19 March 2020

NBRS Architecture

Level 3.

4 Glen Street

Meinhardt (NSW) Pty Ltd A.B.N. 98 051 627 591

Level 4, 66 Clarence Street Sydney, New South Wales Australia 2000

T: +61 2 9699 3088 F: +61 2 9319 7508

contact.nsw@meinhardtgroup.com www.meinhardtgroup.com

ATTENTION: ALICE STEEDMAN

MILSONS POINT NSW 2061

Dear Madam,

RE: 19-21 THE CORSO MANLY PROPOSED ALTERATIONS AND ADDITIONS REVIEW OF DESIGN LOADINGS ON EXISTING SYDNEY WATER SEWER STRUCTURAL ENGINEERING VERIFICATION & CERTIFICATION

We provide our findings in the role of S4 verifier on the structural design of the footings for the proposed alterations and additions for the above mentioned project in relation to the existing Sydney Water sewer culvert located in this site. More specifically our review is to verify that the proposed design does not cause additional loads on the sewer culvert.

The following main documents were reviewed:

- Structural drawings 11401-S0.00 to S5.00 revB 28/2/2020 by Waddington Consulting Pty Ltd (Footing plan drg S1.00 and Ground Floor Sections drg S1.01 attached for reference)
- Structural calculations by Waddington Consulting dated 28/02/2020
- Architectural DA Review issue drawings May 2019 by NBRS Architecture (drg 17349-A-10 attached for reference)
- Geotechnical Report JG18143A dated 30/4/2019 by GeoEnviro Consultancy
- Screw pile design certification by TALL consulting structural engineers
- Statement of Methodology by Waddington Consulting (attached)

The proposed project involves the refurbishment of an existing 4 storey brick building. In essence the design methodology with respect to footing loads is that existing high level footings in the zone of influence of the sewer do not have a net increase in loadings, and other additional loadings (such as the new lift) are carried on footing beam structures which straddle over the sewer and are supported on new screw piles which are founded in dense sand below the zone of influence of the sewer.

In our review we find that the proposed design does not cause additional loadings onto the existing sewer culvert.

This certificate shall not be construed as relieving any other party of their responsibility.

Yours sincerely MEINHARDT (NSW) PTY LIMITED

Rod Wong BE MEngSc MIEAust CPEng NER APEC Engineer IntPE(Aus) Associate Director- Structures

Encl.

<u>Proposed Alterations and Additions at 19-21 The Corso, Manly</u> <u>Design Methodology</u>

Existing Building

The existing 4 storey apartment building is of full brick construction with some concrete and some timber framed floors and a timber framed roof. There is some evidence of settlement of the side walls and hence it is assumed that the existing building is constructed on high level strip footings.

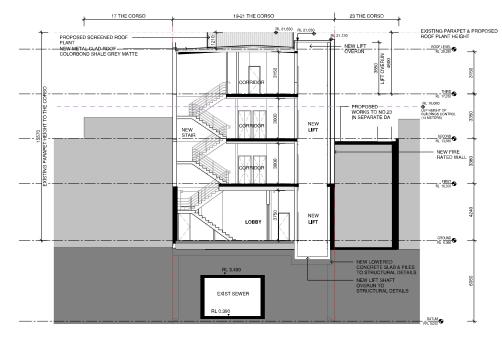
The front half of the ground floor level has had numerous older alterations with a number of beams installed in the first floor level that appear to span across the ground floor retail tenancy. The ground level generally appears to be a concrete infill slab on ground.

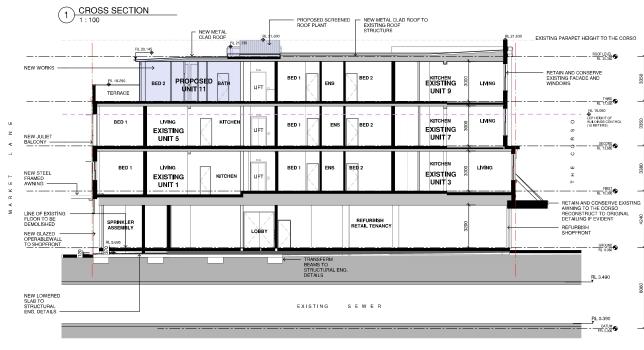
Structural Design Objectives

Apart from normal structural engineering and Australian Code requirement, the design the structures is to avoid any additional loadings on the sewer culvert which runs through the length of the property the top of which is approximately 2.5m below ground level.

Proposed Construction Procedure

A construction procedure is to be devised with the goal of avoiding additional load over the sewer main. The proposed alterations involve the removal of many internal brick walls and the construction of new timber framed walls. Through the majority of the middle portion of the building either side of the main internal stairway the replacement of the existing slabs and masonry walls will be replaced with lighter timber and steel framed floors and walls and hence the overall loads on the existing walls will be reduced due to significantly reduced dead loads.


There are new slabs and masonry walls planned for the new fire stair and lift. These will all be built off new reinforced concrete raft slab/footings supported on piles.


There is one existing wall at the northern end of the existing internal stair wall that will remain and will require some steel beams to support existing timber framed floors during construction (and permanently). It is anticipated that the removal of significant dead loads from the masonry walls and some concrete slabs adjacent this wall will more than counter the effects of concentrated floor loads from new beams supporting existing timber framed floors. Refer later calculations.

Due to the sandy nature of the soil it is considered steel screw piles will be ideal for this site due to the confined nature of the site, ease of installation and to minimise disturbance to existing, adjacent high level footings These will then be installed to support and new concrete raft slab/footing to support all new wall and floor loads such that the loads are taken below the influence line of the sewer. Concrete footings will be poured on polystyrene sheets to allow for some settlement of the piles and deflection of the raft slab and hence limit any additional loads on the sewer 2m below the 'suspended' concrete footing slabs.

Design Method

- 1. Estimate design bearing pressures on the top of the sewer culvert due to existing loads
- 2. Calculate design bearing pressures on the top of the sewer culvert at critical stages during construction, eg after full demolition of internal walls and installation of new beams to support internal floor framing that remains and installation of wet weight of footings before load is transferred to piles
- 3. The final design is then to support all new wall and floor loads on piled footings taken below the influence line of the sewer. Due to the sandy nature of the soil it is considered steel screw piles will be ideal due to the confined nature of the site, ease of installation and to minimise disturbance to existing, adjacent high level footings
- 4. Also assess impact of 5T excavator to install screw piles (before wet weight of concrete footing is added) and potentially limit access to excavator to avoid driving directly over sewer if required.

2 LONG SECTION

PRELIMINARY Issue
 No.
 Date

 A
 01/06/18

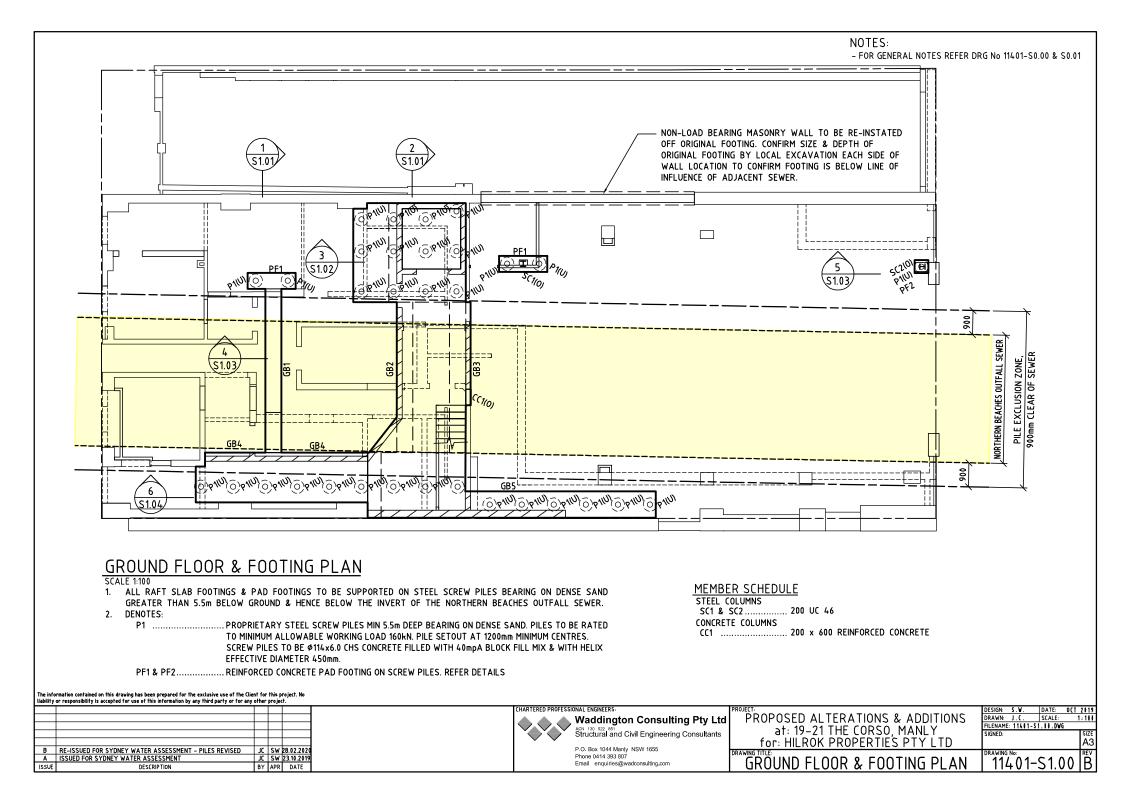
 B
 14/02/19

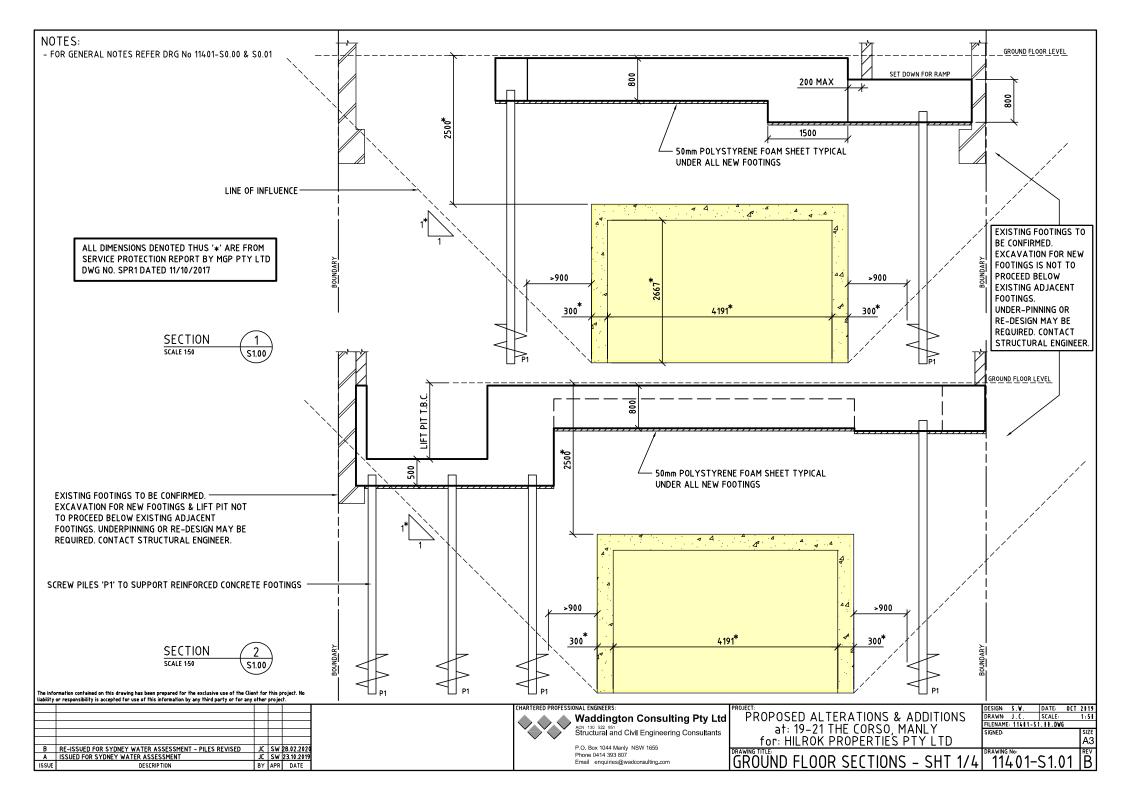
 C
 27/02/19

 D
 02/05/2019
 Chkd AT AT AT AT Description PRE DA SUBMISSION PRE DA SUBMISSION PRE DA SUBMISSION DA SUBMISSION

Drawing Title SECTIONS Project MÁNLY CORSO APARTMENTS REFURBISHMENT + ADDITIONS S.P. 12989 19-21 THE CORSO, MANLY

for HILROK PROPERTIES PTY LTD


Date 5/6/2019 2:09:26 PM


Scale 1:100@A1

NBRSARCHITECTURE.

Drawing Reference Revision 17349-A-10 D 9 10 i.

to 12 99/22 2344 IDDS afcn(HectUre).com Any tem or npildcation of this drawing in full or in part without the written permission of NBRS+PATINERS Py Lid consistitutes an infringement of the copyright. ABN 16 002 247 555 Nominated Architects: Gooffery Deare 3765, Andrew Duffin; Garry Hoddinett 5286 D 2017 3 4 5

Waddington Consulting Pty Ltd

ACN 130 522 851 Structural and Civil Engineering P.O. Box 1044 Manly NSW 1655

Our ref: 11401-L1

P 0414 393 807

1 March 2020

Hilrok Properties Pty Ltd 17 The Corso Manly NSW 2095

Attention: Mr Tim Peterson

Dear Tim,

Subject: Alterations and Additions at 19-21 The Corso, Manly Certificate for Engineering Design & Structural Adequacy

Please find attached copies of engineering drawings 11401-S0.00, S0.01, S1.00, S1.01, S1.02, S1.03, S2.00, S3.00, S4.00, S5.00, revision B relating to the proposed alterations and additions at 19-21 The Corso, Manly.

I certify that the structural engineering design of the elements shown on the above-mentioned plans has been carried out in accordance with the BCA, relevant Australian Standards and normal engineering practice. Furthermore, the design has been carried out to avoid any additional loads impacting the existing sewer main running under the property.

The existing four storey building consists of full brick construction with a metal sheet roof. Overall, the structure appeared to be generally in fair condition for its age although there are significant sections of the building that are in urgent need of remedial work or replacement. There is also some evidence of settlement cracking in the brickwork particularly on the rear elevation. The existing structures that will remain are considered capable of withstanding the loading from the proposed additions and additions because a number of brick walls and concrete slabs will generally be replaced with lighter timber frame construction.

Please do not hesitate to contact me if you have any queries regarding this project or require any further structural engineering advice.

Yours sincerely,

Simie libettigo

Simon Waddington MIEAust CPEng NPER (Structural) Director Waddington Consulting Pty Ltd

<u>Proposed Alterations and Additions at 19-21 The Corso, Manly</u> <u>Design Methodology</u>

Existing Building

The existing 4 storey apartment building is of full brick construction with some concrete and some timber framed floors and a timber framed roof. There is some evidence of settlement of the side walls and hence it is assumed that the existing building is constructed on high level strip footings.

The front half of the ground floor level has had numerous older alterations with a number of beams installed in the first floor level that appear to span across the ground floor retail tenancy. The ground level generally appears to be a concrete infill slab on ground.

Structural Design Objectives

Apart from normal structural engineering and Australian Code requirement, the design the structures is to avoid any additional loadings on the sewer culvert which runs through the length of the property the top of which is approximately 2.5m below ground level.

Proposed Construction Procedure

A construction procedure is to be devised with the goal of avoiding additional load over the sewer main. The proposed alterations involve the removal of many internal brick walls and the construction of new timber framed walls. Through the majority of the middle portion of the building either side of the main internal stairway the replacement of the existing slabs and masonry walls will be replaced with lighter timber and steel framed floors and walls and hence the overall loads on the existing walls will be reduced due to significantly reduced dead loads.

There are new slabs and masonry walls planned for the new fire stair and lift. These will all be built off new reinforced concrete raft slab/footings supported on piles.

There is one existing wall at the northern end of the existing internal stair wall that will remain and will require some steel beams to support existing timber framed floors during construction (and permanently). It is anticipated that the removal of significant dead loads from the masonry walls and some concrete slabs adjacent this wall will more than counter the effects of concentrated floor loads from new beams supporting existing timber framed floors. Refer later calculations.

Due to the sandy nature of the soil it is considered steel screw piles will be ideal for this site due to the confined nature of the site, ease of installation and to minimise disturbance to existing, adjacent high level footings These will then be installed to support and new concrete raft slab/footing to support all new wall and floor loads such that the loads are taken below the influence line of the sewer. Concrete footings will be poured on polystyrene sheets to allow for some settlement of the piles and deflection of the raft slab and hence limit any additional loads on the sewer 2m below the 'suspended' concrete footing slabs.

Design Method

- 1. Estimate design bearing pressures on the top of the sewer culvert due to existing loads
- 2. Calculate design bearing pressures on the top of the sewer culvert at critical stages during construction, eg after full demolition of internal walls and installation of new beams to support internal floor framing that remains and installation of wet weight of footings before load is transferred to piles
- 3. The final design is then to support all new wall and floor loads on piled footings taken below the influence line of the sewer. Due to the sandy nature of the soil it is considered steel screw piles will be ideal due to the confined nature of the site, ease of installation and to minimise disturbance to existing, adjacent high level footings
- 4. Also assess impact of 5T excavator to install screw piles (before wet weight of concrete footing is added) and potentially limit access to excavator to avoid driving directly over sewer if required.

B RE-ISSUED FOR SYDNEY WATER ASSESSMENT - PILES REVISED JC SW 28.02.2020 A ISSUED FOR SYDNEY WATER ASSESSMENT JC SW 23.10.2019			The information contained on this drawing has been prepared for the exclusive use of the Client for this project. No liability or responsibility is accepted for use of this information by any third party or for any other project.					F4 (0		DESIGNED IN ACCORDANCE WITH THE RELEVANT AVSTRALIAN STANDARDS AND LOCAL GOVERNMENT ORDINANCES. G8 WIND LOADS ARE DETERMINED IN ACCORDANCE WITH AS4055 FOR WIND CLASSIFICATION: 'NT' WITH A METAL SHEET ROOF.	IN MILLIME KESS. ENVINEERS S UKAWINGS SHALL WOT BE SALED FOR DIMENSIONS. ALL DIMENSIONS SHOWN SHALL BE VERIFIED BY THE BUILDER ON SITE. G7 THE STRUCTURAL COMPONENTS DETAILED ON THESE DRAWINGS HAVE BEEN			3	D	F2	GENERAL FOUND G1 THESE DRAWINGS SHALL BE READ IN CONJUNCTION WITH ALL ARCHITECTURAL AND F1 S OTHER CONSULTANTS' DRAWINGS AND SPECIFICATIONS AND WITH SUCH OTHER T WRITTEN INSTRUCTIONS AS MAY BE ISSUED DURING THE COURSE OF THE CONTRACT. R		ICTURAL DRAWINGS	for	PROF
P.O. Box 1044 Manly NSW 1655 Phone 0414 393 807	Acvi 130 522 861 Structural and C			v - denotess v - denotess v - denotess v - denotess sl'or vrl' - l			R2	R1 ALL REINFOR OTHERWISE.	PRIOR TO ANY EXCAVATION NEAR EXISTING FOOTINGS, THE BUILDER SHALL C. CANLEVERS DETERMINE THE DEPTH OF FOUNDING OF EXISTING FOOTINGS BY LOCAL BEYOND COLUI INVESTIGATORY EXCAVATION GENERAL EXCAVATION SHALL NOT PROCEED BELOW NOTED ON PLA A LEVEL 150mm ABOVE THE UNDERSIDE OF EXISTING FOOTINGS UNTIL INSTRUCTION A LEVEL 150mm ABOVE THE UNDERSIDE OF EXISTING FOOTINGS UNTIL INSTRUCTION REINFORCEMENT			FOOTING OR BLOCKDOWN	BACKFILLED TRENCH GIVEN TO REDUCE. CF4 THE FORMWOR	THE LIMITS OF EXCAVATIONS I THE DETAIL BELOW.	SUPPORT SLABS AND FOUTINGS. FOUTINGS TO BE CONSTRUCTED AND BARNFILLED SOME AND AS SOON AS POSSIBLE FOLLOWING EXCAVATION TO AVOID SOFTENING OR DRYING CF3 DURING CONST OUT BY EXPOSURE, TRENCHES TO BE DEWATERED & CLEANED OUT PRIOR TO SLABS KINDLIF FONGETTE DI ACEMENT SLABS AND FOUTINGS FOR AN ADVIS AND	cF2	FOUNDATIONS & EARTHWORKS F1 SCREW PILE FOUNDATIONS ARE TOP BE TAKEN TO DENSE SAND LAYER GREATER CF1 THE DESIGN, CI THAN 5.5m BELOW GROUND LEVEL. PROPRIETARY SCREW PILES TO BE LOAD FORMWORK AN RATED BY THE INSTALLER TO SUIT THE SPECIFIED ALLOWABLE LOAD CAPACITY EXCEPT TO TH	R & FOOTING R DETAILS - R DETAILS - R DETAILS - R DETAILS -	NOTES SHT 1 of 2 114 NOTES SHT 2 of 2 114	HILROK PROPER	OSED ALTERATION
	eering Consultants for: HILROK PRO	Consulting Ptv Ltd PROPOSED ALTERA		- DENVIES GRADE 250 R HOT ROLLED PLAIN BARS 10 AS4071 GRADE N. R13 SITE BENDING OF REINF - DENOTES GRADE 250 R HOT ROLLED PLAIN BARS TO AS4671. BENDING IS UNA VOIDAI - DENOTES HARD-DRAWN WIRE REINFORCING MESH TO AS4671. APPLICATION OF HEAT - DENOTES HARD-DRAWN PLAIN WIRE TO AS4672. THE STEEL REINFORCEI or 'RL' - DENOTES WELDED GRADE 500 REINFORCING MESH TO AS 4671 BENDING TOOLS.	DEEDDMED BADC TO ACCATAGDADE N	CITE AND TYPE R	SHALL BE AS FOLLOWS IN THE FOLLOWING ORDER R (OUP	ALL BE GRADE D500N TO AS4671 UNLESS NOTED ALL BE GRADE 500L TO AS4671 AND SHALL BE	CANTLEVERS OF 1.7120, WHERE TAXSVERSE I CANTLEVERS OF 1.7120, WHERE TVIST HE SHORTEST PROJECTION RY WHERE NECESSARY AND BEYOND COLUMN OR WALL FACE, AND TO FORMWORK OF SLABS WHERE R10 NO OPENINGS IN BEAMS NOTED ON PLAN. MAINTAIN THE SLAB AND BEAM DEPTHS SHOWN. SPECIFICALLY DETAILE SPECIFICALLY DETAILE DRCEMENT REINFORCEMENT SHALL		, m , , , , , , , , , , , , , , , , , ,	Y R7	2 B	NOT EXCEPT THE DESIGN CONCERNMENT AND AND CELEDING CONCERNMENT AND AND CELEDING AND AND CELEDING AND AND CELEDING AND	BAR	EACH BA	NORK THE DESIGN, CONSTRUCTION, CERTIFICATION AND PERFORMANCE OF THE R4 SPLICES IN REINFORCEME FORMWORK AND FALSEWORK IS THE RESPONSIBILITY OF THE BUILDER, OTHERWISE APPROVED I EXCEPT TO THE EXTENT THAT THE FORMWORK DESIGN IS SHOWN ON THE ACCORDANCE WITH AS 3	.00	1.04GROUND FLOOR DE 2.00FIRST FLOOR PLAN	TIES PTY LTD	NS & ADDITIONS
	CORSO, MANLY FILENAME: 11411-51.11.DVG SIGNED: SIGNED: A3	ADDITIONS DESIGN: S.W. DATE: OCT 2419 BRAWN: J.C. SCALE: N/A	2417	SITE BENDING OF REINFORCEMENT SHALL BE AVOIDED IF POSSIBLE. WHERE SITE BENDING IS UNAVOIDABLE IT SHALL BE CARRIED OUT COLD, WITHOUT THE APPLICATION OF HEAT, AND IN ACCORDANCE WITH THE PRACTICE NOTE 'RPNT' OF THE STEEL REINFORCEMENT INSTITUTE OF AUSTRALIA USING MECHANICAL BENDING TOOLS.	PLASTIC TIPPED STEEL CHAIRS SHALL NOT BE USED ON EXPOSED FACES IN EXPOSURE CLASSIFICATION B1, B2 AND C ONLY PLASTIC OR CONCRETE CHAIRS.	ALL REINFORCEMENT SHALL BE FIRMLY SUPPORTED ON MILD STEEL PLASTIC TIPPED CHAIRS, PLASTIC CHAIRS OR CONCRETE CHAIRS AT NOT GREATER THAN 1 METRE CENTRES BOTH WAYS, AND 800 EACH WAY FOR MESH. WHEN POURED ON GROUND AS FORMADE PEOPUNE PLATES INDER ALL RAP CHAIPS	TAILED BY THE ENGINEER. ALL COMPRISE A LENGTH OF 12 BAR DIAMETERS BETWEEN AN OFFSET OF 1 BAR DIAMETER.	SQUARE THE REINFORCEMENT CROSSING THE PROPOSED OPENING HE HOLES TRIMMED USING 2N12 BARS TOP AND BOTTOM IST EACH SIDE OF OPENING. OPENINGS LARGER THAN 600mm	 9 WHERE TRANSVERSE TIE BARS ARE NOT SHOWN PROVIDE NIZ-4.00 SPLICED 9 WHERE NECESSARY AND LAP WITH MAIN BARS 4.00MM UNLESS NOTED OTHERWISE. 10 NO OPENINGS IN BEAMS OR COLUMNS SHALL BE MADE OTHER THAN THOSE 11 SPECIFICALLY DETAILED. FOR OPENINGS IN SLABS UP TO 300mm SQUARE THE 12 SPECIFICALLY DETAILED. FOR OPENINGS IN SLABS UP TO 300mm SQUARE THE 13 REINFORCEMENT SHALL BE DISPLACED TO THE SIDES. FOR OPENINGS BETWEEN 300mm 	Y SUPPORTED ENDS. IF THIS CANNOT BE ACHIEVED DUE TO THEN ALL THE BARS SHALL BE COGGED. FOR MESH THE ROD SHALL BE LOCATED OVER THE WALL AND 50mm FACE OF THE WALL.	SHALL EXTEND AT LEAST 65mm ONTO MASONRY SUPPORT OTTOM REINFORCEMENT SHALL BE COGGED TO ACHIEVE	WELDING OF REINFORCEMENT SHALL NOT BE PERMITTED UNLESS SHOWN ON THE STRUCTURAL DRAWINGS OR APPROVED BY THE ENGINEER. MESH SHALL BE LAPPED 2 TRANSVERSE WIRES PLUS 50mm. BUNDLED BARS SHALL BE TIED TOGETHER AT 30 BAR DIAMETER CENTRES WITH 3 WRAPS OF THE	1 1 0 0 9 0 0 PRESENTED DIAGRAMMATICALLY AND NOT NECESSARILY IN	4/5 750 600 750 750	SPLICE SCHEVELE		MENT Cont IN REINFORCEMENT SHALL BE MADE ONLY IN POSITIONS SHOWN OR ISE APPROVED IN WRITING BY THE ENGINEER. LAPS SHALL BE IN ANCE WITH AS 3600 AND NOT LESS THAN THE DEVELOPMENT LENGTH FOR		- SHEET 4 of 4		

TRUCTURAL NOTES-SHT 1 of 2	for: HILROK PROPERTIES PTY LTD	di: 17-21 the cursu, l'hanli	LA 10 31 THE CODED MANIN	PROPOSED ALTERATIONS & ADDITIONS	
11401-		SIGNED:	FILENAME: 114 1 - 5	DRAWN: J.C.	DESIGN: S.W.
2 11401-S0.00 B		SIGNED:	FILENAME: 11401-51.000		DESIGN: S.W. DATE: OCT 2019

RE-ISSUED FOR SYDNEY WATER ASSESSMENT - PILES REVISED ISSUED FOR SYDNEY WATER ASSESSMENT DESCRIPTION

3.10.2020 3.10.2019

P.O. Box 1044 Manly NSW 1655 Phone 0414 393 807 Email enquiries@wadconsulting.com

