

Point Polaris Forestway Shopping Centre SYDGE217641

26 October 2018

Trust is the cornerstone of all our projects

This page has been left intentionally blank

Forestway Shopping Centre

Prepared for Point Polaris

Prepared by Coffey Services Australia Pty Ltd Level 19, Tower B, Citadel Tower, 799 Pacific Highway Chatswood NSW 2067 Australia t: +61 2 9406 1000 f: +61 2 9415 1678 ABN 55 139 460 521

26 October 2018

SYDGE217641AB

SYDGE217641

Quality information

Revision history

Revision	Description	Date	Originator	Reviewer	Approver
0 draft	For comments	10 Aug 2018	Lily Parchizadeh	Viet Nguyen	Viet Nguyen
1	Final	26 Oct 2018	Lily Parchizadeh	Viet Nguyen	Viet Nguyen

Distribution

Report Status	No. of copies	Format	Distributed to	Date
0 draft	1	PDF	Rob Han (Point Polaris)	10 Aug 2018
1 final	1	PDF	Rob Han (Point Polaris)	26 Oct 2018

Table of contents

1.	Introd	luction		1
2.	Site d	lescriptio	on	1
3.	Inves	tigation	Methodology	2
	3.1.	Site Inv	vestigation	2
	3.2.	Labora	tory Testing	3
4.	Resu	lt of Inve	estigation	3
	4.1.	Local C	Geology	3
	4.2.	Geoteo	chnical model	3
	4.3.	Ground	dwater Condition	4
	4.4.	Labora	tory Test Results	5
		4.4.1.	Geotechnical Laboratory Test Results – Soil	5
		4.4.2.	Geotechnical Laboratory Test Results – Rock	6
		4.4.3.	Aggressivity Soil Testing Results	6
5.	Discu	ssion ar	nd Recommendations	7
	5.1.	Basem	ent Excavation	7
		5.1.1.	Excavation works	7
		5.1.2.	Excavation induced ground movement	7
		5.1.3.	Unsupported temporary excavations	7
		5.1.4.	Temporary and permanent excavation support	8
	5.2.	Buildin	g Foundations	9
		5.2.1.	Shallow Foundations	9
		5.2.2.	Pile Foundation	10
		5.2.3.	Soil Aggressivity	10
	5.3.	Earthw	orks	10
		5.3.1.	Subgrade preparation	10
		5.3.2.	Engineered Fill compaction	11
6.	Paver	ments		11
7.	Limita	ations		11

Tables

- Table 1 Summary of Subsurface Conditions and Inferred Geotechnical Units
- Table 2 Summary of geotechnical laboratory test results soil
- Table 3 Summary of geotechnical laboratory test results Rock
- Table 4 Summary of aggressivity laboratory test results
- Table 5 Recommended Batter Slopes for exposed material
- Table 6 Recommended Parameters for retaining wall design
- Table 7 Recommended bond stresses for ground anchors
- Table 8 Recommended ground vibration limits for structures
- Table 9 Recommended pile foundation design parameters for pile design

Figures

Figure 1 - Site Location Plan

Appendices

- Appendix A Borehole Location Plan
- Appendix B Borehole Logs
- Appendix C Monitoring Wells
- Appendix D Laboratory Testing Results

1. Introduction

Coffey Services Australia Pty Ltd (Coffey) was commissioned by Point Polaris to undertake a geotechnical investigation for the proposed redevelopment at the Forestway Shopping Centre, Frenchs Forest, NSW. The investigation was carried out in general accordance with our fee proposal (Ref: SYDGE217641AA, dated 18 April 2018) which was prepared at the request of Point Polaris.

Coffey was advised that that the proposed site redevelopment will be carried out in two construction stages. The first stage will include the demolition of the existing carpark area on the east side of the development, and the construction of 5,400 m² retail floor space over a two-level basement carpark. In the second stage, additional 11,500 m² retail floor space may be added by raising the rooftop carpark one level and converting the present carpark to retail floor area.

The purpose of this geotechnical investigation was to obtain geotechnical information on subsurface conditions and to provide comments and recommendations on the following:

- Subsurface conditions and geotechnical model;
- Basement excavation and subgrade preparation;
- Excavatability of the ground, excavation batters and stability, and trafficability of the subgrade,
- Temporary retention systems and relevant geotechnical design parameters;
- building footing types and geotechnical design parameters;
- Soil aggressivity to buried steel and concrete;
- Relevant geotechnical recommendations for construction phase.

Please note that this report must be read in accordance with the "Important Information about your Coffey Report" attached with this document.

2. Site description

The site location plan is shown in Figure 1. It is located within the existing Forestway shopping centre at the corner of Forest way and Russell avenue, Frenchs forest. The site is bounded by Forest way to the east, Grace avenue to the west and Russell avenue to the North. It is relatively flat, situated on a local high plateau. To the west of the site, beyond Grace avenue the ground slopes steeply (between 15° to 20°) west towards Lane Cove river. The southern section of the site, comprising the residential area, has a gentle (<5°) slope to the south, towards Warringah road.

Figure 1 - Site Location Plan

3. Investigation Methodology

3.1. Site Investigation

The fieldwork was carried out from 26 July to 30 July 2018 and comprised the drilling of four boreholes numbered BH1 to BH4. The borehole locations, as shown on the attached borehole location plan in Appendix A, were nominated by the client and determined on site by Coffey after the clearance of underground services at the drilling locations.

The boreholes were drilled using a combination of a track mounted drilling rigs, Geoprobe 7822 DT, Comacchio 405 and Cross Country. The boreholes were commenced using rotary flight augers in soils up to a maximum depth of 2 m. Disturbed soil samples were collected during drilling.

Upon the refusal of augering in rock, the boreholes were then extended into the rock using NMLC sized diamond coring equipment to reach the required target depths. The recovered rock core was logged, boxed and photographed. To assist in assessing rock strength, the recovered rock core was Point Load Index tested at a nominal spacing of 1 meter.

On completion of the drilling, standpipe piezometers were installed at BH1 and BH3 for groundwater level monitoring.

A Coffey Geotechnical Engineer was present throughout the drilling operations to sample, record test results and log materials encountered. The Engineering Borehole Logs are presented in Appendix B, with Coffey soil and rock explanations sheets.

3.2. Laboratory Testing

Collected soil samples and rock cores were sent NATA accredited laboratories for testing. Selected samples were chosen for the following tests:

- Three moisture contents,
- One Atterberg Limits and Linear Shrinkage tests,
- Three California Bearing Ratio (CBR) and compaction tests; and
- Six soil aggressivity tests including PH, Sulphate and Chloride tests,
- Point load index testing at every 1m length of rock cores.

The results of the laboratory testing are detailed in Appendices D, E and F and summarised in section 4.

4. Result of Investigation

4.1. Local Geology

The 1:100,000 Sydney Geological Sheet indicates that the site locality is underlain by Hawkesbury Sandstone comprising medium to coarse grained quartz sandstone, with very minor shale and laminate lenses which is of Middle Triassic Age. The lenses are slightly carbonaceous and often laminated with fine sandstone. An igneous dyke is shown on the Geological Sheet tending north west to south east, approximately 500 m from the site.

4.2. Geotechnical model

For geotechnical characterisation of the subsurface conditions, the soil and rock profiles encountered during the investigation have been characterised into the following geotechnical units as shown in Table 1 below.

