	4.5	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S22-Se0032236	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-Se0032236	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S22-Se0032236	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-Se0032236	CP	mg/kg	1.3	1.1	16	30%	Pass	
Benzo(a)pyrene	S22-Se0032236	CP	mg/kg	1.8	1.1	43	30%	Fail	Q15
Benzo(b&j)fluoranthene	S22-Se0032236	CP	mg/kg	1.2	0.9	25	30%	Pass	
Benzo(g.h.i)perylene	S22-Se0032236	CP	mg/kg	1.3	0.9	37	30%	Fail	Q15
Benzo(k)fluoranthene	S22-Se0032236	CP	mg/kg	2.1	1.2	61	30%	Fail	Q15
Chrysene	S22-Se0032236	CP	mg/kg	1.8	1.4	25	30%	Pass	
Dibenz(a.h)anthracene	S22-Se0032236	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S22-Se0032236	CP	mg/kg	3.2	2.4	32	30%	Fail	Q15
Fluorene	S22-Se0032236	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S22-Se0032236	CP	mg/kg	0.8	0.6	29	30%	Pass	
Naphthalene	S22-Se0032236	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S22-Se0032236	CP	mg/kg	0.6	< 0.5	26	30%	Pass	
Pyrene	S22-Se0032236	CP	mg/kg	3.9	2.5	44	30%	Fail	Q15
Duplicate									
Total Recoverable Hydrocarbons	1			Result 1	Result 2	RPD			ļ
TRH C6-C9	S22-Se0032246	CP	mg/kg	< 20	< 20	<1	30%	Pass	ļ
TRH C10-C14	S22-Se0032246	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S22-Se0032246	CP	mg/kg	< 50	< 50	<1	30%	Pass	ļ
TRH C29-C36	S22-Se0032246	CP	mg/kg	< 50	< 50	<1	30%	Pass	ļ
Naphthalene	S22-Se0032246	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	ļ
TRH C6-C10	S22-Se0032246	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S22-Se0032246	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S22-Se0032246	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S22-Se0032246	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S22-Se0032246	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Se0032246	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-Se0032246	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Se0032246	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-Se0032246	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Se0032246	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				D It 4				1	
Polycyclic Aromatic Hydrocarbons		0.5	"	Result 1	Result 2	RPD	0.001		
Acenaphthelese	S22-Se0032246		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-Se0032246		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S22-Se0032246		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-Se0032246		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	522-Se0032246	02	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)Tiuoranthene	S22-Se0032246	02	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.n.i)peryiene	522-Se0032246		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S22-SeUU32246		mg/Kg	< 0.5	< 0.5	<1	30%	Pass	
	522-Se0032246		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S22-SeUU32246		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Elugraph	S22-SeUU32246		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	322-SeUU32246		mg/Kg	< 0.5	< 0.5	<1	30%	Pass	
indeno(1.2.3-cd)pyrene	322-300032246	UP UP	тіу/кд	< 0.5	< 0.5	<1	30%	Pass	1

Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Naphthalene	S22-Se0032246	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S22-Se0032246	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S22-Se0032246	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-Se0032246	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S22-Se0032246	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S22-Se0032246	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S22-Se0032246	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
а-НСН	S22-Se0032246	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S22-Se0032246	СР	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-Se0032246	СР	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-Se0032246	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-Se0032246	СР	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S22-Se0032246	СР	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehvde	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-Se0032246	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S22-Se0032246	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	011 0000011 10			1 0.0	1 010	••	0070	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Se0032249	CP	ma/ka	< 2	21	24	30%	Pass	
Cadmium	S22-Se0032249	CP	ma/ka	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Se0032249	CP	ma/ka	13	14	53	30%	Pass	
Copper	S22-Se0032249	CP	ma/ka	< 5	13	89	30%	Fail	015
Lead	S22-Se0032249	CP	ma/ka	32	18	55	30%	Fail	015
Mercury	S22-Se0032249		mg/kg	< 0.1	< 0.1		30%	Pass	QIU
Nickel	S22-Se0032249		mg/kg	< 5	75	59	30%	Fail	015
Zinc	S22-Se0032249		mg/kg	16	24	40	30%	Fail	015
Dunlicate	022 000002240	01	iiig/kg		27	-10	5070	i an	QIU
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Se0032251	CP	ma/ka	- 2	< 2	-1	30%	Pass	
Cadmium	S22-Se0032251		mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Se0032251		mg/kg	15	21	20	30%	Pass	
Copper	S22-Se0032251		mg/kg	- 5	<u> </u>		30%	Pass	
Lead	S22-Se0032251		mg/kg	11	12	76	30%	Pass	
Morouny	S22-Se0032251		mg/kg	0.2	0.1	7.0	30%	Pass	
Niekol	S22-Se0032251		mg/kg	0.2	0.1		30%	Pass	
	S22-Se0032251		mg/kg	< 0	< 0	<1	30%	Pass	
	322-360032231	UP	під/кд	21	29	9.3	30%	- rass	
Total Basayarable Undreasthere				Dogult 1	Booult 0	חחם			
	800 800000F0	00	m m/l	Result 1		KPU .4	200/	Dece	
			mg/Kg	< 20	< 20	<1	30%	Pass	
			mg/Kg	< 50	< 50	<1	30%	Pass	
	522-SeUU32252		mg/Kg	< 50	< 50	<1	30%	Pass	
	SZZ-SEUU32252	02	mg/Kg	< 50	< 50	<1	30%	Pass	
TRH >016-034	522-Se0032252	02	mg/kg	< 100	< 100	<1	30%	Pass	
IKH >034-040	S22-Se0032252	CP	mg/kg	< 100	< 100	<1	30%	Pass	L

Duplicate									
Polycyclic Aromatic Hydrocarbons	6			Result 1	Result 2	RPD			
Acenaphthene	S22-Se0032252	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-Se0032252	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S22-Se0032252	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-Se0032252	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S22-Se0032252	СР	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	S22-Se0032252	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a.h.i)pervlene	S22-Se0032252	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S22-Se0032252	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S22-Se0032252	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a b)anthracene	S22-Se0032252	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S22-Se0032252	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S22-Se0032252	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1 2 3-cd)pyrepe	S22-Se0032252	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Nanhthalene	S22-Se0032252	CP	ma/ka	< 0.0	< 0.0	<1	30%	Pass	
Phenanthrene	S22-Se0032252		ma/ka	< 0.5	< 0.5	~1	30%	Pass	
Pyrene	S22-Se0032252		ma/ka	< 0.5	< 0.5		30%	Dass	
Duplicate	022-060002202	01	iiig/kg	< 0.5	< 0.5		3078	1 855	
Organochlorine Pesticides				Result 1	Result 2	PPD			
Chlordanes - Total	S22-Se0032252	CP	ma/ka			~1	30%	Pass	
	S22-Se0032252		mg/kg	< 0.05	< 0.05		30%	Pass	
4.4-DDD	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4-DDE	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass Dass	
	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dialdrin	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endopulfon	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldebyde	S22-Se0032252		mg/kg	< 0.05	< 0.05	~1	30%	Dass	
Endrin kotono	S22-Se0032232		mg/kg	< 0.05	< 0.05		30%	Page	
	S22-Se0032252		mg/kg	< 0.05	< 0.05		30%	Page	
Hoptachlor	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor opovido	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S22-Se0032252		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methovychlor	S22-Se0032252		mg/kg	< 0.05	< 0.05	~1	30%	Dass	
Toxaphana	S22-Se0032252	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Duplicate	022 000002202	01	iiig/kg	< 0.5	< 0.0		5070	1 433	
Polycyclic Aromatic Hydrocarbon	2			Result 1	Result 2	RPD			
Acenaphthene	\$ \$22-5e0032256	CP	ma/ka				30%	Pass	
Acenaphthylene	S22-Se0032256	CP	ma/ka	< 0.0	< 0.5	<1	30%	Pass	
Anthracene	S22-Se0032256	CP	ma/ka	< 0.0	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-Se0032256	CP	mg/kg	< 0.0	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S22-Se0032256	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	S22-Se0032256	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a,h,i)pervlene	S22-Se0032256	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S22-Se0032256	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S22-Se0032256	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a,h)anthracene	S22-Se0032256	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S22-Se0032256	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S22-Se0032256	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pvrene	S22-Se0032256	CP	mg/ka	< 0.5	< 0.5	<1	30%	Pass	
									,

Duplicate									
Polycyclic Aromatic Hydrocarbons	S			Result 1	Result 2	RPD			
Naphthalene	S22-Se0032256	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S22-Se0032256	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S22-Se0032256	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate								1	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-Se0032256	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-Se0032256	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S22-Se0032256	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1					
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Se0032258	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S22-Se0032258	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Se0032258	CP	mg/kg	13	14	1.0	30%	Pass	
Copper	S22-Se0032258	CP	mg/kg	8.1	8.6	5.8	30%	Pass	
Lead	S22-Se0032258	CP	mg/kg	7.3	7.2	1.3	30%	Pass	
Mercury	S22-Se0032258	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-Se0032258	CP	mg/kg	< 5	7.0	36	30%	Fail	Q15
Zinc	S22-Se0032258	CP	mg/kg	12	12	1.2	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q08	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.
Q09	The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Quinn Raw	Analytical Services Manager
Gabriele Cordero	Senior Analyst-Metal
Jonathon Angell	Senior Analyst-Inorganic
Mary Makarios	Senior Analyst-Metal
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Volatile
Ryan Phillips	Senior Analyst-Inorganic