S

	Phone 0414 393 807 Email enquiries@wadconsulting.com		B RE-ISSUED FOR SYDNEY WATER ASSESSMENT - PILES REVISED JC SW 28.02.2020 A ISSUED FOR SYDNEY WATER ASSESSMENT - PILES REVISED JC SW 23.10.2019 ISSUE DESCRIPTION BY APR DATE
	ing Consultants for: H		
			The information contained on this drawing has been prepared for the exclusive use of the Client for this project. No liability or responsibility is accepted for use of this information by any third party or for any other project.
		THE BUILDER SHALL PROVIDE ALL CLEATS AND DRILL ALL HOLES NECESSARY FOR FIXING STEEL TO STEEL AND TIMBER TO STEEL WHETHER OR NOT DETAILED ON THE DRAWINGS. THE FABRICATION AND ERECTION OF THE STRUCTURAL STEELWORK SHALL SUPERVISION, ENSURING ALL REQUIREMENTS OF THE DESIGN ARE MET. ALL BEAMS AND RAFTERS SHALL BE INSTALLED AND ERECTED WITH NATURAL CAMBER UP. ALL MEMBERS SHALL BE SUPPLIED IN SINGLE LENGTHS. SPLICES SHALL ONLY BE PERMITTED IN LOCATIONS SHOWN ON THE STRUCTURAL DRAWINGS.	LIS 10
19		ABRASIVE GRIT BLASTING PRIMER OR EQUIV. + 1 TOP COAT ALL WEATHER GLOSS ACRYLIC EXTERNAL ABRASIVE GRIT BLASTING 1COAT INORGANIC ZINC SILICATE (CLASS 2.5) or PICKLING 1COAT OF COAT ALL WEATHER GLOSS ACRYLIC WITH UV PROTECTOR EXTERNAL PICKLING HOT DIP GALVANISED	
T8			
T6	MOISTURE CONTENT ± 2 %.	STRUCTURE DURING ERECTION. STRUCTURAL STEELWORK SHALL HAVE THE FOLLOWING SURFACE TREATMENT IN ACCORDANCE WITH THE SPECIFICATION.	PLACED WITHIN THE REINFORCEMENT COVER C13 REPAIRS TO CONCRETE SHALL NOT BE ATTEMPTED WITHOUT THE PERMISSION OF S9 THE ENGINEER.
15 I¢	BL10 BACKFILL TO RETAINING WALLS SHALL BE FREE DRAINING GRANULAR MATERIAL. PROVIDE SUBSOIL DRAIN AT BASE OF WALL. DO NOT BACKFILL UNTIL 14 DAYS AFTER GROUTING, OR IF APPLICABLE, AFTER RESTRAINING SLAB OVER HAS BEEN POURED AND CURED FOR 7 DAYS. BACKFILL SHALL BE COMPACTED TO 98% STANDARD MAXIMUM DRY DENSITY AT OPTIMUM	B HOLES TO HOLLOW MEMBERS & DRAIN HOLES TO ALL MEMBERS TO BE HOT DIP GALVANISED. IT IS THE BUILDER'S RESPONSIBILITY TO ENSURE THAT STEELWORK IS SECURELY TEMPORARILY BRACED AS NECESSARY TO STABILISE THE	APPROVED SPRATED ON CORNO COMPOUNDS COMPLYING WITH AS 3797 MAT BE USED WHERE NO FLOOR FUISHES ARE PROPOSED. POLYTHENE SHEETING OR WET HESSIAN MAY BE USED IF PROTECTED FROM WIND AND TRAFFIC. CONDUTS, PIPES, ETC, SHALL ONLY BE LOCATED IN THE MIDDLE ONE THIRD OF SLAB DEPTH AND SPACED AT NOT LESS THAN 3 DIAMETERS AND SHALL NOT BE
	GROUT SHALL BE PLACED IN LIFTS OF 1200mm MAXIMUM AND COMPACTED BY POKER VIBRATOR. A SHORT TIME SHOULD ELAPSE BETWEEN SUCCESSIVE LIFTS TO ALLOW PLASTIC SETTLEMENT TO OCCUR. * PROVIDE 50 mm COVER FROM THE OUTSIDE OF THE BLOCKWORK UNLESS NOTED.	TO BE IN ACCORDANCE WITH AISC DESIGN CAPACITY TABLES FOR STRUCTURAL STEEL AND AISC STANDARDIZED STRUCTURAL CONNECTIONS. PLATES TO BE 10mm THICK, EX-STANDARD SQUARE EDGE FLATS U.N.O. PROVIDE SEAL PLATES TO ALL HOLLOW SECTIONS PROVIDE VENT	-
	CENTRE OF THE LENGTH OF CORES AND WITH COVER AS NOTED. WHERE HORIZONTAL BARS ARE INDICATED, THE WEBS OF THE BLOCKS BELOW THE BARS SHALL BE CUT DOWN TO ACCOMMODATE THE BARS. * GROUT ALL CORES IN REINFORCED BLOCKWORK UNLESS OTHERWISE NOTED. HFIGHT OF BLOCKWORK TO RE GROUTED ON ONE DAY SHALL BE 2400mm	GP/SP WELDS SHALL BE 100% VISUALLY SCANNED. SP WELDS ALLOW FOR 10% VISUAL EXAMINATION U.N.O. BUTT WELDS SHALL BE COMPLETE PENETRATION WELDS TO AS 1554. ALL DETAILS GALIGE LINES ETC WHERE NOT SPECIFICALLY SHOWN ARE	POURS. THESE JOINTS SHALL BE PLANNED IN ADVANCE, TO THE APPROVAL OF THE ENGINEER. C10 THE FINISHED CONCRETE SHALL BE A DENSE HOMOGENEOUS MASS, COMPLETELY FILLING THE FORMWORK THOROUGHLY EMBEDDING THE REINFORCEMENT AND FREE 56
Bk8	MINIMUM CEMENT CONTENT = 300 kg/m, MINIMUM CEMENT CONTENT = 300 kg/m, SLUMP = 230 ± 30 mm. * REINFORCEMENT PROJECTING FROM FOUNDATION OR SLABS INTO CORES, SHALL BE SET ACCURATELY IN PLACE USING TEMPLAES TO ALIGIN WITH THE STATL BE SET ACCURATELY IN PLACE USING TEMPLAES TO ALIGIN WITH THE	WASHENS, ON BY TONY OF NOT CONTINCTOR TENSIONIOL WELDING SHALL BE CARRIED OUT IN ACCORDANCE WITH AS 1554.1 WELDING CONSUMABLES SHALL BE E48XX OR W50X U.N.O. ALL WELD SHALL BE 6 mm CFW SP CATEGORY U.N.O. CPBW SHALL BE SP CATEGORY U.N.O. INSPECTION SHALL BE CARRIED OUT TO AS 1554.1. ALL	STRUCTURAL DRAWINGS SHALL BE MADE IN CONCRETE MEMBERS WITHOUT THE PRIOR WRITTEN APPROVAL OF THE ENGINEER. C9 CONSTRUCTION JOINTS AND CLOSING STRIPS SHALL BE USED TO CONTROL AND REDUCE SHRINKAGE CRACKING IN WALLS AND FLOORS, AND COLD JOINTS IN LARGE
	UNLESS NO IED: * PROVIDE CLEANOUT HOLES 100 mm SQUARE MINIMUM AT BASE OF ALL WALLS AND ROD CORE HOLES TO REMOVE PROTRUDING MORTAR FINS PRIOR TO GROUTING. * CODE FULLING CEDITIC CLAIL BE: 41 - 20 MBC	ALL BOLTS SHALL BE M20 GRADE 8.8/S UNLESS NOTED. NO CONNECTION SHALL HAVE LESS THAN 2 BOLTS. ALL BOLTS, NUTS & WASHERS TO BE GALVANISED. TB AND TF BOLTS TO BE INSTALLED USING APPROVED LOAD INDICATING MACHINE OF DY TIME OF MILT CONTROL OF THEORY AND A MILE AND A MILE MACHINE OF DY TIME OF MILE AND A MILE AND	WRITTEN AFFROVAL OF THE ENGINEER. C7 FOR CHAMFERS, DRIP GROOVES, REGLETS, ETC REFER TO ARCHITECT'S DETAILS, MAINTAIN COVER TO REINFORCEMENT OF DIDES OTHED THAN THOSE SHOWN ON THE
Bk7	BL8 REFER TO CONCRETE NOTES FOR DE-PROPPING PRIOR TO CONSTRUCTION OF MASONRY WALLS ON SUSPENDED SLABS. BL9 REINFORCED CONCRETE BLOCKWORK SHALL COMPLY WITH THE FOLLOWING,		C5 DEPTHS OF BEAMS ARE GIVEN FIRST AND INCLUDE SLAB THICKNESS. C6 CONCRETE SIZES SHOWN DO NOT INCLUDE THICKNESSES OF APPLIED FINISHES. FINISHES. NO FINISH WHICH DECREASES COVER IS ALLOWED WITHOUT THE
Bk6		HIGH STRENGTH STRUCTURAL BOLTS OF GRADE 8.8 TO AS 1252, SNUG TIGHTENED. HIGH STRENGTH STRUCTURAL BOLTS OF GRADE 8.8 TO AS 1252 FULLY TENSIONED TO AS 4.100 AS BEADING JOINT	
Bk5	CONCRETE. BL6 NO CHASES OR RECESSES ARE PERMITTED IN LOAD BEARING MASONRY	TENED.	NOTE: WHERE CONCRETE IS POURED ON A VAPOURPROOF MEMBRANE 0.2 mm S4 MINIMUM THICKNESS, THE COVER TO CONCRETE CAST AGAINST GROUND MAY BE
Bk4	HEADS OF LOAD BEARING WALLS SHALL NOT EXTEND ABOVE THE SOFFIT OF THE CONCRETE SLAB ABOVE. BLS ALL MASONRY SUPPORTING OR SUPPORTED BY CONCRETE FLOORS SHALL BE PROVINED WITH VERFICAL JOINTY TO MATCH ANY CONTROL JOINTY IN THE		SLABS ON GROUND 32 3V 3V 3V SUSPENDED SLABS 32 40 40 25
	BL4 OTHER THAN REINFORCED CONCRETE BLOCKWORK, MASONRY SUPPORTING SLABS AND BEAMS SHALL BE TROWELLED SMOOTH WITH MORTAR FILLING ALL VOIDS. TWO LAYERS OF MALTHOID SHALL BE PLACED FULL WIDTH ACROSS SUCH LOAD BEARING SURFACES EXCEPT WHERE PROPRIETARY BEADING CTRUD & NOTED ALTEDNATIVE DETAIL IS DOCIMENTED THE	o'	ION CONCRETE CAST CAST IN CAS GRADE AGAINST FORMS WITH FOR (MPa) GROUND EXPOSURE NOT I
B K K	MORTAR (CEMENT : LIME : SAND) = 1:0.25:3 MORTAR ADMIXTURES SHALL NOT BE USED WITHOUT THE WRITTEN APPROVAL OF THE SUPERINTENDENT. BL3 ONLY LOAD BEARING MASONRY WALLS ARE SHOWN UNDER CONCRETE SLABS.	 GRADE 250 HOT-ROLLED PLATES COMPLYING WITH AS 3678; GRADE 250 HOT-ROLLED PLATES, TFC, TFB, ANGLES 100x100EA OR 125x75UA AND SMALLER COMPLYING WITH AS 3679.1; GRADE 300PLUS UB, UC, PFC AND ANGLES 125x125EA OR 150x90UA AND LARGER; 	UT IN ACCORDANCE WITH AS 130 DATS, FROJECT OUT IN ACCORDANCE WITH AS 1379. NO ETE UNLESS APPROVED IN WRITING. DRCEMENT SHALL BE AS FOLLOWS UNLESS
Bk2	BL2 STRENGTHS OF MASONRY UNITS AND TYPE OF MORTAR SHALL BE AS FOLLOWS:	N KACI	
BRICK Bk1	<u> </u>	ACCORDANCE WITH AS	

CKWORK

ALL MATERIALS AND WORKMANSHIP TO BE TO AS 3700. ONLY LOAD BEARING MASONRY WALLS ARE SHOWN UNDER CONCRETE

AS MINIMUM CLAY BRICK COMPRESSIVE STRENGTH TO BE 20MPa. RATE OF ABSORPTION TO BE LESS THAN 1.5KG/M2/MIN AT THE TIME OF LAYING. CLAY BRICKS SHALL BE AT LEAST 30 DAYS OUT OF THE KILN AND WILL OFTEN REQUIRE PRE-WETTING UNLESS PROOF OF A MOISTURE EXPANSION LESS THAN 0.6MM/M IS PRODUCED. UNLESS NOTED OTHERWISE MORTAR FOR CLAY BRICKWORK IS TO BE CEMENT: LIME: SAND IN THE RATIO OF 1 : 1 : 6 AND THE WATER RETENTIVITY MUST BE AT LEAST 90%. NO ADDITIVES SHALL BE USED UNLESS APPROVED IN WRITING. BRICKWORK IS TO BE ADEQUATELY CURED PRIOR TO CONSTRUCTION OF SUSPENDED SLABS OVER. SLABS.

UNLESS NOTED OTHERWISE CLAY BRICKWORK IS TO CONTAIN MOVEMENT JOINTS 20MM WIDE AT MAXIMUM SPACING OF 10M (15M IN INDUSTRIAL USE) AND ARE TO CONTAIN 4.0MM TAR IMPREGNATED POLYURETHANE STRIP. WHERE INTERNAL SKIN IS INTERRUPTED BY STEEL FRAMES THE ABOVE JOINTING APPLIES TO EXTERNAL SKIN ONLY.

ALL MASONRY SUPPORTING OR SUPPORTED BY CONCRETE FLOORS SHALL BE PROVIDED WITH VERTICAL JOINTS TO MATCH ANY CONTROL JOINTS IN THE CONCRETE.

NON LOAD BEARING WALLS BUILT PRIOR TO POURING CONCRETE SHALL BE SEPARATED FROM CONCRETE ABOVE BY 16 mm THICK CLOSED CELL POLYSTYRENE STRIP. WHERE BUILT AFTER CONCRETE IS POURED LEAVE 12mm CLEAR OF CONCRETE SOFFIT.

BRICKWORK SUPPORTING SLABS AND BEAMS SHALL BE TROWELLED SMOOTH WITH MORTAR FILLING ALL VOIDS. TWO LAYERS OF MALTHOID SHALL BE PLACED FULL WIDTH ACROSS SUCH LOAD BEARING SURFACES EXCEPT WHERE PROPRIETARY BEARING STRIP IS NOTED OR ALTERNATIVE DETAIL IS DOCUMENTED. THE HEADS OF LOAD BEARING WALLS SHALL NOT EXTEND ABOVE THE SOFFIT OF THE CONCRETE SLAB ABOVE.

ALL DOUBLE SKIN SOLID WALLS SUCH AS 230mm THICK BRICKWORK SHALL BE BONDED BY A HEADER COURSE EVERY 4th COURSE.

סל

ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH

AS1684 AND AS1720.1. TIMBER TO BE SEASONED & MINIMUM GRADE F7 UNLESS NOTED OTHERWISE.

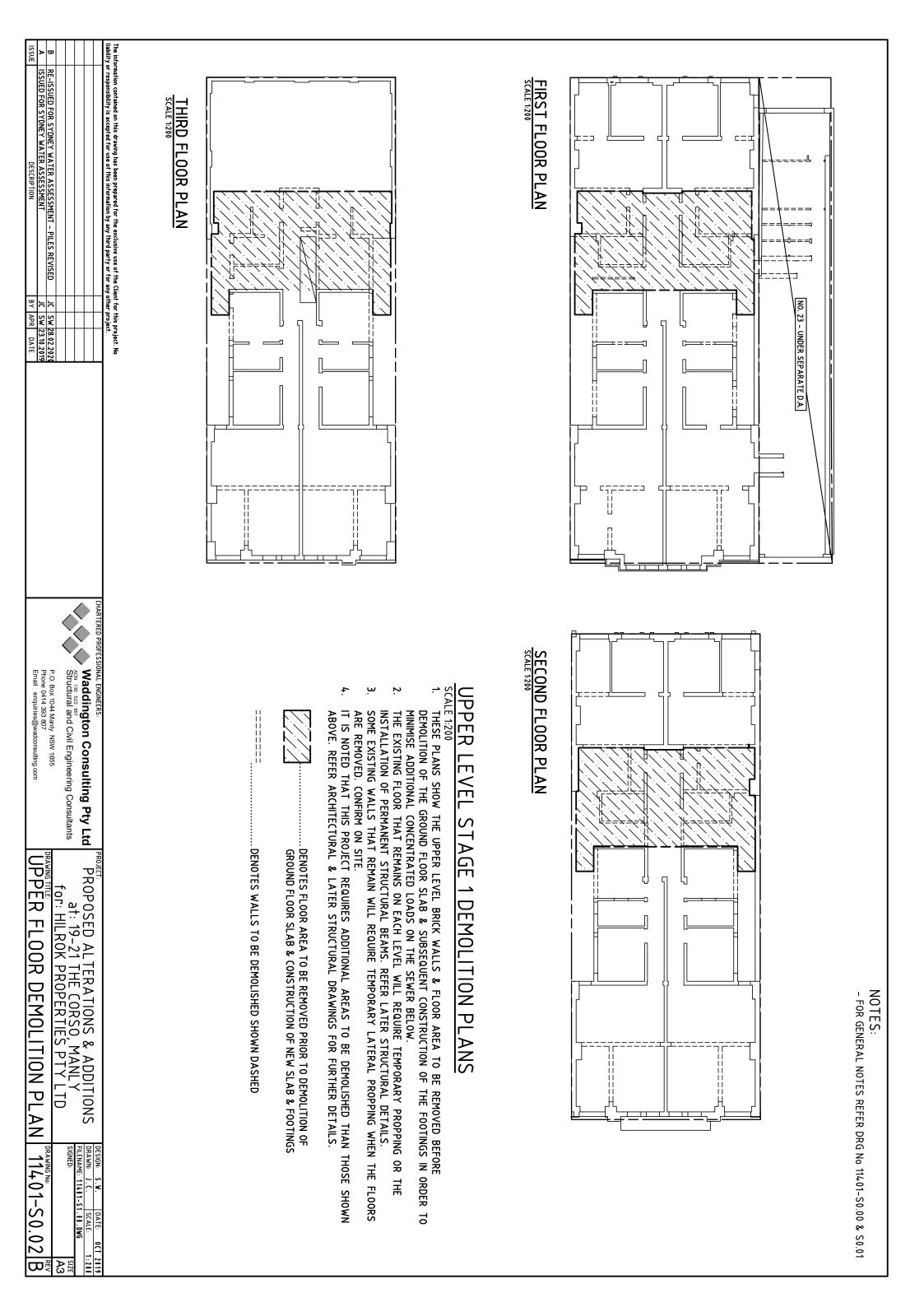
ALL BOLTS, NUTS AND WASHERS FOR TIMBER CONNECTIONS TO BE HOT-DIP GALVANISED & GRADE 4.6. WHERE POSSIBLE, BOLTS SHALL BE RETIGHTENED AT THE END OF THE MAINTAINANCE PERIOD. BOLT HOLES SHALL BE DRILLED NO MORE THAN 1mm OVERSIZE. WASHERS UNDER ALL HEADS AND NUTS SHALL BE AT LEAST 2.5 × BOLT DIA.

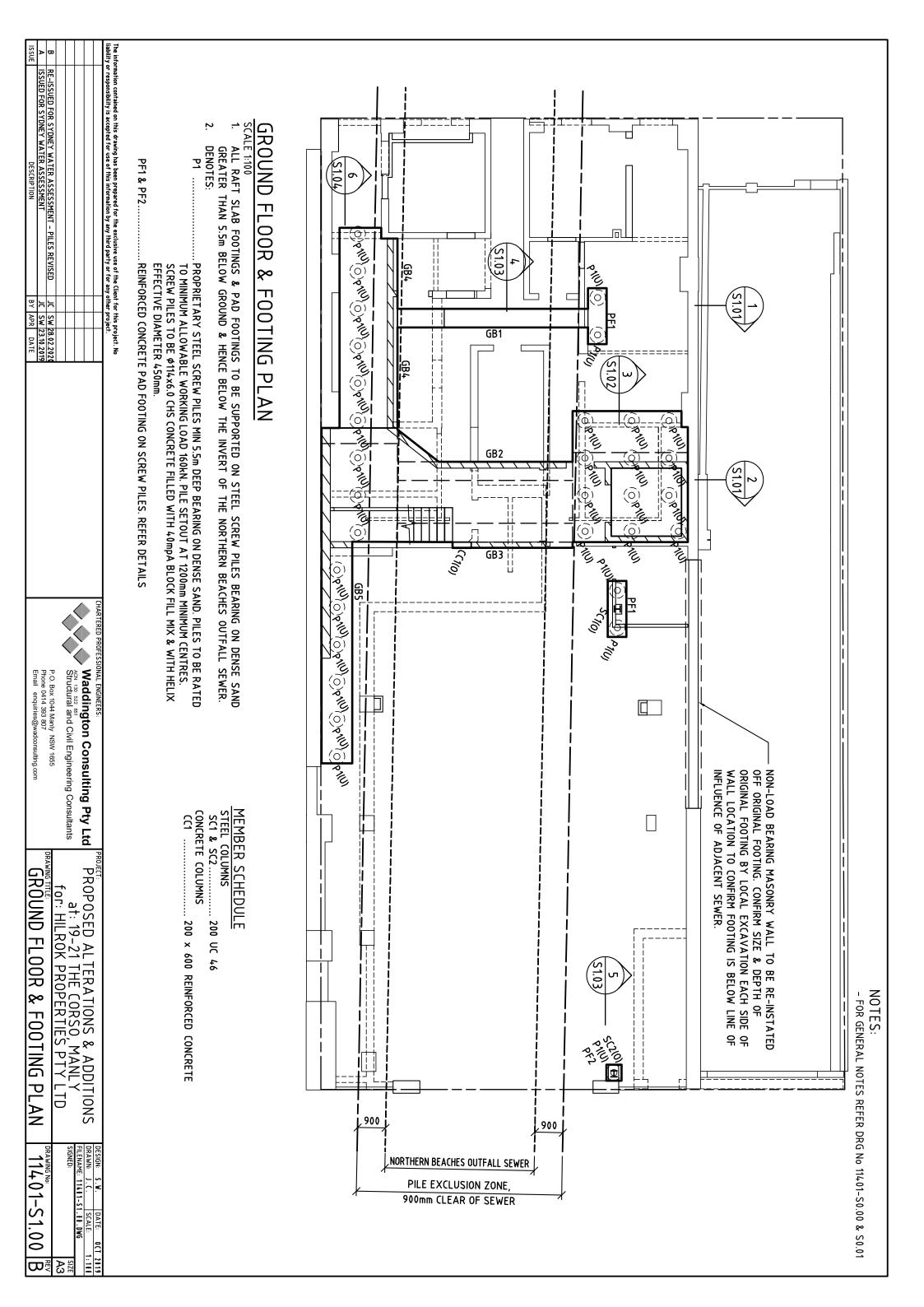
MINIMUM BOLT SPACINGS IN TIMBER TO BE 5xBOLT DIAMETER. MIN EDGE DISTANCES FOR BOLTED CONNECTIONS TO BE 4xBOLT DIAMETER. MIN END DISTANCE FOR BOLTED CONNECTIONS TO BE 5xBOLT DIAMETER.

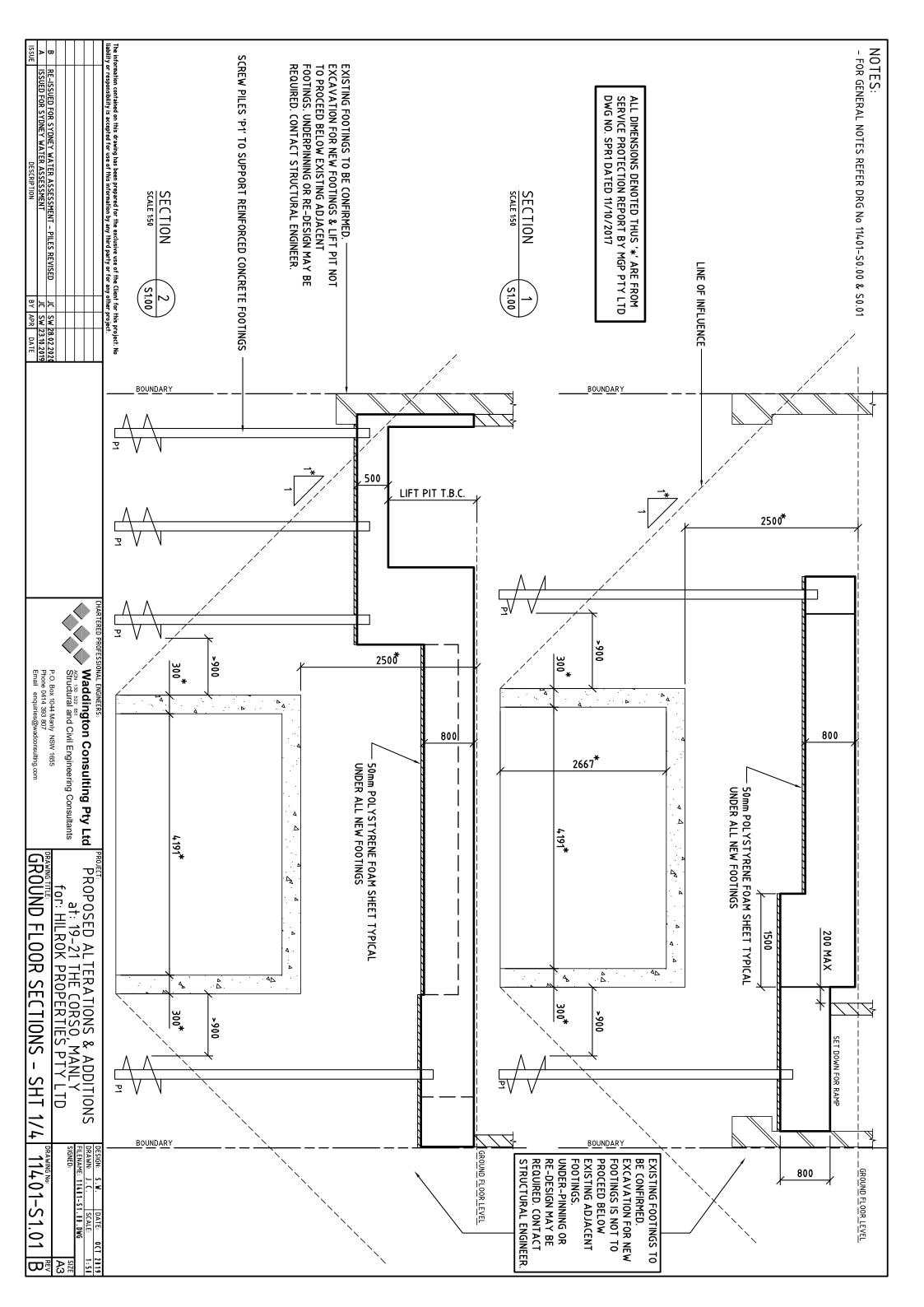
MINIMUM TIMBER CONNECTIONS TO BE NOMINAL FIXINGS IN ACCORDANCE WITH AS 1684 UNLESS NOTED OTHERWISE.

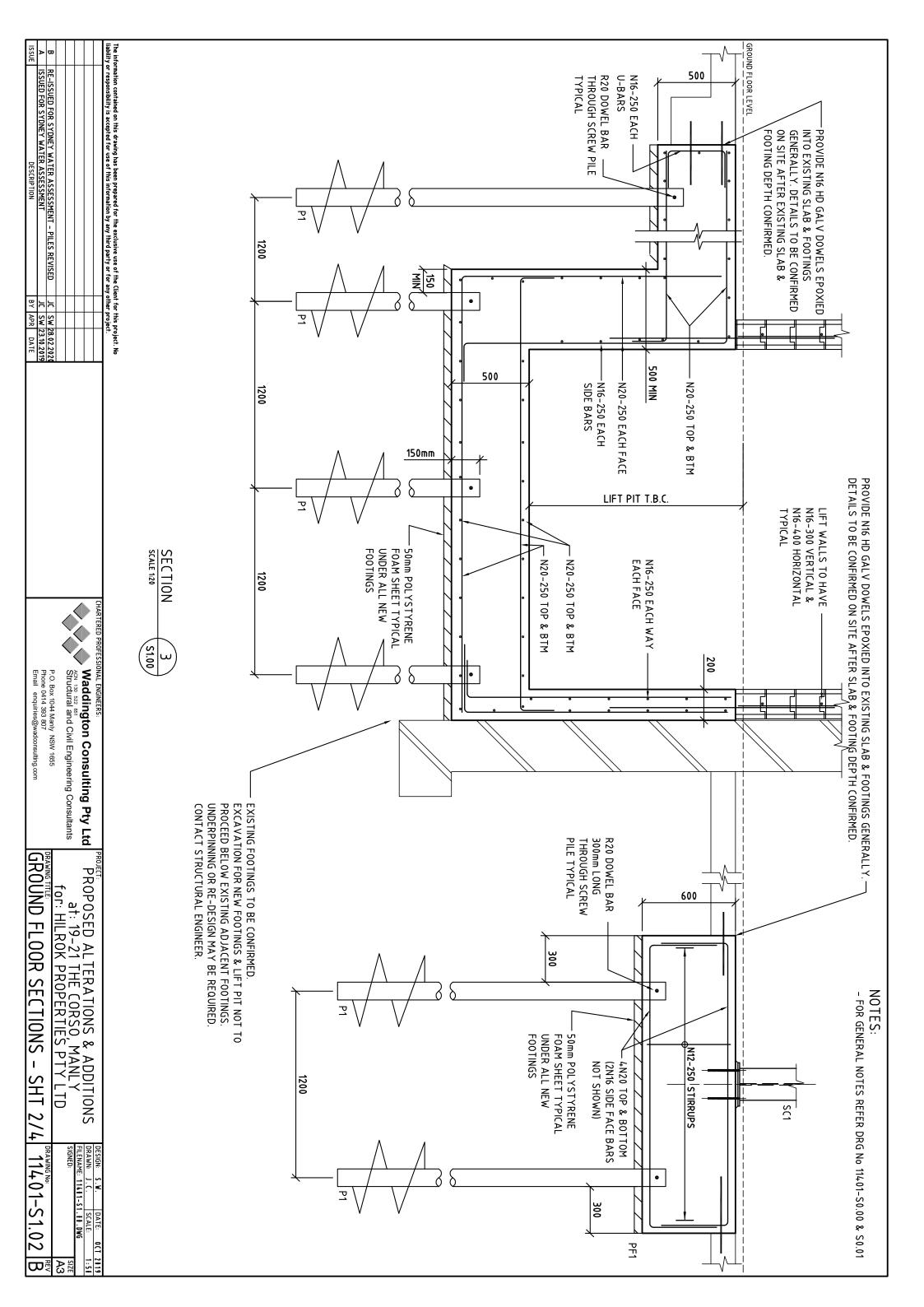
TIE-DOWN SHALL BE IN ACCORDANCE WITH AS1684.2 SECTION 9 UNLESS NOTED OTHERWISE.