Unit	Origin	Description(d)	Approximate Depth to Top of Unit (m bgl)	Range of Unit Thickness (m) ^{a)}
P1	PAVEMENT	Pavement over sands, gravel and clay	0	0.13 to 0.4 ^{b)}
F1	TOPSOIL/FILL	CLAY of low to medium plasticity and SAND of fine to coarse grained with cement, and sub angular gravel	0 to 0.40 to 0.4	0.3 to 0.77
R1	RESIDUAL	SAND of fine to medium grained and CLAY of medium to high plasticity with silt, EXTREMELY WEATHERED ROCK	0.4 to 0.90.4 to 0.9	0.1 to 1.5
B1		Extremely- Highly weathered SILTSTONE, High Strength. Class III Shale or better ^{c)}	0.6	3.3 to Unproven
B2	BEDROCK	Extremely- Highly weathered SANDSTONE, Low to medium strength. Class IV Sandstone ^{c)}	3.9	3.80 to Unproven
B3		Slightly weathered to Fresh SANDSTONE, High Strength Class III Sandstone or better ^{c)}	2.0 to 7.66	Unproven

Table 1 - Summary of Subsurface Conditions and Inferred Geotechnical Units

Notes:

- a) The depths and unit thicknesses are based on the boreholes and may not represent the stratigraphy or the maximum or minimum depths and thicknesses of stratigraphic units across the entire site.
- b) Deeper fill was observed in the northern portion of the site.
- c) Rock classification is based on "Foundations on Sandstone and Shale in the Sydney Region" Aust. Geomech. Jnl, Dec 1998, Pells et al (1998).

For detailed descriptions of the materials and sub-surface conditions encountered at each borehole, reference should be made to the boreholes logs and core photographs presented within Appendix B.

4.3. Groundwater Condition

Groundwater was not encountered in soil and upper levels of the very low strength rock during auger drilling (which extended to depths up to 2 m). It was not possible to assess groundwater conditions over the depth of NMLC coring because water was used to lubricate and cool the drill bit while drilling.

It shall be noted that groundwater levels may vary due to seasonal changes and other factors, such as prolonged periods of high rainfall or localised events such as failures of service lines.

After drilling, standpipe piezometers were installed at BH1 and BH3 for the purposes of groundwater level monitoring. Standpipe construction sketches are presented in Appendix C. At the time when this report was prepared no readings were taken for the standpipe.

4.4. Laboratory Test Results

4.4.1. Geotechnical Laboratory Test Results – Soil

Laboratory test results are summarised in Table 2 below. For further detail reference should be made to the laboratory test certificates presented in Appendix D.

Table 2 - Summary of geotechnical laboratory test results - soil

Location	Details				Atterberg limits			CBR and Compaction			Moisture	
ID	Depth (m)	Origin	Material	LS (%)	LL (%)	PL (%)	PI (%)	CBR (%)	MDD (t/m³)	OMC (%)	Content	
BH1	0.9 – 1.0	Residual	Sand	-	-	-	-	-	-	-	10.9	
BH2	0.0 - 0.4	Fill	Gravelly Clayey Sand	-	-	-	-	25	1.98	10.5	-	
BH2	0.4 - 0.9	Fill	Sand	-	-	-	-	8	1.92	13.2	-	
BH3	0.4 – 0.6	Residual	Clay	10.5	43	15	28	-	-	-	13.1	
BH4	0-0.9	Fill	Gravelly Sandy Clay	-	-	-	-	12	1.97	10.6	-	
BH4	0.9 – 1.0	Residual	Sand	-	-	-	-	-	-	-	13.6	

4.4.2. Geotechnical Laboratory Test Results – Rock

	0		Point Loa	dex (I _{s(50)})
BH ID	Sample depth (m)	Rock Type	Diametral (MPa)	Axial (MPa)
BH1	2.69	Sandstone	2.18	2.48
BH1	3.60	Sandstone	1.63	1.98
BH1	4.68	Sandstone	1.70	2.37
BH1	5.74	Sandstone	2.22	4.25
BH1	6.11	Sandstone	1.58	3.21
BH1	7.85	Sandstone	0.56	1.06
BH1	8.40	Sandstone	1.16	1.96
BH1	9.16	Sandstone	2.43	2.59
BH3	1.70	Interbedded Siltstone and Ironstone	2.58	3.23
BH3	2.10	Interbedded Siltstone and Ironstone	1.47	2.19
BH3	3.63	Interbedded Siltstone and Ironstone	2.04	2.59
BH3	4.40	Interbedded Sandstone and Ironstone	0.55	1.29
BH3	5.83	Interlaminated Sandstone and Siltstone	0.17	0.43
BH3	6.15	Interlaminated Sandstone and Siltstone	0.08	0.23
BH3	7.72	Interlaminated Sandstone and Siltstone	4.12	7.29
BH3	8.55	Interlaminated Sandstone and Siltstone	1.59	2.71
BH3	9.45	Interlaminated Sandstone and Siltstone	1.66	1.78

Table 3 - Summary of geotechnical laboratory test results - Rock

4.4.3. Aggressivity Soil Testing Results

Aggressivity soil testing results are summarised in Table 4. The testing certificates are presented in Appendix D.

Location-ID	Top Depth (m)	Bottom Depth (m)	% Moisture	Chloride (mg/kg)	Conductivity (1:5 aqueous extract at 25°C) (uS/cm)	pH (1:5 Aqueous extract) (pH Units)	Resistivity (ohm.m)	Sulphate (as SO₄) (mg/kg
BH1	0.9	1.0	9.5	72	110	6.5	470	98
BH2	0.4	0.9	12	100	200	6.0	250	260
BH2	0.9	1.0	8.3	40	81	5.6	620	100
BH3	0.4	0.6	9.6	21	130	6.8	380	180
BH4	0.9	1.0	12	<10	23	6.8	2200	28
BH4	1.0	1.1	7.0	<10	23	5.8	2200	46

Table 4 - Summary of aggressivity laboratory test results

5. Discussion and Recommendations

5.1. Basement Excavation

5.1.1. Excavation works

Based on subsurface conditions, the proposed excavations are likely expected to encounter the existing Fill, Residual Soil and Sandstone Bedrock.

Excavations of soil strength materials and highly weathered rock should be able to be excavated using conventional earthmoving equipment such as a tracked excavator with toothed bucket or tracked excavator. Light ripping may be used to excavate extremely and highly weathered bedrock. Where moderately weathered or better bedrock is present, hard rock excavation techniques such as large dozers fitted with rippers, or large excavators fitted with rock saws, rock grinders and rock hammers may be used. The use of hard rock excavation techniques will cause vibrations that could damage vibration sensitive structures, infrastructure and underground services. Assessment of the potential impacts of excavation induced vibrations should be considered as part of the detailed design and excavation planning.

5.1.2. Excavation induced ground movement

Excavation will cause some ground movements adjacent to the excavation site. Many factors can influence the size of these movements, from ground conditions to design and construction quality. Documented data has shown that for well-designed and constructed shoring, vertical and lateral movements can be about 0.1% to 0.3% of the retained height at the excavation face.

Lateral ground movements can occur at distances up to twice the basement depth from the edge of excavations. This affects adjacent properties and services. At a lateral distance equal to the excavation depth, the typical movement can be up to 30% of the displacement, at the excavation perimeter.

If this aspect is critical, we can assess (possibly by numerical analysis) the likely ground movements during design of the temporary retaining wall. Such cases should be specifically addressed by Coffey during detailed design when more design information becomes available.

5.1.3. Unsupported temporary excavations

Batter slopes or bench excavation may be possible where excavations are set back sufficiently from adjacent structures and boundary. The batter slopes or benches should be scaled following excavation to remove all loose material which could slide or topple from the face during construction and hence pose a risk to construction personnel.