11/1/

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

⁻ Indicates Not Requested

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521			
Melbourne	Geelong	Sydney	Canberra
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Unit 1,2 Da
Dandenong South	Grovedale	Girraween	Mitchell
VIC 3175	VIC 3216	NSW 2145	ACT 2911
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Tel: +61 2 6
NATA# 1261 Site# 1254	NATA# 1261 Site# 1254	NATA# 1261 Site# 18217	

Brisbane cre Street 1/21 Smallwood Place Murarrie QLD 4172 6113 8091 Tel: +61 7 3902 4600

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079 NATA# 2377 Site# 2370

www.eurofins.com.au

Perth

Welshpool

WA 6106

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898 NZBN: 9429046024954 Auckland 46-48 Banksia Road 35 O'Rorke Road Penrose, Auckland 1061 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51

EnviroSales@eurofins.com

IANZ# 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Sample Receipt Advice

Company name:	Geo-Logix P/L
Contact name:	Kiran Baby
Project name:	TERRY HILLS-PRIMARY
Project ID:	2201064
Turnaround time:	5 Day
Date/Time received	Sep 14, 2022 1:25 PM
Eurofins reference	923657

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 1.8 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- 1 Sample containers for volatile analysis received with zero headspace.
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

TS1 and TS2 sent to MEL lab.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Asim Khan on phone : or by email: AsimKhan@eurofins.com Results will be delivered electronically via email to Kiran Baby - kbaby@geo-logix.com.au.

Note: A copy of these results will also be delivered to the general Geo-Logix P/L email address.

Global Leader - Results you can trust

-		roject Na Project Nu	me: mber:	Tel 20	L D	(6)	<u>ANALYS</u>		EQ	UIR	ED			Quot Send TAT r	e Re Invo	ferenc blce to red:	e:	acco Sfo	unts Ana	Ogeo	o-log	ix.co	m.au	1				
.ab ID Sam / HA1/0- / HA1/0	ple ID 0-0-2	Date -(19/22	* × soil	water	air	other	Comments	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	vocs	BTEXN		OCPs	OPPs	Phenois	Metals - M8	Metals - Specify **	TCLP	Asbestos (ID only)	Asbestos (WA DOH)	Foreign Materials	Conductivity (EC)	53	Clay forthat	Hold	SUITE	Eurofins MGT S Codes
HAILO HAILI.	7-0.8			-				\vdash	X	X	-	X	-		32						-	+	+	+	-	XX		B1 TRH/BTEXN B1A TRH/MAH
- HA2/0	1.2-0.3			+	+	$\left \right $			1	4	1	7	+	A	an Z			-									89	B2A TRH/BTEXN/Pb B2A TRH/MAH/Pb
-HA2/0	7-0-8			1	-				X	X	>	XX		X		5	2	+	\square	+	+	+	-			X		B3 PAH/Phenois B4 TRH/BTEXN/PAH
- HA3/01	-0.25								-	-						1	1			+	+	+	-			-	89	B4A TRH/BTEXN/PAH/Phenols B5 TRH/BTEXN/M7
HAJO 2	5-045									-	-	-								1	-	+			-	X	-	B6 TRH/BTEXN/M8
HALLAN	0.8	+ +		-					1	X	X		-	X	-	X						1			-	X		B7A TRH/BTEXN/PAH/Phenois/M8
~ HAS MIL	1.2	++		+		-			+	1	+		-		+	-	-								>	(B	39 TRH/BTEXN/PAH/OCP/M8
V HA4/1.2	-1.3			+		+	HA4/11-1.2			1	T	\uparrow	1	-	+	-	-	\vdash	-	-					X	e	B	10 TRH/BTEXN/PAH/OCP/OPP/M8
× HA5/0.2	-0.3		1		+	+		X	X		X	X	1	X	+	×		-	+	-	-		-		>	<	Br	11A B11/Alkalinity
- HAS/0.7-	0.8				+	+									1	1		+	+	+	-		-	-		B	7 B1	12 TRH/BTEXN/Oxygenates/Ethanol
V HA5/1.2-	1.4					1		X	X	4	X	×	3	X		X		-	+	+		-	-	-	X	-	B1:	2A TRH/BTEXN/Oxygenates 3 OCP/PCB
HA6/0.5-	0.6							-		-		-	-						1			-	+	+	M	Ba	B14	4 OCP/OPP
V MA6/1.0-1	.2	V V	1					X	×		X	×	X	<		X							xx	X	~	D	- B16	3 TDS/SO4/CH4/Alk/BOD/COD/HPC/
								1			+	+	+	+	-							1	1	1	X	D	B17 B18	SO4/NO3/Fe++/HPC/CUB
indier As, Ca, Cr, Cu,	Ni, Pb, Zn, Hg	, Cr ⁶⁺ . Cr ³⁺ ,	Fe ²⁺ , F	e ³⁺ , B	e, B, A	I, V, M	n, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Ti	Bi Sh	_				1	1									1	T	1	-	B19	N/P/K
			-				Chain of	Cus	tod	v						_									-		820	CEC/%ESP/Ca/Ma/Na/K
d by: TP		Date/Time-	11.19	121		-	T. h			,			~	-	_		-											

Geo-Le Building Q2 2309/4 Day Warriewood	p gix Pty Ltd 2, Level 3 rdream St d, NSW 2102	Project Mana Contact ema	ager: il:	Kb	ille	y6	Ba ngeo-	HAIN OF CUSTON	DY	ssex	eye	@g	60-	-log	Pag Pur (X C Quo	e chas C/M te R	e Or • a • a	of der N U ence:	5	ţ	0	>60	0.3	TF	>		-				
ABN: 86 116 8	92 936	Project Name	e: -	Te	420	41	tills	Primory							Sen	d Inv	/oice	to:	1	accou	Ints	age	o-lop	ix.c	om.	au					
P: (02) 9979 F: (02) 9979	1722 1222	Project Numl	ber:	22	01	06	4	Date Submitted:	-/04 S RE	۹ - 01	- JIR	ED			TAT	requ	uired	:	4	3-100	de	ara	2	_		_	-				
				M	Matr	ix			T	T		T								T	Т	Т	Ŷ	1		T	T	1,	1		1
Lab ID	Sample ID	Date	soil	water	air	paint, filters	other	Comments	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	vocs	BTEXN	PAHs	PCBs	OCPs	OPPs	Phenols	Metals - M8	Metals - Lead	Tri D	Asbestos (ID only)	Asbestos (WA DOI	Foreign Materials	Conductivity (EC)	H	EC.	Clay Central	toted	suite	Eurofins MGT Suite Codes
	- BH-7/0.4-0.5	9/9/22	X						T									_	-	-	1	T	T	-					X	07	B1 TRH/BTEXN
7	BHT 0.8-0.9	,	1						Γ	×	×		X	X		X)	X									1		Ra	B1A TRH/MAH B2 TRH/BTEXN/Pb
	BHT/1.8-2.0								Γ																				X	101	B2A TRH/MAH/Pb
2	BHT12:5-2.6																									1			×		B4 TRH/BTEXN/PAH
لا	BH810.3-0.5							1		×	×	-	×	×		X		>	x										1	Qq	B4A TRH/BTEXN/PAH/Phenois
	BH8/1.0-1.2																												X	ert	B6 TRH/BTEXN/M8
	BH910-3-0-6									X	X		X	×		X		3	×										-	89	B7 TRH/BTEXN/PAH/M8
	BH9/0.8-1-0															-							1			T	1		×		B8 TRH/VOC/PAH/M8
	BH10/0.3-0.6																										1		X		B9 TRH/BTEXN/PAH/OCP/MB
	BH1010-9-1.0									X	X		X	X		X		Ð	x		1						1			89	B10 TRH/BTEXN/PAH/OCP/OPP/M8 B11 Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/NH5/NO3
1	BH1011.3-1.5																					1	1		1		1		×	1	B11A B11/Alkelinity
	BH10/2.0-2.2								Г										T										x		B11B B11/EC/TDS B12 TRH/BTEXN/Oxygenates/Ethanol
1	BH110.3-0.6																		1		T	1			T	1	1		×		B12A TRH/BTEXN/Oxygenates
L	BHIL/10-1.2									×	×		x	x		×		,	<		1	1			1	1	-	-		Ra	B13 OCP/PCB B14 OCP/OPP
	BHILT.6-1.5									1			~	~				ŕ		+	1	1				1	-		X	21	B15 OCP/OPP/PCB
	BHP12/0.2-Dela									X	x		X	×		×		,	<	+	+	1	1		-	×	×	X	~	89	B16 TDS/SO_/CH_/Alk/BOD/COD/HPC/CUB
/	BH12/1.0-1.2	1	1											-				1								-		~	X		B18 CI-/SO4/pH
																															B20 CEC/%ESP/Ca/Ma/Na/K

