

RESIDENTIAL DEVELOPMENT 4 DELMAR PARADE & 812 PITTWATER ROAD, DEE WHY NSW

Prepared for:

LANDMARK GROUP AUSTRALIA PTY LTD

Reference: P3018_01 rev3

2 May 2024

1 PROJECT BACKGROUND

Morrow Geotechnics Pty Ltd has undertaken a Geotechnical Investigation to provide geotechnical advice and recommendations for the proposed development at 4 Delmar Parade & 812 Pittwater Road, Macquarie Park NSW (the site). At the time of producing this report DA2022/0145 was active with a modification 2024/0083 being assessed.

The following reports have been previously prepared for the site:

- AssettGeoEnviro, Proposed Mixed-use Development, 4 Delmar Parade & 812 Pittwater Road, Dee Why, NSW; ref 6561-G1 and dated 25 November 2021 (AGE 2021);
- Reditus Consulting Pty Ltd, Preliminary Site Investigation, 4 Delmar Parade & 812 Pittwater Road, Dee Why; project number 21181, version 2 and dated 1 December 2021 (RC 2021);
- Geosyntec Consultants Pty Ltd, Detailed Site Investigation, 4 Delmar Parade & 812 Pittwater Road, Dee Why; project number 21325 and dated 4 May 2022 (GC 2022); and
- Reditus Consulting Pty Ltd, *Dewatering Management Plan, 4 Delmar Parade & 812 Pittwater Road, Dee Why;* report number 21181RP01, version 1 and dated 7 June 2022 (RC 2022).
- Morrow Geotechnics Pty Ltd, Site Hydrogeology Report, 4 Delmar Parade & 812 Pittwater Road, Dee Why NSW, referenced P3018 07 rev1, and dated 2 May 2024 (MG 2024-1).
- Morrow Geotechnics Pty Ltd, Dewatering Management Plan, 4 Delmar Parade & 812 Pittwater Road, Dee Why NSW, referenced P3018_08 rev1, and dated 2 May 2024 (MG 2024-2).

Architectural drawings for the proposed development have been prepared by Rothe Lowman Property Pty Ltd, Project Number 221054 and dated 16 January 2024. From the drawings provided, Morrow Geotechnics understands that the proposed development involves construction of multi-storey apartment building over a two to three level basement carpark. Morrow understands the development involves excavation to a maximum depth of extends to RL 13.7 to 18.095 mAHD across the eastern half of the site and to RL 21.25 mAHD at the south-western corner of the site.

1.1 Investigation Intent

The purpose of the investigation is to provide geotechnical advice and recommendations for structural design. These recommendations include:

- Building foundation options, including design parameters;
- Excavation support options, including lateral earth pressures and pile design parameters;
- Lot classification in accordance with AS2870;
- Earthquake site classification in accordance with AS1170.4; and
- Advice on geotechnical construction constraints.

1.2 Published Geological Map

The Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9029-9130 (DMR 1985) indicates the site to be underlain by Hawkesbury Sandstone, which comprises medium to coarse grained quartz sandstone.

1.3 Published Soil Landscapes

The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 indicates that the residual landscape at the site is located on the boundary of the Gymea and Newport Landscapes.

The Gymea landscape type typically includes undulating to rolling rises and low hills on Hawkesbury Sandstone. Soils are generally shallow to moderately deep (0.3 - 1 m) yellow earths and earthy sands. These soils are noted to present localized steep slopes, high soil erosion hazard, rock outcrop and shallow highly permeable soil.

The Newport landscape type typically includes gently undulating plains of Holocene sands to rolling rises over other soils or bedrock. Soils are generally shallow (< 0.5 m) siliceous sands overlaying moderately deep buried sands (< 1.5m) yellow podzolic soil with sandy topsoil on crests and deep (> 2.0m) podzols in depressions earthy sands. These soils are noted present high soil erosion hazards, localized steep slopes, very low soil fertility and non-cohesive topsoil.

2 OBSERVATIONS

2.1 Investigation Methods

Fieldwork was undertaken by Morrow Geotechnics on 29 & 30 August and 1,2, 3 & 8 November 2023. Work carried out as part of this investigation includes:

- Review of publicly available information from previous reports in the project area, published geological and soil mapping and government agency websites;
- Site walkover inspection by an experienced Engineering Geologist to assess topographical features, condition of surrounding structures and site conditions;
- Drilling of five boreholes (BH101, BH102, BH103, BH104 and BH105). Boreholes BH101, BH102 and BH105 were drilled using solid flight augers equipped with a tungsten-carbide bit (TC bit), BH103 was drilled using washboring techniques and BH104 was drilled using a tight access man portable rig. The boreholes were extended beyond TC bit refusal by NMLC coring techniques to depths of between 12.99 and 22.22 metres below ground level (mBGL). Rock core was boxed and photographed, and point load tests were undertaken on selected core sample to assess rock strength;
- Groundwater observations within boreholes during drilling; and
- Installation of four groundwater monitoring wells W1, W2, W3 and W4 to the full depth of borehole within BH101, BH102, BH103 and BH104 immediately following drilling.

Borehole locations are shown on Figure 1 and borehole logs are presented in Appendix A.

2.2 Subsurface Conditions

The stratigraphy at the site is characterized by topsoil and fill overlying alluvial sands, residual clay, sandstone and shale bedrock. Observations taken during the investigation have been used to produce a stratigraphic model of the site. The observed stratigraphy has been divided into seven geotechnical units.

An approximately 2 m thick shale band was intersected across the site between approximate RLs 24 and RL 22 in BH102, RLs 18 and 16 mAHD in BH103 and RLs 16 and 18 in BH104. This shale band can be expected to be encountered at bulk excavation level (BEL) in some areas of the site and within the sockets/toe of some piles.

A summary of the subsurface conditions across the site, interpreted from the investigation results, are presented in **Table 1** and **Table 2**. More detailed descriptions of subsurface conditions at the test locations are available in the borehole logs presented in **Appendix A**. The details of the method of soil and rock

classification, explanatory notes and abbreviations adopted in the borehole logs are also presented in **Appendix A**.

TABLE 1 SUMMARY OF INFERRED SUBSURFACE CONDITIONS

Unit	Material	Comments
1	Fill	Generally a concrete slab overlying gravely SAND, loose and moist.
2	Alluvial Soil	Alluvial SAND and Sandy CLAY, loose to dense and stiff to very stiff, low to medium plasticity, fine to medium grained with medium sized iron stone and quartz gravels.
3	Residual Soil	Residual sandy to gravelly CLAY, stiff to very stiff grading to hard, medium plasticity, fine to medium grained with medium sized iron stone and sandstone gravels and extremely weathered sandstone bands.
4	Class V and IV Sandstone	Extremely to highly weathered SANDSTONE, very low to low strength, medium grained. Defects within unit 4 are generally horizontally orientated bedding partings with infrequent joints inclined at 10 to 60°.
5	Class III Sandstone	Moderate to slightly weathered SANDSTONE, medium to high strength, medium grained. Defects within unit 5 are generally horizontally orientated bedding partings with infrequent joints inclined at 10 to 60°.
6	Class V Shale	SHALE, SILTSTONE and LAMINITE, extremely to moderately weathered, very low to low strength. Defects within Unit 6 are generally horizontally oriented bedding partings, joints inclined to 45° and clay seams.
7	Class III Shale	SHALE, moderately to slightly weathered, medium to high strength. Defects within Unit 7 are generally horizontally oriented bedding partings, joints inclined to 45°. Defect Spacing >200mm.

TABLE 2 ENCOUNTERED GEOTECHNICAL CONDITIONS

		Appr	ox. Depth Ra	inge of Unit 1	mBGL (RL m	AHD)	
	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7
	Fill	Alluvial	Residual	Class V/IV	Class III	Class V	Class III
	FIII	Soil	Soil	Sandstone	Sandstone	Shale	Shale
BH1/CPT1*	0.0 to 1.0	1.0 to 3.5	3.5 to 6.0	6.0 to 8.93	8.93 to 13.9+	-	-
(AGE21)	(28.9 to 27.9)	(27.9 to 25.4)	(25.4 to 23.9)	(23.9 to 20.97)	(20.97 to 4.97+)	-	-
BH2*	0.0 to 1.6	-	1.6 to 3.7	3.7 to 5.63 & 6.6 to 8.4	8.4 to 13.95+	5.63 to 6.6	-
(AGE21)	(29.25 to 27.65)		(27.65 to 25.55)	(25.55 to 23.62 & 22.65 to 20.85)	(20.85 to 15.3+)	(23.62 to 22.65)	-
внз/срт4*	0.0 to 0.5	-	-	0.5 to 6.36 & 7.09 to 7.7	7.7 to 14.2+	-	6.36 to 7.09
(AGE21)	(30.0 to 29.5)	-	-	(29.5 to 23.64 & 22.91 to 22.3)	(22.3 to 15.8+)	-	(23.64 to 22.91)
ВН4*	0.0 to 0.5	-	-	0.5 to 6.0 & 9.12 to 14.55+	6.0 to 7.46	7.46 to 9.12	-
(AGE21)	(31.92 to 31.42)	-	-	(31.42 to 25.92 & 22.8 to 17.37+)	(25.92 to 18.46)	(18.46 to 22.8)	-
BH5*	0.0 to 0.2	-	-	0.2 to 2.95	2.95 to 8.61 & 9.81 to 15.0+	8.61 to 9.81	-
(AGE21)	(32.66 to 32.44)	-	-	(32.44 to 29.71)	(29.71 to 24.05 & 22.85 to 17.66+)	(24.05 to 22.85)	-

		Appr	ox. Depth Ra	ange of Unit 1	mBGL (RL m	AHD)	
	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7
	Fill	Alluvial	Residual	Class V/IV	Class III	Class V	Class III
		Soil	Soil	Sandstone	Sandstone	Shale	Shale
BH6/CPT5*	0.0 to 0.2	0.2 to 3.2	-	3.2 to 9.15 & 10.1 to 11.06	11.06 to 14.0+	9.15 to 10.1	-
(AGE21)	(32.08 31.88)	(31.88 to 28.88)	-	(28.88 to 22.93 & 21.98 to 21.02)	(21.02 to 18.08)+	(22.93 to 21.98)	-
ВН7/СРТ2*	0.0 to 0.9	0.9 to 2.9	2.9 to 9.0	9.0 to 12.78	-	12.78 to 15.06+	-
(AGE21)	(31.8 to 29.9)	(29.9 to 28.9)	(28.9 to 22.8)	(22.8 to 19.02)	-	(9.1519.02 to 16.74+)	-
вн8/срт3*	0.0 to 2.3	2.3 to 5.2	5.2 to 15.0	15.0 to 16.0+	-	-	-
(AGE21)	(30.51 to 28.21	(28.21 to 25.31)	(25.31 to 15.51)	(15.51 to 14.51+)		-	-
	0.0 to 0.3	0.3 to 6.0	-	-	6.0 to 13.0+	-	-
BH101	(28.8 to 28.5)	(28.5 to 22.8)	-	-	(22.8 to 15.8)	-	-
	0.0 to 1.3	1.3 to 2.21	2.21 to 2.8	2.8 to 4.8	4.8 to 8.06 & 10.0 to 12.99 +	8.06 to 9.0	9.0 to 10.0
BH102	(32.1 to 30.8)	(30.8 to 29.89)	(29.89 to 29.3)	(29.3 to 27.3)	(29.3 to 24.04 & 22.1 to 19.11)	(24.04 to 23.1)	(23.1 to 22.1)
BH103	0.0 to 0.7	0.7 to 7.1	-	-	7.1 to 13.09	13.09 to 14.0	14.0 to 15.0+
BH103	(31.5 to 30.8)	(30.8 to 24.4)	-	-	(24.4 to 18.41)	(24.4 to 17.5)	(17.5 to 16.5)
	0.0 to 1.4	1.4 to 3.1	-	3.1 to 3.9	3.9 to 15.95 & 17.7 to 20.91+	15.95 to 17.7	-
BH104	(31.8 to 30.4)	(30.4 to 28.7)	-	(28.7 to 27.9)	(27.9 to 15.85 & 14.1 to 10.89)	(15.85 to 14.1)	-
BU10F	0.0 to 0.4	0.4 to 5.0	5.0 to 7.6	7.6 to 11.15	11.15 to 22.22+	-	-
BH105	(28.5 to 28.1)	(28.1 to 23.5)	(23.5 to 20.9)	(20.9 to 17.35)	(17.35 to 6.28)	-	-

Notes:

Depths shown are based on material observed within test locations and will vary across the site

2.3 Groundwater Observations

Four monitoring wells were installed within BH101, BH102, BH103 and BH104 as part of the investigation. Further discussion of the geological and hydrogeological conditions at the site is provided in the Site Hydrogeology Report MG2024-1 and in the Dewatering Management Plan MG2024-2.