Table 5 below provides a summary of the recommended batter slopes for each geotechnical unit expected within the depth of excavation. It should be noted that the proposed batters in rock are subject to assessment by a geotechnical engineer during construction. If adverse joints or other defects are present, flatter batters or stablisation may be required.

for exposed material
ioi exposed mai

Unit	Brief Description	Maximum short-term batter slope	Maximum long-term batter slope
F1	Gravelly, sandy clays and clayey sands of fine to coarse grained sand with low to medium plasticity clay and fine to coarse grained sub angular gravel	2H:1V	3H:1V
R1	Dense to very dense sand or clayey sands and very stiff clays of fine to medium grained sand and medium to high plasticity clay with silt	1.5H:1V	2H:1V
B1	Extremely-Highly weathered SILTSTONE, High Strength, Class III Shale	1H:1V	1.5H:1V
B2	Extremely-Highly weathered SANDSTONE, Low to medium strength. Class IV Sandstone	1H:1V	1.5H:1V
B3	Slightly weathered to Fresh SANDSTONE, High Strength, Class III Sandstone	0.5H:1V	1H:1V

5.1.4. Temporary and permanent excavation support

Where unsupported, open excavations are impracticable, a temporary retaining wall, such as cantilever walls, soldier pile walls with infill panels (usually shotcrete, timber planks or precast concrete panels) or anchored pile walls can be considered.

A triangular lateral earth pressure distribution may be assumed for the retention system design. As a guide Table 6 below presents recommended design parameters that can be adopted for retaining wall design where there is a level retained ground surface

Unit	Bulk Density γ (kN/m3)	Effective Cohesion c' (kPa)	Effective Friction Angle Φ' (degrees)	Coefficient of Active Earth pressure, Ka	Coefficient of Earth pressure at rest, Ko	Coefficient of Passive Earth pressure, Kp	Elastic Modulus (MPa)
Fill / Residual Soils	20	2	33	0.3	0.5	3.33	30
Shale Class III	21	10	35	0.3	0.5	2.5	150
Sandstone Class IV	22	25	35	0.2	4	2	200
Sandstone Class III	22	50	35	0.1	5	2	500

Table 6 – Recommended Parameters for retaining wall design

The K_0 value in Table 6 assumes that some wall movement and relaxation of horizontal stress will occur due to the excavation. Actual in-situ K_0 values may be higher, particularly in the rock units. Retaining wall analyses will need to consider surcharges, footing loads from adjacent structures and hydrostatic pressure.

Ground anchors can be considered in to limit adjacent ground movement induced by excavation. The ground anchor designs should be based on allowing effective anchorage to be developed by locating the bond length behind an 'active zone', determined by drawing a line at 45° from the base of the wall

to intersect the ground surface behind the excavated face. The following ultimate bond stresses presented in Table 7 below can be adopted for anchors with the provision that bond lengths are between 3 m to 5 m anchors are to be proof loaded to at least 1.5 times their design working load. A minimum factor of safety of 2 should be applied for assessment of allowable bond stress.

Table 7 - Recommended bond stresses for ground anchors

Unit / Material Description	Ultimate Bond Stress (kPa)
R1: Residual Sand/ Clay	75
B1: High strength, extremely-highly weathered Siltstone Class III Shale or better	200
B2: Low to medium, extremely-highly weathered Sandstone Class IV Sandstone	150
B3: High strength, slightly weathered to fresh Sandstone Class III Sandstone or better	250

For anchors in the soil units, high bond stresses are possible with the use of pressure grouts or post grouts anchors. Advice should be sought from specialist ground anchor contractors for proprietary systems.

The use of excavation plant such as impact hammers will generate vibrations that may affect any surrounding sensitive structures and buried services. Measures to mitigate the risks associated with construction vibration such as the use of jack hammer and excavator for existing building demolition should be considered. The vibration limits in Table 8 below are commonly recommended to reduce the risk of vibration damage to sensitive receptors.

Table 8 – Recommended ground vibration limits for structures

Type of Structure	Peak Particle Velocity (mm/s)
Residential or low-rise buildings in good condition	10
Reinforced concrete commercial and industrial buildings in good condition	25

5.2. Building Foundations

Design of the proposed structure foundations should be undertaken in accordance with the requirements of the following:

- AS 2870 (2011) Residential Slabs and Footings
- AS 2159 (2009) Piling Design & Instillation
- Other relevant Australian and international standards
- Engineering principals

5.2.1. Shallow Foundations

Based on the subsurface conditions encountered in the boreholes, footings for the proposed development may be founded within rock material. It is recommended that within the subsurface materials over the sandstone layer, an allowable bearing pressure of 200 kPa be adopted for the design of spread footings up to 3 m wide.

All footings should be inspected by a geotechnical engineer to confirm that a suitable founding stratum has been reached.

5.2.2. Pile Foundation

Table 9 presents recommended geotechnical design parameters for pile design at the site.

		Ultimate End	Limit State Design Values					
Unit	Material Description	Bearing Value (MPa) _(a,b)	Ultimate Shaft Adhesion (kPa)	Vertical Young's Modulus (MPa)				
B1	Class III Shale or better Extremely-highly weathered SILTSTONE, High Strength.	12	400	700				
B2	Class IV Sandstone Extremely-highly weathered SANDSTONE, Low to medium strength.	8	500	400				
B3	Class III Sandstone or better Slightly weathered to Fresh SANDSTONE, High Strength	40	1500	1200				

Table 9 - Recommended	pile foundation	design parameters	for pile design

Notes:

- a) Assumes a minimum embedment depth of at least 0.5 m into the relevant bearing stratum.
- *b)* Shaft adhesion assumes a rough socket (at least grooves of depth 1 mm to 4 mm and width greater than 5 mm at spacing of 50 mm to 200 mm).
- c) For ultimate limit state design, serviceability should be assessed using the elastic modulus value to check that settlements are within tolerable limits.

For limit state design, the design ultimate geotechnical pile capacity is derived by applying a geotechnical strength reduction factor (Φ_g) to the ultimate geotechnical pile capacity assessed using the ultimate shaft resistance and end bearing values shown in Table 9. In accordance with AS2159-2009, Φ_g is dependent on an Average Risk Rating (ARR) which considers various geotechnical uncertainties, foundation system redundancy, construction supervision, quantity and type of pile testing. To assist you with preliminary design we recommend Φ_g of 0.5 be adopted assuming some pile testing will be specified.

5.2.3. Soil Aggressivity

Based on laboratory test results summarised in Table 5, the soil could be classified as *TBC* according to AS2159-2009 for concrete and steel.

5.3. Earthworks

5.3.1. Subgrade preparation

Prior to constructing subgrade layers by engineered fill, the pavement layer and the underlying fill should be removed and stockpiled separately for appropriate reuse. The exposed material should be proof rolled with at least four passes of a non-vibratory smooth drum roller of minimum 12 tonne dead weight. Any soft or heaving areas should be excavated and replaced with engineered fill, compacted as specified in Section 5.4.2.

Trafficability in silty and clayey materials for wheeled vehicles can be expected to be difficult during and following rainfall due to surface heaving and / or rutting.

5.3.2. Engineered Fill compaction

For bulk earthworks using modern purpose-built earthmoving plant, fill material should be placed in layers not exceeding 300mm loose thickness and moisture conditioned to Standard Optimum Moisture Content (SOMC) \pm 2%.

All engineered fill should be compacted to achieve a minimum dry density ratio of 98% SMDD (Standard Maximum Dry Density and moisture conditioned to SOMC \pm 2% at the time of compaction.

Earthworks construction should be constructed under Level 1 geotechnical inspection and testing as defined in AS3798-2007.

6. Pavements

Onsite fill materials may be reused for the construction of road pavements. Based on the results of the site investigation and laboratory testing results listed in Table 2, a minimum design CBR of 5 is recommended for the gravely clayey sand or sand fill material. It should be noted that the design CBR value will depend on the provision of adequate surface and subsoil drainage to maintain the subgrade as close as SOMC as possible. Preparation of subgrade surfaces should be such that adequate cross-falls for surface drainage purposes are achievable across the final pavement.

