

## 2 April 2024

The following is provided as reference documentation in accordance with the Department of Planning, Housing and Infrastructure's letter dated 21 February 2024 to:

include updated technical information prepared as part of the • current development application for the golf clubhouse.

The following technical documentation is provided:

- Aboriginal Heritage Due Diligence Assessment Report as submitted for -DA2022/2081
- Acid Sulphate Management Plan as submitted for DA2022/2081
- Acid Sulphate Assessment as submitted for DA2022/2081 -
- Acoustic Assessment as submitted for DA2022/2081
- Arboricultural Impact Assessment as submitted for DA2022/2081
- Flood Management Report as submitted for DA2022/2081 \_
- Flora and Fauna Assessment Report and Waterway Impact Statement -as submitted for DA2022/2081
- Geotechnical assessment as submitted for DA2022/2081 -
- Preliminary Site Investigation as submitted for DA2022/2081



View north along Brookvale Creek adjacent to the study area.

## ABORIGINAL DUE DILIGENCE ASSESSMENT REPORT

## WARRINGAH GOLF CLUB

WARRINGAH, SYDNEY AUGUST 2023

> Report prepared by OzArk Environment & Heritage for Warringah Golf Club



## OzArk Environment & Heritage

145 Wingewarra St (PO Box 2069) Dubbo NSW 2830

Phone: (02) 6882 0118 Fax: (02) 6882 0630 enquiry@ozarkehm.com.au www.ozarkehm.com.au This page has intentionally been left blank.

## **DOCUMENT CONTROLS**

| Proponent                              | Warringah Golf Club                                                             |                                     |  |  |  |  |  |
|----------------------------------------|---------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| Document Description                   | Aboriginal Due Diligence Assessment Report: Warringah Golf Club, North<br>Manly |                                     |  |  |  |  |  |
| File Location                          | OzArk Job No.                                                                   |                                     |  |  |  |  |  |
| Clients\Warringah Golf Club\Club       |                                                                                 |                                     |  |  |  |  |  |
| Due Diligence August                   | 4055                                                                            |                                     |  |  |  |  |  |
| 2023\Report                            |                                                                                 |                                     |  |  |  |  |  |
| Document Status: V3.0 Final            |                                                                                 | Date: 30 August 2023                |  |  |  |  |  |
|                                        |                                                                                 | V1.0 BD author 23/8/23              |  |  |  |  |  |
| Draft V1: OzArk internal edits         |                                                                                 | V1.1-2 HR edit 23/8/23              |  |  |  |  |  |
| Draft V2: OzArk and client edits       |                                                                                 | V2.0: BC edit 29/8/59               |  |  |  |  |  |
| Final V3: Final document               |                                                                                 |                                     |  |  |  |  |  |
| Prepared for                           |                                                                                 | Prepared by                         |  |  |  |  |  |
| Graeme McMullan Dr. Bernadette Drabsch |                                                                                 |                                     |  |  |  |  |  |
| Warringah Golf Club                    |                                                                                 | OzArk Affiliate                     |  |  |  |  |  |
| graeme@warringahgolfclub.com.au        |                                                                                 | OzArk Environment & Heritage        |  |  |  |  |  |
|                                        |                                                                                 | 145 Wingewarra Street (PO Box 2069) |  |  |  |  |  |
|                                        |                                                                                 | Dubbo NSW 2830                      |  |  |  |  |  |
|                                        |                                                                                 | P: 02 6882 0118                     |  |  |  |  |  |
|                                        |                                                                                 |                                     |  |  |  |  |  |
| COPYRIGHT                              |                                                                                 |                                     |  |  |  |  |  |

© OzArk Environment & Heritage 2023 and © Warringah Golf Club 2023

All intellectual property and copyright reserved.

Apart from any fair dealing for private study, research, criticism, or review, as permitted under the Copyright Act, 1968, no part of this report may be reproduced, transmitted, stored in a retrieval system, or adapted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without written permission.

Enquiries should be addressed to OzArk Environment & Heritage.

#### Acknowledgement

OzArk acknowledge the traditional custodians of the area on which this assessment took place and pay respect to their beliefs, cultural heritage, and continuing connection with the land. We also acknowledge and pay respect to the post-contact experiences of Aboriginal people with attachment to the area and to the Elders, past and present, as the next generation of role models and vessels for memories, traditions, culture and hopes of local Aboriginal people.

#### **EXECUTIVE SUMMARY**

OzArk Environment & Heritage (OzArk) has been engaged by Warringah Golf Club (the proponent) to complete an Aboriginal due diligence heritage assessment for the proposed construction of the Warringah Golf & Community Clubhouse (the proposal). The proposal is in the Northern Beaches Council Local Government Area (LGA).

The study area is located at Lot 2742 DP752038 on Kentwell Road in North Manly and encompasses approximately 1.1 hectares (ha) of land, of which most has been developed for existing tennis courts, buildings, and car parking.

A search of the Aboriginal Heritage Information Management System (AHIMS) shows there are no previously recorded Aboriginal sites within the study area, however, landform modelling shows there are landforms with identified archaeological sensitivity (landforms within 200 metres [m] of 'water'). As such, the assessment progressed to a visual inspection.

The visual inspection of the study area was undertaken on 11 August 2023 by OzArk Archaeologist, Harrison Rochford, and Josh Muir, representing Metropolitan Local Aboriginal Land Council. No Aboriginal sites or areas with potential to contain subsurface deposits were identified.

The undertaking of the due diligence process resulted in the conclusion that the proposed works will have an impact on the ground surface, however, no Aboriginal objects or intact archaeological deposits will be harmed by the proposal. This moves the proposal to the following outcome:

Aboriginal Heritage Impact Permit application not necessary. Proceed with caution. If any Aboriginal objects are found, stop work, and notify Heritage NSW (02) 9873 8500 (heritagemailbox@environment.nsw.gov.au). If human remains are found, stop work, secure the site, and notify NSW Police and Heritage NSW.

The proposed work may proceed without further archaeological investigation under the following conditions:

- All land and ground disturbance activities must be confined to within the study area, as this will eliminate the risk of harm to Aboriginal objects that may be in adjacent landforms. Should the parameters of the proposal extend beyond the assessed areas, then further archaeological assessment may be required.
- 2) This assessment has concluded that there is a low likelihood that the proposed work will adversely harm Aboriginal cultural heritage items or sites. If during works, however, Aboriginal artefacts or skeletal material are noted, all work should cease and the procedures in the Unanticipated Finds Protocol (Appendix 2) should be followed.

- 3) Inductions for work crews should include a cultural heritage awareness procedure to ensure they recognise Aboriginal artefacts (see **Appendix 3**) and are aware of the legislative protection of Aboriginal objects under the *National Parks and Wildlife Act 1974* and the contents of the *Unanticipated Finds Protocol.*
- 4) The information presented here meets the requirements of the Due Diligence Code of Practice for the Protection of Aboriginal Objects in New South Wales. It should be retained as shelf documentation for five years as it may be used to support a defence against prosecution in the event of unanticipated harm to Aboriginal objects.

## CONTENTS

| Ехеситі | VE SUMMARYIII                                                      |
|---------|--------------------------------------------------------------------|
| 1 INTE  | RODUCTION1                                                         |
| 1.1     | Brief description of the proposal1                                 |
| 1.2     | Study area1                                                        |
| 1.3     | Assessment approach2                                               |
| 2 Авс   | RIGINAL DUE DILIGENCE ASSESSMENT                                   |
| 2.1     | Introduction                                                       |
| 2.2     | Defences under the NPW Regulation                                  |
| 2.2.1   | Low impact activities                                              |
| 2.2.2   | Disturbed lands3                                                   |
| 2.3     | Application of the Due Diligence Code of Practice to the proposal4 |
| 2.3.1   | Step 14                                                            |
| 2.3.2   | Step 2a5                                                           |
| 2.3.3   | Step 2b7                                                           |
| 2.3.4   | Step 2c9                                                           |
| 2.3.5   | Step 3 10                                                          |
| 2.3.6   | Step 4                                                             |
| 2.4     | Conclusion11                                                       |
| 3 MAN   | AGEMENT RECOMMENDATIONS                                            |
| REFEREN | ICES14                                                             |
| PLATES. |                                                                    |
|         | x 1: AHIMS SEARCH RESULTS19                                        |
|         | x 2: Aboriginal Heritage: Unanticipated Finds Protocol             |
|         | X 3: ABORIGINAL HERITAGE: ARTEFACT IDENTIFICATION                  |

## **FIGURES**

| Figure 1-1: Club House and Tennis Courts location.                  | 1  |
|---------------------------------------------------------------------|----|
| Figure 1-2: Aerial view of study area                               | 2  |
| Figure 2-1: New club house plans                                    | 5  |
| Figure 2-2: Previously recorded sites in relation to the study area | 6  |
| Figure 2-3: Survey coverage within the study area                   | 11 |

## TABLES

| Table 2-1: Determination of whether Due Diligence Code of Practice applies | 4    |
|----------------------------------------------------------------------------|------|
| Table 2-2: Site types and frequencies of AHIMS sites near the study area   | 6    |
| Table 2-3: Due Diligence Code of Practice application.                     | . 11 |

## PLATES

| Plate 1: View north along Brookvale Creek                                                 | . 15 |
|-------------------------------------------------------------------------------------------|------|
| Plate 2: View west along a minor drainage and wetlands in the northeast of the study area | . 15 |
| Plate 3: Casuarinas that are proposed to be removed                                       | . 16 |
| Plate 4:View north along Brookvale Creek showing the modified banks and imported boulders | for  |
| erosion control                                                                           | . 17 |
| Plate 5: Sandy soil was evident where exposures were present                              | . 18 |
| Plate 6: View north along Brookvale Creek in the northwest of the study area              | . 18 |

#### **1** INTRODUCTION

#### 1.1 BRIEF DESCRIPTION OF THE PROPOSAL

OzArk Environment & Heritage (OzArk) has been engaged by Warringah Golf Club (the proponent) to complete an Aboriginal due diligence heritage assessment for the proposed construction of the new Warringah Golf & Community Club Clubhouse (the proposal). The proposal is in the Northern Beaches Council Local Government Area (LGA).

Warringah Golf Club propose to construct a new club house, to be located on the existing footprint of the current tennis courts at Lot 2742 DP752038 on Kentwell Road in North Manly (**Figure 1-1**).



Figure 1-1: Club House and Tennis Courts location.

#### 1.2 STUDY AREA

The study area is located at Lot 2742 DP752038 on Kentwell Road in North Manly which encompasses approximately 1.1 hectares (ha) of land, most of which has been developed for tennis courts, buildings, and car parking.

The study area consists of a flat landform with a small drainage channel running along the northeastern corner and Brookvale Creek along its western boundary. Brookvale Creek joins Manly Creek and drains into the ocean at the northern end of Manly Beach, approximately two kilometres (km) to the east. The study area is extensively developed in the centre with native vegetation remaining along the northern and western boundaries (**Figure 1-2**).



Figure 1-2: Aerial view of study area.

## 1.3 ASSESSMENT APPROACH

#### Aboriginal cultural heritage

The desktop and visual inspection component for the study area follows the *Due Diligence Code* of *Practice for the Protection of Aboriginal Objects in New South Wales* (due diligence; DECCW 2010). The field inspection followed the *Guide to Investigating, Assessing and Reporting on Aboriginal Cultural Heritage in New South Wales* (OEH 2011).

## 2 ABORIGINAL DUE DILIGENCE ASSESSMENT

#### 2.1 INTRODUCTION

Section 57 of the National Parks and Wildlife Regulation 2019 (NPW Regulation) made under the *National Parks and Wildlife Act 1974* (NPW Act) advocates a due diligence process to determining likely impacts on Aboriginal objects. Carrying out due diligence provides a defence to the offence of harming Aboriginal objects and is an important step in satisfying Aboriginal heritage obligations in NSW.

#### 2.2 DEFENCES UNDER THE NPW REGULATION

#### 2.2.1 Low impact activities

The first step before application of the due diligence process itself is to determine whether the proposed activity is a "low impact activity" for which there is a defence in the NPW Regulation. The exemptions are listed in Section 58 of the NPW Regulation (DECCW 2010: 6).

The proposal is not considered to be a 'low impact activity' and the due diligence process must be applied.

#### 2.2.2 Disturbed lands

Relevant to this process is the assessed levels of previous land-use disturbance.

The NPW Regulation Section 58 (DECCW 2010: 18) define disturbed land as follows:

Land is disturbed if it has been the subject of a human activity that has changed the land's surface, being changes that remain clear and observable.

Examples include ploughing, construction of rural infrastructure (such as dams and fences), construction of roads, trails and tracks (including fire trails and tracks and walking tracks), clearing vegetation, construction of buildings and the erection of other structures, construction or installation of utilities and other similar services (such as above or below ground electrical infrastructure, water or sewerage pipelines, stormwater drainage and other similar infrastructure) and construction of earthworks.

The proposal is largely located in areas where the land's surface has been changed in a clear and observable manner for the construction of the tennis courts, car parking, and existing structures. However, study area may contain landforms that do not meet the criteria of 'disturbed land' at the northern and eastern boundaries. As such, the due diligence process must be applied.

In summary, it is determined that the proposal must be assessed under the Due Diligence Code of Practice. The reasoning for this determination is set out in **Table 2-1**.

 Table 2-1: Determination of whether Due Diligence Code of Practice applies.

| Item                                                                                                                                                                             | Reasoning                                                                                                                 | Answer |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------|
| Is the activity to be assessed under<br>Division 4.7 (state significant<br>development) or Division 5.2 (state<br>significant infrastructure) of the EP&A<br>Act?                | The proposal will be assessed under Part 4 of the EP&A Act.                                                               | No     |
| Is the activity exempt from the NPW Act or NPW Regulation?                                                                                                                       | The proposal is not exempt under this Act or Regulation.                                                                  | No     |
| Do either or both apply:<br>Is the activity in an Aboriginal place?<br>Have previous investigations that meet<br>the requirements of this Code identified<br>Aboriginal objects? | The activity will not occur in an Aboriginal place.<br>No previous investigations have been undertaken for this proposal. | No     |
| ls the activity a low impact one for which<br>there is a defence in the NPW<br>Regulation?                                                                                       | The proposal is not a low impact activity for which there is a defence in the NPW Regulation.                             | No     |
| Is the activity occurring entirely within<br>areas that are assessed as 'disturbed<br>lands'?                                                                                    | The proposal is not entirely within areas of high modification.                                                           | No     |
| Due D                                                                                                                                                                            | Diligence Code of Practice assessment is required                                                                         |        |

## 2.3 APPLICATION OF THE DUE DILIGENCE CODE OF PRACTICE TO THE PROPOSAL

To follow the generic due diligence process, a series of steps in a question/answer flowchart format (DECCW 2010:10) are applied to the proposed impacts and the study area, and the responses documented.

#### 2.3.1 Step 1

Will the activity disturb the ground surface or any culturally modified trees?

#### Yes, the proposal will impact the ground surface and may impact culturally modified trees.

The proposed works will impact ground surface associated with the demolition of existing structures and the excavation of foundation pylons for the new club house to a depth of approximately two metres (m). The proposal will include the removal of mature, possibly native vegetation and this activity could harm culturally modified trees if they are present (**Figure 2-1**).



Figure 2-1: New club house plans.

#### 2.3.2 Step 2a

Are there any relevant confirmed site records or other associated landscape feature information on AHIMS?

#### No, there are no previously recorded sites within the study area.

A search of the Aboriginal Heritage Information Management System (AHIMS) on 8 August 2023 was undertaken over a 10 x 10 km area centred on the study area. The search returned 29 previously registered Aboriginal sites. None of the previously recorded sites are in the study area, with the closest recorded site, AHIMS site 45-6-2177, located 600 m to the northwest of the north-western corner of the study area.

**Figure 2-2** shows all previously recorded sites in relation to the study area and **Table 2-2** shows the types of sites that are close to the study area.

The most frequently recorded sites in the search are art sites (pigment or engraved), and rock shelters with potential archaeological deposits. Grinding grooves and artefact sites are also identified. The art sites have been recorded in areas with limited disturbance and rocky outcrops The grinding grooves have been located in undisturbed areas surrounding the waterways of Manly Dam (approximately 1.5 km west of the study area).

| Site Type                                                | Number | % Frequency |
|----------------------------------------------------------|--------|-------------|
| Art (pigment or engraved)                                | 17     | 58.62       |
| Rock shelter with potential archaeological deposit (PAD) | 4      | 13.79       |
| Artefact site                                            | 2      | 6.89        |
| Rock shelter with art                                    | 2      | 6.89        |
| Rock shelter with PAD                                    | 1      | 3.44        |
| Grinding grooves                                         | 1      | 3.44        |
| Grinding grooves, art and PAD                            | 1      | 3.44        |
| Potential archaeological deposit                         | 1      | 3.44        |
| Total                                                    | 29     | 100         |

Table 2-2: Site types and frequencies of AHIMS sites near the study area.





#### 2.3.3 Step 2b

Are there any other sources of information of which a person is already aware?

No, there are no other sources of information that would indicate the presence of Aboriginal objects in the study area.

#### 2.3.3.1 Ethnohistoric context

The proposal sits on the traditional land of the Garigal or Caregal people (formerly known as Guringai). The Garigal lived in family groups and moved around the area. The coast provided an abundant food supply. Fish was the staple diet, including shellfish such as oysters, whelks, and mussels. Other food sources were birds, reptiles, marsupials, as well as roots, fruits, berries, and nuts (AHO 2015). Numerous open and rock shelter sites associated with shell middens and remains of fish and mammals dating to the past 4500 years are known around Sydney Harbour (Attenbrow 2010). Igneous stone suitable for hatchet heads and stone for flaking, cutting, and scraping were not naturally available in the area and could be traded from long distances. Applied art in rock shelters and engravings on sandstone platforms were common in this part of Sydney, although their fragility means that many have been lost in the past two centuries.

#### 2.3.3.2 Regional archaeological context

#### Gunn 1992

In 1992 R.G. Gunn conducted an archaeological survey of the Garigal National Park for the NSW National Parks and Wildlife Service (NPWS) (approximately 9 km from study area). To date this survey is still the most comprehensive study of Aboriginal archaeological sites within the local area. Based on the results of the survey and on other relevant studies, Gunn developed a model for Aboriginal land use in the area, which is summarised below:

- The coastal headland sand of Narrabeen Lake would have been an inhabitation focal point for a band or clan consisting of potentially 6–8 groupings
- Subsistence activities during the summer months by the coastline may have been focussed on the ocean coastline where food and water were plentiful, only occasionally venturing west into the creek lines and hills
- During the spring, the valleys of Deep and Middle Creeks in the Garigal National Park would have been utilised for the vast variety of fruit and other plant foods
- During the winter months, when food resources were less abundant, the family groups that had come together during the warmer months would have dispersed and moved across the local region, inhabiting various smaller short duration camps.

Gunn (1992) further asserts that engravings of sandstone away from the Narrabeen Lakes were part of formal events undertaken during the summer months by certain individuals and not

undertaken on mass. Gunn suggests occupation of the inland areas would only have been inhabited during the winter months by small family groups or clans.

#### Navin Officer 1995

Survey was carried out in 1995 for a proposed gas pipeline route along Mona Vale Road between Forest Way, Terrey Hills and Beaconsfield Street, Newport (approximately 10 km from study area). Seven engraving sites and one midden site had previously been recorded within the study corridor; however, the survey was unable to locate three of these due to incorrect coordinates registered on AHIMS. Two previously unrecorded sites, both rock engravings, were identified during the field survey.

#### Oakley 1998

A section of Mona Vale Road was investigated ahead of a proposed upgrade by Oakley in 1998 (approximately 10 km from study area). Archaeological field survey confirmed the presence of a previously recorded rock engraving site 45-6-0071. Recorded by Sim in 1964, the motifs are two echidnas, three ovals, and one possible snake patterned with traverse lines. The ovals and a further unidentified figure recorded by Koettig in 1981 were not visible at the time. The engravings described by Koettig (1981) as 'Area B' of existing site 45-6-0071, were identified and found to be within an area to be impacted by the proposed works. Redesign of the road project avoided impact to the site.

#### AMBS 2012

An archaeological survey and Aboriginal heritage assessment for the Northern Beaches Hospital site was prepared by AMBS in 2012 (approximately 4 km from study area). AMBS concluded that overall, the Northern Beaches Hospital site demonstrated high levels of surface disturbance from residential development and other historical activities. As such 'the apparent lack of substantial intact topsoil, indicates that there is unlikely to be any archaeological potential for intact or substantial Aboriginal stone artefact deposits within the study area' (AMBS 2012:31).

#### KNC 2014

Kelleher Nightingale Consulting (KNC) prepared an archaeological survey report for road works near the Northern Beaches Hospital, along Warringah Road and Frenchs Forest Road West. With regard to the archaeological record of the area, KNC (2014:36) noted that '*The principal remaining physical evidence of Aboriginal landscape use around the study area consists of shelters with art and archaeological deposit, and rock engravings located on outcropping sandstone slabs and benches*'.

KNC identified two shelter sites within Trefoil Creek (approximately 4.5 km from study area). Hand stencils were identified at one of these and a potential archaeological deposit was identified at the second shelter site.

#### **Conclusion**

The previous archaeological investigations undertaken near the study area indicate that the study area has a low potential to record sites because specific topographic features, such as rock platforms/shelters, are absent. While the now-modified land within the study area may have had potential for artefact or midden sites in the past, much of this potential has been lost due to the long-term disturbances from post-1788 land use.

#### 2.3.4 Step 2c

#### Are there any landscape features that are likely to indicate presence of Aboriginal objects?

## Yes, portions of the study area contain landforms with identified archaeological sensitivity.

The study area includes environments that could be considered once suitable for occupation by pre-1788 Aboriginal communities. The due diligence guidelines outline a series of landscape features which are known to be archaeologically sensitive and therefore are likely to contain Aboriginal objects. Included in this list is any land within 200 m of 'waters' (DECCW 2010). Due to this classification, the western portion of the study area, which is bounded by Brookvale Creek, is regarded as archaeologically sensitive. Brookvale Creek drains into Manly Creek and exits at the northern end of Manly Beach, approximately 2 km to the east.

The study area is predominantly level and is underlain by Quaternary Period alluvium. This formation is described as 'silty to peaty quartz sand, silt, and clay. Ferruginous and humic cementation in places, commonly shell layers'. The site is also located near Hawkesbury sandstone of Wianamatta Group from the east, which is described as medium to coarse-grained quartz sandstone, very minor shale, and laminate lenses'.

The land is extensively cleared with some native shrubs and trees, including swamp oaks (*Casuarina glauca*), remaining along the boundaries.

Based on previous investigations, the most likely site types to be recorded in the region of the study area are art sites (pigment or engraved), which make up 58% of all sites in the area. These site types may occur where the underlying sandstone geology rises above the ground surface. As the valley floor location of the study area is unlikely to have exposed rock, these site types are unlikely. Artefact sites are also considered to have a low probability of being present in the study area given the long-term nature of the post-1788 land use that would have removed or scattered any archaeological deposits had they been present.

#### 2.3.5 Step 3

<u>Can harm to Aboriginal objects or disturbance of archaeologically sensitive landscape features</u> <u>be avoided?</u>

#### No. Landforms with identified archaeological sensitivity may be impacted by the proposal.

Aboriginal sites identified through the AHIMS search do not occur within the study area, thus there is no risk of harm to previously recorded sites. However, the study area is within 200 m of Brookvale Creek and a visual inspection of the study area is required to assess whether Aboriginal objects exist within the landforms of the study area and to determine whether any harm will occur.

#### 2.3.6 Step 4

Does a desktop assessment and visual inspection confirm that there are Aboriginal objects or that they are likely?

#### No, the visual inspection confirmed there are no Aboriginal objects within the study area.

The visual inspection of the study area was undertaken on 11 August 2023 by OzArk Archaeologist, Harrison Rochford, and Josh Muir, representing Metropolitan Local Aboriginal Land Council. The inspection focused on the named waterway, Brookvale Creek, which borders the study area on the western side and the drainage channel and wetlands on the north-eastern boundary. Josh Muir noted that the casuarinas provide good habitat for cockatoos and was satisfied that the cleared trees will be replaced on site with the same species for a continuation of habitat.

The study area was inspected on foot to ground-truth levels of disturbance unable to be distinguished at a desktop level and assess areas with increased archaeological potential. The inspection was recorded by photograph and GPS (**Figure 2-3**). **Plates 1** to **6** show representative examples of the environment.

It is concluded that there are no areas of subsurface archaeological potential within the study area. While the study area is adjacent to Brookvale Creek, the inspection confirmed that it has been highly modified with landscaped edges and boulders placed along the banks to prevent erosion. The landforms of the study area have low elevation above the creek and do not have the characteristics of desirable locations for repeated habitation in the past. Inspection of the native vegetation confirmed that there were casuarinas and a large fig tree, however, no culturally modified trees were identified. No areas of exposed rock that may have included engravings were recorded.



#### Figure 2-3: Survey coverage within the study area.

#### **Discussion**

The predictive model discussed in **Section 2.3.4** indicated that engraved rock art sites, grinding grooves, and rock shelters were the most likely sites to be present within the study area and these sites were most likely to be identified within 200 m of Brookvale Creek. No Aboriginal sites were identified within those landforms. The absence of artefact sites may be attributed to the level of modification that the creek has undergone and the generally low-lying landscape that would have not been a favourable camping location.

The native trees within these landforms show no evidence of being culturally modified.

#### 2.4 CONCLUSION

The due diligence process has resulted in the outcome that an Aboriginal Heritage Impact Permit (AHIP) is not required. The reasoning behind this determination is set out in **Table 2-3**.

| Step                                                                                        | Reasoning                                                                                                                                                 | Answer |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Step 1<br>Will the activity disturb the ground<br>surface or any culturally modified trees? | The proposed works will disturb the ground surface through the sinking of foundational pylons to 2 m and may impact culturally modified trees if present. | Yes    |
| If the answer to Step 1 is 'yes', proceed                                                   | to Step 2                                                                                                                                                 |        |

| Step                                                                                                                                                                                                          | Reasoning                                                                                                                                                                                                                                             | Answer |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Step 2a<br>Are there any relevant records of<br>Aboriginal heritage on AHIMS to indicate<br>presence of Aboriginal objects?                                                                                   | AHIMS indicated that there are no Aboriginal sites within the study area.                                                                                                                                                                             | No     |
| Step 2b<br>Are there other sources of information to<br>indicate presence of Aboriginal objects?                                                                                                              | There are no other sources of information to indicate that Aboriginal objects are likely in the study area, although it is noted that there is a general likelihood for landforms in the region to contain Aboriginal objects.                        | No     |
| Step 2c<br>Will the activity impact landforms with<br>archaeological sensitivity as defined by<br>the Due Diligence Code?                                                                                     | Landforms with identified archaeological sensitivity are present in the study area.                                                                                                                                                                   | Yes    |
| If the answer to any stage of Step 2 is '                                                                                                                                                                     | yes', proceed to Step 3                                                                                                                                                                                                                               |        |
| Step 3<br>Can harm to Aboriginal objects listed on<br>AHIMS or identified by other sources of<br>information and/or can the carrying out<br>of the activity at the relevant landscape<br>features be avoided? | The proposal will impact landforms with archaeological sensitivity as identified in the Due Diligence Code: landforms within 200 m of 'waters'.                                                                                                       | No     |
| If the answer to Step 3 is 'no', a visual i                                                                                                                                                                   | nspection is required. Proceed to Step 4.                                                                                                                                                                                                             | 1      |
| Step 4<br>Does the visual inspection confirm that<br>there are Aboriginal objects or that they<br>are likely?                                                                                                 | The visual inspection recorded no Aboriginal objects in the study<br>area. Landforms with identified archaeological sensitivity that were<br>identified at a desk-top level were found during the inspection to<br>have low archaeological potential. | No     |
| Conclusion                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       |        |
|                                                                                                                                                                                                               | AHIP not necessary. Proceed with caution.                                                                                                                                                                                                             |        |

#### **3 MANAGEMENT RECOMMENDATIONS**

The undertaking of the due diligence process resulted in the conclusion that the proposed works will have an impact on the ground surface, however, no Aboriginal objects or intact archaeological deposits will be harmed by the proposal. This moves the proposal to the following outcome:

AHIP application not necessary. Proceed with caution. If any Aboriginal objects are found, stop work, and notify Heritage NSW (02) 9873 8500 (heritagemailbox @environment.nsw.gov.au). If human remains are found, stop work, secure the site, and notify NSW Police and Heritage NSW.

The proposed work may proceed without further archaeological investigation under the following conditions:

- All land and ground disturbance activities must be confined to within the study area, as this will eliminate the risk of harm to Aboriginal objects that may be in adjacent landforms. Should the parameters of the proposal extend beyond the assessed areas, then further archaeological assessment may be required.
- 2) This assessment has concluded that there is a low likelihood that the proposed work will adversely harm Aboriginal cultural heritage items or sites. If during works, however, Aboriginal artefacts or skeletal material are noted, all work should cease and the procedures in the Unanticipated Finds Protocol (Appendix 2) should be followed.
- 3) Inductions for work crews should include a cultural heritage awareness procedure to ensure they recognise Aboriginal artefacts (see **Appendix 3**) and are aware of the legislative protection of Aboriginal objects under the NPW Act and the contents of the Unanticipated Finds Protocol.
- 4) The information presented here meets the requirements of the Due Diligence Code of Practice for the Protection of Aboriginal Objects in New South Wales. It should be retained as shelf documentation for five years as it may be used to support a defence against prosecution in the event of unanticipated harm to Aboriginal objects.

## REFERENCES

| AHO 2015           | Aboriginal Heritage Office, 2015. <i>Filling a Void: A Review of the Historical Context for the use of the word 'Guringai'.</i>                                                                                                                   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMBS 2012          | AMBS Ecology & Heritage, 2012. Northern Beaches Hospital. Stage 1:<br>Concept Design, Site Clearance & Preparatory Works. Appendix G. Historic<br>Heritage Impact Assessment. Report for SMEC Australia.                                          |
| Attenbrow 2010     | Attenbrow, V. 2010. <i>Sydney's Aboriginal Past: Investigating the archaeological and historical records, second edition.</i> University of New South Wales Press: Sydney                                                                         |
| Burra Charter 2013 | International Council on Monuments and Sites 2013. <i>The Burra Charter: The Australia ICOMOS Charter for Places of Cultural Significance</i> .                                                                                                   |
| DECCW 2010         | DECCW. 2010. Due Diligence Code of Practice for the Protection of Aboriginal Objects in NSW. Department of Environment, Climate Change and Water, Sydney.                                                                                         |
| Gunn 1992          | Gunn, R.G. 1992. <i>Garigal National Park Archaeological Survey.</i><br>Management Report to NPWS (NSW).                                                                                                                                          |
| KNC 2014           | Kelleher Nightingale Consulting, 2014. <i>Mona Vale Road upgrade from</i><br><i>Manor Road, Ingleside to Foley Street, Mona Vale: Aboriginal</i><br><i>archaeological survey report Stage 2 PACHCI.</i> Report to Roads and<br>Maritime Services. |
| Koettig 1981       | Koettig, M. 1981. Archaeological survey for Aboriginal sites – Mona Vale<br>Road (McCarrs Creek Road – Alan Street). Report for Department of Main<br>Roads.                                                                                      |
| Mitchell 2002      | Mitchell, Dr. Peter. 2002. <i>Description for NSW (Mitchell) Landscapes Version 2.</i> Department of Environment and Climate Change NSW.                                                                                                          |
| Navin Officer 1995 | Navin Officer Archaeological Resource Management, 1995. Archaeological survey gas pipeline route Mona Vale, NSW. Report to AGL.                                                                                                                   |
| Oakley 1998        | Oakley, B. 1998. Aboriginal and European Heritage Assessment –<br><i>Proposed upgrade of Mona Vale Road Ingleside NSW.</i> Report to the Roads and Traffic Authority.                                                                             |
| OEH 2011           | Office of Environment and Heritage. 2011. <i>Guide to Investigating, Assessing and Reporting on Aboriginal Cultural Heritage in New South Wales.</i> Department of Environment, Climate Change and Water, Sydney.                                 |

## PLATES



Plate 1: View north along Brookvale Creek.



Plate 2: View west along a minor drainage and wetlands in the northeast of the study area.



Plate 3: Casuarinas that are proposed to be removed.



Plate 4:View north along Brookvale Creek showing the modified banks and imported boulders for erosion control.



Plate 5: Sandy soil was evident where exposures were present.



Plate 6: View north along Brookvale Creek in the southwest of the study area.