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺, Cr ³⁺, Fe ²⁺, Fe ³⁺, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, TI, Bi, Sb

Chain of Custody Date/Time: 14/9/22 Signature: Kercep Signature: 22 TP Date/Time: # 923657

Relinquished by:

Geo-Lo Building Q2 2309/4 Days	gix Pty Ltd , Level 3 dream St	Project Mana	ager:	K	170	ЦИ	Ba	HAIN OF CUSTOR	Y			. @			Page	e hase	3 Ore	of	;	Pl	25	60	37	τP			<u>s</u>				
Warriewood	, NSW 2102	Contact ema	ul:	KB	ak	y	a) gee	-lojok- comace, t	00(0	1850	Kg	100	gei		Quot	te Re	fere	nce:	-		_				_	_					
ABN: 86 116 89	2 936	Project Name	e:	Tes	ky	f	tills	Primary							Send	d Inv	oice	to:	a	coun	ts@	geo	-logi	x.co	m.a	u					
P: (02) 9979 1 F: (02) 9979 1	1722	Project Num	ber:	2	20	101	4	Date Submitted: 14	/09	QU	IRE	=D			TAT	requ	ired			Fan	da	rd			-	_				_	
				N	Aatr	ix			ī										1	T			6				1	-		1	1
Lab ID	Sample ID	Date	soil	water	air	paint, filters	other	Comments	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	vocs	BTEXN	PAHs	PCBs	ocps	OPPs	Phenols Metals - M8	Metals - Load	Metals - Specify **	TCLP	Asbestos (ID only)	Asbestos (WA DOH	Foreign Materials	Conductivity (EC)	H	CEC	Clay Content	told	SUITE	Eurofins MGT Suite Codes
-	BH13/0.3-0.5	9/9/22	×							X	×		X	×	-	x	-	X		-		-		and a	-	-			-	Ra	B1 TRH/BTEXN
	BH13/1.0-1.2	1	1													1		1	T	1									V	P1	B1A TRH/MAH B2 TRH/BTEXN/Pb
-	BH14/0.3-07									X	X		×	X		X		×		1										89	B2A TRH/MAH/Pb
V	BH14/1.0-1.2												<u> </u>											1					X	~1	B3 PAH/Phenols B4 TRH/BTEXN/PAH
1	8415/0-3-0.6									X	×		X	×	-	X		X												RA	B4A TRH/BTEXN/PAH/Phenols
	18415/0-9-1.0																	1		1									X	DI	B5 TRH/BTEXN/M7 B6 TRH/BTEXN/M8
-	BH15/04-1.5																		T									-	X		B7 TRH/BTEXN/PAH/M8
	BH1610-3-0.5																		T										~		B7A TRH/BTEXN/PAH/Phenols/M8 B8 TRH/VOC/PAH/M8
	B+11610-55-0	7								×	×		×	×		×	1	>												29	B9 TRH/BTEXN/PAH/OCP/MS
	BH16 1.0-1.2									-	-		1		-		1	Ť	1							-			~	DI	B10 TRH/BTEXN/PAH/OCP/OPP/M8
	BH1-10.6-08									4	x		x	×	+	×	-	X	-							~	~	~		Ba	B11A B11/Alkalinity
	BHIT/1.0-1.2										-			-	-	1	+	ŕ	+			-				X	~	-	V	DI	B11B B11/EC/TDS
-	PHE18 1 1.2-0.5		Ħ							×	x		~	×		×	+		-						-	-				00	B12A TRH/BTEXN/Oxygenates
	BH18/1.0-1.2									1-	1		1		- '	-	-	1			-			-	-	-		-	20	.57	B13 OCP/PCB
	RH19/0-1-0-3				-		-			V	-	-	-		-		+	+	-		-	-	-	-	-	-		-	X	20	B14 OCP/OPP B15 OCP/OPP/PCB
	purialn.T-1.D				•		-			~	X	-	~	×	+	×	+	×	-		-	-	-	-	-	-		-	~	BY	B16 TDS/SO4/CH4/Alk/BOD/COD/HPC/CUB
/	DLe 20 (01 2-0.1					-	-			+	-	-	-	+	-	-	+	-	-	-	-	-	-	-	-	-	-	-1	~	-	B17 SO ₄ /NO ₃ /Fe++/HPC/CUB
	1242010.2-07	V	1	-	-	-	-				~	-	v	-	-		+	-	-		-	-	+	-	-	-	-	-	×	12.0	B10 N/P/K
ę	10102010.0-01		P	_						X	X.		~	X		X	_	X	-											Da	B20 CEC/%ESP/Ca/Ma/Na/K

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr *, Cr *, Fe *, Fe *, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, TI, Bi, Sb

Chain of Custody Received by: MARES H Que Date/Time: 14/9/22 Signature: harap TP Relinquished by: Date/Time: Signature: # 923657

Geo-Lo Building Q2, 2309/4 Dayo	gix Pty Ltd Level 3 Iream St	Project Mana	ager:	K	CLA	iai	1 Br	HAIN OF CUSTO	DY			0200	(A-1	140	Page	e chas	e Or	of der N	5	P	05	560	3	TP	,			-				
Warriewood	NSW 2102	Contact ema	uil:	Kb	al	y(0	geo.	login comall, tpl	as	en	yœ	g	0-0	log	Quo	te R	efer	ence:						_	_	_						
ABN: 86 116 89	2 936	Project Name	e: <	les	Ly	-#	1618-	Phemaly	,						Send	d Inv	voice	to:		acco	unts	@ge	eo-l	ogix	co	m.a	u					
P: (02) 9979 1 F: (02) 9979 1	722 222	Project Num	ber:	à	20	10	64	Date Submitted: 14	10	9					TAT	requ	uirec	1:		St	end	lah	d		_							
	and the second second	122						ANALYSI	S RE	QU	IR	ED			1			-		-										1		
				N	Matr	rix	_		Г													1.	-	Ĥ					1			
Lab ID	Sample ID	Date	soil	water	air	paint. filters	other	Comments	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	vocs	BTEXN	PAHs	PCBs	OCPs	OPPs	Phenols	Metals - M8	Metals - Lead	metals - Specify	TCLP	Asbestos (ID only	Asbestos (WA DC	Foreign Materials	Conductivity (EC)	н	CEC	day lentent	4646	SUITE	Eurofins MGT Suite Codes
	H20/1.0-1.2	9/9/22	X																						-	-	-			X		B1 TRH/BTEXN
~	BH21/0.30.5	1	1							×	×		X	X		×			×											-	139	B1A TRH/MAH B2 TRH/BTEXN/Pb
	BH24/1.0-1.2																													x		B2A TRH/MAH/Pb
1	BH21/1.8-2.0																													×		B4 TRH/BTEXN/PAH
V	BH21/3.0-32																													×		B4A TRH/BTEXN/PAH/Phenois
v	BH22/0.3-0.6									×	×		×	×		×			X												89	B6 TRH/BTEXN/M8
1	BH22 0.8-1.0																													X		B7 TRH/BTEXN/PAH/M8
5	BH23/0.1-0.4	1-1-1																												X		B8 TRH/VOC/PAH/M8
/	BH23/1.0-1.2									×	X		×	×		x		3	X												Bq	B9 TRH/BTEXN/PAH/OCP/M8
1	BH23/1.8-20																													×		B11 Na/K/Ca/Mg/Cl/SO_/CO_3/HCO_3/NH_J/NO_3
1	BH24/03-0.6									x	×		×	X		×			X												89	B11A B11/Alkalinity
V	BH24/1.0-12																													X		B12 TRH/BTEXN/Oxygenates/Ethanol
1	BH25/0.5-0.8									X	×		×	×		×		2	×												B9	B12A TRH/BTEXN/Oxygenates
	BH25/1.2-1.4																													x		B14 OCP/OPP
~	BH25/1-4-1-6										R																			x		B15 OCP/OPP/PCB
V	BH26 10.4-0.6									X	X		×	X		X		2	x							,	X	×	X.		89	B16 TDS/SO,/CH,/AIk/BOD/COD/HPC/CUB B17 SO,/NO,/Fe++/HPC/CUB
1	BH126/10-1-2																													×	-1	B18 CI-/SO ₄ /pH
1	BH27/0.2-0.5	V	-							×	X		×	×)	×			x												B9	B19 N/P/K B20 CEC/%ESP/Ca/Ma/Na/K

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁸⁺, Cr ³⁺, Fe ²⁺, Fe ³⁺, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, TI, Bi, Sb

Chain of Custody D NALES Date/Time: al E Date/Time: 4/9/22 Signature: Therap Relinquished by: Received by: Signature: #923657