7. Limitations

Subsurface conditions can be complex and may vary over relatively short distances – and over time. The inferred geotechnical model and recommendations in this report are based on limited subsurface investigations at discrete locations. The engineering logs describe subsurface conditions only at the investigation locations. Further investigations may be required to support detailed design if there are scope limitations or changes to the nature of the project. We can assist with detailed design and/or to review designs and verify that the conditions exposed are consistent with design assumptions during construction. The attached document entitled "Important information about your Coffey report" forms an integral part of this report and presents additional information about its uses and limitations.

Appendix A - Borehole Location Plan

This page has been left intentionally blank

Appendix B – Borehole Logs

A TETRA TECH	H COMPANY		Borehole ID.	BH1		
Enge	incoring Lo	n Barahala	sheet:	1 of 2		
Eng	ineering Log	project no.	754-SYDGE217641			
client:	Point Polaris		date started:	26 Jul 2018		
principal:			date completed:	26 Jul 2018		
project:	Forestway Shoppi	ng Centre Development	logged by:	LP		
location:	Corner of Russell	Avenue and Grace Avenue	checked by:			
position: N	ot Specified	surface elevation: Not Specified	angle from horizontal: 90°			
drill model: Geoprobe 7822DT, Track mounted drilling fluid: Water			hole diameter : 52/125			
duilling a load						

t	drilli	ing infor	mati	on			mate	rial sub	stance				
ſ	method & support	penetration	ter	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	structure and additional observations
		90 - N 90	Not Observable water		RL	der i i der	gradina di G	cla syn	SILTY SAND: fine - medium grained, brown, with silt and fine-coarse grained gravel, trace of rootlets. SAND: fine - medium grained, brown, trace of silt and gravel. SAND: fine - medium grained, pale yellow-orange, trace of silt with low-medium plasticity clay.	7 M	D - DM D - DM		TOPSOIL7
	AD/T		Not Ot			1.0			CLAYEY SAND : fine grained, pale grey-white, with medium plasticity clay (Extremely weathered sandstone).	_	 VD		EXTREMELY WEATHERED ROCK
>> 26/10/2018 16:57						2.0			Borehole BH1 continued as cored hole				
CDF_0_9_06_LIBRARY.GLB rev.AO_Log_COF_BOREHOLE: NON CORED_754-SYDGE217641.GPJ_< <drawingfile>>_26/10/2018_16:57</drawingfile>						- - 4.0							
IOLE: NON CORED 754-SYE						- 5.0 — -							
B rev:AO Log COF BOREH						- 6.0 — -							
CDF_0_9_06_LIBRARY.GL						- 7.0 — - -							
	meth AD AS HA W * e.g. B T V	liiil	rewir ger e n by s	ng*	pene	nud asing etration er er leve wate		f ater shown	HP hand penetrometer (kPa) D N standard penetration test (SPT) M N* SPT - sample recovered W	based Classific oisture dry moist moist / wet /p plastic	lescription I on Unifie ation Syst	bol & n d	- consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

A TETRA TECH	COMPANY	Borehole ID.	BH1
Enai	nearing Lag Cared Parabala	sheet:	2 of 2
Engi	neering Log - Cored Borehole	project no.	754-SYDGE217641
client:	Point Polaris	date started:	26 Jul 2018
principal:		date completed:	26 Jul 2018
project:	Forestway Shopping Centre Development	logged by:	LP
location:	Corner of Russell Avenue and Grace Avenue	checked by:	

location: Corner of Russell Avenue and Grace Avenue

	ition:		pecifie		surface elevation: N		ified		angle	e from horizo	•
T					r, Track mounted drilling fluid: Water				•	diameter : 5	
dri	ling i	nform	ation	mate	rial substance				rock	mass defec	cts
method &	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain characterisics, colour, structure, minor components start coring at 2.00m	weathering & alteration	estimated strength & Is50 X = axial; O = diametral 弓 ≍ ⊥ 듯 표	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	additional observations and defect descriptions (type, inclination, planarity, roughness, coating, thickness, other) particular genera
			-		SANDSTONE: fine - medium grained, massive, pale grey, with occasional laminaes of red-orange sandstone at 0-10°.	SW - FR					BEDROCK
			- 3.0 — - -		3.00 m: with indistinct laminaes at 10-20°			a=2.48 d=2.18 a=1.98	95%		— JT, 15°, PL, RO, SN — JT, 10°, UN, RO, SN — JT, 10°, PL, SO, CO, 1 mm → JT, 25°, PL, SO, CO, 1 mm PT, 0°, UN, SO, CO, 1 mm
2			- 4.0 — - -		4.18 m: incipient parting			d=1.63 a=2.37			— PT, 0°, PL, SO, CO — PT, 15°, UN, RO, CO — PT, 0°, PL, SO, CO
	Not Observable		- 5.0 — - - - -		5.30 m: distinctly laminated medium-coarse grained, orange SANDSTONE with white/black quartz	HW - MW		d=1.70 a=4.25 d=2.22			— JT, 20°, UN, RO, CN — PT, 15°, UN, RO, SN → JT, 25°, PL, SO, CO
			6.0 — - - - 7.0 —		6.00 m: angle of laminaes changes to 20-30° 6.20 m: angle of laminaes changes to 0-10°			a=3.21 d=1.58	99%		JT, 25°, PL, SO, CO SM, SO, Clayey sand CO, 40 mm SM, SO, cementitious CO, 20 mm, bale grev
0					8.00 m: distinctly laminated medium-coarsegrained, pale grey-grey SANDSTONE at 15-20°, with quartz	MW FR		a=1.06 d=0.56 a=1.96 d=1.16	100%		 SM, SO, cementitious CO, 5 mm PT, 0°, PL, SO, CN PT, 15°, PL, SO, CN PT, 10°, PL, RO, CO, 1 mm, trace of quartz PT, 10°, PL, SO, CO, 1 mm
			9.0 —					a=2.59			— JT, 5°, UN, RO, CO, black quartrz coating
-			-		Borehole BH1 terminated at 9.20 m Target depth			d=2.43			
AS AE CE W NM NO HO PO	6 au 9 au 8 cla 8 wa MLCNM 2 wir 2 wir 2 wir	eline co eline co eline co	ewing ade bit re (51.9 ore (47.6 ore (63.5 ore (85.0	Smm) 5mm) 0mm)	water inflow	ecovered ymbols indicate e recovere	e material)	weathering RS residu XW extrer HW highly DW distinc MW mode SW slight FR fresh *W replaced w strength	ual soil mely weat weather ctly weat rately we y weather with A for a	athered red hered eathered ered	defect type planarity PT parting PL planar JT joint CU curved SZ shear zone UN undulating SS shear surface ST stepped CO contact IR Irregular CS sream seam seating
SF	PT sta tes		penetrat	ion	water pressure test result (lugeons) for depth interval shown	withdrawn Quality Des		VL very lo L low M mediur H high VH very hi EH extrem	m gh		roughness coating SL slickensided CN clean POL polished SN stain SO smooth VN veneer RO rough CO coating VR very rough

A TETRA TECH COMPANY

VN

10/08/2018

N.T.S.