3 GEOTECHNICAL RECOMMENDATIONS FOR DESIGN

3.1 Excavation Retention

Temporary batters may be considered for retention during basement excavation only where adequate room for full batter construction is available. Temporary batter slopes of 1V:1H will be possible for all units above the water table provided that surface water is diverted away from the batter faces and batter heights are kept to less than 4m. Where batters extend beyond 4 m height benching may be required and further advice should be sought from a qualified geotechnical engineer. Permanent batters of 2H:1V may be employed for excavation design above the water table. Permanent batters will require surface protection or revegetation to prevent erosion and slaking.

For design of flexible shoring systems a triangular pressure distribution may be employed using the parameters provided in **Table 3**. For design of rigid anchored or braced walls, a trapezoidal earth pressure distribution should be used with a maximum pressure of 0.65.K_a.γ.H (kPa), where 'H' is the effective vertical height of the wall in metres.

TABLE 3 EARTH PRESSURE PARAMETERS

	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7
Material	Fill	Alluvial Soil	Residual Soil	Class V/IV Sandstone	Class III Sandstone	Class V Shale	Class III Shale
Unit Weight (kN/m³)	18	18	20	23	24	22	24
Saturated Unit Weight (kN/m³)	19	19	21	24	24	23	24
an st. At Rest, Ko	0.50	0.56	0.56	0.43	0.33	0.53	0.44
At Rest, Ko Passive, Kp Passive, Kp Active, Ka	3.00	2.56	2.56	3.69	5.04	2.77	3.54
Active, Ka	0.33	0.39	0.39	0.27	0.20	0.36	0.28
Drained Cohesion, c' (kPa)	0	5	7	40	250	12	36
Friction Angle, φ' (°)	30	26	26	35	42	28	34
Elastic Modulus (MPa)	5	15	25	120	600	75	200
Poisson's Ratio	0.30	0.30	0.30	0.22	0.20	0.25	0.25

Table 3 Notes

- 1 Unit Weight is based on visual assessment only and may vary by ±10%.
- 2 Earth pressures are provided on the assumption that the ground behind the retaining wall is flat and drained.

In addition, design of retaining walls should consider the following:

- Appropriate surcharge loading from construction equipment, vehicular traffic and neighbouring structures at finished surface level should be taken into account in the retention design. Surcharge loads on retention structures may be calculated using a rectangular stress block with an earth pressure coefficient of 0.5 applied to surcharge loads at ground surface level.
- Anchor design should ignore the contribution of any bonded length within a wedge which extends upwards at 45° from the base of the excavation to account for a failure wedge forming behind the shoring system.

Earth pressure coefficients with **Table 3** are provided on the assumption that the ground behind the retaining wall is flat and drained. For cases where the ground profile rises at more than 5° behind the retaining system detailed design input should be sought from a geotechnical engineer.

Surcharge loads on retention structures may either be modelled directly through finite element inputs in programs such as Plaxis or Wallap, or they may be calculated using a rectangular stress block with an earth pressure coefficient of 0.5 applied to surcharge loads at ground surface level. The retaining walls should be designed to withstand hydrostatic pressure from 3 mBGL unless permanent drainage is incorporated in the wall design.

3.2 Soil and Rock Excavatability

The expected ability of equipment to excavate the soil and rock encountered at the site is summarised in **Table 4**. This assessment is based on available site investigation data and guidance on the assessment of excavatability of rock by Pettifer and Fookes (1994). The presence of medium to high strength bands in lower strength rock and the discontinuity spacing may influence the excavatability of the rock mass.

TABLE 4 SOIL AND ROCK EXCAVATABILITY

Unit	Material	Excavatability
1	Fill	
2	Alluvial Soil	Easy digging by 20t Excavator
3	Residual Soil	
4	Class V/IV Sandstone	Hard ripping by 20t Excavator
5	Class III Sandstone	Hydraulic hammering will be required within Unit 5
6	Class V Shale	Moderate to hard ripping by 20t Excavator
7	Class III Shale	Hydraulic hammering will be required in medium to high strength shale within Unit 7

The excavation methodology may also be affected by the following factors:

- Scale and geometry of the excavation;
- Availability of suitable construction equipment;
- Potential reuse of material on site; and
- Acceptable excavation methods, noise, ground vibration and other environmental criteria.

3.3 Excavation Vibration Considerations

As a guide, safe working distances for typical items of vibration intensive plant are listed in **Table 5**. The safe working distances are quoted for both "cosmetic" damage (refer British Standard BS 7385:1993) and human comfort (refer NSW Environmental Protection Agency Vibration Guideline). The safe working distances should be complied with at all times, unless otherwise mitigated to the satisfaction of the relevant stakeholders.

TABLE 5 RECOMMENDED SAFE WORKING DISTANCES FOR VIBRATION INTENSIVE PLANT

Plant Item	Rating/Description	Safe Working Dis	tance
		Cosmetic Damage (BS 7385:1993)	Human Response (EPA Vibration Guideline)
Vibratory Roller	< 50 kN (typically 1-2 tonnes)	5 m	15 m to 20 m
	< 100 kN (typically 2-4 tonnes)	6 m	20 m
	< 200 kN (typically 4-6 tonnes)	12 m	40 m
	< 300 kN (typically 7-13 tonnes)	15 m	100 m
	< 300 kN (typically 13-18 tonnes)	20 m	100 m
	< 300 kN (typically >18 tonnes)	25 m	100 m
Small Hydraulic Hammer	300 kg – 5 to 12 t excavator	2 m	7 m
Med Hydraulic Hammer	900 kg – 12 to 18 t excavator	7 m	23 m
Large Hydraulic Hammer	1600 kg – 18 to 34 t excavator	22 m	73 m
Vibratory Pile Driver	Sheet Piles	2 m to 20 m	20 m
Pile Boring	≤ 800 mm	2m (nominal)	N/A
Jackhammer	Hand held	1 m (nominal)	Avoid contact with structure

Table 5 Notes:

In relation to human comfort (response), the safe working distances in **Table 5** relate to continuous vibration and apply to residential receivers. For most construction activities, vibration emissions are intermittent in nature and for this reason, higher vibration levels, occurring over shorter periods are permitted, as discussed in British Standard BS 6472-1:2008.

The safe working distances provided in **Table 5** are given for guidance only. Monitoring of vibration levels may be required to ensure vibrations levels remain below threshold values during the construction period.

3.4 Foundation Design

It is not recommended that shallow footings or slabs found within Unit 1 material due to the potential for differential settlement caused by footings bridging between materials of varying stiffness. Shallow footings and slabs at the site should be designed in accordance with AS2870:2011 based on a Site Classification of 'A.' The site classification has been provided on the basis that the performance expectations set out in Appendix B of AS2870–2011 are acceptable and that future site maintenance will be undertaken in accordance with CSIRO BTF 18.

The parameters given in **Table 6** may be used for the design of pad footings and bored piles. Morrow Geotechnics recommends that a Preliminary Geotechnical Strength Reduction Factor (GSRF) of 0.4 is used for the design of piles in accordance with AS 2159:2009 if no allowance is made for pile testing during construction. Should pile testing be nominated, the GSRF may be reviewed and a value of 0.55 to 0.65 may be expected.

¹ More stringent conditions may apply to heritage buildings or other sensitive structures.

Ultimate geotechnical strengths are provided for use in limit state design. Allowable bearing pressures are provide for serviceability checks. These values have been determined to limit settlements to an acceptable level for conventional building structures, typically less than 1% of the minimum footing dimension.

TABLE 6 PAD FOOTING AND PILE DESIGN PARAMETERS

		Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7
Ma	aterial	Fill	Alluvial Soil	Residual Soil	Class V/IV Sandstone	Class III Sandstone	Class V Shale	Class III Shale
Allowable Pressure	•	N/A	N/A	150	1000	3500	700	2000
	Vertical End ressure (kPa)	N/A	N/A	450	3000	10500	2100	6000
Elastic Mo	odulus (MPa)	5	15	25	120	600	75	200
Ultimate Shaft	In Compression	0	0	25	150	800	75	200
Adhesion (kPa) In Tension		0	0	12.5	75	400	37.5	100
Susceptib Liquefact	•	Med	Med	Low	Low	Low	Low	Low

Table 6 Notes:

- Side adhesion values given assume there is intimate contact between the pile and foundation material. Design engineer to check both 'piston' pull-out and 'cone' pull-out mechanics in accordance with AS4678-2002 Earth Retaining Structures.
- 2 Susceptibility to liquefaction during an earthquake is based on the following definition:
 - Low Medium to very dense sands, stiff to hard clays, and rock
 - Medium Loose to medium dense sands, soft to firm clays, or uncontrolled fill below the water table

 High Very loose sands or very soft clays below the water table
- Allowable Bearing Pressure provided for Unit 5 Class II/I Sandstone will require on site verification of rock quality by spoon testing of a minimum of 50% of the pad footings to 2 times the minimum pad footing width.

To adopt these parameters we have assumed that the bases of all pile excavations are cleaned of loose debris and water and inspected by a suitably qualified Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used.

Selection of footing types and founding depth will need to consider the risk of adverse differential ground movements within the foundation footprint and between high level and deeper footings. Unless an allowance for such movement is included in the design of the proposed development we recommend that all new structures found on natural materials with comparable end bearing capacities and elastic moduli.

3.5 AS1170 Earthquake Site Risk Classification

Assessment of the material encountered during the investigation in accordance with the guidelines provided in AS1170.4-2007 indicates an earthquake subsoil class of Class C_e – Shallow Soil for the site.

3.6 Site Filling and Earthworks

All earthworks should be carried out in accordance with AS3798-2007 Guidelines on Earthworks for Commercial and Residential Developments. We recommend the following earthworks for excavation, fill placement and subgrade preparation for working platforms, footings and basement slab construction, if required:

- Strip any existing fill material from the development footprint to a depth of 2 m. Segregate unsuitable material (e.g. deleterious material) and remove from site in accordance with NSW DECCW Waste Classification Guidelines Part 1: Classify Waste. All material to be placed as fill at the site should comply with the requirements of AS3798 2007 Guidelines on Earthworks for Commercial and Residential Developments and be free of unsuitable material, including:
 - Particle dimensions not exceeding two thirds (2/3) of the loose layer thickness;
 - Organic soils, root affected soil, decaying vegetation or other deleterious substances;
 - Materials contaminated through past site history;
 - Silts or materials subject to volume change; and
 - Material that contains wood, metal, plastic, boulders, soluble or perishable material.
- A suitably qualified Geotechnical Engineer is to assess the condition of the exposed material at design level to assess the suitability of the prepared surface to act as foundation or subgrade.