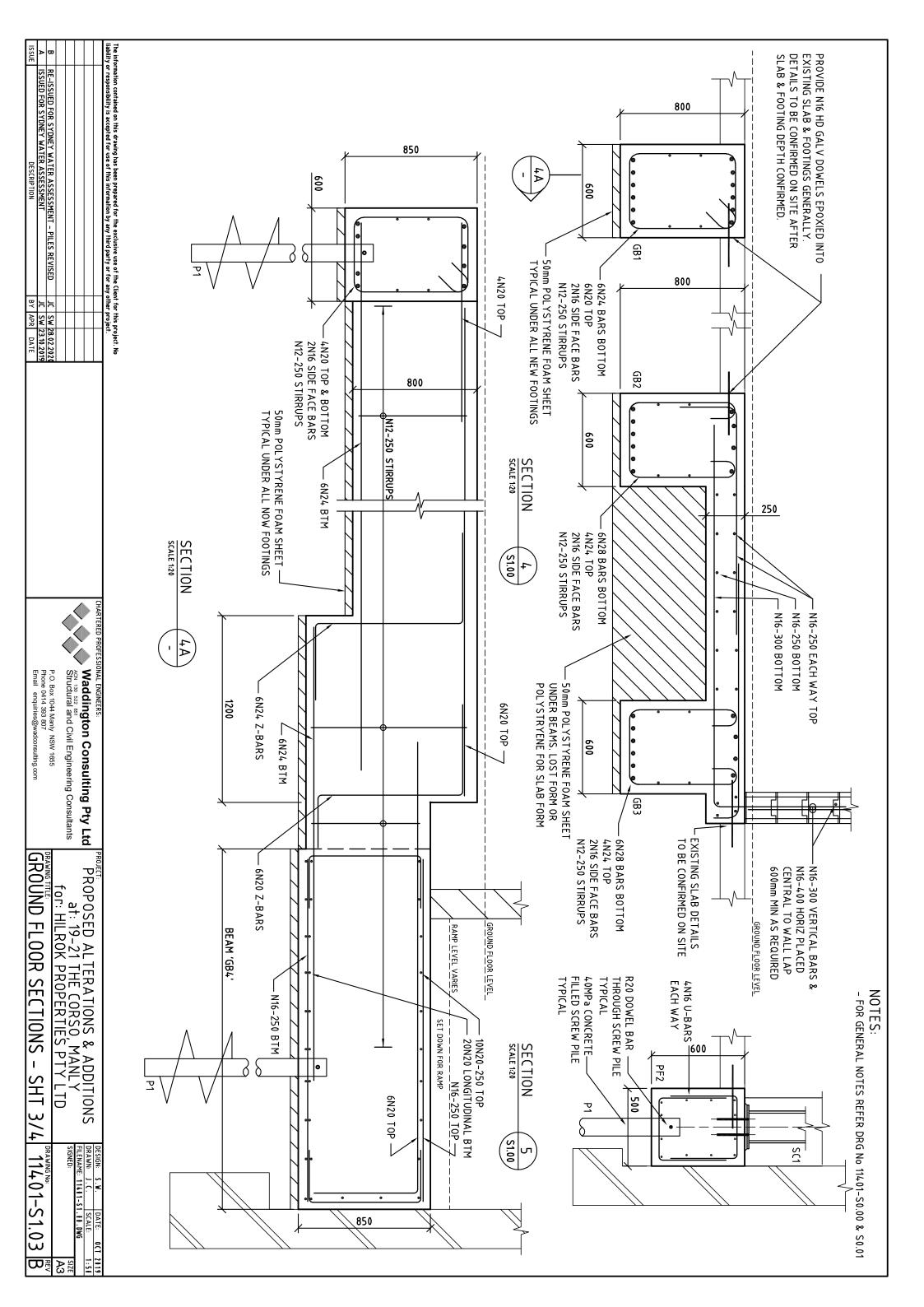
ALL TIMBER JOINTS AND NOTCHES ARE TO BE 100mm MINIMUM AWAY FROM LOOSE KNOTS, SEVERE SLOPING GRAIN, GUM VEINS OR OTHER MINOR

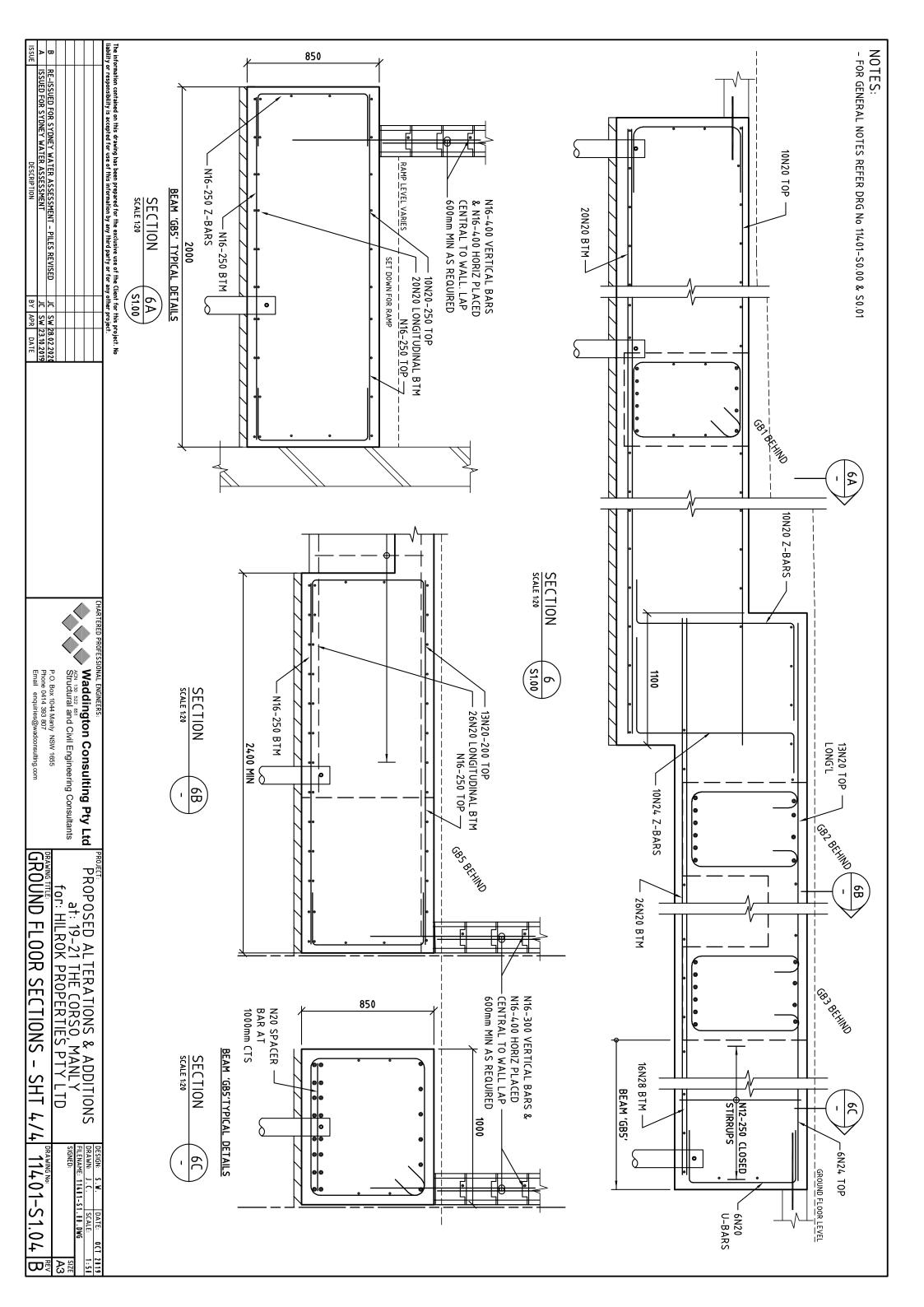

DEFECTS.

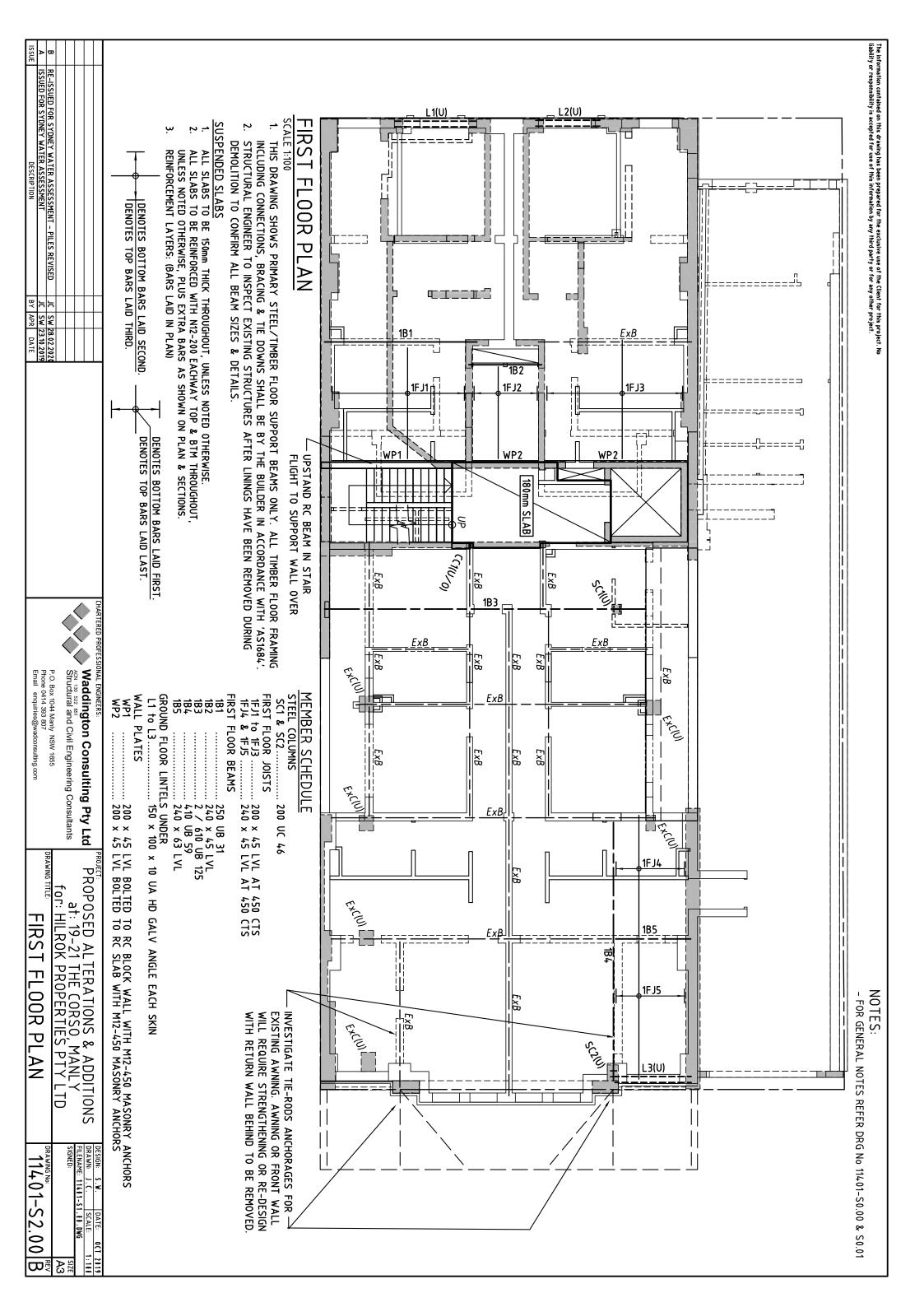

ALL TIMBER TO BE EITHER PLANTATION TIMBERS, TIMBER PRODUCTS MANUFACTURED FROM SUSTAINABLY MANAGED FORESTS OR RECYCLED

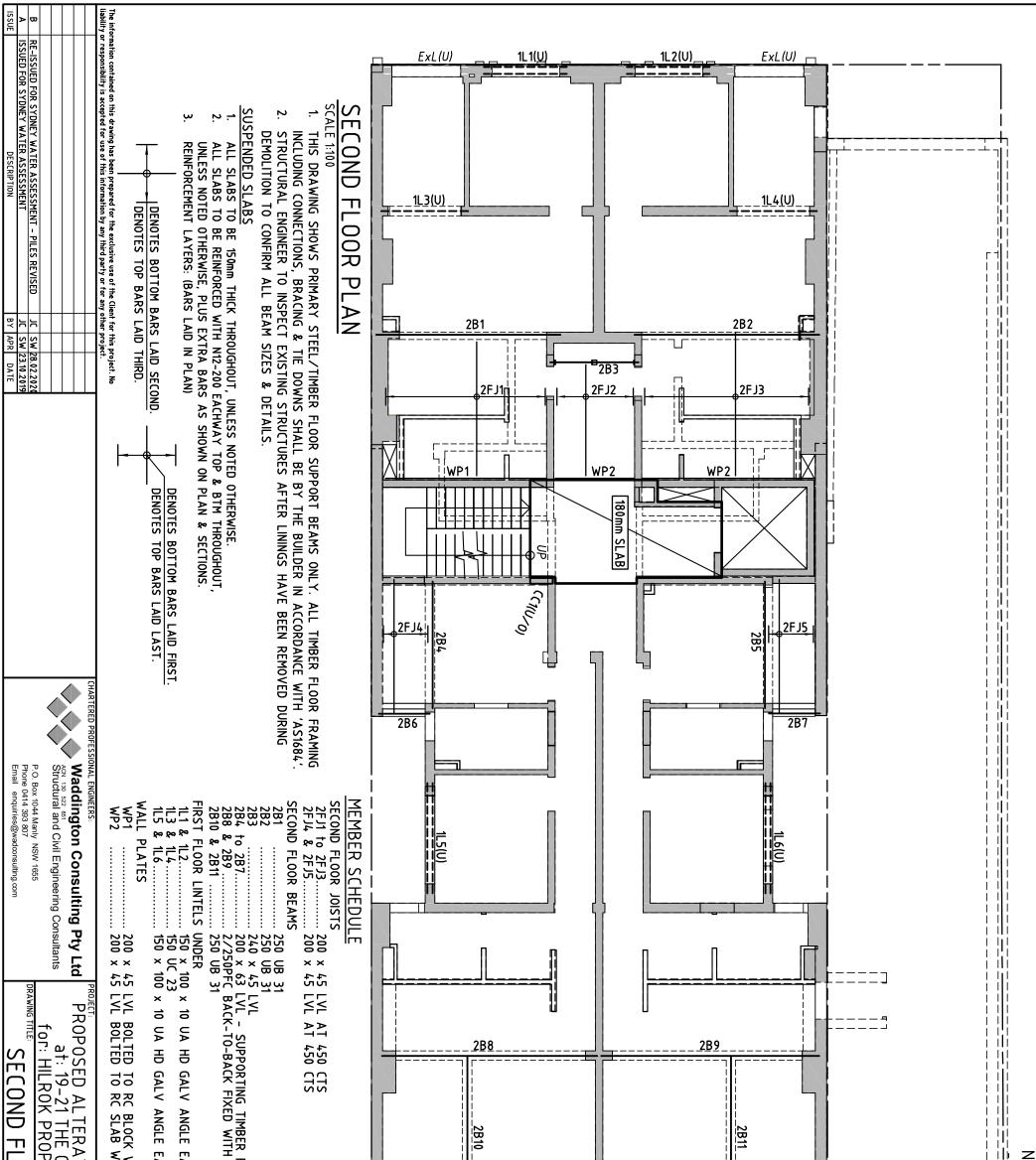

TIMBERS.

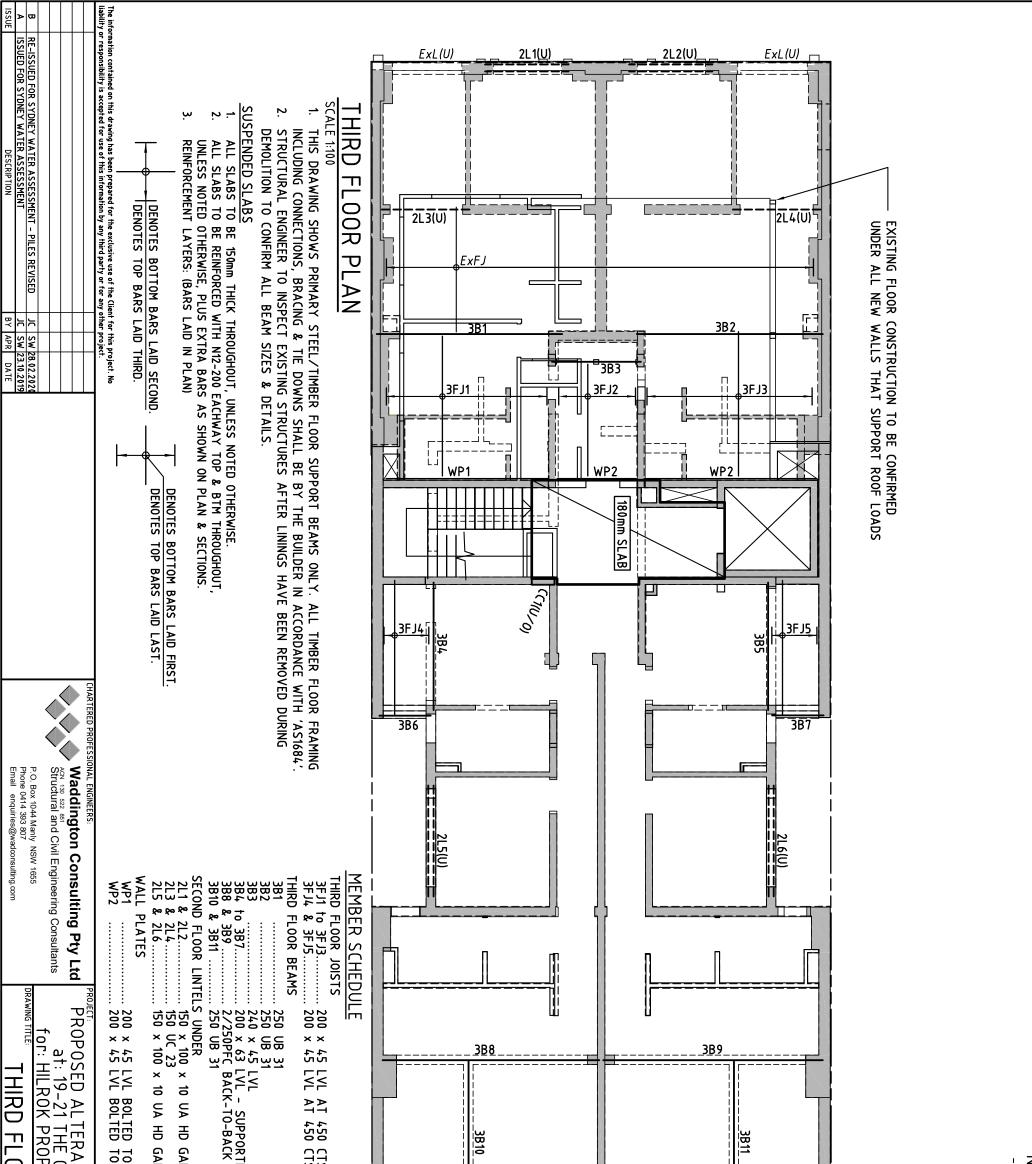

EXTERNAL TIMBER SHALL BE EITHER HARDWOOD DURABILITY CLASS I OR II TO AS 1720.2 OR IMPREGNATED PINE GRADE F7, PRESSURE TREATED TO AS1604 AND RE-DRIED PRIOR TO USE. SUPPLEMENTARY TREATMENT SHALL BE APPLIED TO ALL CUT SURFACES. SUPPLY SUPPORTING DOCUMENTATION FOR PRESERVATIVE TREATMENT.


FERATIONS & ADDITIONS THE CORSO, MANLY PROPERTIES PTY LTD OTES-SHT 2 of 2 DRAWN: FILENAME SIGNED: 11401-S0.01 11401 - ST.01.DWG LA L D ß











E EACH SKIN E EACH SKIN K WALL WITH M12-450 MASONRY ANCHORS WITH M12-450 MASONRY ANCHORS ATIONS & ADDITIONS E CORSO, MANLY OPERTIES PTY LTD OPERTIES PTY LTD FLOOR PLAN FLOOR PLAN DRAWING NO: T140	R FLOOR JOISTS TH 2M16 BOLTS AT 600 CTS.		NOTES:
RY ANCHORS HORS DESIGN: <u>S. W.</u> DESIGN: <u>J. C.</u> DEAWN: J. C. FILEMAME: 11411-51. J1. DVG SIGNED: DRAWING No: 11407-53.00 B			DRG No 11401-S0.00 & S0.01

Project Name: 19-23 The Corso Project Number: 11401 Frame Description: Ground floor footing - GB1 Designer: SW C:\Users\Simon\Documents\11401-FTG BEAM GB1.rpf

RAPT - Version: 6.5.4.0 Reinforced And Post-Tensioned Concrete Analysis & Design Package Copyright(C) 1988 - 2015 PCDC Pty. Ltd. All Rights Reserved

Licensee Simon Waddington 37 Innes Road Manly Vale NSW 2093 57966240407UPP

Input General

General		
Design Code	List	Australia - AS3600-2009*SAVED*
Material	List	Australia - Australian Materials - 2009*SAVED*
Reinforcement Type	List	Reinforced
Member Type	List	Beam
Panel Type	List	Internal
Strip Type	List	One way - Nominal Width
Column Stiffness	List	Equivalent Column
Concrete Type	List	Standard Concrete
Concrete - Spanning Members	List	32MPa
Concrete - Columns	List	40MPa
Top Reinforcement Cover	mm	40
Bottom Reinforcement Cover	mm	40
Top Reinforcement Axis Depth Limit	mm	30
Bottom Reinforcement Axis Depth Limit	mm	50
Concrete Unit Weight	kn/m3	25
Self Weight Definition	List	Program Calculated
Pattern Live Load	Y/N	Y
Earthquake Design	List	None
Moment Redistribution	%	0
Design Surface Levels	List	Extreme Surfaces

Span

Span	Span Length	Slab	Panel	Panel	
	Length	Depth	Width	Width	
			Left	Right	
	mm	mm	mm	mm	
LC	600	200	600	600	
1	7800	200	600	600	
RC	600	200	600	600	

Columns

Column	Column		Transverse	Transverse	
	Grid	Туре	Column	prestress	
	Reference		spacing	(P/A)	
	A	List	mm	MPa	
1	1	Knife-Edge	600		
2	2	Knife-Edge	600		

Beams

Beam	Beam	Beam	Beam	Effective
Number	Depth	Width	Width	Flange
		at		Width
		Slab		
	mm	mm	mm	mm
LC	750	600	600	600
1	750	600	600	600
RC	750	600	600	600

Load Cases

Load	Load Type	Load Definition	Live Load	Description
Case			Deflection	
			Case	
	List	List	Y/N	A
1	Self Weight	Applied Loads		
2	Live Load	Applied Loads	Y	
3	Extra Dead Load	Applied Loads		

1. Self Weight - Line

Load	Left End	Left end of	Load at	Right End	Right end of	Load at	Description
	Reference	load from	left end	reference	load from	right	
	Column	reference		column	reference	end	
		column			column		
	#	mm	kN/m	#	mm	kN/m	A
1	0	0	11.25	2	600	11.25	

2. Live Load - Line

ſ	Load	Left End	Left end of	Load	Right End	Right end of	Load	Live Load	Description
		Reference	load from	at left	reference	load from	at right	reduction	
		Column	reference	end	column	reference	end		
			column			column			
		#	mm	kN/m	#	mm	kN/m	#.#	A
Ī	1	1	6600	20	3	(20	1	

2. Live Load - Panel

Loa	d Left End	Left end of	Load at	Right End	Right end of	Load at	Live Load	Description
	reference	load from	left end	reference	load from	right	reduction	-
	column	reference		column	reference	end		
		column			column			
	#	mm	kN/m2	#	mm	kN/m2	#.#	A
1	0	C) 10	2	600	10	1	

3. Extra Dead Load - Line

Loa	d Left End	Left end of	Load	Right End	Right end of	Load	Description
	Reference	load from	at left	reference	load from	at right	
	Column	reference	end	column	reference	end	
		column			column		
	#	mm	kN/m	#	mm	kN/m	A
1	1	6600	113	3) 113	

3. Extra Dead Load - Point

Load	Reference	Distance to	Load	Load	Description
	column	Load from		Length	
		reference			
		column			
	#	mm	kN	mm	A
1	1	1200	95	0.2	

Load Combinations : Ultimate

Load	Description	1. Self	2.	3. Extra
Combination		Weight	Live	Dead
			Load	Load
	А	#.#	#.#	#.#
1	Live Load	1.2	1.5	1.2
2	Live Load	0.9	1.5	0.9
3	Dead Load	1.35	0	1.35

Load Combinations : Short Term Service

Load	Description	1. Self	2. Live	3. Extra
Combination		Weight	Load	Dead Load
	A	#.#	#.#	#.#
1	Live Load	1	0.7	1

Load Combinations : Permanent Service Load Description 1. Self 2. Live 3. Extra

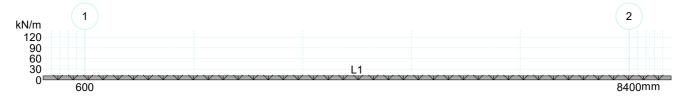
Load	Description	1. Self	2. Live	3. Extra	
Combination		Weight	Load	Dead Load	
	A	#.#	#.#	#.#]
1	Live Load	1	0.4	1]

Load Combinations : Deflection

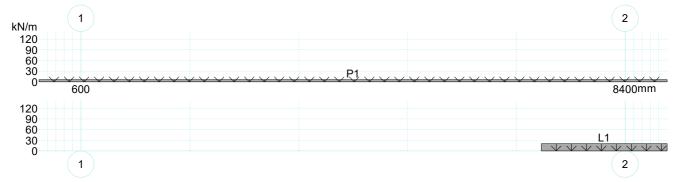
Load	Description	1. Self	2. Live	3. Extra
Combination		Weight	Load	Dead Load
	A	#.#	#.#	#.#
1	Short Term - Deflection	1	0.7	1
2	Permanent - Deflection	1	0.4	1
3	Initial - Deflection	1	0	0

Load Combinations : Transfer Prestress

Load	Description	1. Self	2. Live	3. Extra
Combination		Weight	Load	Dead Load
	A	#.#	#.#	#.#
1	Transfer	1	0	0


Load Combinations : Pre Existing

Load	Description	1. Self	2. Live	3. Extra
Combination	-	Weight	Load	Dead Load
	A	#.#	#.#	#.#
1	Pre Existing	1	0	0


Load Combinations : Construction

Load	Description	1. Self	2. Live	3. Extra
Combination	-	Weight	Load	Dead Load
	А	#.#	#.#	#.#
1	Construction	1	0	0

Load Case 1 : 1. Self Weight

Load Case 2 : 2. Live Load

Load Case 3 : 3. Extra Dead Load

Reinforcement

Reinforcement	Reinforcement	Preferred	Number
Use	Type Bar Size		of Legs
	List	List	#
Flexural Bar	N 500MPa		
Flexural Mesh	F 450MPa		
Shear Option 1	N 500MPa	10	2
Shear Option 2	N 500MPa	12	2
Shear Option 3	N 500MPa	16	2
Punching Shear	N 500MPa	10	1