## APPENDIX 1: AHIMS SEARCH RESULTS

| AGD       |                                      |                                                      |                                                                     | - A COLORADO A COLORADO                                                                                                                                                          | MARKED AND ADDRESS                                                                                                 |                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
|-----------|--------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 56                                   | 338536                                               | 6261528                                                             | Open site                                                                                                                                                                        | Valid                                                                                                              | Art (Pigment or<br>Engraved) : -                                                                                         | Rock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| Recorders | ASRS                                 | YS                                                   |                                                                     |                                                                                                                                                                                  |                                                                                                                    | Permits                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| AGD       | 56                                   | 338850                                               | 6261534                                                             | Open site                                                                                                                                                                        | Valid                                                                                                              | Art (Pigment or<br>Engraved) : -                                                                                         | Rock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| ACD       | Ms.Lt                                | sa Campbell                                          | 6262177                                                             | Onen cite                                                                                                                                                                        | Walid                                                                                                              | Act (Digment or                                                                                                          | Pock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| AGD       | 50                                   | 339327                                               | 6203177                                                             | Open site                                                                                                                                                                        | valid                                                                                                              | Engraved) : -                                                                                                            | KOCK Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| ACD       | MS.LI                                | sa Campoen                                           | 6261012                                                             | Onen eite                                                                                                                                                                        | Walid                                                                                                              | Art (Diamont or                                                                                                          | Deek Commiss                                                                                                                                                                                                |                                                                                                                                                                                                                             |
| Becorders | ACDC                                 | 330207<br>VC                                         | 0201712                                                             | open site                                                                                                                                                                        | vanu                                                                                                               | Engraved) : -                                                                                                            | ROCK Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| GDA       | 56                                   | 338540                                               | 6260523                                                             | Closed site                                                                                                                                                                      | Valid                                                                                                              | Art (Pigment or<br>Engraved) : -                                                                                         | Rock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| Recorders | ASRS                                 | YS,Sydney V                                          | Vater - Parram                                                      | atta,Sydney Wate                                                                                                                                                                 | r - Parramatta,Ms.Yv                                                                                               | onne Kaiser,! Permits                                                                                                    |                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| GDA       | 56                                   | 338568                                               | 6260671                                                             | Closed site                                                                                                                                                                      | Valid                                                                                                              | Art (Pigment or<br>Engraved) : -                                                                                         | Shelter with Art                                                                                                                                                                                            | 1809                                                                                                                                                                                                                        |
| Recorders | Micha                                | ael Guider,Sy                                        | dney Water -                                                        | Parramatta,Sydne                                                                                                                                                                 | ey Water - Parramatta                                                                                              | a,Ms.Yvonne Permits                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| AGD       | 56                                   | 339052                                               | 6261610                                                             | Open site                                                                                                                                                                        | Valid                                                                                                              | Art (Pigment or<br>Engraved) : -                                                                                         | Rock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| Recorders | Micha                                | ael Guider                                           |                                                                     |                                                                                                                                                                                  |                                                                                                                    | Permits                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| GDA       | 56                                   | 341014                                               | 6259750                                                             | Closed site                                                                                                                                                                      | Valid                                                                                                              | Artefact : -, Art<br>(Pigment or                                                                                         | Shelter with<br>Art,Shelter with                                                                                                                                                                            |                                                                                                                                                                                                                             |
| Recorders | Unkn                                 | own Author                                           |                                                                     |                                                                                                                                                                                  |                                                                                                                    | Engraved) : -                                                                                                            | Deposit                                                                                                                                                                                                     |                                                                                                                                                                                                                             |
| AGD       | 56                                   | 341507                                               | 6263089                                                             | Open site                                                                                                                                                                        | Valid                                                                                                              | Art (Pigment or                                                                                                          | Rock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| Recorders | ASRS                                 | YS                                                   |                                                                     |                                                                                                                                                                                  |                                                                                                                    | Permits                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| AGD       | 56                                   | 338315                                               | 6262166                                                             | Open site                                                                                                                                                                        | Valid                                                                                                              | Art (Pigment or<br>Engraved) : -                                                                                         | Rock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| Recorders | Charl                                | es.D Power                                           |                                                                     |                                                                                                                                                                                  |                                                                                                                    | Permits                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| GDA       | 56                                   | 338804                                               | 6259840                                                             | Open site                                                                                                                                                                        | Destroyed                                                                                                          | Art (Pigment or<br>Engraved) : -                                                                                         | Rock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
| Recorders | Mr.R                                 | Taplin                                               | 100000000000000000000000000000000000000                             |                                                                                                                                                                                  |                                                                                                                    | Permits                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| GDA       | 56                                   | 338734                                               | 6259820                                                             | Closed site                                                                                                                                                                      | Destroyed                                                                                                          | Art (Pigment or<br>Engraved) : -                                                                                         | Shelter with Art                                                                                                                                                                                            |                                                                                                                                                                                                                             |
| Kecorders | Mr.R                                 | Taplin                                               | (2(21/2                                                             | On un elte                                                                                                                                                                       | W-114                                                                                                              | Art (Diamont or                                                                                                          | Deals Francisco                                                                                                                                                                                             |                                                                                                                                                                                                                             |
| AGD       | 50                                   | 338268                                               | 6262167                                                             | Upen site                                                                                                                                                                        | Valid                                                                                                              | Art (Pigment or<br>Engraved) : -                                                                                         | Rock Engraving                                                                                                                                                                                              |                                                                                                                                                                                                                             |
|           | GDA<br>Recorders<br>AGD<br>Recorders | GDA 56<br>Recorders Mr.R<br>AGD 56<br>Recorders ASRS | GDA 56 338734 Recorders Mr.R. Taplin AGD 56 338268 Recorders ASRSYS | CDA         56         338734         6259820           Recorders         Mr.R Taplin           ACD         56         338268         6262167           Recorders         ASRSYS | GDA 56 338734 6259820 Cloved size<br>Recorders Mr.R. Taplin<br>AGD 56 338268 6262167 Open site<br>Recorders ASRSYS | GDA 56 338734 6259820 Closed size Destroyed Recorders Mr.R Taplin AGD 56 338268 6262167 Open site Valid Recorders ASRSYS | GDA 56 338734 6259820 Classed site Destroyed Art [Pigment or Engraved] : -<br>Recorders Mr.R Taplin Permits AGD 56 338268 6262167 Open site Valid Art [Pigment or Engraved] : -<br>Recorders ASRSYS Permits | GDA 56 338734 6/250820 Closed size Destroyed Art (P@mentor Shelter with Art Engraved): Recorders Mr.R Tablin Permits AGD 56 338268 6262167 Open site Valid Art (P@mentor Rock Engraving Engraved): Recorders ASRSYS Permits |

| SiteID     | SiteName                        | Datum     | Zonc      | Easting        | Northing      | Context       | Site Status ** | SiteFeatures                                                                                                  | SiteTypes | Reports |
|------------|---------------------------------|-----------|-----------|----------------|---------------|---------------|----------------|---------------------------------------------------------------------------------------------------------------|-----------|---------|
| 45-6-2958  | Undercliff Road RS and Midden   | GDA       | 56        | 341465         | 6260726       | Open site     | Valid          | Potential<br>Archaeological<br>Deposit (PAD) : -,<br>Shell : -                                                |           |         |
|            | Contact                         | Recorders | Doct      | tor.Alan Will  | iams          |               |                | Permits                                                                                                       |           |         |
| 45-6-2975  | CS1 (Brookvale)                 | GDA       | 56        | 339537         | 6263325       | Open site     | Valid          | Artefact : 1                                                                                                  |           |         |
|            | Contact                         | Recorders | Bios      | is Pty Ltd - S | ydney,Ms.Sama | antha Higgs   |                | Permits                                                                                                       |           |         |
| 45-6-3080  | WGC 1 WARR214                   | GDA       | 56        | 337975         | 6261610       | Open site     | Valid          | Art (Pigment or<br>Engraved) : 1,<br>Grinding Groove : 1,<br>Potential<br>Archaeological<br>Deposit (PAD) : 1 |           |         |
|            | Contact                         | Recorders | Abo       | riginal Herita | age Office    |               |                | Permits                                                                                                       |           |         |
| 45-6-3048  | Ronald Reserve Shelter WARR 194 | GDA       | 56        | 341754         | 6261180       | Closed site   | Valid          | Shell : -                                                                                                     |           |         |
|            | Contact                         | Recorders | Abo       | riginal Herita | age Office    |               |                | Permits                                                                                                       |           |         |
| 45-6-3127  | Manly Dam Art Shelter Art 1     | GDA       | 56        | 338340         | 6260420       | Open site     | Valid          | Art (Pigment or<br>Engraved) : -                                                                              |           |         |
|            | Contact                         | Recorders | Mr.0      | Jareth Birch   |               |               |                | Permits                                                                                                       |           |         |
| 45-6-3147  | Mermaid Pool (South)            | GDA       | 56        | 338790         | 6260855       | Closed site   | Valid          | Art (Pigment or<br>Engraved) : -, Water<br>Hole : -                                                           |           |         |
|            | Contact                         | Recorders | Syde      | ney Water - F  | arramatta,Ms. | Yvonne Kaiser |                | Permits                                                                                                       |           |         |
| 45-6-3139  | Monserra Engraving WARR350      | GDA       | 56        | 338250         | 6261800       | Open site     | Valid          | Art (Pigment or<br>Engraved) : -                                                                              |           |         |
| 15 6 21 40 | Contact                         | Recorders | Mr.F      | Phil Hunt      | (2/24/0       | 0             | 1.1.1          | Permits                                                                                                       |           |         |
| 45-6-3140  | Delmar Parade Engraving WARR191 | GDA       | 56<br>M-1 | 341250         | 6263460       | Open site     | Valid          | Art (Pigment or<br>Engraved) : -                                                                              |           |         |
| 45-6-3148  | Manly Dam 1                     | GDA       | 56        | 338518         | 6260973       | Open site     | Valid          | Artefact                                                                                                      |           |         |
| 15 0 5110  | Contact                         | Decordary | Such      | Water I        | Courses Ma    | Vuonna Vaisan | - and          | Basmite                                                                                                       |           |         |
| 45-6-3149  | Mermaid Pool (North)            | GDA       | 56        | 338831         | 6260908       | Closed site   | Valid          | Water Hole : -, Art<br>(Pigment or<br>Engraved) : -,<br>Potential<br>Archaeological<br>Denosit (PAD)          |           |         |
|            | Contact                         | Recorders | Svdi      | nev Water - F  | arramatta.Ms. | Yvonne Kaiser |                | Permits                                                                                                       |           |         |
| 45-6-3167  | MANLY WEST PUBLIC 1. MAN120     | GDA       | 56        | 339645         | 6259523       | Open site     | Valid          | Grinding Groove : -                                                                                           |           |         |
|            | Contact                         | Recorders | Mr.F      | hil Hunt       |               |               |                | Permits                                                                                                       |           |         |
|            |                                 |           |           |                |               |               |                |                                                                                                               |           |         |

Γ

| GOVERNMENT                | Extensive search - Site                 | list report             |                   |                           |                     |                        |                                |                                                         |                            |                  | Your Ref/PO Number : WG<br>Client Service ID : 80770 |
|---------------------------|-----------------------------------------|-------------------------|-------------------|---------------------------|---------------------|------------------------|--------------------------------|---------------------------------------------------------|----------------------------|------------------|------------------------------------------------------|
| i <b>teID</b><br>5-6-3192 | SiteName<br>30 Lyly Rd Rockshelter      | Datum<br>GDA            | <u>Zone</u><br>56 | <u>Easting</u><br>338924  | Northing<br>6262018 | Context<br>Open site   | <u>Site Status **</u><br>Valid | <u>SiteFeatu</u><br>Potential<br>Archaeolo<br>Deposit ( | ures<br>ogical<br>PAD) : - | <u>SiteTypes</u> | <u>Reports</u>                                       |
|                           | Contact                                 | Recorders               | Mr./              | Ashley O'Sulli            | van                 |                        |                                |                                                         | Permits                    |                  |                                                      |
| 5-6-3229                  | Derribong Shelter 1 WARR188             | GDA                     | 56                | 341670                    | 6263435             | Open site              | Valid                          | Shell:1                                                 |                            |                  |                                                      |
| 5-6-3497                  | <u>Contact</u><br>Manly Dam Contact Art | GDA GDA                 | Mr.F<br>56        | 2 Phil Hunt,Abo<br>338332 | 6260585             | e Office<br>Open site  | Valid                          | Art (Pigm<br>Engraved                                   | ent or<br>) : 5            |                  |                                                      |
|                           | Contact                                 | Recorders               | Ms.L              | orien Percha              | ırd                 |                        |                                | U                                                       | Permits                    |                  |                                                      |
| 5-6-3498                  | Manly Dam 9 Grinding Grooves Contact    | GDA<br><u>Recorders</u> | 56<br>Ms.L        | 338484<br>orien Percha    | 6260611<br>Ird      | Open site              | Valid                          | Grinding                                                | Groove : 9<br>Permits      |                  |                                                      |
| 5-6-3363                  | BURNT BRIDGE CREEK PAD                  | GDA                     | 56                | 338134                    | 6259532             | Open site              | Valid                          | Potential<br>Archaeole<br>Deposit (                     | ogical<br>PAD) : 1         |                  |                                                      |
|                           | Contact                                 | Recorders               | Mr.A              | Andrew Coste              | llo,Jacobs Grou     | up (Australia) Pty Ltd | - North Sydney                 |                                                         | Permits                    |                  |                                                      |
|                           |                                         |                         |                   |                           |                     |                        |                                |                                                         |                            |                  |                                                      |
|                           |                                         |                         |                   |                           |                     |                        |                                |                                                         |                            |                  |                                                      |
|                           |                                         |                         |                   |                           |                     |                        |                                |                                                         |                            |                  |                                                      |
|                           |                                         |                         |                   |                           |                     |                        |                                |                                                         |                            |                  |                                                      |

## APPENDIX 2: ABORIGINAL HERITAGE: UNANTICIPATED FINDS PROTOCOL

An Aboriginal artefact is anything which is the result of past Aboriginal activity. This includes stone (artefacts, rock engravings etc.), plant (culturally scarred trees) and animal (if showing signs of modification; i.e. smoothing, use). Human bone (skeletal) remains may also be uncovered while onsite.

Cultural heritage significance is assessed by the Aboriginal community and is typically based on traditional and contemporary lore, spiritual values, and oral history, and may also consider scientific and educational value.

Protocol to be followed if previously unrecorded or unanticipated Aboriginal object(s) are encountered:

- 1. If any Aboriginal object is discovered and/or harmed in, or under the land, while undertaking the proposed development activities, the proponent must:
  - a. Not further harm the object
  - b. Immediately cease all work at the particular location
  - c. Secure the area to avoid further harm to the Aboriginal object
  - d. Notify Heritage NSW as soon as practical on (02) 9873 8500 (heritagemailbox @environment.nsw.gov.au), providing any details of the Aboriginal object and its location; and
  - e. Not recommence any work at the particular location unless authorised in writing by Heritage NSW.
- If Aboriginal burials are unexpectedly encountered during the activity, work must stop immediately, the area secured to prevent unauthorised access and NSW Police and Heritage NSW contacted.
- 3. Cooperate with the appropriate authorities and relevant Aboriginal community representatives to facilitate:
  - a. The recording and assessment of the find(s)
  - b. The fulfilment of any legal constraints arising from the find(s), including complying with Heritage NSW directions
  - c. The development and implementation of appropriate management strategies, including consultation with stakeholders and the assessment of the significance of the find(s).
- 4. Where the find(s) are determined to be Aboriginal object(s), recommencement of work in the area of the find(s) can only occur in accordance with any consequential legal requirements and after gaining written approval from Heritage NSW (normally an Aboriginal Heritage Impact Permit).



## **APPENDIX 3: ABORIGINAL HERITAGE: ARTEFACT IDENTIFICATION**



# Acid Sulphate Management Plan

Prepared for: Warringah Golf Club Address: 433 Pittwater Road, North Manly Job No: 60025A-IDF Date: November 2022

## TABLE OF CONTENTS

| Description                                                                                                                                                                                                                                                                                                             | Page                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1.0 Introduction                                                                                                                                                                                                                                                                                                        | 2                               |
| 2.0 Objectives of the Acid Sulfate Management Plan                                                                                                                                                                                                                                                                      | 2                               |
| 3.0 Site Identification                                                                                                                                                                                                                                                                                                 | 3                               |
| 4.0 Subsurface Conditions<br>4.1 Soil Profile<br>4.2 Acid Sulfate Soils                                                                                                                                                                                                                                                 | 3<br>3<br>3                     |
| 5.0 Sampling and Analysis Plan<br>5.1 Sampling                                                                                                                                                                                                                                                                          | 4<br>4                          |
| <ul> <li>6.0 Acid Sulfate Soils Assessment</li> <li>6.1 Field Screening</li> <li>6.2 Laboratory Test Results</li> <li>6.3 Assessment Criteria for Acid Sulfate Soils (Laboratory)</li> <li>6.4 NSW ASSMAC Action Criteria</li> <li>6.5 SPOCAS Test Results</li> <li>6.6 Aggressiveness to Steel and Concrete</li> </ul> | 4<br>5<br>5<br>5<br>5<br>5<br>6 |
| <ul> <li>7.0 Management Method</li> <li>7.1 ASS Treatment Area and Procedure</li> <li>7.2 Dewatering</li> <li>7.3 Contingency Plan</li> </ul>                                                                                                                                                                           | 6<br>7<br>7<br>8                |
| 8.0 Recommendations                                                                                                                                                                                                                                                                                                     | 8                               |
| 9.0 Conclusion                                                                                                                                                                                                                                                                                                          | 8                               |
| Appendices                                                                                                                                                                                                                                                                                                              |                                 |

Appendix A – Management Strategy

## 1.0 INTRODUCTION

Ideal Geotech was commissioned to undertake an acid sulfate soils management plan for the proposed works at Warringah Golf Club, 433 Pittwater Road, North Manly.

An acid sulphate soil investigation was undertaken previously by Ideal Geotech (refer to report number 60025). The report indicated that a management plan would be required for excavation and disposal of soil from the site.

Following field tests, two soil samples were submitted to ALS Environmental for SPOCAS testing. The soil was assessed against the guidelines set out in the Acid Sulfate Soils Management Advisory Committee (ASSMAC) (1998).

The results of the laboratory analysis show signs of actual acid sulfate soils within the samples taken at 1.0m and 2.0m below existing surface level at the location of BH2.

Excavation of soils will require treatment prior to disposal.

## 2.0 OBJECTIVES OF THE ACID SULFATE MANAGEMENT PLAN

The objectives of this ASSMP is to consider both the existing and potential future environmental impacts relating to PASS material in and around the project site and to detail mitigation measures to minimise the potential impacts within the surrounding areas.

The control measures in this ASSMP to mitigate the environmental impacts of the proposed excavations to acceptable levels have been developed to achieve the following objectives:

- Control and, where possible, minimisation of acid sulphate soils;
- Confirming the success of impact control measures by the means of validation monitoring;
- Compliance with statutory requirements
- Preserving the water quality on an ongoing basis

Each environmental protection measure is based on proven and industry best practice methodology.

The ASSMP is designed for the excavation phase of the project. It is based on tabulated checklists for management measures, maintenance, reporting, failure identification and corrective action for each identified use.

The control measures proposed in this ASSMP are for:

- Assessment procedures for AASS/PASS utilising a sampling protocol, set criteria to measure and agreed standards for those criteria to evaluate acid potential;
- Ongoing monitoring program (if required);

• Treatment of potential acid sulphate soils if encountered and control structures to prevent leachate discharge offsite without meeting specific soil quality criteria

## 3.0 SITE IDENTIFICATION

The subject site is roughly rectangular in shape and approximately 1550m<sup>2</sup> in area and is bound by Pittwater Road to the north east, Kentwell Road to the south, Brookvale Creek to the west and by Warringah Golf Course on all remaining sides.

The site is currently occupied by tennis courts and sports facilities. The site is relatively flat with no notable slopes that will impact construction with a line of large mature trees along the western, northern and eastern boundaries.

## 4.0 SUBSURFACE CONDITIONS

## 4.1 Soil Profile

Reference to the Sydney 1:100,000 geological map (Geological Series Sheet 9130) indicates that the site is underlain by Quaternary Deposits consisting of silty to peaty quartz sand, silt and clay along with Ferruginous and humic cementation in places with common shell layers.

Two boreholes (BH1 & BH2) were drilled using a 4wd mounted drill rig to a maximum depth of 2.0m. The sub-surface soil profile encountered at the site generally comprised;

 $\succ$  Silty sand up to at least 3.0m.

Groundwater was not observed at the time of investigation. It should be noted that groundwater levels are likely to fluctuate with variations in climatic and site conditions.

## 4.2 Acid Sulphate Soils

Acid Sulphate Soils (ASS) are naturally occurring and usually form in low lying coastal areas, creeks, rivers and flood plains. The sulphates present in the soil are stable when in the saturated/waterlogged state, but react to form sulphuric acid when disturbed and exposed to oxygen.

Maps showing the areas identified as being affected by ASS have been prepared by the Department of Land and Water Conservation. These maps identify the probability of acid sulphate soils occurring in these areas and as such any areas should be specifically investigated before a particular site is classified.

Disturbance of these soil materials will result in an environmental risk that will vary with elevation and depth of disturbance. Any works below natural ground surface or affecting the water table has a risk of being contaminated with acid sulphate soils.

Reference to the Acid Sulphate Soils Map of Sydney Heads indicates that the site is located on the border between disturbed terrain and no known occurrence of acid sulphate soil materials.

## 5.0 SAMPLING & ANALYSIS PLAN

Sampling and analysis was undertaken in order to assess the presence or absence, location and likely distribution of any AASS or PASS present at the subject site in the area of the proposed development.

## 5.1 Sampling

Soil sampling was undertaken in general accordance with the Acid Sulphate Soil Guidelines. Test results were compared to the relevant New South Wales Environment Protection Authority (NSW EPA) criteria.

BH1 was terminated at a depth of approximately 3.0m below ground level with samples collected at 0.5m and 1.5m below ground level. BH2 was terminated at a depth of approximately 3.0m below ground level with samples collected at 1.0m and 2.0m below ground level. The samples were placed directly into labelled clean zip lock bags and placed on ice until delivery to the laboratory for testing. All analyses were performed by a NATA registered laboratory using NATA accredited methods.

## 6.0 ACID SULPHATE SOILS ASSESSMENT

## 6.1 Field Screening

The field screening involved the testing of the samples for field pH and peroxide pH, using 30% hydrogen peroxide to oxidise the soil, and comparing both results.

A positive peroxide test, indicating the potential presence of acid sulphate soil, may include one or more of the following.

- Change in colour from grey tones to brown tones.
- Effervescence.
- Release of sulphurous odours.
- pH following oxidation with  $H_2O_2$  (<sub>pHfox</sub>) <3.
- Lowering of the pH (pH<sub>f</sub> pH<sub>fox</sub>) by 1 or greater.
- Field pH (pH<sub>f</sub>) <4.

The results of the field and peroxide tests are provided in Table 1 below.
| Location/Depth | Field pH | Peroxide pH | Reaction to 30% h <sub>2</sub> O <sub>2</sub> |
|----------------|----------|-------------|-----------------------------------------------|
| BH1/0.5m       | 6.8      | 3.2         | Strong                                        |
| BH1/1.5m       | 6.1      | 3.0         | Strong                                        |
| BH2/1.0m       | 6.2      | 2.6         | Strong                                        |
| BH2/2.0m       | 6.0      | 3.6         | Slight                                        |

Table 1: Results of Field Screening Tests

Based on findings of the field screenings, indications of PASS were observed. Two samples were tested by quantitative laboratory analysis to confirm the presence or absence of acid sulphate soil.

#### 6.2 Laboratory Test Results

Two samples were analysed for SPOCAS to confirm the presence or absence of AASS or PASS in the soil. The sample was dispatched to ALS Environmental services for the quantitative analysis for Suspension Peroxide Oxidation Combined Acidity & Sulphate (SPOCAS).

#### 6.3 Assessment Criteria for Acid Sulphate Soils (Laboratory)

The results of analysis for the soils are compared to the below ASSMAC assessment criteria. It is assumed that <1000 tonnes of material would be disturbed hence the action criteria for less than 1000 tonnes have been applied.

#### 6.4 NSW ASSMAC Action Criteria

The NSW ASSMAC action criteria is detailed in Table 2 below for less than 1000 tonnes of disturbance.

| Type of Material<br>Texture | vpe of Material<br>Texture<br> |      | Action Criteria<br><1000 tonnes<br>Acid Trail TPA or<br>TSA mole H+/t |  |
|-----------------------------|--------------------------------|------|-----------------------------------------------------------------------|--|
| Coarse e.g. sands           | < 5                            | 0.03 | 18                                                                    |  |
| Loams/light clays           | 5 – 40                         | 0.06 | 36                                                                    |  |
| Fine clays/silts            | <u>&gt;</u> 40                 | 0.1  | 62                                                                    |  |

#### Table 2: NSW ASSMAC Action Criteria

Note: The assessment values chosen are based on fine sands which are in bold

#### 6.5 SPOCAS Test Results

The SPOCAS testing identified exceedances of the threshold criteria at 1.0m and 2.0m below ground surface in BH2 which suggests there is a presence of acid sulphate soils. Refer to Table 3 below.

| Sample   | рН <sub>ох</sub> | TAA pH 6.5<br>moles<br>H+/tonne | TPA pH 6.5<br>moles<br>H+/tonne | TSA pH 6.5<br>moles<br>H+/tonne | Spos<br>%w/w |
|----------|------------------|---------------------------------|---------------------------------|---------------------------------|--------------|
| BH2/1.0m | 3.0              | 34                              | 214                             | 179                             | 0.069        |
| BH2/2.0m | 3.9              | 27                              | 80                              | 52                              | <0.020       |

Table 3: Results of SPOCAS Testing

#### 6.6 Aggressiveness to Steel and Concrete

The aggressiveness or erosion potential of an environment in building materials, particularly concrete and steel is dependent on the levels of pH and types of salts present. In order to determine the degree of aggressiveness, the test values obtained are compared to tables 6.4.2 (C) and 6.5.2 (C) in AS2159 Piling - Design and Installation and tables 5.1 to 5.4 in AS2870-2011 "Residential Slabs and Footings". The following testing suite was undertaken with results summarised within table 4 below;

- pН •
- Electrical Conductivity (EC µS/cm)
- Chloride (CI) •
- Resistivity (ohm.cm) •
- Sulphate

BH1/0.5m

BH1/1.5m

| l | able 4: Results of | ' Aggressivit | y lesting            |                       |          |
|---|--------------------|---------------|----------------------|-----------------------|----------|
|   | Location/Depth     | рН            | EC <sub>e</sub> dS/m | Resistivity<br>Ohm.cm | CI mg/kg |

5.9

5.4

| Based on    | test  | results  | detailed i | in Ta | able 4 | the | soil  | conditions | are  | mildly | aggi | ressive to |
|-------------|-------|----------|------------|-------|--------|-----|-------|------------|------|--------|------|------------|
| concrete    | and   | non-ag   | gressive   | to    | steel  | in  | high  | permeabil  | lity | soils. | An   | exposure   |
| classificat | ion o | f A2 for | concrete   | has   | been   | det | ermir | ned.       |      |        |      |            |

5880

7040

<10

<10

0.578

0.782

#### 7.0 **MANAGEMENT METHOD**

Neutralising with agricultural lime is a widely accepted method to minimise the generation of acid and acid products associated with the disturbance of ASS. Agricultural lime is readily available, relatively easy to handle and less hazardous than some other agents.

To be conservative and adopt the precautionary principle it would seem appropriate to adopt a lime application rate to treat the soil that is adequate to neutralise the existing acidity and the potential acid generation due to future oxidisation of sulfidic sediments. It is recognised that the calculated lime application rate includes a 50% safety factor to cater for the inefficient mixing and isolated "hotspots".

Sulfate

mg/kg

20

170

Using the worst case scenario (TPA moles H+/tonne 214) for samples collected within the potential excavation zone, calculations for proposed agricultural lime application rates are shown in Table 5 below.

| Site                                 | %S    | TPA mol<br>H+/T | Min. Kg lime/m <sup>3</sup><br>soil (assume BD =<br>1.6g/cm <sup>3</sup> ) | Min. Kg<br>lime/m²/300mm<br>layer |
|--------------------------------------|-------|-----------------|----------------------------------------------------------------------------|-----------------------------------|
| Excavation of<br>batter and footings | 0.069 | 214             | 10                                                                         | 3.5                               |

#### Table 5: Lime Application Rates

A bunded treatment pad would be required for the site. Excavated material would be placed into a maximum 300mm deep layer and the appropriate agricultural lime applied and mechanically incorporated into the soil. The layer ensures proper aeration of excavated material when mixing with the lime agent.

#### 7.1 ASS Treatment Area and Procedure

- Provide a non-ASS bunded soil treatment area. The rate of excavated material should be in accordance with appropriate mixing rates on the bunded treatment as stated in Table 5 above.
- Apply a guard layer (5kg/m<sup>2</sup>) of agricultural lime to the base of the treatment area.
- Apply lime at adopted application rate and mechanically incorporate into the excavated material.
- Repeat the process until manageable volume of treated material is available for validation testing.
- Undertake soil validation testing at a rate of 1/50m<sup>3</sup> of excavated soil or once per day (whichever is greater). The soil pH should be measured in distilled water as well as in peroxide. This will verify if neutralisation treatment is succeeding as well as confirm that oxidation of acid sulfate soils is not occurring.
- If validation testing indicates excavation material below action criteria remove soil from site as required for final disposal otherwise incorporate required lime and repeat validation testing.

#### 7.2 Dewatering

From investigation of the site, groundwater was not encountered. If groundwater is encountered during excavation, a management plan is included below;

- Should the water table be encountered during excavation attempt to minimise dewatering depth required for the installation.
- Time and volume of exposure to acid sulfate soils should be minimised during excavation and dewatering
- Should any discharged water pH levels be below natural groundwater levels then neutralisation via Magnesium calcite (Magnesium hydroxide) should be employed.

• Following any neutralisation the groundwater can be discharged to a bunded area away from the excavation or to stormwater/sewer, subject to regulation.

#### 7.3 Contingency Plan

Remedial action will be required if the agreed standards or acceptance criteria are not being achieved. Remedial action shall comprise mixing of additional lime through the excavated material and neutralisation of leachate. The required mixing rate to remediate the soil or leachate should be confirmed by monitoring tests.

If overland discharge of groundwater is proposed, a contingency plan should be in place to allow neutralisation and confirmation monitoring prior to injection if pH levels are low or fall below natural background levels.

During periods of heavy or prolonged rainfall, stockpiling of acid sulphate soils should be appropriately contained/bunded to collect leachate for testing and neutralisation (if required) prior to disposal. Alternatively backfilling of acid sulphate soils could be undertaken to prevent the migration of leachate.

Sufficient lime should be stored on site during construction for the neutralisation of acid sulphate soils and contingency measures along with access to appropriate application equipment.

#### 8.0 **RECOMMENDATIONS**

- 1. All excavated material on site is to be managed to minimise and ameliorate the existing and potential acidity. Grade 1 agricultural lime (80% ENV) shall be thoroughly incorporated into the material at the application rate shown in Table 5 of this report.
- 2. Any encounter with the water table and or water below that of natural groundwater pH levels should follow the management plan as in 7.2 above.
- 3. The management strategy and monitoring schedule is provided as an attachment in appendix A.

#### 9.0 CONCLUSION

Acid sulphate soils have been identified as being a constraint to development at Warringah Golf Club, 433 Pittwater Road, North Manly. An acid sulfate management plan has been prepared to address treatment of the actual acidity and minimizing the potential generation of acidity during the proposed earthworks.

Should you have any queries, please do not hesitate to contact the undersigned.

#### For and on behalf of Ideal Geotech

B. Swyer

**Dane Dwyer** Geotechnical Engineer

#### **REFERENCES:**

Stone, Y, and Hopkins G (1998). *Acid Sulfate Soils Planning Guidelines.* Published by the Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia.