Suitable fill material should be recompacted to design subgrade levels in no greater than 200 mm lifts in accordance with AS3798-2007.

STATEMENT OF LIMITATIONS

The adopted investigation scope was limited by site access restrictions due to presence of structures at the site at the time of our investigation and by the investigation intent. Further geotechnical inspections should be carried out during construction to confirm both the geotechnical model and the design parameters provided in this report.

Your attention is drawn to the document "Important Information", which is included in Appendix B of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Morrow Geotechnics, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

REFERENCES

AS1726:1993, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling – Design and Installation, Standards Australia.

AS2870:2011, Residential Slabs and Footings, Standards Australia.

AS3798:2007, *Guidelines on Earthworks for Commercial and Residential Developments*, Standards Australia.

Chapman, G.A. and Murphy, C.L. (1989), Soil Landscapes of the Sydney 1:100000 sheet. Soil Conservation Services of NSW, Sydney.

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1985) Wollongong-Port Hacking 1:100,000 Geological Series Sheet 9029-9129 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

Pells (2004) Substance and Mass Properties for the Design of Engineering Structures in the Hawkesbury Sandstone, Australian Geomechanics Journal, Vol 39 No 3

6 CLOSURE

Please do not hesitate to contact Morrow Geotechnics if you have any questions about the contents of this report.

For and on behalf of Morrow Geotechnics Pty Ltd,

Andrew Butel

Engineering Geologist

Alan Morrow

Principal Geotechnical Engineer

0405 843 933

Bellambi, NSW

info@morrowgeo.com.au

Map description	P3018 - Borehole L	ocation Plan rev1								
Site location	4 Delmar Parade, I	4 Delmar Parade, Dee Why NSW								
Client	Landmark Group C	onstruction Australia Pty	Ltd							
Project name	Dee Why	Dee Why								
Project No	P3018	P3018 Scale Not to so								

BOREHOLE LOGS AND EXPLANATORY NOTES

Morrow Geotechnics

Bellambi, NSW Boring No.: BH101

Phone: 0405 843 933

Easting : 341051.1 Drill Supplier : MATRIX DRILLING Job Number : P3018 Sheet : 1 OF 2

Northing Elevation Total Dept	: 3410 : 6263 : 28.8 h : 13 m	534.7 (m)	.7 Driller Company Logged By Date				Client : Landmark Group Construction Australia Pty Ltd Project : Dee Why Location : 4 Delmar Parade, Dee Why NSW					
Drilling Method Water	Well Diagram	Testing	3	Soil Origin	Graphic Log	Classification Code	Depth (m)	Elevation (m)	Material	consistency/Density	Moisture	Observations
Datube			_	Residual Filhon-Soil		SC SW	0 <u>.15</u> - <u>0.3</u>		Concrete Fill Clayey to gravelly SAND (SC): low plasticity clay, loose, brown grey, fine to medium grained, medium to coarse sized gravel, moist, (low resistance). Residual Gravelly SAND (SW): loose, orange, fine to medium grained, medium to coarse sized gravel, trace low plasticity clay, moist, (low resistance, sandstone gravels).	L	М	
				ual		sc	- 1 - <u>1.4</u>	27.8	Pecidual Clavou to gravally SAND (SC), medium dense, law placticity day, law	MD		
		6, 8, 12, (N	= 20)	Residua			- 2	26.8	Residual Clayey to gravelly SAND (SC): medium dense, low plasticity clay, low plasticity, orange, fine to medium grained, medium sized gravel, moist, (low resistance, sandstone and quartz gravels).			
ADT	A A STATE OF THE S						- - -3	25.8				
		8, 12, 11, (N	= 23)				-	-				
		7, 6, 9, (N ·	= 15)				4 - -	- 24.8				
				Residual Residual		sc	<u>4.9</u> — 5	23.8	As above, but red orange.			
				Residual		CI	-	<u>-</u>	Residual Sandy CLAY (CI): very stiff, medium plasticity, grey red, medium grained sand, with fine sized gravel, w \approx pl, (low resistance, sandstone gravels).	VSt	w≈ PL	

Morrow Geotechnics

Bellambi, NSW Boring No.: BH101

Phone: 0405 843 933

Easting : 341051.1 Drill Supplier : MATRIX DRILLING Job Number : P3018 Sheet : 2 OF 2

Northing : 6263534.7 Driller Company : MATRIX DRILLING Client : Landmark Group Construction Australia Pty Ltd

Northing : 6263534.7 Driller Company : MATRIX DRILLING Client : Landmark Group Construct Elevation : 28.8(m) Logged By : Mark Peach Project : Dee Why Total Depth : 13 m Date : 30/08/2023 Location : 4 Delmar Parade, Dee Why						Project : Dee Why						
lota	Depti	13 M	Testing	Date	. 30/08/2	U23		Τ	Location . 4 Delinar Parade, Dee Wily NSW			
Drilling Method	Water	Well Diagram	PR	Soil Origin	Graphic Log	Classification Code	Depth (m)	Elevation (m)	Material Description	Sonsistency/Density	Moisture	Observations
ADT			22, (N = 44) &		SST		22.8	Extremelyweathered, rock Sandy CLAY (SST) : hard, low plasticity, light grey, medium grained sand, trace fine to medium sized gravel, w ≈ pl, (low to medium resistance).	Н		
							-	-	6.17m : Commenced NMLC Coring;			
							- 7					
							-					
							-	-				
							— 8	20.8				
							-	-				
							-	_				
							— 9 -	19.8				
							-	-				
							_ 10	18.8				
							-	-				
							-	<u>-</u>				
							— 11	17.8				
							-	-				
							-	_				

Morrow Geotechnics

Bellambi, NSW Boring No.: BH101

Phone: 0405 843 933

Easting : 34105.1 Drill Supplier : MATRIX DRILLING Job Number : P3018 Sheet : 2 OF 3
Northing : 6263534.7 Driller Company : MATRIX DRILLING Client : Landmark Group Construction Australia Pty Ltd

Northing Elevation Total De	n	: 6263534 : 28.8(m) : 13 m	.7		ler Company ged By	any : MATRIX DRILLING Client : Landmark Group Construction Australia : Mark Peach Project : Dee Why : 30/08/2023 Location : 4 Delmar Parade, Dee Why NSW								
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (05) si	U.S. Estimated H.S. Strength	EHS Weathering	Depth (m)	- Elevation (m)	Graphic Log	Classification Code	Material Description	30 Defect Spacing 300 (mm)	Defect Depth	Defect Description type, inclination, planarity roughness, coating, thickness
			ROD = 26% TCR = 100%			sw	- - -6	22.8	1000	SST	rock SANDSTONE: slightly weathered, medium strength, grey, fine to medium grained, (massive, subvertical joints).		- - - 6	—6.24, J, defect bound: 6.20m to 6.28m, 80°, STP, CL, C
			RQD = 52% TCR = 100%	d: 0.34, a: 0.38			- - 7	21.8					- - 7 -	6.3.5, J, defect bounds 6.3.4m to 6.37m, 80°, STP, CL, C -6.8, J, defect bounds 6.65m to 6.93m, 80°, RO, STP, CL, OP -77.1, , IR, CL, OP -7.34, P, clay coating, 6°, RO, CV, CT, OP 7.38, P, clay coating, PL, CT, OP 7.46, P, clay coating, 7.46, P, clay coating,
NMLC Coring			ROD = 43% TCR = 87%	d: 0.51, a:0.55			8	20.8					- - 8 -	1 7.46, P. clay coating 6°, RO, PL, CT, OP 7.64, J., defect bound 7.59m to 7.68m, 70°, IR, CL, C 7.87, P. 5°, RO, PL, C 7.87, P. 5°, RO, PL, C 8.19-8.39, XWS, infiling to the clay and extremely weathered sandstone 3°, IR, CT,
				d: 0.46, a: 0.76			- 9 -						- - - -	9,33, P, clay coating, 4°, PL, CT, OP 9,42, P, 5°, , STP, CL, OP 9,5-9,5-1, IS, infilled clay, 3°, RO, UN, CL, C 9,66, P, 4°, RO, PL, C 9,76, P, 3°, , PL, CL, C 9,89, P, 4°, IR, CL, C 9,99, P, 3°, NO, PL, CL, C


Morrow Geotechnics

Bellambi, NSW Boring No.: BH101

Phone: 0405 843 933

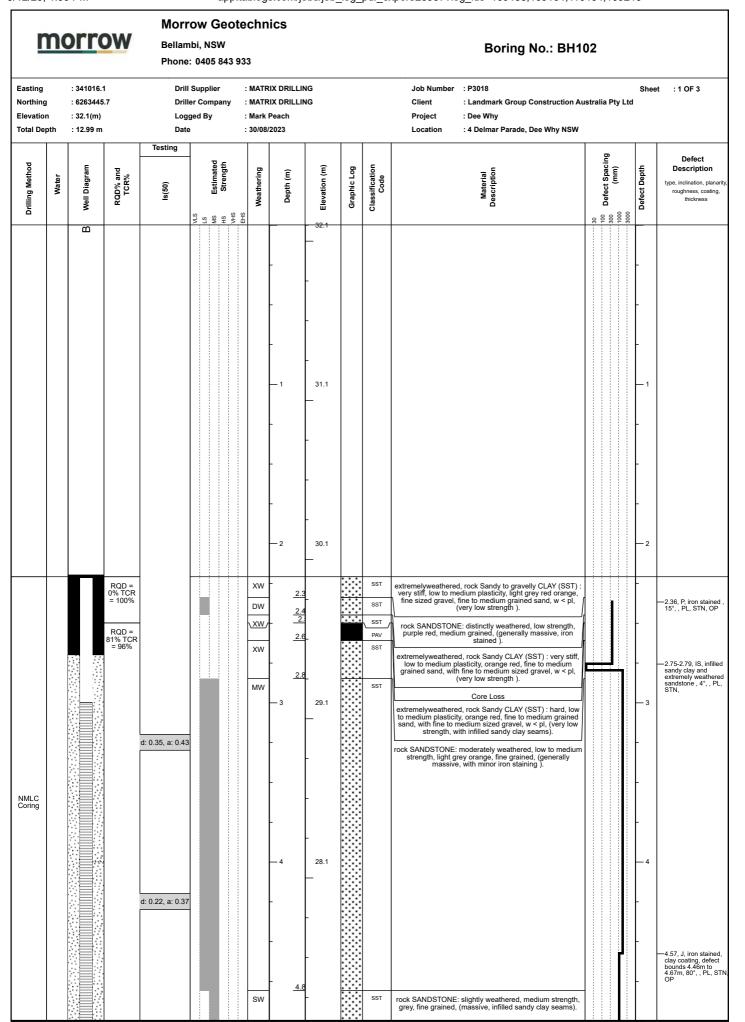
Easting : 341051.1 Drill Supplier : MATRIX DRILLING Job Number : P3018 Sheet : 3 OF 3

Northing Elevation Total De	n	: 341051. : 6263534 : 28.8(m) : 13 m		Drill Log Date	Supplier er Company ged By						Client	: P3018 : Landmark Group Construction Ai : Dee Why : 4 Delmar Parade, Dee Why NSW	ustralia Pty Ltd	Shee	et :3 OF 3
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (20)sı	S S Estimated S Strength	HS Weathering	Depth (m)	Elevation (m)	Graphic Log	Classification Code		Material Description	00 Defect Spacing 000 (mm)	Defect Depth	Defect Description type, inclination, planarity roughness, coating, thickness
NMLC			RQD = 85% TCR = 100%	d: 0.71, a: 0.43		SW SW	- 11 - 11.	- 18.8 - 17.8 - 16.8 		SST	As above, but (gen	erally massive, minor carbonaceous laminations).	000 001 001	- 11 - 12	-10.08, P, 3°, , UN, CL -10.17, P, 6°, , IR, CL, OP 10.21, P, 3°, RO, IR, C 10.23, J, defect bounds 10.20m to 10.25m, SRO, PL 10.27, J, defect bounds 10.24m to 10.25m, sandy day coaling, 75°, PL, CL 10.51, J, defect bound 10.25m, sinflied extrement weather sending to 10.50m, infilled extrement sen
							14 	14.8 - - -						14 	