Reinforcement

	Maximum	Minimum	Minimum	Minimum Span	Minimum Span	Infill	Stagger
	Bar	Bar	Continuous	Reinforcement	Reinforcement	Bars	Bars
	Spacing	Spacing	Reinforcement	into End	into Internal		
				Support	Support		
	mm	mm	#.#	#.#	#.#	Y/N	Y/N
Support Reinforcement	300	60	0			N	N
Span Reinforcement	300	60		0	0	N	N

Design Zones : Top

Layer	Steel	Left End	Distance to	Bar stagger	Top Cover	Right End	Distance to	Bar stagger	Top Cover	Maximum	Minimum	Preferred
Number	type	Reference	left end of	length at left	at left end	Reference	right end of	length at	at Right	Bar Size	Bar Size	bar size
		Column	bar	end		Column	bar	right end	end			
	List	#	mm	mm	mm	#	mm	mm	mm	List	List	List
1	Bar	1	-600	0	40	2	600	0	40	36	16	16

Layer	Minimum	Maximum	Minimum	% in
Number	Number of	Spacing of	Steel area as	Flange
	Bars	Bars	%	-
	#	mm	%	%
1	0	0	0	0

Design Zones : Bottom

Layer	Steel	Left End	Distance to	Bar stagger	Bottom	Right End	Distance to	Bar stagger	Bottom	Maximum	Minimum
Number	type	Reference	left end of	length at left	Cover at left	Reference	right end of	length at	Cover at	Bar Size	Bar Size
		Column	bar	end	end	Column	bar	right end	Right End		
	List	#	mm	mm	mm	#	mm	mm	mm	List	List
1	Bar	1	-600	0	40	2	600	0	40	36	16

				Minimum	% in
Number	bar size	Number of	Spacing of	Steel area as	Flange
		Bars	Bars	%	
	List	#	mm	%	%
1	20	0	0	0	0

User Defined : Top

ſ	Layer	Steel type	Left End	Distance	Bar	Тор	% Development	% Development	Right End	Distance	Bar	Тор
	Number		Reference	to left	stagger	Cover	of Left End of	of Left End of Bar	Reference	to right	stagger	Cover
			Column	end of	length at	at left	Bar in Tension	in Compression	Column	end of	length at	at Right
				bar	left end	end				bar	right end	end
		List	#	mm	mm	mm	%	%	#	mm	mm	mm
ŀ	1	N 500MPa	0	0	0	40	50	50	2	600	0	40

Layer	% Development	% Development	Bar	Number	Spacing	% in	Layer attached
Number	of Right End of	of Right End of	Size	of Bars	of Bars	Flange	after the
	Bar in Tension	Bar in				-	PreExisting Load
		Compression					Case
	%	%	List	#	mm	%	Y/N
1	50	50	20	6	0	0	N

User Defined : Bottom

		••••									
Layer	Steel type	Left End	Distance	Bar	Bottom	% Development	% Development	Right End	Distance	Bar	Bottom
Number		Reference	to left	stagger	Cover	of Left End of	of Left End of Bar	Reference	to right	stagger	Cover
		Column	end of	length at	at Left	Bar in Tension	in Compression	Column	end of	length at	at Right
			bar	left end	end				bar	right end	End
	List	#	mm	mm	mm	%	%	#	mm	mm	mm
1	N 500MPa	0	0	0	50	50	50	2	600	0	50

Layer	% Development	% Development	Bar	Number	Spacing	% in	Layer attached
Number	of Right End of	of Right End of	Size	of Bars	of Bars	Flange	after the
	Bar in Tension	Bar in				-	PreExisting Load
		Compression					Case
	%	%	List	#	mm	%	Y/N
1	50	50	20	6	0	0	N

Design Data

Design Data		
Capacity Reduction factor (phi) for Flexure	#.#	0.8
Capacity Reduction factor (phi) for Shear	#.#	0.7
Material Factor for Concrete in Flexure	#.#	1
Material Factor for Concrete in Shear	#.#	1
Material Factor for Reinforcement	#.#	1
Maximum Ratio of Neutral Axis Depth for Ductility	#.#	0.4
Ductility Limit - Strain	#.#	0
Ductility Check at Left End Column	Y/N	Y
Ductility Check at Right End Column	Y/N	Y
Minimum Reinforcement Strength Limit - #.## x M*	#.#	0
Flexural Critical Section - Consider Transverse Beams	Y/N	Y
Flexural Critical Section - Distance from centre of Support	#.#	-1
Beam Left Sideface Cover (Internal)	mm	25
Beam Right Sideface cover	mm	40
Prestress Minimum Reinforcement Basis	List	Program Default
Shear Enhancement at Supports	Y/N	N
Ast Value in Shear Calculations	List	Calculated
Limit Reinforcement Strain	Y/N	Y
Include Strain Hardening of Reinforcement	Y/N	N
Beam Shear Critical Section Location	List	Code Critical Section

Maximum Service Stress Change - Prestressed Sections	MPa	0
Maximum Service Stress Change - Reinforced Sections	MPa	0
Relative Humidity	%	50
Average Temperature	C.	20
Prestress Losses Calculations based on	List	Program Default
Crack Width Calculations	List	Code default
AS3600 Shrinkage and Temperature Reinforcement	List	Moderate
Degree of Restraint in Primary Direction	%	0
Degree of Restraint in Secondary Direction	%	0
Concrete Strength Gain Rate	List	N

Concrete Tensile Strength for Deflection Calculations- #.## x (Fc)n	#.#	-1
Maximum Value of leff/lgross for Deflection Calculations	#.#	0.6
Total Deflection Warning Limit - Maximum Span/Deflection	#.#	250
Total Deflection Warning Limit - Maximum Deflection	mm	25

Incremental Deflection Warning Limit - Maximum Span/Deflection	#.#	500
Incremental Deflection Warning Limit - Maximum Deflection	mm	25
Time of Loading in days	#.#	10
Age Adjustment Factor	#.#	0.76
Concrete Strength at Time of Loading	MPa	27.04
Loaded Period in years	#.#	30
Tension stiffening Approach	List	Modified Concrete Tensile Modulus Method

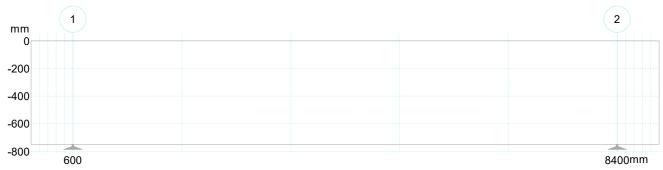
Live Load Pattern Factor	#.#	1
Pattern Live Load for Ultimate Strength	Y/N	Y
Pattern Live Load for Crack Control	Y/N	Y
Pattern Live Load For Deflections	Y/N	Y
Pattern Live Load for Deflection Permanent Load Combination	Y/N	N

Material Properties

Concrete

Designation	Shrinkage -	Description	Set as
_	Creep	-	Default
	Model		

Reinforcement Bar


Designation	Туре	Yield	Elastic	Ductility	Peak	Peak	Design	Material	Material	Material Capacity	Material Capacity	Include as
_		Stress	Modulus	-	Strain	Stress	Strain	Factor	Factor	Reduction Factor	Reduction Factor	Flexural
							Limit	Flexure	Shear	- Flexure	- Shear	Reinforcement for
												Shear
N	Deformed	500	2e5	N	0.05	540	90	-1	-1	-1	-1	Y

Description

I
1

Nominal	Bar	Bar	Bar	Bar	Stock	
Bar Size	Diameter	Area	Inertia	Weight	Length	
А	mm	mm2	mm4	kg/m	mm	
10	10	78.5	491.07	0.62	12000	
12	12	113	1018.29	0.89	12000	
16	16	201	3218.29	1.58	12000	
20	20	314	7857.14	2.47	12000	
24	24	452	16292.6	3.55	12000	
28	28	616	30184	4.83	12000	
32	32	804	51492.6	6.31	12000	
36	36	1020	82481.1	7.99	12000	
40	40	1260	1.257e5	9.86	12000	

Elevation view

Input

No errors or warnings were found.

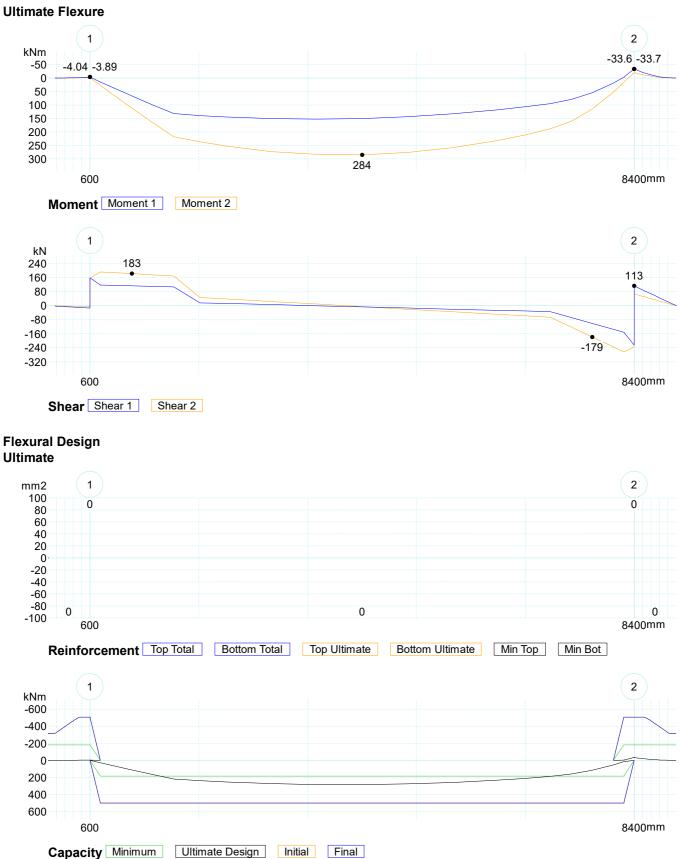
Output

No errors or warnings were found.

Bending Moments Load Cases

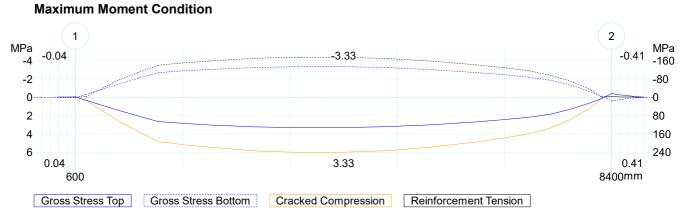
Column Actions

Col No. 1		Self	Live	Extra
		Weight	Load	Dead
		-		Load
Moment Above	kNm	-0	-0	-0
Moment Below	kNm	-0	-0	-0
Reaction	kN	50.63	28.38	88.17
Elastic Rotation	#.#	3.29e-4	1.96e-4	4.75e-4
Elastic Axial Shortening	mm	0	0	0

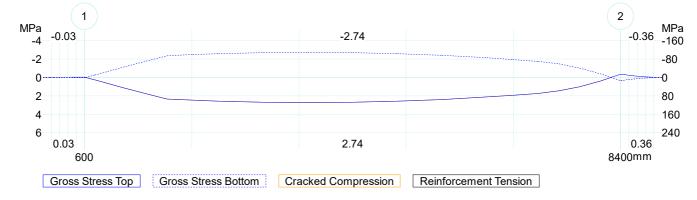

Col No. 2		Self	Live	Extra
		Weight	Load	Dead
				Load
Moment Above	kNm	-0	-0	-0
Moment Below	kNm	-0	-0	-0
Reaction	kN	50.63	61.62	210.19
Elastic Rotation	#.#	-3.29e-4	-2.1e-4	-4.21e-4
Elastic Axial Shortening	mm	0	0	0

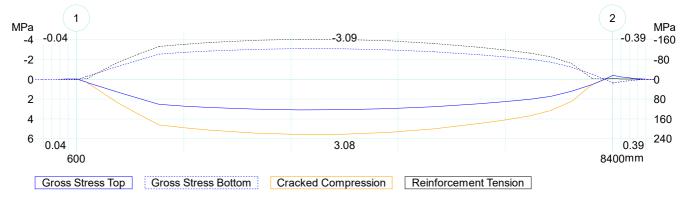
Load Combinations

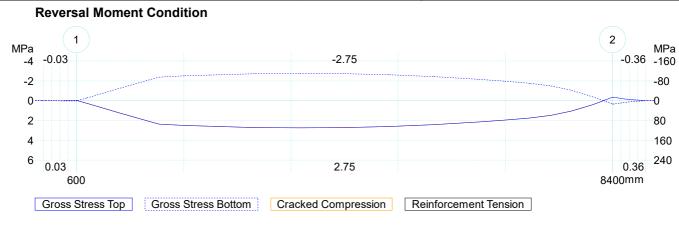
Column Actions


Col No. 1		Service	Service	Ultimate	Ultimate	Ultimate	Ultimate
			(Reversal)	Flexure	Flexure	Shear	Shear
					(Reversal)		(Reversal)
Moment Above	kNm	0	0	0	0	0	0
Moment Below	kNm	0	0	0	0	0	0
Reaction	kN	158.67	158.67	209.13	209.13	126.26	210.03
Elastic Rotation	#.#	9.41e-4	9.41e-4	1.26e-3	1.26e-3	7.07e-4	1.27e-3
Elastic Axial Shortening	mm	0	0	0	0	0	0

Col No. 2		Service	Service	Ultimate	Ultimate	Ultimate	Ultimate
			(Reversal)	Flexure	Flexure	Shear	Shear
					(Reversal)		(Reversal)
Moment Above	kNm	0	0	0	0	0	0
Moment Below	kNm	0	0	0	0	0	0
Reaction	kN	303.94	303.94	405.4	405.4	244.24	405.6
Elastic Rotation	#.#	-8.96e-4	-8.96e-4	-1.21e-3	-1.21e-3	-6.6e-4	-1.22e-3
Elastic Axial Shortening	mm	0	0	0	0	0	0






Reversal Moment Condition

Permanent

Maximum Moment Condition

Shear Design Beam

Span 0

Locat	V*	Mv*	Mdec	d	Ast	bv	phi Vuc	phi Vut	phi Vu	Phi Vumax	Asv/s	Spacing of Sets			Spacing of Sets		Spacing of Sets		Minimum Legs
												2 legs	2 legs	2 legs					
												N10	N12	N16					
mm	kN	kNm	kNm	mm	mm2	mm	kN	kN	kN	kN	mm2/mm	mm	mm	mm	#				
100	-2.25	-0.11	0	700	0	600	129.58	99999	129.58	1881.6	0	0	0	C	0				
599	-13.48	-4.04	0	700	0	600	0	0	0	1881.6	0	0	0	C	0				

Shear Comments

Α
No shear stee

Span 1

Locat	V*	Mv*	Mdec	d	Ast	bv	phi Vuc	phi Vut	phi Vu	Phi Vumax	Asv/s	Spa	acing of S	ets	Minimum Legs
												2 legs N10	2 legs N12	2 legs N16	
mm	kN	kNm	kNm	mm	mm2	mm	kN	kN	kN	kN	mm2/mm	mm	mm	mm	#
1	196.51	-3.85	0	700	0	600	0	0	0	1881.6	0	0	0	0	C
600	183.03	109.82	0	690	0	600	152.62	99999	152.62	1854.72	0.42	373.8	500	500	2
899	176.31	163.54	0	690	0	600	152.62	99999	152.62	1854.72	0.42	373.8	500	500	2
1199.9	170.09	211.95	0	690	0	600	152.62	99999	152.62	1854.72	0.42	373.8	500	500	2
1574.9	47.7	231.43	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	C
1950	40.9	238.12	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	C
2600	26.28	259.95	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	C
3250	14.39	259.8	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	C
3900	-17.82	235.93	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	C
4550	-28.6	237.07	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	0
5200	-40.49	227.98	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	C
5850	-55.11	196.91	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	0
6225	-60.96	190.76	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	C
6599	-69.38	166.39	0	690	0	600	152.62	99999	152.62	1854.72	0	0	0	0	0
6900	-123.45	153.43	0	690	0	600	152.62	99999	152.62	1854.72	0.42	373.8	500	500	2
7200	-179.88	107.93	0	690	0	600	152.62	99999	152.62	1854.72	0.42	373.8	500	500	2
7799	-292.56	-33.57	0	700	0	600	0	0	0	1881.6	0	0	0	0	C

Shear Comments
A
Minimum Steel
Minimum Steel
Minimum Steel
No shear steel
No shear steel
No shear steel
No shear steel
No shear steel
No shear steel
No shear steel
No shear steel

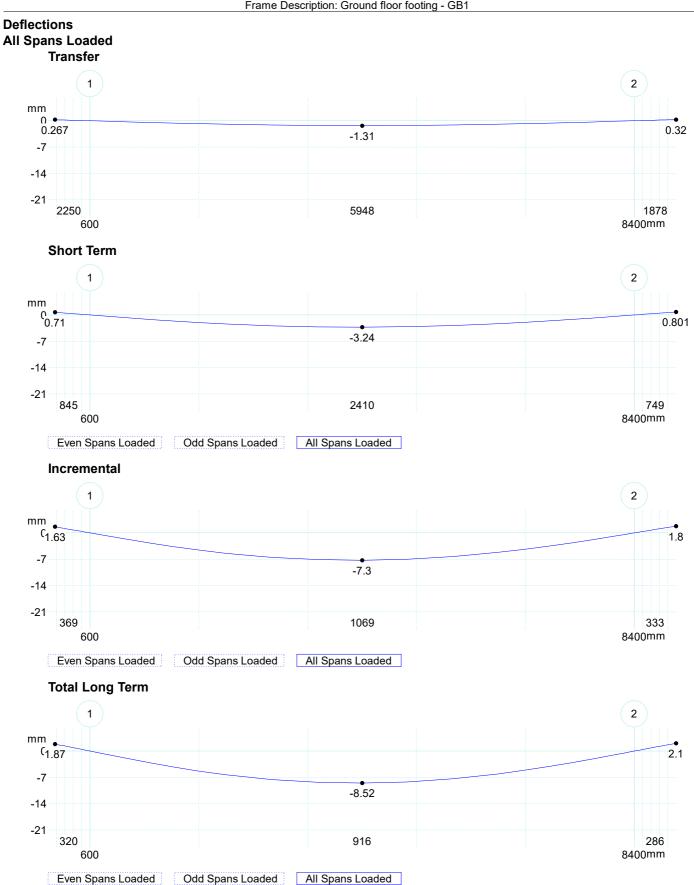
Shear Comments

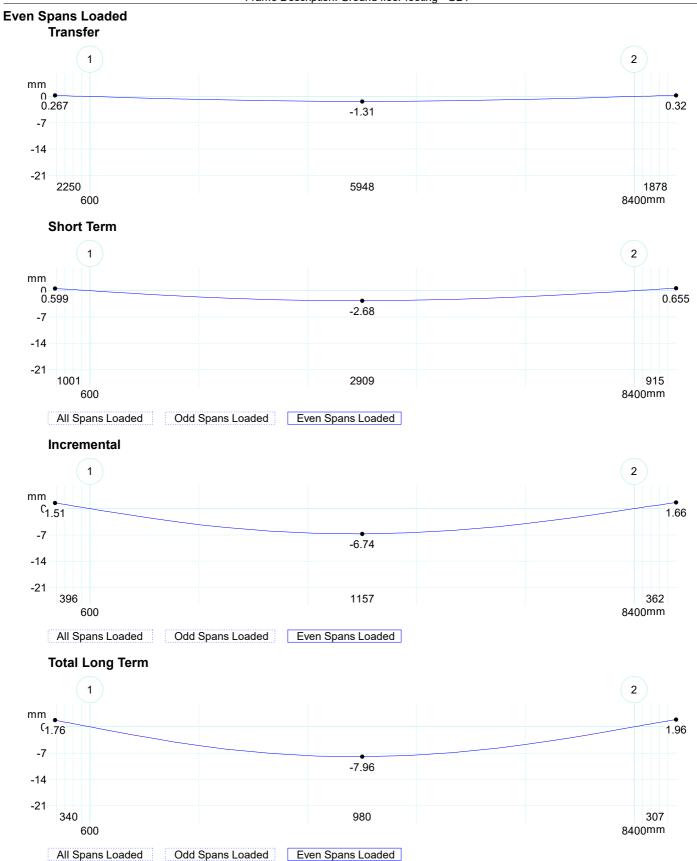
-	Α
	No shear steel
	No shear steel
	Minimum Steel
	Minimum Steel

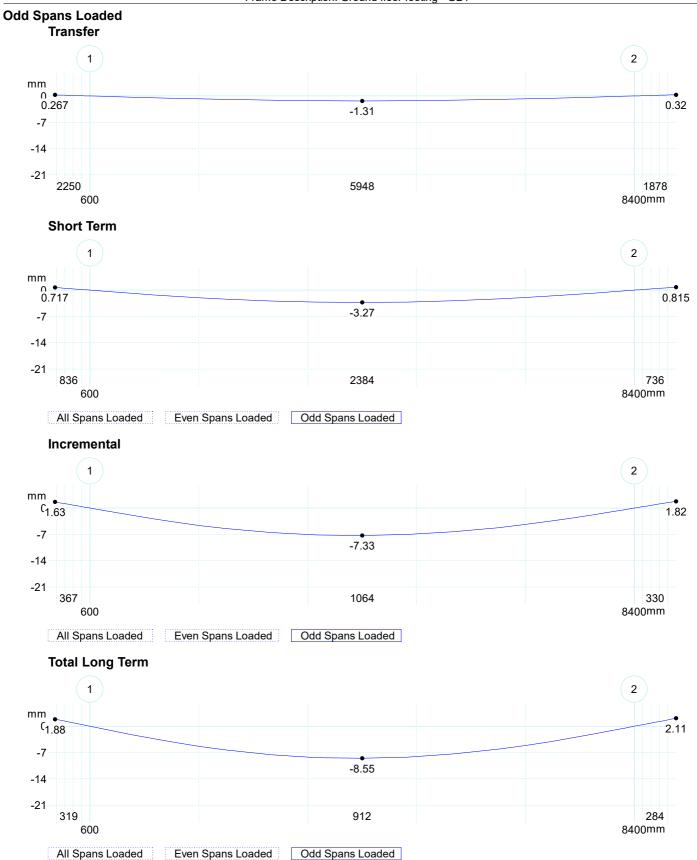
Span 2

Locat	V*	Mv*	Mdec	d	Ast	bv	phi Vuc	phi Vut	phi Vu	Phi Vumax	Asv/s	Spa	acing of S	ets	Minimum Legs
												2 legs N10	2 legs N12	2 legs N16	
mm	kN	kNm	kNm	mm	mm2	mm	kN	kN	kN	kN	mm2/mm	mm	mm	mm	#
1	112.67	-33.75	0	700	0	600	152.4	99999	152.4	1881.6	0.42	373.8	500	500	2
38	105.71	-29.71	0	700	0	600	152.4	99999	152.4	1881.6	0.42	373.8	500	500	2
75	98.75	-25.92	0	700	0	600	152.4	99999	152.4	1881.6	0.42	373.8	500	500	2
112	91.79	-22.4	0	700	0	600	152.4	99999	152.4	1881.6	0.42	373.8	500	500	2
150	84.65	-19.05	0	700	0	600	152.4	99999	152.4	1881.6	0.42	373.8	500	500	2
225	70.54	-13.23	0	700	0	600	148.76	99999	148.76	1881.6	0	0	0	0	0
300	56.43	-8.46	0	700	0	600	144.02	99999	144.02	1881.6	0	0	0	0	0
375	42.32	-4.76	0	700	0	600	138.95	99999	138.95	1881.6	0	0	0	0	0
450	28.22	-2.12	0	700	0	600	133.49	99999	133.49	1881.6	0	0	0	0	0
500	18.81	-0.94	0	700	0	600	129.58	99999	129.58	1881.6	0	0	0	0	0

Shear Comments


A
Minimum Steel
No shear steel
No shear steel
No shear steel
No shear steel
No shear steel


Punching


Column Head Critical Section

Column	Bh	а	at	u	d	fcv	P/A	Asw/s min	V*	Mv*	phi	phi	phi	phi	side	Moment	Asw/s reqd
No.											Vuo	Vu	Vumin	Vumax	beam	Transfer	
A	#.#	mm	mm	mm	mm	MPa	MPa	mm2/mm	kΝ	kNm	kN	kN	kN	kN	Α	Α	mm2/mm
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0

result
A
Check Not Carried Out!
Check Not Carried Out!

Detailed Reinforcement

Span 0

			Тор	Reinf	orcemen	t	Bottom Reinforcement						
	Max	Max			Section		Max	Max			Section		
Locat	Size	Space	Area	Depth	Width	Rebar Reqd	Size	Space	Area	Depth	Width	Rebar Reqd	
mm	mm	mm	mm2	mm	mm	A	mm	mm	mm2	mm	mm	Α	
100	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Adde	
150	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Adde	
225	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Adde	
300	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Adde	

Project Name: 19-23 The Corso 27/02/2020 6:44:10 PM Frame Description: Ground floor footing - GB1

			Тор	Reinf	orcemen	t	Bottom Reinforcement						
	Max	Max			Section		Max	Max			Section		
Locat	Size	Space	Area	Depth	Width	Rebar Reqd	Size	Space	Area	Depth	Width	Rebar Reqd	
mm	mm	mm	mm2	mm	mm	A	mm	mm	mm2	mm	mm	А	
375	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
450	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
488	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
525	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
562	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
599	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	

0000	-10	000	U 4	0, 000	
		She	ar Reinfo	rcement	
		Spa	acing of S	ets	
		2 legs	2 legs	2 legs	Shear
Area		N10	N12	N16	Comments
mm2/m	וm	mm	mm	mm	A
	0	0	0	0	No shear steel
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	

Design Comments:-

- - Span 0 - Required Bar Size is smaller than the Preferred Bar Size. Maintaining the same cover will require slightly less reinforcement than calculated.

Span 1

			Top	Reinf	orceme	ent		Bottom Reinforcement						
	Max	Max			Sectio	n			Max	Max			Section	
Locat	Size	Space		Depth	Width		Rebar I	Reqd	Size	Space	Area	Depth	Width	Rebar Reqd
mm	mm	mm	mm2	mm	mm		A		mm	mm	mm2	mm	mm	A
1	40	300	0	48	60	0 1	lo Stee	I Addec	0	0	0	700	600	No Steel Adde
149	0	0	0	48	60	0 1	lo Stee	I Addec	40	300	0	700	600	No Steel Adde
151	0	0	0	48	60	۸ 0	lo Stee	I Addec	40	300	0	700	600	No Steel Adde
600	0	0	0	48	60	۸ 0	lo Stee	I Addec	40	300	0	700	600	No Steel Adde
899	0	0	0	48	60	۸ 0	lo Stee	I Addec	40	300	0	700	600	No Steel Adde
1199.9	0	0	0	48	60	۸ 0	lo Stee	I Addec	36	300	0	700	600	No Steel Adde
1574.9	0	0	0	48	60	۸ 0	lo Stee	I Addec	32	300	0	700	600	No Steel Adde
1950	0	0	0	48	60	٥ ٨	lo Stee	I Addec	32	300	0	700	600	No Steel Adde
2600	0	0	0	48	60	۸ 0	lo Stee	I Addec	28	288.3	0	700	600	No Steel Adde
3250	0	0	0	48	60	۸ 0	lo Stee	I Addec	28	281.7	0	700	600	No Steel Adde
3900	0	0	0	48	60	0 1	lo Stee	Addec	28	282	0	700	600	No Steel Adde
4550	0	0	0	48	60	0 1	lo Stee	Addec	28	289.3	0	700	600	No Steel Adde
5200	0	0	0	48	60	0 1	lo Stee	Addec	32	300	0	700	600	No Steel Adde
5850	0	0	0	48	60	0 1	lo Stee	Addec	32	300	0	700	600	No Steel Adde
6225	0	0	0	48	60	0 1	lo Stee	Addec	36	300	0	700	600	No Steel Adde
6599	0	0	0	48	60	0 1	lo Stee	Addec	40	300	C	700	600	No Steel Adde
6900	0	0	0	48	60	0 1	lo Stee	Addec	40	300	0	700	600	No Steel Adde
7200	0	0	0	48	60	0 1	lo Stee	Addec	40	300	0	700	600	No Steel Adde
7500	0	0	0	48	60	0 1	lo Stee	Addec	40	300	0	700	600	No Steel Adde
7649	0	0	0	48	60	0 1	lo Stee	Addec	40	300	0	700	600	No Steel Adde
7651	0	0	0	48	60	0 1	lo Stee	Addec	40	300	0	700	600	No Steel Adde
7799	40	300	0	48	60	0 1	lo Stee	Addec	0	0	C	700	600	No Steel Adde
		She	ar Reir	forcen	nent									
	Spa	acing of	Sets											
	2	leas	2 leas		eas	ç	Shear							

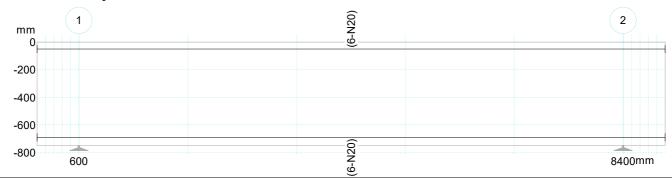
	Spa	acing of S		
	2 legs	2 legs	2 legs	Shear
Area	N10	N12	N16	Comments
mm2/mm	mm	mm	mm	А
0	0	0	0	
0	0	0	0	
0	0	0	0	
0.42	373.8	500	500	Minimum Steel
0.42	373.8	500	500	Minimum Steel
0.42	373.8	500	500	Minimum Steel
0	0	0	0	No shear steel
0	0	0	0	No shear steel
0	0	0	0	No shear steel

Shear Reinforcement											
	Spa	acing of S									
	2 legs	2 legs	2 legs	Shear							
Area	N10	N12	N16	Comments							
mm2/mm	mm	mm	mm	A							
0	0	0	0	No shear steel							
0	0	0	0	No shear steel							
0	0	0	0	No shear steel							
0	0	0	0	No shear steel							
0	0	0	0	No shear steel							
0	0	0	0	No shear steel							
0	0	0	0	No shear steel							
0.42	373.8	500	500	Minimum Steel							
0.42	373.8	500	500	Minimum Steel							
0	0	0	0								
0	0	0	0								
0	0	0	0								
0	0	0	0								

Design Comments:-

- - Span 1 - Required Bar Size is smaller than the Preferred Bar Size. Maintaining the same cover will require slightly less reinforcement than calculated.