Ahern C R, Stone, Y, and Blunden B (1998). *Acid Sulfate Soils Assessment Guidelines* Published by the Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia

#### Appendix A – Management Strategy

| Appendix A                | Management Strategy                                                                                                                                                                                                                                                                                                                   |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEMENT ASS1              | Acid Sulfate SoilTreatment                                                                                                                                                                                                                                                                                                            |
| Why:                      | <ul> <li>To minimise acid generation and acid products due to oxidation of ASS</li> <li>To treat the acid generated by excavation of material.</li> </ul>                                                                                                                                                                             |
| Performance<br>Objective: | <ul> <li>Compliance with the <i>Protection of the Environment and Operations Act 1997, NSW Acid Sulfate Soil Manual 1998</i> and other relevant statutes, policy and guidelines</li> <li>Implement best practice environmental management of ASS</li> </ul>                                                                           |
| Responsible<br>Person:    | Site Manager/representative.                                                                                                                                                                                                                                                                                                          |
| Control Actions:          | <ul> <li>Minimise disturbance of acid sulfate soils</li> <li>Identify treatment area on site or off-site. Note minimal area available on site unless excavation staged. If off-site approval to be sought from statutory authorities prior to commencement of earthworks.</li> </ul>                                                  |
|                           | <ul> <li>Prior to disturbance of ASS install non – ASS bunds to stockpile/treatment areas</li> </ul>                                                                                                                                                                                                                                  |
|                           | <ul> <li>Any stockpiling/treatment pad will require the placement of an agricultural lime guard<br/>layer under the stockpile/treatment pad. The guard layer shall be 0.3 times the average<br/>liming rate/m<sup>2</sup> for each vertical metre of the stockpile/treatment pad. Maximum stockpiling<br/>period = 14 days</li> </ul> |
|                           | <ul> <li>Place all excavated material in bunded area. Wet material will require spreading to<br/>allow dewatering to occur prior to further treatment</li> </ul>                                                                                                                                                                      |
|                           | <ul> <li>Place excavated material in maximum 0.3m deep layers and incorporate agricultural<br/>lime at the following rates</li> </ul>                                                                                                                                                                                                 |

| Site           | %S    | TPA mol H+/T | Min. Kg lime/m3<br>soil (assume BD<br>= 1.6g/cm³) | Min. Kg<br>lime/m²/300mm<br>layer |
|----------------|-------|--------------|---------------------------------------------------|-----------------------------------|
| Any excavation | 0.069 | 214          | 10                                                | 3.5                               |

Monitoring

- Mechanical mixing methods eg rotary hoeing/disc ploughing shall be used.
- Site Manager or representative shall monitor the works daily for evidence of
  - 1. Yellow efflorescence on soil surface
  - 2. Iron staining
  - 3. Sulphurous odour.
- Regular monitoring of any leachate (see ELEMENT ASS2)
- Lime delivery dockets to be collected and checked against calculated lime application rate

| Reporting:                      | • Records to be kept by the Site Manager on the monitoring activities, complaints received, and control actions subsequently taken. Records to be made available to Council, OEH, and OW if requested.                                                                                                                                                                                                                                                                                                      |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELEMENT ASS2 AS                 | S Leachate Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Why:                            | <ul> <li>To avoid negative off-site impacts on water quality from acid generation or acid<br/>products</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |
| Performance<br>Objective:       | <ul> <li>Compliance with the <i>Protection of the Environment and Operations Act 1997, NSW Acid Sulfate Soil Manual 1998</i> and other relevant statutes, policy and guidelines</li> <li>Implement best practice environmental management of ASS</li> </ul>                                                                                                                                                                                                                                                 |
| Responsibe<br>Person:           | Site Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control Actions:                | <ul> <li>Provide surface water controls to divert surface water run-on</li> <li>Isolate soil treatment areas in non-ASS bunded areas.</li> <li>All water discharged from the site to be contained, collected and treated to meet adopted water quality criteria.</li> <li>Treatment of water within bunded areas may include dosing with hydrated lime at appropriate rates to ensure discharge pH 6.5 - 8.5. (Note extreme care required with hydrated lime to avoid "overshooting" target pH.)</li> </ul> |
| Monitoring: (if leachate eviden | <ul> <li>Daily monitor leachate pH and Electrical Conductivity in treatment and stockpile areas</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  |
| Action Criteria                 | • pH < 6.5 or >8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reporting:                      | • Records to be kept by the Site Manager on the monitoring activities, complaints received, and control actions subsequently taken. Records to be made available to Council, OEH, and OW as requested.                                                                                                                                                                                                                                                                                                      |
|                                 | • Event = >25mm rainfall in 24hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



## **Acid Sulphate Assessment**

Prepared for: Warringah Golf Club

Address: 433 Pittwater Road, North Manly

Job No: 60025-IDF

Date: November 2022

Accredited for compliance With ISO/IEC 17025 NATA Accreditation No. 19226

16-18 Sammut Street Smithfield NSW 2164 PO Box 2270 Smithfield NSW 1851 Ph: 02 9725 5522 Fax: 02 8786 6300 www.idealgeotech.com.au

#### Contents

| 1.0 | INTRODUCTION                                             |
|-----|----------------------------------------------------------|
| 2.0 | OBJECTIVES AND SCOPE OF WORK                             |
| 3.0 | SITE DETAILS                                             |
| 3.1 | GEOLOGY                                                  |
| 3.2 | SITE DESCRIPTION                                         |
| 4.0 | SUBSURFACE CONDITIONS4                                   |
| 4.1 | SOIL PROFILE                                             |
|     | Table 1: Summary of Subsurface Conditions4               |
| 4.2 | Acid Sulphate Soils                                      |
| 5.0 | SAMPLING & ANALYSIS PLAN5                                |
| 5.1 | SAMPLING                                                 |
| 6.0 | ACID SULPHATE SOILS ASSESSMENT5                          |
| 6.1 | FIELD SCREENING                                          |
|     | Table 2: Results of Field Screening Tests    6           |
| 6.2 | LABORATORY TEST RESULTS                                  |
| 6.3 | Assessment Criteria for Acid Sulphate Soils (Laboratory) |
| 6.4 | NSW ASSMAC Action Criteria                               |
|     | Table 3: NSW ASSMAC Action Criteria       6              |
| 6.5 | SPOCAS TEST RESULTS                                      |
|     | Table 4: Results of SPOCAS Testing7                      |
| 6.6 | Aggressiveness to Steel and Concrete                     |
|     | Table 5: Results of Aggressivity Testing7                |
| 7.0 | CONCLUSIONS AND RECOMMENDATIONS7                         |
| 8.0 | REFERENCES                                               |
| 9.0 | APPENDICES9                                              |
| 9.1 | Appendix A – Borehole Location Plan9                     |
| 9.2 | Appendix B – Borehole Logs                               |
| 9.3 | APPENDIX C – LABORATORY TEST RESULTS                     |

#### **1.0 INTRODUCTION**

Ideal Geotech has undertaken a Preliminary Acid Sulphate Soils Assessment for the proposed commercial development located at Warringah Golf Club; 433 Pittwater Road, North Manly. It is understood that a proposed two-storey commercial development is to be constructed with minimal cut and fill with possible excavation for footings.

#### 2.0 OBJECTIVES AND SCOPE OF WORK

The objectives of the work are outlined below:

- Summarise the relevant environmental characteristics of the site that may impact Actual Acid Sulphate Soils (AASS) and result in the release of acidity and the potential leaching and transport of contaminants.
- Outline potential environmental impacts associated with the proposed works.
- Summarise the presence or the absence of AASS and Potential Acid Sulphate Soils (PASS).
- Summarise soil aggressiveness to steel and concrete.

The scope of work includes the following:

- Review of soils and geological maps.
- A Preliminary soil sampling and analysis program to investigate the presence and distribution of AASS and PASS within the site.
- Analysis (SPOCAS suite) by a NATA accredited laboratory.
- Assessment of the results of the chemical analysis against the appropriate guidelines to assess if management is required so as to minimise potential environmental impacts caused by the disturbance of ASS.

Provide recommendations for the need to undertake an ASS Management Plan.

### 3.0 SITE DETAILS

| Site Address | 433 Pittwater Road, North Manly |  |  |  |
|--------------|---------------------------------|--|--|--|
| Client       | nt Warringah Golf Club          |  |  |  |
| Council Area | Northern Beaches Council        |  |  |  |

#### 3.1 Geology

Reference to the Sydney 1:100,000 geological map (Geological Series Sheet 9130) indicates that the site is underlain by Quaternary Deposits consisting of silty to peaty quartz sand, silt and clay along with Ferruginous and humic cementation in places with common shell layers.

#### 3.2 Site Description

The subject site is roughly rectangular in shape and approximately 1550m<sup>2</sup> in area and is bound by Pittwater Road to the north east, Kentwell Road to the south, Brookvale Creek to the west and by Warringah Golf Course on all remaining sides.

The site is currently occupied by tennis courts and sports facilities. The site is relatively flat with no notable slopes that will impact construction with a line of large mature trees a long the western, northern and eastern boundaries.

#### 4.0 Subsurface Conditions

Fieldwork was undertaken on 26 October 2022 and included drilling two boreholes (BH1 & BH2) using a 4wd mounted drill rig using solid flight spiral augers to a maximum depth of 3.0m at the locations shown on Figure 1, attached in Appendix A.

Borehole logs and field observations are presented in Appendix B.

#### 4.1 Soil Profile

A general summary of the subsurface conditions encountered across the site is presented in Table 2 below.

| Borehole | Depth of<br>fill/topsoil<br>(m) | Depth to<br>water table<br>(m) | Termination<br>depth (m) | Summary of sub-surface profiles                 |
|----------|---------------------------------|--------------------------------|--------------------------|-------------------------------------------------|
| BH1      | 0.2                             | NE                             | 3.0                      | Topsoil- Silty SAND / Natural - Silty SAND      |
| BH2      | NE                              | NE                             | 3.0                      | Natural - Silty SAND / Silty SAND trace<br>Clay |

#### Table 1: Summary of Subsurface Conditions

XW Extremely Weathered

NE Not Encountered

Groundwater was not observed at the time of investigation. It should be noted that groundwater levels are likely to fluctuate with variations in climatic and site conditions.

#### 4.2 Acid Sulphate Soils

Acid Sulphate Soils (ASS) are naturally occurring and usually form in low lying coastal areas, creeks, rivers and flood plains. The sulphates present in the soil are stable when in the saturated/waterlogged state, but react to form sulphuric acid when disturbed and exposed to oxygen.

Maps showing the areas identified as being affected by ASS have been prepared by the Department of Land and Water Conservation. These maps identify the probability of acid sulphate soils occurring in these areas and as such any areas should be specifically investigated before a particular site is classified.

Disturbance of these soil materials will result in an environmental risk that will vary with elevation and depth of disturbance. Any works below natural ground surface or affecting the water table has a risk of being contaminated with acid sulphate soils.

Reference to the Acid Sulphate Soils Map of Sydney Heads indicates that the site is located on the border between disturbed terrain and no known occurrence of acid sulphate soil materials.

#### 5.0 SAMPLING & ANALYSIS PLAN

Sampling and analysis was undertaken in order to assess the presence or absence, location and likely distribution of any AASS or PASS present at the subject site in the area of the proposed development.

#### 5.1 Sampling

Soil sampling was undertaken in general accordance with the Acid Sulphate Soil Guidelines (Refer to Figure 1 for the borehole locations). Test results were compared to the relevant New South Wales Environment Protection Authority (NSW EPA) criteria.

BH1 was terminated at a depth of approximately 3.0m below ground level with samples collected at 0.5m and 1.5m below ground level. BH2 was terminated at a depth of approximately 3.0m below ground level with samples collected at 1.0m and 2.0m below ground level. The samples were placed directly into labelled clean zip lock bags and placed on ice until delivery to the laboratory for testing. All analyses were performed by a NATA registered laboratory using NATA accredited methods.

#### 6.0 ACID SULPHATE SOILS ASSESSMENT

#### 6.1 Field Screening

The field screening involved the testing of the samples for field pH and peroxide pH, using 30% hydrogen peroxide to oxidise the soil, and comparing both results.

A positive peroxide test, indicating the potential presence of acid sulphate soil, may include one or more of the following.

- 1. Change in colour from grey tones to brown tones.
- 2. Effervescence.
- 3. Release of sulphurous odours.
- 4. pH following oxidation with  $H_2O_2$  (<sub>pHfox</sub>) <3.
- 5. Lowering of the pH ( $pH_f pH_{fox}$ ) by 1 or greater.
- 6. Field pH (pH<sub>f</sub>) <4.

The results of the field and peroxide tests are provided in Table 1 below

| Location/Depth | Field pH | Peroxide pH | Reaction to 30% h <sub>2</sub> O <sub>2</sub> |
|----------------|----------|-------------|-----------------------------------------------|
| BH1/0.5m       | 6.8      | 3.2         | Strong                                        |
| BH1/1.5m       | 6.1      | 3.0         | Strong                                        |
| BH2/1.0m       | 6.2      | 2.6         | Strong                                        |
| BH2/2.0m       | 6.0      | 3.6         | Slight                                        |

#### **Table 2: Results of Field Screening Tests**

Based on findings of the field screenings, indications of PASS were observed. Two samples were tested by quantitative laboratory analysis to confirm the presence or absence of acid sulphate soil.

#### 6.2 Laboratory Test Results

The samples were analysed for SPOCAS to confirm the presence or absence of ASS or PASS in the soil. The samples were dispatched to ALS Environmental services for the quantitative analysis for Suspension Peroxide Oxidation Combined Acidity & Sulphate (SPOCAS).

#### 6.3 Assessment Criteria for Acid Sulphate Soils (Laboratory)

The results of analysis for the soils are compared to the below ASSMAC assessment criteria. It is assumed that <1000 tonnes of material would be disturbed hence the action criteria for less than 1000 tonnes have been applied.

#### 6.4 NSW ASSMAC Action Criteria

The NSW ASSMAC action criteria is detailed in Table 2 below for less than 1000 tonnes of disturbance.

| Type of Material<br>Texture | Approx Clay Content<br>(% <0.002mm) | Action Criteria <1000<br>tonnes Sulfur Trail<br>Spos or Stos% | Action Criteria <1000<br>tonnes Acid Trail TPA<br>or TSA mole H+/t |
|-----------------------------|-------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| Coarse e.g. sands           | < 5                                 | 0.03                                                          | 18                                                                 |
| Loams/light clays           | 5 – 40                              | 0.06                                                          | 36                                                                 |
| Fine clays/silts            | <u>&gt;</u> 40                      | 0.1                                                           | 62                                                                 |

#### Table 3: NSW ASSMAC Action Criteria

Note: The assessment values chosen are based on sands which are in bold

#### 6.5 SPOCAS Test Results

The SPOCAS testing identified exceedances of the threshold criteria in both samples which suggests there is a presence of acid sulphate soils. Refer to Table 3 below.

| Sample   | pH <sub>ox</sub> | TAA pH 6.5<br>moles<br>H+/tonne | TPA pH 6.5<br>moles H+/tonne | TSA pH 6.5<br>moles H+/tonne | Spos<br>%w/w |
|----------|------------------|---------------------------------|------------------------------|------------------------------|--------------|
| BH2/1.0m | 3.0              | 34                              | 214                          | 179                          | 0.069        |
| BH2/2.0m | 3.9              | 27                              | 80                           | 52                           | <0.020       |

#### Table 4: Results of SPOCAS Testing

#### 6.6 Aggressiveness to Steel and Concrete

The aggressiveness or erosion potential of an environment in building materials, particularly concrete and steel is dependent on the levels of pH and types of salts present. In order to determine the degree of aggressiveness, the test values obtained are compared to tables 6.4.2 (C) and 6.5.2 (C) in AS2159 Piling - Design and Installation and tables 5.1 to 5.4 in AS2870-2011 "Residential Slabs and Footings". The following testing suite was undertaken with results summarised within table 4 below;

- pH
- Electrical Conductivity (EC µS/cm)
- Chloride (CI)
- Resistivity (ohm.cm)
- Sulphate

#### Table 5: Results of Aggressivity Testing

| Location/Depth | pН  | EC <sub>e</sub> dS/m | Resistivity<br>Ohm.cm | CI mg/kg | Sulphate mg/kg |
|----------------|-----|----------------------|-----------------------|----------|----------------|
| BH1/0.5m       | 5.9 | 0.578                | 5880                  | <10      | 20             |
| BH1/1.5m       | 5.4 | 0.782                | 7040                  | <10      | 170            |

Based on test results detailed in Table 4 the soil conditions are considered to be mildly aggressive to concrete and non-aggressive to steel in high permeability soils. An exposure classification of A2 for concrete has been determined.

#### 7.0 CONCLUSIONS AND RECOMMENDATIONS

Ideal Geotech has undertaken a Preliminary Acid Sulphate Soils Assessment for the proposed commercial development at Warringah Golf Club; 433 Pittwater Road, North Manly. Our preliminary site investigation included site observation of the soil retrieved from the borehole and sampling of soil for laboratory testing. Upon completion of our onsite investigation and laboratory analysis the following conclusions are made:

- An exposure classification of A2 for concrete with the soil mildly aggressive to concrete and nonaggressive to steel structures.
- Laboratory sample analysis indicates that test levels exceeded the action criteria in SPOCAS testing and it has been determined that an acid sulphate management plan will be required for excavation activities on the site.

This report is based on a limited sampling and testing regime. It is possible that acid sulphate soils and differing ground conditions may be present between sampling locations, or in the remainder of the site not intrusively investigated.

Should you have any queries, please do not hesitate to contact the undersigned.

For and on behalf of Ideal Geotech

B. Swyer

Dane Dwyer Geotechnical Engineer

#### 8.0 **REFERENCES**

- Geological Series Sheet 9130, Map of Sydney, scale 1:100,000
- Stone, Y, and Hopkins G (1998). Acid Sulphate Soils Planning Guidelines.
   Published by the Acid Sulphate Soil Management Advisory Committee, Wollongbar, NSW, Australia.
- Ahern C R, Stone, Y, and Blunden B (1998). Acid Sulphate Soils Assessment Guidelines Published by the Acid Sulphate Soil Management Advisory Committee, Wollongbar, NSW, Australia

#### 9.0 APPENDICES

9.1 Appendix A – Borehole Location Plan



9.2 Appendix B – Borehole Logs



Date:26/10/2022Borehole:Customer Job:-Surface RL:Ideal Job:60025Easting:Site Address:Warringah Golf Club - 397 Condamine Silveetthing:<br/>NORTH MANLY NSW 2100

| 5.1                      | FIEL                                                     | DI    | _OG                                                     |                       | Site Ad                         | dress: Warringa<br>NORTH                                                 | ah Golf Club - 397<br>MANLY, NSW, 21                           | Condamine Silver                     | thing:                                                                                        |                                                           |                                                      |
|--------------------------|----------------------------------------------------------|-------|---------------------------------------------------------|-----------------------|---------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|
| Water                    | Depth<br>(m)                                             | DC    | P PP                                                    | Sample                | Classification<br>Code          | Ν                                                                        | Naterial Description                                           |                                      | Moisture                                                                                      | Density /<br>Consistency                                  | III                                                  |
|                          | 0.1<br>0.2                                               |       |                                                         |                       | SM                              |                                                                          | (Topsoil) Silty Sand<br>Grey                                   |                                      | Moist                                                                                         | L                                                         |                                                      |
|                          | 0.3                                                      |       |                                                         |                       | SM                              |                                                                          | Silty Sand                                                     |                                      | Very Moist                                                                                    | MD                                                        |                                                      |
|                          | 0.4                                                      |       |                                                         |                       |                                 |                                                                          | Grey                                                           |                                      |                                                                                               |                                                           |                                                      |
|                          | 0.5                                                      |       |                                                         | Soil Sample           | 1                               |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 0.6                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 0.7                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 0.9                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 1.0                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 1.1                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           | 1                                                    |
|                          | 1.2                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 1.3                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 1.4                                                      |       |                                                         |                       | _                               |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 1.5                                                      |       |                                                         | Soil Sample           | 2                               |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 1.0                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 1.8                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 1.9                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.0                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.1                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.2                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.3                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.4                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.6                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.7                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.8                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 2.9                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 3.0                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
|                          | 3.1                                                      |       |                                                         |                       |                                 |                                                                          | End Bore 3m                                                    |                                      |                                                                                               |                                                           |                                                      |
|                          | 3.2                                                      |       |                                                         |                       |                                 |                                                                          |                                                                |                                      |                                                                                               |                                                           |                                                      |
| 👱 Wate                   | er Table                                                 |       | UTP - U                                                 | Jnable to per         | etrate                          | DCP - 9kg Dynamic                                                        | Cone Penetrometer                                              | PP - Pocket P                        | enetrometer                                                                                   |                                                           |                                                      |
| A                        | ND – Density                                             | Index | vs Approx. F                                            | Penetrometer          | results                         | SILTS                                                                    | & CLAY – Cu vs Appr                                            | ox. Penetrometer res                 | ults                                                                                          | м                                                         | Disture                                              |
|                          | DENSITY                                                  |       | Density In                                              | dex DCP               | Blow Count<br>ws/100mm)         | CONSISTENCY                                                              | Undrained Shear<br>Strength (kPa)                              | DCP Blow Count<br>(blows/100mm)      | PP Dial                                                                                       | r                                                         |                                                      |
| VL<br>L<br>MD<br>D<br>VD | Very Loose<br>Loose<br>Medium Den<br>Dense<br>Very Dense | ise   | < 15 9<br>15 – 35 9<br>35 – 65 9<br>65 – 85 9<br>> 85 9 | %<br>%<br>%<br>%<br>% | <1<br>1-3<br>3-9<br>9-15<br>>15 | VS Very Soft<br>S Soft<br>F Firm<br>St Stiff<br>VSt Very Stiff<br>H Hard | 0 - 12<br>12 - 25<br>25 - 50<br>50 - 100<br>100 - 200<br>> 200 | <1<br>1-2<br>2-3<br>3-5<br>5-8<br>>8 | $\begin{array}{c} 0 - 0.2 \\ 0.2 - 0.5 \\ 0.5 - 1.0 \\ 1.0 - 2.0 \\ 3.0 - 4.0 \\ \end{array}$ | 2 D<br>5 M<br>0 W<br>0 W <sub>P</sub><br>0 W <sub>L</sub> | Dry<br>Moist<br>Wet<br>Plastic Limit<br>Liquid Limit |

BH1



Date: 26/10/2022 Customer Job: -Ideal Job: 60025

NORTH MANLY, NSW, 2100

Site Address:

ion

Borehole:

BH2

Warringah Golf Club - 397 Condamine Stheething:

Easting:

Surface RL:

5.2 FIELD LOG

| Water   | Depth<br>(m)         | DCP     | PP              | Sample        | Classificat<br>Code | Λ                   | Naterial Description              |                      | Moisture    | Density /<br>Consistenc | Ē             |
|---------|----------------------|---------|-----------------|---------------|---------------------|---------------------|-----------------------------------|----------------------|-------------|-------------------------|---------------|
|         | 0.1                  |         |                 |               | SM                  |                     | Silty Sand                        |                      | Very Moist  | MD                      |               |
|         | 0.2                  |         |                 |               |                     |                     | Grey                              |                      |             |                         |               |
|         | 0.3                  |         |                 |               |                     |                     | ·                                 |                      |             |                         |               |
|         | 0.4                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 0.5                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 0.6                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 0.7                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 0.8                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 0.9                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.0                  |         |                 | Soil Sample 1 |                     |                     |                                   |                      |             |                         |               |
|         | 1.1                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.2                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.3                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.4                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.5                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.6                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.7                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.8                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 1.9                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 2.0                  |         |                 | Soil Sample 2 | см                  | C:IH                | v Sand with trace Cla             |                      | Von Moist   |                         |               |
|         | 2.1                  |         |                 |               | 0101                | Sill                | Grev                              | ay                   |             |                         |               |
|         | 2.2                  |         |                 |               |                     |                     | Cicy                              |                      |             |                         |               |
|         | 2.4                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 2.5                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 2.6                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 2.7                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 2.8                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 2.9                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | <u>3.</u> 0          |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 3.1                  |         |                 |               |                     |                     | End Bore 3m                       |                      |             |                         |               |
|         | 3.2                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
|         | 3.3                  |         |                 |               |                     |                     |                                   |                      |             |                         |               |
| 👱 Water | Table                |         | <b>UTP</b> - Ur | able to penet | rate                | DCP - 9kg Dynamic ( | Cone Penetrometer                 | PP - Pocket P        | enetrometer |                         |               |
| AN      | <b>D</b> – Density I | Index v | s Approx. Pe    | netrometer re | sults               | SILTS               | & CLAY – Cu vs Appr               | ox. Penetrometer res | ults        |                         |               |
| D       | ENSITY               |         | Density Inde    |               | ow Count            | CONSISTENCY         | Undrained Shear<br>Strength (kPa) | DCP Blow Count       | PP Dia      |                         | JIJIUKE       |
| VL      | Very Loose           |         | < 15 %          |               | < 1                 | VS Very Soft        | 0 – 12                            | <1                   | 0-0.2       | 2 D I                   | Dry           |
|         | Loose<br>Medium Don  |         | 15 – 35 %       |               | -3<br>0             | S Soft              | 12 – 25<br>25 – 50                | 1-2<br>2-3           | 0.2 - 0.5   |                         | Moist<br>Wet  |
|         | Dense                | 150     | 65 – 85 %       |               | ) — 9<br>) — 15     | St Stiff            | 50 - 100                          | 3-5                  | 1.0 - 2.0   | 0   W <sub>P</sub>      | Plastic Limit |
| VD      | Very Dense           |         | > 85 %          |               | > 15                | VSt Very Stiff      | 100 - 200                         | 5-8                  | 3.0 - 4.0   | ) WL I                  | Liquid Limit  |
|         |                      |         |                 |               |                     | H Hard              | > 200                             | > X                  | > 4.0       |                         |               |

### 9.3 Appendix C – Laboratory Test Results

|            | Environmental       |                         |            |
|------------|---------------------|-------------------------|------------|
|            |                     | CERTIFICATE OF ANALYSIS |            |
| Work Order | : ES2238866         | Page                    | : 1 of 4   |
| Client     | : IdealCorp Pty Ltd | Laboratory              | : Environm |

| Work Order              | : ES2238866                    | Page                    | : 1 of 4                                  |                                |
|-------------------------|--------------------------------|-------------------------|-------------------------------------------|--------------------------------|
| Client                  | : IdealCorp Pty Ltd            | Laboratory              | : Environmental Division Sydney           |                                |
| Contact                 | : DANE DWYER                   | Contact                 | : Customer Services ES                    |                                |
| Address                 | : 16-18 Sammut Street          | Address                 | : 277-289 Woodpark Road Smithfield NSW Au | istralia 2164                  |
|                         | SMITHFIELD NSW, AUSTRALIA 2164 |                         |                                           |                                |
| Telephone               |                                | Telephone               | : +61-2-8784 8555                         |                                |
| Project                 | : 600255                       | Date Samples Received   | : 28-Oct-2022 15:20                       |                                |
| Order number            |                                | Date Analysis Commenced | : 31-Oct-2022                             |                                |
| C-O-C number            |                                | Issue Date              | : 04-Nov-2022 16:28                       |                                |
| Sampler                 | . MK                           |                         |                                           |                                |
| Site                    |                                |                         |                                           |                                |
| Quote number            | : SY/386/19 V8                 |                         | Contraction of the                        | Accreditation No. 825          |
| No. of samples received | . 4                            |                         |                                           | Accredited for compliance with |
| No. of samples analysed | . 4                            |                         |                                           | ISO/IEC 17025 - Testing        |
|                         |                                |                         |                                           |                                |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
  - Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

acified in 21 CFR Part 11 2 c unliance with Signatories This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in

| : 2 of 4 | : ES2238866 | : IdealCorp Pty Ltd | : 600255 |
|----------|-------------|---------------------|----------|
| Page     | Work Order  | Client              | Project  |



# **General Comments**

In house developed procedures The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the client request

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key :
- A = This result is computed from individual analyte detections at or above the level of reporting
  - ø = ALS is not NATA accredited for these tests.
    - ~ = Indicates an estimated value.
- EA032 (Saturated Paste EC): NATA accreditation does not cover the performance of this service.
- ASS: EA029 (SPOCAS): Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA029 (SPOCAS): Excess ANC not required because pH OX less than 6.5.
- ASS: EA029 (SPOCAS): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor
  - reactivity of lime. For conversion of Liming Rate from kg/t dry weight to kg/m3 in-situ soil, multiply reported results x wet bulk density of soil in *t/m3*. ASS: EA003 (NATA Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ALS is not NATA accredited for the calculation of saturated resistivity in a soil.

•

| : 3 of 4 | ES2238866  | : IdealCorp Pty Ltd | : 600255 | 6                 |
|----------|------------|---------------------|----------|-------------------|
| Page     | Work Order | Client              | Project  | Analytical Result |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                |         | S         | ample ID    | BH1-0.5m          | BH1-1.5m          | BH2-1.0m          | BH2-2.0m          | ł |  |
|---------------------------------------------------|---------|-----------|-------------|-------------------|-------------------|-------------------|-------------------|---|--|
|                                                   | ŝ       | ampling d | ate / time  | 26-Oct-2022 00:00 | 26-Oct-2022 00:00 | 26-Oct-2022 00:00 | 26-Oct-2022 00:00 |   |  |
| Compound CAS Num.                                 | iber LO | R         | Unit        | ES2238866-001     | ES2238866-002     | ES2238866-003     | ES2238866-004     |   |  |
|                                                   |         |           |             | Result            | Result            | Result            | Result            |   |  |
| EA002: pH 1:5 (Soils)                             |         |           |             |                   |                   |                   |                   |   |  |
| pH Value                                          |         | -         | pH Unit     | 5.9               | 5.4               | •                 | -                 | - |  |
| EA003 :pH (field/fox)                             |         |           |             |                   |                   |                   |                   |   |  |
| pH (F)                                            | 0.      | 1         | pH Unit     | 6.8               | 6.1               | 6.2               | 6.0               | 1 |  |
| pH (Fox)                                          |         | -         | pH Unit     | 3.2               | 3.0               | 2.6               | 3.6               | 1 |  |
| Reaction Rate                                     |         | Re        | action Unit | 3                 | 3                 | 3                 | t                 | - |  |
| EA010: Conductivity (1:5)                         |         |           |             |                   |                   |                   |                   |   |  |
| Electrical Conductivity @ 25°C                    |         |           | µS/cm       | 34                | 46                | -                 | -                 | 1 |  |
| EA029-A: pH Measurements                          |         |           |             |                   |                   |                   |                   |   |  |
| pH KCI (23A)                                      | 0.      | -         | pH Unit     |                   | -                 | 5.0               | 5.1               | - |  |
| pH OX (23B)                                       | 0.      | -         | pH Unit     |                   | -                 | 3.0               | 3.9               | 1 |  |
| EA029-B: Acidity Trail                            |         |           |             |                   |                   |                   |                   |   |  |
| Titratable Actual Acidity (23F)                   | 2       | E         | ole H+ / t  |                   |                   | 34                | 27                | 1 |  |
| Titratable Peroxide Acidity (23G)                 | 2       | 5         | ole H+ / t  |                   | 1                 | 214               | 80                | - |  |
| Titratable Sulfidic Acidity (23H)                 | 2       | E         | ole H+ / t  |                   | -                 | 179               | 52                | - |  |
| sulfidic - Titratable Actual Acidity (s-23F)      | 0.0     | 20 %      | pyrite S    |                   | 1                 | 0.055             | 0.044             | 1 |  |
| sulfidic - Titratable Peroxide Acidity<br>(s-23G) | 0.0     | 20 %      | pyrite S    | ł                 | -                 | 0.342             | 0.128             | - |  |
| sulfidic - Titratable Sulfidic Acidity (s-23H)    | 0.0     | 20 %      | pyrite S    |                   |                   | 0.288             | 0.084             |   |  |
| EA029-C: Sulfur Trail                             |         |           |             |                   |                   |                   |                   |   |  |
| KCI Extractable Sulfur (23Ce)                     | 0.0     | 20        | % S         |                   |                   | <0.020            | <0.020            |   |  |
| Peroxide Sulfur (23De)                            | 0.0     | 20        | % S         |                   | -                 | 0.069             | <0.020            | 1 |  |
| Peroxide Oxidisable Sulfur (23E)                  |         | 20        | % S         |                   | 1                 | 0.069             | <0.020            | 1 |  |
| acidity - Peroxide Oxidisable Sulfur<br>(a-23E)   | 10      | E<br>O    | ole H+ / t  |                   |                   | 43                | <10               |   |  |
| EA029-D: Calcium Values                           |         |           |             |                   |                   |                   |                   |   |  |
| KCI Extractable Calcium (23Vh)                    | 0.0     | 20        | % Ca        |                   |                   | <0.020            | <0.020            | 1 |  |
| Peroxide Calcium (23Wh)                           | 0.0     | 20        | % Ca        |                   | 1                 | <0.020            | <0.020            | 1 |  |
| Acid Reacted Calcium (23X)                        | 0.0     | 20        | % Ca        |                   |                   | <0.020            | <0.020            | 1 |  |
| acidity - Acid Reacted Calcium (a-23X)            | 1(      | E<br>C    | ole H+ / t  |                   | -                 | <10               | <10               | 1 |  |
| sulfidic - Acid Reacted Calcium (s-23X)           | 0.0     | 20        | % S         |                   | 1                 | <0.020            | <0.020            | 1 |  |
| EA029-E: Magnesium Values                         |         |           |             |                   |                   |                   |                   |   |  |
| KCI Extractable Magnesium (23Sm)                  | 0.0     | 20        | % Mg        |                   | 1                 | <0.020            | <0.020            | 1 |  |
| Peroxide Magnesium (23Tm)                         | 0.0     | 20        | % Mg        |                   | -                 | <0.020            | <0.020            | - |  |
| Acid Reacted Magnesium (23U)                      | 0.0     | 20        | % Mg        | 1                 | 1                 | <0.020            | <0.020            | - |  |

| 4 of 4 | ES2238866  | IdealCorp Pty Ltd | 600255    |                    |
|--------|------------|-------------------|-----------|--------------------|
| Page   | Work Order | Client :          | Project : | Analytical Doculto |



# Analytical Results

| Sub-Matrix: SOIL<br>(Matrix: SOIL)        |            |         | Sample ID      | BH1-0.5m          | BH1-1.5m          | BH2-1.0m          | BH2-2.0m          | - |
|-------------------------------------------|------------|---------|----------------|-------------------|-------------------|-------------------|-------------------|---|
|                                           |            | Samplir | ig date / time | 26-Oct-2022 00:00 | 26-Oct-2022 00:00 | 26-Oct-2022 00:00 | 26-Oct-2022 00:00 |   |
| Compound                                  | CAS Number | LOR     | Unit           | ES2238866-001     | ES2238866-002     | ES2238866-003     | ES2238866-004     |   |
|                                           |            |         |                | Result            | Result            | Result            | Result            |   |
| EA029-E: Magnesium Values - Continued     |            |         |                |                   |                   |                   |                   |   |
| Acidity - Acid Reacted Magnesium (a-23U)  |            | 10      | mole H+ / t    |                   | -                 | <10               | <10               |   |
| sulfidic - Acid Reacted Magnesium (s-23U) |            | 0.020   | % S            | ł                 | ł                 | <0.020            | <0.020            | 1 |
| EA029-H: Acid Base Accounting             |            |         |                |                   |                   |                   |                   |   |
| ANC Fineness Factor                       |            | 0.5     | ,              |                   | -                 | 1.5               | 1.5               |   |
| Net Acidity (sulfur units)                | -          | 0.02    | % S            | 1                 | 1                 | 0.12              | 0.04              | 1 |
| Net Acidity (acidity units)               | -          | 10      | mole H+ / t    | 1                 | 1                 | 77                | 27                |   |
| Liming Rate                               |            | -       | kg CaCO3/t     |                   | -                 | 9                 | 2                 |   |
| Net Acidity excluding ANC (sulfur units)  |            | 0.02    | % S            | 1                 | -                 | 0.12              | 0.04              | - |
| Net Acidity excluding ANC (acidity units) |            | 10      | mole H+ / t    | -                 | -                 | 77                | 27                |   |
| Liming Rate excluding ANC                 |            | ۲       | kg CaCO3/t     | -                 | 1                 | 9                 | 2                 | - |
| EA055: Moisture Content (Dried @ 105-110  | °C)        |         |                |                   |                   |                   |                   |   |
| Moisture Content                          | -          | 1.0     | %              | 10.3              | 50.2              | 1                 | -                 |   |
| EA084: Saturated Resistivity              |            |         |                |                   |                   |                   |                   |   |
| Resistivity at 25°C                       |            | 10      | ohm cm         | 5880              | 7040              | 1                 | -                 |   |
| ED040S : Soluble Sulfate by ICPAES        |            |         |                |                   |                   |                   |                   |   |
| Sulfate as SO4 2-                         | 14808-79-8 | 10      | mg/kg          | 20                | 170               | 1                 | -                 |   |
| ED045G: Chloride by Discrete Analyser     |            |         |                |                   |                   |                   |                   |   |
| Chloride                                  | 16887-00-6 | 10      | mg/kg          | <10               | <10               | 1                 | 1                 |   |

Inter-Laboratory Testing Analysis conducted by ALS Brisbane, NATA accreditation no. 825, site no. 818 (Chemistry) 18958 (Biology).