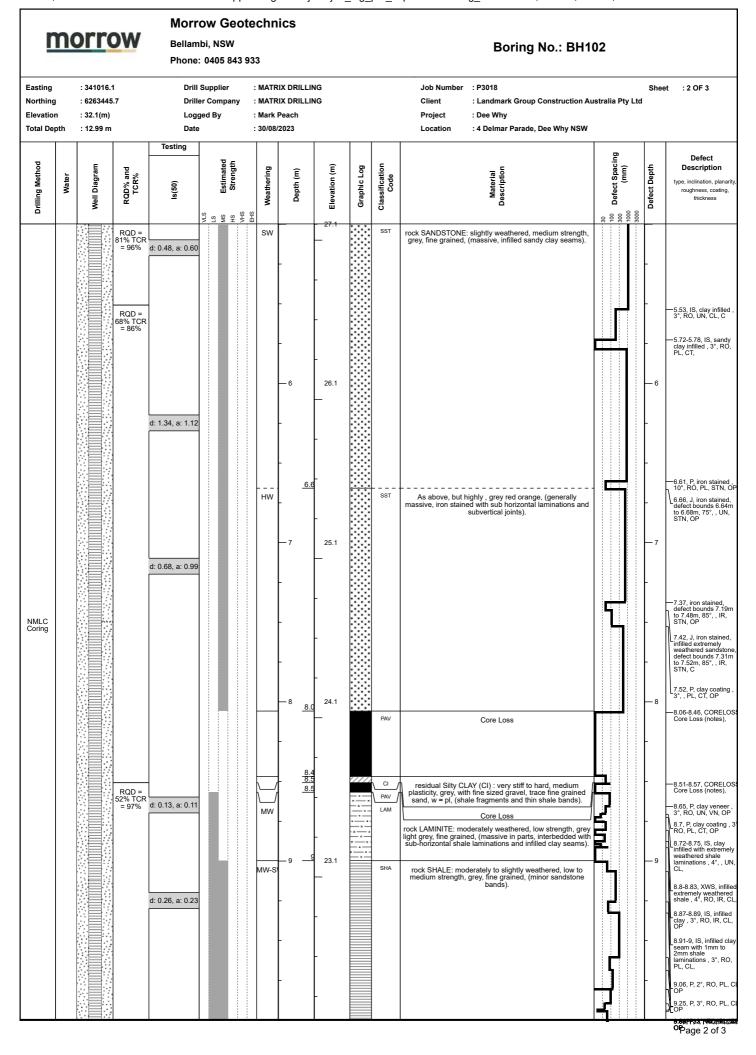
0405 843 933

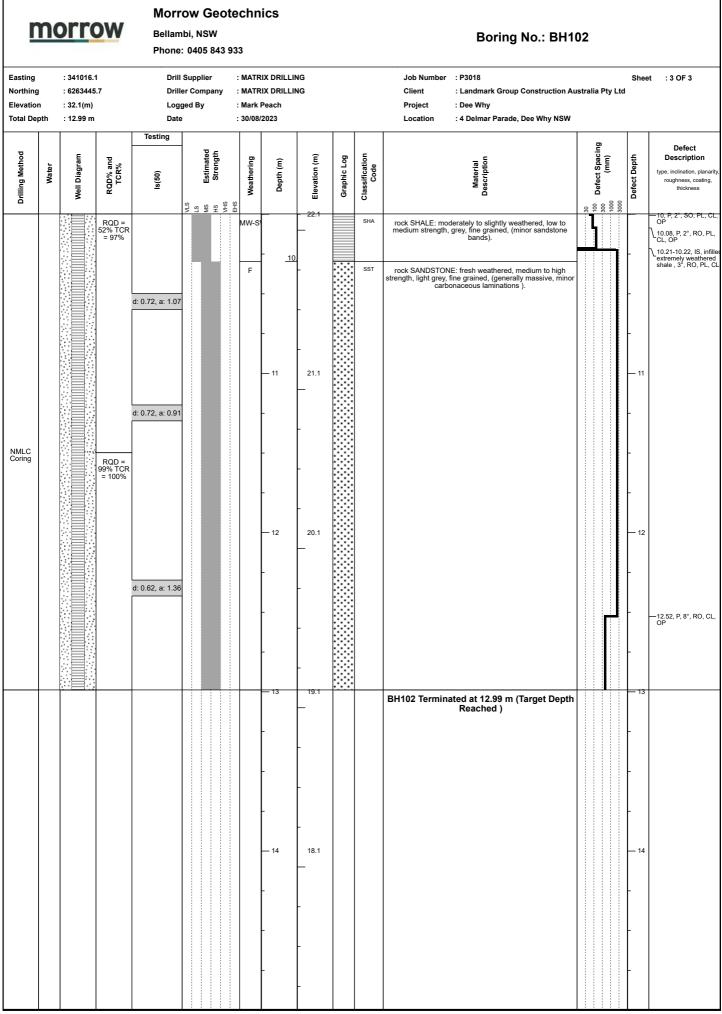
Bellambi, NSW

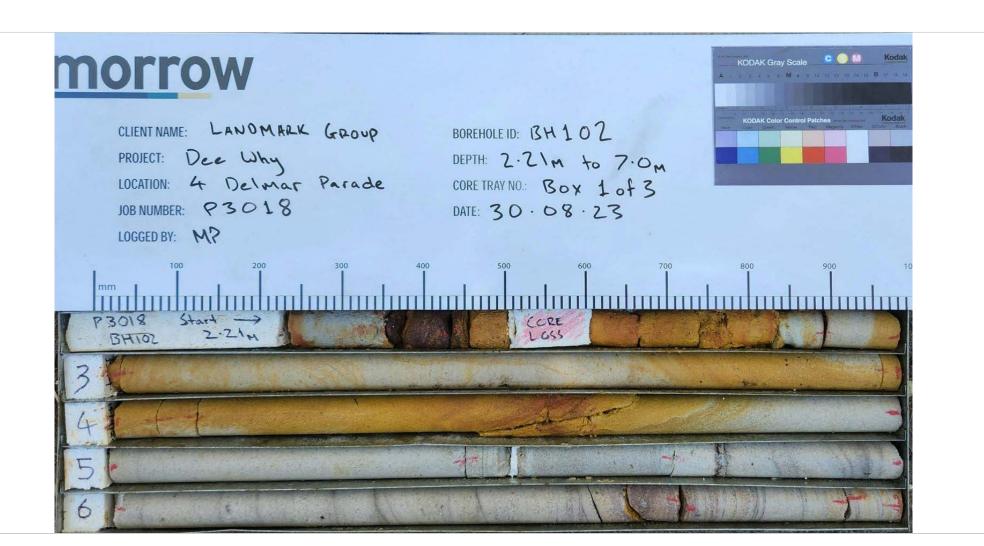
info@morrowgeo.com.au


Photo description	BH101 - Tray 1 a	nd 2 of 2								
Client	Landmark Group Construction Australia Pty Ltd									
Location	4 Delmar Parade, Dee Why NSW									
Project name	Dee Why									
Project No	P3018	Scale	Not to Scale							
BH No	BH101 BH Depth 6.17 to									

Morrow Geotechnics

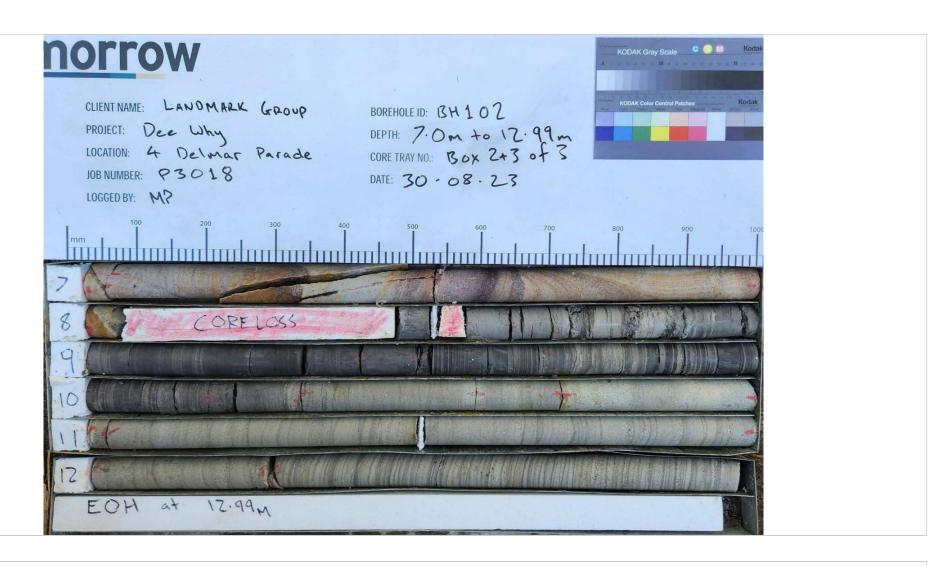

Bellambi, NSW Boring No.: BH102


Phone: 0405 843 933


Testing	: 341016.1 Drill Supplier : 6263445.7 Driller Company : 32.1(m) Logged By : 12.99 m Date		ьу	: Mark Peach : 30/08/2023	Sheet : 1 OF 1 onstruction Australia Pty Ltd							
	Soil Origin	Graphic Log	Classification Code	Depth (m)	Elevation (m)		Material Description		Consistency/Density	Moisture	Observations	
	Non-Soil		ССТ		- 32.1 -	C	oncrete		ă			
	Ē		SM	<u>0.2</u> - -	-	Fill Silty to gravelly SAND (SM) : loose, medium sized gravel, trace low	grey dark grey, fine to lolasticity clay, moist, (le	medium grained, fine to w resistance).	L	М		
	Rock		SST	<u> </u>	31.1	Rock SANDSTONE: distinctly weathered, (sands	very low strength, grey one floater).	orange, medium grained,	VLS	D		
	Residual		SC	- <u>1.3</u> -	-	Residual Clayey to gravelly SAND (SC): logrey, medium grained, medium to coarse fl	ose to medium dense, sized gravel, moist, (lo aaters).	low plasticity clay, orange w resistance, sandstone	L-MD	М		
				—2	30.1							
				- -3 -	29.1	Z.21m : Comme	TICEU NWILL COF	,				
				- 4 -	28.1							
		Rook Fill Non-Soil	Rook File	SM SST	SM - O.2 SM - O.2 O.2 O.2 O.3 O.	SST _ 1 _ 32.1 _	SM - 92 SST - 1 31.1 Residual Clayey to gravelly SAND (SM): loose, medium sized gravel, trace low j	SST 1 31.1 Rock SANDSTONE: distinctly weathered, very low strength, grey (sandstone floater). Residual Clayey to gravelly SAND (SC) : loose to medium dense, grey, medium grained, medium to costes sized gravel, molst, (ic floaters). 2.21m : Commenced NMLC Cori	SM SST 1 3.1.1 Rock SANDSTONE: distinctly weathered, very low strength, grey orange, medium grained, fine to medium grained, fine to medium sized gravel, trace low plasticity clay, moist, (low resistance). Rock SANDSTONE: distinctly weathered, very low strength, grey orange, medium grained, (sandstone floater). Residual Clayery to gravelly SAND (SC) - bose to medium dense, low plasticity clay, orange grey, medium grained, medium to coaline and gravel, moist, (for resistance, sandstone floaters). 2.21m: Commenced NMLC Coring;	SST 1.3 SM 2.2 SST 1.3 SM 2.2 Fill Silly to gravelly SAND (SM) : loose, grey dark grey, fine to medium grained, fine to medium sized gravel, trace low plasticity clay, moist, (low resistance). L Rock SANDSTONE: distinctly weathered, very low strength, grey orange, medium grained. VLS (sandstone floater). Residual Clayey to gravelly SAND (SC) : loose to medium dense, low plasticity clay, orange grey, medium grained, medium to coarse sized gravel, moist, (low resistance, sandstone floaters). 2.21m : Commenced NMLC Coring;	SM D. SST	