Span 2


opai													
	Top Reinforcement							Bottom Reinforcement					
	Max	Max			Section		Max	Max			Section		
Locat	Size	Space	Area	Depth	Width	Rebar Reqd	Size	Space	Area	Depth	Width	Rebar Reqd	
mm	mm	mm	mm2	mm	mm	А	mm	mm	mm2	mm	mm	А	
1	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
38	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
75	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
112	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
150	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
225	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
300	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
375	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
450	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Added	
500	40	300	0	48	600	No Steel Added	0	0	0	700	600	No Steel Addeo	
					amont								

Shear Reinforcement									
	Spa	acing of S							
	2 legs	2 legs	2 legs	Shear					
Area	N10	N12	N16	Comments					
mm2/mm	mm	mm	mm	А					
0.42	373.8	500	500	Minimum Steel					
0.42	373.8	500	500	Minimum Steel					
0.42	373.8	500	500	Minimum Steel					
0.42	373.8	500	500	Minimum Steel					
0.42	373.8	500	500	Minimum Steel					
0	0	0	0	No shear steel					
0	0	0	0	No shear steel					
0	0	0	0	No shear steel					
0	0	0	0	No shear steel					
0	0	0	0	No shear steel					

Design Comments:-

- - Span 2 - Required Bar Size is smaller than the Preferred Bar Size. Maintaining the same cover will require slightly less reinforcement than calculated.

Reinforcement Layout

- - Span 0 - Required Bar Size is smaller than the Preferred Bar Size. Maintaining the same cover will require slightly less reinforcement than calculated.

- - Span 1 - Required Bar Size is smaller than the Preferred Bar Size. Maintaining the same cover will require slightly less reinforcement than calculated.

- - Span 2 - Required Bar Size is smaller than the Preferred Bar Size. Maintaining the same cover will require slightly less reinforcement than calculated.

Simon Job: 11401- raft slab GB2 19-21 The Corso Manly Raft slab edge beam lift to stair lobby

INPUT/ANALYSIS REPORT

Job:	11401- raft slab GB2
Title:	19-21 The Corso Manly Raft slab edge beam lift to stair lobby
	Plane frame 27 Feb 2020 5:12 PM
Members Spring s Sections Materia Primary	6 5 supports 0 s 1 ls 1 load cases 1 tion load cases 0
Analysi	s: Linear elastic

LOAD CASES

Case Type 1 P	Analysis Type Flag L -	Title Full working	loads
Analysis Typ S - Skippe L - Linear N - Non-li	d (not ana	lysed)	
	erged ssive disp not conver	placements gge in iteratio cal instabili	

NODE COORDINATES

Node	Х	Y	Z	Restraint
	m	m	m	
1	0.000	0.000	0.000	000000
2	1.000	0.000	0.000	111000
3	8.500	0.000	0.000	010000
4	10.000	0.000	0.000	010000
5	11.500	0.000	0.000	010000
6	11.800	0.000	0.000	000000

MEMBER DEFINITION

Member	А	В	С	Prop	Matl	Rel-A	Rel-B	Length m
1	1	2	Y	1		000000		1.000 7.500
2	2	4	Ŷ	1	1	000000	000000	1.500
4 5	4 5	5 6	Y Y	1 1		000000		1.500 0.300

STANDARD SHAPES

Section	Shape	Name	Comment	D1/D4	D2/D5	D3/D6
1	LRT	RCEdgebeam	800D x 600W	0.800	0.600	1.300
				0.200		

Dimension codes: TEE/LL/LR - D1=D D2=Tw D3=Bf D4=Tf

SECTION PROPERTIES

Section	Ax	Ay	Az	J	Iy	Ιz	fact
	m2	m2	m2	m4	m4	m4	
1	6.200E-01	0.000E+00	0.000E+00	3.251E-02	6.591E-02	3.582E-02	1.000

MATERIAL PROPERTIES

Material	E	u	Density	Alpha	
	kN/m2		t/m3	/deg C	
1	3.230E+07	0.2000	2.450E+00	1.170E-05	CONC32

Page 1 of 2 27/02/2020 05:12:56 PM

Simon
Job: 11401- raft slab GB2
19-21 The Corso Manly
Raft slab edge beam lift to stair lobby

CONDITION NUMBER

Maximum condition number: 3.600E+01 at node: 6 DOFN: 1

APPLIED LOADING

CASE 1: Full working loads

Member Loads

Member	Form	Т	А	S	F1	X1	F2	X2
1	CONC	FΥ	GL	LE	-334.000	0.100		
2	CONC	FΥ	GL	LE	-161.000	1.000		
2	CONC	FΥ	GL	LE	-48.000	3.000		
2	TRAP	FΥ	GL	LE	-114.200	3.000	-114.200	7.500
3	CONC	FΥ	GL	LE	-65.000	1.000		
3	TRAP	FΥ	GL	LE	-114.200	0.000	-114.200	1.000
3	TRAP	FΥ	GL	LE	-91.300	1.000	-91.300	1.500
4	UNIF	FΥ	GL		-91.300			
5	CONC	FΥ	GL	LE	-84.000	0.200		
5	UNIF	FΥ	GL		-91.300			
Sum of Applied Loads (Global Axes):								
FX:		000		FY:	-1530.090	FZ:	0.000	
Moment	s about	the	e gi	lobal	origin:			
MX:	Ο.	000		MY:	0.000	MZ:	-8623.769	

NODE DISPLACEMENTS

CASE 1: Full working loads

Node	X-Disp	Y-Disp	Z-Disp	X-Rotn	Y-Rotn	Z-Rotn
	m	m	m	rad	rad	rad
1	0.0000	0.0002	0.0000	0.00000	0.00000	-0.00017
2	0.0000	0.0000	0.0000	0.00000	0.00000	-0.00029
3	0.0000	0.0000	0.0000	0.00000	0.00000	0.00017
4	0.0000	0.0000	0.0000	0.00000	0.00000	-0.00004
5	0.0000	0.0000	0.0000	0.00000	0.00000	0.00002
6	0.0000	0.0000	0.0000	0.00000	0.00000	0.00002

MEMBER FORCES

CASE	1: Full	working]	Loads				
Member	Node	Axial kN	Shear-y kN	Shear-z kN	Torque kNm	Moment-y kNm	Moment-z kNm
1	1	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	334.00	0.00	0.00	0.00	-300.60
2	2	0.00	-298.84	0.00	0.00	0.00	-300.60
	3	0.00	424.06	0.00	0.00	0.00	-478.04
3	3	0.00	-482.64	0.00	0.00	0.00	-478.04
	4	0.00	-257.79	0.00	0.00	0.00	87.80
4	4	0.00	4.00	0.00	0.00	0.00	87.80
	5	0.00	140.95	0.00	0.00	0.00	-20.91
5	5	0.00	-111.39	0.00	0.00	0.00	-20.91
	6	0.00	0.00	0.00	0.00	0.00	0.00
		()(,))				

Positive Forces (Member Axes):

Axial	-	Tension		Shear	-	End A sagging
Torque	-	Right-hand	twist	Moment	-	Sagging

SUPPORT REACTIONS

CASE	1: Full wo	rking loads				
Node	Force-X kN	Force-Y kN	Force-Z kN	Moment-X kNm	Moment-Y kNm	Moment-Z kNm
2	0.00	632.84	0.00	0.00	0.00	0.00
3	0.00	906.69	0.00	0.00	0.00	0.00
4	0.00	-261.79	0.00	0.00	0.00	0.00
5	0.00	252.34	0.00	0.00	0.00	0.00
SUM:	0.00	1530.09	0.00	(all nodes)		

Max. residual: 3.979E-13 at DOFN: 2

Simon Job: 11401- raft slab GB2-spring 19-21 The Corso Manly Raft slab edge beam lift to stair lobby

INPUT/ANALYSIS REPORT

Job: 11401- raft slab GB2-spring Title: 19-21 The Corso Manly Raft slab edge beam lift to stair lobby Type: Plane frame 27 Feb 2020 5:12 PM Date: Time: Nodes 6 Members 5 Spring supports 4 Sections 1 Materials 1 Primary load cases 1 Combination load cases 0 Analysis: Linear elastic

LOAD CASES

Analysis Case Type Type Flag Title 1 P L - Full working loads Analysis Types: S - Skipped (not analysed) L - Linear N - Non-linear Analysis Flag: CNV - Converged XSD - Excessive displacements DNC - Did not converge in iteration limit UNS - Unstable or local instability

NODE COORDINATES

Node	Х	Y	Z	Restraint
	m	m	m	
1	0.000	0.000	0.000	000000
2	1.000	0.000	0.000	100000
3	8.500	0.000	0.000	000000
4	10.000	0.000	0.000	000000
5	11.500	0.000	0.000	000000
6	11.800	0.000	0.000	000000

SPRING SUPPORTS

Node	KX	ΚY	ΚZ	KRX	KRY	KRZ
	kN/m	kN/m	kN/m	kNm/r	kNm/r	kNm/r
2	0.000E+00	1.000E+05	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	0.000E+00	6.250E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
4	0.000E+00	6.250E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
5	0.000E+00	6.250E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00

MEMBER DEFINITION

Member	A	В	С	Prop	Matl	Rel-A	Rel-B	Length	
								m	
1	1	2	Y	1	1	000000	000000	1.000	
2	2	3	Y	1	1	000000	000000	7.500	
3	3	4	Y	1	1	000000	000000	1.500	
4	4	5	Y	1	1	000000	000000	1.500	
5	5	6	Y	1	1	000000	000000	0.300	
4	4	4 5	Y Y	1 1 1 1	1 1 1	000000 000000 000000	000000 000000 000000	7.500 1.500 1.500	

STANDARD SHAPES

Section	Shape	Name	Comment	D1/D4	D2/D5	D3/D6
1	LRT	RCEdgebeam	800D x 600W	0.800	0.600	1.300
				0.200		

Dimension codes: TEE/LL/LR - D1=D D2=Tw D3=Bf D4=Tf

SECTION PROPERTIES

Section	Ax	Ay	Az	J	Iy	Iz fact
	m2	m2	m2	m4	m4	m4
1	6.200E-01	0.000E+00	0.000E+00	3.251E-02	6.591E-02	3.582E-02 1.000

Simon Job: 11401- raft slab GB2-spring 19-21 The Corso Manly Raft slab edge beam lift to stair lobby

Page 2 of 2 27/02/2020 05:12:26 PM

MATERIAL PROPERTIES

Material	E	u	Density	Alpha	
	kN/m2		t/m3	/deg C	
1	3.230E+07	0.2000	2.450E+00	1.170E-05	CONC32

CONDITION NUMBER

Maximum condition number: 3.504E+03 at node: 6 DOFN: 2

APPLIED LOADING

CASE 1: Full working loads

Member Loads

Member	Form	т	А	S	F1	X1	F2	X2
1	CONC	FΥ	GL	LE	-334.000	0.100		
2	CONC	FΥ	GL	LE	-161.000	1.000		
2	CONC	FΥ	GL	LE	-48.000	3.000		
2	TRAP	FΥ	GL	LE	-114.200	3.000	-114.200	7.500
3	CONC	FΥ	GL	LE	-65.000	1.000		
3	TRAP	FΥ	GL	LE	-114.200	0.000	-114.200	1.000
3	TRAP	FΥ	GL	LE	-91.300	1.000	-91.300	1.500
4	UNIF	FΥ	GL		-91.300			
5	CONC	FΥ	GL	LE	-84.000	0.200		
5	UNIF	FΥ	GL		-91.300			
Sum of	Applied	T.O	ade	(G1	obal Axes):			
FX:		000		FY:		FZ:	0.000	
Moment	s about	the	e q	loba	l origin:			
			2		- · · · · · ·			

MX: 0.000 MY: 0.000 MZ: -8623.769

NODE DISPLACEMENTS

1: Full working loads CASE Y-Disp Node X-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn m 0.0000 rad -0.00064 m rad rad m 0.00000 0.00000 -0.0063 0.0000 0.00000 1 0.0000 2 0.0000 -0.0070 0.00000 -0.00076 0.0000 0.00000 0.00000 0.00133 3 0.0000 -0.0064 0.0000 0.00000 0.00000 -0.0044 -0.0024 4 0.0000 0.00135 0.0000 0.0000 0.00000 0.00132 5 6 0.0000 -0.0020 0.0000 0.00000 0.00000 0.00131

MEMBER FORCES

CASE 1: Full working loads

Member	Node	Axial	Shear-y	Shear-z	Torque	Moment-y	Moment-z
		kN	kN	kN	kNm	kNm	kNm
1	1	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	334.00	0.00	0.00	0.00	-300.60
2	2	0.00	-366.07	0.00	0.00	0.00	-300.60
	3	0.00	356.83	0.00	0.00	0.00	26.17
3	3	0.00	-45.68	0.00	0.00	0.00	26.17
	4	0.00	179.17	0.00	0.00	0.00	-63.43
4	4	0.00	-96.82	0.00	0.00	0.00	-63.43
	5	0.00	40.13	0.00	0.00	0.00	-20.91
5	5	0.00	-111.39	0.00	0.00	0.00	-20.91
	6	0.00	0.00	0.00	0.00	0.00	0.00

Positive Forces (Member Axes): Axial - Tension Shear - End A sagging Torque - Right-hand twist Moment - Sagging

SUPPORT REACTIONS

CASE 1: Full working loads

Node	Force-X kN	Force-Y kN	Force-Z kN	Moment-X kNm	Moment-Y kNm	Moment-Z kNm
2	0.00	700.07	0.00	0.00	0.00	0.00
3	0.00	402.50	0.00	0.00	0.00	0.00
4	0.00	275.99	0.00	0.00	0.00	0.00
5	0.00	151.52	0.00	0.00	0.00	0.00
SUM:	0.00	1530.09	0.00	(all nodes)		
Max. rea	sidual: 2.6	22E-10 at D0	DFN: 16			
(Reaction	ns act on s	tructure in	positive	global axis	directions.)

Simon Job: 11401- raft slab GB3 19-21 The Corso Manly Raft slab edge beam lift to stair lobby

INPUT/ANALYSIS REPORT

Job:	11401- raft slab GB3
Title:	19-21 The Corso Manly Raft slab edge beam lift to stair lobby
	Plane frame 27 Feb 2020 5:11 PM
Members Spring s Sections Materia Primary	6 supports 6 s 1 ls 1 load cases 1 tion load cases 0
Analysi	s: Linear elastic

LOAD CASES

Case Type 1 P	Analysis Type Flac L -		king loads
Analysis Ty S - Skipp L - Linea N - Non-1	ed (not ar r	nalysed)	
DNC - Did	verged essive dis not conve	splacements erge in ite local insta	ration limit

NODE COORDINATES

Node	Х	Y	Z	Restraint
	m	m	m	
1	0.000	0.000	0.000	000000
2	1.000	0.000	0.000	111000
3	8.500	0.000	0.000	010000
4	10.000	0.000	0.000	010000
5	11.500	0.000	0.000	010000
6	11.800	0.000	0.000	000000

MEMBER DEFINITION

Member	A	В	С	Prop	Matl	Rel-A	Rel-B	Length m	
1	1	2	Y	1	1	000000	000000	1.000	
2	2	3	Y	1	1	000000	000000	7.500	
3	3	4	Y	1	1	000000	000000	1.500	
4	4	5	Y	1	1	000000	000000	1.500	
5	5	6	Y	1	1	000000	000000	0.300	

STANDARD SHAPES

Section	Shape	Name	Comment	D1/D4	D2/D5	D3/D6
1	LRT	RCEdgebeam	800D x 600W	0.800	0.600	1.300
				0.200		

Dimension codes: TEE/LL/LR - D1=D D2=Tw D3=Bf D4=Tf

SECTION PROPERTIES

Section	Ax	Ay	Az	J	Iy	Ιz	fact
	m2	m2	m2	m4	m4	m4	
1	6.200E-01	0.000E+00	0.000E+00	3.251E-02	6.591E-02	3.582E-02	1.000

MATERIAL PROPERTIES

Material	E	u	Density	Alpha	
	kN/m2		t/m3	/deg C	
1	3.230E+07	0.2000	2.450E+00	1.170E-05	CONC32

Page 1 of 2 27/02/2020 05:12:00 PM

Simon Job: 114(19-21 Th)1- raft sla e Corso N		-			
CONDITI			3.600E+01 at	- node: 6 D	OFN · 1	
APPLIED CASE	LOADIN				OFIN. I	
Member	Loads					
Member 1 2 2	CONC CONC		F1 -343.000 -151.000 -90.700		F2	Х2
2 3	CONC	FY GL LE	-64.400	3.000	-64.400	6.000
3 4 5 5	UNIF	FY GL LE FY GL FY GL LE FY GL	-77.000 -77.000 -64.700 -77.000	0.500	-77.000	1.500

Sum of Applied Loads (Global Axes):

Sum of Ap	рріїед Load	is (Gior	Dal Axes):		
FX:	0.000	FY:	-1158.200	FZ:	0.000
Moments	about the	global	origin:		
MX:	0.000	MY:	0.000	MZ:	-6235.030

NODE DISPLACEMENTS

CASE 1: Full working loads

Node	X-Disp	Y-Disp	Z-Disp	X-Rotn	Y-Rotn	Z-Rotn
	m	m	m	rad	rad	rad
1	0.0000	0.0000	0.0000	0.00000	0.00000	0.00004
2	0.0000	0.0000	0.0000	0.00000	0.00000	-0.00008
3	0.0000	0.0000	0.0000	0.00000	0.00000	0.00012
4	0.0000	0.0000	0.0000	0.00000	0.00000	-0.00003
5	0.0000	0.0000	0.0000	0.00000	0.00000	0.00001
6	0.0000	0.0000	0.0000	0.00000	0.00000	0.00001

MEMBER FORCES

CASE 1: Full working loads

Member	Node	Axial	Shear-y	Shear-z	Torque	Moment-y	Moment-z
		kN	kN	kN	kNm	kNm	kNm
1	1	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	343.00	0.00	0.00	0.00	-308.70
2	2	0.00	-181.72	0.00	0.00	0.00	-308.70
	3	0.00	253.18	0.00	0.00	0.00	-340.93
3	3	0.00	-358.85	0.00	0.00	0.00	-340.93
	4	0.00	-181.85	0.00	0.00	0.00	58.84
4	4	0.00	-7.59	0.00	0.00	0.00	58.84
	5	0.00	107.91	0.00	0.00	0.00	-16.41
5	5	0.00	-87.80	0.00	0.00	0.00	-16.41
	6	0.00	0.00	0.00	0.00	0.00	0.00

Positive Forces (Member Axes): Axial - TensionShear - End A saggingTorque - Right-hand twistMoment - Sagging

SUPPORT REACTIONS

CASE 1: Full working loads

Node	Force-X kN	Force-Y kN	Force-Z kN	Moment-X kNm	Moment-Y kNm	Moment-Z kNm	
2	0.00	524.72	0.00	0.00	0.00	0.00	
3	0.00	612.03	0.00	0.00	0.00	0.00	
4	0.00	-174.26	0.00	0.00	0.00	0.00	
5	0.00	195.71	0.00	0.00	0.00	0.00	
SUM:	0.00	1158.20	0.00	(all nodes)			

Max. residual: 5.684E-14 at DOFN: 12

Simon Job: 11401 - FTG BEAM - GB4-plus 1beam 19-21 The Corso Manly Footing Beam GB4

INPUT/ANALYSIS REPORT

Job: 11401 - FTG BEAM - GB4-plus 1beam

Title:		
	Footing Beam GB4	
Type:	Plane frame	
Date:	27 Feb 2020	
Time:	8:23 PM	
Nodes .		14
Members		13
Spring	supports	13
Section	S	2
Materia	ls	2
Primary	load cases	1
Combina	tion load cases	0
Analysi	s: Linear elastic	

LOAD CASES

Analysis Case Type Type Flag Title 1 P L - Full working Loads Analysis Types: S - Skipped (not analysed) L - Linear N - Non-linear Analysis Flag: CNV - Converged XSD - Excessive displacements DNC - Did not converge in iteration limit UNS - Unstable or local instability

NODE COORDINATES

Node	Х	Y	Z	Restraint
	m	m	m	
1	0.000	0.000	0.000	000000
2	0.200	0.000	0.000	000000
3	13.400	0.000	0.000	000000
4	14.600	0.000	0.000	101110
5	1.400	0.000	0.000	000000
6	2.600	0.000	0.000	000000
7	3.800	0.000	0.000	000000
8	5.000	0.000	0.000	000000
9	6.200	0.000	0.000	000000
10	7.400	0.000	0.000	000000
11	8.600	0.000	0.000	000000
12	9.800	0.000	0.000	000000
13	11.000	0.000	0.000	000000
14	12.200	0.000	0.000	000000

SPRING SUPPORTS

Node	KX	KY	KZ	KRX	KRY	KRZ
	kN/m	kN/m	kN/m	kNm/r	kNm/r	kNm/r
2	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
4	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
5	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
6	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
8	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
9	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
11	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
12	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
13	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
14	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
MEMBER	DEFINITION					

Member	A	В	С	Prop	Matl	Rel-A	Rel-B	Length
1	1	0		1	1	000000	000000	m
1	⊥ 3	2	Y Y	1		000000		0.200
4	2	5	I V	- 1		000000		1.200
5	5	6	Y	1		000000		1.200
6	6	7	Y	1	1	000000	000000	1.200

Simon Job: 11401 - FTG BEAM - GB4-plus 1beam 19-21 The Corso Manly Footing Beam GB4 Page 2 of 3 27/02/2020 08:24:00 PM

-11	12 13	8 9 10 11 12 13 14 3	Y Y Y Y Y Y Y		00000 000000 00000 000000 00000 000000 00000 000000 00000 000000 00000 000000 00000 000000 00000 000000 00000 000000 00000 000000 00000 000000		
STANDARI	SHAPE	S					
Section 1 2	RECT	RCBlo	ckwall footing	Commen 4m x 2 1m x 8	00 thick	D1/D4 4.000 0.800	0.200
Dimensio REC		s:	2=B				
SECTION	PROPER	TIES					
	8.000E			m 0.000E+0	0 9.984E-03	1 m4 3 2.667E-03	Iz fact m4 1.067E+00 1.000 4.267E-02 1.000
MATERIAI	DROPE	RTIES					
Material 1 2		kN/ .550E+ .550E+	E m2 07 0.3	u De 2000 2.45 2000 2.45	t/m3	Alpha /deg C 170E-05 CON 170E-05 CON	IC20 IC20
Maximum APPLIED CASE Member I	LOADIN 1: Fu	IG	mber: 2.3 king Loa		node: 2 DOF	FN: 2	
3 4 5 6 7 8 9 10 11 11 12 12 12 13 14 Sum of <i>B</i> FX:	UNIF UNIF CONC UNIF UNIF UNIF UNIF UNIF UNIF UNIF UNIF	FY GL FY GL FY GL FY GL FY GL Loads 000 the g 000	LE - - - (Global FY: - lobal or	1733.600 igin: 0.000	X1 1.100 FZ: MZ: -1422	F2 0.000 28.241	Χ2
Node		isp	Y-Disp	Z-Dis	-		Z-Rotn
		m	m		m rac	d rad	rad

Node	X-Disp	Y-Disp	Z-Disp	X-Rotn	Y-Rotn	Z-Rotn
	m	m	m	rad	rad	rad
1	0.0000	-0.0033	0.0000	0.00000	0.00000	-0.00035
2	0.0000	-0.0034	0.0000	0.00000	0.00000	-0.00035
3	0.0000	-0.0064	0.0000	0.00000	0.00000	-0.00005
4	0.0000	-0.0064	0.0000	0.00000	0.00000	0.00003
5	0.0000	-0.0038	0.0000	0.00000	0.00000	-0.00035
6	0.0000	-0.0042	0.0000	0.00000	0.00000	-0.00034
7	0.0000	-0.0046	0.0000	0.00000	0.00000	-0.00033
8	0.0000	-0.0050	0.0000	0.00000	0.00000	-0.00031
9	0.0000	-0.0054	0.0000	0.00000	0.00000	-0.00028
10	0.0000	-0.0057	0.0000	0.00000	0.00000	-0.00023
11	0.0000	-0.0059	0.0000	0.00000	0.00000	-0.00018
12	0.0000	-0.0061	0.0000	0.00000	0.00000	-0.00013
13	0.0000	-0.0062	0.0000	0.00000	0.00000	-0.00009

Simon Job: 11401 - FTG BEAM - GB4-plus 1beam 19-21 The Corso Manly Footing Beam GB4

Page 3 of 3 27/02/2020 08:24:01 PM

14	0.0000	-0.0063	0.0000	0.00000	0.00000	-0.000	07
MEMBER	FORCES						
CASE	1: Full	working Load	5				
Member	Node			hear-z		oment-y	Moment-z
1	1	kN 0.00	kN 0.00	kN 0.00	kNm 0.00	kNm 0.00	kNm 0.00
	2	0.00	6.60	0.00	0.00	0.00	-0.66
3	3	0.00	77.16	0.00	0.00	0.00	141.98
4	4 2		159.48 -78.23	0.00 0.00	0.00 0.00	0.00 0.00	0.00 -0.66
7	5		-38.63	0.00	0.00	0.00	69.46
5	5		133.86	0.00	0.00	0.00	69.46
	6		-23.26	0.00	0.00	0.00	199.23
6	6		128.77	0.00	0.00	0.00	199.23
7	7 7		-89.17	0.00	0.00	0.00	330.00
1	8		204.70 165.10	0.00 0.00	0.00 0.00	0.00 0.00	330.00 551.88
8	8		290.17	0.00	0.00	0.00	551.88
	9		250.57	0.00	0.00	0.00	876.33
-9	9		384.44	0.00	0.00	0.00	876.33
1.0	10		-48.44	0.00	0.00	0.00	1136.05
-10	10 11		189.93 146.07	0.00 0.00	0.00 0.00	0.00 0.00	1136.05 1162.36
-11	11	0.00	-1.54	0.00	0.00	0.00	1162.36
++	12		267.98	0.00	0.00	0.00	1002.50
-12	12		115.78	0.00	0.00	0.00	1002.50
	13		385.30	0.00	0.00	0.00	701.85
13	13 14		229.84	0.00	0.00	0.00	701.85
14	14		312.16 154.39	0.00 0.00	0.00 0.00	0.00 0.00	376.65 376.65
11	3		236.71	0.00	0.00	0.00	141.98
Positiv	ve Forces	(Member Axes)					
Axial				End A sage	ging		
Torqu	ue - Right-	-hand twist	Moment -	Sagging			
SUPPORT	r REACTIONS	5					
CASE	1: Full	working Load	3				
Node	Force->		Force-Z	Moment-X		Moment	
0	kl		kN	kNm			sNm
2 3	0.00		0.00	0.00	0.00		.00 .00
4	0.00		0.00	0.00	0.00		.00
5	0.00		0.00	0.00	0.00		.00
6	0.00		0.00	0.00	0.00		. 0 0
7	0.00		0.00	0.00	0.00		.00
8 9	0.00		0.00	0.00	0.00		.00 .00
10	0.00		0.00	0.00	0.00		.00
11	0.00		0.00	0.00	0.00		.00
12	0.00		0.00	0.00	0.00		.00
13	0.00		0.00	0.00	0.00		.00
14	0.00		0.00	0.00	0.00	0.	.00
SUM:	0.00			(all nodes))		
Max. 1	residual: 4	4.191E-09 at 1	DOFN: 2				

Simon Job: 11401 - FTG BEAM - GB4-1B3 LOADS 19-21 The Corso Manly Footing Beam GB4