A4

approved

date

scale

original size

project:

title:

project no:

Forestway Shopping Centre Development Forestway Shopping Centre

CORE PHOTOGRAPH

BH1 fig no:

754-SYDGE217641

rev:

FIGURE 1

drill model: Comacchio 405, Track mounted

drilling information

TETRA TECH	COMPANY		Borehole ID.	BH2
Enai	pooring Log Por	shala	sheet:	1 of 1
Engi	neering Log - Bor	enole	project no.	754-SYDGE217641
client:	Point Polaris		date started:	26 Jul 2018
principal:			date completed:	26 Jul 2018
project:	Forestway Shopping Centre	Development	logged by:	LP
location:	Adjacent to Russell Avenue		checked by:	
position: No	ot Specified	surface elevation: Not Specified	angle from horizontal: 90°	

drilling fluid:

material substance

structure and additional observations

hole diameter : 200 mm

hand

penetro meter

(kPa)

ASPHALT

ROADBASE

FILL

EXTREMELY WEATHERED

consistency / relative density

soft firm

stiff very stiff

hard

friable

loose

dense

very loose

very dense

medium dense

very soft

111 | | | |

111

||||||||

||||

||||

||||||

|||||

| | |

||||

I I I

|||||

| | | |

||||||

|||||||

|||||

|||||

| | | |

| | | |

|||||

||||||

|||||

|||||||||

|||||

|||||

||||||

VS

. St VSt

н

Fb

VĹ

MD

VD

D

L

S F

classification symbol &

soil description

based on Unified

Classification System

moisture

plastic limit

İiguid limit

D M W dry moist wet

Wp WI

SPT with solid cone

hammer bouncing

refusal

vane shear; peak/remouded (kPa)

Nc

VS

HB

R

||||

||

| | | |||

consistency / relative density

D

MD - D

D - VD

moisture condition

D

M

material description classification go samples & penetrat Ê method & support SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components field tests graphic l symbol Ê depth (, water R В ASPHALT: dark grey. Gravelly CLAYEY SAND: fine - coarse grained, dark grey, with medium plasticity clay and fine -coarse grained subangular gravel, trace of red ironstone. CLAYEY SAND: fine - coarse grained, grey/pale grey/dark grey, with medium plasticity clay and fine to medium grained gravel. Not Encountered B SAND: fine - medium grained, pale grey, cementitious (Exteremely weathered sandstone). 2 0.5 D Ì۹ 754-SYDGE217641.GPJ 1.0 Borehole BH2 terminated at 1.0 m 111 Target depth ||||||||| | |NON CORED |||||||||||111 LIBRARY.GLB rev:AO Log COF BOREHOLE: 111 111 1.5 111 ||||||||||||| | || | |||||0 9 06 111 Ę 111 method AD auger drilling* support samples & field tests N nil bulk disturbed sample В Μ mud AS auger screwing' disturbed sample environmental sample C casing D E HA hand auger penetration w split spoon sample undisturbed sample ##mm diameter washbore SS no resistance ranging to
 refusal U## HP hand penetrometer (kPa) standard penetration test (SPT) Ν wate N* SPT - sample recovered bit shown by suffix

10-Oct-12 water

water inflow

water outflow

level on date shown

T

e.g. B

т

AD/T

blank bit

TC bit

V bit

Engineering Log - Borehole

client: Point Polaris

principal:

project: Forestway Shopping Centre Development

location: Adjacent to Forest Way

Borehole ID.	BH3
sheet:	1 of 3
project no.	754-SYDGE217641
date started:	30 Jul 2018
date completed:	30 Jul 2018
logged by:	LP
checked by:	

posi	tior	n: N	ot S	pec	ified					surface elevation: Not Specified		angle	from ho	orizo	ntal:	90°
•					Country, Tr	ack m	ounted	I		drilling fluid: Water			liamete			
dril	lin	g inf	orn	natio	on			mate	rial sub	ostance				_		
method & support		1 2 penetration	,	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components		moisture condition	consistency / relative density	per m (k	and netro- eter Pa)	
▲— AD/T —● CASING ●	1 🛞			Not Observable	D		-			SILTY SAND: fine to coarse grained, brown, wi silt and fine to coarse grained gravel, trace of rootlets (organics). Gravelly CLAY: low to medium plasticity,	th /	 ~Wp >Wp	MDStVSt			TOPSOIL FILL RESIDUAL SOIL
				z			- 1.0— -			brown-red, with medium to coarse subangular grey-brown gravels, trace of red sandstone ((tronstone) and silt. CLAY : medium to high plasticity, red-orange, w fine subangular gravel and silt. Borehole BH3 continued as cored hole	ith					
							- 2.0									
							- 3.0— -									
							- 4.0— -									
							- 5.0 — - -									
							- 6.0 - -									
							- 7.0 — - - -									
	a H V L	auge auge hand wash bit sh AD/T	own	ewin er		pene wate	nud casing etration	no res rangin refusa Oct-12 wa el on date	ater	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetrometer (kPa) N* SPT vith solid cone VS SPT vith solid cone VS vane shear neat/remounded (kPa)	mois D M W Wp	based Classifica sture dry moist wet plastic lin	escriptio on Unifie ation Sys	n ed	<u> </u>	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense
* B T V	k T		bit	by s	suffix		Leve	Oct-12 wa	ater shown	N* SPT - sample recovered	W Wp	wet				VL very loose

Engineering	Log - Cored Borehole	

Point Polaris client:

principal:

project: Forestway Shopping Centre Development

Adjacent to Forest Way location:

Borehole ID. BH3 sheet: 2 of 3 754-SYDGE217641 project no. date started: 30 Jul 2018 30 Jul 2018 date completed: logged by: LP

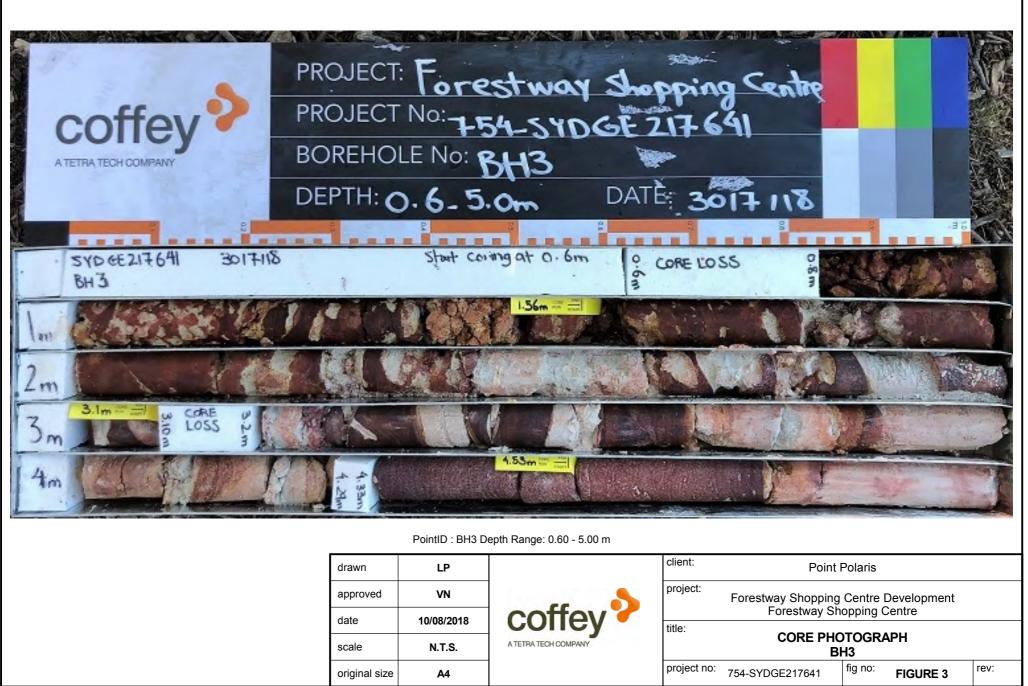
checked by:

	ion:	Not S	pecifie	d	surface elevation: N	lot Spec	ified		0	e from horiz	ontal: 90°
				1	rack mounted drilling fluid: Water					diameter : 5	
drill	ing ii	nform	ation	mate	erial substance		optimotod	aamalaa	rock	mass defe	additional observations and
method & support	water	RL (m)	depth (m)	graphic log	material description ROCK TYPE: grain characterisics, colour, structure, minor components start coring at 0.60m	weathering & alteration	estimated strength & Is50 X = axial; O = diametral ⊰ _ ≍ ⊥ ≍ ⊥	samples, field tests & Is(50) (MPa) a = axial; d = diametral	core run & RQD	defect spacing (mm)	defect descriptions (type, inclination, planarity, roughness, coatii thickness, other) particular gen
A				\succ	NO CORE: 0.20 m						BEDROCK
			- 1.0 - -		INTERBEDDED SILTSTONE AND IRONSTONE: pale grey, white, with dark hard red ironstone surrounding the low strength siltstone, thinly bedded (60-200mm) beds at 5-25°.	HW			42%]— FZ, IR, RO, SN, 100 mm — JT, 30°, UN, RO, SN, 2 mm — JT, 5°, UN, RO, SN, 1 mm]→ CS, IR, RO, SN, 100 mm
2	- 2.0 - - -					a=3.23 d=2.58 a=2.19 d=1.47	81%		→ CS, IR, SO, CO, 100 mm → JT, 45°, PL, SO, CL Clay CO, 2 mm → JT, 0°, IR, RO, SN → JT, 0°, IR, RO, SN → JT, 0°, IR, RO, SN →		
			3.0				lii 🛛 i			li ili i i	0
			-	>	NO CORE: 0.10 m	+				┝┿┛╎╎╎	
			-		INTERBEDDED SILTSTONE AND IRONSTONE: continued.	HW		a=2.59 d=2.04	60%		Defects are: F
	e		4.0-		INTERBEDDED SANDSTONE AND IRONSTONE: fine to coarse grained, pale grey,					╺╧┓┦╎╎	
	Not Observable		-	~~	white, with dark red, orange ironstone, thin to medium bedding at 20-30°.	нw		a=1.29		<u>₽</u> ↓!!!	➡— CS, IR, SO, Clay CO, 20 mm
NMLC	t Obs		-		NO CORE: 0.04 m			d=0.55			=
z 	Ž		-		INTERBEDDED SANDSTONE AND IRONSTONE: continued.					lii h ii	PT, 5°, PL, SO, Clay CO
			5.0 — - -		INTERLAMINATED SANDSTONE AND SILTSTONE: medium to coarse grained, grey, with dark red/orange ironstone thinly laminated at 10-20°.	MVV			90%		JT, 20°, UN, RO, CO PT, 5°, PL, SO, CA CO, 1 mm, incipient JT, 30°, PL, SO, SN, <1 mm, incipient JT, 20°, UN, RO, SN, <1 mm, incipient
			6.0				Ø×	a=0.43 d=0.17			PT, 5°, PL, RO, SN, <1 mm, incipient
			6.0		6.00 to 6.27 m: with pale grey/white silt (low			a=0.23			
			-		strength/ calcite?)			d=0.08			
			-						58%		P— SM, IR, SO, CO, 40 mm
			-								
			7.0 -								- SM, IR, SO, CO, 40 mm
			-								- 70°
			-								
			-					a=7.29		! ! \ ! ! !	
			8.0					d=4.12	90%		
											■— SM, PL, SO, CO, 10 mm
			-								PT, 15 - 20°, PL, RO, CN
AS AD CB W NMI NQ HQ PQ	aug clav was LONM wire wire wire	eline co eline co eline co ndard p	ewing ing ade bit	6mm) 5mm) 0mm)	water inflow complete drilling fluid loss partial drilling fluid loss	covered mbols indicate e recovere	e material) ed	FR fresh *W replaced w strength VL very low	al soil nely wea weathe tly weat rately we y weathe ith A for a	athered red hered eathered ered	defect type planarity PT parting PL planar JT joint CU curved SZ shear zone UN undulating SS shear surface ST stepped CO contact IR Irregular CS crushed seam SM seam
	tes	t			water pressure test result (lugeons) for depth interval shown	vithdrawn uality Des		L low M mediur H high VH very hig EH extrem	gh		SL slickensided CN clean POL polished SN stain SO smooth VN veneer RO rough CO coating VR very rough

client: Point Polaris

principal:

project: Forestway Shopping Centre Development


location: Adjacent to Forest Way

Borehole ID. BH3 sheet: 3 of 3 project no. 754-SYDGE217641 date started: 30 Jul 2018 date completed: 30 Jul 2018 logged by: LP

checked by:

t Way

n a a iti i			-		to Forest Way	face elevation. N	at Casai	field		onal		•	
			pecifie			rface elevation: No Iling fluid: Water	or Speci	lied		0	e from horiz diameter : 5		vane id.:
drillin				<u>,</u>	rial substance						mass defe		vano la.
					material descriptio	n	ంర	estimated	samples,		defect	additional obs	ervations and
method & support	water	RL (m)	depth (m)	graphic log	ROCK TYPE: grain charac colour, structure, minor cor	cterisics,	weathering 8 alteration	strength & Is50 X = axial; O = diametral	field tests & Is(50) (MPa)	core run & RQD	spacing (mm)	(type, inclination, plana thicknes	scriptions rity, roughness, coating, s, other)
a, n		RL	de	grë				╡っゑェ⋛毌	a = axial; d = diametral a=2.71	S ∞	30 300 3000 3000	particular	genera
NMLC	Not Observable		- 9.0 — - - - 10.0 — - - -		INTERLAMINATED SANDSTON SILTSTONE: medium to coarse with dark red/orange ironstone th 10-20°. (continued) Borehole BH3 terminated at 9.50 Target depth	grained, grey, iinly laminated at	SW - FR		d=1.59 a=1.78 d=1.66	100%		BEDROCK	-
			- - - - - 12.0 — - - -										-
			- - - - - 14.0 - - - - -										-
			15.0 — - - - 16.0 — - -										-
AS AD CB W NML NQ HQ PQ	aug aug clav was .CNM wire wire wire	shbore LC cor eline co eline co eline co eline co ndard p	ewing ing ade bit	3mm) 5mm) 0mm)	water 10/10/12, water level on date shown water inflow complete drilling fluid loss partial drilling fluid loss partial drilling fluid loss water pressure test result (lugeons) for depth interval shown	core run & RQD	covered nbols indicate recovere rithdrawn	r y material) d	weathering RS residu XW extren HW highly DW distinc MW modet SW slightly FR fresh *W replaced vstrength VL very lov L low M medium H high	al soil nely weat weather ctly weath rately we y weather ith A for a w	ation* red hered eathered ered	defect type PT parting JT joint SZ shear zone SS shear zone SS shear surface CO contact CS crushed seam SM seam roughness SL slickensided POL polished SO smooth RO rough	planarity PL planar CU curved UN undulating ST stepped IR Irregular coating CN clean SN stain VN veneer CO coating

PointID : BH3 Depth Range: 5.00 - 9.50 m

drawn	LP		client:	Point	Polaris		
approved	VN	a offer v	project:	Forestway Shopping Forestway Sh) Centre [nopping C	Development Centre	
date	10/08/2018	coffey *	title: CORE PHOTOGRAPH BH3				
scale	N.T.S.	A TETRA TECH COMPANY					
original size	A4		project no:	754-SYDGE217641	fig no:	FIGURE 4	rev:

Engineering Log - Borehole

Point Polaris client:

principal:

project: Forestway Shopping Centre Development

Adiacent to Grace Avenue location.