Page 1 of 3

0405 843 933



Bellambi, NSW

info@morrowgeo.com.au

Photo description	BH102 - Tray 1 (of 3				
Client	Landmark Group	Construction Australia	Pty Ltd			
Location	4 Delmar Parade	e, Dee Why NSW				
Project name	Dee Why					
Project No	P3018	Scale	Not to Scale			
BH No	BH102 BH Depth 2.21 to 7.00					

0405 843 933

Bellambi, NSW

info@morrowgeo.com.au

Photo description	BH102 - Tray 2 and	d 3 of 3					
Client	Landmark Group C	onstruction Australia	Pty Ltd				
Location	4 Delmar Parade, [Dee Why NSW					
Project name	Dee Why						
Project No	P3018	Not to Scale					
BH No	BH102 BH Depth 7.00 to 12.9						

MORTOW Easting : 340947.7

Morrow Geotechnics

Bellambi, NSW Boring No.: BH103

Phone: 0405 843 933

Drill Supplier : MATRIX DRILLING Job Number : P3018 Sheet : 1 OF 2

		: 340947.7 : 6263458.9 : 31.5(m)	Drill Supplie Driller Com Logged By Date		: MATRIX : MATRIX : Andrew : 03/09/20	DRILI Butel			Job Number : P3018 Client : Landmark Group Construction Australia Pty Ltd Project : Dee Why Location : 4 Delmar Parade, Dee Why NSW	Shee	t :	1 OF 2
Drilling Method	Water	Well Diagram	Testing	Soil Origin	Graphic Log	Classification Code	Depth (m)	Elevation (m)	Material Description	Consistency/Density	Moisture	Observations
Diatube		D		Fill Non-Soil		SW	0 <u>.22</u> -	- 31.5 - -	Concrete Fill Gravelly SAND (SW): loose, orange grey, fine to medium grained, medium sized gravel, moist, (poorly graded).	L	М	
			4, 5, 4, (N = 9)	Alluvial		SW		- 30.5	Alluvial Gravelly SAND (SW) : loose, orange grey, fine to medium grained, medium sized gravel, moist, (poorly graded).			
							-	-				
			2, 4, 7, (N = 11)	Alluvial		CI	- -2 <u>-2</u>	- - 29.5	Alluvial Sandy CLAY (CI): stiff, medium plasticity, orange light grey, medium grained sand, with medium to coarse sized gravel, inorganic, w = pl, (quartz gravels).	St	w≈ PL	
ADT							-	_	gravels).			
			2, 6, 3, (N = 9)	Alluvial		CI	3 <u>3</u>	- 28.5	As above, but red orange.			
							-	-				
	>			Alluvial		SP	<u>4</u> 4	- 27.5 -	Alluvial Gravelly SAND (SP): medium dense to dense, grey orange, medium grained, medium sized gravel, wet, (quartz gravels).	MD-D	W	
			6, 7, 5, (N = 12)				-	-				

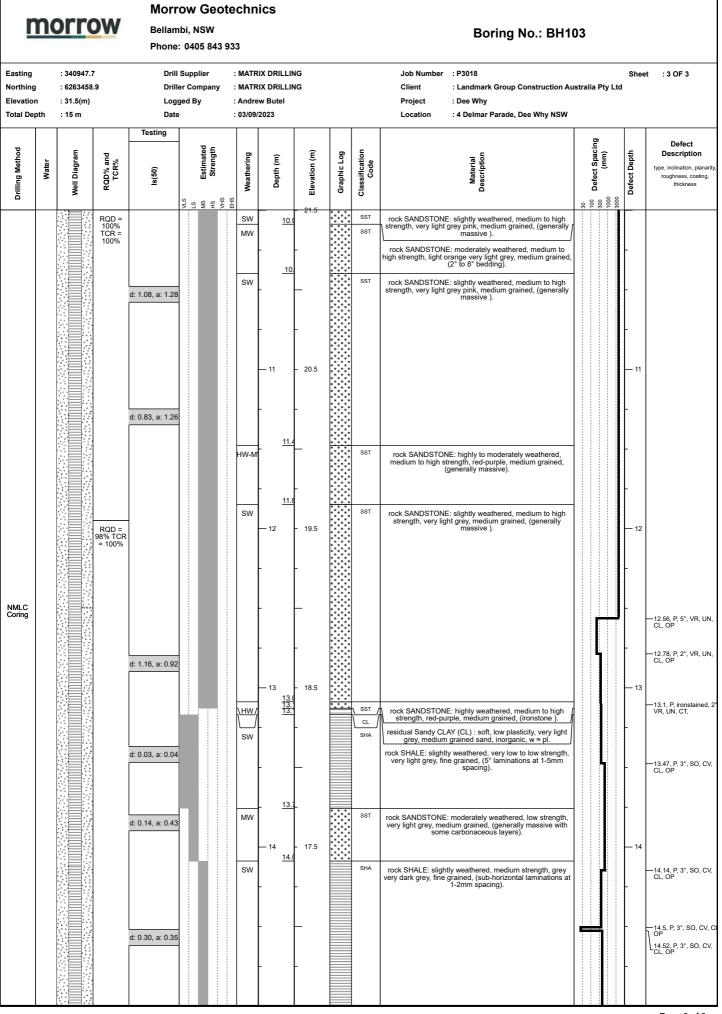
Morrow Geotechnics

Bellambi, NSW Boring No.: BH103

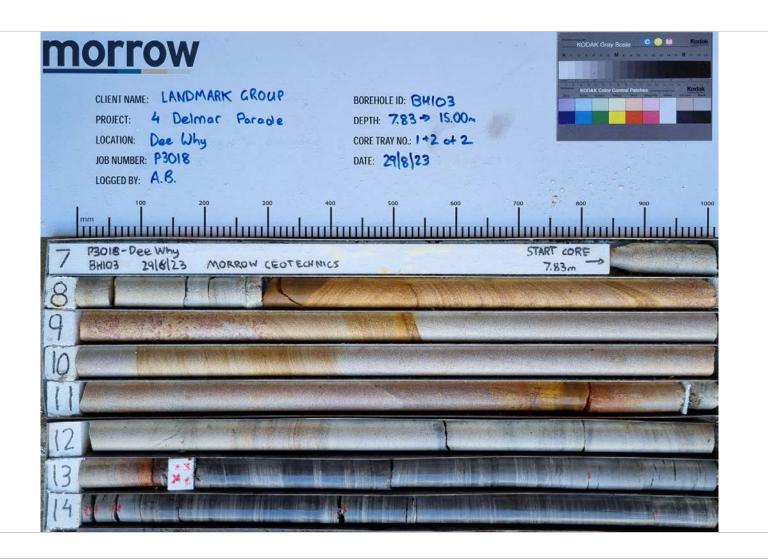
Phone: 0405 843 933

Easting : 340947.7 Drill Supplier : MATRIX DRILLING Job Number : P3018 Sheet : 2 OF 2
Northing : 6263458.9 Driller Company : MATRIX DRILLING Client : Landmark Group Construction Australia Pty Ltd

	Northing : 6263458.9 Driller Company : MATRIX DRILLING Client : Landmark Group Construction Australia Pty Ltd Elevation : 31.5(m) Logged By : Andrew Butel Project : Dee Why Total Depth : 15 m Date : 03/09/2023 Location : 4 Delmar Parade, Dee Why NSW											
Drilling Method	Water	Well Diagram	Testing ຜ	Soil Origin	Graphic Log	Classification Code	Depth (m)	Elevation (m)	Material	Consistency/Density	Moisture	Observations
ADT				Altuvial		SP	-	- 26.5 - - - 25.5	Alluvial Gravelly SAND (SP): medium dense to dense, grey orange, medium grained, medium sized gravel, wet, (quartz gravels).	MD-D	W	
150mm Washbore			4, 10, 11, (N = 21) 12, (N = 24), Hard Bounce	Rook		SST	- - -7 <u>7.1</u>	- - - 24.5	Rock SANDSTONE: distinctly weathered, very low strength, very light grey, medium grained, (generally massive with minor carbaceous lamintions).	VLS	D	
							- 8	- 23.5 22.5	7.83m : Commenced NMLC Coring;			


Morrow Geotechnics

Bellambi, NSW Boring No.: BH103


Phone: 0405 843 933

Easting : 340947.7 Drill Supplier : MATRIX DRILLING Job Number : P3018 Sheet : 2 OF 3

Northing Elevation Total Dep	n	: 340947. : 6263458 : 31.5(m) : 15 m		Drille Logg Date	er Company ged By	: MATF	RIX DRILLII RIX DRILLII ew Butel /2023				Client : Landmark Group Construction Au Project : Dee Why Location : 4 Delmar Parade, Dee Why NSW	ustralia Pty Lte	Shee	t : 2 OF 3
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (09)s	VLS LS MS Estimated HS Strength VMS	Weathering	Depth (m)	Elevation (m)	Graphic Log	Classification Code	Material Description	30 Defect Spacing 300 (mm)	Defect Depth	Defect Description type, inclination, planarity, roughness, coating, thickness
								- 25.5 - 24.5					- - - - -	
			RQD = 84% TCR = 100%	d: 0.70, a: 0.40		SW	— 8 - <u>8.</u> 2	- 23.5		SST	rock SANDSTONE: slightly weathered, medium strength, very light grey, medium grained, (generally massive with minor carbaceous lamintions).		-8	—8.05, P, 3°, RO, UN, C OP —8.17, P, 6°, VR, UN, C
NMLC Coring				d: 0.58, a: 0.48		MW	- - - -			SST	rock SANDSTONE: moderately weathered, medium strength, orange red, medium grained, (20° to 40° bedding).		- 9	8.21, P, 1°, VR, UN, C OP 8.26, P, 1°, VR, UN, C OP 8.29, P, 1°, VR, UN, C OP 8.31-8.37, J, 40°, VR, UN, CL, OP
			RQD = 100% TCR = 100%			MW	- <u>9.2</u>			SST	rock SANDSTONE: moderately weathered, medium strength, red orange mottled, medium grained, (generally massive).	-	-	
						MW	- <u>9.</u>	_		SST	rock SANDSTONE: moderately weathered, medium strength, orange red, medium grained, (10° to 20° bedding).		-	
				d: 0.77, a: 1.11		sw	-	-		SST	rock SANDSTONE: slightly weathered, medium to high strength, very light grey pink, medium grained, (generally massive).		-	

Page 3 of 3

0405 843 933

Bellambi, NSW

info@morrowgeo.com.au

Photo description	BH103 - Tray 1 a	and 2 of 2							
Client	Landmark Group Construction Australia Pty Ltd								
Location	4 Delmar Parade	, Dee Why NSW							
Project name	Dee Why								
Project No	P3018	Scale	Not to Scale						
BH No	BH103 BH Depth 7.83 to 15.0								