INPUT/ANALYSIS REPORT

Job: 11401 - FTG BEAM - GB4-1B3 LOADS Title: 19-21 The Corso Manly Footing Beam GB4 Type: Plane frame Date: 28 Feb 2020 Time: 11:12 AM

Time:	11:12 AM	
Nodes .		16
Members		15
Spring	supports	15
Section	IS	2
Materia	ls	2
Primary	load cases	1
Combina	tion load cases	0
Analysi	s: Linear elastic	

LOAD CASES

Analysis Case Type Type Flag 1 P L -	Title Full working Loads
Analysis Types: S - Skipped (not anal L - Linear N - Non-linear	lysed)
Analysis Flag: CNV - Converged XSD - Excessive disp DNC - Did not converg UNS - Unstable or log	ge in iteration limit

NODE COORDINATES

Node	Х	Y	Z	Restraint
	m	m	m	
1	0.000	0.000	0.000	000000
2	0.200	0.000	0.000	000000
3	13.400	0.000	0.000	000000
4	14.600	0.000	0.000	101110
5	1.400	0.000	0.000	000000
6	2.600	0.000	0.000	000000
7	3.800	0.000	0.000	000000
8	5.000	0.000	0.000	000000
9	6.200	0.000	0.000	000000
10	7.400	0.000	0.000	000000
11	8.600	0.000	0.000	000000
12	9.800	0.000	0.000	000000
-13	11.000	0.000	0.000	000000
14	12.200	0.000	0.000	000000
16	15.800	0.000	0.000	101110
29	17.000	0.000	0.000	101110

SPRING SUPPORTS

Node	KX kN/m	KY kN/m	KZ kN/m	KRX kNm/r	KRY kNm/r	KRZ kNm/r
2	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
4	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
5	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
6	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
8	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
9	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
11	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
12	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
-13	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
14	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
16	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
29	0.000E+00	2.500E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00

MEMBER DEFINITION

А

Member

Simon Job: 11401 - FTG BEAM - GB4-1B3 LOADS 19-21 The Corso Manly Footing Beam GB4

В

Page 2 of 4 28/02/2020 11:12:58 AM

fact 1.000

TICHLOCI	21	D	0 110	p naci	1001 11	INCE D	Derig			
1 3	3	4	Y	2 1	000000	000000	1 21	00		
4 5	5	- 5 6	Y Y	1 1 1 1	000000	000000	1.2	00		
6 7	-	7 8	Y Y	1 1 1 1	000000	000000	1.2 1.2 1.2 1.2	00 00		
8	8	9 10	Y	1 1	000000	000000	1.2	00		
10	10	11	Y	1 1	000000	000000	1.2	00		
11 12	11 12	12 -13	Y Y	1 1 1	000000	000000	1.20	00 00		
13 14	-13 14	14 3	Y Y	1 1 1 1	000000	000000	1.2	00 00		
15	4	16	Y	2 1	000000	000000	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	00		
STANDARI	SHAPE	s					1.20	50		
Section	Shape	Name		Comme	ent		D1/1 4.0	D4 I	D2/D5	D3/D6
2	RECI	SCLIDI	kwall ooting	4m x 1m x	0.2 800 de	ep	4.00		0.200 1.000	
Dimensio REC		s: =D D2	=В							
SECTION										
Section		Ax m2	Ay m2		Az m2	J m4		Iy m4		Iz fac m4
	8.000E	-01 0.	000E+00	0.000E-	+00 9.	984E-03	2.667E 6.667E	-03 1	1.067E-	+00 1.00
MATERIAI										
Material	L	kN/m	E 2	u l	Density t/m3		Alpha /deg C			
1 2	2	.550E+0	7 0.2	000 2.4	450E+00 450E+00	1.1	Alpha /deg C 70E-05 70E-05	CONC	20	
CONDITIC										
Maximum	condit	ion num	ber: 2.1	70E+02 a	at node	: 2 DOFI	N: 2			
APPLIED	LOADIN	G								
CASE	1: Fu	ll work	ing Load	ls						
Node Loa			_							
		kN	kN	kl	N	kNm	Moment kNm		kNm	
		000 -1	92.000	0.000	0 0	.000	0.000	0	.000	
Member I			9	F1		1	=0			
	UNIF	FY GL	-	33.000		ΧI	F2		Х2	
3 4	UNIF UNIF	FY GL FY GL		68.600 33.000						
5 5	CONC UNIF	FY GL FY GL		71.000	1.	100				
6	UNIF	FY GL	-	33.000						
7 8	UNIF UNIF	FY GL FY GL		33.000						
9	UNIF	FY GL		80.000						
10 11	UNIF UNIF	FY GL FY GL		80.000						
11 12	UNIF UNIF	FY GL FY GL		56.000						
12	UNIF	FY GL		56.000						
13 14	UNIF UNIF	FY GL FY GL		68.600 68.600						
Sum of Z FX:	Applied		(Global FY: -1	Axes): 925.600	FZ:		0.000			
Moments MX:			obal ori MY:	gin: 0.000	MZ:	-1657	0.641			
	••			5.000	1.10 •	1007				

C Prop Matl Rel-A Rel-B Length

Simon Job: 11401 - FTG BEAM - GB4-1B3 LOADS 19-21 The Corso Manly Footing Beam GB4 Page 3 of 4 28/02/2020 11:12:58 AM

NODE DISPLACEMENTS

CASE 1: Full working Loads

Node	X-Disp m	Y-Disp m	Z-Disp m	X-Rotn rad	Y-Rotn rad	Z-Rotn rad
1	0.0000	-0.0040	0.0000	0.00000	0.00000	-0.00029
2	0.0000	-0.0040	0.0000	0.00000	0.00000	-0.00029
3	0.0000	-0.0057	0.0000	0.00000	0.00000	0.00015
4	0.0000	-0.0052	0.0000	0.00000	0.00000	0.00068
5	0.0000	-0.0044	0.0000	0.00000	0.00000	-0.00029
6	0.0000	-0.0047	0.0000	0.00000	0.00000	-0.00028
7	0.0000	-0.0050	0.0000	0.00000	0.00000	-0.00027
8	0.0000	-0.0054	0.0000	0.00000	0.00000	-0.00024
9	0.0000	-0.0056	0.0000	0.00000	0.00000	-0.00020
10	0.0000	-0.0058	0.0000	0.00000	0.00000	-0.00014
11	0.0000	-0.0060	0.0000	0.00000	0.00000	-0.00008
12	0.0000	-0.0060	0.0000	0.00000	0.00000	-0.00001
-13	0.0000	-0.0060	0.0000	0.00000	0.00000	0.00006
14	0.0000	-0.0059	0.0000	0.00000	0.00000	0.00011
16	0.0000	-0.0042	0.0000	0.00000	0.00000	0.00090
29	0.0000	-0.0031	0.0000	0.00000	0.00000	0.00095

MEMBER FORCES

CASE 1: Full working Loads

Member	Node	Axial	Shear-y	Shear-z	Torque	Moment-y	Moment-z
		kN	kN	kN	kNm	kNm	kNm
1	1	0.00	0.00	0.00	0.00	0.00	0.00
	2	0.00	6.60	0.00	0.00	0.00	-0.66
3	3	0.00	230.68	0.00	0.00	0.00	638.88
	4	0.00	313.00	0.00	0.00	0.00	312.68
4	2	0.00	-93.80	0.00	0.00	0.00	-0.66
	5	0.00	-54.20	0.00	0.00	0.00	88.14
5	5	0.00	-163.39	0.00	0.00	0.00	88.14
	6	0.00	-52.79	0.00	0.00	0.00	253.35
6	6	0.00	-170.61	0.00	0.00	0.00	253.35
	7	0.00	-131.01	0.00	0.00	0.00	434.32
7	7	0.00	-257.14	0.00	0.00	0.00	434.32
	8	0.00	-217.54	0.00	0.00	0.00	719.13
8	8	0.00	-351.35	0.00	0.00	0.00	719.13
	9	0.00	-311.75	0.00	0.00	0.00	1116.99
9	9	0.00	-452.28	0.00	0.00	0.00	1116.99
	10	0.00	-116.28	0.00	0.00	0.00	1458.12
10	10	0.00	-262.02	0.00	0.00	0.00	1458.12
	11	0.00	73.98	0.00	0.00	0.00	1570.94
11	11	0.00	-75.06	0.00	0.00	0.00	1570.94
	12	0.00	194.46	0.00	0.00	0.00	1499.31
12	12	0.00	44.19	0.00	0.00	0.00	1499.31
	-13	0.00	313.71	0.00	0.00	0.00	1284.57
13	-13	0.00	164.22	0.00	0.00	0.00	1284.57
	14	0.00	246.54	0.00	0.00	0.00	1038.11
14	14	0.00	291.53	0.00	0.00	0.00	1038.11
	3	0.00	373.85	0.00	0.00	0.00	638.88
15	4	0.00	183.08	0.00	0.00	0.00	312.68
	16	0.00	183.08	0.00	0.00	0.00	92.99
16	16	0.00	77.49	0.00	0.00	0.00	92.99
	29	0.00	77.49	0.00	0.00	0.00	0.00

Positive Forces (Member Axes): Axial - Tension Shear - End A sagging Torque - Right-hand twist Moment - Sagging

SUPPORT REACTIONS

CASE	1: Full wo	rking Loads				
Node	Force-X	Force-Y	Force-Z	Moment-X	Moment-Y	Moment-Z
	kN	kN	kN	kNm	kNm	kNm
2	0.00	100.40	0.00	0.00	0.00	0.00
3	0.00	143.17	0.00	0.00	0.00	0.00
4	0.00	129.92	0.00	0.00	0.00	0.00
5	0.00	109.18	0.00	0.00	0.00	0.00
6	0.00	117.83	0.00	0.00	0.00	0.00
7	0.00	126.12	0.00	0.00	0.00	0.00
8	0.00	133.81	0.00	0.00	0.00	0.00
9	0.00	140.53	0.00	0.00	0.00	0.00
10	0.00	145.75	0.00	0.00	0.00	0.00
11	0.00	149.04	0.00	0.00	0.00	0.00
12	0.00	150.26	0.00	0.00	0.00	0.00
13	0.00	149.49	0.00	0.00	0.00	0.00

Simon Job: 11401 - FTG BEAM - GB4-1B3 LOADS 19-21 The Corso Manly Footing Beam GB4 Page 4 of 4 28/02/2020 11:12:58 AM

14	0.00	147.01	0.00	0.00	0.00	0.00	
16	0.00	105.59	0.00	0.00	0.00	0.00	
29	0.00	77.49	0.00	0.00	0.00	0.00	
SUM:	0.00	1925.60	0.00 (a	ll nodes)			

Max. residual: 7.175E-09 at DOFN: 5

Simon Job: 11401- raft slab GB3-spring 19-21 The Corso Manly Raft slab edge beam lift to stair lobby

INPUT/ANALYSIS REPORT

Job: 11401- raft slab GB3-spring Title: 19-21 The Corso Manly Raft slab edge beam lift to stair lobby Type: Plane frame 27 Feb 2020 5:13 PM Date: Time: Nodes 6 Members 5 Spring supports 4 Sections 1 Materials 1 Primary load cases 1 Combination load cases 0 Analysis: Linear elastic

LOAD CASES

Analysis Case Type Type Flag Title 1 P L - Full working loads Analysis Types: S - Skipped (not analysed) L - Linear N - Non-linear Analysis Flag: CNV - Converged XSD - Excessive displacements DNC - Did not converge in iteration limit UNS - Unstable or local instability

NODE COORDINATES

Node	Х	Y	Z	Restraint
	m	m	m	
1	0.000	0.000	0.000	000000
2	1.000	0.000	0.000	100000
3	8.500	0.000	0.000	000000
4	10.000	0.000	0.000	000000
5	11.500	0.000	0.000	000000
6	11.800	0.000	0.000	000000

SPRING SUPPORTS

Node	KX	KY	KZ	KRX	KRY	KRZ
	kN/m	kN/m	kN/m	kNm/r	kNm/r	kNm/r
2	0.000E+00	1.000E+05	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	0.000E+00	3.750E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
4	0.000E+00	3.750E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00
5	0.000E+00	3.750E+04	0.000E+00	0.000E+00	0.000E+00	0.000E+00

MEMBER DEFINITION

STANDARD SHAPES

Section	Shape	Name	Comment	D1/D4	D2/D5	D3/D6
1	LRT	RCEdgebeam	800D x 600W	0.800	0.600	1.300
				0.200		

Dimension codes: TEE/LL/LR - D1=D D2=Tw D3=Bf D4=Tf

SECTION PROPERTIES

Section	Ax	Ay	Az	J	Iy	Iz fact
	m2	m2	m2	m4	m4	m4
1	6.200E-01	0.000E+00	0.000E+00	3.251E-02	6.591E-02	3.582E-02 1.000

Simon Job: 11401- raft slab GB3-spring 19-21 The Corso Manly Raft slab edge beam lift to stair lobby Page 2 of 2 27/02/2020 05:13:23 PM

MATERIAL PROPERTIES

Material	E	u	Density	Alpha	
	kN/m2		t/m3	/deg C	
1	3.230E+07	0.2000	2.450E+00	1.170E-05	CONC32

CONDITION NUMBER

Maximum condition number: 5.475E+03 at node: 6 DOFN: 2

APPLIED LOADING

CASE 1: Full working loads

Member Loads

Member	Form	Т	А	S	F1	X1	F2	X2
1	CONC	FΥ	GL	LE	-343.000	0.100		
2	CONC	FΥ	GL	LE	-151.000	3.000		
2	CONC	FΥ	GL	LE	-90.700	6.000		
2	TRAP	FΥ	GL	LE	-64.400	3.000	-64.400	6.000
3	CONC	FΥ	GL	LE	-100.000	0.500		
3	TRAP	FΥ	GL	LΕ	-77.000	0.500	-77.000	1.500
4	UNIF	FΥ	GL		-77.000			
5	CONC	FΥ	GL	LΕ	-64.700	0.200		
5	UNIF	FΥ	GL		-77.000			
Sum of Applied Loads (Global Axes):								
FX:	0.	000		FY:	-1158.200	FZ:	0.000	
Moment	s about	the	e al	loba	l origin:			

Momenca	about th	ie grobar	origin.		
MX:	0.000) MY:	0.000	MZ:	-6235.030

NODE DISPLACEMENTS

CASE 1: Full working loads

Node	X-Disp m	Y-Disp m	Z-Disp m	X-Rotn rad	Y-Rotn rad	Z-Rotn rad
1	0.000	-0.0053	0.0000	0.00000	0.00000	-0.00048
2	0.0000	-0.0058	0.0000	0.00000	0.00000	-0.00060
3	0.0000	-0.0065	0.0000	0.00000	0.00000	0.00086
4	0.0000	-0.0052	0.0000	0.00000	0.00000	0.00092
5	0.0000	-0.0038	0.0000	0.00000	0.00000	0.00091
6	0.0000	-0.0035	0.0000	0.00000	0.00000	0.00091

MEMBER FORCES

CASE 1: Full working loads Shear-y kN 0.00 Member Node Axial Shear-z Torque Moment-y Moment-z kN 0 000 kN 0.00 kNm kNm kNm 0.00 0.00 0.00 0.00 1 1 343.00 -308.70 2 0.00 0.00 0.00 0.00 0.00 -234.08 200.82 0.00 -308.70 0.00 2 2 3 0.00 51.72 3 0.00 0.00 0.00 3 -43.83 0.00 51.72 133.17 0.00 -21.03 4 -60.83 0.00 0.00 -21.03 4 4 0.00 0.00 -16.41 5 0.00 0.00 5 -87.80 0.00 0.00 0.00 5 0.00 -16.41 6 0.00 0.00 0.00 0.00

Positive Forces (Member Axes): Axial - Tension Shear - End A sagging Torque - Right-hand twist Moment - Sagging

SUPPORT REACTIONS

CASE 1: Full working loads

Node	Force-X kN	Force-Y kN	Force-Z kN	Moment-X kNm	Moment-Y kNm	Moment-Z kNm		
2	0.00	577.08	0.00	0.00	0.00	0.00		
3	0.00	244.65	0.00	0.00	0.00	0.00		
4	0.00	194.00	0.00	0.00	0.00	0.00		
5	0.00	142.47	0.00	0.00	0.00	0.00		
SUM:	0.00	1158.20	0.00	(all nodes)				
Max. rea	sidual: 7.8	41E-11 at D0	OFN: 17					
(Reaction	(Reactions act on structure in positive global axis directions.)							

Simon Job: 11401-EXFTG-1 19-21 The Corso Manly Existing Footing Beam on soil

INPUT/ANALYSIS REPORT

Job:	11401-EXFTG-1	
Title:	19-21 The Corso Manly Existing Footing Beam on soil	
	Plane frame 26 Feb 2020 12:27 PM	
Members Spring Section Materia Primary	supportss s ls load cases tion load cases	15 14 15 1 2 0
Analysi	s: Linear elastic	

LOAD CASES

Analysis Case Type Type Flag Title 1 P L - Existing working loads Analysis Types: S - Skipped (not analysed) L - Linear N - Non-linear Analysis Flag: CNV - Converged XSD - Excessive displacements DNC - Did not converge in iteration limit UNS - Unstable or local instability

NODE COORDINATES

Node	Х	Y	Z	Restraint
	m	m	m	
1	0.000	0.000	0.000	100000
2	5.600	0.000	0.000	000000
3	0.400	0.000	0.000	000000
4	0.800	0.000	0.000	000000
5	1.200	0.000	0.000	000000
6	1.600	0.000	0.000	000000
7	2.000	0.000	0.000	000000
8	2.400	0.000	0.000	000000
9	2.800	0.000	0.000	000000
10	3.200	0.000	0.000	000000
11	3.600	0.000	0.000	000000
12	4.000	0.000	0.000	000000
13	4.400	0.000	0.000	000000
14	4.800	0.000	0.000	000000
15	5.200	0.000	0.000	000000

SPRING SUPPORTS

Node	KX	KY	KZ	KRX	KRY	KRZ
1	kN/m	kN/m	kN/m	kNm/r	kNm/r	kNm/r
1	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
4	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
5	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
6	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
8	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
9	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
11	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
12	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
13	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
14	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
15	0.000E+00	7.500E+02	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Page 1 of 3 26/02/2020 12:27:37 PM

Simon Job: 11401-EXFTG-1 19-21 The Corso Manly Existing Footing Beam on soil Page 2 of 3 26/02/2020 12:27:37 PM

MEMBER	DEFINIT	ION							
Member	A	В	C Pi	rop N	1atl	Rel-A	Rel-B	-	
2 3 4 5 6 7 8 9 10 11 12 2 13 14 15	3 4 5	3 4 5 6 7 8 9 10 11 12 13 14 15 2	Ү Ү Ү Ү Ү Ү Ү Ү Ү	1 1 1 1 1 1 1 1 1 1 1	1 1 1		000000	0.400 0.400 0.400	
STANDA	RD SHAPE								
1		Strip	Footing	(Comme 100x	ent 400 RC		D1/D4 0.400	D2/D5 D3/D6 0.400
	ion code ECT - D1		2=В						
SECTIO	N PROPER	TIES							
Section 1		Ax m2 -01 0	m2	2) 0.0)00E·	Az m2 +00 3.	J m4 610E-03	m4	Iz fact m4 2.133E-03 1.000
MATERIA	AL PROPE	RTIES							
Materia 1		kN/ .860E+	E m2 07 0.	u .2000		Density t/m3 450E+00		Alpha /deg C 70E-05 CON	IC25
CONDIT	ION NUMB	ER							
Maximur	m condit	ion nu	mber: 1.	.849E-	⊦03 a	at node	: 2 DOF	N: 2	
APPLIE	D LOADIN	G							
CASE Member		isting	working	g load	ls				
Member Member		т А	S		F1		X1	F2	X2
5	CONC TRAP	FY GL	LE	-95.5	500		350 350	-93.600	0.400
7		FY GL		-93.6	500				
8 9	UNIF	FY GL		-93.6	500				
10 11	UNIF UNIF	FY GL FY GL		-93.0	500	0		0.2 . 60.0	0.050
12 15	TRAP CONC	FY GL FY GL		-93.0 -95.5			000 050	-93.600	0.050
Sum of FX:	Applied	Loads	(Globa) FY:	Axes -425.		FZ:		0.000	
Moment MX:	ts about 0.	the g 000	lobal or MY:		: .000	MZ:	-119	0.000	
NODE D	ISPLACEM	ENTS							
CASE		2	working	g load	ls				
Node	X-D	isp m	Y-Disp n	n	Z-D:	isp m	X-Rotn rad		Z-Rotn rad
1 2	0.0	000 000	-0.0378		0.0		0.00000 0.00000		0.00000 0.00000
3 4	0.0		-0.0377		0.0		0.00000 0.00000		0.00004 0.00003
5 6	0.0		-0.0377		0.0		0.00000 0.00000		-0.00005 -0.00011
7 8	0.0		-0.0378		0.0		0.00000		-0.00011 -0.00007
9 10		000	-0.0379)	0.0	000	0.00000	0.00000	0.00000 0.00007
11 12	0.0	000	-0.0378	3	0.0	000	0.00000	0.00000	0.00011 0.00011
13	0.0		-0.0377		0.0		0.00000		0.00005

Microstran.Pro V9.20.1.24

Simon Job: 11401-EXFTG-1 19-21 The Corso Manly Existing Footing Beam on soil Page 3 of 3 26/02/2020 12:27:37 PM

1 /	0 0000	-0.0377	0 0000	0.00000	0 00000	0 00003	
14	0.0000	-0.03//	0.0000	0.00000	0.00000	-0.00003	
15	0.0000	-0.0377	0.0000	0.00000	0.00000	-0.00004	

MEMBER FORCES

CASE 1	:	Existing	working	loads	
--------	---	----------	---------	-------	--

Member	Node	Axial	Shear-y	Shear-z	Torque	Moment-y	Moment-z
		kN	kN	kN	kNm	kNm	kNm
2	1	0.00	-28.31	0.00	0.00	0.00	0.00
	3	0.00	67.19	0.00	0.00	0.00	6.55
3	3	0.00	38.87	0.00	0.00	0.00	6.55
	4	0.00	38.87	0.00	0.00	0.00	-9.00
4	4	0.00	10.58	0.00	0.00	0.00	-9.00
	5	0.00	10.58	0.00	0.00	0.00	-13.23
5	5	0.00	-17.73	0.00	0.00	0.00	-13.23
	6	0.00	-13.05	0.00	0.00	0.00	-6.26
6	6	0.00	-41.37	0.00	0.00	0.00	-6.26
	7	0.00	-3.93	0.00	0.00	0.00	2.81
7	7	0.00	-32.29	0.00	0.00	0.00	2.81
	8	0.00	5.15	0.00	0.00	0.00	8.23
8	8	0.00	-23.24	0.00	0.00	0.00	8.23
	9	0.00	14.20	0.00	0.00	0.00	10.04
9	9	0.00	-14.20	0.00	0.00	0.00	10.04
	10	0.00	23.24	0.00	0.00	0.00	8.23
10	10	0.00	-5.15	0.00	0.00	0.00	8.23
	11	0.00	32.29	0.00	0.00	0.00	2.81
11	11	0.00	3.93	0.00	0.00	0.00	2.81
	12	0.00	41.37	0.00	0.00	0.00	-6.26
12	12	0.00	13.05	0.00	0.00	0.00	-6.26
	13	0.00	17.73	0.00	0.00	0.00	-13.23
13	13	0.00	-10.58	0.00	0.00	0.00	-13.23
	14	0.00	-10.58	0.00	0.00	0.00	-9.00
14	14	0.00	-38.87	0.00	0.00	0.00	-9.00
	15	0.00	-38.87	0.00	0.00	0.00	6.55
15	15	0.00	-67.19	0.00	0.00	0.00	6.55
	2	0.00	28.31	0.00	0.00	0.00	0.00
Positive	e Forces	(Member Ax	es):				

Positive Forces (Member Axes): Axial - Tension Shear - End A sagging Torque - Right-hand twist Moment - Sagging

SUPPORT REACTIONS

CASE 1: Existing working loads

Node	Force-X kN	Force-Y kN	Force-Z kN	Moment-X kNm	Moment-Y kNm	Moment-Z kNm
1	0.00	28.31	0.00	0.00	0.00	0.00
2	0.00	28.31	0.00	0.00	0.00	0.00
3	0.00	28.31	0.00	0.00	0.00	0.00
4	0.00	28.30	0.00	0.00	0.00	0.00
5	0.00	28.30	0.00	0.00	0.00	0.00
6	0.00	28.33	0.00	0.00	0.00	0.00
7	0.00	28.36	0.00	0.00	0.00	0.00
8	0.00	28.39	0.00	0.00	0.00	0.00
9	0.00	28.40	0.00	0.00	0.00	0.00
10	0.00	28.39	0.00	0.00	0.00	0.00
11	0.00	28.36	0.00	0.00	0.00	0.00
12	0.00	28.33	0.00	0.00	0.00	0.00
13	0.00	28.30	0.00	0.00	0.00	0.00
14	0.00	28.30	0.00	0.00	0.00	0.00
15	0.00	28.31	0.00	0.00	0.00	0.00
SUM:	0.00	425.00	0.00	(all nodes)		
Max. re	sidual: 1.7	41E-10 at D	OFN: 40			

Simon Job: 11401-EXFTG-1 19-21 The Corso Manly Existing Footing Beam on soil

INPUT/ANALYSIS REPORT

Job:	11401-EXFTG-1	
Title:	19-21 The Corso Manly Existing Footing Beam on soil	
	Plane frame 26 Feb 2020 1:34 PM	
Members Spring Section Materia Primary	supportss s ls load cases tion load cases	15 14 15 1 2 0
Analysi	s: Linear elastic	

LOAD CASES

Analysis Case Type Type Flag Title 1 P L - Existing working loads Analysis Types: S - Skipped (not analysed) L - Linear N - Non-linear Analysis Flag: CNV - Converged XSD - Excessive displacements DNC - Did not converge in iteration limit UNS - Unstable or local instability

NODE COORDINATES

Node	Х	Y	Z	Restraint
	m	m	m	
1	0.000	0.000	0.000	100000
2	5.600	0.000	0.000	000000
3	0.400	0.000	0.000	000000
4	0.800	0.000	0.000	000000
5	1.200	0.000	0.000	000000
6	1.600	0.000	0.000	000000
7	2.000	0.000	0.000	000000
8	2.400	0.000	0.000	000000
9	2.800	0.000	0.000	000000
10	3.200	0.000	0.000	000000
11	3.600	0.000	0.000	000000
12	4.000	0.000	0.000	000000
13	4.400	0.000	0.000	000000
14	4.800	0.000	0.000	000000
15	5.200	0.000	0.000	000000

SPRING SUPPORTS

Node	KX kN/m	KY kN/m	KZ kN/m	KRX kNm/r	KRY kNm/r	KRZ kNm/r
1	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
4	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
5	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
6	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
8	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
9	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
11	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
12	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
13	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
14	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
15	0.000E+00	2.500E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Page 1 of 3 26/02/2020 01:36:00 PM

Simon Job: 11401-EXFTG-1 19-21 The Corso Manly Existing Footing Beam on soil Page 2 of 3 26/02/2020 01:36:00 PM