Borehole ID.	BH4
sheet:	1 of 1
project no.	754-SYDGE217641
date started:	26 Jul 2018
date completed:	26 Jul 2018
logged by:	LP

loc	ation:	Ad	jacent t	o Gi	race	Ave	nue				check	ked b	y:	
pos	ition: No	ot Spe	cified					surface elevation: Not Specified	ar	ngle	from ho	orizont	al: 9	90°
			cchio 405, 1	Frack r	nounte	ed		drilling fluid:	hc	ole d	diameter	r : 200	mn	1
dri	illing inf	ormati	ion			mate	rial sub	stance			1			
method &	support 1 2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture	condition	consistency / relative density	han penet mete (kPa ୁ ନ୍ଥୁ ହି	iro- er a)	structure and additional observations
			В					ASPHALT: dark grey.			VSt - H		Т	ASPHALT
		Not Encountered	D		- - - - - - - - - - - - - - - - - - -			Gravelly Sandy CLAY: low - medium plasticity, dark grey/brown, with fine to coarse grained sand and fine to coarse grained gravel. Gravelly Sandy CLAY: medium - high plasticity, brown/grey, with fine to coarse grained sand and fine to coarse grained gravel, with cement. SAND: fine - coarse grained, pale orange, trace o cement, with low to medium plasticity clay. SAND: fine - medium grained, pale orange/red, with medium plasticity clay (Extremely weathered sandstone). Borehole BH4 terminated at 1.1 m Target depth	V	Vp	VD			ROADBASE FILL FILL RESIDUAL SOIL EXTREMELY WEATHERED ROCK
me AD AS HA W * e.g B T	bit sho	oore own by bit	ng*	pene	nud asing etration a co f f f leve		ater	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample S split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetroin test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal	so ba	oil de ised sifica sifica		n :d		consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense

This page has been left intentionally blank

Appendix C – Monitoring Wells

C	:C	ff	e	y								
		ECH CON		,						Hole ID.		BH1
						_	\bigcap		\square	sheet:		1 of 1
Ρ	Pie	zor	ne	ter	Installatio	n Log		$\langle \rangle \rangle$		project n	r	754-SYDGE217641
clie	ent:	P	oint	Polar	is					date star		26 Jul 2018
	ncipa					7/7				date com		26 Jul 2018
				<i>t</i> urov	Shopping Centre		ant					LP
	oject:									logged by		LP
_	ation			er of F	Russell Avenue an					checked	•	
		Not Sp nt tvpe: (be 7822	DT, Track mounted	drilling fluid	vation: Not Spec : Water	Denc		angle from horizor hole diameter : 52		
		nformat		-	al substance		1	onstruction de	tails			
ళ			Ê	bo	material name						onstruction li company:	cense: Terratest
method	pport fer	RL (m)	depth (m)	graphic log					BH1MW	driller:		Tonatoot
me M	suppo water	RL 1	del	gra	TORSON		ļ		H	• • • • •	s permit no.:	
	Ple		-					-		· A· Concr	ete	
	CASING		-		RESIDUAL SOIL		1.00 m			Cov Cuttin	gs	
— AD/T	- CASING		1-				1.00 11					
			-		EXTREMELY WEATHERED	ROCK	-			Bento	nite	
	¥		2-		BEDROCK		1.90 m 2.00 m	—				-
			-		DEDROCK							
8			-									
018 11:			3-									
0-08-2			-									
<pre>le></pre>			4-							Sand		-
awingF			-									
Ū¥ ▼			- 5-									
241.GP			-									
3E21764 - NMLC			-									
4-SYD			6-				<u>6.00 m</u>			•••		-
RY 75			-									
MMU			7-									
AGE			-									
ONE			-							Bento	nite	
AETER			8-									-
IEZOV			-									
COF			9-									
CDF_0_9_07_LIBRARY.GLB rev.AU_Log_COF PIEZOMETER ONE PAGE SUMMARY_754.SYDGE217641.GPJ_< <drawingfile>>_10-08-2018.11:30</drawingfile>			-									
B rev:/			- 10									_
RY.GL			-									
LIBRA			-									
0 6 0			11-									
CDF			-									
			-									
	see er	& suppor ngineerin	t Ig log fo	or details	graphic log / core recove	ery ID		type	installation date	stickup tip (m) depth (m)	water level (m)	Relative Levels (AHD) stickup tip water level
		0-Oct-12 evel on d			core recovered (graphic symbols	BH1MW	st	tandpipe	26-07-2018	(m) 6.00 m		sucrup up water level
	- v	vater infl	ow		no core recover	ed						
		omplete artial dri		fluid los id loss								
7		ter press										
25		geons) fo erval sho		ı								

P	iez		ne		Inst	allati	on	Log					sł pr	ole ID. neet: roject n				217641
pro	ent: ncipal oject: ation:	: Fo	ores			ng Centr	e Dev	elopm					da Io	ate star ate com gged by necked	npleted: y:	30 Jul 30 Jul LP		
pos	ition:	Not Sp	ecified		Track moun			rface eleva		lot Specified			angle from	m horizoi	ntal: 90°			
	ling in	format			ial substand	ce material na	ıme		piezor	neter constru	ction det	ails			onstruction li			
method &	support water	RL (m)	depth (m)	graphic log								BH3MW		driller:) company: s permit no.:	Terrate	st	
	CASING Not Observable Not Observable				TOPSOIL FILL RESIDUAL BEDROCK				0.20 m					Conc Bento Sand				
			7											Bento	nite			
CDF_0_9_0/_LIBKARY.GLB			10— - - - 11— - - -															
me s wa	see eng iter 10 le wa co pa)-Oct-12 vel on c ater infl omplete artial dri	ng log fo 2, water late sho ow	own fluid los id loss		c log / core rec core recover (graphic symbo indicate materia no core reco	red Is I)	ID BH3MW		type standpip		installation date 30-07-2018	stickup (m)	tip depth (m) 5.80 m	water level (m)	Re	lative Le (AHD) tip	vels water level

(lugeons) for depth interval shown

25

This page has been left intention

Appendix D – Laboratory Testing Results

Sydney Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 31 Hope Street Melrose Park NSW 2114

Phone: +61 (2) 8876 0500

COIR	∍y -		Pho	ne: +61 (2) 8876 (0500	
A TETRA TECH COMP	Test Repo	ort		F	Report No: SYDN18	3 S-06169-1 Issue No: 1
Client: Principal: Project No.: Project Name: Lot No.: -	Level 19, 799 Pacific I Chatswood NSW 200 754-SYDN00212AA		ITRE	ALD RECOGNISED	ccredited for compliance with ISO, esting. he results of the tests, calibrations reasurements included in this docu Australian/national standards.	s and/or ument are traceable h
Sample Det	ails					
Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Meth Project Locatio Sample Locatio	n: Forestway Sho	on client				
Test Result	6					
Moisture Conter Date Tested	it (%)	AS 128	9.2.1.1		10.9 3/08/2018	
Comments						
N/A						

Client: Coffey Services Australia Pty Ltd (Chatswood) Level 19, 799 Pacific Highway Chatswood NSW 2067 **Principal:** Project No.: 754-SYDN00212AA Project Name: 754-SYDGE217641 - 754-FORESTWAY SHOPPING CENTRE Lot No.: -TRN: -

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

SYDN18S-06170 26/07/2018 (none) Clay Silt No Specification Submitted by client Forestway Shopping Centre BH2 0.0 - 0.4

Test Results

Description	Method	Result	Limits
CBR At 5.0mm (%)	AS 1289.6.1.1	25	
Maximum Dry Density (t/m³)		1.98	
Optimum Moisture Content (%)		10.5	
Dry Density before Soaking (t/m ³)		1.99	
Density Ratio before Soaking (%)		100	
Moisture Content before Soaking (%)		10.4	
Moisture Ratio before Soaking (%)		99	
Dry Density after Soaking (t/m ³)		1.99	
Density Ratio after Soaking (%)		100	
Swell (%)		0.0	
Moisture Content of Top 30mm (%)		12.6	
Moisture Content of Remaining Depth (%)		13.0	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		7.7	
Curing Time (Hrs)		72.0	
Method of Plasticity Used		-	
Date Tested		10/08/2018	

Comments

N/A

Sydney Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 31 Hope Street Melrose Park NSW 2114

Phone: +61 (2) 8876 0500

Report No: SYDN18S-06170-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Killina

Approved Signatory: Renni Cetinich

(GeoTechnician) NATA Accredited Laboratory Number:431 Date of Issue: 20/08/2018

Sydney Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 31 Hope Street Melrose Park NSW 2114