UTM

Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH104

: 56H Drill Rig : Hand Auger Job Number : P3018

Easting (m) : 340914.1 Driller Supplier : MG Client : Landmark Group Construction Australia Pty Ltd

epth : 20.91 m BG	L	Da	ate	d By	: Rhiannon McKeon Location : 4 Delmar Parade, Dee W : 30/08/2023 Loc Comment :	ny NSW		
Water D Well Diagram	Soil Origin	Graphic Log	Classification Code	Depth (m)	Material Description	Elevation (m)	Consistency/Density	Moisture
Backfill	NGH-Soil		PAR SW	<u>.</u> - -		avel,	VL-L	M
NNE 50mm PVC Solid	Alluvial		sw	-	Alluvial SAND (SW): loose, grey, fine to medium grained, trace fine sized gravel, moist, low resistar	-	L-MD	
	Rock Alluvial			_ 3	Alluvial Sandy CLAY (CL-Cl): firm, low to medium plasticity, grey orange light grey, fine to medium grasand, with fine to medium sized gravel, w ≈ pl, low to medium resistance, ironstone and extremely weathered sandstone gravels.	28.8	F VSt-H	w≈ PL W< PL
	α <u>΄</u>			- - - 4	orange, medium grained sand, with fine sized gravel, w < pl, high resistance, with sandy clay band 3.3m : Commenced NMLC Coring;	27.8		PL
	-Backfill	Backfill Solid Payllow Payl	-Backfill Solid Finally Finall	-Backfill Somm PVC Solid Figure Solid Figu	Somm PVC Solid SW SW SW SW SW SW SST ST	Simple Solid Simple Solid Simple Solid Sol	Fill Gravelly SAND (SW) : very loose to tense, gray, fine to medium grained, fine to medium sized gravel, most, low resistance. Altuvial SAND (SW) : loose, grey, fine to medium grained, trace fine sized gravel, most, low resistance. Solid PVC Solid PVC Altuvial SAND (SW) : loose, grey, fine to medium grained, trace fine sized gravel, most, low resistance. Altuvial Clayery SAND (SC) : loose to medium dense, low plasticity day, prange light grey grey, medium grained. Trace medium sized gravel, most, low resistance. 28.8 Extremelyweathered, rock Sandy CLAY (CL-CI) : firm, low to medium plasticity, gray orange light grey, fine to medium grained sand, with fire to medium sized gravels, most, low resistance, with sized gravels, most, low resistance, and calcium grained sand, with fire to medium sized gravels, most, low resistance, with size or gravels, most, low to medium grained sand size of gravels, most, low to medium grained sand, with fire to medium grained sand, with fire to medium grained sand, with the sized gravel, w. cl. flight resistance, with six of city prey and orange, medium grained sand, with the sized gravel, w. cl. flight resistance, with six of city prey grey and orange, medium grained sand, with the sized gravel, w. cl. flight resistance, with six of city prey gray. 3.3 Extremelyweathered, rock Sandy CLAY (SST) : way self to hard, low to medium clasticity, light grey and orange, medium grained sand, with the sized gravel, w. cl. flight resistance, with six of city prey gray.	Parent Pa

Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH104

Drill Rig : Hand Auger Job Number : P3018

Easting (m) : 340914.1 Driller Supplier : MG Client : Landmark Group Construction Australia Pty Ltd

Northing		: 6263462.4 on : 31.8 (m)		ged By iewed By	: Mark Peach : Rhiannon Mck	(aon				Project : Dee Why Location : 4 Delmar Parade	Dee Why	NSW		
Total De		: 20.91 m BGL	Date		: 30/08/2023	ceon				Loc Comment :	, Dee why	NSW		
Drilling Method	Water	D Well Diagram	RQD% and TCR%	Testing	1.8 LS Festimated Strength HS HS	Weathering	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation (m)	30 100Defect Spacing 1000 (mm)	Defect Depth	Defect Description type, inclination, planarity, roughness, coating, thickness
	ВЕТИЛ ВОТИТВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТИТЕВОТ	-Backfill Solid					- - - - - - -				30.8			
NMLC Coring	0% Water Loss	-Bentonite	RQD = 92% TCR = 100%			HW F	- - <u>3.9</u> 4		SST	Rock SANDSTONE: highly weathered, low strength, light grey red orange, fine grained, massive, iron stained . Rock SANDSTONE: fresh weathered, medium strength, grey, fine grained, massive, minor carbonaceous laminations .	27.8		_ 4	—4.16, P, 5°, RO, PL, CL, OP
		-5mm Graded Sand	RQD = 99% TCR = 100%	d: 0.65, a: 0.53			-				-		-	-4.35, P, 3°, RO, PL, CL, OP -4.81, P, 5°, , PL, CL OP Page 1 of 5

Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

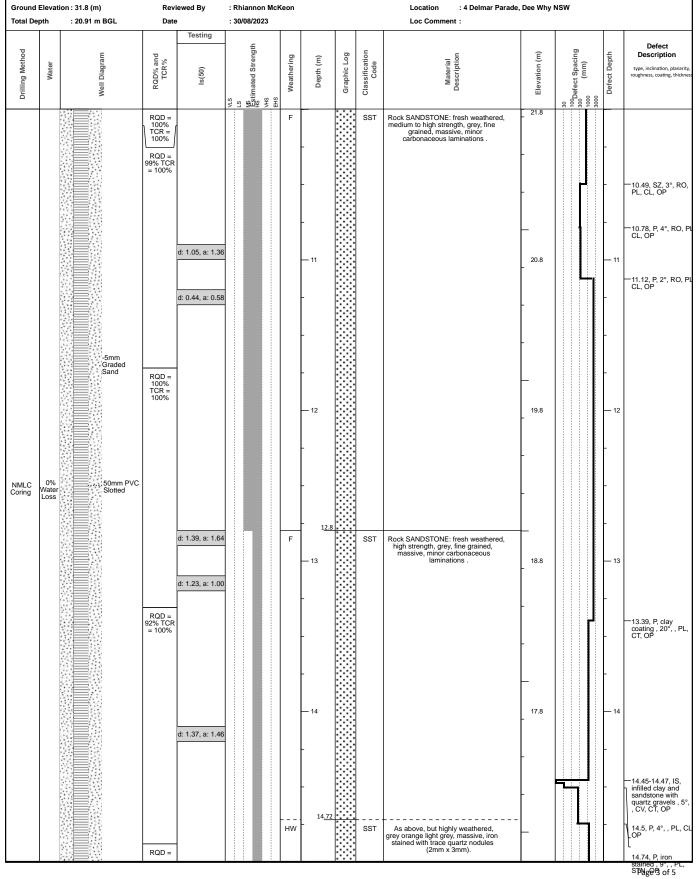
Drill Rig

Geotechnical Log - Borehole BH104

: Hand Auger Job Number : P3018

Easting (m) : 340914.1 Driller Supplier : MG Client : Landmark Group Construction Australia Pty Ltd

	Ground Elevation : 31.8 (m) Reviewed By					: Rhiannon McKeon Location : 4 Delmar Parade, Dee Why NSW								
Total Dep	oth	: 20.91 m BGL	Date		: 30/08/2023					Loc Comment :				
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (05)sı	LS LS Estimated Strength HS HAS	Weathering	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation (m)	30 100Defect Spacing 300 (mm) 1000	Defect Depth	Defect Description type, inclination, planarity, roughness, coating, thickness
		50mm PVC Solid	RQD = 99% TCR = 100%	d: 0.79, a: 0.83		F	-		SST	Rock SANDSTONE: fresh weathered, medium strength, grey, fine grained, massive, minor carbonaceous laminations.	26.8		-	—5.07, P. 5°, RO, PL, CL, OP
		-5mm Graded Sand	RQD = 100% TCR = 100%	d: 0.79, a: 1.32		F	-6 - 6	<u>s</u>	SST	Rock SANDSTONE: fresh weathered, medium to high strength, grey, fine grained, massive, minor carbonaceous laminations .	- 25.8 - - -		— 6 - -	
NMLC Coring	0% Water Loss		RQD = 100% TCR = 100%	d: 1.07, a: 1.25			—7 - -				24.8 - -		7 	
		50mm PVC Slotted	RQD = 100% TCR = 100%	d: 1.17, a: 0.78			- 8 - -				23.8	-	- - 8 -	─8.14, P, 5°, , PL, CL OP
			TCR = 100%				- - 9 -				22.8		- 9 -	
							-				_		-	—9.71, P, 5°, , PL, CL OP


Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH104

Drill Rig : Hand Auger Job Number : P3018

Easting (m) : 340914.1 Driller Supplier : MG Client : Landmark Group Construction Australia Pty Ltd

Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

Drill Rig

Geotechnical Log - Borehole BH104

: Hand Auger Job Number : P3018

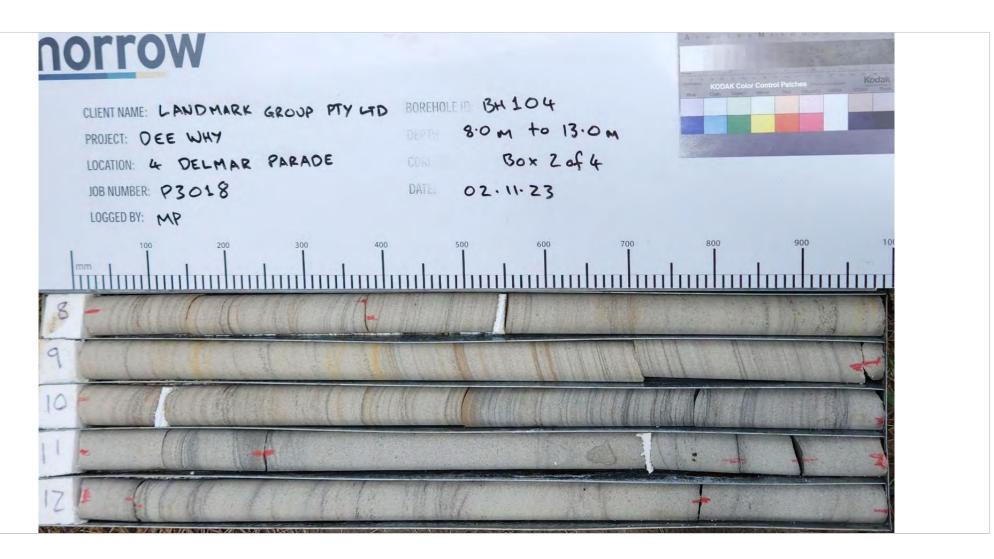
Easting (m) : 340914.1 Driller Supplier : MG Client : Landmark Group Construction Australia Pty Ltd