Geo-Lo Building Q2, 2309/4 Dayo	gix Pty Ltd Level 3 dream St	Project Mana	ager:	K	ire	m	Bal		DY	le Ri			Da	e n-	Page Purc	has	5 e Ori	of der N	5	f	09	560	22	TF	2			-				
Warriewood	, NSW 2102	Contact ema	uil:	K	ba	by	eg.	eo-logar comacl,	tpol	a 83	seg	ye	J	10-	Quot	te Re	efere	nce:	-	_	-	-	_	_				-				
ABN: 86 116 89	2 936	Project Nam	e:	10	264	y 1	Halls	- Phermachy							Send	d Inv	oice	to:	-	acco	unt	Cer A	eo-	logi	x.cc	om.a	au					
P: (02) 9979 1 F: (02) 9979 1	722 222	Project Num	ber:	dr	01	00	9	Date Submitted:	4/0	9	-				TAT	requ	ired	:	-	Sta	nn	d.	al	d		_	_	_				
		and a second						ANALYSI	S RE	QU	JIR	ED			-		-					-					1					and the second second
			-	N	Matr	îx	-																-	(HC						Т		
Lab ID	Sample ID	Date	soil	water	air	paint, filters	other	Comments	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	vocs	BTEXN	PAHs	PCBs	ocps	OPPs	Phenols	Metals - M8	Metals - Lead	Metals - Specify *	TCLP	Asbestos (ID onl)	Asbestos (WA DC	Foreign Materials	Conductivity (EC)	H		3	DIOL	SUITE	Eurofins MGT Suite Codes
	BH27/0.8-1.0	9/9/22	X																						-		1		×	<		B1 TRH/BTEXN
/	BH28/0.3-0.6	1	1							×	×		×	×		X		2	×											1	Bq	B1A TRH/MAH B2 TRH/BTEXN/Pb
	BH28/0-8-1.0	V																											>	<		B2A TRH/MAH/Pb
V	BH29/0.0-0.	13/9/22																											>	X		B4 TRH/BTEXN/PAH
1	BH29 0-3-0.4	1								*	x	-	爱	1	-	×		4	*										7	X	屏	B4A TRH/BTEXN/PAH/Phonois
1	BH30/0-0-02																												>	<		B6 TRH/BTEXN/M8
1	BH30/0.5-0.7																												X			B7 TRH/BTEXN/PAH/M8
1	BH30/1.0-1.2									×	X		X	X		×)	x											1	39	B8 TRH/VOC/PAH/M8
1	BH30/1.2-1.4	1	1																										X			B9 TRH/BTEXN/PAH/OCP/M8
1	D.SI	7/9/22	1							×	x		×	X		x		2	x											1	BT	B11 Na/K/Ca/Mg/Cl/SO ₄ /CO ₃ /HCO ₃ /NH ₃ /NO ₃
v	DS2	9/01/22	V							×	×		x	×		×		3	X											1	139	B11A B11/Alkalinity
	SPIKE 1	7/9/22	1										1																	T		B11B B11/EC/TDS B12 TRH/BTEXN/Oxygenates/Ethanol
	BLANK 1	7/9/22	.V										1																	T		B12A TRH/BTEXN/Oxygenates
	RWI	7/9/22		1						/	1		1	1		1		V	/											T		B13 OCP/PCB B14 OCP/OPP
	BH30/14-15	//													1						1		1					1	×	t		B15 OCP/OPP/PCB
	BH29/0.8-0.7							Bq	F	×	×		×	×	-	X	-	×	(-	-	-	-						Z		Bg	B16 TDS/SO ₄ /CH ₄ /Alk/BOD/COD/HPC/CUB B17 SO ₄ /NO ₃ /Fe++/HPC/CUB B18 CI-/SO ₄ /pH
																							1									B19 N/P/K B20 CEC/%ESP/Ca/Ma/Na/K

Metals**(circle) As, Cd, Cr, Cu, NI, Pb, Zn, Hg, Cr **, Cr **, Fe **, Fe **, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, TI, Bi, Sb

Chain of Custody Date/Time: 14/9/22_ Signature: Than of Ques, NARESH Date/Time: TD Relinquished by: Received by: Signature: # 923657

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood **NSW 2102**

NATA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attontion	
Allention.	

Kiran Baby

Report Project name Project ID **Received Date** 928993-S ADDITIONAL - TERRY HILLS-PRIMARY ADDITIONAL - 2201064 Oct 05, 2022

Client Sample ID			HA4/0.1-0.4	BH7/2.5-2.6	BH21/3.0-3.2
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S22- Oc0006907	S22- Oc0006993	S22- Oc0006994
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	79	73	85
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID			HA4/0.1-0.4	BH7/2.5-2.6	BH21/3.0-3.2
Sample Matrix			Soil	Soil	Soil
			S22-	S22-	S22-
Eurofins Sample No.			Oc0006907	Oc0006993	Oc0006994
Date Sampled			Sep 07, 2022	Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	92	124	131
p-Terphenyl-d14 (surr.)	1	%	101	126	143
Organochlorine Pesticides					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	79	126	135
Tetrachloro-m-xylene (surr.)	1	%	97	133	145
Heavy Metals					
Arsenic	2	mg/kg	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	18	20
Copper	5	mg/kg	< 5	< 5	< 5
Lead	5	mg/kg	9.7	7.6	6.9
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5
Zinc	5	mg/kg	14	< 5	< 5
% Moisture	1	%	9.9	19	15

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 07, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 07, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 07, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 07, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 07, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Oct 07, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Oct 07, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Oct 05, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

		Eurofins Environment Testing Australia Pty Ltd			Eurofins ARL Pty Ltd	Eurofins Environment Testing NZ Ltd									
web: w email:	Main: 30 005 085 521 Melbourne Geelong 6 Monterey Road 19/8 Lewalan Stree Dandenong South VIC 3175 VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 500 NATA# 1261 Site# 1254 NATA# 1261 Site#		S alan Street 1 e G b N 3 8564 5000 T 261 Site# 1254 N	Sydney Canberra Brisbane New 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 4/52 Girraween Mitchell Murarrie May NSW 2145 ACT 2911 QLD 4172 POI Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 Tel: NATA# 1261 Site# 18217 NATA# 1261 Site# 20794 NAT		Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 4 NATA# 1261 Site# 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290						
Co Ad	mpany Name: dress:	Geo-Logix F Bld Q2 Leve Warriewood NSW 2102	P/L 91 3, 2309/4 Da	aydream St				Oi Re Pl Fa	5.: : 92 02 02	8993 9979 1722 9979 1222			Received: Due: Priority: Contact Name:	Oct 5, 2022 11:50 Oct 10, 2022 3 Day Kiran Baby	AM
Pro Pro	oject Name: oject ID:	ADDITIONA ADDITIONA	L - TERRY H L - 2201064	LLS-PRIMAR	Υ								Eurofins Analytical	Services Manager :	Asim Khan
		Sa	ample Detail				oisture Set	urofins Suite B9							
Sydi	ney Laboratory -	- NATA # 1261	Site # 18217				Х	Х							
No	Sample ID	Sample Date	Sampling	Matrix	LAB II	D									
1	HA4/0.1-0.4	Sep 07, 2022		Soil	S22-Oc000	6907	х	х							
2	BH7/2.5-2.6	Sep 07, 2022		Soil	S22-Oc000	6993	Х	Х							
3	BH21/3.0-3.2	Sep 07, 2022		Soil	S22-Oc000	6994	Х	Х							
Test	Counts						3	3							