(SOIL) EA029-F: Excess Acid Neutralising Capacity (SOIL) EA029-H: Acid Base Accounting

(SOIL) EA029-G: Retained Acidity

(SOIL) EA029-A: pH Measurements

(SOIL) EA029-C: Sulfur Trail

(SOIL) EA029-D: Calcium Values

(SOIL) EA029-E: Magnesium Values

(SOIL) EA029-B: Acidity Trail

(SOIL) EA003 :pH (field/fox)



MATTHEW PALAVIDIS VICTOR FATTORETTO MATTHEW SHIELDS

## Warringah Golf Clubhouse

DA Acoustic Assessment

**SYDNEY** 9 Sarah St MASCOT NSW 2020 (02) 8339 8000 ABN 98 145 324 714 www.acousticlogic.com.au

The information in this document is the property of Acoustic Logic Pty Ltd 98 145 324 714 and shall be returned on demand. It is issued on the condition that, except with our written permission, it must not be reproduced, copied or communicated to any other party nor be used for any purpose other than that stated in particular enquiry, order or contract with which it is issued.

| Project ID     | 20221047.1                  |
|----------------|-----------------------------|
| Document Title | DA Acoustic Assessment      |
| Attention To   | Warringah Golf Club Limited |

| Revision | Date       | Document Reference     | Prepared By | Checked By | Approved<br>By |
|----------|------------|------------------------|-------------|------------|----------------|
| 0        | 9/09/2022  | 20221047.1/0909A/R0/PF | PF          |            |                |
| 1        | 12/10/2022 | 20221047.1/1210A/R1/PF | ТА          |            | ТА             |
| 2        | 29/08/2023 | 20221047.1/2908A/R2/PF | PF          |            | PF             |
|          |            |                        |             |            |                |

#### TABLE OF CONTENTS

| 1 | INT   | RODUCTION                                                    | 4  |
|---|-------|--------------------------------------------------------------|----|
| 2 | SITE  | DESCRIPTION                                                  | 5  |
| 3 | NOI   | SE DESCRIPTORS                                               | 8  |
| 4 | ENV   | IRONMENTAL NOISE SURVEY                                      | 9  |
|   | 4.1   | MEASUREMENT LOCATION                                         | 9  |
|   | 4.2   | MEASUREMENT PERIOD                                           | 9  |
|   | 4.3   | MEASUREMENT EQUIPMENT                                        | 9  |
|   | 4.4   | SUMMARISED RATING BACKGROUND NOISE LEVELS                    | 9  |
| 5 | NOI   | SE EMISSION CRITERIA                                         |    |
|   | 5.1   | NORTH BEACHES COUNCIL – PRE-DA MEETING ADVICE ON NOISE       | 10 |
|   | 5.2   | NSW LIQUOR & GAMING                                          |    |
|   | 5.3   | NSW EPA INDUSTRIAL NOISE POLICY FOR INDUSTRY 2017            | 11 |
|   | 5.3.1 | I Intrusiveness Criterion                                    | 11 |
|   | 5.3.2 | 2 Project Amenity Criterion                                  | 11 |
|   | 5.3.3 | 3 Sleep Arousal Criteria                                     | 12 |
|   | 5.4   | SUMMARISED NOISE EMISSION CRITERIA                           | 12 |
| 6 | NOI   | SE EMISSION ASSESSMENT                                       | 14 |
|   | 6.1   | PATRON/MUSIC NOISE                                           | 14 |
|   | 6.1.1 | I SoundPlan Modelling                                        | 15 |
|   | 6.1.2 | 2 Summarised Predicted Noise Levels at Surrounding Receivers | 17 |
|   | 6.2   | PEAK NOISE FROM CAR PARK USAGE                               | 17 |
|   | 6.3   | NOISE FROM MECHANICAL PLANT WITHIN PROPOSED SITE GENERALLY   |    |
|   | 6.3.1 | Preliminary Mechanical Treatment Advice                      |    |
| 7 | REC   | OMMENDATIONS                                                 |    |
| 8 | CON   | ICLUSION                                                     |    |
| Α | PPEND | DIX A – UNATTENDED NOISE MONITORING DATA                     | 21 |
| Α | PPEND | DIX B – SOUNDPLAN MODELLING RESULTS                          |    |

#### **1** INTRODUCTION

This report has been prepared to assess noise impacts associated with the proposed new club house development located at to 433 Pittwater Road, North Manly, known as Warringah Recreation Centre.

This document addresses noise impacts assessed with the following:

- Noise emission from the proposed operation of the club house. This will include patron activity and music within the club house, and
- Noise emissions from mechanical plant to service the project site (in principle).

Acoustic Logic (AL) have utilised the following documents and regulations in the assessment of external noise emission criteria for the development:

- North Beaches Council *Pre-DA meeting advice on Noise*, 25/07/2022
- North Beaches Council Warringah Development Control Plan (DCP) 2011, and
- The Environmental Protection Authority (EPA) NSW Noise Policy for Industry (NPI) 2017

This assessment has been conducted based on the architectural drawings provided to AL, prepared by Group Architects, dated 18.03.2022.

#### **2 SITE DESCRIPTION**

The proposed new club house will be located adjacent to the golf course in the Warringah recreation area in the northern corner of the land bounded by Kentwell Road and Pittwater Road, North Manly.

The proposed club will be comprised of:

- Two storey community-based club house providing office, meal, bar and function services with a maximum occupancy of 320 patrons (including staff)
- The proposed operation hours for each space are detailed in Warringah Golf Club documentation *'Plan of Management September 2022'* and has been reproduced below:

| Day                       | Hours of Operation | Days Open     |
|---------------------------|--------------------|---------------|
| Pro Shop                  | Winter 6:30am-6pm  | Monday-Sunday |
|                           | Summer 6am-7pm     |               |
| Commercial office/meeting | 9am-5pm            | Monday-Friday |
| Garden Lounge             | 7am-10pm           | Monday-Sunday |
| Dining & function Rooms   | 12pm-10pm          | Monday-Sunday |
| Bar                       | 10am-10pm          | Monday-Sunday |

• The major noise sources are the use of garden lounge (including an outdoor terrace), dining & function rooms and bar

The proposed site plan is presented in Figure 2.

A site survey has been carried out by this office to identify surrounding noise sensitive receivers and the existing acoustic environment. It is noted that the site is located within Warringah recreation area and residential receivers are identified to the northeast across Pittwater Road. Nearest sensitive receivers are as follows:

- **R1: Residential Receiver 1**: Residential houses to the north of the project site at 518-528 Pittwater Road, North Manly.
- **C1: Commercial Receiver 1**: Mixed use buildings to the east of the project site at 512 Pittwater Road and 3 Corrie Road, North Manly.

A site map, measurement locations and surrounding receiver are presented in Figure 1











I:\Jobs\2022\20221047\20221047.1\20230829PFA\_R2\_DA\_Acoustic\_Assessment.docx

~

#### **3 NOISE DESCRIPTORS**

Ambient noise constantly varies in level from moment to moment, so it is not possible to accurately determine prevailing noise conditions by measuring a single, instantaneous noise level.

To quantify ambient noise, a 15 minute measurement interval is typically utilised. Noise levels are monitored continuously during this period, and then statistical and integrating techniques are used to characterise the noise being measured.

The principal measurement parameters obtained from the data are:

 $L_{eq}$  - represents the average noise energy during a measurement period. This parameter is derived by integrating the noise levels measured over the measurement period.  $L_{eq}$  is important in the assessment of noise impact as it closely corresponds with how humans perceive the loudness of time-varying noise sources (such as traffic noise).

 $L_{90}$  – This is commonly used as a measure of the background noise level as it represents the noise level heard in the typical, quiet periods during the measurement interval. The L<sub>90</sub> parameter is used to set noise emission criteria for potentially intrusive noise sources since the disturbance caused by a noise source will depend on how audible it is above the pre-existing noise environment, particularly during quiet periods, as represented by the L<sub>90</sub> level.

 $L_{10}$  is used in some guidelines to measure noise produced by an intrusive noise source since it represents the average of the loudest noise levels produced at the source. Typically, this is used to assess noise from licenced venues.

 $L_{max}$  is the highest noise level produced during a noise event, and is typically used to assess sleep arousal impacts from short term noise events during the night. It is also used to assess internal noise levels resulting from aircraft and railway ground vibration induced noise.

 $L_1$  is sometimes used in place of  $L_{max}$  to represent a typical noise level from a number of high level, short term noise events.

#### 4 ENVIRONMENTAL NOISE SURVEY

#### 4.1 MEASUREMENT LOCATION

One unattended noise monitor was located at the north boundary of the site facing golf course. Refer to Figure 1 for detailed location. Attended measurements were conducted to the north east of the project site on Pittwater Road.

#### 4.2 MEASUREMENT PERIOD

Unattended noise monitoring was conducted from Thursday 1<sup>st</sup> of September 2022 to Monday 12<sup>th</sup> of September 2022. Attended measurements were conducted on Thursday 1<sup>st</sup> of September 2022 between 4:00 pm – 5:00 pm.

#### 4.3 MEASUREMENT EQUIPMENT

Unattended noise monitoring was conducted using one Acoustic Research Laboratories Pty Ltd noise logger. The logger was set to A-weighted fast response mode and was programmed to store 15-minute statistical noise levels throughout the monitoring period. The equipment was calibrated at the start and end of the monitoring period using a Rion NC-73 calibrator. No significant drift was noted.

Attended noise measurements were conducted using a Norsonic 140 Sound Analyser. The analyser was set to fast response and calibrated before and after the measurements using a Norsonic Sound Calibrator type 1251. No significant drift was noted.

#### 4.4 SUMMARISED RATING BACKGROUND NOISE LEVELS

NSW EPA's RBL assessment procedure requires determination of background noise levels for each day (the ABL) then the median of the individual days as set out for the entire monitoring period.

Appendix A provides detailed results of the unattended noise monitoring. Weather affected data was excluded from the assessment. The processed Rating Background Noise Levels (lowest 10<sup>th</sup> percentile noise levels during operation time period) are outlined in the table below.

| Time of Day                  | Measured Background Noise Level dB(A)L <sub>90(period)</sub> |
|------------------------------|--------------------------------------------------------------|
| Morning Shoulder (6am – 7am) | 46                                                           |
| Day (7am – 6pm)              | 51                                                           |
| Evening (6pm – 10pm)         | 46                                                           |

#### Table 1 – Rating Background Noise Levels

The following background noise spectrum for day and evening time is obtained based on attended measurements and unattended noise monitoring:

#### Table 2 – Summarised Background Noise Spectrum dB(A) L<sub>90, 15mins</sub>

| Time of<br>Day | 31.5H<br>z | 63Hz | 125H<br>z | 250H<br>z | 500H<br>z | 1kHz | 2kHz | 4kHz | 8kHz | A-wt |
|----------------|------------|------|-----------|-----------|-----------|------|------|------|------|------|
| Day            | 55         | 56   | 51        | 48        | 45        | 48   | 44   | 35   | 24   | 51   |
| Evening        | 50         | 51   | 46        | 43        | 40        | 43   | 39   | 30   | 19   | 46   |

#### 5 NOISE EMISSION CRITERIA

Noise emissions from the proposed club house tenancy will be assessed to comply with the criteria outlined in the following documents/regulations:

- North Beaches Council Pre-DA meeting advice on Noise, 25/07/2022
- NSW Liquor & Gaming requirements, and
- The Environmental Protection Authority (EPA) NSW Noise Policy for Industry (NPI) 2017

#### 5.1 NORTH BEACHES COUNCIL – PRE-DA MEETING ADVICE ON NOISE

#### <u>Noise</u>

Licenced premises have the potential to cause noise impacts on surrounding residential receptors through patron noise and noise from mechanical plant. There are a number of potential residential receptors located on the northern side of Pittwater Road.

As such, to support any submitted application, Environmental Health would typically require a Noise Assessment by a suitably qualified and experienced acoustic engineer be submitted with the application. Any submitted acoustic assessment is to be in accordance with relevant standards and guidelines including NSW EPA's Noise Policy for Industry. The acoustic assessment should include an assessment of all the potential noise sources from the club house including but not limited to:

- Noise from patrons including use of the outdoor terrace
- Noise from amplified music/live music; and
- Noise from mechanical plant.

In accordance with the North Beaches Council *Pre-DA meeting advice on Noise*, 25/07/2022, noise emissions from mechanical plant and the car park will be assessed against the NSW Noise Policy for Industry.

Noise emissions from club house operation (patrons, music, etc) is to be assessed against the NSW Liquor and Gaming requirements, detailed below.,

#### 5.2 NSW LIQUOR & GAMING

NSW Liquor & Gaming requirements are as follows:

- The L<sub>10</sub> noise level emitted from the premises shall not exceed 5dB above the background L<sub>90</sub> sound level in any Octave Band Centre Frequency (31.5kHz to 8kHz inclusive) between the hours of 7.00am to 12.00 midnight when assessed at the boundary of the nearest affected residential premises.
- L<sub>10</sub> noise level emitted from the premises shall not exceed the background L<sub>90</sub> sound level in any Octave Band Centre Frequency (31.5kHz to 8kHz inclusive) after midnight when assessed at the boundary of the nearest affected residential premises.

After midnight, noise emissions from the Place of Public Entertainment are to be inaudible within any habitable rooms in nearby residential properties.
# 5.3 NSW EPA INDUSTRIAL NOISE POLICY FOR INDUSTRY 2017

For noise emissions associated with the car park and mechanical plant, the NSW EPA Noise Policy for Industry has been adopted.

The EPA NPI has two criteria which both are required to be satisfied, namely Intrusiveness and amenity. The NPI sets out acceptable noise levels for various localities. The policy indicates four categories to assess the appropriate noise level at a site. They are rural, suburban, urban and urban/industrial interface. Under the policy the nearest residential receivers would be assessed against the urban criteria.

Noise levels are to be assessed at the property boundary or nearby dwelling, or at the balcony or façade of an apartment.

## 5.3.1 Intrusiveness Criterion

The guideline is intended to limit the audibility of noise emissions at residential receivers and requires that noise emissions measured using the  $L_{eq}$  descriptor not exceed the background noise level by more than 5dB(A). The intrusiveness criteria applicable to the development are presented in the table below.

| Time of Day                  | Rating background Noise<br>Level dB(A)L <sub>90(15min)</sub> | Intrusiveness Criteria<br>dB(A) L <sub>eq(15min)</sub> |
|------------------------------|--------------------------------------------------------------|--------------------------------------------------------|
| Morning shoulder (6am - 7am) | 46                                                           | 51                                                     |
| Day (7am – 6pm)              | 51                                                           | 56                                                     |
| Evening (6pm – 10pm)         | 46                                                           | 51                                                     |

# Table 3 – NPfl Intrusiveness Criteria

# 5.3.2 Project Amenity Criterion

The guideline is intended to limit the absolute noise level from all noise sources to a level that is consistent with the general environment.

The EPA's NPI sets out acceptable noise levels for various localities. The recommended noise amenity area is based upon the measured background noise levels at the sensitive receiver. Based on the measured background noise levels detailed in Section 4.4, the Noise Policy for Industry suggests the adoption of the 'urban' categorisation.

The NPI requires project amenity noise levels to be calculated in the following manner:

 $L_{Aeq, 15min}$  = Recommended Amenity Noise Level - 5 dB(A) + 3 dB(A)

The amenity levels appropriate for the commercial receivers surrounding the site are presented below.

# **Table 4 – EPA Amenity Noise Levels**

| Type of Receiver    | Time of day      | Recommended Noise Level<br>dB(A)L <sub>eq(period)</sub> | Project Amenity Noise Level<br>dB(A)L <sub>eq(15 minute)</sub> |
|---------------------|------------------|---------------------------------------------------------|----------------------------------------------------------------|
|                     | Morning Shoulder | 45                                                      | 43                                                             |
| Residential (Urban) | Day              | 60                                                      | 58                                                             |
|                     | Evening          | 50                                                      | 48                                                             |
| Commercial          | When in Use      | 65                                                      | 63                                                             |

The NSW EPA Noise Policy for Industry (2017) defines:

- Day as the period from 7am to 6pm Monday to Saturday and 8am to 6pm Sundays and Public Holidays.
- Evening as the period from 6pm to 10pm.
- Night as the period from 10pm to 7am Monday to Saturday and 10pm to 8am Sunday and public holidays.

# 5.3.3 Sleep Arousal Criteria

The Noise Policy for Industry recommends the following noise limits to mitigate sleeping disturbance:

*Where the subject development / premises night -time noise levels at a residential location exceed:* 

- L<sub>eq,15min</sub> 40 dB(A) or the prevailing RBL plus 5 dB, whichever is the greater, and/or
- *L<sub>Fmax</sub> 52 dB(A) or the prevailing RBL plus 15 dB, whichever is the greater,*

a detailed maximum noise level even assessment should be undertaken.

# Table 5-5 – Sleep Arousal Criteria for Residential Receivers

| Receiver                                                    | Rating Background Noise Level<br>(Night)<br>dB(A)L <sub>90</sub> | Emergence Level                                               |
|-------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|
| Residences Surrounding Site<br>Morning Shoulder (6am – 7am) | 46 dB(A) L <sub>90</sub>                                         | 51 dB(A)L <sub>eq, 15min</sub> ;<br>61 dB(A)L <sub>Fmax</sub> |

# 5.4 SUMMARISED NOISE EMISSION CRITERIA

Based on the noise emission criteria detailed above, a summary of the noise emission criteria for the usage of the proposed premises are presented below. For licensed spaces, the noise emission criteria for patron and music noise between 10:00am -10:00pm is presented in the table below.

# Table 6 – Summarised Patron/Music Noise Emission Goals – Residential Receivers (External)

| Time of<br>Day                  | 31.5H<br>z | 63Hz | 125H<br>z | 250H<br>z | 500H<br>z | 1kHz | 2kHz | 4kHz | 8kHz | A-wt |
|---------------------------------|------------|------|-----------|-----------|-----------|------|------|------|------|------|
| Day<br>7am-6pm<br>(BG + 5)      | 60         | 61   | 56        | 53        | 50        | 53   | 49   | 40   | 29   | 56   |
| Evening<br>6pm-10pm<br>(BG + 5) | 55         | 56   | 51        | 48        | 45        | 48   | 44   | 35   | 24   | 51   |

For the entire proposed development, the noise emission criteria for any proposed new mechanical plant and the car park are summarised below:

| Location                          | Time Period           | Assessment<br>Background<br>Noise Level<br>dB(A)L <sub>90</sub> | Project<br>Amenity<br>Criteria<br>dB(A) L <sub>eq</sub> | Intrusiveness<br>Criteria<br>L <sub>eq(15min)</sub> | NPI Criteria for<br>Sleep<br>Disturbance                                   |
|-----------------------------------|-----------------------|-----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|
| Nearby                            | Moring<br>Shoulder    | 46                                                              | 43                                                      | 51                                                  | 51 dB(A)L <sub>eq,</sub><br><sup>15min;</sup><br>61 dB(A)L <sub>Fmax</sub> |
| Suburban                          | Day (7am-6pm)         | 51                                                              | 58                                                      | 56                                                  | N/A                                                                        |
| Receiver                          | Evening<br>(6pm-10pm) | 46                                                              | 48                                                      | 51                                                  | N/A                                                                        |
| Nearby<br>commercial<br>receivers | When in use           | 65                                                              | 63                                                      | N/A                                                 | N/A                                                                        |

# Table 7 – Noise Emissions Criteria – Mechanical Noise to Surrounding Receivers

The project noise trigger levels are indicated by the bolded values in the table above.

# 6 NOISE EMISSION ASSESSMENT

Noise emissions from the site are addressed for the following noise sources:

- Patron and background music noise from the proposed licensed premises,
- Use of the car park; and
- Mechanical plant noise in principle.

# 6.1 PATRON/MUSIC NOISE

This section of the report examines the potential noise impacts from patron noise from the proposed tenancy. The major potential noise sources are from the use of following licensed spaces:

- Ground floor garden lounge and outdoor terrace to the west of the development, and
- First floor dining, function and sports bar to the north and west of the development.

The emission levels present within this assessment were corrected for distance attenuation and barrier effects (building shielding) where applicable.

Predicted noise levels from patron noise have been assessed using the following assumptions:

- There is a maximum capacity of 320 people using the facility (including patron and staff) and it is assumed the max capacity at all times during the operation (10:00am -10:00pm)
- The distribution of the number of patrons & staff is assumed as follows to present a conservative assessment:
  - Ground floor outdoor terrace: 50
  - Ground floor indoor garden lounge: 100
  - First floor dining/ function: 60
  - First floor function: 60, and
  - First sports bar: 50

The number of patrons presented above is a conservative assumption as all spaces will not operate at full capacity for normal operation of the club house. In the case that the above assumption complies with the criteria, all other conditions will comply with the criteria.

• Patron noise is subject to 1 in 3 patrons talking at a moderately loud level at any one time. A sound power level of 77dB(A)L<sub>10</sub> was used for patron voice levels for this assessment, see table below

|        | Noise Level dB(A) – Frequency (Hz) |       |       |       |      |      |      |      |                |  |  |
|--------|------------------------------------|-------|-------|-------|------|------|------|------|----------------|--|--|
| 31.5Hz | 63Hz                               | 125Hz | 250Hz | 500Hz | 1kHz | 2kHz | 4kHz | 8kHz | A-<br>weighted |  |  |
| 62     | 62                                 | 67    | 70    | 74    | 75   | 70   | 51   | 48   | 77             |  |  |

# Table 8 – Patron Speech Spectrum

• Music within the internal spaces is assumed to be limited to background music, creating a spatially averaged sound pressure level of 75dB(A), see table below

|        | Noise Level dB(A) – Frequency (Hz) |       |       |       |      |      |      |      |                |
|--------|------------------------------------|-------|-------|-------|------|------|------|------|----------------|
| 31.5Hz | 63Hz                               | 125Hz | 250Hz | 500Hz | 1kHz | 2kHz | 4kHz | 8kHz | A-<br>weighted |
| 71     | 71                                 | 77    | 73    | 72    | 71   | 66   | 57   | 59   | 75             |

# Table 9 – Music Spectrum

• The recommendations set out in Section 7 of this report have been implemented.

# 6.1.1 SoundPlan Modelling

Noise levels have been predicted at the receiver locations using SoundPlan<sup>™</sup> 8.0 modelling software implementing the ISO 9613-2:1996 "Acoustics – Attenuation of Sound During Propagation Outdoors – Part 2: General Method of Calculation" noise propagation standard.

Noise enhancing meteorological have been adopted as recommended by the NPI, noting that the ISO 9613 modelling approach assumes that all receivers are 'downwind' (i.e., that noise enhancing wind conditions are in effect at all times).

The following figures detail computational noise modelling for closest noise sensitive receivers and façades relating to the operational noise emissions of the site through the presentation of a façade noise map onto the respective buildings and a grid noise map at 1.5m above the digital ground model. Numerical results are presented in the section below.

Ground absorption was conservatively calculated with a ground factor of 0 for all roads and golf course fronting the site with a ground factor of 0.6 as recommended in *Engineering Noise Control* (Bies & Hanson).

In line with Factsheet C of the NPI, penalties for annoying noise characteristics should be applied at the receiver, where applicable. Based on the predicted noise levels, no penalty should be applied (either for tonality, intermittency, or otherwise).





I:\Jobs\2022\20221047\20221047.1\20230829PFA\_R2\_DA\_Acoustic\_Assessment.docx

16

## 6.1.2 Summarised Predicted Noise Levels at Surrounding Receivers

Assessment of noise emissions against the relevant acoustic criteria for all nearby commercial development is presented in the following tables. Predicted noise levels factor in losses due to distance and barrier effects, calculated at the nearest affected facade.

|                                                                            | 31.5<br>Hz | 63Hz | 125H<br>z | 250H<br>z | 500H<br>z | 1kHz | 2kHz | 4kHz | 8kHz | A-wt |
|----------------------------------------------------------------------------|------------|------|-----------|-----------|-----------|------|------|------|------|------|
| Predicted Noise Level<br>Day & Evening<br>7am-10pm<br>dB(A)L <sub>10</sub> | 38         | 38   | 40        | 42        | 45        | 47   | 42   | 25   | 17   | 50   |
| Noise Emission Goal<br>Day 7am-6pm<br>(BG + 5)                             | 60         | 61   | 56        | 53        | 50        | 53   | 49   | 40   | 29   | 56   |
| Compliance ?                                                               | Yes        | Yes  | Yes       | Yes       | Yes       | Yes  | Yes  | Yes  | Yes  | Yes  |
| Noise Emission Goal<br>Evening 6pm-10pm<br>(BG + 5)                        | 55         | 56   | 51        | 48        | 45        | 48   | 44   | 35   | 24   | 51   |
| Compliance ?                                                               | Yes        | Yes  | Yes       | Yes       | Yes       | Yes  | Yes  | Yes  | Yes  | Yes  |

# Table 10 – Patron/Music Noise Emission to R1 (Worst affected façade, Externally)

# 6.2 PEAK NOISE FROM CAR PARK USAGE

Peak noise levels from the use of the car park have been predicted and assessed against the relevant noise criteria detailed in Section 5.3.3. Peak noise events have been assessed to determine the potential for sleep disturbance amongst the nearest residences to the development. The assessment has been conducted with reference to the following assumptions:

• During typical 15 min period, we assumed one car door slam. A sound power level of 95dB(A)L<sub>max</sub> has been adopted for a car door slam.

# Table 11 – Patron/Music Noise Emission to R1 (Worst affected façade, Externally)

| Receiver                                                                                                         | Predicted Noise Level<br>- dB(A)L <sub>Max</sub> | Criteria                  | Compliance? |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|-------------|
| <b>R1</b><br>Residential houses to the<br>north of the project site<br>at 518-528 Pittwater<br>Road, North Manly | 45                                               | 61 dB(A)L <sub>Fmax</sub> | Yes         |

## Table Note:

1. An assessment of sleep disturbance from peak noise events emanating from carpark usage is only undertaken at residential receivers.

# 6.3 NOISE FROM MECHANICAL PLANT WITHIN PROPOSED SITE GENERALLY

Detailed plant selection and location has not been undertaken at this stage. Satisfactory levels will be achievable through appropriate plant selection, location and if necessary, standard acoustic treatments such as duct lining, acoustic silencers and enclosures.

Noise emissions from all mechanical services to the closest residential and commercial receivers should comply with the requirements of Section 5.5.

## 6.3.1 Preliminary Mechanical Treatment Advice

An indicative assessment of initial design of primary plant items is presented below.

- Refrigeration equipment:
  - Refrigeration plant is recommended to be located within enclosure plant rooms.
  - Noise screening (using either a dedicated noise screen or the building shell between the plant and noise sensitive buildings) is recommended. This will include blanking off any plant room louvres.
  - Night time operational speeds shall be restricted.
- Major fans (typically with a sound power over 85dB(A) such as kitchen exhaust, major toilet exhaust and major relief air fans) may require acoustic treatment if located externally near sensitive receivers. It is recommended that axial (as opposed to roof mounted fans) are to be used as this will enable acoustic treatment to be incorporated within ductwork running to atmosphere and with attenuators if necessary. In addition to the location of the equipment, acoustic treatments to the major plant items may include silencers, treatment to ducting, time control, operational limitations, and vibration isolation.
- Supply and exhaust fans may be located within plant rooms or in rooftop plant areas. These units typically emit high noise levels and require acoustic treatment such as silencers and internal lined ductwork. Silencer requirements would be determined once fan selections have been completed.
- Other minor plant items, such as bathroom or kitchen exhaust fans, may also be required. These items typically emit relatively low noise levels and may require minimal acoustic treatment of a standard nature, such as internally lining of ductwork.

Cumulative assessment of both plant noise with other noise sources is recommended when conducting acoustic design of plant items. Compliance with EPA acoustic criteria (as set out in Section 5.3) will be achievable, provided that detailed acoustic review of plant items is undertaken once plant is selected, and acoustic treatments similar to those outlined above are adopted.

The above recommendations are indicative. Detailed acoustic review should be undertaken at CC stage to determine acoustic treatments to control noise emissions to satisfactory levels.

# 7 **RECOMMENDATIONS**

The following noise emission controls should be imposed for the proposed development:

- Operating hours for the licensed premises are not to exceed 7am 10pm Monday to Sunday.
- Speakers for the proposed bar are to be vibration isolated from the building structure using Embelton NRD mounts or similar.
- Allowed a maximum of up to 320 patrons. The distribution of the patrons for each space are not to exceed the assumptions presented in Section 6.1.
- Music speakers within the internal spaces not to exceed a spatially averaged sound pressure level of 75dB(A)L<sub>10.</sub>
- External disposal of bottles/waste should be done prior to 10:00pm, but not before 7am.
- Signs are to be displayed at the entrance of the development reminding patrons to minimise noise when departing the premise.
- It is recommended that the management keep a complaint register on site and that noise complaints are registered (if any) and what course of remedial action has been taken. This register should be stored on site and be accessible at all times.