Northing		: 6263462.4		ged By	: Mark Peach	.,				Project : Dee Why				
Total De		on : 31.8 (m) : 20.91 m BGL	Date	iewed By	: Rhiannon Mc : 30/08/2023	Keon				Location : 4 Delmar Parade Loc Comment :	, Dee Why	NSW		
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (05)sı	V.S. LS. Estimated Strength HS. HHS.	Weathering	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation (m)	30 300 1000 (mm)	Defect Depth	Defect Description type, inclination, planarity, roughness, coating, thickness
			RQD = 98% TCR = 100%	d: 1.23, a: 1.00		HW	-		SST	As above, but highly weathered, grey orange light grey, massive, iron stained with trace quartz nodules (2mm x 3mm).	-		-	
		-5mm Graded Sand	RQD = 80% TCR = 100%	d: 0.16, a: 0.15	55	F	15, <u>95</u> 16		SHA	Rock SHALE: fresh weathered, low strength, grey light grey, fine to medium grained, 1mm to 5mm laminations, with some massive sandstone bands.	15.8		16 	—15.95-15.97, XWS, clay coating , 2°, RO, PL, CT, OP —16.16, P, 2°, RO, PL CL, OP
NMLC Coring	0% Water Loss	50mm PVC Slotted		d: 0.32, a: 0.43			— 17 - - 1 <u>7.7</u>				14.8		— 17 - -	—16.93, P, 3°, , IR, CI OP 17, J, defect bounds 16.95m to 17.05m, 80°, RO, PL, CL, OP —17.42, P, 3°, RO, PI CL, OP 17.47, P, 6°, RO, C' CL, OP
			RQD = 99% TCR = 100%	d: 1.52, a: 2.65	_	HW	— 18 - - 18 <u>.57</u>		SST	Rock SANDSTONE: highly weathered, medium to high strength, red orange, fine to medium grained, generally massive, heavily iron stained, minor 1mm to 2mm quartz nodules.	13.8		18 	17.62, P, 3°, RO, UI LCL, OP 17.72, P, iron Lstained , 6°, , IR, STN, OP 17.73, P, iron stained , 3°, , IR, STN, C
						SW	- 18 <u>.97</u>		SST	As above, but slightly weathered, high strength, light grey orange, massive.	_		-	—18.72, P, 9°, , PL, CL, OP
			RQD = 100% TCR = 100%	d: 1.55, a: 2.65	5	F	- 19		SST	Rock SANDSTONE: fresh weathered, high strength, light grey, fine to medium grained, massive.	12.8		- 19 - -	—19.03, P, 6°, , PL, CL, OP

Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH104


Drill Rig : Hand Auger Job Number : P3018

Easting (m) Driller Supplier : MG : Landmark Group Construction Australia Pty Ltd : 340914.1 Client

Ground Elevation :		: 20.91 m BGL Date		ewed By	: Mark Peach : Rhiannon McKeon : 30/08/2023					Project : Dee Why Location : 4 Delmar Parade, Dee Why NSW Loc Comment :				
Drilling Method	Water	Well Diagram	RQD% and TCR%	Testing (09)s1	VLS LS FStimated Strength NHS HHS	Weathering	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation (m)	30 100Defect Spacing 300 (mm)	Defect Depth	Defect Description type, inclination, planarity, roughness, coating, thickness
NMLC Coring	0% Water Loss	-5mm Graded Sand 50mm PVC Slotted	RQD = 100% TCR = 100%	d: 1.59, a: 2.61		F	-		SST	Rock SANDSTONE: fresh weathered, high strength, light grey, fine to medium grained, massive.			-	
							— 21 -			BH104 Terminated at 20.91m (Target Depth Reached)	10.8		— 21 -	
							— 22 -				9.8		— 22 - -	
							23 				8.8		- - 23 -	
							24 				7.8		- 24 -	
							-						=	



Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH105

UTM : 56H Drill Rig : Christie Rig Job Number : P3018

Easting (m) : 341010.2 Driller Supplier : Tracess Client : Landmark Group Construction Australia Pty Ltd

Nor Gro	ting (m thing (r und Ele I Depth	m) : 6263530 evation : 28.5 (m)	0.0	Logged By Reviewed By Date		: Mahmor : Mark Pe : 08/11/20		. ty Ltu		
Drilling Method	Water	DCP graph	Soil Origin	Graphic Log	Classification Code	Depth (m)	Material Description	Elevation (m)	Consistency/Density	Moisture
Diatube			Non-Soil		ССТ	0 <u>.15</u>	Concrete	28.5		
			Fill Alluvial		SC SC	0.4	Fill Clayey to gravelly SAND (SC): low plasticity clay, medium dense, brown, fine grained, fine sized gravel, moist. Alluvial Clayey SAND (SC): medium dense, low plasticity clay, brown, fine grained, trace fine		MD	М
			, mavia			- -1 -	Alluvial Clayey SAND (SC): medium dense, low plasticity clay, brown, fine grained, trace fine sized gravel, moist.	- 27.5		
ADT	GWNE		Alluvial		CI	- 2 	Alluvial Sandy CLAY (CI) : stiff to very stiff, medium plasticity, brown yellow, fine grained sand, w < pl.	- 26.5	St-VSt	w < PL
			Alluvial		CL	_3 _ - -	Alluvial Sandy CLAY (CL): very stiff, low plasticity, yellow brown orange brown yellow, fine grained sand, w < pl.	- 25.5 - -	VSt	
						-4		- 24.5		

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH105

Drill Rig : Christie Rig Job Number : P3018

Easting (m) : 341010.2 Driller Supplier : Tracess Client : Landmark Group Construction Australia Pty Ltd

Nor	ting (m thing (r		0.0	Driller Suppl Logged By Reviewed By		: Tracess : Mahmou : Mark Pe	Client : Landmark Group Construction Australia F Id Jangidaryan Project : Dee Why ach Location : 4 Delmar Parade, Dee Why NSW	ty Ltd		
1	al Depth			Date Date	•	: Wark Pe				
Drilling Method	Water	DCP graph	Soil Origin	Graphic Log	Classification Code	Depth (m)	Material Description	Elevation (m)	Consistency/Density	Moisture
	-		Residual		CL	- 6 6	Residual Sandy CLAY (CL) : very stiff, low plasticity, grey light grey orange, fine to medium grained sand, w ≈ pl. As above, but grey orange brown yellow, fine grained sand, trace fine sized gravel, w ≈ II.	- 22.5		w≈ PL w≈ LL
ADT						- - -7		- - - 21.5		
			Rock		SST	- <u>7.6</u> - 8	Extremelyweathered, rock Clayey SAND (SST): very dense, low plasticity clay, brown brown yellow, fine grained, trace fine sized gravel, wet.	- 20.5	VD	w
							8.72m : Commenced NMLC Coring;			
						9 -		- 19.5 - -		

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH105

TM : 56H Drill Rig : Christie Rig Job Number : P3018

Easting (m) : 341010.2 Driller Supplier : Tracess Client : Landmark Group Construction Australia Pty Ltd

Northing (m) : 6263530.0 Logged By : Mahmoud Jangidaryan Project : Dee Why

Ground	Elevation :	28.5 (m)		Revie	wed By		Mark Pea		uu. yu		Location	: 4 Deln	nar Parade, De	e Why	NSW
Total De	pth :	22.22 m B	GL	Date		:	08/11/202	3			Loc Commer	nt :			
Drilling Method	Water	RQD% and TCR%	Testing (09)sı	NS.	Estimated Strength HS WHS EHS	Weathering	Depth (m)	Graphic Log	Classification Code	Material Description		Elevation (m)	-30 -100Defect Spacing -300 (mm) -1000 (mm)	Defect Depth	Defect Description type, inclination, planarity, roughness, coating, thickness
							-					-		-	
							- 6					- 22.5 -		- -6	
							- - 7					- 21.5		-7	
							- 8					- - 20.5		- 8	
		RQD = 100% TCR = 100%	d: 0.17, a: 0.13			HW	-		SST	Rock SANDSTONE: highly very low strength, orange grained, generally massiv minor xw and dw sandstone iron stained.	weathered, a, fine e, wiith b bands,	- 10.5		-	
NMLC Coring	0% Water Loss		d: 0.05, a: 0.03 d: 0.06, a: 0.03				9 - -					- 19.5 - 		- - -	

morrow

Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH105

Drill Rig : Christie Rig Job Number : P3018

Easting (m) : 341010.2 Driller Supplier : Tracess Client : Landmark Group Construction Australia Pty Ltd

Northing (m) : 6263530.0 Logged By : Mahmoud Jangidaryan Project Ground Elevation: 28.5 (m) Reviewed By : Mark Peach Location : 4 Delmar Parade. Dee Why NSW Total Depth : 08/11/2023 Loc Comment : Date Testing Defect - 30 - 100 Defect Spacing - 300 (mm) - 1000 (mm) Classification Code Method Description RQD% and TCR% Elevation (m) Weathering Œ Graphic Log Water type, inclination, planarity, roughness, coating, thickness Is(50) Defect [18.5 Rock SANDSTONE: highly weathered, very low strength, orange, fine grained, generally massive, wiith minor xw and dw sandstone bands, iron stained. RQD = 100% TCR = 100% HW SST d: 0.07, a: 0.01 1<u>0.3</u> IW-N SST Rock SANDSTONE: highly to moderately weathered, low strength, grey light grey, fine to medium grained, medium grained. RQD = 90% TCR = 100% d: 0.20, a: 0.21 - 11 17.5 -11.06, P. RO, PL, CL, OP 11<u>.15</u> -11.14, P, RO, PL, CL, OP Rock SANDSTONE: slightly to fresh weathered, medium strength, light grey mottled yellow white, fine grained, 10-15 degree 2mm beddings at 10-20mm spacing. SW-F d: 1.01, a: 1.30 11.57, J, 30°, SO, PL, CL, OP 12 16.5 12.68, J, 20°, SO, PL, CL, OP -12.82. J. RO. PL. CL. OP d: 0.63, a: 1.17 13 15.5 13.32 Rock SANDSTONE: slightly to fresh weathered, medium to high strength, very light grey with grey, medium to coarse grained, generally massive, medium to coarse grained with sub rounded gravels. 13.32, P, 10°, RO, PL, CL, OP lsw-F SST RQD = 88% TCR = 100% - 14 14.5 d:0.81, a: 0.50 14.17, P, 20°, , CV, CL, OP _14.23, P, 30°, , PL, CL, OP 14.39, P, 20°, , PL, CL, OP Rock SANDSTONE: fresh weathered, medium to high strength, light grey, fine grained, generally massive, 10° laminations at 1-5mm spacing. F SST 14.53, P, 10°, SO, PL, CL, OP -14.62, P, 10°, SO, PL, CL, OP d: 1.30, a: 1.17

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH105

Drill Rig : Christie Rig Job Number : P3018

Easting (m) : 341010.2 Driller Supplier : Tracess Client : Landmark Group Construction Australia Pty Ltd

Northing (m) : 6263530.0 Logged By : Mahmoud Jangidaryan Project : Dee Why

Total Depth Double Method Mater Mater Total Depth Total Depth Total Depth	: 22.22 m E	Testing	Reviewed By Date	:	Mark Peac 08/11/2023			Loc Comme		nar Parade, Dee	iy l	
	Water RQD% and TCR%	Testing	ath.									
Dri		ls(50)	VLS LS Estimated Strength VHS HS	Weathering	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation (m)	30 100Defect Spacing 300 (mm)	Defect Depth	Defect Description type, inclination, planarity, roughness, coating, thickness
	RQD = 88% TCR = 100%	d: 1.58, a: 1.52		F	- - - — 16		SST	Rock SANDSTONE: fresh weathered, medium to high strength, light grey, fine grained, generally massive, 10° laminations at 1-5mm spacing.	- 12.5		- - -	15.34, J, 75°, RO, PL, CL, OP 15.37, P, 10°, RO, PL, CL, OP
70 Wat Los	RQD = 91% TCR = 100%	d: 0.87, a: 0.90			- - - 17				- 11.5			16.3, P, 5°, SO, PL, CL, OP 16.59, P, 5°, SO, PL, CL, OP 16.73, J, 60°, RO, PL, CL, OP 16.77, P, RO, PL, CL, OP
NMLC Coring		d: 0.89, a: 1.08			- - - — 18				- 10.5		_ 18	——17.6, P, 5°, SO, PL, CL, OP ——17.7, P, 5°, RO, PL, CL, OP
		d: 0.92, a:1.07			- - 19				- 9.5		- - - 19	— 18.3, P, 5°, SO, PL, CL, OP — 18.37, P, 10°, RO, PL, CL, OP — 18.46, P, 10°, RO, PL, CL, OP — 18.57, P, 15°, RO, PL, CL, OP
	RQD = 71% TCR = 100%				-				-		-	——19.32, P, 5°, RO, PL, CL, OP ——19.66, J, 80°, RO, PL, CL, OP ——19.9, J, 75°, RO, PL, CL, OP