Member A B C Prop Matl Rel-A Rel-B Length 2 1 3 Y 1 1000000 0.400 4 4 5 Y 1 1000000 0.400 4 4 5 Y 1 1000000 0.400 5 6 Y 1 1000000 0.400 6 6 7 Y 1 1000000 0.400 7 7 8 Y 1 1000000 0.400 13 13 14 1 1 1000000 0.400 14 14 14 14 14 15 Y 1 1 0.00000 0.400 15 15 2 Y 1 1 0.00000 0.400 1 1.600000 0.000000 0.4000 0.400 0.400 1 1.6000000 0.000000 0.4000 0.400 0.	MEMBED	DEETNIT	TON							
2 1 3 3 Y 1 1 00000 00000 0.400 4 4 5 Y 1 1 00000 00000 0.400 5 5 6 Y 1 1 00000 00000 0.400 6 6 7 Y 1 1 00000 00000 0.400 7 7 8 9 Y 1 1 00000 00000 0.400 9 9 9 10 Y 1 1 00000 00000 0.400 11 11 12 Y 1 1 00000 00000 0.400 12 12 13 Y 1 1 00000 00000 0.400 13 13 13 14 Y 1 1 00000 00000 0.400 14 14 15 Y 1 1 100000 00000 0.400 15 15 2 Y 1 1 100000 00000 0.400 14 14 15 Y 1 1 100000 00000 0.400 15 15 2 Y 1 1 100000 00000 0.400 16 10 0.000 0.400 17 0000 0.400 18 ECT - DI=D D2=B SECION FROMENTIES Section Shape Name Comment D1/D4 D2/D5 D3/D6 1 RECT stripFooting 400×400 RC 0.400 1 1.0000F-0 0.0000 0.400 1 2 12 Z X Y 1 1 00000 00000 0.400 1 RECT stripFooting 400×400 RC 0.400 1 2 12 Z X Y 1 1 00000 00000 0.400 1 1 RECT stripFooting 400×400 RC 0.400 MATERIAL PROPERTIES Section Ax Ay Az J IY IX fact 1 1.600F-01 0.0000F-0 0.000F+0 3.610F-03 2.133F-03 2.133F-03 1.000 MATERIAL PROPERTIES Material X E u Density Alpha 1 2.860F+07 0.2000 2.450F+00 1.170F+05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 D0FN: 2 AFPLIED LOADING CASE 1: Existing working loads Member Load 9 UNIF FY GL LE -95.600 0.350 -93.600 0.400 7 UNIF FY GL E -93.600 9 UNIF FY GL E -93.600 9 UNIF FY GL E -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAF FY GL LE -95.600 0.000 -93.600 0.050 5 UNIF FY GL E -93.600 0.000 -93.600 0.050 5 UNIF FY GL -93.600 0.000 -93.600 0.050 5 UNIF FY GL -93.600 0.000 -0.0000 10 UNIF FY GL -93.600 0.000 0.0000 0.0000 10 UNIF FY GL -93.600 0.0000 0.0000 0.0000 10 UNIF FY GL -93.600 0.0000 0.0000 0.0000 10 UNIF FY GL -93.600				C Pr	op Matl	Rel-A	Rel-B	Length		
3 3 4 Y 1 1 1 0.00000 0.4000 5 5 6 Y 1 1 0.00000 0.4000 6 6 7 Y 1 1 0.00000 0.4000 6 6 7 Y 1 1 0.00000 0.4000 10 10 1 Y 1 1 0.00000 0.4000 11 11 12 Y 1 1 0.00000 0.4000 12 13 14 Y 1 1 0.00000 0.4000 13 13 Y 1 1 0.00000 0.4000 14 14 15 Y 1 1 0.00000 0.4000 11 RECT DI=D D2-B SECTION FOROPENTES Material K My Mz J If If If If If If If If <th>2</th> <th>1</th> <th>З</th> <th>v</th> <th>- 1 1</th> <th>000000</th> <th>000000</th> <th></th> <th></th> <th></th>	2	1	З	v	- 1 1	000000	000000			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3	4	Y	1 1	000000	000000	0.400		
<pre>A f B B f 1 1 100000 00000 0.400 B G B 10 10 11 1 1 1 00000 000000 0.400 D 10 11 1 1 1 2 Y 1 1 100000 000000 0.400 D 11 11 1 1 2 Y 1 1 100000 000000 0.400 D 12 13 13 14 Y 1 1 00000 000000 0.400 D 13 13 14 Y 1 1 00000 000000 0.400 STANDARD SHAPES Section Shape Name Comment D 1/D4 D2/D5 D3/D6 D 1 RECT StripFooting 400x400 RC 0.400 STANDARD SHAPES Section Shape Name Comment D 1/D4 D2/D5 D3/D6 D 1 RECT StripFooting 400x400 RC 0.400 D 14 10 0000 0.400 NC 0.4</pre>				Y Y	1 1 1 1 1 1 1					
<pre>A f B B f 1 1 100000 00000 0.400 B G B 10 10 11 1 1 1 00000 000000 0.400 D 10 11 1 1 1 2 Y 1 1 100000 000000 0.400 D 11 11 1 1 2 Y 1 1 100000 000000 0.400 D 12 13 13 14 Y 1 1 00000 000000 0.400 D 13 13 14 Y 1 1 00000 000000 0.400 STANDARD SHAPES Section Shape Name Comment D 1/D4 D2/D5 D3/D6 D 1 RECT StripFooting 400x400 RC 0.400 STANDARD SHAPES Section Shape Name Comment D 1/D4 D2/D5 D3/D6 D 1 RECT StripFooting 400x400 RC 0.400 D 14 10 0000 0.400 NC 0.4</pre>	6	6	_	Y	1 1					
SHADARD SHAPES Section Shape Name Comment D1/D4 D2/D5 D3/D6 Dimension codes: RECT D1/D4 D2/D5 D3/D6 Dimension codes: RECT D1/D4 D2/D5 D3/D6 Section Max Ay Az J IV Iz fact Section Az Ay Az J IV Iz fact Section Az Ay Az J IV Iz fact 1 1.000EPGENTIES Material Max L Max M		7	8 9	Y Y	1 1	000000	000000	0.400		
SHADARD SHAPES Section Shape Name Comment D1/D4 D2/D5 D3/D6 Dimension codes 000x400 RC 0.400 0.400 Dimension codes 0 000x400 RC 0.400 0.400 Section Max Ay Max J IV Iz fact Section Max May Max J May Max J IV Iz fact Section Max May Max J May L fact 1 1.000FPCNTIES Material Max May Max Max May Max Material Max	9	9	10	Y	1 1	000000	000000	0.400		
STANDARD SHAPES Section Shape Name 1 RECT StripFooting 400x400 RC D1/D4 D2/D5 D3/D6 0.400 D3/D6 0.400 Dimension codes: RECT - D1=D D2=B Section MROPERTIES Section 0 Ax Ay Az M2 M2 M2 M4 M4 M4 M4 1 1.600E-01 0.000E100 0.000E100 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 D0FN: 2 APPLIED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL E -95.500 0.350 5 TRAP FY GL LE -93.600 9 UNIF FY GL - 93.600 10 UNIF FY GL - 93.600 11 UNIF FY GL - 93.600 12 TRAP FY GL LE -95.500 0.0000 15 CONC FY GL LE -95.500 0.0000 MAX: 0.0000 W1: 0.0000 Mode Applied Loads (Global Axes): FX: 0.0000 FY: -425.000 F2: 0.0000 MX: 0.0000 W1: 0.0000 NO0000 0.00000 0.00000 MX: 0.0000 -0.0113 0.0000 0.000000 0.00000 0.00000 MMM + D100000 N1: 0.00000 0.000000 0.00000 <td< th=""><th></th><th>10 11</th><th>11 12</th><th>Y Y</th><th>1 1</th><th>000000</th><th>000000</th><th>0.400</th><th></th><th></th></td<>		10 11	11 12	Y Y	1 1	000000	000000	0.400		
STANDARD SHAPES Section Shape Name 1 RECT StripFooting 400x400 RC D1/D4 D2/D5 D3/D6 0.400 D3/D6 0.400 Dimension codes: RECT - D1=D D2=B Section MROPERTIES Section 0 Ax Ay Az M2 M2 M2 M4 M4 M4 M4 1 1.600E-01 0.000E100 0.000E100 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 D0FN: 2 APPLIED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL E -95.500 0.350 5 TRAP FY GL LE -93.600 9 UNIF FY GL - 93.600 10 UNIF FY GL - 93.600 11 UNIF FY GL - 93.600 12 TRAP FY GL LE -95.500 0.0000 15 CONC FY GL LE -95.500 0.0000 MAX: 0.0000 W1: 0.0000 Mode Applied Loads (Global Axes): FX: 0.0000 FY: -425.000 F2: 0.0000 MX: 0.0000 W1: 0.0000 NO0000 0.00000 0.00000 MX: 0.0000 -0.0113 0.0000 0.000000 0.00000 0.00000 MMM + D100000 N1: 0.00000 0.000000 0.00000 <td< th=""><th>12</th><th>12</th><th>13</th><th>Ŷ</th><th>1 1</th><th>000000</th><th>000000</th><th>0.400</th><th></th><th></th></td<>	12	12	13	Ŷ	1 1	000000	000000	0.400		
STANDARD SHAPES Section Shape Name 1 RECT StripFooting 400x400 RC D1/D4 D2/D5 D3/D6 0.400 D3/D6 0.400 Dimension codes: RECT - D1=D D2=B Section MROPERTIES Section 0 Ax Ay Az M2 M2 M2 M4 M4 M4 M4 1 1.600E-01 0.000E100 0.000E100 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 D0FN: 2 APPLIED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL E -95.500 0.350 5 TRAP FY GL LE -93.600 9 UNIF FY GL - 93.600 10 UNIF FY GL - 93.600 11 UNIF FY GL - 93.600 12 TRAP FY GL LE -95.500 0.0000 15 CONC FY GL LE -95.500 0.0000 MAX: 0.0000 W1: 0.0000 Mode Applied Loads (Global Axes): FX: 0.0000 FY: -425.000 F2: 0.0000 MX: 0.0000 W1: 0.0000 NO0000 0.00000 0.00000 MX: 0.0000 -0.0113 0.0000 0.000000 0.00000 0.00000 MMM + D100000 N1: 0.00000 0.000000 0.00000 <td< th=""><th></th><th>13 14</th><th>14 15</th><th>Y</th><th>1 1</th><th>000000</th><th>000000</th><th>0.400</th><th></th><th></th></td<>		13 14	14 15	Y	1 1	000000	000000	0.400		
STANDARD SHAPES Section Shape Name 1 RECT StripFooting 400x400 RC D1/D4 D2/D5 D3/D6 0.400 D3/D6 0.400 Dimension codes: RECT - D1=D D2=B Section MROPERTIES Section 0 Ax Ay Az M2 M2 M2 M4 M4 M4 M4 1 1.600E-01 0.000E100 0.000E100 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 3.610E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material 0.000E400 0.000E400 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 D0FN: 2 APPLIED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL E -95.500 0.350 5 TRAP FY GL LE -93.600 9 UNIF FY GL - 93.600 10 UNIF FY GL - 93.600 11 UNIF FY GL - 93.600 12 TRAP FY GL LE -95.500 0.0000 15 CONC FY GL LE -95.500 0.0000 MAX: 0.0000 W1: 0.0000 Mode Applied Loads (Global Axes): FX: 0.0000 FY: -425.000 F2: 0.0000 MX: 0.0000 W1: 0.0000 NO0000 0.00000 0.00000 MX: 0.0000 -0.0113 0.0000 0.000000 0.00000 0.00000 MMM + D100000 N1: 0.00000 0.000000 0.00000 <td< th=""><th></th><th>15</th><th>2</th><th>Ŷ</th><th>1 1</th><th>000000</th><th>000000</th><th>0.400</th><th></th><th></th></td<>		15	2	Ŷ	1 1	000000	000000	0.400		
1 RECT StripFooting 400x400 RC 0.400 0.400 Dimension codes: RECT on DI=D D2=B SECTION PROPERTIES Section Ax Ay Az J IV Iz fact m2 m2 m4 m4 m4 m4 1 1.600E-01 0.000E+00 3.610E-03 2.133E-03 2.1000 MATERIAL PROPERTIES E u Density Alpha m4 m4 m4 1 1.600E-01 0.000E+00 3.610E-03 2.133E-03 2.1000 MATERIAL PROPERTIES Material E u Density Alpha Material E u Density Alpha /deg C 1 2.860E+07 0.2000 2.450E+00 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -93.600 0.400 4.000	STANDAR									
Dimension codes: RECT - DI=D D2=B SECTION PROPERTIES Section Ax Ay Az J IY IZ fact m2 m4 m4 m4 m4 1 1.600E-01 0.000E+00 0.000E+00 3.610E-03 2.133E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material E u Density Alpha kN/m2 t/m3 /deg C C CONC25 CONDITION NUMBER Material E u Density Alpha kN/m2 t/m3 /deg C C CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Ford 2 CONC FY GL LE -95.500 0.350 5 TRAP FY GL LE -95.500 0.350 5 CONC FY GL LE -95.600 6 UNIF FY GL -93.600 10 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -95.500 0.000 -93.600 0.050 15 CONC FY GL LE -95.500 0.000 0.050 15 CONC FY GL LE -93.600 10 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -95.500 0.000 0.050 15 CONC ONC FY GL LE -95.600 0.000 0.000 10 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -95.500 0.000 0.000 13 CONC FY GL LE -95.500 0.000 0.0000 14 UNIF FY GL -93.600 15 CONC FY GL LE -95.500 0.000 0.0000 15 CONC ONC FY GL LE -95.500 0.000 0.0000 CODE DISPLACEMENTS CASE 1: Existing working loads Node X-Disp X-Disp X-Rotn Y-Rotn Z-Rotn M m m m m rad rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0114 0.0000 0.00000 0.000000 0.00001 10 0.0000 -0.0114 0.0000 0.00000 0.0000		n Shape RECT	Name Strip	Footing	Comme 400×	ent 400 RC				D6
SECTION PROPERTIES Section Ax Ay Az J IY IZ fact 1 1.600E-01 0.000E+00 0.000E+00 3.610E-03 2.133E-03 2.133E-03 1.000 Material E u Density Alpha /deg C 1 2.860E+07 0.2000 2.450E+00 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL E -93.600 0.350 -93.600 0.400 6 UNIF FY GL E -93.600 0.050 11 UNIF FY GL -93.600 10 UNIF FY GL E -93.600 0.050 15 TSRP FY GL -93.600 15 </td <td></td> <td></td> <td></td> <td>10001119</td> <td>10011</td> <td>100 110</td> <td></td> <td>0.100</td> <td>0.100</td> <td></td>				10001119	10011	100 110		0.100	0.100	
Section Ax Ay Az J IY IZ fact m2 m2 m2 m2 m4 m4 m4 m4 m4 1 1.600E-01 0.000E+00 0.000E+00 3.610E-03 2.133E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material E u Density Alpha KN/m2 t/m3 /deg C 1 2.860E+07 0.2000 2.450E+00 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -95.500 0.350 -93.600 0.400 6 UNIF FY GL -93.600 7 UNIF FY GL -93.600 10 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -95.500 0.000 -93.600 0.050 15 CONC FY GL LE -95.500 0.000 -93.600 0.050 15 CONC FY GL LE -95.500 0.000 MZ: -1190.000 MOMENTS ADOUT FY: -425.000 FZ: 0.000 MOMENTS ADOUT MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn m m m m m rad rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.000000 0.00000 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 3 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 3 0.0000 -0.0114 0.0000 0.000	RE	ECT - D1	=D D	2=B						
m2 m2 m4 m4 m4 m4 1 1.600E-01 0.000E+00 0.600E+00 2.133E-03 2.133E-03 1.000 MATERIAL PROPERTIES Material E u Density Alpha kN/m2 t/m3 /deg C 1 2.860E+07 0.2000 2.450E+00 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -93.600 0.350 -93.600 0.400 6 UNIF FY GL -93.600 1 UNIF FY GL -93.600 1 UNIF FY GL LE -93.600 0.050 15 CONC FY 425.000 FZ: 0.000 10 UNIF FY GL LE -93.600 1.2 TRAP<										_
Material E u Density Alpha t/m3 /deg C 1 2.860E+07 0.2000 2.450E+00 1.170E=05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -93.600 0.350 -93.600 0.400 6 UNIFF FY GL -93.600 0.350 0.400 6 0.017F FY GL -93.600 0.050 0.5 8 UNIFF FY GL -93.600 0.000 0.005 0.050 0.050 10 UNIFF FY GL -93.600 0.000 0.000 0.000 0.000 0.0050 12 TRAP FY GL LE -93.600 0.550 0.55 0.050 0.55 Sum of Applied Loads Global Axees): TY: 0.0000 FY: -1190.000<	Sectior	1						-		fact
Material E u Density Alpha t/m3 /deg C 1 2.860E+07 0.2000 2.450E+00 1.170E-05 CONC25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -93.600 0.350 -93.600 0.400 6 UNIF FY GL -93.600 1 UNIF FY GL -93.600 10 UNIF FY GL -93.600 0.050 1 1 0.000 9 UNIF FY GL -93.600 0.050 1 0.000 F1 -95.500 0.050 15 CONC FY GL LE -93.600 0.050 1 Max .0000 MY rad rad Moments about the global origin: m m rad rad rad rad rad	1	1.600E	-01 0	.000E+00	0.000E	+00 3.	610E-03	2.133E-03	2.133E-03 1	.000
kN/m2 t/m3 /dec 1 2.860E+07 0.2000 2.450E+00 1.170E-05 CON25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -95.500 0.350 -93.600 0.400 6 UNIF FY GL -93.600 0.350 -93.600 0.400 9 UNIF FY GL -93.600 0.050 1 0.000 0.050 10 UNIF FY GL -93.600 0.050 1 0.000 0.050 11 UNIF FY GL -93.600 0.000 0.050 1 0.000 0.050 Sum of Applied Loads (Global Axes): FX: 0.000 FY: 0.000 0.000 Mcments about the global origin: MX: 0.000 MC: -1190.000 Noce X-Disp Y-Disp	MATERIA	L PROPE	RTIES							
1 2.860E+07 0.2000 2.450E+00 1.170E-05 CON25 CONDITION NUMBER Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -95.500 0.350 5 TRAP FY GL -93.600 0.350 -93.600 6 UNIF FY GL -93.600 0.000 -93.600 10 UNIF FY GL -93.600 0.050 12 11 UNIF FY GL -93.600 0.050 0.050 12 TRAP FY GL LE -93.600 0.050 0.050 15 CONC FY GL LE -95.500 0.050 0.050 Sum of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 Moments about the global origin: MX: 0.0000 NO0000 0.0000 MX: 0.0000 -0.0113 0.0000 0.0000 -0.00001 2 0.0000 -0.0113 0.0000 0.00000 <td>Materia</td> <td>al</td> <td>ĿN/</td> <td></td> <td>u l</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Materia	al	ĿN/		u l					
Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -93.600 5 TRAP FY GL -93.600 0 UNIF FY GL -93.600 9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 14 UNIF FY GL -93.600 15 CONC FY GL LE -93.600 14 UNIF FY GL -93.600 15 CONC FY GL LE -93.600 12 TRAP FY GL LE -93.600 15 CONC FY GL LE -93.600 12 TRAP FY GL LE -93.600 12 TRAP FY GL LE -95.500 0.000 MY: 0.000 MY: 0.000 MY: 0.000 MY: 0.000 MY: 0.000 -0.0113 0.0000 0.0000 -0.0113 0.0000 0.0000 -0.0113 0.0000 1 0.0000 -0.0113 0.0000 2 0.0000 -0.0113 0.0000 2 0.0000 -0.0113 0.0000 3 0.0000 -0.0113 0.00000 0.0000 -0.0113 0.0000	1	2			2000 2.				C25	
Maximum condition number: 7.144E+02 at node: 2 DOFN: 2 APPLIED LOADING CASE 1: Existing working loads Member Loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -93.600 5 TRAP FY GL -93.600 0 UNIF FY GL -93.600 9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -95.500 0.000 FY: -425.000 FZ: 0.000 Moments about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 Nome LISPLACEMENTS CASE 1: Existing working loads Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00011 4 0.00000 -0.0113 0.0000 0.000000 0.00000 -0.00011 <t< th=""><th>CONDITI</th><th>ON NUMB</th><th>ER</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	CONDITI	ON NUMB	ER							
CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -95.500 0.350 5 TRAP FY GL LE -93.600 7 UNIF FY GL -93.600 9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 12 TRAP FY GL LE -93.600 13 CONC FY GL LE -93.600 14 UNIF FY GL -93.600 15 CONC FY GL LE -93.600 15 CONC FY GL LE -95.500 0.050 SUM of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 MM: 0.000 MZ: -1190.000 CONC TY GL LE -95.500 0.050 SUM of Applied Loads (Global Axes): FX: 0.000 MY: 0.000 MZ: -1190.000 NOMENTS about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 MX or and rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 1 0.0000 -0.0114				mber: 7.	144E+02 a	at node	: 2 DOFI	N: 2		
CASE 1: Existing working loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -95.500 0.350 5 TRAP FY GL LE -93.600 7 UNIF FY GL -93.600 9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 12 TRAP FY GL LE -93.600 13 CONC FY GL LE -93.600 14 UNIF FY GL -93.600 15 CONC FY GL LE -93.600 15 CONC FY GL LE -95.500 0.050 SUM of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 MM: 0.000 MZ: -1190.000 CONC TY GL LE -95.500 0.050 SUM of Applied Loads (Global Axes): FX: 0.000 MY: 0.000 MZ: -1190.000 NOMENTS about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 MX or and rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 1 0.0000 -0.0114	APPT.TEL		G							
Member Loads Member Form T A S F1 X1 F2 X2 2 CONC FY GL LE -95.500 0.350 5 TRAP FY GL LE -93.600 7 UNIF FY GL -93.600 7 UNIF FY GL -93.600 9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 13 UNIF FY GL -93.600 14 UNIF FY GL -93.600 15 CONC FY GL LE -93.600 16 UNIF FY GL -93.600 17 UNIF FY GL -93.600 18 UNIF FY GL -93.600 19 UNIF FY GL -93.600 10 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 15 CONC FY GL LE -95.500 0.000 MY: 0.000 MY: 0.000 MY: 0.000 MY: 0.000 MY: 0.000 MY: 0.000 0 .00000 0.0000 -0.0113 0.0000 0 .00000 1 0.0000 -0.0113 0.0000 0 .00000 1 0.0000 -0.0113 1 0.0000 -0.0113 0.0000 0 .00000 1 0.0000 -0.0113 0.0000 0 .00000 1 0.0000 -0.0113				working	loads					
2 CONC FY GL LE -95.500 0.350 5 TRAP FY GL LE -93.600 0.350 -93.600 0.400 6 UNIF FY GL -93.600 7 UNIF FY GL -93.600 9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 0.000 -93.600 0.050 5 CONC FY GL LE -93.600 0.000 -93.600 0.050 5 CONC FY GL LE -95.500 0.000 Moments about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn m m m rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.0001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.0001 5 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.0001 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.0001 7 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 8 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 1 0 0.0000 -0.0113 0.0000 0.00000 0.00	Member	Loads								
5 TRAP FY GL LE -93.600 0.350 -93.600 0.400 6 UNIF FY GL -93.600 -93.600 0.111 0.115 FY GL -93.600 9 UNIF FY GL -93.600 0.000 -93.600 0.001 0.0011 FY GL -93.600 10 UNIF FY GL -93.600 0.000 -93.600 0.050 11 UNIF FY GL -93.600 0.000 -93.600 0.050 12 TRAP FY GL LE -93.600 0.000 -93.600 0.050 Sum of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads - - ad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00001 -0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00001 -0.00001 2	Member	Form	т А	S	Fl		X1	F2	X2	
6 UNIF FY GL -93.600 7 UNIF FY GL -93.600 8 UNIF FY GL -93.600 9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 0.000 -93.600 0.050 Sum of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 Moments about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn m m rad rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.0001 7 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 8 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 1 0 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 1 0 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 1 0 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 1 0 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 1 0 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 1 0 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 0.00000 1 0 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 0.00000								-93 600	0 400	
<pre>8 UNIF FY GL -93.600 9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 0.000 -93.600 0.050 15 CONC FY GL LE -95.500 0.050 Sum of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 Moments about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn m m rad rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00004 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00004 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00004 6 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 7 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.0001 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00001 12 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 0.00000 10 0.00000 -0.0113 0.0000 0.00000 0.00000 0.0000</pre>						0.	550	55.000	0.400	
9 UNIF FY GL -93.600 10 UNIF FY GL -93.600 11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 0.000 -93.600 0.050 Sum of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 Moments about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn m m m rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00004 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00014 8 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00011 1 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00011 1 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00001 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00001 1 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000										
<pre>11 UNIF FY GL -93.600 12 TRAP FY GL LE -93.600 0.000 -93.600 0.050 15 CONC FY GL LE -95.500 0.050 Sum of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 Moments about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn m m m rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00004 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00011 1 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 9 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00007 11 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 12 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 13 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 14 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 15 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00000 0.00000 10 0.0000 -0.0113 0.00000 0.00000 0.00000 0.00000 0.00000 0.0</pre>										
12 TRAP FY GL LE -93.600 0.000 -93.600 0.050 15 CONC FY GL LE -95.500 0.050 0.050 Sum of Applied Loads (Global Axes): . . 0.000 FZ: 0.000 Moments about the global origin: . . . 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads X-Rotn Y-Rotn Z-Rotn Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn 1 0.000 -0.0113 0.0000 0.00000 0.00001 2 0.0001 2 0.0000 -0.0113 0.0000 0.00000 0.00001 2 0.0000 -0.0001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 -0.00011 5 0.0000 -0.0113 0.0000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 0.00000 </td <td></td>										
Sum of Applied Loads (Global Axes): FX: 0.000 FY: -425.000 FZ: 0.000 Moments about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads X-Rotn Y-Rotn Z-Rotn Mode X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn 1 0.0000 -0.0113 0.0000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 -0.0001 5 0.0000 -0.0113 0.0000 0.00000 -0.0001 7 0.0000 -0.0114 0.0000 0.00000 -0.0001 8 0.0000 -0.0114 0.0000 0.00000 0.00001 10 0.0000 -0.0114 0.0000 0.00000 0.0001						0.	000 -	-93.600	0.050	
FX: 0.000 $FY:$ -425.000 $FZ:$ 0.000 Moments about the global origin: MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTSCASE1:Existing working loadsNode $X-Disp$ $Y-Disp$ $Z-Disp$ $X-Rotn$ $Y-Rotn$ $Z-Rotn$ mmradradradrad1 0.0000 -0.0113 0.0000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 3 0.0000 -0.0113 0.0000 0.00000 0.00000 3 0.0000 -0.0113 0.0000 0.00000 0.00000 4 0.0000 -0.0113 0.0000 0.00000 -0.00011 4 0.0000 -0.0113 0.0000 0.00000 -0.00011 5 0.0000 -0.0114 0.0000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 9 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00001 10 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 12 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004						0.	050			
MX: 0.000 MY: 0.000 MZ: -1190.000 NODE DISPLACEMENTS CASE 1: Existing working loads Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn m m m rad rad rad rad 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 5 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00011 7 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00007 8 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 9 0.0000	FX:	0.	000	FY:	-425.000	FZ:	(0.000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						MZ:	-1190	0.000		
Node X-Disp Y-Disp Z-Disp X-Rotn Y-Rotn Z-Rotn 1 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00001 -0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 5 0.0000 -0.0113 0.0000 0.00000 0.00004 -0.00004 6 0.0000 -0.0113 0.0000 0.00000 -0.00001 7 0.0000 -0.0114 0.0000 0.00000 -0.00007 9 0.0000 -0.0114 0.0000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00007 11 0.0000 -0.0114 0.0000 0.00000 0.00001 12 0.0000 -0.0113 0.0000 0.00	NODE DI	SPLACEM	ENTS							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CASE	1: Ex	isting	working	loads					
1 0.0000 -0.0113 0.0000 0.00000 0.00001 2 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00001 3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00004 5 0.0000 -0.0113 0.0000 0.00000 0.00004 6 0.0000 -0.0113 0.0000 0.00000 -0.00004 6 0.0000 -0.0113 0.0000 0.00000 -0.00004 7 0.0000 -0.0114 0.0000 0.00000 -0.00007 9 0.0000 -0.0114 0.0000 0.00000 0.00007 10 0.0000 -0.0114 0.0000 0.00000 0.00007 11 0.0000 -0.0113 0.00000 0.00000 0.00001 12 0.0000 -0.0113 0.00000 0.00000 0.00000 13 0.00000	Node	X-D	-	-		-				
3 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 4 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00003 5 0.0000 -0.0113 0.0000 0.00000 0.00004 0.00004 6 0.0000 -0.0113 0.0000 0.00000 0.00000 -0.00004 7 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 9 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 11 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 12 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004 13 0.0000 -0.0113 0.0000 0.00000 0.000004 <td>1</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	0.0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
6 0.0000 -0.0113 0.0000 0.00000 -0.00010 7 0.0000 -0.0114 0.0000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 -0.00001 9 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00007 9 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00007 11 0.0000 -0.0113 0.0000 0.00000 0.00011 12 0.0000 -0.0113 0.0000 0.00000 0.00000 13 0.0000 -0.0113 0.0000 0.00000 0.00000	4									
7 0.0000 -0.0114 0.0000 0.00000 -0.00011 8 0.0000 -0.0114 0.0000 0.00000 -0.00007 9 0.0000 -0.0114 0.0000 0.00000 0.00000 -0.00007 10 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00007 11 0.0000 -0.0114 0.0000 0.00000 0.00007 12 0.0000 -0.0113 0.0000 0.00000 0.00000 13 0.0000 -0.0113 0.0000 0.00000 0.00004										
8 0.0000 -0.0114 0.0000 0.00000 -0.00007 9 0.0000 -0.0114 0.0000 0.00000 0.00000 10 0.0000 -0.0114 0.0000 0.00000 0.00000 11 0.0000 -0.0114 0.0000 0.00000 0.00007 12 0.0000 -0.0113 0.0000 0.00000 0.00010 13 0.0000 -0.0113 0.0000 0.00000 0.00004										
10 0.0000 -0.0114 0.0000 0.00000 0.00000 11 0.0000 -0.0114 0.0000 0.00000 0.00000 0.00011 12 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00010 13 0.0000 -0.0113 0.0000 0.00000 0.00000 0.00004				-0.0114	0.0	000	0.00000	0.00000		
11 0.0000 -0.0114 0.0000 0.00000 0.00011 12 0.0000 -0.0113 0.0000 0.00000 0.00010 13 0.0000 -0.0113 0.0000 0.00000 0.00000										
13 0.0000 -0.0113 0.0000 0.00000 0.00000	11	0.0	000	-0.0114	0.0	000	0.00000	0.00000	0.00011	