Phone: +61 (2) 8876 0500

COIR	Ξy		Phone: +61 (2) 88	76 0500
A TETRA TECH COMP		st Report		Report No: SYDN18S-06174-1 Issue No: 1
Client:	Coffey Level	/ Services Australia Pty Ltd (Chatswood) 19, 799 Pacific Highway wood NSW 2067	NATA	Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.
Principal: Project No.: Project Name: Lot No.: -		YDN00212AA DGE217641 - 754-FORESTWAY SHOPPING CENTRE TRN: -	WOALD RECOGNISED	Approved Signatory: Renni Cetinich (GeoTechnician) NATA Accredited Laboratory Number:431 Date of Issue: 20/08/2018
Sample Det	ails			
Sample ID: Client Sample: Date Sampled: Source: Material: Specification: Sampling Meth Project Location Sample Location	nod: on:	SYDN18S-06174 - 26/07/2018 (none) No Specification Submitted by client Forestway Shopping Centre BH4 0.9 - 1.0		
Test Result	S			
Description Moisture Conte Date Tested	nt (%)	Method AS 1289.2.1.1		Result Limits 13.6 3/08/2018
Comments				

Client: Coffey Services Australia Pty Ltd (Chatswood) Level 19, 799 Pacific Highway Chatswood NSW 2067 **Principal:** Project No.: 754-SYDN00212AA Project Name: 754-SYDGE217641 - 754-FORESTWAY SHOPPING CENTRE Lot No.: -TRN: -

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

SYDN18S-06173 26/07/2018 (none) Silty Clay No Specification Submitted by client Forestway Shopping Centre BH4 0.0 - 0.9

Test Results

Description	Method	Result	Limits
CBR At 5.0mm (%)	AS 1289.6.1.1	12	
Maximum Dry Density (t/m³)		1.97	
Optimum Moisture Content (%)		10.6	
Dry Density before Soaking (t/m ³)		1.97	
Density Ratio before Soaking (%)		100	
Moisture Content before Soaking (%)		10.5	
Moisture Ratio before Soaking (%)		98	
Dry Density after Soaking (t/m ³)		1.96	
Density Ratio after Soaking (%)		100	
Swell (%)		0.0	
Moisture Content of Top 30mm (%)		12.1	
Moisture Content of Remaining Depth (%)		12.3	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		2.4	
Curing Time (Hrs)		72.0	
Method of Plasticity Used		-	
Date Tested		10/08/2018	

Comments

N/A

Sydney Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 31 Hope Street Melrose Park NSW 2114

Phone: +61 (2) 8876 0500

Report No: SYDN18S-06173-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

WORLD RECOGNISED

Killina Approved Signatory: Renni Cetinich (GeoTechnician) NATA Accredited Laboratory Number:431 Date of Issue: 20/08/2018

Form No: 18909, Report No: SYDN18S-06173-1

Client: Coffey Services Australia Pty Ltd (Chatswood) Level 19, 799 Pacific Highway Chatswood NSW 2067 **Principal:** Project No.: 754-SYDN00212AA 754-SYDGE217641 - 754-FORESTWAY SHOPPING CENTRE Project Name: Lot No.: -TRN: -

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

SYDN18S-06172 26/07/2018 (none) CH Clay No Specification Submitted by client Forestway Shopping Centre BH3 0.4 - 0.6

Test Results

Description	Method	Result	Limits
Moisture Content (%)	AS 1289.2.1.1	13.1	
Date Tested		3/08/2018	
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	10.5	
Mould Length (mm)		125	
Liquid Limit (%)	AS 1289.3.1.1	43	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	15	
Plasticity Index (%)	AS 1289.3.3.1	28	
Date Tested		9/08/2018	

Comments

N/A

Sydney Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 31 Hope Street Melrose Park NSW 2114

Phone: +61 (2) 8876 0500

Report No: SYDN18S-06172-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Killina

Approved Signatory: Renni Cetinich (GeoTechnician) NATA Accredited Laboratory Number:431 Date of Issue: 20/08/2018

Form No: 18909, Report No: SYDN18S-06172-1

Client: Coffey Services Australia Pty Ltd (Chatswood) Level 19, 799 Pacific Highway Chatswood NSW 2067 **Principal:** Project No.: 754-SYDN00212AA Project Name: 754-SYDGE217641 - 754-FORESTWAY SHOPPING CENTRE Lot No.: -TRN: -

Sample Details

Sample ID: **Client Sample:** Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:

SYDN18S-06171 26/07/2018 (none) Silty Clay No Specification Submitted by client Forestway Shopping Centre BH2 0.4 - 0.9

Test Results

Description	Method	Result	Limits
CBR At 5.0mm (%)	AS 1289.6.1.1	8	
Maximum Dry Density (t/m³)		1.92	
Optimum Moisture Content (%)		13.2	
Dry Density before Soaking (t/m ³)		1.90	
Density Ratio before Soaking (%)		99	
Moisture Content before Soaking (%)		13.2	
Moisture Ratio before Soaking (%)		100	
Dry Density after Soaking (t/m ³)		1.89	
Density Ratio after Soaking (%)		99	
Swell (%)		0.5	
Moisture Content of Top 30mm (%)		15.9	
Moisture Content of Remaining Depth (%)		14.5	
Compactive Effort		Standard	
Surcharge Mass (kg)		4.50	
Period of Soaking (Days)		4	
Oversize Material		Excluded	
Oversize Material (%)		1.3	
Curing Time (Hrs)		72.0	
Method of Plasticity Used		-	
Date Tested		10/08/2018	

Comments

N/A

Sydney Laboratory

Coffey Services Australia Pty Ltd ABN 55 139 460 521 31 Hope Street Melrose Park NSW 2114

Phone: +61 (2) 8876 0500

Report No: SYDN18S-06171-1

Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Killina

WORLD RECOGNISED

Approved Signatory: Renni Cetinich (GeoTechnician) NATA Accredited Laboratory Number:431 Date of Issue: 20/08/2018

Certificate of Analysis

Coffey Geotechnics Pty Ltd Chatswood Level 18, Tower B, Citadel Tower 799 Pacific Highway Chatswood NSW 2067

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

A 44 a		
Atte	ntio	n:

Renni Cetinich

mgt

610814-S
FORESTWAY SHOPPING CENTRE
SYDGE217641
Aug 03, 2018

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH1 0.9-1.0 Soil S18-Au05667 Jul 25, 2018	BH2 0.4-0.9 Soil S18-Au05668 Jul 25, 2018	BH2 0.9-1.0 Soil S18-Au05669 Jul 25, 2018	BH3 0.4-0.6 Soil S18-Au05670 Jul 30, 2018
Test/Reference	LOR	Unit				
Chloride	10	mg/kg	72	100	40	21
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	110	200	81	130
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.5	6.0	5.6	6.8
Resistivity*	0.5	ohm.m	470	250	620	380
Sulphate (as SO4)	10	mg/kg	98	260	100	180
% Moisture	1	%	9.5	12	8.3	9.6

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			BH4 0.9-1.0 Soil S18-Au05671 Jul 25, 2018	BH4 1.0-1.1 Soil S18-Au05672 Jul 25, 2018
Test/Reference	LOR	Unit		
Chloride	10	mg/kg	< 10	< 10
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	23	23
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.8	5.8
Resistivity*	0.5	ohm.m	2200	2200
Sulphate (as SO4)	10	mg/kg	28	46
% Moisture	1	%	12	7.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

mgt

Description Chloride	Testing Site Sydney	Extracted Aug 09, 2018	Holding Time 28 Dav
- Method: E045 /E047 Chloride	Sydney	Aug 09, 2018	20 Day
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Aug 09, 2018	7 Day
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Aug 09, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			_
Sulphate (as SO4)	Sydney	Aug 09, 2018	28 Day
- Method: E045 Anions by Ion Chromatography			
% Moisture	Sydney	Aug 06, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

This page has been left intentionally blank