# 8 CONCLUSION

This report has been prepared to assess noise impacts associated with the new club house development as part of Warringah Golf Club located at 433 Pittwater Road, North Manly.

A soundplan model has been developed to predict the noise emission from patron and music from the proposed club. Provided that the recommendations in Section 7 of this report are adopted, noise emissions to all nearby development will be compliant with the noise emission guidelines.

Please contact us should you have any further queries.

Yours faithfully,

A.

Acoustic Logic Pty Ltd PeiPei Feng

**APPENDIX A – UNATTENDED NOISE MONITORING DATA** 

I:\Jobs\2022\20221047\20221047.1\20230829PFA\_R2\_DA\_Acoustic\_Assessment.docx

























# **APPENDIX B – SOUNDPLAN MODELLING RESULTS**

I:\Jobs\2022\20221047\20221047.1\20230829PFA\_R2\_DA\_Acoustic\_Assessment.docx









36



# ARBORICULTURAL IMPACT ASSESSMENT | 433 PITTWATER RD. NORTH MANLY

Prepared For Warringah Golf Club

# 14.06.23

Prepared By Liam Strachan



# **1** EXECUTIVE SUMMARY

On the 4<sup>th</sup> July 2023 Graeme McMullan (representing the Warringah Golf Club commissioned Abnoba Arbor to prepare an Arboricultural Impact Assessment to be linked to a joint development application (Northern beaches Council & WGC) for an upgrade of the Tennis/Recreation Centre & surrounds. The development proposes a new clubhouse plus other major works.

The property lies within the Northern Beaches Council LGA (Warringah).

The proposed development includes the demolition of existing structures and the installation of a new double storey building at the northern end of the subject site as well as extensive realignment of the existing stormwater and wetland area.

The recommendations and comments in this report are based on the following:

- Conduct a basic ground based visual tree assessment
- Provide information regarding tree species, dimensions, Landscape amenity value, health and vigour assessment, structural condition including potential mitigation options, priority rating for all recommended works.
- Ascertain Tree Protection Zones and Structural Root Zones.
- Determine the impact of the development on all of the trees.
- The amenity of adjoining neighbours and members community is to be considered.
- That report contains all relevant information as outlined in Warringah DCP 2011.

A total of 114 trees were assessed in total. 51 trees have been recommended for removal.

| Retention Value | To Retain | Tree Numbers                                                                                                                                                                                                                                                         | To<br>Remove | Tree Numbers                                                                                                           |
|-----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------|
| Very High       | 0         |                                                                                                                                                                                                                                                                      | 0            |                                                                                                                        |
| High            | 47        | T42, T43, T48, T49, T54, T55, T56,<br>T57, T58, T59, T72, T73, T74, T75,<br>T76, T77, T78, T79, T80, T81, T82,<br>T83, T84, T85, T86, T87, T88, T89,<br>T90, T91, T92, T93, T94, T95, T96,<br>T97, T98, T99, T100, T101, T102,<br>T103, T104, T105, T109, T110, T113 | 24           | T2, T3, T4, T7, T8, T9, T10, T11, T12,<br>T13, T18, T19, T20, T23, T24, T25, T26,<br>T28, T29, T31, T32, T33, T63, T65 |
| Medium          | 13        | T47, T51, T52, T53, T60, T61, T70,<br>T71, T106, T107, T108, T111, T112                                                                                                                                                                                              | 9            | T1, T14, T17, T22, T27, T39, T44, T62,<br>T68                                                                          |
| Low             | 1         | T46                                                                                                                                                                                                                                                                  | 6            | T5, T15, T16, T21, T30, T64                                                                                            |
| Exempt          | 2         | T45, T50                                                                                                                                                                                                                                                             | 12           | T6, T34, T35, T36, T37, T38, T40, T41,<br>T66, T67, T69, T114                                                          |
| Total           | 63        |                                                                                                                                                                                                                                                                      | 51           |                                                                                                                        |

#### Table 1



## TABLE OF CONTENTS

| 1 | EXE        | CUTIVE SUMMARY                                                                          | . 1      |
|---|------------|-----------------------------------------------------------------------------------------|----------|
| 3 | INT        | RODUCTION                                                                               | . 4      |
|   | 3.1        | Scope                                                                                   | . 4      |
| 4 | MET        | rhod                                                                                    | . 5      |
|   | 4 1        |                                                                                         | F        |
|   | 4.1        |                                                                                         | د .<br>م |
|   | 4.Z        |                                                                                         | 0.<br>م  |
|   | 4.5<br>1 1 |                                                                                         | 0.<br>م  |
|   | 4.4        |                                                                                         | .0       |
|   | 4.5        | DETERMINING A TREES SIGNIFICANCE                                                        | .,<br>7  |
|   | 4.0<br>4 7 | PLANNING ATTREES SIGN PARCE                                                             | .,<br>7  |
|   | 4.8        | TREE MANAGEMENT CONTROLS                                                                | .,<br>7  |
|   | 4.9        | SIGNIFICANCE IN THE ENVIRONMENT.                                                        | .,<br>10 |
|   | 4.10       | VTA                                                                                     | 10       |
|   | 4.11       | AUSTRALIAN STANDARD AS4970-2009                                                         | 10       |
| _ |            |                                                                                         |          |
| 5 | FINI       | DINGS                                                                                   | 13       |
|   | 5.1        | SITE CONTROL MAPS                                                                       | 13       |
|   | 5.2        | Тне Site                                                                                | 14       |
|   | 5.3        | SWAMP OAK FLOODPLAIN OF THE NSW NORTH COAST, SYDNEY BASIN & SOUTH EAST CORNER BIOREGION | 15       |
|   | 5.4        | SUMMARY OF PROPOSED DEVELOPMENT                                                         | 16       |
|   | 5.5        | SUMMARY OF SITE INSPECTION DATA                                                         | 16       |
|   | 5.6        | CURRENT TREE POPULATION                                                                 | 16       |
|   | 5.7        | U.L.E                                                                                   | 17       |
|   | 5.8        | LANDSCAPE SIGNIFICANCE                                                                  | 18       |
|   | 5.9        | RETENTION VALUES                                                                        | 18       |
| 6 | PRC        | POSED DEVELOPMENT IMPACT                                                                | 19       |
|   | 6.1        | TREES UNNAFFECTED BY PROPOSED DEVELOPMENT                                               | 19       |
|   | 6.2        | Trees with Minor Incursions                                                             | 23       |
|   | 6.3        | Trees With Major Incursions                                                             | 25       |
|   | 6.4        | Trees to Be removed                                                                     | 26       |
| 7 | TRF        | E SENSITIVE DESIGN                                                                      | 32       |
| - |            | _                                                                                       |          |
|   | 7.1        | FOOTINGS                                                                                | 32       |
|   | 7.2        | LANDSCAPING WITHIN THE TPZ                                                              | 32       |
|   | 7.3        | Services                                                                                | 34       |
|   | 7.4        | SOIL REMEDIATION FOLLOWING ROOT PRUNING                                                 | 34       |
| 8 | CON        | ICLUSIONS AND RECOMMENDATIONS                                                           | 36       |
| 9 | TRE        | E PROTECTION MEASURES                                                                   | 43       |
|   | 9.1        | FENCING                                                                                 | 43       |
|   | 9.2        | TRUNK PROTECTION                                                                        | 44       |
|   | 9.3        | GROUND PROTECTION                                                                       | 44       |
|   | 9.4        | TREE SENSITIVE METHODOLOGY                                                              | 45       |



| 9.5  | Hold Points, Inspection And Certification       | . 48 |
|------|-------------------------------------------------|------|
| 10   | WORKS CITED                                     | 49   |
| 11   | GLOSSARY OF TERMS                               | 50   |
| 12   |                                                 | 51   |
| 12   |                                                 |      |
| 12.1 | Schedule 1: Attributes                          | . 51 |
| 12.2 | Schedule 2: Development Impact                  | . 67 |
| 13   | APPENDIX 2: STARS                               | 77   |
| 14   | APPENDIX 3: SULE                                | 79   |
| 15   | APPENDIX 4: TREE PROTECTION (GENERIC)           | 80   |
| 16   | TRUNK AND GROUND PROTECTION                     | 81   |
| 17   | TPZ FENCING                                     | 82   |
| 18   | SITE DRAWINGS                                   | 83   |
| Drav | NING 1: TREE LOCATION PLAN/TREE PROTECTION PLAN | . 83 |



# **3** INTRODUCTION

On the 4<sup>th</sup> July 2023 Graeme McMullan (representing the Warringah Golf Club commissioned Abnoba Arbor to prepare an Arboricultural Impact Assessment to be linked to a joint development application (Northern beaches Council & WGC) for an upgrade of the Tennis/Recreation Centre & surrounds. The development proposes a new clubhouse plus other major works.

The property lies within the Northern Beaches Council LGA (Warringah).

The proposed development includes the demolition of existing structures and the installation of a new double storey building at the northern end of the subject site as well as extensive realignment of the existing stormwater and wetland area.

Site inspection was conducted by Liam Strachan AQF Level 5 Arborist on the 7<sup>th</sup> July 2023.

## 3.1 SCOPE

The purpose of this report is to provide information on any trees that may be affected by the proposed demolition and development at 433 Pittwater Rd. North Manly.

The recommendations and comments in this report are based on the following:

- Conduct a basic ground based visual tree assessment
- Provide information regarding tree species, dimensions, Landscape amenity value, health and vigour assessment, structural condition including potential mitigation options, priority rating for all recommended works.
- Ascertain Tree Protection Zones and Structural Root Zones.
- Determine the impact of the development on all of the trees.
- The amenity of adjoining neighbours and members community is to be considered.
- That report contains all relevant information as outlined in Warringah DCP 2011.

In preparing this report, the author has considered the objectives of:

- The State environmental Planning Policy 'Biodiversity and Conservation' 2021
- The State environmental Planning Policy 'Vegetation in Non-Rural Areas' 2017,
- Warringah Local Environment Plan 2011
- Warringah Development Control Plan 2011
- AS 4373 'Pruning of Amenity Trees' 2007.

Australian Standard AS4970-2009 Protection of Trees on Development Sites has been used as a benchmark in the preparation of this report.

The report will also assess the on-going viability of the tree and if deemed appropriate, provide recommendations for pruning or the removal of the subject trees. The following report will focus on the trees sustainability within the landscape and will provide recommendations on the most appropriate course of action. The determination will be reached through the assessment of the tree's health, vigour, and structural condition at the time of inspection. The assessment did not include any internal diagnostics such as picus, resistograph, woody tissue examination, nor has any soil testing been conducted.



# 4 METHOD

# 4.1 METHODOLOGY SUMMARY

#### Table 2

| Characteristic                                                                                                                                               | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Photos                                                                                                                                                       | Digital camera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Tree measurements <ul> <li>Height</li> <li>DBH(Diameter at breast height)</li> <li>SRZ (Structural root zone)</li> <li>TPZ (Tree protection zone)</li> </ul> | <ul> <li>Clinometer, Tape measure</li> <li>Diameter tape</li> <li>SRZ = (DAB x 50)<sup>0.42</sup> x 0.64</li> <li>DBH x 12 (AS4970-2009)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Documents Reviewed                                                                                                                                           | <ul><li>Warringah DCP 2011</li><li>Warringah LEP 2011</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Drawings Reviewed                                                                                                                                            | <ul> <li>Group Architects DWG No. GA2020-023-D01</li> <li>Group Architects DWG No. GA2020-023-100</li> <li>Group Architects DWG No. GA2020-023-101a</li> <li>Group Architects DWG No. GA2020-023-101b</li> <li>Group Architects DWG No. GA2020-023-101b</li> <li>Group Architects DWG No. GA2020-023-101c</li> <li>Group Architects DWG No. GA2020-023-102</li> <li>Group Architects DWG No. GA2020-023-103</li> <li>Group Architects DWG No. GA2020-023-104</li> <li>Group Architects DWG No. GA2020-023-200</li> <li>Group Architects DWG No. GA2020-023-201</li> <li>Group Architects DWG No. GA2020-023-201</li> <li>Group Architects DWG No. GA2020-023-202</li> <li>Group Architects DWG No. GA2020-023-202</li> <li>Group Architects DWG No. GA2020-023-300</li> <li>C.M.S Surveyors Pty Ltd. DWG 19741 detail Sheet 1 of 7</li> <li>C.M.S Surveyors Pty Ltd. DWG 19741 detail Sheet 3 of 7</li> <li>C.M.S Surveyors Pty Ltd. DWG 19741 detail Sheet 4 of 7</li> <li>C.M.S Surveyors Pty Ltd. DWG 19741 detail Sheet 5 of 7</li> <li>C.M.S Surveyors Pty Ltd. DWG 19741 detail Sheet 5 of 7</li> <li>C.M.S Surveyors Pty Ltd. DWG 19741 detail Sheet 7 of 7</li> </ul> |  |  |
| Tree retention assessment                                                                                                                                    | ULE (Useful life expectancy)<br>STARS METHOD (IACA, 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Tree health assessment                                                                                                                                       | Visual Tree Assessment, (VTA) as per (Mattheck, et al., 2015) Inspection limited to ground based visual examination of the tree.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |



# 4.2 LIMITATIONS

Care has been taken to obtain all information from reliable sources. All data has been verified as far as possible. However, Liam Strachan - Consulting Arborist can neither guarantee nor be responsible for the accuracy of information provided by others. Unless stated otherwise:

- Information contained in this report covers only the trees examined and reflects the health and structure of the tree at the time of inspection. The documented, observations, results, recommendations and conclusions given may vary after the site visit due to environmental conditions. Liability will not be accepted for damage to person or property as a result of natural processes, unforeseeable actions or occurrences.
- Observations recorded for trees located within adjacent properties have been made without entering that property. Deciduous trees inspected during winter and all trees obscured by other vegetation are not able to be properly assessed. As a result, measurements for these trees are estimated. Similarly, these trees were not subject to a complete visual inspection and defects or abnormalities may be present but not recorded.
- The inspection was limited to visual examination from the base of the subject tree without dissection, excavation, probing or coring (unless specifically noted otherwise).
- There is no warranty or guarantee, expressed or implied, that problems or deficiencies of the subject tree may not arise in the future.

## 4.3 SITE INSPECTION

A visual inspection of the tree/s was performed from ground level, data collected includes:

- Genus, Species, Common Name;
- Height, Width, DBH (Diameter at Breast Height), DRB (Diameter above Root Buttress);
- Age, Health & Vigour;
- Significance, Amenity and Ecological Value;
- Form and Structural Condition;
- Visible Defects or Evidence of Wounding.

### 4.4 MEASUREMENTS

- Tree locations are supplied by client on the survey plan or triangulated using a measuring tape.
- Diameter at breast height (DBH) and Diameter above Root Buttress (DRB) are measured using a diameter tape.
- Height is measured using a clinometer.
- Canopy width is measuerd using a laser measure or tape measure.
- Structural Root Zone (SRZ) and Tree Protection Zone (TPZ) radii are calculated (in accordance with AS 4970-2009).
- TPZ or SRZ incursions are measured from the nearest face of the trunk to the face of the structure.

Tree schedule data is recorded in Appendix1.



## 4.5 REFERENCE DOCUMENTS

This report was written in coordination with:

- Australian Standard AS4970-2009 Protection of Trees on Development Sites
- Warringah DCP 2011
- Warringah LEP 2011
- Narla Environmental 'Flora & Fauna Constraints Assessment Report', dated February 2021,

## 4.6 DETERMINING A TREES SIGNIFICANCE

Tree health assessments were carried out using VTA as per Mattheck and significance and retention determinations were carried out using the STAR's method which combines ULE (useful life expectancy of subject tree) and significance rating based on characteristics such as health, form, vigour, cultural, heritage and amenity value. The 2 results are placed within a matrix which determines the retention value.

- 1. Is the tree a locally native remnant; an endangered species; a part of an endangered ecological community; or does the tree provide critical habitat for an endangered species?
- **2.** Is the tree of botanical interest; Is it included in a significant tree register or listed as a heritage item under the Federal State or Local Regulations?
- 3. Is the tree visually prominent in the locality?
- **4.** Is the tree well structured?
- 5. Is the tree in good health and/or does it display signs of good vigour?
- 6. Is the tree typically formed for the species?
- 7. Is the tree currently located in a position that will accommodate future growth?

Please see Appendix 2: STARS.

## 4.7 PLANNING GUIDELINES AND SPECIFIC LEGISLATION

Tree management measures are in place for Norther Beaches Council under the provisions of the trees and vegetation preservation for properties covered under Warringah DCP 2011.

- According to the NSW Planning Portal, the site is listed as RE1 Public Recreation.
- The site does not contain, nor does it form part of a heritage item.
- The site is not listed on the Warringah terrestrial biodiversity map.
- The site is not located on the NSW State Biodiversity Values map.

#### 4.8 TREE MANAGEMENT CONTROLS

Northern Beaches Council definition of a prescribed tree is a palm or woody perennial plant with a single or multi stem greater than five (5) metres in height.

Part E1 of Warringah DCP States that:

A person shall not ringbark, cut down, top, lop, remove, poison, injure, or wilfully destroy tree or bushland vegetation that requires a Vegetation Clearing Permit under the provisions of Part 3 of the Vegetation SEPP. This includes damage to a tree or bushland vegetation by:

• Damaging or tearing live branches and roots;



- Damaging the bark, including attachment of objects using invasive fastenings, the fastening of materials around the trunk of trees which may result in a detrimental impact on tree health;
- Tree topping, where large branches and/or the trunk of the tree is removed from the top of the trees canopy;
- Tree lopping, where branches are removed to reduce the height and spread of the tree.
- Damaging the root zone of a tree by way of compaction, including storage and stockpiling materials;
- Changing of ground levels within the root zone of a tree by way of excavation, trenching, filling or stockpiling;
- Underscrubbing of bushland vegetation;
- Burning of vegetation (not part of a Hazard Reduction Certificate); or
- Any other act or activity that causes the destruction of, the severing of trunks or stems of, or any other substantial damage to, some or all of the native vegetation in an area.

A Vegetation Clearing Permit is required for:

- a) Removal or cutting down of any tree over five (5) metres in height;
- b) Pruning of more than ten percent (10%) of a tree canopy.
- c) The removal or cutting down of vegetation in "Bushland".

# 4.8.1 EXEMPTIONS

You can remove trees without a permit in the following circumstances. The tree is:

- Under 5 metres in height
- On the Exempt Tree Species List
- In an area in which the Council has authorised their removal as part of a hazard reduction program, where that removal is necessary in order to manage risk
- Required to be removed under other legislation (including the NSW Rural Fires Act 1997 and the Environmental Planning and Assessment Act 1979)
- Can be removed under the 10/50 Legislation. Some clearing of vegetation is allowed if your property is mapped in the 10/50 entitlement area. Development Application Approval conditions in some circumstances prevent the use of the RFS 10/50 entitlement area from being used.
- Removed by Rural Fire Services because they pose or will pose a significant threat to access along required fire trails or to human life, buildings or other property during a bush fire
- Located within two metres of an existing approved building (not including decks, pergolas, sheds, patios or the like, even if they are attached to a building). The measurement is made from the building to the base of the tree trunk.
- Is considered a high risk/imminent danger certified by a Level 5 qualified arborist. These trees can be removed without Council consent by the owner of the tree subject to the owner obtaining written confirmation from the arborist that clearly states:
  - a) The arborist qualifications: AQF Level 5 Arborist or equivalent
  - b) That the tree(s) is declared an imminent danger and high risk to life and property
  - c) That immediate removal of the tree(s) is recommended
  - d) A copy of the report must be sent to Council for record keeping purpose
- Any tree listed as a priority weed under the Bio Security Act 2015 and identified in the Greater Sydney Regional Weed Management Plan.
- Dead, and not required as the habitat of native animals photographic evidence recommended



- Has fallen or partially fallen as a result of a storm and still present a danger (photos required)
- Part of the pruning or removal of hedges (unless hedge is conditioned to be retained in a development consent). "Hedge" means groups of two or more trees that:
  - (a) are planted (whether in the ground or otherwise) so as to form a hedge, and
  - (b) rise to a height of at least 2.5 metres (above existing ground level).

You can prune trees or clear vegetation in the following circumstances:

- Reasonable pruning of up to 10% of a tree's canopy within 12 calendar months. Pruning must be in accordance with Australian Standards AS 4373 2007
- The removal of deadwood from a tree
- Removal of any species of parasite mistletoe or parasitic plant from any part of a tree
- It meets the criteria of other legislation eg under 10/50 Legislation some clearing of vegetation is allowed if your property is mapped in the 10/50 entitlement area.

## 4.8.2 EXEMPT SPECIES

#### Table 3

| Acacia baileyana<br>(Cootamundra Wattle)                                           | Acacia salicina<br>(Golden wreath wattle) | Ficus species except F.<br>macrophylla, F. rubiginosa, F.<br>coronata | Alnus jorullensis<br>(Evergreen alder)                          |
|------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|
| Araucaria bidwillii Brachychiton acerfolius<br>(Bunya Pine) (Illawarra Flame Tree) |                                           | Cassia spp<br>(Cassia)                                                | Castanospermum australe<br>(Black bean/Moreton Bay<br>Chestnut) |
| <i>Celtis australis</i>                                                            | <i>Cinnamomum camphora</i>                | Citharexylum spinosum                                                 | Cotoneaster species                                             |
| (S-Hackberry)                                                                      | (Camphor Laurel)                          | (Fiddlewood)                                                          | (Red Cotoneaster)                                               |
| Cupaniopsis anacardioides                                                          | Cupressus species                         | Eriobotrya japonica                                                   | Citrus Spp.                                                     |
| (Tuckeroo)                                                                         | (Conifer)                                 | (Loquat)                                                              | (Citrus)                                                        |
| <i>Malus spp.</i><br>(Apple)                                                       | Erythrina spp.<br>(Coral Tree)            | Eucalyptus nicholii<br>(Narrow-Leaved Peppermint)                     | Eucalyptus scoparia<br>(Willow/Wallangarra White<br>Gum)        |
| <i>Fraxinus grifithii</i>                                                          | <i>Gleditsia triacanthos</i>              | <i>Grevillia robusta</i>                                              | Harpophyllum caffrum                                            |
| (Evergreen Ash)                                                                    | (Honey Locust)                            | (Silky Oak)                                                           | (Kaffir Plum)                                                   |
| <i>Jacaranda mimosifolia</i>                                                       | <i>Lagerstroemia indica</i>               | Lagunaria patersonia                                                  | <i>Ligustrum lucidum</i>                                        |
| (Jacaranda)                                                                        | (Crepe Myrtle)                            | (Norfolk Island Hibiscus)                                             | (Broad-leafed Privet)                                           |
| <i>Liquidamber styraciflua</i>                                                     | <i>Nerium oleander</i>                    | <i>Olea spp.</i>                                                      | All Palms except <i>Livistona</i> australis                     |
| (Liquidamber/Sweet Gum)                                                            | (oleander)                                | (Olive)                                                               |                                                                 |
| Pinus spPittosporum undulatum (up<br>to 8m)(Pine species)(Sweet Pittosporum)       |                                           | Populus sp.<br>(Poplar species)                                       | pyracantha angustifolia<br>(Orange fire Thorn)                  |
| Rhaphiolepsis indica                                                               | Robinia pseudoacacia                      | Salix spp.                                                            | Sapium sebiferum                                                |
| (Indian Hawthorn)                                                                  | (False acacia)                            | (Willow)                                                              | (Chinese Tallow Tree)                                           |
| Schefflera actinophylla                                                            | Spathodea campanulata                     | Syagrus romanzoffiana                                                 | <i>Ulmus parvifolia</i>                                         |
| (Qld Umbrella Tree)                                                                | (African Tulip Tree)                      | (Cocos Palm)                                                          | (Chinese Elm)                                                   |


# 4.9 SIGNIFICANCE IN THE ENVIRONMENT.

Trees are subject to the following legislation:

- Biodiversity Conservation Act NSW (BIO Act 2016): Provides provisions for conserving biodiversity.
- The State environmental Planning Policy 'Biodiversity and Conservation' 2021
- Threatened Species Conservation Act NSW (1995 TCS Act): Provides provisions for conserving threatened species, populations and ecological communities of animals and plants as well as managing key threatening processes.
- Environmental Protection and Biodiversity Conservation Act NSW (EPBC Act 1999): Provides provision to protect and manage nationally and internationally important flora, fauna, ecological communities and heritage places.
- Biosecurity Act NSW (BIO Act 2015): Refers to the protection of native plant communities, reducing the risk to human's health and the risk to agricultural production from invasive weeds.
- NSW Bushfire Brigade 10/50 Legislation is not enforced for this site.

# 4.10 VTA

The VTA system is based on the theory of tree biology, physiology and tree architecture and structure. This method is used by Arborists to identify visible signs on trees that indicate good health or potential problems. Symptoms of decay, growth patterns and defects are identified and assessed as to their potential to cause whole tree, part tree or branch failure, this system is based around methods discussed by Claus Mattheck in `The Body Language of Trees' (1994). For the purpose of this report, parts of the VTA system will be used along with other industry standard literature and other relevant studies that provide an insight into potential hazards in trees. This assessment is a snapshot of what could be reasonably seen or determined from a basic visual inspection. The VTA system is generally used as a means to identify hazardous trees, it is important to realize that for a tree to be hazardous there must be a target.

# 4.11 AUSTRALIAN STANDARD AS4970-2009

- The Australian Standard AS4970–2009 Protection of trees on development sites has been used as a benchmark in the preparation of this report and the terminology and impact assessment methodology have been adopted from this document. This AIA complies with 2.3.5 Arboricultural Impact Assessment of AS4970-2009.
- Recommendations have been based on tree Retention Value, Vigour, Condition and ULE. Trees with a
  high Retention Value should be given greater priority for retention than trees with Medium Retention
  Value. Trees with Long (40 years +) ULE should be given greater priority for retention than trees with
  Short (5-15 years) ULE
- ULE Useful Life Expectancy. The length of time from the date of inspection that the Arborist estimates the tree will live and provide a useful positive contribution to the landscape amenity of the site. ULE ratings are Long (retainable for 40 years or more), Medium (retainable for 16-39 years), Short (retainable for 5-15 years) and Removal (tree requiring immediate removal due to imminent risk or absolute unsuitability).



- VIGOUR Good (G), Fair (F) or Poor (P). The general appearance of the canopy/foliage of the tree at the time of inspection. Vigour can vary with the season and rainfall frequency. A tree can have Good vigour but be hazardous due to Poor condition. A tree in Good vigour has the ability to sustain its life processes. Vigour is synonymous with health.
- **CONDITION** Good (G), Fair (F) or Poor (P). The general form and structure of the trunk/s and branching. Trunk lean, trunk/branch structural defects, canopy skewness or other hazard features are considered.
- Tree Protection Zones (TPZ) and Structural Root Zones (SRZ) are as per Section 3 of AS4970-2009 and are defined in the rear of this report. It should be noted that the TPZs and SRZs indicated on the site drawings are notional areas only and do not reflect actual root locations.
- SRZ RADIUS Structural Root Zone. The area around a tree required for tree stability. Earthworks should be prohibited within the SRZ. The area is calculated from the formula and graph at Figure 1 ofAS4970-2009. The SRZ graph has been adapted from the work of Claus Mattheck (1994). DBH + 10% has been used for the calculation of SRZ. Where DBH is measured at grade or at a height other than 1.4m above grade, 10% has not been added.
- **TPZ RADIUS** Tree Protection Zone. Radial offset (m) of twelve times (12x) trunk DBH measured from centre of trunk (for trees less than 0.3 metre DBH minimum TPZ is 2.0 metres). To satisfactorily retain the tree, construction activity (both soil cut and fill) must be restricted within this offset. TPZ offsets are rounded to the nearest 0.1 metre. Existing constraints to root spread can vary. Generally, an area equivalent to the TPZ should be available to the tree post development. Encroachment occupying up to 10% of the TPZ area is acceptable without detailed rootzone assessment. Encroachments greater than 10% require specific arboricultural assessment.
- "Construction" for the purpose of this AIA means excavation (greater than 100mm), compacted fill or machine trenching. "Excavation" includes cut batters, boxing–out for the various pavement types, trenching for utilities and footings for retaining walls.
- Trees within proposed construction footprints are recommended for removal (Rm).
- 3.4.6 Where construction is proposed within Structural Root Zone (SRZ) offsets, those trees have been similarly recommended for removal (Rm). Fully elevated, pier and beam type construction or hand dug services trenches (or horizontal boring) is recommended and an accepted form of construction methodology for this type of structure.
- Trees with greater than 25% of the Tree Protection Zone (TPZ) impacted by construction are generally
  recommended for removal (Rm). There are however different types of construction incursions
  proposed (e.g. fill, cut, services, pavement type, retaining walls) with varying tree impacts likely.
  Existing constraints to root development also vary the notional TPZ. Compacted fill can be equally as
  damaging to tree longevity: root development is restricted within heavily compacted soils.
- Trees to be retained with construction impacting less than 25% of the TPZ area were rated as. Specific construction monitoring will be required for these trees (refer to Recommendations).



- TPZ encroachments of >10% are defined (3.3.3 of AS4970) as 'major'. This does not mean that the tree will be fatally injured, but that 'the project arborist must demonstrate that the tree(s) would remain viable'.
- Where construction is proposed beyond the TPZ, those trees are rated as Retain (R) with no specific tree protection design or tree protection monitoring required.

ABNOBA ARBOR AGF LEVEL 5 ARBORIST|QTRA REGISTERED| ABN:1971602469 LIAM STRACHAN 0426215539 LIAMSTRACHANARB@GMAIL.COM

.

# 5 FINDINGS

# 5.1 SITE CONTROL MAPS

According to the NSW Planning Portal, the site is listed as R3 Medium Density Residential. Please see Figure 1



## Figure 1

The following relevant Government environmental and heritage mapping overlays have been reviewed (SEED – NSW Government 2020).

- According to the NSW Planning Portal, the site is listed as RE1 Public Recreation.
- The site does not contain, nor does it form part of a heritage item.
- The site is not listed on the Warringah terrestrial biodiversity map. Please see Figure 2.



### Figure 2

The site is not located on the NSW State Terrestrial Biodiversity Values map. Please see Figure 3.





# 5.2 THE SITE



### Figure 3

By Site Survey the subject site is best described as being within lands bordered by Kentwell Road, Pittwater Road & the Warringah Golf Club. Trees discussed are located within the subject site, adjacent to the subject site & within the Pittwater Road reserve. Documents provided describe the subject site as the Warringah Recreation Centre.

The site currently contains two stand alone buildings, a series of tennis courts and Astro turf soccer courts with a bitumen carpark at the south eastern corner of the site. Due to the nature of the site, past development means that the project area is flat. A sandstone retaining wall separates the site from the road on the western boundary.

Site soils are likely to deviate from their natural state due to past urban development, however, site soils are classified as 9130wa (Warriewood) swamp soil characterised as:

**Landscape** – level to gently undulating swales, depressions and infilled lagoons on Quaternary sands. Local relief <10 m, slopes <3%. Watertable at <2 m. Mostly cleared of native vegetation.

**Soils** – deep (>150 cm), well sorted, sandy Humus Podzols (Uc2.32) and dark, mottled Siliceous Sands (Uc1.21), overlying buried Acid Peats (O) in depressions; deep (>200 cm) Podzols (Uc2.12, Uc2.32) and pale Siliceous Sands (Uc1.2) on sandy rises.

Limitations - localised flooding and run-on, high watertables, highly permeable soil.

Vegetation is characterised as extensively cleared, sclerophyll scrub and woodland. Remaining native tree species include broad- leaved paperbark *Melaleuca quinquenervia*, coastal banksia *Banksia integrifolia*, swamp oak *Casuarina glauca* and swamp mahogany *Eucalyptus robusta*. Remaining scrub and understorey species include coastal teatree *Leptospermum laevigatum*, spike rushes *Eleocharis spp*., and tall swamp sedge *Gahnia sieberiana*.



Areas to the north and south of the subject site contain areas of the Threatened Ecological Community, Swamp oak Floodplain of the NSW North Coast, Sydney Basin & South east Corner Bioregion, which runs along the banks of Brookvale Creek.

The Narla Environmental 'Flora & Fauna Constraints Assessment Report', dated February 2021, commissioned by the Northern Beaches Council states that "The vegetation within the Subject Site (adjacent Brookvale Creek) conforms to the BC Act (NSW) listed EEC Swamp oak Floodplain of the NSW North Coast, Sydney Basin & South east Corner Bioregions". The Narla document also acknowledges other Acts that may apply to portions of the total Subject Site. Tree species discussed within this document are confirmed to be members of the naturally occurring (original) communities.