Microstran.Pro V9.20.1.24

Simon Job: 11401-EXFTG-1 19-21 The Corso Manly Existing Footing Beam on soil Page 3 of 3 26/02/2020 01:36:00 PM

14	0.0000	-0.0113	0.0000	0.00000	0.00000	-0.00003	
15	0.0000	-0.0113	0.0000	0.00000	0.00000	-0.00004	

MEMBER FORCES

Member	Node	Axial	Shear-y	Shear-z	Torque	Moment-y	Moment-z
		kN	kN	kN	kNm	kNm	kNm
2	1	0.00	-28.29	0.00	0.00	0.00	0.00
	3	0.00	67.21	0.00	0.00	0.00	6.54
3	3	0.00	38.94	0.00	0.00	0.00	6.54
	4	0.00	38.94	0.00	0.00	0.00	-9.03
4	4	0.00	10.71	0.00	0.00	0.00	-9.03
	5	0.00	10.71	0.00	0.00	0.00	-13.32
5	5	0.00	-17.52	0.00	0.00	0.00	-13.32
	6	0.00	-12.84	0.00	0.00	0.00	-6.43
6	6	0.00	-41.14	0.00	0.00	0.00	-6.43
	7	0.00	-3.70	0.00	0.00	0.00	2.54
7	7	0.00	-32.11	0.00	0.00	0.00	2.54
	8	0.00	5.33	0.00	0.00	0.00	7.90
8	8	0.00	-23.17	0.00	0.00	0.00	7.90
	9	0.00	14.27	0.00	0.00	0.00	9.68
9	9	0.00	-14.27	0.00	0.00	0.00	9.68
	10	0.00	23.17	0.00	0.00	0.00	7.90
10	10	0.00	-5.33	0.00	0.00	0.00	7.90
	11	0.00	32.11	0.00	0.00	0.00	2.54
11	11	0.00	3.70	0.00	0.00	0.00	2.54
	12	0.00	41.14	0.00	0.00	0.00	-6.43
12	12	0.00	12.84	0.00	0.00	0.00	-6.43
	13	0.00	17.52	0.00	0.00	0.00	-13.32
13	13	0.00	-10.71	0.00	0.00	0.00	-13.32
	14	0.00	-10.71	0.00	0.00	0.00	-9.03
14	14	0.00	-38.94	0.00	0.00	0.00	-9.03
	15	0.00	-38.94	0.00	0.00	0.00	6.54
15	15	0.00	-67.21	0.00	0.00	0.00	6.54
	2	0.00	28.29	0.00	0.00	0.00	0.00
Positive	e Forces	(Member Ax	es):				

Positive Forces (Member Axes): Axial - Tension Shear - End A sagging Torque - Right-hand twist Moment - Sagging

SUPPORT REACTIONS

CASE 1: Existing working loads Force-X Force-Y Force-Z Moment-X Moment-Y Moment-Z Node kN kNm kN kN kNm kNm 1 0.00 28.29 0.00 0.00 0.00 0.00 28.29 0.00 2 0.00 0.00 0.00 0.00 3 0.00 0.00 0.00 0.00 4 0.00 28.23 0.00 0.00 0.00 0.00 5 0.00 28.23 0.00 0.00 0.00 0.00 28.30 0.00 0.00 0.00 0.00 0.00 6 0.00 7 0.00 0.00 0.00 0.00 8 0.00 28.50 0.00 0.00 0.00 0.00 28.54 28.50 9 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00 28.30 28.41 28.30 28.23 28.23 0.00 0.00 0.00 0.00 0.00 11 12 0.00 0.00 0.00 0.00 0.00 13 0.00 0.00 0.00 0.00 0.00 14 0.00 0.00 0.00 0.00 0.00 28.27 15 0.00 0.00 0.00 0.00 0.00 0.00 425.00 0.00 (all nodes) SUM: Max. residual: 3.912E-11 at DOFN: 22

19-21 THE CORSO MANEY DESKEN CARCULATIONS SECTION . 1.0

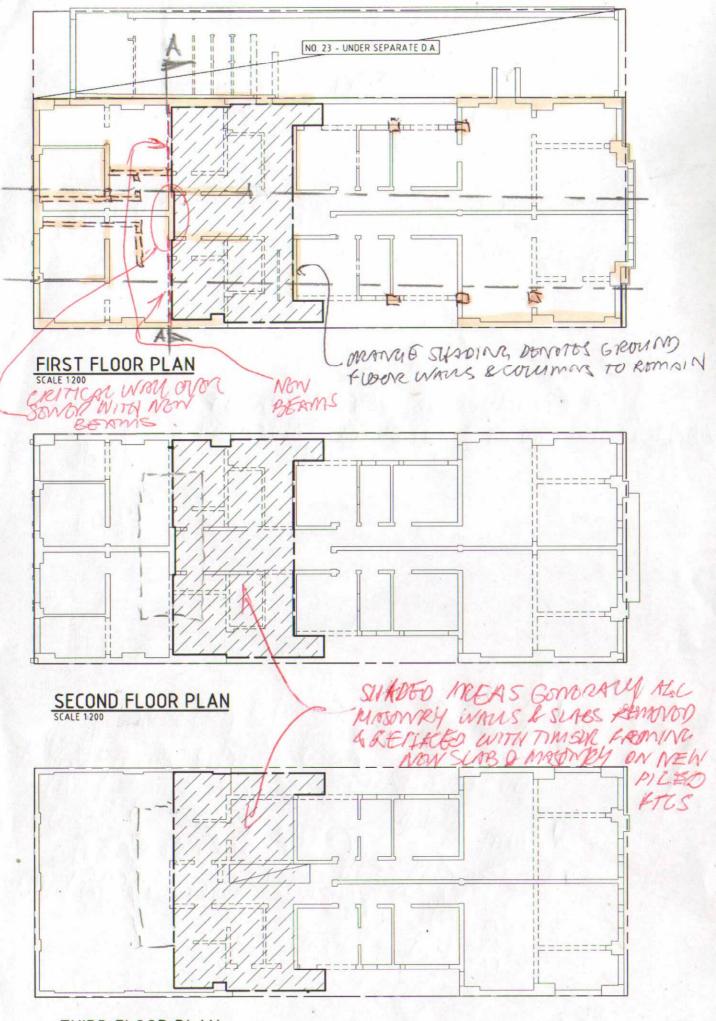
- REVIEW OF EXISTING DESIGN LONDS

- REVIEW OF DESIGN LOADS DURING CONSTRUCTION

- COMPARE OVERALL PROSSURES ON SOIL OVER SERVER CULVERT

> -SEE ADDITIONAL ATTACHMENTS WITH PRINTOUT OF REPORT FROM MICROSTRAN

SECTION 20


ANACYSIS & DOSIGN OF FOOTINGS & LOADS ON PLUGS.

BY SIMON WADDINGTON WADDINGTON CONSULTING PTYLTD

28/02/2020

Subdayton.

1.01

THIRD FLOOR PLAN

1.02 SECTION A-A ~2.5m . XX 12004 FLW 3.5ml × Walls to be removed EXISTING approximis 315m typ. Fir-Fir RETURN WOUS ROMONTO 12 puring, DOMORITION NEW STEEL BEAMS AT BACK LEVEL TO SUPPORT NORTHERN 4 FLOOR FRAME ONLY IN street them with Floor TIMBER to The South REMOVED STUD WALL. Gr OXISTING WALL to 55 REMORED Servere. SECTION A-A - NORTH OND WALL OF MAIN INTORNAL STAIR Determine design loads over the 25m length of well that remains at morth and of stair well flanding Roof - 0.4kBgx: 1mx2:5m = listen T = 44.3/40 WALOURI3-0-23m x 22km/m x 25m x 35m 13 - Trafficable roof, timber frame, pebbles = 1.263a × 1.8m (KW) × 3.5m =7.6 KN 13 - bynore roof live loads as negligible 12-13- walls - toreck 230 thick = 208.8 km = 0.23m + 22/2 /m + 2.5m x 3.5m = 38 KN 12 Floor = 0.6 kBax 3.5 m x 1.8 m FLW. = 3.8KN "" " Luve = 1.5kPg x 3.5mx 1.8m = 9.4 KN 11-12 walls - as above = 38 KN "I gloor - a's bot - dead . = 3.8 KN live = 914 KN GF to LI Wall - O. 23mx 22ten/m x2:5x4:2m = 53 KN

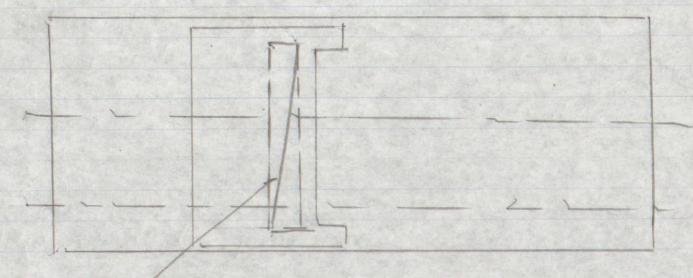
1.03 Total load on footing carried over = 208.8 ker. Plus party wall load that separates the units LI to up 13 = 8.7mx 0.23m the x 7mx 22kN/m3 = 24.8kr 234/41 Determine load on ground floor hallway wall that will remain Floor load width above existing beam the 3 = 3ms (1,12,13) avel 3 roof 3mx12lax4.5m = 8.1KN Lato 13 wall = 19 KN 225mx 1/x22tr /m = 3.5m L2 por dead = 4 Ker 0.6 Hex 3m x 2.25m = 10.1 KN 115 Bax 3m + 2.25m 11 to 12 wall -as 12-13 11 floor dead "" " live =19 KN = 4 km = 10.1 km " " live = 21.2KN 95.5KN Groud to LI wall 4. Unx Inx 23 22 kip 3 load on this western hallowy wall same as load on wall ? -95.5KN 95.5 234/2.5m 195.5 H Conservatively assume boundary wells. independent to 1 - V Ulle V, internal strip. 350 2500 250 Beam on elastic springs to determine bearing pressures

1.04 Assume excisting strip forting 400 A00 RC. Loose sand modules of subgrade reaction (from JEBowles, foundation Analysis & Denig Table 9.1) For modelling purposes try springs supports a 400 cts Spring restraints 0.4×0.4×4800 = 768 kv/m Say 750 kv/m lower 20.4×0.4×16000 = 2560 Say 2500 kv/m upper Use Microstrum model. FILF ->/1401-6×FrG-1, msw lower bound spring -> uniform deflection a 38mm k= 750 km -> 11.1 5.9 BMD 9.9 11.1 5.9 -> Support reactions fairly uniform 28.3628.4kov -> Equivalent to 28.4/0.4x0.4 = 178 kPa Upper bound soil sprang k= 2500 kalm Deflection purly import a 1/mm. Bending moment failing semilar to above. Support reactions very slight change 28.29 to 28.53kh 178:369 - neglight change

1.05

Penroved. 25 382 3B1 282 2B1 Internal brick walls removed except shir wall. 12 2.5. ExB Dy Wall removed. IE I 4.2 GF 350 1200 1500 OTOTAL 1020 ON 2.5m Wall gloads. level 2 & level 3 words entirely on centre 2302 200 wall Floor removed south of this wall . Use full rendential live load although likely less. 13 flow - 18m × Tm × 1.2 kPa (petables) - " × 1.5 lBa. live) = 15.1 KN = 18.9 KN 12 /1000 - 1.8 × 7 m × 0:6 kg (dead) = 7.6 KN -118×7m×1.5kla (me) = 18.96N h1 /100 - 1.8 x 5.3 x 0.6 (dead) = 5.7 KN " " 115 (live) = 143 KN Wall 6F to 23 - 0.23 mx 22km/mx 25 2/1.2m = 142/101 222KN TOTAL UDI UNDORWALL 2.5m 89/0/m 4 floor 2:25 1.8m (0.6+1.5) GF to U wall 0.73mx 22 kN/mix4.2 = 8.5KN] 29.7KN

1.06 Microstran model footing on spring -LOAD COSE 2 - Post demolition & beams installed. 29.7 W 89 W/m Julill 250 12007 2500 -> Firstly with lower bound spings k=750kd/m Deflection varies 27m to 14m. BND 400 × 900 cracking mornet Mar 20.6× JISMB × 14× 1/2 17.6 km = 32KNm. Support reactions - more significant varation due to assignation loady Max. 19.7KN = 123kg apper bound soil spring Deflection vares 3mm to 8mm alax bending moment 67.2km Max reaction 20.4km = 128 kPa bearing pressure Therefore verioual of upper walls & put of floor has reduction in bearing pressure i 50 Bassime 400 wide flooting.


1.07.

At top of server culvert 2500mm below ground. Conservatively distribute vertical 17 400 2000 load at 12V to IH. Wedth Wat server = 2400 X W X . Pressure on aluert estimated Soil weight 2'Smx 15 km/m³ Footing existing 178Kax 0.4 2.4 37.5KRa 29.7 kRa Footing after denro. 128 x 0.4 2.4 21.3kla. Dig out trench for new connete Joshing beam. adjacent to the footing for the stuir end will Additional weight of with sal the P= (24.54N/m3 - 15/N/m3) 2.6mx 8m # 2.6mt. = 4.6 KN/m length of fooling # 2.6mt. Additional pressure on server < 2kg

Consider area south of existing star well.

Denvlish from top down & veniove all walls & floor in level 1,2,3& vorg.

Consider	total lo	rads	removed above nen	ove los	rarea
shown	below that	tare	above nen	1 concrete	beam.
->					

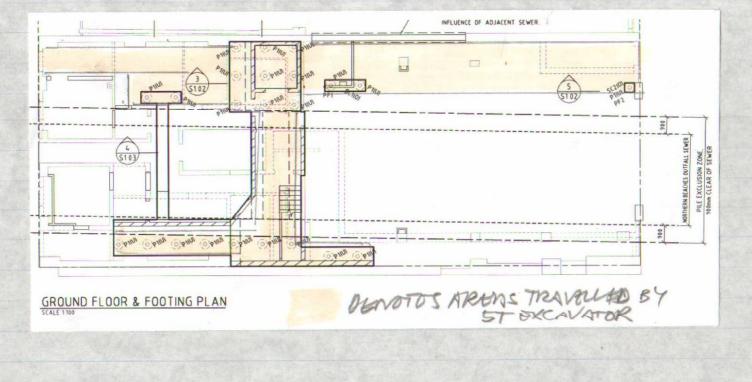
1.08

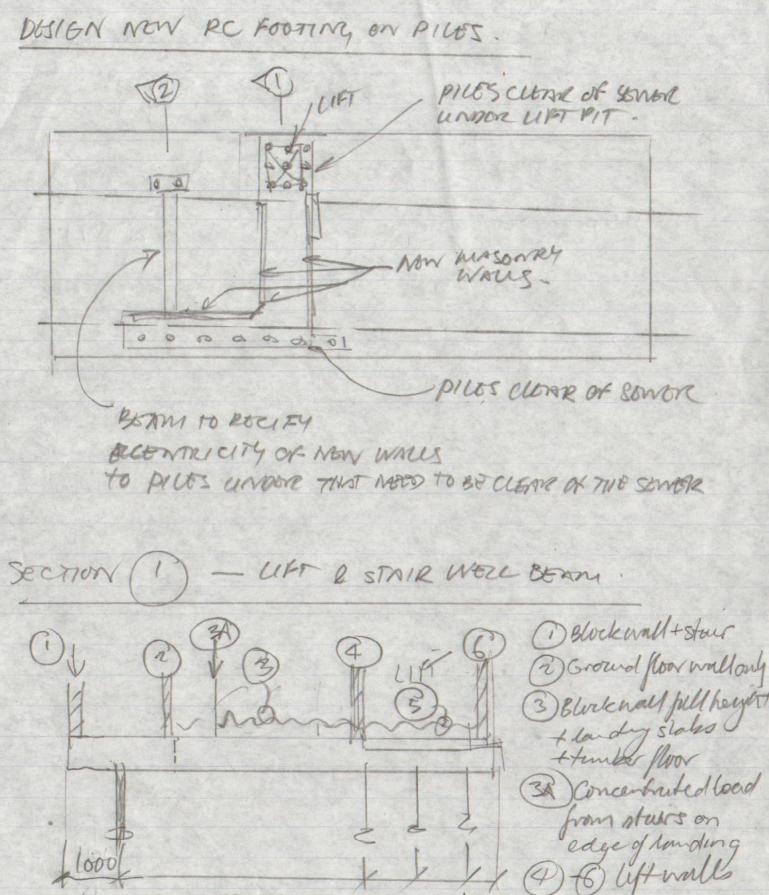
Area 2m x lo. Sm.

Compare contruction loads with current full desig load.

Herd streeting & frame level 3 poor pame thre cerel 2 """" 0.4KB. 2.1kg. 10.7kg 2.160 4 Kla. GF stab loo Muck + live

Total walls removed in this area from level to roof 8m x (3:5+3:513:5) × 0:13×22/m3 = 24 0 km Equivalent pressure of walls over this area 270/2×105 = 11.4 (Pg.


J'ésisting structure to be removed. 10.72/1.4 : 22.1 klg cut out soil for new concrete footing Additional locid of wet concrete (24. Starfm3) compared to soil (15/m3) soomm deep. (24.5-15)x0.8m = 7.7 kg. <22.16g. Enstallation of screw piles -57 eccavator. 250KN En Conservativity 1.8 mx1.8 marea i 50/1.82 = 15.4 kPg at ground level - <22.1 klan.


1.09

limit area for screw pile installation as shown below, where upper poor & walls demotished or not over server,

After screw piles & concrete beams installed all new additional masonay walls & stab supported by piled footings below line of influence.

1.10.

1500 1500 300

SWall use + timber

Noor.

7500

Rog Plant Rog 2.02 Level 3 +.7m . SUNB Level 2 T ____ Level 1 FROMED + FROMED FUN 1.6m FUN 2m GB2-5 7 683 42600 V.s Denge as a raft stab in two with two edge beams. Northern edge beau has greater load width Determine loads. Of men UPI De 100 DBlockwall 25mx/4.7x-2x22km/m 2000 7500 1500 1500 300 Stuer stab (3 uvels) =36KN 3× 2mx Imx 668a. =12/21 Steer live 3x 2mx/mx 2kta Star uthwall sponny over hallway on GF 3.4/mi/2 × 12.5×2×22 =94/cv D=334/bv Floor load ever hallway Dead. 3 floors x's 668a x1.7mx 2m = 6kN une " 1.5186 x " ~ " = 15.310N 94KN 2), Wallove hallway 2 161KN Greet Itskn Floor load bend live GF hallway wall 2.5mx4.2x,2x220mp = 46km)

2.03 3A) Stair slab load a top landing over 3 poor pead 36km 148km 148km (3) UDL Wall 14.7 mx · 2x224 m × Floor dead (2mx · 6 + 1.3x462) × 3 +1.3mx5 k/a. = 64.7ka/m = 26-2KN 23.3karfon 114.2kar/m Ploor line (2m+15+1.3m×2/de)+3+13+5= GJAN (4) Lift well Imx 14.7x.2x22km/m (5) Timber frame floor + wall. UDL Wall Hoordead . 2010 . 6 x 3 + 13 x 5/2 11.1 " Une 201 x 1/5-3 + 1.3 m x 5/2 15.5 91.3 kt/s 6) Wall only 64.7 Ka/mx 1.3m 84.1 Kal > Use nucrostran model to assess deflections and influence of ple deflection on pile londs and bending moments. Pile sproig 150 KN/6mm defection = 25000 KN/m Try pecture 200 200 per pile 800 5PDINGS 600 500 500 K=60.00 GBZ=Apiles 4: 600 GBZ=Apiles 4: 653 15 piles 37500

204. Support reactions GBZ File 11401-raftslab GBZ 40 4 4 4 907kN -261 252 632KN BMD* 301 kA/m 89 300 4-24 SED kN 4 258 299 # NOTE THESE ARE WORKING LOADS SPRING SUPPORTS -GEZ File 11401-raftslab 682-spring NOT ULTIMATE Reactions 1 1 1 275 152 403 700 kg BMD 64 8 40 580 Stot 46 36

2.05 GB3 SOUTH EDGE BEAM OF STAIR/UFT LOBBY RAFT SLAB SAME GEOMETREY AS GEZ BUT REDUCOD LANDS. O L OLO DE DUCOD LANDS \$3000 13000 x 4 4 T C Block wall + stars Mars. Wall (1.3m + 3.5m) × 14 m× ·2×22km/m³ = 295kN Stair. Mab. 3 × 20 m×6kBax/m 36 kN Iwe 3×20 m×6kBax/m 12 kN 343kN (1) RC Block wall + star slab. Stair slab. 3×20m×61Sex1m 36 hav] 3) Starr & landing slab Framed floor 1.8mx0.6kgx2m 1.8mx1.5kgx2m 42 RC column B. 6x, 7×24,5×14m Existing boldk U+ Imx: 232224 mx3.5x3 53KN 151KN 3 UDL Dead. (1.8 mx 6.6) x3 flas 7 1.3 mx 45 180x 4/0 -= 26.6 km/m leve 1.8× 1.5×3 + 1.3×2kg ×3 +1.3×5kg = =22.4km /64.410/m GF Will 3.5mx.2×22km =15.4 /64.410/m DExtg bridewall 53kn 53kn / Sals pointload. Imx45x1.3mx4 23.4kn live Imx 21/2 x 1.3 mx 4 23.4 km J 90.7 km + 1 mx 1.3 mx 3/ 14.3 km J 90.7 km

2.06 (5) Slab point load dead. live lift frontwall Imx 2222214 23.4 KN 14.3 KN 100 KN 62 KN 6) lift want UDL Plant slab. 1.3 × 4.5kg " Live 1.3 × 5kg 64.7km. 77KN/m. 5.9 kn/m 6.5 kn/m 64.7 km/m (7) lift (eastern) way 64.7KN/m Fixed supports (GB3) 612 -174 195 KN REACTIONS 524 BMD WORKING 309 34 16. KNM SED WORKING 182 JER SUPPORTS 253 108 KN 359 182 88 KN 245 194 142 EN Max 5= 8. [mm Reactions 517 21.16 KNM 309 BILD (work) ~ 442 201 133 44 6 88 KN SED (work) & 224

2.07 Add support reactions for GBZ& GB3 BOB
 R = 700 + 577 = 1277 kw/spiles B = 403 + 245 = 648/4= 160, KN /pile =162kN/pile C) 275+194 = 118 bol /pile = 469/4 D 152+142 = 294/4 = 74 KN/pile Reducing number of piles a C &D would reduce spring stiffness & put more loud on B Wet self weight of concrete not included as poured on existing ground & allowed for in bearing pressures over server. However, the raft slab self weight will be included in its ultimate limit state design if sand settles. Note no short term live lord reduction factor used hive either. ______ USE 160 kar SWC piles > USE 160 KN SWE ples

2.08 BEAM GBY This beam is essentially to vertify the eventually of the echlock wall for the Mallinary rinning from Market lane to the star flift Waby. to the FIRST FLOOR SUPPORTUD P 4000 x 600x8000 4000 x 12000 4000 12000 4000 600 6600 LONOS SUPPORTED on UFT/SPAIR Boons 1200 0 0 0 0 0 PLAN 1 7800 P=4.2x0.2x22kN/m = 18.5kN/m x5mlong = 93kN Extra deadload for Get trang (5.8×2415+360) × 5m =-113bal/m We 5m × 4kBa. =Zokal/m. Dereg using RAPT with self weight included. Assume footing supposts 1500 wide halling floor Groud floor Alle x 15m - 10 kg on boonde 600×800 Delp. Z Rupt - 53N20 Reduce Dadd burs. 26N16 -> 0=14mm SUSE 6N20 top & btm D= S. Junns /OK. +Min stiorups.

2.09

Beam GBI 50.6 Reactions 50.6 \$28.4 -61.6 188.2. 167-24N + pilecap. 210.2 322.4KN -> 3 piles 2 piles Refer RAFT Report 11401-FTG BORM CIBI-rapt. pdf.

183 1183 2.00 BEAM GB4 WI GBZ Million (CBZ M Model without the step for surplicity W1 = load from Re block will = 18.5 km/m. Additional dead load from ramp + live load 2mx 4km · 6 ka/m 8·ka/pin · 33 KN/m The del GBI nelf weight & live loud, Dend. 12km/m × 3.9m 47km] We 41Sextismx 3.9m 24 km] 7/km . GB2 lood from CB2 reaction over 2.5m. 700 Kav/2.5 = 280KN/m. 1 W2 = end wall loud from GB3 distributed on 5m 393 lov (p. 2.05) / 5m = 68.6 km/m 1.GB3 (lanw3) (577-343) /1.5m = 156 km/m Beam 183 -reaction ses - 19260 -> Footing beam generally 2000mde x 800 deep. -> trap pile londs -> no noom to adderta piles except on south end

2.11 - Raft slub actually has integral peblock wall Input element as 4 m high x 0.2 m wall (uguore beam for now) Plus add extra ple Wall stiffness distributes load more evenly Max reaction 159kN UserBile SW = 160kN GB4 - Conservatively denny Ag for porces from analysis with wall Stiffrens included Mostly dead load but use factor 1.35 (us) conservatively M= 1583+1.35 = 2137 KNM. 1.2 Mer = 1.22. 6/52 × 800 5000 Munise 20120 BTM = PMG= 1715 KNM 1117×135 22137 =2029 W/m Vaux 3526N =1508 HNM Vuc = 803 ker asupport. 22400×800 =9216 KN k^{24N20} $\beta M_{4} = 2089/4Nm$ 25N20 = 2/66 kNm $V^{2} = 452kN$ Bruc = 123/4/25 2/ for support ; 3 500 UI-2024KNm 14128 Dung = 21002NM

2.12 Check toman of GB4 in between GB1 & GB2 & beyout GB1 V P== 1.35 - 8.2x -2x72 = 25 W/m . 4.5 2.5 2.5 ____ t=InveP = 25term/m 58.2 + K T=62:5KNM. TMD \$ Tumer = 0.7x · 2x 32 × 2000 x 800.0-6 = 2867 KNm 3 62.5 56.2 62.5 +385 KK1. ØTue = 0.7× 3/32 × 2000×800 EG = 507/21m 0.250Th's 127 Wm > 62.5km no forman rea. Beyond. GB3 t = 68.6K-1/m 0.35m = 24.0 km/m -bende GBS Footing 1000 ØTuc = 253kNm Jonro 1000 V= 194kN \$Vic= 506KN 130 +194 ,0.9. >0.5

2.13 Need forsional fitments for southend of beam \$ Tus > T" = Bokulm. Asw/s -> 13026 /0.7x500x2x640x840 = 0.345 = 86 mm 2250 NIZ-250 clused ties Ungitudinal ner 6.5.500,0.345 ((mo+840)2) = 25Jun each corner = 570 extenditor -> Needed 14N28 bending -> 15N28 total boton. V SETTAN でいたれば、北方の方ものの

2.14 altimate limit State design of GBZ &GB3. From microstran Mitve = 1.35×580kNm =783kNm. 800 11 120 120 (boox800) = 260 KNM 600 Try 5. N28 btm pruu = 893 kNm 700 Try 5. N28 btm pruu = 893 kNm 700 Try 5. N28 btm pruu = 893 kNm 700 Top une = 1.35 = 310 = 420 KNm 4N20+2N16top 12=1640m2 Mu=472kNm Shear. Vin 360KN ØV120 = 3576N ØVum - 539KN provide nin shear steel. ->N12-250 stirrips

2.15 Footing PFT. Simplifically 160mar \$160mar \$1600 10than \$160mar \$1600 \$600 = 3200/35 = 432KN M= 432×1.2m/4 = 130km/m 1.2 Mer = 146 knon. 4N20 BIM \$MU = 257 KNM pluc = 227kN V=216KN Oven =358KN Proverde min shear tees NIZ-250 sterrips,

RevB

19-21 The Corso, Manly

Maximum Pile Deflection Under SWL

Vertical deflection is a function of flexing of the helix plate, the pressure variation across the helix plate, skin friction resistance down the shaft and deflection of the subgrade under the applied pressure

As screw piles are a proprietary item and the resistance of the founding strata can be nominated by specification of the minimum applied torque at refusal, measured pile deflections under static load test can be determined via empirical relationships from amassed pile static load test data.

As piles are in sand through out their entire depth, the pile acceptance deflection understatic load test will be the long term settlement of the piles under service.

As the bearing strata is sand, the static load test deflection limit can therefore be considered as the deflection limit under working loads.

Ps is the rated load of the proprietary pile, installed into granular material at the minimum nominated driving torque at refusal

	114x6.0CHS
	Corefilled
Ps	160,000 N
L	6,000 mm
As	2041 mm^2
Es	205000 N/mm^2
Ac	8219 mm^2
Ec	32000 N/mm^2
Helix size	400 mm
Shape	Square
Effective helix diameter	451
PsL/AE	1.41 mm
0.01d	4.51 mm
PsL/AE + 0.01d Actual working load Actual pile deflection under	5.92 mm 160,000 N
service loads	5.92 mm