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		1			
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank			-		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
а-НСН	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank				-	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery				-	
Total Recoverable Hydrocarbons	-				
TRH C6-C9	%	105	70-130	Pass	
TRH C10-C14	%	79	70-130	Pass	
Naphthalene	%	114	70-130	Pass	
TRH C6-C10	%	103	70-130	Pass	
TRH >C10-C16	%	79	70-130	Pass	
LCS - % Recovery					
втех	-				
Benzene	%	106	70-130	Pass	
Toluene	%	103	70-130	Pass	
Ethylbenzene	%	106	70-130	Pass	
m&p-Xylenes	%	106	70-130	Pass	
o-Xylene	%	104	70-130	Pass	
Xylenes - Total*	%	105	70-130	Pass	
LCS - % Recovery				-	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	91	70-130	Pass	
Acenaphthylene	%	77	70-130	Pass	
Anthracene	%	90	70-130	Pass	
Benz(a)anthracene	%	78	70-130	Pass	
Benzo(a)pyrene	%	82	70-130	Pass	
Benzo(b&j)fluoranthene	%	71	70-130	Pass	
Benzo(g.h.i)perylene	%	86	70-130	Pass	
Benzo(k)fluoranthene	%	84	70-130	Pass	
Chrysene	%	91	70-130	Pass	
Dibenz(a.h)anthracene	%	81	70-130	Pass	
Fluoranthene	%	88	70-130	Pass	
Fluorene	%	86	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	83	70-130	Pass	
Naphthalene	%	78	70-130	Pass	
Phenanthrene	%	89	70-130	Pass	
Pyrene	%	88	70-130	Pass	
LCS - % Recovery			1		
Organochlorine Pesticides	1				
Chlordanes - Total	%	87	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDD			%	85		70-130	Pass	
4.4'-DDE			%	86		70-130	Pass	
4.4'-DDT			%	98		70-130	Pass	
а-НСН			%	84		70-130	Pass	
Aldrin			%	88		70-130	Pass	
b-HCH			%	92		70-130	Pass	
d-HCH			%	87		70-130	Pass	
Dieldrin			%	82		70-130	Pass	
Endosulfan I			%	85		70-130	Pass	
Endosulfan II			%	97		70-130	Pass	
Endosulfan sulphate			%	75		70-130	Pass	
Endrin			%	93		70-130	Pass	
Endrin aldehyde			%	79		70-130	Pass	
Endrin ketone			%	87		70-130	Pass	
g-HCH (Lindane)			%	92		70-130	Pass	
Heptachlor			%	93		70-130	Pass	
Heptachlor epoxide			%	84		70-130	Pass	
Hexachlorobenzene			%	87		70-130	Pass	
Methoxychlor			%	102		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	105		80-120	Pass	
Cadmium			%	107		80-120	Pass	
Chromium			%	107		80-120	Pass	
Copper			%	110		80-120	Pass	
Lead			%	107		80-120	Pass	
Mercury			%	115		80-120	Pass	
Nickel			%	113		80-120	Pass	
Zinc			%	110		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	Г – Г	1		
Total Recoverable Hydrocarbons	1			Result 1				
TRH C6-C9	S22-Oc0006907	CP	%	94		70-130	Pass	
TRH C10-C14	S22-Oc0006907	CP	%	79		70-130	Pass	
Naphthalene	S22-Oc0006907	CP	%	87		70-130	Pass	
TRH C6-C10	S22-Oc0006907	CP	%	92		70-130	Pass	
TRH >C10-C16	S22-Oc0006907	CP	%	81		70-130	Pass	
Spike - % Recovery				1	r	1		
BTEX				Result 1				
Benzene	S22-Oc0006907	CP	%	100		70-130	Pass	
Toluene	S22-Oc0006907	CP	%	97		70-130	Pass	
Ethylbenzene	S22-Oc0006907	CP	%	94		70-130	Pass	
m&p-Xylenes	S22-Oc0006907	CP	%	95		70-130	Pass	
o-Xylene	S22-Oc0006907	CP	%	95		70-130	Pass	
Xylenes - Total*	S22-Oc0006907	CP	%	95		70-130	Pass	
Spike - % Recovery				-	r	1		
Polycyclic Aromatic Hydrocarbons	\$			Result 1				
Acenaphthene							_	
	S22-Oc0012137	NCP	%	97		70-130	Pass	
Acenaphthylene	S22-Oc0012137 S22-Oc0012137	NCP NCP	% %	97 81		70-130 70-130	Pass Pass	
Acenaphthylene Anthracene	S22-Oc0012137 S22-Oc0012137 S22-Oc0012137	NCP NCP NCP	% % %	97 81 96		70-130 70-130 70-130	Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene	S22-Oc0012137 S22-Oc0012137 S22-Oc0012137 S22-Oc0012137	NCP NCP NCP	% % %	97 81 96 75		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	S22-Oc0012137 S22-Oc0012137 S22-Oc0012137 S22-Oc0012137 S22-Oc0012137	NCP NCP NCP NCP	% % % %	97 81 96 75 86		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	S22-Oc0012137 S22-Oc0012137 S22-Oc0012137 S22-Oc0012137 S22-Oc0012137 S22-Oc0012137 S22-Oc0012137 S22-Oc0012137	NCP NCP NCP NCP NCP NCP	% % % % %	97 81 96 75 86 72		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(k)fluoranthene	S22-Oc0012137	NCP	%	86			70-130	Pass	
Chrysene	S22-Oc0012137	NCP	%	104			70-130	Pass	
Dibenz(a.h)anthracene	S22-Oc0012137	NCP	%	81			70-130	Pass	
Fluoranthene	S22-Oc0012137	NCP	%	93			70-130	Pass	
Fluorene	S22-Oc0012137	NCP	%	95			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S22-Oc0012137	NCP	%	82			70-130	Pass	
Naphthalene	S22-Oc0012137	NCP	%	87			70-130	Pass	
Phenanthrene	S22-Oc0012137	NCP	%	95			70-130	Pass	
Pyrene	S22-Oc0012137	NCP	%	92			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S22-Oc0012542	NCP	%	90			75-125	Pass	
Cadmium	S22-Oc0012542	NCP	%	98			75-125	Pass	
Chromium	S22-Oc0012542	NCP	%	96			75-125	Pass	
Copper	N22-Oc0002361	NCP	%	112			75-125	Pass	
Lead	N22-Oc0002361	NCP	%	103			75-125	Pass	
Mercury	S22-Oc0012542	NCP	%	104			75-125	Pass	
Nickel	S22-Oc0012542	NCP	%	99			75-125	Pass	
Zinc	N22-Oc0002361	NCP	%	96			75-125	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
Dunlingto		Source					Limits	Limits	Code
Duplicate				Desult 1	Desult 0	000	1		
	000 00000000	NOD		Result	Result 2	RPD	2001	Deee	
	S22-00006936	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
	S22-Se0067235	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C13-C26	S22-Se0067235	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalong	S22-Se0007235		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S22-000000930		mg/kg	< 0.0	< 0.5	<1	30%	Pass	
	S22 S00067235		mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S22-Se0007235	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S22-Se0007235	NCP	ma/ka	< 100	< 100		30%	Pass	
	022 00007200	NOI	iiig/ikg	< 100	< 100	~ 1	5078	1 435	
BTEX				Result 1	Result 2	RPD			
Benzene	S22-Oc0006936	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Oc0006936	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-Oc0006936	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Oc0006936	NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-Oc0006936	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Oc0006936	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate			00						
Polycyclic Aromatic Hydrocarbons	6			Result 1	Result 2	RPD			
Acenaphthene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate								_	
Polycyclic Aromatic Hydrocarbon	S			Result 1	Result 2	RPD			
Naphthalene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S22-Oc0012135	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-Oc0012135	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-Oc0012135	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S22-Se0065876	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1			.		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Oc0012130	NCP	mg/kg	9.5	9.5	<1	30%	Pass	
Cadmium	S22-Oc0012130	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Oc0012130	NCP	mg/kg	22	23	4.4	30%	Pass	
Copper	S22-Oc0012130	NCP	mg/kg	42	44	5.4	30%	Pass	
Lead	S22-Oc0012130	NCP	mg/kg	28	28	<1	30%	Pass	
Mercury	S22-Oc0012130	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-Oc0012130	NCP	mg/kg	14	15	3.5	30%	Pass	
Zinc	S22-Oc0012130	NCP	mg/kg	60	61	1.6	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S22-Oc0006993	CP	%	19	20	5.3	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
	Blacco pote: These two BAH isomers clearly as clute using the most contemporary analytical methods and both the reported concentration (and the TEO) apply apply in a site of the second s

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Quinn Raw
Gabriele Cordero
Roopesh Rangarajan
Roopesh Rangarajan

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager Senior Analyst-Metal Senior Analyst-Volatile Senior Analyst-Organic

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521					
Melbourne	Geelong	Sydney	С		
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Ur		
Dandenong South	Grovedale	Girraween	Mi		
VIC 3175	VIC 3216	NSW 2145	AC		
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Те		
NATA# 1261 Site# 1254	NATA# 1261 Site# 1254	NATA# 1261 Site# 18217			

anberra Brisbane nit 1 2 Dacre Street 1/21 Smallwood Place itchell Murarrie CT 2911 QLD 4172 el: +61 2 6113 8091 Tel: +61 7 3902 4600

Newcastle Perth 4/52 Industrial Drive Mayfield East NSW 2304 Welshpool PO Box 60 Wickham 2293 WA 6106 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079 NATA# 2377 Site# 2370

www.eurofins.com.au

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd NZBN: 9429046024954 ABN: 91 05 0159 898 Auckland 46-48 Banksia Road 35 O'Rorke Road Penrose, Auckland 1061 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51

IANZ# 1327

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Sample Receipt Advice

Geo-Logix P/L
Kiran Baby
ADDITIONAL - TERRY HILLS-PRIMARY
ADDITIONAL - 2201064
3 Day
Oct 5, 2022 11:50 AM
928993

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 1.8 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Asim Khan on phone : or by email: AsimKhan@eurofins.com

Results will be delivered electronically via email to Kiran Baby - kbaby@geo-logix.com.au.

Note: A copy of these results will also be delivered to the general Geo-Logix P/L email address.