# 5.3 SWAMP OAK FLOODPLAIN OF THE NSW NORTH COAST, SYDNEY BASIN & SOUTH EAST CORNER BIOREGION

The Coastal Swamp Oak Forest ecological community is characterised by the dominance of *Casuarina glauca* in the canopy, with an understorey of rushes, sedges, forbs and grasses. Coastal Swamp Oak Forest is typically found on loose or alluvial soil on coastal flats, floodplains, drainage lines, lake margins, wetlands and estuarine fringes where soils are at least occasionally saturated, water-logged or inundated. Sometimes the ecological community can intergrade with mangroves or saltmarsh communities (on the seaward side), or with *Melaleuca* species and eucalypts (more landward).

Remnant patches of Coastal Swamp Oak Forest that retain mature trees and/or with diverse and good native understorey, particularly those that are closely connected with another area of native vegetation have very high conservation value. Like other coastal ecosystems, the ecological community provides an important protective role, by buffering the land from the impacts of seawater incursions and storms.

This community is found on the coastal floodplains of NSW. It has a dense to sparse tree layer in which *Casuarina glauca* (swamp oak) is the dominant species northwards from Bermagui.

Other trees including *Acmena smithii* (lilly pilly), *Glochidion* spp. (cheese trees) and *Melaleuca* spp. (paperbarks) may be present as subordinate species, and are found most frequently in stands of the community northwards from Gosford. Tree diversity decreases with latitude, and *Melaleuca ericifolia* is the only abundant tree in this community south of Bermagui.

The understorey is characterised by frequent occurrences of vines, *Parsonsia straminea, Geitonoplesium cymosum* and *Stephania japonica* var. *discolor*, a sparse cover of shrubs, and a continuous groundcover of forbs, sedges, grasses and leaf litter.

The composition of the ground stratum varies depending on levels of salinity in the groundwater. Under less saline conditions prominent ground layer plants include forbs such *Centella asiatica, Commelina cyanea, Persicaria decipiens* and *Viola banksii*; graminoids such as *Carex appressa, Gahnia clarkei, Lomandra longifolia, Oplismenus imbecillis*; and the fern *Hypolepis muelleri*.

On the fringes of coastal estuaries, where soils are more saline, the ground layer may include the threatened grass species, *Alexfloydia repens*, as well as *Baumea juncea*, *Juncus kraussii*, *Phragmites australis*, *Selliera radicans* and other saltmarsh species.



# 5.4 SUMMARY OF PROPOSED DEVELOPMENT

The proposed development includes the demolition of existing structures and the installation of a new double storey building at the northern end of the subject site as well as extensive realignment of the existing stormwater and wetland area.

# 5.5 SUMMARY OF SITE INSPECTION DATA

Generally, the sites vegetation was observed to have a mixture of exotic and endemic tree canopy. The existing surveyed trees are shown in Appendix 1.

Other vegetation on site does not meet the dimensions for Northern Beaches Council to consider them as trees, trees as defined on Northern Beaches Council website as being over 5 metres in height.

# 5.6 CURRENT TREE POPULATION

A total of 114 trees were assessed in total. Table 4 summarises the origins of the surveyed tree species:

## Table 4

| Species Origin | Number of Trees |
|----------------|-----------------|
| Endemic        | 89              |
| Native         | 13              |
| Exotic         | 10              |
| Noxious Weed   | 2               |
| Total          | 114             |

Table 5 documents the species on site, the amount of each species and the origin of said species.

### Table 5

| Tree Species                            | Species Origin | Tree Numbers                                                                                                                                                                                                                                                                                                                                                       | Total |
|-----------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Casuarina glauca<br>(Swamp-Oak)         | Endemic        | T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17,<br>T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, T28, T29, T30, T31,<br>T32, T33, T54, T55, T56, T57, T58, T59, T72, T73, T74, T75, T76, T77,<br>T78, T79, T80, T81, T82, T83, T84, T85, T86, T87, T88, T89, T90, T91,<br>T92, T93, T94, T95, T96, T97, T98, T99, T100, T101, T112 | 70    |
| Harpophyllum caffrum<br>(Kaffir Plum)   | Exotic         | T34, T36, T37, T41                                                                                                                                                                                                                                                                                                                                                 | 4     |
| Cupressus species<br>(Conifer)          | Exotic         | T35, T40, T66, T67                                                                                                                                                                                                                                                                                                                                                 | 4     |
| Cinnamomum camphora<br>(Camphor Laurel) | Noxious Weed   | T38                                                                                                                                                                                                                                                                                                                                                                | 1     |
| Glochidion ferdinandi<br>(Cheese Tree)  | Endemic        | T39, T106, T107, T108, T111                                                                                                                                                                                                                                                                                                                                        | 5     |
| Eucalyptus robusta<br>(Swamp Mahogany)  | Endemic        | T42, T43, T44, T47, T48, T49                                                                                                                                                                                                                                                                                                                                       | 6     |



| Tree Species                                           | Species Origin | Tree Numbers                                  | Total |
|--------------------------------------------------------|----------------|-----------------------------------------------|-------|
| Syagrus romanzoffiana<br>(Cocos Palm)                  | Exotic         | T45, T114                                     | 2     |
| Angophora costata<br>(Sydney Red Gum)                  | Native         | T46, T52, T53                                 | 3     |
| Pittosporum undulatum<br>(Sweet Pittosporum)           | Native         | Т50                                           | 1     |
| Melaleuca linarifolia<br>(Snow in Summer)              | Native         | T51                                           | 1     |
| Callistemon viminalis<br>(Weeping Bottlebrush)         | Native         | T60, T61, T70, T71                            | 4     |
| Magnolia grandiflora<br>(White magnolia)               | Exotic         | T62                                           | 1     |
| Melaleuca<br>quinquenervia<br>(Broad-Leafed Paperbark) | Endemic        | T63, T102, T103, T104, T105, T109, T110, T113 | 8     |
| Syzygium paniculatum<br>(Magenta Lilly Pilly)          | Native         | T64, T65                                      | 2     |
| Archontophoenix spp.<br>(Alex/Bagalow Palm)            | Native         | T68                                           | 1     |
| Ficus benjimina<br>(Weeping Fig)                       | Native         | T69                                           | 1     |

# 5.7 U.L.E

Useful Life Expectancy (Barrell, 2009). The length of time from the date of inspection that the Arborist estimates the tree will live and provide a useful positive contribution to the landscape amenity of the site. ULE ratings are Long (retainable for 40 years or more), Medium (retainable for 16-39 years), Short (retainable for 5-15 years) and Removal (tree requiring immediate removal due to imminent risk or absolute unsuitability).

# Table 6

| U.L.E               | Number<br>of Trees | Tree Numbers                                                                                                                                                                                                                                                                                                                          |
|---------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 Plus             | 64                 | T2, T3, T9, T10, T13, T18, T20, T25, T28, T32, T33, T35, T37, T38, T42, T45, T48, T49, T52, T58, T59, T60, T62, T63, T65, T68, T72, T73, T74, T75, T76, T77, T78, T79, T80, T81, T82, T83, T84, T85, T86, T87, T88, T89, T90, T91, T92, T93, T94, T95, T96, T97, T98, T99, T100, T101, T103, T104, T105, T109, T110, T111, T113, T114 |
| 15-40yrs            | 40                 | T1, T4, T7, T8, T11, T14, T17, T19, T22, T23, T24, T26, T27, T29, T31, T34, T36, T39, T40, T41, T43, T44, T47, T50, T51, T53, T54, T55, T56, T57, T61, T66, T67, T70, T71, T102, T106, T107, T108, T112                                                                                                                               |
| 5-15yrs             | 7                  | T5, T12, T15, T21, T30, T64, T69                                                                                                                                                                                                                                                                                                      |
| 1-5yrs              | 2                  | T16, T46                                                                                                                                                                                                                                                                                                                              |
| Remove<br>Hazardous | 0                  |                                                                                                                                                                                                                                                                                                                                       |
| Dead                | 1                  | Тб                                                                                                                                                                                                                                                                                                                                    |
| Total               |                    | 114                                                                                                                                                                                                                                                                                                                                   |



# 5.8 LANDSCAPE SIGNIFICANCE

Landscape significance was deemed using IACA Significance of a Tree, Assessment Rating System (STARS). Results are published in the table below.

### Table 7

| Landscape<br>Significance | Number<br>of Trees | Tree Numbers                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High                      | 72                 | T2, T3, T4, T5, T7, T8, T9, T10, T11, T12, T13, T18, T19, T20, T23, T24, T25, T26, T28, T29, T31, T32, T33, T42, T43, T48, T49, T54, T55, T56, T57, T58, T59, T63, T65, T72, T73, T74, T75, T76, T77, T78, T79, T80, T81, T82, T83, T84, T85, T86, T87, T88, T89, T90, T91, T92, T93, T94, T95, T96, T97, T98, T99, T100, T101, T102, T103, T104, T105, T109, T110, T113 |
| Medium                    | 20                 | T14, T17, T22, T27, T39, T44, T47, T51, T52, T53, T60, T61, T64, T68, T70, T71, T106,<br>T107, T108, T111                                                                                                                                                                                                                                                                |
| Low                       | 8                  | T1, T15, T16, T21, T30, T46, T62, T112                                                                                                                                                                                                                                                                                                                                   |
| Exempt                    | 12                 | T6, T34, T35, T36, T37, T40, T41, T50, T66, T67, T69, T114                                                                                                                                                                                                                                                                                                               |
| Environmental<br>Weed     | 2                  | T38, T45                                                                                                                                                                                                                                                                                                                                                                 |
| Total                     |                    | 114                                                                                                                                                                                                                                                                                                                                                                      |

IACA 2010, IACA Significance of a Tree, Assessment Rating System (STARS), Institute of Australian Consulting Arborculturists, Australia, www.iaca.org.au Appendix 2.

# 5.9 RETENTION VALUES

Retention values were recorded using IACA Significance of a Tree, Assessment Rating System (STARS). Results are published in the table below.

### Table 8

| Retention Value | Number<br>of Trees | Tree Numbers                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very High       | 0                  |                                                                                                                                                                                                                                                                                                                                                                      |
| High            | 71                 | T2, T3, T4, T7, T8, T9, T10, T11, T12, T13, T18, T19, T20, T23, T24, T25, T26, T28, T29, T31, T32, T33, T42, T43, T48, T49, T54, T55, T56, T57, T58, T59, T63, T65, T72, T73, T74, T75, T76, T77, T78, T79, T80, T81, T82, T83, T84, T85, T86, T87, T88, T89, T90, T91, T92, T93, T94, T95, T96, T97, T98, T99, T100, T101, T102, T103, T104, T105, T109, T110, T113 |
| Medium          | 22                 | T1, T14, T17, T22, T27, T39, T44, T47, T51, T52, T53, T60, T61, T62, T68, T70, T71, T106,<br>T107, T108, T111, T112                                                                                                                                                                                                                                                  |
| Low             | 7                  | T5, T15, T16, T21, T30, T46, T64                                                                                                                                                                                                                                                                                                                                     |
| Exempt          | 14                 | T6, T34, T35, T36, T37, T38, T40, T41, T45, T50, T66, T67, T69, T114                                                                                                                                                                                                                                                                                                 |
| Total           |                    | 114                                                                                                                                                                                                                                                                                                                                                                  |

IACA 2010, IACA Significance of a Tree, Assessment Rating System (STARS), Institute of Australian Consulting Arborculturists, Australia, www.iaca.org.au Appendix 2.



# 6 PROPOSED DEVELOPMENT IMPACT

Tree Protection Zones (TPZ's) and Structural Root Zones (SRZ's) are defined as per Section 3 of Australian Standard AS4970-2009 Protection of Trees on Development Sites. It should be noted that TPZ's and SRZ's are notional areas only and do not reflect actual root locations. All TPZ's and SRZ's are marked on plans located at the rear of this document. At this time no exploratory root investigation has been undertaken, it may be recommended based on the findings within this report.

# 6.1 TREES UNNAFFECTED BY PROPOSED DEVELOPMENT

Table 9

| Generic Tree Protection<br>Measures | TPZ Fencing                                                                         | TPZ Fencing                            | TPZ Fencing                           | TPZ Fencing                                    | TPZ Fencing                            | TPZ Fencing                                                                                                | TPZ Fencing                                  | TPZ Fencing                               | TPZ Fencing                                 | TPZ Fencing                           |
|-------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------|
| Notes                               |                                                                                     |                                        |                                       |                                                |                                        |                                                                                                            |                                              |                                           |                                             |                                       |
| Observations and Defects            | Deadwood Moderate (30-100mm) , Dieback (isolated) ,<br>Previous Failures (isolated) | Deadwood Minor (0-30mm)                |                                       | Deadwood Moderate (30-100mm) , Dieback (major) | Suppressed                             | Deadwood Moderate (30-100mm) , Dieback (isolated) ,<br>Epicormic Shoots (minor) , Included Bark (branches) | Co-Dominant Stems                            | Co-Dominant Stems (included bark)         | Co-Dominant Stems , Deadwood Minor (0-30mm) | Deadwood Minor (0-30mm)               |
| Retention Value<br>(STARS)          | High                                                                                | Medium                                 | Exempt                                | Low                                            | Medium                                 | High                                                                                                       | Exempt                                       | Medium                                    | Medium                                      | Medium                                |
| TPZ Radius<br>(M)                   | 11                                                                                  | 2.2                                    | 2.6                                   | 2.6                                            | 2.0                                    | 3.7                                                                                                        | 2.2                                          | 2.6                                       | 4.3                                         | 2.3                                   |
| Tree Species                        | Eucalyptus robusta<br>(Swamp Mahogany)                                              | Eucalyptus robusta<br>(Swamp Mahogany) | Syagrus romanzoffiana<br>(Cocos Palm) | Angophora costata<br>(Sydney Red Gum)          | Eucalyptus robusta<br>(Swamp Mahogany) | Eucalyptus robusta<br>(Swamp Mahogany)                                                                     | Pittosporum undulatum<br>(Sweet Pittosporum) | Melaleuca linarifolia<br>(Snow in Summer) | Angophora costata<br>(Sydney Red Gum)       | Angophora costata<br>(Sydney Red Gum) |
| l D                                 | Т43                                                                                 | T44                                    | T45                                   | T46                                            | T47                                    | T49                                                                                                        | T50                                          | T51                                       | T52                                         | T53                                   |



| -                                   |                                                                                            |                                                |                                                                 |                                             |                                 |                                                             |                                                                            |                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |
|-------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|---------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Generic Tree Protection<br>Measures | TPZ Fencing                                                                                | TPZ Fencing                                    | TPZ Fencing                                                     | TPZ Fencing                                 | TPZ Fencing                     | TPZ Fencing                                                 | TPZ Fencing                                                                | TPZ Fencing                                    | TPZ Fencing                                                                                    | TPZ Fencing                                                                                    | TPZ Fencing                                                                                    | TPZ Fencing                                                                                    | TPZ Fencing                                                                                    |
| Notes                               |                                                                                            |                                                |                                                                 |                                             |                                 |                                                             |                                                                            |                                                | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen |
| Observations and Defects            | Deadwood Minor (0-30mm) , Included Bark (branches) ,<br>Weak Branch Attachments (isolated) | Co-Dominant Stems (included bark) , Suppressed | Co-Dominant Stems (included bark) , Deadwood Minor (0-<br>30mm) | Co-Dominant Stems , Deadwood Minor (0-30mm) | Deadwood Minor (0-30mm)         | Co-Dominant Stems , Deadwood Minor (0-30mm) ,<br>Suppressed | Co-Dominant Stems (included bark) , Included Bark<br>(natural for species) | Poor Pruning (powerlines)                      |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |
| Retention Value<br>(STARS)          | High                                                                                       | High                                           | High                                                            | High                                        | High                            | High                                                        | Medium                                                                     | Medium                                         | High                                                                                           | High                                                                                           | High                                                                                           | High                                                                                           | High                                                                                           |
| TPZ Radius<br>(M)                   | 2.8                                                                                        | 2.0                                            | 5.5                                                             | 3.1                                         | 3.8                             | 3.7                                                         | 4.3                                                                        | 5.3                                            | 4.1                                                                                            | 3.4                                                                                            | 2.4                                                                                            | 3.0                                                                                            | 3.0                                                                                            |
| Tree Species                        | Casuarina glauca<br>(Swamp-Oak)                                                            | Casuarina glauca<br>(Swamp-Oak)                | Casuarina glauca<br>(Swamp-Oak)                                 | Casuarina glauca<br>(Swamp-Oak)             | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak)                             | Callistemon viminalis<br>(Weeping Bottlebrush)                             | Callistemon viminalis<br>(Weeping Bottlebrush) | Casuarina glauca<br>(Swamp-Oak)                                                                |
| Tree                                | T54                                                                                        | T55                                            | T56                                                             | T57                                         | T58                             | T59                                                         | T70                                                                        | T71                                            | Т72                                                                                            | Т73                                                                                            | Т74                                                                                            | T75                                                                                            | T76                                                                                            |

ABNOBA ARBOR AF LEVEL 5 ARDORSTIGTAR REGISTERED ABN: 1971 002469 LIAM STRACHAN 0426215539 LIAMSTRACHANARB6GMAIL.COM

|   | Tree Species                    | TPZ Radius<br>(M) | Retention Value<br>(STARS) | Observations and Defects | Notes                                                                                          | Generic Tree Protection<br>Measures |
|---|---------------------------------|-------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|
| L | Casuarina glauca<br>(Swamp-Oak) | 4.3               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 2.4               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 3.8               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 3.6               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 3.0               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 3.0               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 3.0               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 3.0               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 3.0               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 3.0               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   | Casuarina glauca<br>(Swamp-Oak) | 5.6               | High                       |                          | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | TPZ Fencing                         |
|   |                                 |                   |                            |                          |                                                                                                |                                     |

ABNOBA ARBOR AF LEVEL 5 ARBORISTIGTRA REGISTERED ABNI 1971 802469 LIAM STRACHAN 0426215539 LIAMSTRACHANARB6GMALL.COM

| Generic Tree Protection<br>Measures | TPZ Fencing                                                                                    |
|-------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Notes                               | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen |
| Observations and Defects            |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |                                                                                                |
| Retention Value<br>(STARS)          | High                                                                                           |
| TPZ Radius<br>(M)                   | 4'J                                                                                            | 3.0                                                                                            | 3.0                                                                                            | 3.4                                                                                            | 4.3                                                                                            | 3.0                                                                                            | 3.0                                                                                            | 3.8                                                                                            | 4.9                                                                                            | 3.0                                                                                            | 3.5                                                                                            |
| Tree Species                        | Casuarina glauca<br>(Swamp-Oak)                                                                |
| Tree<br>ID                          | T88                                                                                            | T89                                                                                            | Т90                                                                                            | Т91                                                                                            | Т92                                                                                            | Т93                                                                                            | Т94                                                                                            | T95                                                                                            | Т96                                                                                            | Т98                                                                                            | T99                                                                                            |

ABNOBA ARBOR AF LEVEL 5 ARBORISTICATA REGISTERED ABN: 1971002469 LIAM STRACHAN 042215539 LIAMSTRACHANARB6GMAIL.COM

| Generic Tree Protection<br>Measures | TPZ Fencing                                                                                    | TPZ Fencing                                                    | TPZ Fencing                                                    | TPZ Fencing                                                       | TPZ Fencing                                                                                                                         | TPZ Fencing                            | TPZ Fencing                       |
|-------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|
| Notes                               | Stand of trees with integrated root system,<br>roots noted growing through existing<br>bitumen | Root spread likely constrained due to sandstone retaining wall | Root spread likely constrained due to sandstone retaining wall | Root spread likely constrained due to<br>sandstone retaining wall | Root spread likely constrained due to<br>sandstone retaining wall                                                                   |                                        |                                   |
| Observations and Defects            |                                                                                                | Co-Dominant Stems                                              | Co-Dominant Stems (included bark)                              | Co-Dominant Stems (included bark) , Deadwood Minor (0-<br>30mm)   | Co-Dominant Stems (included bark) , Crossing Rubbing<br>Branches , Deadwood Minor (0-30mm) , Included Bark<br>(natural for species) | Co-Dominant Stems                      | Co-Dominant Stems (included bark) |
| Retention Value<br>(STARS)          | High                                                                                           | Medium                                                         | Medium                                                         | Medium                                                            | High                                                                                                                                | Medium                                 | Medium                            |
| TPZ Radius<br>(M)                   | 3.6                                                                                            | 4.1                                                            | 5.5                                                            | 4.1                                                               | 8.0                                                                                                                                 | 4.8                                    | 2.0                               |
| Tree Species                        | Casuarina glauca<br>(Swamp-Oak)                                                                | Glochidion ferdinandi<br>(Cheese Tree)                         | Glochidion ferdinandi<br>(Cheese Tree)                         | Glochidion ferdinandi<br>(Cheese Tree)                            | Melaleuca quinquenervia<br>(Broad-Leafed Paperbark)                                                                                 | Glochidion ferdinandi<br>(Cheese Tree) | Casuarina glauca<br>(Swamp-Oak)   |
| Tree                                | T100                                                                                           | T106                                                           | T107                                                           | T108                                                              | T110                                                                                                                                | T111                                   | T112                              |

# 6.2 TREES WITH MINOR INCURSIONS

When the extent of TPZ incursion is deemed minor as per AS4970 Protection of Trees on Development Sites i.e., less than 10%, excavation may be undertaken using traditional methods. Excavation for Benching and Shoring must be considered.

# Table 10

| Tree<br>ID | Tree Species          | TPZ<br>Radius<br>(M) | Retention<br>Value (STARS) | Observations and Defects                                                                                | Notes | TPZ Enc. % | Encroachment Type                                         | Generic Tree<br>Protection<br>Measures |
|------------|-----------------------|----------------------|----------------------------|---------------------------------------------------------------------------------------------------------|-------|------------|-----------------------------------------------------------|----------------------------------------|
| Т48        | Eucalyptus<br>robusta | 4.3                  | High                       | Co-Dominant Stems , Deadwood Minor (0-30mm)<br>, Dieback (isolated) , Over Extended Limbs<br>(isolated) |       | 1.25%      | TPZ extends on to the subject site, encroachment marginal | TPZ Fencing                            |



| ŗ |                                        |                     |                                                                            |                                                                                              |                                                                                                |                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                              |
|---|----------------------------------------|---------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Generic Tree<br>Protection<br>Measures |                     | TPZ Fencing                                                                | TPZ Fencing                                                                                  | TPZ Fencing                                                                                    | TPZ Fencing                                                                                    | TPZ Fencing                                                                                                                                                                  | TPZ Fencing                                                                                                                                                                                  |
|   | Encroachment Type                      |                     | TPZ extend onto subject site,<br>minor encroachment                        | TPZ extend onto subject site,<br>minor encroachment                                          | New carpark                                                                                    | New carpark                                                                                    | New carpark                                                                                                                                                                  | New carpark                                                                                                                                                                                  |
|   | TPZ Enc. %                             |                     | 8.47%                                                                      | 6.52%                                                                                        | 3.45%                                                                                          | 5.88%                                                                                          | 7.88%                                                                                                                                                                        | 6.95%                                                                                                                                                                                        |
|   | Notes                                  |                     |                                                                            |                                                                                              | Stand of trees with integrated root<br>system, roots noted growing through<br>existing bitumen | Stand of trees with integrated root<br>system, roots noted growing through<br>existing bitumen |                                                                                                                                                                              |                                                                                                                                                                                              |
|   | Observations and Defects               |                     | Co-Dominant Stems (included bark) , Included<br>Bark (natural for species) | Co-Dominant Stems (included bark) , Dieback<br>(minor) , Included Bark (natural for species) |                                                                                                |                                                                                                | Co-Dominant Stems (included bark) , Crossing<br>Rubbing Branches , Deadwood Minor (0-30mm) ,<br>Dieback (isolated) , Included Bark (natural for<br>species) , Wounds (minor) | Co-Dominant Stems (included bark) , Crossing<br>Rubbing Branches , Deadwood Minor (0-30mm) ,<br>Dieback (isolated) , Included Bark (natural for<br>species) , Root Scalping , Wounds (minor) |
|   | Retention<br>Value (STARS)             |                     | Medium                                                                     | Medium                                                                                       | High                                                                                           | High                                                                                           | High                                                                                                                                                                         | High                                                                                                                                                                                         |
|   | TPZ<br>Radius<br>(M)                   |                     | 4.8                                                                        | 4.6                                                                                          | 5.5                                                                                            | 7.2                                                                                            | 10.6                                                                                                                                                                         | 10.7                                                                                                                                                                                         |
|   | Tree Species                           | (Swamp<br>Mahogany) | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush)                       | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush)                                         | Casuarina glauca<br>(Swamp-Oak)                                                                | Casuarina glauca<br>(Swamp-Oak)                                                                | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                    | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                                    |
| ſ | Tree<br>ID                             |                     | Т60                                                                        | T61                                                                                          | 797                                                                                            | T101                                                                                           | T103                                                                                                                                                                         | T104                                                                                                                                                                                         |



# 6.3 TREES WITH MAJOR INCURSIONS

# Table 11

|                                         | e<br>(see<br>y<br>7.4.<br>Dark<br>dat<br>he                                                                                                                                                                                                                                                                                                                                                   | e<br>(see<br>n to<br>v                                                                                                                                                                         | 7.4.<br>bark<br>d at<br>le                                                                                                                                                                                                     | 7.4.<br>Jark<br>ne<br>one                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ific Tree Protection Measures           | ree sensitive construction for the<br>ouild at grade with no excavation (\$<br>2), or project arborist supervision 1<br>I roots are cut cleanly and employ<br>tion plan for remainder of TPZ to<br>eplacement root growth. Section 7<br>ion should be limited to the car pa<br>atural ground should be retained a<br>n side of the car park between the<br>car parking area and Pittwater Rd. | ree sensitive construction for the<br>build at grade with no excavation (s<br>2), or project arborist supervision 1<br>I roots are cut cleanly and employ<br>tion plan for remainder of TP7 to | epidement root growth. Section 7<br>epidement root growth. Section 7<br>ion should be limited to the car pa<br>latural ground should be retained is<br>'n side of the car park between the<br>d parking area and Pittwater Rd. | epidement root growth. Section 7<br>epidement root growth. Section 7<br>ion should be limited to the car pa<br>atural ground should be retained a<br>in side of the car park between the<br>d parking area and Pittwater Rd.<br>ocated on Pittwater Rd. which is<br>rom the subject site via a sandstor<br>ning wall. No foreseen impact. |
| c<br>on<br>es                           | Employ tr<br>Employ tr<br>carpark i.e. bu<br>section 7.2.2<br>ensure all<br>remediati<br>Any excavati<br>area only, na<br>the easterr<br>proposec                                                                                                                                                                                                                                             | Employ tr<br>carpark i.e. bu<br>section 7.2.2<br>ensure all                                                                                                                                    | remediati<br>encourage re<br>Any excavati<br>area only, ne<br>the eastern<br>proposec                                                                                                                                          | remediati<br>encourage rei<br>Any excavation<br>area only, ne<br>the easterr<br>proposec<br>Tree is lo<br>separated fri<br>retaini                                                                                                                                                                                                        |
| Generic<br>Tree<br>Protectic<br>Measure | Measure<br>TPZ<br>Fencing                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                | TPZ<br>Fencing                                                                                                                                                                                                                 | TPZ<br>Fencing<br>TPZ<br>Fencing                                                                                                                                                                                                                                                                                                          |
| Retain/<br>Remove                       | Retain                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | Retain                                                                                                                                                                                                                         | Retain<br>Retain                                                                                                                                                                                                                                                                                                                          |
| Encroachment<br>Type                    | New carpark                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                | New carpark                                                                                                                                                                                                                    | New carpark<br>New carpark<br>and access road                                                                                                                                                                                                                                                                                             |
| TPZ<br>Encroachment<br>%                | 12.72%                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | 10.57%                                                                                                                                                                                                                         | 10.57%                                                                                                                                                                                                                                                                                                                                    |
| Notes                                   | Tree species<br>renowned for<br>having expansive<br>root system, root<br>concentration<br>maybe higher in<br>the carpark due to<br>the curbstone on<br>the pittwater Rd.<br>side of the tree                                                                                                                                                                                                  |                                                                                                                                                                                                |                                                                                                                                                                                                                                | Root spread likely<br>constrained due to<br>sandstone<br>retaining wall                                                                                                                                                                                                                                                                   |
| Observations and Defects                | Cavity (minor) , Co-Dominant Stems<br>(included bark) , Deadwood Minor (0-<br>30mm) , Decay , Dieback (isolated) ,<br>Included Bark (natural for species)                                                                                                                                                                                                                                     | Co-Dominant Stems (included bark) ,<br>Crossing Rubbing Branches ,<br>Deadwood Minor (0-30mm) , Dieback                                                                                        | (isolated) , Included Bark (natural for<br>species) , Over Extended Limbs<br>(isolated) , Root Scalping , Weak<br>Branch Attachments (isolated) ,<br>Wounds (minor)                                                            | (isolated) , Included Bark (natural for<br>species) , Over Extended Limbs<br>(isolated) , Root Scalping , Weak<br>Branch Attachments (isolated) ,<br>Wounds (minor)<br>Co-Dominant Stems (included bark) ,<br>Deadwood Moderate (30-100mm) ,<br>Dieback (isolated) , Included Bark<br>(natural for species)                               |
| Retention<br>Value<br>(STARS)           | High                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                | High                                                                                                                                                                                                                           | High<br>High                                                                                                                                                                                                                                                                                                                              |
| TPZ<br>Radius<br>(M)                    | 11.9                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                | 12.0                                                                                                                                                                                                                           | 12.0                                                                                                                                                                                                                                                                                                                                      |
| Tree Species                            | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                                                                                                                                                                                                                                     | Melaleuca                                                                                                                                                                                      | quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                                                                                   | quinquenervia<br>(Broad-Leafed<br>Paperbark)<br>Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                                                                                                                                 |
| Tree<br>ID                              | T102                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                              | r105                                                                                                                                                                                                                           | r105                                                                                                                                                                                                                                                                                                                                      |

ABNOBA ARBOR AF LEVEL 5 ARBORISTICATA REGISTERED ABN/1971602469 LIAM STRACHAN 0426215539 LIAMSTRACHANARB06MAILCOM

| Specific Tree Protection Measures         |                                                           |
|-------------------------------------------|-----------------------------------------------------------|
| Generic<br>Tree<br>Protection<br>Measures |                                                           |
| Retain/<br>Remove                         |                                                           |
| Encroachment<br>Type                      |                                                           |
| TPZ<br>Encroachment<br>%                  |                                                           |
| Notes                                     |                                                           |
| Observations and Defects                  | (natural for species) , Over Extended<br>Limbs (isolated) |
| Retention<br>Value<br>(STARS)             |                                                           |
| TPZ<br>Radius<br>(M)                      |                                                           |
| Tree Species                              |                                                           |
| Tree<br>ID                                |                                                           |