Bellambi, NSW Phone: 0405 843 933

Geotechnical Log - Borehole BH105

Drill Rig Job Number : P3018

Driller Supplier : Tracess Client : Landmark Group Construction Australia Pty Ltd

Easting (m) : 341010.2 Northing (m) : 6263530.0 Logged By : Mahmoud Jangidaryan Project : Dee Why

Ground Elevation : 28.5 (m) Reviewed By : Mark Peach Location : 4 Delmar Parade, Dee Why NSW

Total Dep		28.5 (m) 22.22 m B	GI	Reviewed By Date		: Mark Peac : 08/11/2023			Location Loc Comme		mar Parade, Dee	Why	NSW
			Testing			30,11,2023			Loc comme				
Drilling Method	Water	RQD% and TCR%	1s(50)	LS LS Estimated Strength MS MS	Weathering	Depth (m)	Graphic Log	Classification Code	Material Description	Elevation (m)	30 300 (mm) 1000 (mm)	Defect Depth	Defect Description type, inclination, planarity, roughness, coating, thickness
		RQD = 71% TCR = 100%			F			SST	Rock SANDSTONE: fresh weathered, medium to high strength, light grey, fine grained, generally massive, 10° laminations at 1-5mm spacing.	8.5			20.07, P, 5°, RO, PL, CL, OP
			d: 1.00, a: 0.98		 F	2 <u>0.3</u>		SST		ŀ	1	-	20.28, P, 5°, SO, PL, CL, OP
			u. 1.50, a. 0.30		r	-		551	As above, but high strength, generally massive with some carbonaceous layers.	_	L	-	20.45, P, 5°, RO, CV, CL, OP
NMLC Coring	70% Water Loss		d: 1.71, a: 2.02 d: 2.13, a: 2.27			— 21 -				- 7.5 -		— 21 -	21.08, J, 75°, RO, PL, CL, OP
						-				-		-	21.58, P, 5°, SO, PL, CL, OP 21.62, J, 85°, , PL, CL, OP
						— 22				- 6.5		— 22	21.84, P, 5°, RO, PL, CL, OP 21.88-22.22, J, 85°, RO, PL, CL, OP
						-	• • • •		BH105 Terminated at 22.22m (Target Depth Reached)	-			
						- 23				- - 5.5 -		- - 23	
										- 4.5		- 24 	

GENERAL

Information obtained from site investigations is recorded on log sheets. The "Cored Drill Hole Log" presents data from an operation where a core barrel has been used to recover material - commonly rock. The "Non-Core Drill Hole - Geological Log" presents data from an operation where coring has not been used and information is based on a combination of regular sampling and insitu testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Excavation - Geological Log" presents data and drawings from exposures of soil and rock resulting from excavation of pits, trenches, etc.

The heading of the log sheets contains information on Project Identification, Hole or Pit Identification, Location and Elevation. The main section of the logs contains information on methods and conditions, material substance description and structure presented as a series of columns in relation to depth below the ground surface which is plotted on the left side of the log sheet. The common depth scale is 8m per drill log sheet and about 3-5m for excavation logs sheets.

As far as is practicable the data contained on the log sheets is factual. Some interpretation is inevitable in the identification of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classifications are based on SAA Site Investigation Code AS 1726 - 1993 with some modifications as defined below.

These notes contain an explanation of the terms and abbreviations commonly used on the log sheets.

DRILLING

Drilling & Casing

ADV	Auger Drilling with V-Bit			
ADT Auger Drilling with TC Bit				
WB	Wash-bore drilling			
RR	Rock Roller			
NMLC	NMLC core barrel			
NQ	NQ core barrel			
HMLC	HMLC core barrel			
HQ	HQ core barrel			

Drilling Fluid/Water

The drilling fluid used is identified and loss of return to the surface estimated as a percentage.

Drilling Penetration/Drill Depth

Core lifts are identified by a line and depth with core loss per run as a percentage. Ease of penetration in non-core drilling is abbreviated as follows:

VE	Very Easy
E	Easy
М	Medium
Н	High
VH	Very High

Groundwater Levels

Date of measurement is shown.

Standing water level measured in completed borehole

Level taken during or immediately after drilling

D	Disturbed
В	Bulk
U	Undisturbed
SPT	Standard Penetration Test
N	Result of SPT (sample taken)
PBT	Plate Bearing Test
PZ	Piezometer Installation
HP	Hand Penetrometer Test

EXCAVATION LOGS

Explanatory notes are provided at the bottom of drill log sheets. Information about the origin, geology and pedology may be entered in the "Structure and other Observations" column. The depth of the base of excavation (for the logged section) at the appropriate depth in the "Material Description" column. Refusal of excavation plant is noted should it occur. A sketch of the exposure may be added.

MATERIAL DESCRIPTION - SOIL

Classification Symbol - In accordance with the Unified Classification System (AS 1726-1993, Appendix A, Table A1)

Material Description - In accordance with AS 1726-1993, Appendix A2.3

Moisture Condition

D	Dry, looks and feels dry
М	Moist, No free water on remoulding
W	Wet, free water on remoulding

Consistency - In accordance with AS 1726-1993, Appendix A2.5

VS	Very Soft	< 12.5 kPa
S	Soft	12.5 – 25 kPa
F	Firm	25 – 50 kPa
St	Stiff	50 – 100 kPa
VSt	Very Stiff	100 – 200 kPa
Н	Hard	> 200 kPa

Strength figures quoted are the approximate range of undrained shear strength for each class.

Density Index. (%) is estimated or is based on SPT results.

VL	Very Loose	< 15 %
L	Loose	15 – 35 %
MD	Medium Dense	35 – 65 %
D	Dense	65 – 85 %
VD	Very Dense	> 85 %

MATERIAL DESCRIPTION - ROCK

Material Description

Identification of rock type, composition and texture based on visual features in accordance with AS 1726-1993, Appendix A3.1-A3.3 and Tables A6a, A6b and A7.

Core Loss

Is shown at the bottom of the run unless otherwise indicated.

Bedding

	_
Thinly Laminated	< 6 mm
Laminated	6 - 20
Very Thinly Bedded	20 - 60
Thinly Bedded	60 - 200
Medium Bedded	200 – 600
Thickly Bedded	600 – 2000
Very Thickly Bedded	> 2000

Weathering - No distinction is made between weathering and alteration. Weathering classification assists in identification but does not imply engineering properties.

Fresh (F)	Rock substance unaffected by weathering	
Slightly Weathered	Rock substance partly stained or	
(SW)	discoloured. Colour and texture of fresh	
	rock recognisable.	
Moderately	Staining or discolouration extends	
Weathered (MW)	throughout rock substance. Fresh rock	
	colour not recognisable.	
Highly Weathered	Stained or discoloured throughout. Signs of	
(HW)	chemical or physical alteration. Rock texture	
	retained.	
Extremely	Rock texture evident but material has soil	
Weathered (EW)	properties and can be remoulded.	

Strength - The following terms are used to described rock strength:

Rock Strength	Abbreviation	Point Load Strength
Class		Index, Is(50)
		(MPa)
Extremely Low	EL	< 0.03
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	М	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	EH	≥ 10

Strengths are estimated and where possible supported by Point Load Index Testing of representative samples. Test results are plotted on the graphical estimated strength by using:

Axial Point Load Test

Where the estimated strength log covers more than one range it indicates the rock strength varies between the limits shown.

MATERIALS STRUCTURE/FRACTURES

ROCK

Natural Fracture Spacing - A plot of average fracture spacing excluding defects known or suspected to be due to drilling, core boxing or testing. Closed or cemented joints, drilling breaks and handling breaks are not included in the Natural Fracture Spacing.

Visual Log - A diagrammatic plot of defects showing type, spacing and orientation in relation to core axis.

Defects	Defects open in-situ or clay sealed	
		Defects closed in-situ
		Breaks through rock substance

Additional Data - Description of individual defects by type, orientation, in-filling, shape and roughness in accordance with AS 1726-1993, Appendix A Table A10, notes and Figure A2.

Orientation - angle relative to the plane normal to the core axis.

Type BP Bedding Parting JT Joint SM Seam FZ Fracture Zone SZ Shear Zone VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough VYR Very Rough			
SM Seam FZ Fracture Zone SZ Shear Zone VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough	Туре	BP	Bedding Parting
FZ Shear Zone SZ Shear Zone VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough		JΤ	Joint
SZ Shear Zone VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough		SM	Seam
VN Vein FL Foliation CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough		FZ	Fracture Zone
FL CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough		SZ	Shear Zone
CL Cleavage DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough		VN	Vein
DL Drill Lift HB Handling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough		FL	Foliation
HB DB Drilling Break DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough		CL	Cleavage
DB Drilling Break Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished S Smooth RF Rough		DL	Drill Lift
Infilling CN Clean X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		НВ	Handling Break
X Carbonaceous Clay Clay KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		DB	Drilling Break
Clay KT CA CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough	Infilling	CN	Clean
KT Chlorite CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		x	Carbonaceous
CA Calcite Fe Iron Oxide Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		Clay	Clay
Fe		КТ	Chlorite
Qz Quartz MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		CA	Calcite
MS Secondary Mineral MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		Fe	Iron Oxide
MU Unidentified Mineral Shape PR Planar CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		Qz	Quartz
Shape PR CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		MS	Secondary Mineral
CU Curved UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		MU	Unidentified Mineral
UN Undulose ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough	Shape	PR	Planar
ST Stepped IR Irregular DIS Discontinuous Rougness POL Polished SL Slickensided S Smooth RF Rough		CU	Curved
Rougness POL Polished SL Slickensided S Smooth RF Rough		UN	Undulose
Rougness POL Polished SL Slickensided S Smooth RF Rough		ST	Stepped
Rougness POL Polished SL Slickensided S Smooth RF Rough		IR	Irregular
SL Slickensided S Smooth RF Rough		DIS	Discontinuous
S Smooth Rough	Rougness	POL	Polished
RF Rough		SL	Slickensided
		S	Smooth
VR Very Rough		RF	Rough
		VR	Very Rough

SOIL

Structures - Fissuring and other defects are described in accordance with AS 1726-1993, Appendix A2.6, using the terminology for rock defects.

Origin - Where practicable an assessment is provided of the probable origin of the soil, eg fill, topsoil, alluvium, colluvium, residual soil.

[°] Diametral Point Load Test

IMPORTANT INFORMATION

This Document has been provided by Morrow Geotechnics Pty Ltd subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Morrow Geotechnics' proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Morrow Geotechnics' Services are as described in Morrow Geotechnics' proposal, and are subject to restrictions and limitations. Morrow Geotechnics did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. The scope of services may have been limited by such factors as time, budget, site access or other site conditions. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Morrow Geotechnics in regards to it. Any advice given within this document is limited to geotechnical considerations only. Other constraints particular to the project, including but not limited to architectural, environment, heritage and planning matters may apply and should be assessed independently of this advice.

Conditions may exist which were undetectable given the limited nature of the enquiry Morrow Geotechnics was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required. No geotechnical investigation can provide a full understanding of all possible subsurface details and anomalies at a site.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Morrow Geotechnics' opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Morrow Geotechnics to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Morrow Geotechnics for incomplete or inaccurate data supplied by others.

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that Morrow Geotechnics be notified of any variations and be provided with an opportunity to review the recommendations of this report.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Morrow Geotechnics accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.