Global Leader - Results you can trust

Asim Khan

From:	Kiran Baby <kbaby@geo-logix.com.au></kbaby@geo-logix.com.au>
Sent:	Wednesday, 5 October 2022 12:45 PM
То:	Asim Khan
Subject:	RE: Eurofins Sample Receipt Advice - Report 923657 : Site TERRY HILLS-PRIMARY
	(2201064)

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins. Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Asim,

Can you run samples **BH7/2.5-2.6 and BH21/3.0-3.2 as well for suite B9 on 3 day TAT**? Apologies for not mentioning this in the trailing email.

This is the complete list

- HA4/0.1-0.4
- BH7/2.5-2.6
- BH21/3.0-3.2

Thanks,

Kiran

From: Asim Khan <AsimKhan@eurofins.com>
Sent: Wednesday, 5 October 2022 11:51 AM
To: Kiran Baby <kbaby@geo-logix.com.au>
Subject: RE: Eurofins Sample Receipt Advice - Report 923657 : Site TERRY HILLS-PRIMARY (2201064)

No worries Kiran. I will forward it to our sample receipt to organise.

Kind regards,

Asim Khan Analytical Services Manager Please note my hours are from 9:30 am to 5:30 pm

Eurofins Environment Testing Australia Pty Ltd Phone: +61 2 9900 8432 Mobile: +61 429 051 456

E-mail: AsimKhan@eurofins.com

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the intended recipient, please inform the sender by an e-mail reply and delete the message. Transmission by e-mail is not secure and can result in errors or omissions in the content of the message. Despite state-of-the-art precautions we cannot guarantee that e-mails and attachments are free from viruses. We accept no liability for viruses or any transmission-related errors and omissions. You need to always virus-check any e-mails and attachments.

🛟 eurofins

Environment Testing

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Kiran Baby

Report Project name Project ID Received Date **926115-S-V2** TERRY HILLS-TRIPLICATES 2201064 Sep 14, 2022

Client Sample ID			Tet	Tea
Sample Matrix			Soil	Soil
Eurorins Sample No.			S22-Se0032265	S22-Se0032266
Date Sampled			Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit		
BTEX		1		
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	0.2
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	103	102
Total Recoverable Hydrocarbons				
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	68
TRH C10-C36 (Total)	50	mg/kg	< 50	68
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID			TS1	TS2
Sample Matrix			Soil	Soil
Eurofins Sample No.			S22-Se0032265	S22-Se0032266
Date Sampled			Sep 07, 2022	Sep 07, 2022
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons	LOIN	Onic		
Fluoranthene	0.5	ma/ka	< 0.5	< 0.5
Fluorene	0.5	ma/ka	< 0.5	< 0.5
Indeno(1,2,3-cd)pyrepe	0.5	ma/ka	< 0.5	< 0.5
Naphthalene	0.5	ma/ka	< 0.5	< 0.5
Phenanthrene	0.5	ma/ka	< 0.5	< 0.5
Pyrene	0.5	ma/ka	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	63	72
p-Terphenyl-d14 (surr.)	1	%	146	114
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	0.07
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	0.07
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
VIC EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutyichlorendate (surr.)		%	73	90
l etrachloro-m-xylene (surr.)	1	%	83	86
Arsenic	2	mg/kg	< 2	2.1
Charmium	0.4	mg/kg	< 0.4	< 0.4
	5	mg/kg	15	22
Copper	5	mg/kg	5.1	8.6
Lead	5	mg/kg	8.1	9.9
Niekol	0.1	mg/kg	< 0.1	< 0.1
Zinc	5 F	mg/kg	< 0	< 0
	5	пид/кд	12	Z1
% Moisture	1	0/_	13	7 /
70 110101010	1 1	1 /0	1 10	1.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
BTEX	Melbourne	Sep 16, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Total Recoverable Hydrocarbons	Melbourne	Sep 16, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 16, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 16, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 16, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 16, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Sep 16, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Metals M8	Melbourne	Sep 16, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Sep 15, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

Eurofins Environment Testing Australia Pty Ltd			_td						Eurofins ARL Pty Ltd	Eurofins Environm	ent Testing NZ Ltd			
web: www.eurofins.com.au email: EnviroSales@eurofins.com		ABN: 50 005 085 Melbourne 6 Monterey Road Dandenong Sout VIC 3175 Tel: +61 3 8564 5 NATA# 1261 Site		Operation Geelong Si cad 19/8 Lewalan Street 17 outh Grovedale G VIC 3216 N 54 5000 Tel: +61 3 8564 5000 Tr Site# 1254 NATA# 1261 Site# 1254 N		Sydney 179 Magowar Road Birraween VSW 2145 Fel: +61 2 9900 8400 VATA# 1261 Site# 12		ad 400 # 1821	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 25079	ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370	NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290
Co Ad Pro	ompany Name: Idress:	Geo-Logix F Bld Q2 Leve Warriewood NSW 2102 TERRY HII	P/L ei 3, 2309/4 D I I S-TRIPLICA	aydream St				O R P F	Order No.: P(Report #: 92 Phone: 02 Fax: 02	05604TP 26115 2 9979 1722 2 9979 1222		Received: Due: Priority: Contact Name:	Sep 14, 2022 1:25 Oct 3, 2022 5 Day Kiran Baby	РМ
Pro	oject ID:	2201064										Eurofins Analytical S	Services Manager :	Asim Khan
		Sa	ample Detail				Moisture Set	Eurofins Suite B9						
Melbourne Laboratory - NATA # 1261 Site # 1254				x	Х	_								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				-					
1	TS1	Sep 07, 2022		Soil	S22-Se00322	265	Х	Х						
2	TS2	Sep 07, 2022		Soil	S22-Se00322	266	Х	Х	_					
Test	Counts						2	2						