# 6.4 TREES TO BE REMOVED

# Table 12

| Tree<br>ID | Tree Species                    | Retention Value<br>(STARS) | Observations and Defects                                                                                                                                                                                            | Notes | Encroachment Type                     |  |
|------------|---------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|--|
| T1         | Casuarina glauca<br>(Swamp-Oak) | Medium                     | Cavity (minor) , Co-Dominant Stems , Deadwood<br>Moderate (30-100mm) , Decay , Weak Branch<br>Attachments (isolated) , Wounds (moderate)                                                                            |       | Realigned stormwater and wetland area |  |
| Т2         | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems , Deadwood Moderate (30-<br>100mm) , Included Bark (natural for species) ,<br>Included Union (insignificant)                                                                                      |       | Realigned stormwater and wetland area |  |
| Т3         | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems , Co-Dominant Stems<br>(included bark) , Crossing Rubbing Branches ,<br>Deadwood Moderate (30-100mm)                                                                                              |       | Realigned stormwater and wetland area |  |
| Т4         | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems , Crossing Rubbing Branches ,<br>Deadwood Moderate (30-100mm) , Dieback<br>(isolated)                                                                                                             |       | Realigned stormwater and wetland area |  |
| T5         | Casuarina glauca<br>(Swamp-Oak) | Low                        | Co-Dominant Stems (included bark) , Crown<br>Density (40-60%) , Deadwood Moderate (30-<br>100mm) , Dieback (moderate) , Included Bark<br>(branches) , Included Union (poor) , Weak Branch<br>Attachments (isolated) |       | Realigned stormwater and wetland area |  |
| Т6         | Casuarina glauca<br>(Swamp-Oak) | Exempt                     | Dead tree                                                                                                                                                                                                           |       | Realigned stormwater and wetland area |  |
|            |                                 |                            |                                                                                                                                                                                                                     |       |                                       |  |



| Tree<br>ID | Tree Species                    | Retention Value<br>(STARS) | Observations and Defects                                                                                                                                                                                                  | Notes | Encroachment Type                     |
|------------|---------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|
| 11         | Casuarina glauca<br>(Swamp-Oak) | High                       | Crown Density (60-80%) , Deadwood Moderate<br>(30-100mm)                                                                                                                                                                  |       | Realigned stormwater and wetland area |
| Т8         | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems , Crown Density (60-80%) ,<br>Deadwood Moderate (30-100mm) , Dieback<br>(isolated)                                                                                                                      |       | Realigned stormwater and wetland area |
| Т9         | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Crossing<br>Rubbing Branches , Deadwood Moderate (30-<br>100mm) , Dieback (isolated) , Included Bark<br>(branches) , Over Extended Limbs (isolated) ,<br>Previous Failures (isolated) |       | Realigned stormwater and wetland area |
| T10        | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Deadwood<br>Moderate (30-100mm) , Included Bark (branches) ,<br>Included Union (insignificant) , Over Extended<br>Limbs (isolated) , Phototropism (moderate) ,<br>Wounds (minor)      |       | Bulk Earthworks for new clubhouse     |
| T11        | Casuarina glauca<br>(Swamp-Oak) | High                       | Crown Density (60-80%) , Deadwood Moderate<br>(30-100mm)                                                                                                                                                                  |       | Bulk Earthworks for new clubhouse     |
| T12        | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Crown<br>Density (60-80%) , Deadwood Minor (0-30mm) ,<br>Suppressed                                                                                                                   |       | Bulk Earthworks for new clubhouse     |
| Т13        | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Crown<br>Density (60-80%) , Deadwood Moderate (30-<br>100mm) , Dieback (isolated) , Included Union<br>(moderate) , Mechanical Damage , Over Extended<br>Limbs (isolated)              |       | Bulk Earthworks for new clubhouse     |
| Т14        | Casuarina glauca<br>(Swamp-Oak) | Medium                     | Crown Density (40-60%) , Deadwood Moderate<br>(30-100mm) , Dieback (isolated) , Suppressed                                                                                                                                |       | Bulk Earthworks for new clubhouse     |
| T15        | Casuarina glauca<br>(Swamp-Oak) | Low                        | Co-Dominant Stems (included bark) , Crown<br>Density (60-80%) , Dieback (moderate) , Included<br>Union (moderate) , Suppressed                                                                                            |       | Bulk Earthworks for new clubhouse     |
| T16        | Casuarina glauca<br>(Swamp-Oak) | Low                        | Co-Dominant Stems (included bark) , Crown<br>Density (40-60%) , Deadwood Major (>100mm) ,                                                                                                                                 |       | Bulk Earthworks for new clubhouse     |



| ĺ    |                                 |                            |                                                                                                                                                                                                                |       |                                   |
|------|---------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|
| Tree | Tree Species                    | Retention Value<br>(STARS) | Observations and Defects                                                                                                                                                                                       | Notes | Encroachment Type                 |
|      |                                 |                            | Dieback (major) , Included Union (poor) ,<br>Suppressed , Weak Branch Attachments (systemic)                                                                                                                   |       |                                   |
| T17  | Casuarina glauca<br>(Swamp-Oak) | Medium                     | Deadwood Moderate (30-100mm) , Suppressed                                                                                                                                                                      |       | Bulk Earthworks for new clubhouse |
| T18  | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Crossing<br>Rubbing Branches , Deadwood Moderate (30-<br>100mm) , Dieback (isolated)                                                                                       |       | Bulk Earthworks for new clubhouse |
| T19  | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Crown<br>Density (60-80%) , Deadwood Moderate (30-<br>100mm) , Suppressed                                                                                                  |       | Bulk Earthworks for new clubhouse |
| T20  | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Deadwood<br>Moderate (30-100mm) , Dieback (isolated) ,<br>Included Union (insignificant)                                                                                   |       | Bulk Earthworks for new clubhouse |
| T21  | Casuarina glauca<br>(Swamp-Oak) | Low                        | Co-Dominant Stems (included bark) , Crown<br>Density (40-60%) , Deadwood Moderate (30-<br>100mm) , Dieback (moderate) , Included Union<br>(moderate) , Suppressed , Wounds (moderate)                          |       | Bulk Earthworks for new clubhouse |
| T22  | Casuarina glauca<br>(Swamp-Oak) | Medium                     | Co-Dominant Stems , Deadwood Moderate (30-<br>100mm) , Suppressed                                                                                                                                              |       | Bulk Earthworks for new clubhouse |
| T23  | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Crown<br>Density (40-60%) , Deadwood Moderate (30-<br>100mm) , Dieback (isolated) , Included Union<br>(insignificant) , Suppressed , Weak Branch<br>Attachments (isolated) |       | Bulk Earthworks for new clubhouse |
| T24  | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Deadwood<br>Moderate (30-100mm) , Dieback (isolated) ,<br>Suppressed                                                                                                       |       | Bulk Earthworks for new clubhouse |
| T25  | Casuarina glauca<br>(Swamp-Oak) | High                       | Co-Dominant Stems (included bark) , Deadwood<br>Moderate (30-100mm) , Dieback (isolated) ,<br>Included Union (insignificant) , Mechanical<br>Damage , Over Extended Limbs (isolated) ,<br>Wounds (minor)       |       | Bulk Earthworks for new clubhouse |

ABNOBA ARBOR AF LEVEL 5 ARBORISTIOTTA REGISTERED ABN: 1971002469 LIAM STRACHAN 0426215539 LIAMSTRACHANARBGGMAIL.COM



| ~                                |
|----------------------------------|
| _                                |
| -                                |
| 5                                |
| Ω.                               |
| <u> </u>                         |
| >                                |
| _                                |
| _                                |
| <u> </u>                         |
| <u> </u>                         |
| 5                                |
| 0                                |
| <u> </u>                         |
| $\leq$                           |
|                                  |
|                                  |
| 0                                |
| $\sim$                           |
|                                  |
| <u> </u>                         |
| -                                |
| Ψ                                |
| ÷-                               |
| J<br>J                           |
| 5                                |
| 5                                |
| ÷                                |
| Ŧ                                |
|                                  |
|                                  |
|                                  |
| $\sim$                           |
| 10                               |
| (1)                              |
| 4                                |
| ~                                |
|                                  |
|                                  |
| -                                |
| ц,                               |
| ent                              |
| ent                              |
| nent                             |
| ment                             |
| sment                            |
| ssment                           |
| ssment                           |
| essment                          |
| sessment                         |
| ssessment                        |
| Assessment                       |
| Assessment                       |
| : Assessment                     |
| t Assessment                     |
| ct Assessment                    |
| act Assessment                   |
| oact Assessment                  |
| pact Assessment                  |
| npact Assessment                 |
| mpact Assessment                 |
| Impact Assessment                |
| l Impact Assessment              |
| al Impact Assessment             |
| al Impact Assessment             |
| Iral Impact Assessment           |
| ural Impact Assessment           |
| tural Impact Assessment          |
| Itural Impact Assessment         |
| ultural Impact Assessment        |
| cultural Impact Assessment       |
| icultural Impact Assessment      |
| ricultural Impact Assessment     |
| oricultural Impact Assessment    |
| oricultural Impact Assessment    |
| boricultural Impact Assessment   |
| rboricultural Impact Assessment  |
| Arboricultural Impact Assessment |
| Arboricultural Impact Assessment |

| Tree<br>ID | Tree Species                                        | Retention Value<br>(STARS) | Observations and Defects                                                                                                                                                                                                                            | Notes | Encroachment Type                                                                                                                  |
|------------|-----------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| T35        | Cupressus species<br>(Conifer)                      | Exempt                     | Co-Dominant Stems (included bark) , Crossing<br>Rubbing Branches , Deadwood Minor (0-30mm)                                                                                                                                                          |       | Exempt species, tree is earmarked for removal<br>on demolition plan, presumably for upgrades<br>to the stormwater and wetland area |
| T36        | Harpophyllum caffrum<br>(Kaffir Plum)               | Exempt                     | Co-Dominant Stems                                                                                                                                                                                                                                   |       | Exempt species, tree is earmarked for removal<br>on demolition plan, presumably for upgrades<br>to the stormwater and wetland area |
| T37        | Harpophyllum caffrum<br>(Kaffir Plum)               | Exempt                     | Co-Dominant Stems (included bark) , Deadwood<br>Minor (0-30mm) , Epicormic Shoots (minor) ,<br>Included Bark (branches) , Over Extended Limbs<br>(isolated) , Previous Failures (isolated) , Weak<br>Branch Attachments (isolated) , Wounds (minor) |       | Exempt species, tree is earmarked for removal<br>on demolition plan, presumably for upgrades<br>to the stormwater and wetland area |
| T38        | Cinnamomum camphora<br>(Camphor Laurel)             | Exempt                     | Co-Dominant Stems (included bark) , Crossing<br>Rubbing Branches , Epicormic Shoots (moderate)                                                                                                                                                      |       | tree is earmarked for removal on demolition<br>plan, presumably for upgrades to the<br>stormwater and wetland area                 |
| T39        | Glochidion ferdinandi<br>(Cheese Tree)              | Medium                     | Deadwood Minor (0-30mm) , Included Bark<br>(branches)                                                                                                                                                                                               |       | Exempt species, tree is earmarked for removal<br>on demolition plan, presumably for upgrades<br>to the stormwater and wetland area |
| T40        | Cupressus species<br>(Conifer)                      | Exempt                     | Co-Dominant Stems                                                                                                                                                                                                                                   |       | Exempt species, tree is earmarked for removal<br>on demolition plan, presumably for upgrades<br>to the stormwater and wetland area |
| T41        | Harpophyllum caffrum<br>(Kaffir Plum)               | Exempt                     | Co-Dominant Stems (included bark)                                                                                                                                                                                                                   |       | Exempt species, tree is earmarked for removal<br>on demolition plan, presumably for upgrades<br>to the stormwater and wetland area |
| Т42        | Eucalyptus robusta<br>(Swamp Mahogany)              | High                       | Deadwood Moderate (30-100mm) , Dieback<br>(isolated) , Epicormic Shoots (minor)                                                                                                                                                                     |       | TPZ Fencing                                                                                                                        |
| Т62        | Magnolia grandiflora<br>(White magnolia)            | Medium                     | Co-Dominant Stems                                                                                                                                                                                                                                   |       | New tennis courts                                                                                                                  |
| Т63        | Melaleuca quinquenervia<br>(Broad-Leafed Paperbark) | High                       | Co-Dominant Stems , Deadwood Moderate (30-<br>100mm) , Dieback (isolated)                                                                                                                                                                           |       | New tennis courts                                                                                                                  |
| Т64        | Syzygium paniculatum<br>(Magenta Lilly Pilly)       | Low                        | Co-Dominant Stems (included bark) , Suppressed                                                                                                                                                                                                      |       | New tennis courts                                                                                                                  |
| T65        | Syzygium paniculatum<br>(Magenta Lilly Pilly)       | High                       | Co-Dominant Stems , Deadwood Minor (0-30mm) ,<br>Dieback (isolated)                                                                                                                                                                                 |       | New tennis courts                                                                                                                  |

ABNOBA ARBOR AF LEVEL 5 ARBORISTIQATA REGISTERED ABN/1971 602469 LIAM STRACHAN 042215539 LIAMSTRACHANARB66MALLCOM

| Tree<br>ID | Tree Species                                | Retention Value<br>(STARS) | Observations and Defects          | Notes                     | Encroachment Type |
|------------|---------------------------------------------|----------------------------|-----------------------------------|---------------------------|-------------------|
| Т66        | Cupressus species<br>(Conifer)              | Exempt                     | Co-Dominant Stems (included bark) |                           | New tennis courts |
| Т67        | Cupressus species<br>(Conifer)              | Exempt                     | Co-Dominant Stems                 |                           | New tennis courts |
| T68        | Archontophoenix spp.<br>(Alex/Bagalow Palm) | Medium                     |                                   | Group of 4 clumping palms | New tennis courts |
| Т69        | Ficus benjimina<br>(Weeping Fig)            | Exempt                     | Co-Dominant Stems (included bark) |                           | New tennis courts |
| T114       | Syagrus romanzoffiana<br>(Cocos Palm)       | Exempt                     |                                   |                           | New Tennis courts |



# 7 TREE SENSITIVE DESIGN

Tree sensitive design is site responsive design - designing in harmony with the existing conditions of the site, including the trees. Considerations include the condition, location, size /age and relative construction tolerances of the subject trees. How the project will be constructed, site access and equipment manoeuvring should also be considered during design, to ensure the design can be delivered without existing trees being compromised.

Tree sensitive design may be employed to gain further acceptable encroachments to the TPZ. Structures that require little or no excavation are considered tree sensitive design. Consideration should be given to tree sensitive measures such as pier and beam, suspended slabs, cantilevered building sections, screw piles and contiguous piling.

In order for trees to remain viable buildings could be raised on piers above ground level. When soil or any type of fill is placed over the existing root system, it causes a reduction in the oxygen supply to the tree roots and slows down the rate of gas exchange between the roots and the air in the soil pore space. Both oxygen and water are essential to the growth, development and nutrient uptake by the roots. Many of the soil organisms also utilize the water and oxygen in their normal growth processes. Lack of oxygen in the soil may result in accumulation of noxious gases and chemicals detrimental to good growth. When this occurs, the feeder roots fail to develop, the root system and the above-ground portion of the tree begin to decline. Many factors (including tree species, depth and type of fill, drainage, soil structure below the fill and the general vigour of the existing tree) have a determining influence upon the time it takes for the above-ground symptoms to appear. Thus, it might take anywhere from several months to as much as 3 to 5 years before tree death would occur.

# 7.1 FOOTINGS

Consideration should be given to tree sensitive measures such as pier and beam, suspended slabs, cantilevered building sections, screw piles and contiguous piling.

Tree sensitive design may be employed to gain further acceptable encroachments to the TPZ. Structures that require little or no excavation are considered tree sensitive design.

Isolated pier locations should be assessed for roots prior to piling. When placing piers in the TPZ, the first 800mm should be undertaken by hand digging only. Care should be taken not to damage roots 50mm and over. Pier holes should be flexible in design and be placed in such a manner that significant roots are bridged rather than severed.

Loss of permeable surfaces will be taken into consideration.

# 7.2 LANDSCAPING WITHIN THE TPZ

# 7.2.1 FENCES AND WALLS

If a new fence is to be installed within the TPZ of trees to be retained must be constructed with suspended sections 100mm clear above or beside any structural woody root or further as required, or any new wall to be built only to the depth of that existing. Structural woody roots to be further protected by utilising the construction techniques of pier or bridge footings, or screw piles between or over them with a minimum clearance above or beside of 100mm, or further as required to allow for future and ongoing growth.



When placing piers in the TPZ, the first 800mm should be undertaken by hand digging only. Care should be taken not to damage roots 50mm and over. Pier holes should be flexible in design and be placed in such a manner that significant roots are bridged rather than severed. Root investigation should be conducted using non-destructive techniques.

Techniques include:

- Hand excavation
- Vacuum excavation
- High pressure water jet excavation
- Air Spade

All excavation should be undertaken or supervised by an AQF Level 5 Arborist.

# 7.2.2 HARDSTAND SURFACES

A hardstand surface may be constructed at ground level without any excavation, by first killing with herbicide the plants to be removed from the pathway area, and then removing that plant material by cutting the trunks of woody shrubs to ground level and by raking all other plant material to expose the top soil surface without organic matter. This will remove the need for physically disturbing the soil and the roots of the tree.

If a hardstand surface is to be constructed near a protected tree, careful excavation is to be undertaken manually by using non-motorized hand tools to determine the location of first order and lower order structural roots with a diameter of 20mm or greater, without damaging them Where a driveway or footpath is to pass by the tree a suspended slab is to be constructed or approved similar, to protect the roots that may be encountered at, near, or above ground, and may be constructed on structural soil. Where such a driveway or footpath is to be constructed the edge of the structure closest to the tree is to terminate no closer than 0.5m from the outside edge of the trunk, or further depending on the species and its likely further growth to allow for future development and expansion of the trunk, buttresses, and first order and lower order roots as may be advised by a Consultant Arboriculturist.

# 7.2.3 LEVEL CHANGES

Soil level changes are outlined as non-permissible in AS4970–2009. The soils on the site are classified as shallow which will make lowering the soil levels within the TPZ virtually impossible. Upon the site inspection I noted many large roots protruding from the soil.

Making the soil levels higher is an easier task if done correctly and can have little impact on tree vitality. Raising the grade or soil level over existing roots can have an even greater effect on the future growth and survival of existing trees. When soil or any type of fill is placed over the existing root system, it causes a reduction in the oxygen supply to the tree roots and slows down the rate of gas exchange between the roots and the air in the soil pore space.

Both oxygen and water are essential to the growth, development and nutrient uptake by the roots. Many of the soil organisms also utilize the water and oxygen in their normal growth processes. Lack of oxygen in the soil may result in accumulation of noxious gases and chemicals detrimental to good growth. When this occurs, the feeder roots fail to develop, the root system and the above-ground portion of the tree begin to decline. Many factors (including tree species, depth and type of fill, drainage, soil structure below the fill and the general vigour of the existing tree) have a determining influence upon the time it takes for the above-ground



symptoms to appear. Thus, it might take anywhere from several months to as much as 3 to 5 years before tree death would occur.

In order for the root conditions to remain favourable all vegetation should be removed, including sod and underbrush beneath the branch spread of the tree. Organic matter, as it decomposes beneath a soil fill, can create noxious gases detrimental to the tree roots. The top 3 to 6 inches of the soil surface should be cultivated or broken up carefully so as to disturb the least possible number of roots. This treatment allows better contact with the fill soil and prevents a sharp line of demarcation between the existing soil surface and the fill and where internal soil drainage is good. The fill should consist of large aggregate or sandy soil so that aeriation and drainage is achieved and then the organic layer on top.

Such amendments may even improve the root conditions as breaking up the topsoil would alleviate the surface compaction and improve oxygen flow and water infiltration. Adding more porous topsoil would also aid in preventing future compaction and would also protect the exposed roots from damage.

If the fill is no more than 600mm, and internal soil drainage is good. Starting at the outer extremities of the branches, apply from 75 to 150mm of coarse gravel or crushed stone. The depth towards the trunk of the tree should be increased gradually until it is 200 to 300mm or deeper within 2 feet of the trunk. The gravel can reach the surface of the fill in the area extending 600mm around the trunk of the tree (see Figure 3). The gravel can be covered with a thin layer of straw, woven plastic or other porous material to keep soil from filtering into the coarse gravel and sealing the air spaces. Some good topsoil should be spread over the area to the desired depth.

# 7.3 SERVICES

All underground services should be placed outside the TPZs of the retained trees. When routing services outside the TPZ becomes unavoidable, trenching must be undertaken using tree sensitive excavation.

Techniques include:

- Hand excavation
- Vacuum excavation
- High pressure water jet excavation
- Air Spade
- Horizontal Directional Drilling (Entry and exit pits must be located outside of the TPZ)

All excavation should be undertaken or supervised by an AQF Level 5 Arborist.

# 7.4 SOIL REMEDIATION FOLLOWING ROOT PRUNING

"When intentionally cutting roots, it is important to make clean cuts, perpendicular to the line of the root. Clean cuts offer a smaller surface for drying and compartmentalize better. Roots that are torn by large grading equipment can develop cracks that run laterally along the root, increasing the extent of damage. When grading near trees, always prune the roots in advance." (Urban 2008)

It is also recommended that a remediation plan is put in place to compensate for the root loss, in the form of vertical mulching and soil inoculation to stimulate new root growth.

Vertical mulching, a method that is known to invigorate root growth and improve tree vigour. Using air excavation tools, 150-230 mm deep holes with a 150mm diameter, should be created and then filled with composted mulch. Mulch details to be outlined in 6.4 Recommended Materials. The effects of vertical



mulching are greatly enhanced when combined with surface mulching. (Urban, 2008). The holes should be spaced approximately 750mm apart in a grid formation and should be done to a radius of one to one and a half times the dripline. Please refer to Figure 11. Air spade works should be carried out when soil is of adequate field capacity and not in too dry or saturated conditions. Vertical mulching should be undertaken using an organic soil blend of 80% double washed sand 20% natural washed soil, mixed with worm casting. Worm castings make soil more absorbent; they can remove toxins from soil and introduce beneficial microbes and bacteria into the soil including phosphorous and nitrogen. They can also increase CEC.



Following the root pruning, the soil should also be inoculated with products such as Nutri-life TrichoShield. Tricoshield is a talc-based formulation containing the beneficial fungal species *Trichoderma harzianum*, *Trichoderma lignorum* and *Gliocladium virens*, and the plant growth promoting, bio-balancing bacteria Bacillus subtilis. Trichoderma is also a root growth promoter.

*Trichoderma spp.* are proposed as major plant growth-promoting fungi that widely exist in the natural environment. These strains have the abilities of rapid growth and reproduction and efficient transformation of soil nutrients. Moreover, they can change the plant rhizosphere soil environment and promote plant growth. (Halifu, Deng, Song, & Song, 2019)



# 8 CONCLUSIONS AND RECOMMENDATIONS

Table 13 summarises the number of trees to be removed and their assigned retention values.

# Table 13

| Retention Value | Total |
|-----------------|-------|
| Very High       | 0     |
| High            | 25    |
| Medium          | 8     |
| Low             | 6     |
| Exempt          | 12    |
| Total           | 51    |

Given the environmental mapping and the Narla document dated February 2021, the following table details the trees being removed and their origin. A total of 36 trees endemic to the EEC Swamp oak Floodplain of the NSW North Coast, Sydney Basin & South east Corner Bioregions have been recommended for removal due to development impacts.

### Table 14

| Species Origin | Number of<br>Trees | Tree Numbers                                                                                                                                                              |
|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Endemic        | 36                 | T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, T28, T29, T30, T31, T32, T33, T39, T42, T63 |
| Native         | 4                  | T64, T65, T68, T69                                                                                                                                                        |
| Exotic         | 10                 | T34, T35, T36, T37, T40, T41, T62, T66, T67, T114                                                                                                                         |
| Noxious Weed   | 1                  | Т38                                                                                                                                                                       |
| Total          |                    | 51                                                                                                                                                                        |

The following trees suffer development impacts that are not able to be mitigated and will require to be removed and replaced.

### Table 15

| Tree ID | Tree Species                    | Retention Value (STARS) |
|---------|---------------------------------|-------------------------|
| T1      | Casuarina glauca<br>(Swamp-Oak) | Medium                  |
| T2      | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т3      | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т4      | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т5      | Casuarina glauca<br>(Swamp-Oak) | Low                     |



| Tree ID | Tree Species                    | Retention Value (STARS) |
|---------|---------------------------------|-------------------------|
| Т6      | Casuarina glauca<br>(Swamp-Oak) | Exempt                  |
| Т7      | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т8      | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т9      | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т10     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T11     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T12     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T13     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T14     | Casuarina glauca<br>(Swamp-Oak) | Medium                  |
| T15     | Casuarina glauca<br>(Swamp-Oak) | Low                     |
| T16     | Casuarina glauca<br>(Swamp-Oak) | Low                     |
| T17     | Casuarina glauca<br>(Swamp-Oak) | Medium                  |
| T18     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T19     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т20     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T21     | Casuarina glauca<br>(Swamp-Oak) | Low                     |
| T22     | Casuarina glauca<br>(Swamp-Oak) | Medium                  |
| Т23     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т24     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T25     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T26     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| T27     | Casuarina glauca<br>(Swamp-Oak) | Medium                  |
| T28     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т29     | Casuarina glauca<br>(Swamp-Oak) | High                    |
| Т30     | Casuarina glauca<br>(Swamp-Oak) | Low                     |



| Tree ID | Tree Species                                        | Retention Value (STARS) |
|---------|-----------------------------------------------------|-------------------------|
| Т31     | Casuarina glauca<br>(Swamp-Oak)                     | High                    |
| Т32     | Casuarina glauca<br>(Swamp-Oak)                     | High                    |
| Т33     | Casuarina glauca<br>(Swamp-Oak)                     | High                    |
| Т34     | Harpophyllum caffrum<br>(Kaffir Plum)               | Exempt                  |
| Т35     | Cupressus species<br>(Conifer)                      | Exempt                  |
| Т36     | Harpophyllum caffrum<br>(Kaffir Plum)               | Exempt                  |
| Т37     | Harpophyllum caffrum<br>(Kaffir Plum)               | Exempt                  |
| Т38     | Cinnamomum camphora<br>(Camphor Laurel)             | Exempt                  |
| Т39     | Glochidion ferdinandi<br>(Cheese Tree)              | Medium                  |
| T40     | Cupressus species<br>(Conifer)                      | Exempt                  |
| T41     | Harpophyllum caffrum<br>(Kaffir Plum)               | Exempt                  |
| T42     | Eucalyptus robusta<br>(Swamp Mahogany)              | High                    |
| T62     | Magnolia grandiflora<br>(White magnolia)            | Medium                  |
| Т63     | Melaleuca quinquenervia<br>(Broad-Leafed Paperbark) | High                    |
| T64     | Syzygium paniculatum<br>(Magenta Lilly Pilly)       | Low                     |
| T65     | Syzygium paniculatum<br>(Magenta Lilly Pilly)       | High                    |
| Т66     | Cupressus species<br>(Conifer)                      | Exempt                  |
| Т67     | Cupressus species<br>(Conifer)                      | Exempt                  |
| Т68     | Archontophoenix spp.<br>(Alex/Bagalow Palm)         | Medium                  |
| Т69     | Ficus benjimina<br>(Weeping Fig)                    | Exempt                  |
| T114    | Syagrus romanzoffiana<br>(Cocos Palm)               | Exempt                  |



The following trees may be retained and subject to the following tree protection measures;

# Table 16

| Tree<br>ID | Tree Species                                       | TPZ<br>Radius<br>(M) | SRZ<br>Radius<br>(M) | Retention<br>Value<br>(STARS) | Generic Tree<br>Protection<br>Measures | Specific Tree Protection Measures |
|------------|----------------------------------------------------|----------------------|----------------------|-------------------------------|----------------------------------------|-----------------------------------|
| T43        | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)       | 4.4                  | 2.3                  | High                          | TPZ Fencing                            |                                   |
| T44        | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)       | 2.2                  | 1.8                  | Medium                        | TPZ Fencing                            |                                   |
| T45        | Syagrus<br>romanzoffiana<br>(Cocos Palm)           | 2.6                  | 1.9                  | Exempt                        | TPZ Fencing                            |                                   |
| T46        | Angophora<br>costata<br>(Sydney Red<br>Gum)        | 2.6                  | 2.0                  | Low                           | TPZ Fencing                            |                                   |
| T47        | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)       | 2.0                  | 1.8                  | Medium                        | TPZ Fencing                            |                                   |
| T48        | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)       | 4.3                  | 2.3                  | High                          | TPZ Fencing                            |                                   |
| T49        | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)       | 3.7                  | 2.2                  | High                          | TPZ Fencing                            |                                   |
| Т50        | Pittosporum<br>undulatum<br>(Sweet<br>Pittosporum) | 2.2                  | 1.6                  | Exempt                        | TPZ Fencing                            |                                   |
| T51        | Melaleuca<br>linarifolia<br>(Snow in<br>Summer)    | 2.6                  | 1.9                  | Medium                        | TPZ Fencing                            |                                   |
| T52        | Angophora<br>costata<br>(Sydney Red<br>Gum)        | 4.3                  | 2.3                  | Medium                        | TPZ Fencing                            |                                   |
| Т53        | Angophora<br>costata<br>(Sydney Red<br>Gum)        | 2.3                  | 1.8                  | Medium                        | TPZ Fencing                            |                                   |
| Т54        | Casuarina<br>glauca<br>(Swamp-Oak)                 | 2.8                  | 1.9                  | High                          | TPZ Fencing                            |                                   |
| T55        | Casuarina<br>glauca<br>(Swamp-Oak)                 | 2.0                  | 1.8                  | High                          | TPZ Fencing                            |                                   |



| Tree<br>ID | Tree Species                                         | TPZ<br>Radius<br>(M) | SRZ<br>Radius<br>(M) | Retention<br>Value<br>(STARS) | Generic Tree<br>Protection<br>Measures | Specific Tree Protection Measures |
|------------|------------------------------------------------------|----------------------|----------------------|-------------------------------|----------------------------------------|-----------------------------------|
| Т56        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 5.5                  | 2.1                  | High                          | TPZ Fencing                            |                                   |
| T57        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 3.1                  | 2.1                  | High                          | TPZ Fencing                            |                                   |
| Т58        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 3.8                  | 2.3                  | High                          | TPZ Fencing                            |                                   |
| Т59        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 3.7                  | 2.2                  | High                          | TPZ Fencing                            |                                   |
| Т60        | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush) | 4.8                  | 2.3                  | Medium                        | TPZ Fencing                            |                                   |
| T61        | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush) | 4.6                  | 2.2                  | Medium                        | TPZ Fencing                            |                                   |
| т70        | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush) | 4.3                  | 2.3                  | Medium                        | TPZ Fencing                            |                                   |
| T71        | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush) | 5.3                  | 2.4                  | Medium                        | TPZ Fencing                            |                                   |
| Т72        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 4.1                  | 2.3                  | High                          | TPZ Fencing                            |                                   |
| Т73        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 3.4                  | 2.2                  | High                          | TPZ Fencing                            |                                   |
| Т74        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 2.4                  | 2.3                  | High                          | TPZ Fencing                            |                                   |
| T75        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т76        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т77        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 4.3                  | 2.3                  | High                          | TPZ Fencing                            |                                   |
| Т78        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 2.4                  | 1.9                  | High                          | TPZ Fencing                            |                                   |
| Т79        | Casuarina<br>glauca<br>(Swamp-Oak)                   | 3.8                  | 2.3                  | High                          | TPZ Fencing                            |                                   |



| Tree<br>ID | Tree Species                       | TPZ<br>Radius<br>(M) | SRZ<br>Radius<br>(M) | Retention<br>Value<br>(STARS) | Generic Tree<br>Protection<br>Measures | Specific Tree Protection Measures |
|------------|------------------------------------|----------------------|----------------------|-------------------------------|----------------------------------------|-----------------------------------|
| т80        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.6                  | 2.1                  | High                          | TPZ Fencing                            |                                   |
| T81        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т82        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т83        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т84        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| T85        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т86        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т87        | Casuarina<br>glauca<br>(Swamp-Oak) | 5.6                  | 2.4                  | High                          | TPZ Fencing                            |                                   |
| Т88        | Casuarina<br>glauca<br>(Swamp-Oak) | 4.1                  | 2.3                  | High                          | TPZ Fencing                            |                                   |
| Т89        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т90        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т91        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.4                  | 2.1                  | High                          | TPZ Fencing                            |                                   |
| Т92        | Casuarina<br>glauca<br>(Swamp-Oak) | 4.3                  | 2.2                  | High                          | TPZ Fencing                            |                                   |
| т93        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т94        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                   |
| Т95        | Casuarina<br>glauca<br>(Swamp-Oak) | 3.8                  | 2.3                  | High                          | TPZ Fencing                            |                                   |
| Т96        | Casuarina<br>glauca<br>(Swamp-Oak) | 4.9                  | 2.4                  | High                          | TPZ Fencing                            |                                   |



| Tree<br>ID | Tree Species                                              | TPZ<br>Radius<br>(M) | SRZ<br>Radius<br>(M) | Retention<br>Value<br>(STARS) | Generic Tree<br>Protection<br>Measures | Specific Tree Protection Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|-----------------------------------------------------------|----------------------|----------------------|-------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Т97        | Casuarina<br>glauca<br>(Swamp-Oak)                        | 5.5                  | 2.5                  | High                          | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Т98        | Casuarina<br>glauca<br>(Swamp-Oak)                        | 3.0                  | 2.0                  | High                          | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Т99        | Casuarina<br>glauca<br>(Swamp-Oak)                        | 3.5                  | 2.1                  | High                          | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| т100       | Casuarina<br>glauca<br>(Swamp-Oak)                        | 3.6                  | 2.1                  | High                          | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T101       | Casuarina<br>glauca<br>(Swamp-Oak)                        | 7.2                  | 2.8                  | High                          | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T102       | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | 11.9                 | 3.5                  | High                          | TPZ Fencing                            | Employ tree sensitive construction for the carpark i.e.<br>build at grade with no excavation (see section 7.2.2),<br>or project arborist supervision to ensure all roots are<br>cut cleanly and employ remediation plan for<br>remainder of TPZ to encourage replacement root<br>growth. Section 7.4. Any excavation should be limited<br>to the car park area only, natural ground should be<br>retained at the eastern side of the car park between<br>the proposed parking area and Pittwater Rd. |
| Т103       | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | 10.6                 | 3.3                  | High                          | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T104       | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | 10.7                 | 3.3                  | High                          | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T105       | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | 12.0                 | 3.3                  | High                          | TPZ Fencing                            | Employ tree sensitive construction for the carpark i.e.<br>build at grade with no excavation (see section 7.2.2),<br>or project arborist supervision to ensure all roots are<br>cut cleanly and employ remediation plan for<br>remainder of TPZ to encourage replacement root<br>growth. Section 7.4. Any excavation should be limited<br>to the car park area only, natural ground should be<br>retained at the eastern side of the car park between<br>the proposed parking area and Pittwater Rd. |
| T106       | Glochidion<br>ferdinandi<br>(Cheese Tree)                 | 4.1                  | 2.3                  | Medium                        | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T107       | Glochidion<br>ferdinandi<br>(Cheese Tree)                 | 5.5                  | 2.6                  | Medium                        | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T108       | Glochidion<br>ferdinandi<br>(Cheese Tree)                 | 4.1                  | 2.4                  | Medium                        | TPZ Fencing                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T109       | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | 14.8                 | 3.8                  | High                          | TPZ Fencing                            | Tree is located on Pittwater Rd. which is separated from the subject site via a sandstone retaining wall.<br>No foreseen impact.                                                                                                                                                                                                                                                                                                                                                                     |



| Tree<br>ID | Tree Species                                              | TPZ<br>Radius<br>(M) | SRZ<br>Radius<br>(M) | Retention<br>Value<br>(STARS) | Generic Tree<br>Protection<br>Measures | Specific Tree Protection Measures                                                                                                |
|------------|-----------------------------------------------------------|----------------------|----------------------|-------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| T110       | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | 8.0                  | 3.0                  | High                          | TPZ Fencing                            |                                                                                                                                  |
| T111       | Glochidion<br>ferdinandi<br>(Cheese Tree)                 | 4.8                  | 2.6                  | Medium                        | TPZ Fencing                            |                                                                                                                                  |
| T112       | Casuarina<br>glauca<br>(Swamp-Oak)                        | 2.0                  | 1.6                  | Medium                        | TPZ Fencing                            |                                                                                                                                  |
| ⊤113       | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | 10.7                 | 3.7                  | High                          | TPZ Fencing                            | Tree is located on Pittwater Rd. which is separated from the subject site via a sandstone retaining wall.<br>No foreseen impact. |

Two trees (T105 and T109) suffer major encroachments of more than 10% but less than 15%. Recommendations have been made pertaining to the trees longevity. It is recommended that tree sensitive design is employed in regard to installation of the new car park (see section 7.2.2). Failing that a project arborist should be employed to supervise the excavation and undertake correct root pruning and soil remediation should be undertaken to encourage new root growth (see section 7.4). Any excavation should be limited to the car park area only, natural ground should be retained at the eastern side of the car park between the proposed parking area and Pittwater Rd.