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- Recovery bata (spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term into appears against that analytic
 For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
втех						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank		1	1	T		
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank			1	1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank			1	I		
Organochlorine Pesticides	1					
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
а-НСН	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery						
втех						
Benzene	%	81		70-130	Pass	
Toluene	%	90		70-130	Pass	
Ethylbenzene	%	86		70-130	Pass	
m&p-Xylenes	%	87		70-130	Pass	
Xylenes - Total*	%	87		70-130	Pass	
LCS - % Recovery			· · · · · ·			
Total Recoverable Hydrocarbons						
TRH C6-C9	%	95		70-130	Pass	
TRH C10-C14	%	95		70-130	Pass	
Naphthalene	%	76		70-130	Pass	
TRH C6-C10	%	93		70-130	Pass	
TRH >C10-C16	%	96		70-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	108		70-130	Pass	
Acenaphthylene	%	106		70-130	Pass	
Anthracene	%	102		70-130	Pass	
Benz(a)anthracene	%	111		70-130	Pass	
Benzo(a)pyrene	%	95		70-130	Pass	
Benzo(b&j)fluoranthene	%	95		70-130	Pass	
Benzo(g.h.i)perylene	%	93		70-130	Pass	
Benzo(k)fluoranthene	%	107		70-130	Pass	
Chrysene	%	108		70-130	Pass	
Dibenz(a.h)anthracene	%	109		70-130	Pass	
Fluoranthene	%	102		70-130	Pass	
Fluorene	%	80		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	101		 70-130	Pass	
Naphthalene	%	105		70-130	Pass	
Phenanthrene	%	119		70-130	Pass	
Pyrene	%	100		70-130	Pass	
LCS - % Recovery						
Organochlorine Pesticides						
Chlordanes - Total	%	102		 70-130	Pass	
4.4'-DDD	%	95		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code		
4.4'-DDE			%	96	70-130	Pass	
4.4'-DDT			%	84	70-130	Pass	
а-НСН			%	109	70-130	Pass	
Aldrin			%	125	70-130	Pass	
b-HCH			%	72	70-130	Pass	
d-HCH			%	128	70-130	Pass	
Dieldrin			%	105	70-130	Pass	
Endosulfan I			%	127	70-130	Pass	
Endosulfan II			%	78	70-130	Pass	
Endosulfan sulphate			%	93	70-130	Pass	
Endrin			%	110	70-130	Pass	
Endrin aldehyde			%	73	70-130	Pass	
Endrin ketone			%	101	70-130	Pass	
g-HCH (Lindane)			%	102	70-130	Pass	
Heptachlor			%	115	70-130	Pass	
Heptachlor epoxide			%	129	70-130	Pass	
Hexachlorobenzene			%	89	70-130	Pass	
Methoxychlor			%	88	70-130	Pass	
LCS - % Recovery			,,,		 		
Heavy Metals							
Arsenic			%	101	80-120	Pass	
Cadmium			%	88	80-120	Pass	
Chromium			%	101	80-120	Pass	
Copper			%	98	80-120	Pass	
Lead			%	104	80-120	Pass	
Mercury			%	113	80-120	Pass	
Nickel	%	97	80-120	Pass			
Zinc				-			
Zinc			%	96	80-120	Pass	
Zinc Test	Lab Sample ID	QA Source	% Units	96 Result 1	80-120 Acceptance Limits	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery	Lab Sample ID	QA Source	% Units	96 Result 1	80-120 Acceptance Limits	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery BTEX	Lab Sample ID	QA Source	% Units	96 Result 1 Result 1	80-120 Acceptance Limits	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene	Lab Sample ID	QA Source	% Units %	96 Result 1 Result 1 92	80-120 Acceptance Limits 70-130	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene	Lab Sample ID M22-Se0035152 M22-Se0035152	QA Source NCP NCP	% Units % %	96 Result 1 Result 1 92 104	80-120 Acceptance Limits 70-130 70-130	Pass Pass Limits Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152	QA Source NCP NCP NCP	% Units % % %	96 Result 1 Result 1 92 104 93	80-120 Acceptance Limits 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152	QA Source NCP NCP NCP NCP	% Units % % % %	96 Result 1 Result 1 92 104 93 92	80-120 Acceptance Limits 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152	QA Source NCP NCP NCP NCP NCP	% Units % % % %	96 Result 1 92 104 93 92 91	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total*	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152	QA Source NCP NCP NCP NCP NCP NCP	% Units % % % % %	96 Result 1 92 104 93 92 91 92	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152	QA Source NCP NCP NCP NCP NCP NCP	% Units % % % % %	96 Result 1 92 104 93 92 91 92	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152	QA Source NCP NCP NCP NCP NCP	% Units % % % % % % % % % % % % % %	96 Result 1 92 104 93 92 91 92 82 Result 1	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152	QA Source NCP NCP NCP NCP NCP NCP	% Units % % % % % % % % % % % % % % % % % %	96 Result 1 92 104 93 92 91 92 91 92 Result 1 112	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152	QA Source NCP NCP NCP NCP NCP NCP	% Units % % % % % %	96 Result 1 92 104 93 92 91 92 91 92 Result 1 112 113	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 91 92 Result 1 112 113 76	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152 M22-Se0035152	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 91 92 Result 1 112 113 76 111	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 91 92 Result 1 112 113 76 111 113	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 91 92 Result 1 112 113 76 111 113	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 91 92 8 Result 1 112 113 76 111 113 8 Result 1	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152 M22-Se0042907 M22-Se0042907 M22-Se0042907	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 91 92 8 8 8 8 112 113 76 111 113 76 76 111 113 76 76 76 77 76 77 76 77 76 77 76 77 76 77 76 77 77	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152 M22-Se003515 M22-Se0035152	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 92 91 92 92 92 91 92 92 92 92 92 92 92 92 92 92	80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0036915 M22-Se0036915 M22-Se0036915	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 92 91 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 92 91 92 92 92 91 92 92 92 92 92 92 92 92 92 92	 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0036915 M22-Se0036915 M22-Se0036915 M22-Se0036915 M22-Se0036915	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 92 92 92 91 92 92 92 92 92 91 92 92 92 92 92 92 92 92 92 92	80-120 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benz(a)pyrene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0036915	QA Source	% Units %	96 Result 1 92 104 93 92 91 92 92 91 92 91 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 91 92 92 92 91 92 92 92 91 92 92 92 92 92 92 92 92 92 92	 80-120 Acceptance Limits 70-130 70	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0036915	QA Source	% Units % %	96 Result 1 92 104 93 92 91 92 91 92 82 Result 1 112 113 76 111 113 76 111 113 76 111 113 80 98	 80-120 Acceptance Limits 70-130 70	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total* Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	Lab Sample ID M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0042907 M22-Se0035152 M22-Se0035152 M22-Se0035152 M22-Se0036915	QA Source	% Units % <td>96 Result 1 92 104 93 92 91 92 91 92 82 76 111 113 76 111 113 76 111 113 76 111 113 76 111 113 80 98 83 80 98 83</td> <td>80-120 Acceptance Limits 70-130 70</td> <td>Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa</td> <td>Qualifying Code</td>	96 Result 1 92 104 93 92 91 92 91 92 82 76 111 113 76 111 113 76 111 113 76 111 113 76 111 113 80 98 83 80 98 83	80-120 Acceptance Limits 70-130 70	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chrysene	M22-Se0036915	NCP	%	98			70-130	Pass	
Dibenz(a.h)anthracene	M22-Se0036915	NCP	%	112			70-130	Pass	
Fluoranthene	M22-Se0036915	NCP	%	97			70-130	Pass	
Fluorene	M22-Se0036915	NCP	%	80			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M22-Se0036915	NCP	%	99			70-130	Pass	
Naphthalene	M22-Se0036915	NCP	%	102			70-130	Pass	
Phenanthrene	M22-Se0036915	NCP	%	106			70-130	Pass	
Pyrene	M22-Se0036915	NCP	%	94			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M22-Se0038087	NCP	%	93			75-125	Pass	
Cadmium	M22-Se0038087	NCP	%	111			75-125	Pass	
Chromium	M22-Se0038087	NCP	%	114			75-125	Pass	
Copper	M22-Se0038087	NCP	%	103			75-125	Pass	
Lead	M22-Se0038087	NCP	%	104			75-125	Pass	
Mercury	M22-Se0038087	NCP	%	98			75-125	Pass	
Nickel	M22-Se0038087	NCP	%	96			75-125	Pass	
Zinc	M22-Se0038087	NCP	%	103			75-125	Pass	
Spike - % Recovery		1101	70	1 100			10 120	1 400	
Organochlorine Pesticides				Result 1					
Chlordanes - Total	M22-Se0036820	NCP	%	92			70-130	Pass	
4.4'-DDD	M22-Se0036820	NCP	%	119			70-130	Pass	
4.4'-DDF	M22-Se0036820	NCP	%	127			70-130	Pass	
4.4'-DDT	M22-Se0036820	NCP	%	78			70-130	Pass	
а-НСН	M22-Se0036820	NCP	%	90			70-130	Pass	
Aldrin	M22-Se0036820	NCP	%	84			70-130	Pass	
b-HCH	M22-Se0036820	NCP	%	87			70-130	Pass	
d-HCH	M22-Se0036820	NCP	%	88			70-130	Pass	
Dieldrin	M22-Se0036820	NCP	%	95			70-130	Pass	
Endosulfan I	M22-Se0036820	NCP	%	92			70-130	Pass	
Endosulfan II	M22-Se0036820	NCP	%	94			70-130	Pass	
Endosulfan sulphate	M22-Se0036820	NCP	%	83			70-130	Pass	
Endrin	M22-Se0036820	NCP	%	82			70-130	Pass	
Endrin aldehvde	M22-Se0036820	NCP	%	79			70-130	Pass	
Endrin ketone	M22-Se0036820	NCP	%	73			70-130	Pass	
g-HCH (Lindane)	M22-Se0036820	NCP	%	92			70-130	Pass	
Heptachlor	M22-Se0036820	NCP	%	91			70-130	Pass	
Heptachlor epoxide	M22-Se0036820	NCP	%	99			70-130	Pass	
Hexachlorobenzene	M22-Se0036820	NCP	%	98			70-130	Pass	
Methoxychlor	M22-Se0036820	NCP	%	89			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M22-Se0035156	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M22-Se0035156	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M22-Se0035156	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M22-Se0035156	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M22-Se0035156	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	M22-Se0035156	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	M22-Se0035156	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M22-Se0034457	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M22-Se0034457	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M22-Se0034457	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	M22-Se0035156	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M22-Se0035156	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M22-Se0034457	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M22-Se0034457	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M22-Se0034457	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	M22-Se0034852	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M22-Se0034852	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M22-Se0034852	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M22-Se0034852	NCP	mg/kg	2.1	1.4	44	30%	Fail	Q15
Benzo(a)pyrene	M22-Se0034852	NCP	mg/kg	2.1	1.5	33	30%	Fail	Q15
Benzo(b&j)fluoranthene	M22-Se0034852	NCP	mg/kg	1.3	0.9	34	30%	Fail	Q15
Benzo(g.h.i)perylene	M22-Se0034852	NCP	mg/kg	1.1	0.9	21	30%	Pass	
Benzo(k)fluoranthene	M22-Se0034852	NCP	mg/kg	1.8	1.2	39	30%	Fail	Q15
Chrysene	M22-Se0034852	NCP	mg/kg	1.9	1.3	35	30%	Fail	Q15
Dibenz(a.h)anthracene	M22-Se0034852	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M22-Se0034852	NCP	mg/kg	4.4	2.1	70	30%	Fail	Q15
Fluorene	M22-Se0034852	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M22-Se0034852	NCP	mg/kg	1.1	1.0	18	30%	Pass	
Naphthalene	M22-Se0034852	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M22-Se0034852	NCP	mg/kg	1.9	0.6	100	30%	Fail	Q15
Pyrene	M22-Se0034852	NCP	mg/kg	4.6	2.1	75	30%	Fail	Q15
Duplicate							•		
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M22-Se0038582	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
а-НСН	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M22-Se0038582	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M22-Se0034852	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Heavy Metals			Result 1	Result 2	RPD				
Arsenic	M22-Se0038087	NCP	mg/kg	2.1	2.1	1.4	30%	Pass	
Cadmium	M22-Se0038087	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M22-Se0038087	NCP	mg/kg	33	33	<1	30%	Pass	
Copper	M22-Se0038087	NCP	mg/kg	11	11	1.4	30%	Pass	
Lead	M22-Se0038087	NCP	mg/kg	11	11	1.3	30%	Pass	
Mercury	M22-Se0038087	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M22-Se0038087	NCP	mg/kg	32	32	<1	30%	Pass	
Zinc	M22-Se0038087	NCP	mg/kg	23	26	11	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M22-Se0032636	NCP	%	25	25	1.2	30%	Pass	

Comments

This report has been revised (V2) to amend Project Name as per client request.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Asim Khan	Analytical Services Manager
Edward Lee	Senior Analyst-Organic
Emily Rosenberg	Senior Analyst-Metal
Joseph Edouard	Senior Analyst-Organic
Mary Makarios	Senior Analyst-Sample Properties
Vivian Wang	Senior Analyst-Volatile

1. Jul

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521				
Melbourne	Geelong	Sydney	Canberra	Brisbane
6 Monterey Road	19/8 Lewalan Street	179 Magowar Road	Unit 1,2 Dacre Street	1/21 Smallwood Place
Dandenong South	Grovedale	Girraween	Mitchell	Murarrie
VIC 3175	VIC 3216	NSW 2145	ACT 2911	QLD 4172
Tel: +61 3 8564 5000	Tel: +61 3 8564 5000	Tel: +61 2 9900 8400	Tel: +61 2 6113 8091	Tel: +61 7 3902 4600
NATA# 1261 Site# 1254	NATA# 1261 Site# 1254	NATA# 1261 Site# 18217		NATA# 1261 Site# 20

Brisbane cre Street 1/21 Smallwood Place Murarrie QLD 4172

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

www.eurofins.com.au

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898 NZBN: 9429046024954 Perth Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool Penrose, Auckland 1061 WA 6106 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51 NATA# 2377 Site# 2370 IANZ# 1327

EnviroSales@eurofins.com

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450

IANZ# 1290

Sample Receipt Advice

Company name:	Geo-Logix P/L
Contact name:	Kiran Baby
Project name:	TERRY HILLS-TRIPLICATES
Project ID:	2201064
Turnaround time:	5 Day
Date/Time received	Sep 14, 2022 1:25 PM
Eurofins reference	926115

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1
- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 1.8 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- X All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- 1 Sample containers for volatile analysis received with zero headspace.
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager: Asim Khan on phone : or by email: AsimKhan@eurofins.com

Results will be delivered electronically via email to Kiran Baby - kbaby@geo-logix.com.au.

Note: A copy of these results will also be delivered to the general Geo-Logix P/L email address.

Global Leader - Results you can trust

Geo-Logix Pty Ltd Building Q2, Level 3 2309/4 Daydream St Warriewood, NSW 2102 ABN: 86 116 892 936 P: (02) 9979 1722 F: (02) 9979 1222	CHAIN OF CUSTODY Page I of Purchase Order No: P05604TP Project Manager: Kbaby @geo-logix.com.au, tpolassery@geo-logix.com.au Purchase Order No: P05604TP Contact email: Kbaby @geo-logix.com.au, tpolassery@geo-logix.com.au Send Invoice to: accounts@geo-logix.com.au Project Name: Delay Hills-Phimasy Send Invoice to: accounts@geo-logix.com.au Project Number: Delay Hills-Phimasy TAT required: Bandaud.									CHAIN OF CUSTODY Page I of Page I of Purchase Order No: P05604TP Project Manager: kir an baby purchase Order No: P05604TP Contact email: kbaby @geo-logix.com.au, tpolassery @geo-logix.com.au Quote Reference: Project Name: 10444 Hills-Paimasy Send Invoice to: accounts@geo-logix.com.au Project Number: 2801064 Date Submitted: 14/09 TAT required: Eandard.												CHAIN OF CUSTODY Page 1 of 1 Manager: kto an baby Purchase Order No: P0560 temail: kbaby@gub_logix.com.au, tpolassery@gub_logix.com.au Quote Reference: Name: Tekhy Hills-Phimasy Send Invoice to: accounts@geo- Number: 2201064 Date Submitted: 14/09 TAT required: Sfandau ANALYSIS REQUIRED Analysis Required Analysis Required Standau Standau								CHAIN OF CUSTODY Page 1 of 1 Project Manager: know baby Purchase Order No: P056047 Project Mame: kbaby @geo_logik.com.ac/ tpolassery @geo_logik.com.ac/ Guote Reference: Project Name: Telley Hille-Phimasy Send Invoice to: accounts@geo-logik. Project Number: Date Submitted: 14/09 TAT required: Elandad.										CHAIN OF CUSTODY Page 1 of 1 Page 1 of 1 Purchase Order No: P05604TP Purchase Order No: P05604TP tact email: Kbaby @geo_logix.com.au tact email: Kbaby @geo_logix.com.au get Name: Techy Hills-Paimasy Ject Name: Techy Hills-Paimasy Send Invoice to: accounts@geo-logix.com Jate Submitted: 14/09 TAT required: Standard. ANALYSIS REQUIRED									<u>u</u>			
Lab ID Sample ID	Date	soil	vater	atrix	paint, filters	other	Co	ommen	nts	COMPOSITE	TRH - C6 - C10	TRH - C10 - C40	VOCs	BTEXN	PAHs	PCBs	OPPs	Phenols	Metals - M8	Metals - Lead	Metals - Specify **	ICLP Asbestos (ID only)	Asbestos (WA DOH)	Foreign Materials	Conductivity (EC)	ΡΗ	Hold	SUITE	Eurofins MGT Suite Codes																							
							Please Exertin	send s Me	Content			× ×		× ×	× × ×	*												<u>B9</u>	B1A TRH/MAH B2 TRH/BTEXN/Pb B2A TRH/MAH/Pb B3 PAH/Phanols B4 TRH/BTEXN/PAH B4A TRH/BTEXN/PAH B4A TRH/BTEXN/PAH B4A TRH/BTEXN/PAH B4A TRH/BTEXN/PAH/Phanols B5 TRH/BTEXN/PAH/Phanols/M8 B7 TRH/BTEXN/PAH/M8 B7A TRH/BTEXN/PAH/M8 B9 TRH/BTEXN/PAH/OCP/OPP/M8 B10 TRH/BTEXN/PAH/OCP/OPP/M8 B11 Na/K/Ca/Mg/CI/SO_4/CO_3/HCO_3/NH_3/NO_3 B12 TRH/BTEXN/Oxygenates/Ethanol B12 TRH/BTEXN/Oxygenates/Ethanol B12A TRH/BTEXN/Oxygenates/Ethanol B12A TRH/BTEXN/Oxygenates/Ethanol B12A TRH/BTEXN/Oxygenates/Ethanol B12A TRH/BTEXN/Oxygenates/Ethanol B12A TRH/BTEXN/Oxygenates/Ethanol B13 OCP/OPP B14 OCP/OPP B15 OCP/OPP/CB B16 TDS/SO_4/CH_4/A/IV/BOD/COD/HPC/CUB																							

Metals**(circle) As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ^{o+}, Cr ^{o+}, Fe ²⁺, Fe ³⁺, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bl, Sb

Chain of Custody And " Received by: MARES Date/Time: Date/Time: 14/4/22 Signature: Karap TP Signature: #923657 Relinquished by:

Version: V1 Issued: June 2015 Review: January 2022

Sos Chain of Custody

1.

Asim Khan

From:	Kiran Baby <kbaby@geo-logix.com.au></kbaby@geo-logix.com.au>
Sent:	Monday, 26 September 2022 10:53 AM
То:	Asim Khan
Cc:	Thara Polassery
Subject:	RE: Eurofins Test Results - Report 926115 : Site TERRY HILLS-PRIMARY (2201064)

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins. Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Asim,

Can you change the report name to "TERRY HILLS-TRIPLICATES"?

Thanks,

Kiran

From: AsimKhan@eurofins.com <AsimKhan@eurofins.com>
Sent: Monday, 26 September 2022 10:48 AM
To: Kiran Baby <kbaby@geo-logix.com.au>
Cc: Thara Polassery <tpolassery@geo-logix.com.au>
Subject: Eurofins Test Results - Report 926115 : Site TERRY HILLS-PRIMARY (2201064)

Please find attached results for your project in the subject header.

Kind regards,

Asim Khan Analytical Services Manager Please note my hours are from 9:30 am to 5:30 pm

Eurofins Environment Testing Australia Pty Ltd

179 Magowar Road Girraween NSW 2145, Australia **Phone:** +61 2 9900 8432 **Mobile:** +61 429 051 456

E-mail: <u>AsimKhan@eurofins.com</u> Website: <u>Eurofins Environment Testing Australia</u>

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the

GEO-LOGIX PTY LTD

ABN 86 116 892 936

Building Q2, Level 3 Suite 2309, 4 Daydream Street Warriewood NSW 2102

> Phone 02 9979 1722 Fax 02 9979 1222

Email info@geo-logix.com.au Web www.geo-logix.com.au