It is important to stress as this stage that the tree protection requirements and project consulting arborist instructions are to be strictly adhered to at all times, due to the fine tolerances and potential catastrophic impacts if not adhered to by the project consulting arborists instructions.

Failure to comply will result in not obtaining final sign off/practical completion, and upon a discovery of failure to comply, it is recommended the certifier be immediately notified.

It is therefore the responsibility of the builder/foreman to ensure no breaches into the TPZ exclusion zones occur by anyone on site / any contractor / sub-contractor.

# 9 TREE PROTECTION MEASURES

# 9.1 FENCING

It will not be practical or possible to erect a TPZ fence encompassing the entire TPZ as access will be required to perform the works, however, an exclusion zone should be erected around the tree to limit activities that take place within the TPZ. *AS4970-2009 Protection of Trees on Development sites* states that the following activities are prohibited within the TPZs;

- Storage.
- Preparation of chemicals, including preparation of cement products.
- Refueling.
- Dumping of waste.
- Washing down and cleaning of equipment.



AS 4687 specifies applicable fencing requirements, 1.8M Mesh fence. Shade cloth or similar should be attached to reduce the transport of dust, other particulate matter and liquids into the protected area.

Fencing must

- be 1.8m high fully supported chainmesh protective fencing. The fencing shall be secure and fastened to prevent movement. The fencing shall have a lockable opening for access. Roots greater than 40mm in diameter shall not be pruned, damaged or destroyed during the installation or maintenance of the fencing. The fencing shall not be moved, altered or removed without the approval of the Project Arborist;
- have a minimum of two signs that include the words "Tree Protection Zone Keep Out". Each sign shall be a minimum size of 600mm x 500mm and the name and contact details of the Project Arborist. Signs shall be attached facing outwards in prominent positions at 10 metre intervals or closer where the fence changes direction. The signs shall be visible within the site;
- be kept free of weeds and, except where the existing surface is grass, grass. Weeds shall be removed by hand; and
- unless the existing surface is grass, have mulch installed and maintained to a depth of 75mm.

Fencing should be installed before any machinery or materials are brought onto the site and before the commencement of works including demolition. Once erected, protective fencing must not be removed or altered without approval by the project arborist. Fencing must be clearly signed and adhere to the standard as outlined in *AS4970-2009 Protection of Trees on Development Sites*.

# 9.2 TRUNK PROTECTION

Trunk protection as outlined in *Australian Standard AS4970-2009 Protection of Trees on Development Sites* should be installed. This should be installed by or signed off by an AQF Level 5 arborist.

Trunk protection is achieved when the vertical trunk of exposed trees is protected by the placement of 1.8m lengths of 50 x 100mm hardwood timbers, spaced vertically, at 150mm centres and secured by 2mm wire at 300mm wide spacing over suitable protective padding material e.g. Jute Matting. The trunk protection shall be maintained intact until the completion of all work on site. Additionally, smaller fences can be erected around the trunks to avoid damage.

Trunk protection should be installed before any machinery or materials are brought onto the site and before the commencement of works including demolition. Once erected, trunk protection should be certified by the project arborist and adhere to the standard as outlined in *AS4970-2009 Protection of Trees on Development Sites*.

# 9.3 GROUND PROTECTION

It is also recommended that the trees are mulched within the TPZ's. Section 4.6 of Australian Standard AS4970-2009 Protection of Trees on Development Sites states that the area within the TPZ should be mulched. The mulch must be maintained to a depth of 50–100 mm using material that complies with AS 4454. Mulch should be applied at no greater depth than 50-75 mm. Mulch should be spread beyond the dripline (Shigo, 1991). The mulch should be no closer than 200mm away from the base of the trunk as this can cause collar rot and increase the incidence of disease.

This will also allow for a favourable root environment for the trees possibly improving tree health throughout the development period. Benefits of mulching include:



- Conservation of soil moisture.
- Soil erosion and runoff are reduced, slowing water movement and keeping water in contact with soil.
- Soil fertility is increased by nutrients from mulch.
- Soil microorganism activity is enhanced.
- Protects surface soil from compactive forces, such as vehicles, people and rain impact.

The mulch should be suitably coarse and broken down to ensure a Carbon: Nitrogen ratio of no more than 25:1 or less and should be no less than 75mm and no more than 100mm in depth. It is important to choose the correct mulch for improving soil fertility. The mulches must have high C:N ratios. Mulches with low C:N ratios may develop nitrogen deficiency (Carlson, 2001) Mulching should be arranged by a project arborist.

Soil moisture levels should be regularly monitored by the project arborist. "Benefits of mulch to the soil environment and ultimately plant health and growth are accrued both immediately after application as the mulch protects the soil surface, and over time as the organic mulch decomposes. Immediate benefits include conserving soil moisture, reducing salt build up in the surface soil, reducing soil erosion and water runoff, protection from compactive forces, insulating the soil from temperature extremes, reducing reflection and reradiation of heat, and suppressing weed growth. Benefits that accrue over time from the use of organic mulches involve improvements to soil structure, permeability, aeration, fertility, and biological activity. Improved aeration, temperature, and moisture conditions near the surface encourage rooting and other biological activities that enhance soil structure. Just the absence of cultivation and the low amount of compaction will allow soil structure to improve through wetting and drying cycles and biological activity. Improved soil structure increases the infiltration rate and allows more uniform water distribution and less soil erosion, all of which favour plant growth." (Harris, Clark & Matheny, 2004)

If access for machinery is required within the TPZ ground protection measures will be required. The purpose of ground protection is to prevent root damage and soil compaction within the TPZ.

Although heavy machinery is not permitted within the TPZ, access is permitted when additional ground protection measures are employed in accordance with *AS4970-2009 Protection of Trees on Development sites* specifically section 4.5.3 Ground Protection . A permeable geotextile membrane should be laid over the required area beneath a layer of coarse mulch and then covered with rumble boards. The boards should be placed on their flat edge, side by side with a 30-50mm gap to form a rumble strip. The boards are to be held together with a metal bracing straps.

# 9.4 TREE SENSITIVE METHODOLOGY

# 9.4.1 PRUNING RETAINED TREES

Trees that require pruning in order to facilitate the new build should be directed by an AQF Level 5 project arborist and undertaken by a minimum AQF Level 3 arborist adhering to *AS4373-2007* and NSW Workcover Code of Practice *Amenity Tree Industry 1998* and Safe Work *Guide to Managing Risks of Tree Trimming and Removal Work 2016*.

# 9.4.2 EXCAVATION WITHIN THE TPZ

When the extent of TPZ incursion is deemed minor as per AS4970 Protection of Trees on Development Sites i.e., less than 10%, excavation may be undertaken using traditional methods. Excavation for Benching and Shoring must be considered.


When the encroachment is deemed to be major i.e., greater than 10% of the TPZ of trees to be retained; exploratory root investigation using non-destructive root sensitive techniques should be undertaken at the perimeter of the required penetration point nearest the tree, bearing in mind compensation for benching and battering.

Techniques include:

- Hand excavation
- Vacuum excavation
- High pressure water jet excavation
- Air Spade

The exploratory root investigation should be undertaken at the outer limits of the of the penetration point to a maximum of 700mm or when compacted sub-soil or rock bed is encountered. Roots greater than 50mm in diameter should be retained and advice from a project arborist sought.

Any roots less than 50mm in diameter that will require pruning should be undertaken by a suitably qualified arborist using sharp tools to ensure clean cuts. "When intentionally cutting roots, it is important to make clean cuts, perpendicular to the line of the root. Clean cuts offer a smaller surface for drying and compartmentalize better. Roots that are torn by large grading equipment can develop cracks that run laterally along the root, increasing the extent of damage. When grading near trees, always prune the roots in advance." (Urban 2008)

## 9.4.3 TPZ COMPENSATION

TPZ area lost to incursions should be compensated for elsewhere on the site and contiguous to the TPZ.



## 9.4.4 INSTALLATION OF SERVICES WITHIN TPZ

All underground services should be placed outside the TPZs of the retained trees. When routing services outside the TPZ becomes unavoidable, trenching must be undertaken using tree sensitive excavation.

Techniques include:

- Hand excavation
- Vacuum excavation
- High pressure water jet excavation
- Air Spade
- Horizontal Directional Drilling (Entry and exit pits must be located outside of the TPZ)

All excavation should be undertaken or supervised by an AQF Level 5 Arborist.



## 9.4.5 PIER PLACEMENT WITHIN TPZ

When placing piers in the TPZ, the first 800mm should be undertaken by hand digging only. Care should be taken not to damage roots 50mm and over. Pier holes should be flexible in design and be placed in such a manner that significant roots are bridged rather than severed.

## 9.4.6 DEMOLITION OF HARDSTAND AREAS WITHIN TPZ

Demolition of hardstand areas within the TPZ's of trees may be undertaken using machinery but must be done so with care. Demolition should commence at the outer most point of the hard stand area nearest the tree working backwards away from the tree, with the machinery remaining on hard stand surfaces.

Where hard stand surfaces aren't available for machinery ground protection will be required.

This should be done under the supervision of a project arborist.

Once the hardstand surface has been demolished, ground protection as per AS4970 should be installed to limit the incidence of compaction and soil contamination.

## 9.4.7 LANDSCAPING WITHIN THE TPZ

Any landscaping works that require excavation within the TPZ should be done so using the methods outlined in 7.1.4.

Any pier holes for retaining walls should be done so by hand prior to piling.

Any excavation within the SRZ of trees should be done so under the direct supervision of a project arborist.

## 9.4.8 FILL WITHIN THE TPZ

Fill placed in the TPZ of trees to be retained shall be well-drained material equivalent or finer in texture than the existing site topsoil material and should comply with AS4419:2003 (Soils for Landscaping and Garden Use).

In order for the root conditions to remain favourable all vegetation should be removed, including sod and underbrush beneath the branch spread of the tree. Organic matter, as it decomposes beneath a soil fill, can create noxious gases detrimental to the tree roots. The top 75 to 150 mm of the soil surface should be cultivated or broken up carefully using non-motorized hand tools only, so as to disturb the least possible number of roots. This treatment allows better contact with the fill soil and prevents a sharp line of demarcation between the existing soil surface and the fill and where internal soil drainage is good. The fill should consist of large aggregate or sandy soil so that aeriation and drainage is achieved and then the organic layer on top.



## 9.5 HOLD POINTS, INSPECTION AND CERTIFICATION

To ensure all plans are implemented hold points have been specified in a schedule of works (below). Once each stage is reached the work will be inspected and certified by the project arborist and the next stage may commence.

## 9.5.1 SCHEDULE OF WORKS AND RESPONSIBILITIES

| ted   |
|-------|
| nent. |
|       |
|       |
| ancy  |
| ne    |



## **10 WORKS CITED**

Carlson, C. (2001). Mulch, Part 1: Too Much of a Good Thing Can Be Bad. Arborist News.

- IACA. (2010). www.iaca.org.au. Retrieved August 13, 2018
- Mattheck, C., Bethge, K., & K.Weber. (2015). *The Body Language of Trees, Encyclopedia of Visual Tree Assessment.* Karlsruhe: Karlsruhe Institute of Technology.
- Shigo, A. L. (1991). Modern Arboriculture. Snohomish: Shigo and Trees, Associates LLC.
- Urban, J. 2008. *Up By Roots: Healthy Soils and Trees in the Built Environment.* International Society of Arboriculture. Illinois.
- Barrell, J. 2009. *SULE: Its use and status into the new millennium.* Barrell Tree Consultancy. Hampshire, UK.
- Standards Australia. 2009. *AS4970-2009 Protection of trees on development sites.* Standards Australia. Sydney.
- Harris, R., Clark, J. & Matheny, N. 2004. Arboriculture: Integrated Management of Landscape Trees, Shrubs and Vines.
  Prentice Hall. New Jersey.



## **11 GLOSSARY OF TERMS**

**Borers:** larvae beetles, moths or wasps that cause damage within the phloem/cambium, sapwood and heartwood of the tree. Borers generally attack weakened trees or stressed trees.

**Cambium:** The layer of cells between the exterior bark and the inner wood which control cell division, hence stem, branch and shoot expansion.

Cavity: A void, initiated by a wound within the trunk, branches or roots. These voids are referred to as hollows.

**Co-dominant**: Stems or branches equal in size and relative importance.

Crown: The width of the foliage in the upper canopy of the assessed tree to the four cardinal points.

Crown lifting: The removal of the lower branches of the tree.

**Crown thinning:** The portion of the tree consisting of branches and leaves and any part of the stem from which branches arise.

Drip line: Where the canopy releases water shed from the foliage during precipitation.

DBH/Diameter: Diameter of trunk at 14meters in height of assessed tree.

Dead wooding: The removal dead branches from a tree.

Dieback: Tree deterioration where the branches and leaves die.

**Flush cut:** A cut that damages or removes the branch collar or removes the branch and stem tissue and is inconsistent with the branch attachment as indicated by the bark branch ridge.

**Genus/ Species:** Identified using its scientific name. Where the species name is not known, species is used. The common name for trees may vary considerably in each area of geographical differences and so will not be used in the field survey.

Height: Height has been estimated to + / - 2 meters.

**Maturity:** Tree age, Assessed as over mature (last 1/3 of life expectancy), mature (1/3 to 2/3 life expectancy) and semi mature (less than 1/3 life expectancy).

**Remedial (restorative) pruning:** includes: Removing damaged, deadwood; trimming diseased or infested branches. Trimming branches back to undamaged tissue in order to induce the production of shoots from latent or adventitious buds, from which a new crown will be established.

**SRZ- Structural Root Zone:** An area within the trees root zone in which roots stabilize the tree. Roots cut in this zone can cause instability and lead to anchorage loss.

Structural Integrity: Describes the internal supporting timber. (Substantial to frail)

Target: risk targets are people, property or activities that could injure, damage or disrupted.

Tree Numbering: All trees listed in the tree survey have been numbered and plotted.

## **TULE- Tree Useful Life**

**Expectancy:** An estimation of the trees useful life expectancy using appropriate industry methods with an inspection regime.

**Vigour:** This is an indication of the tree health. Trees have either been assessed as Good Vigour, Normal Vigour or Low Vigour.



## **12 APPENDIX 1: TREE SCHEDULE**

## 12.1 SCHEDULE 1: ATTRIBUTES

Table 17

| Species<br>Origin                    | Endemic                                                                                                                                                | Endemic                                                                                                                                 | Endemic                                                                                                                       | Endemic                                                                                                        | Endemic                                                                                                                                                                 |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Notes                                |                                                                                                                                                        |                                                                                                                                         |                                                                                                                               |                                                                                                                |                                                                                                                                                                         |  |
| Observations and Defects             | Cavity (minor) , Co-<br>Dominant Stems ,<br>Deadwood Moderate (30-<br>100mm) , Decay , Weak<br>Branch Attachments<br>(isolated) , Wounds<br>(moderate) | Co-Dominant Stems ,<br>Deadwood Moderate (30-<br>100mm) , Included Bark<br>(natural for species) ,<br>Included Union<br>(insignificant) | Co-Dominant Stems , Co-<br>Dominant Stems (included<br>bark) , Crossing Rubbing<br>Branches , Deadwood<br>Moderate (30-100mm) | Co-Dominant Stems ,<br>Crossing Rubbing Branches<br>, Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) | Co-Dominant Stems<br>(included bark) , Crown<br>Density (40-60%) ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(moderate) , Included Bark<br>(branches) , Included |  |
| Retention<br>Value<br>(STARS)        | Medium                                                                                                                                                 | High                                                                                                                                    | High                                                                                                                          | High                                                                                                           | Low                                                                                                                                                                     |  |
| Landscape<br>Significance<br>(STARS) | Low                                                                                                                                                    | High                                                                                                                                    | High                                                                                                                          | High                                                                                                           | High                                                                                                                                                                    |  |
| E.L.E                                | 15-<br>40yrs                                                                                                                                           | 40<br>plus                                                                                                                              | 40<br>plus                                                                                                                    | 15-<br>40yrs                                                                                                   | 5-<br>15yrs                                                                                                                                                             |  |
| Health                               | Fair                                                                                                                                                   | Fair<br>Good<br>Fair                                                                                                                    |                                                                                                                               | Poor                                                                                                           |                                                                                                                                                                         |  |
| Structure                            | Fair                                                                                                                                                   | Fair<br>Good                                                                                                                            |                                                                                                                               | Good                                                                                                           | Fair                                                                                                                                                                    |  |
| Age<br>Class                         | Juvenile                                                                                                                                               | uvenile<br>Mature                                                                                                                       |                                                                                                                               | Mature                                                                                                         | Mature                                                                                                                                                                  |  |
| SRZ<br>Area<br>(M2)                  | 12.9                                                                                                                                                   | 21.1                                                                                                                                    | 26.7                                                                                                                          | 25.2                                                                                                           | 20.2                                                                                                                                                                    |  |
| SRZ<br>Radius<br>(M)                 | 2.0                                                                                                                                                    | 2.6                                                                                                                                     | 2.9                                                                                                                           | 2.8                                                                                                            | 2.5                                                                                                                                                                     |  |
| TPZ<br>Area<br>(M2)                  | 30.6                                                                                                                                                   | 87.6                                                                                                                                    | 162.9                                                                                                                         | 131.9                                                                                                          | 6.99                                                                                                                                                                    |  |
| TPZ<br>Radius<br>(M)                 | 3.1                                                                                                                                                    | 5.3                                                                                                                                     | 7.2                                                                                                                           | 6.5                                                                                                            | 5.6                                                                                                                                                                     |  |
| DRB<br>(M)                           | 0.31                                                                                                                                                   | 0.56                                                                                                                                    | 0.74                                                                                                                          | 0.69                                                                                                           | 0.53                                                                                                                                                                    |  |
| DBH<br>(M)                           | 0.26                                                                                                                                                   | 0.44                                                                                                                                    | 0.6                                                                                                                           | 0.54                                                                                                           | 0.47                                                                                                                                                                    |  |
| Spread<br>(M) N,<br>E, S, W          | 5,2,3,2                                                                                                                                                | 5,5,5,5                                                                                                                                 | 5,5,2,2                                                                                                                       | 3,3,3,3                                                                                                        | 4,4,4                                                                                                                                                                   |  |
| Height<br>(M)                        | 12                                                                                                                                                     | 15                                                                                                                                      | 15                                                                                                                            | 15                                                                                                             | 15                                                                                                                                                                      |  |
| Tree Species                         | Casuarina glauca<br>(Swamp-Oak)                                                                                                                        | Casuarina glauca<br>(Swamp-Oak)                                                                                                         | Casuarina glauca<br>(Swamp-Oak)                                                                                               | Casuarina glauca<br>(Swamp-Oak)                                                                                | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                         |  |
| Tree<br>ID                           | 11                                                                                                                                                     | 12                                                                                                                                      | T3                                                                                                                            | T4                                                                                                             | 15                                                                                                                                                                      |  |



| Species<br>Origin                    |                                                         | Endemic                         | Endemic                                                      | Endemic                                                                                                     | Endemic                                                                                                                                                                                                                          | Endemic                                                                                                                                                                                                                           | Endemic                                                      | Endemic                                                            |
|--------------------------------------|---------------------------------------------------------|---------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| Notes                                |                                                         |                                 |                                                              |                                                                                                             |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                              |                                                                    |
| Observations and Defects             | Union (poor) , Weak<br>Branch Attachments<br>(isolated) |                                 | Crown Density (60-80%) ,<br>Deadwood Moderate (30-<br>100mm) | Co-Dominant Stems ,<br>Crown Density (60-80%) ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) | Co-Dominant Stems<br>(included bark), Crossing<br>Rubbing Branches ,<br>Deadwood Moderate (30-<br>100mm), Dieback<br>(isolated), Included Bark<br>(branches), Over Extended<br>Limbs (isolated), Previous<br>Failures (isolated) | Co-Dominant Stems<br>(included bark) ,<br>Deadwood Moderate (30-<br>100mm) , Included Bark<br>(branches) , Included<br>Union (insignificant) , Over<br>Extended Limbs (isolated) ,<br>Phototropism (moderate) ,<br>Wounds (minor) | Crown Density (60-80%) ,<br>Deadwood Moderate (30-<br>100mm) | Co-Dominant Stems<br>(included bark) , Crown<br>Density (60-80%) , |
| Retention<br>Value<br>(STARS)        |                                                         | Exempt                          | High                                                         | High                                                                                                        | High                                                                                                                                                                                                                             | High                                                                                                                                                                                                                              | High                                                         | High                                                               |
| Landscape<br>Significance<br>(STARS) |                                                         | Exempt                          | High                                                         | High                                                                                                        | E E E                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   | High                                                         | High                                                               |
| E.L.E                                |                                                         | Dead                            | 15-<br>40yrs                                                 | 15-<br>40yrs                                                                                                | 40<br>plus                                                                                                                                                                                                                       | 40<br>plus                                                                                                                                                                                                                        | 15-<br>40yrs                                                 | 5-<br>15yrs                                                        |
| Health                               |                                                         | Dead                            | Fair                                                         | Fair                                                                                                        | Good                                                                                                                                                                                                                             | Good                                                                                                                                                                                                                              | Fair                                                         | Fair                                                               |
| Structure                            |                                                         | Very<br>Poor                    | Good                                                         | Good                                                                                                        | good                                                                                                                                                                                                                             | Fair                                                                                                                                                                                                                              |                                                              | Fair                                                               |
| Age<br>Class                         |                                                         | Dead                            | Mature                                                       | Mature                                                                                                      | Mature                                                                                                                                                                                                                           |                                                                                                                                                                                                                                   | Early<br>Mature                                              | Semi<br>Mature                                                     |
| SRZ<br>Area<br>(M2)                  |                                                         | 11.5                            | 20.2                                                         | 20.2                                                                                                        | 27.6                                                                                                                                                                                                                             | 31.8                                                                                                                                                                                                                              | 15.9                                                         | 10.0                                                               |
| SRZ<br>Radius<br>(M)                 |                                                         | 1.9                             | 2.5                                                          | 2.5                                                                                                         | 0.<br>ĸ                                                                                                                                                                                                                          | 3.2                                                                                                                                                                                                                               | 2.3                                                          | 1.8                                                                |
| TPZ<br>Area<br>(M2)                  |                                                         | 18.1                            | 79.8                                                         | 87.6                                                                                                        | 191.1                                                                                                                                                                                                                            | 275.2                                                                                                                                                                                                                             | 52.3                                                         | 16.3                                                               |
| TPZ<br>Radius<br>(M)                 |                                                         | 2.4                             | 5.0                                                          | 5.3                                                                                                         | 7.8                                                                                                                                                                                                                              | 9.4                                                                                                                                                                                                                               | 4.1                                                          | 2.3                                                                |
| DRB<br>(M)                           |                                                         | 0.27                            | 0.53                                                         | 0.53                                                                                                        | 0.77                                                                                                                                                                                                                             | 0.91                                                                                                                                                                                                                              | 0.4                                                          | 0.23                                                               |
| DBH<br>(M)                           |                                                         | 0.2                             | 0.42                                                         | 0.44                                                                                                        | 0.65                                                                                                                                                                                                                             | 0.78                                                                                                                                                                                                                              | 0.34                                                         | 0.19                                                               |
| Spread<br>(M) N,<br>E, S, W          |                                                         | 2,2,2,2                         | 6,5,4,6                                                      | 4,6,4,5                                                                                                     | 8,8,8,7                                                                                                                                                                                                                          | 9,6,7,8                                                                                                                                                                                                                           | 4,4,4                                                        | 2,2,2,2                                                            |
| Height<br>(M)                        |                                                         | 11                              | 15                                                           | 16                                                                                                          | 17                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                | 19                                                           | 14                                                                 |
| Tree Species                         |                                                         | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak)                              | Casuarina glauca<br>(Swamp-Oak)                                                                             | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                                                  | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                                                   | Casuarina glauca<br>(Swamp-Oak)                              | Casuarina glauca<br>(Swamp-Oak)                                    |
| Tree<br>ID                           |                                                         | Т6                              | 11                                                           | T8                                                                                                          | 6L                                                                                                                                                                                                                               | T10                                                                                                                                                                                                                               | T11                                                          | T12                                                                |



| Species<br>Origin                    |                                          | Endemic                                                                                                                                                                                                            | Endemic                                                                                           | Endemic                                                                                                                                 | Endemic                                                                                                                                                                                             | Endemic                                       | Endemic                                                                                                                           |
|--------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Notes                                |                                          |                                                                                                                                                                                                                    |                                                                                                   |                                                                                                                                         |                                                                                                                                                                                                     |                                               |                                                                                                                                   |
| Observations and Defects             | Deadwood Minor (0-<br>30mm) , Suppressed | Co-Dominant Stems<br>(included bark), Crown<br>Density (60-80%),<br>Deadwood Moderate (30-<br>100mm), Dieback<br>(isolated), Included Union<br>(moderate), Mechanical<br>Damage, Over Extended<br>Limbs (isolated) | Crown Density (40-60%) ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Suppressed | Co-Dominant Stems<br>(included bark) , Crown<br>Density (60-80%) , Dieback<br>(moderate) , Included<br>Union (moderate) ,<br>Suppressed | Co-Dominant Stems<br>(included bark), Crown<br>Density (40-60%),<br>Deadwood Major<br>(>100mm), Dieback<br>(major), Included Union<br>(poor), Suppressed , Weak<br>Branch Attachments<br>(systemic) | Deadwood Moderate (30-<br>100mm) , Suppressed | Co-Dominant Stems<br>(included bark) , Crossing<br>Rubbing Branches ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) |
| Retention<br>Value<br>(STARS)        |                                          | High                                                                                                                                                                                                               | Medium                                                                                            | Low                                                                                                                                     | Low                                                                                                                                                                                                 | Medium                                        | High                                                                                                                              |
| Landscape<br>Significance<br>(STARS) |                                          | Нġ                                                                                                                                                                                                                 | Medium                                                                                            | Low                                                                                                                                     | ۲<br>۲                                                                                                                                                                                              | Medium                                        | High                                                                                                                              |
| E.L.E                                |                                          | 40<br>plus                                                                                                                                                                                                         | 15-<br>40yrs                                                                                      | 5-<br>15yrs                                                                                                                             | 1-<br>5yrs                                                                                                                                                                                          | 15-<br>40yrs                                  | 40<br>plus                                                                                                                        |
| Health                               |                                          | Good                                                                                                                                                                                                               | Fair                                                                                              | Fair                                                                                                                                    | Poor                                                                                                                                                                                                | Fair                                          | Good                                                                                                                              |
| Structure                            |                                          | Fair                                                                                                                                                                                                               | Good                                                                                              | Fair                                                                                                                                    | Poor                                                                                                                                                                                                | Fair                                          | Good                                                                                                                              |
| Age<br>Class                         |                                          | Mature                                                                                                                                                                                                             | Semi<br>Mature                                                                                    | Juvenile                                                                                                                                | Semi<br>Mature                                                                                                                                                                                      | Semi<br>Mature                                | Mature                                                                                                                            |
| SRZ<br>Area<br>(M2)                  |                                          | 20.8                                                                                                                                                                                                               | 15.3                                                                                              | 9.6                                                                                                                                     | 12.5                                                                                                                                                                                                | 12.2                                          | 21.1                                                                                                                              |
| SRZ<br>Radius<br>(M)                 |                                          | 2.6                                                                                                                                                                                                                | 2.2                                                                                               | 1.8                                                                                                                                     | 2.0                                                                                                                                                                                                 | 2.0                                           | 2.6                                                                                                                               |
| TPZ<br>Area<br>(M2)                  |                                          | 79.8                                                                                                                                                                                                               | 43.5                                                                                              | 14.7                                                                                                                                    | 21.9                                                                                                                                                                                                | 23.9                                          | 87.6                                                                                                                              |
| TPZ<br>Radius<br>(M)                 |                                          | 5.0                                                                                                                                                                                                                | 3.7                                                                                               | 2.2                                                                                                                                     | 2.6                                                                                                                                                                                                 | 2.8                                           | 5.3                                                                                                                               |
| DRB<br>(M)                           |                                          | 0.55                                                                                                                                                                                                               | 0.38                                                                                              | 0.22                                                                                                                                    | 0.3                                                                                                                                                                                                 | 0.29                                          | 0.56                                                                                                                              |
| DBH<br>(M)                           |                                          | 0.42                                                                                                                                                                                                               | 0.31                                                                                              | 0.18                                                                                                                                    | 0.22                                                                                                                                                                                                | 0.23                                          | 0.44                                                                                                                              |
| Spread<br>(M) N,<br>E, S, W          |                                          | 8,6,7,6                                                                                                                                                                                                            | 3,3,3,3                                                                                           | 2,2,2,2                                                                                                                                 | 6,3,2,3                                                                                                                                                                                             | 2,2,2,2                                       | 7,6,5,6                                                                                                                           |
| Height<br>(M)                        |                                          | 17                                                                                                                                                                                                                 | 14                                                                                                | 13                                                                                                                                      | 13                                                                                                                                                                                                  | 14                                            | 18                                                                                                                                |
| Tree Species                         |                                          | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                                    | Casuarina glauca<br>(Swamp-Oak)                                                                   | Casuarina glauca<br>(Swamp-Oak)                                                                                                         | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                     | Casuarina glauca<br>(Swamp-Oak)               | Casuarina glauca<br>(Swamp-Oak)                                                                                                   |
| Tree<br>ID                           |                                          | T13                                                                                                                                                                                                                | T14                                                                                               | T15                                                                                                                                     | T16                                                                                                                                                                                                 | T17                                           | T18                                                                                                                               |

ABNOBA ARBOR AF LEVEL 5 ARDOISTIGTRA REGISTERED ABN:1971602469 LIAM STRACHAN 0426215559 LIAMSTRACHANARB66MAILCOM

| Species<br>Origin                    | Endemic                                                                                                             | Endemic                                                                                                                                | Endemic                                                                                                                                                                                              | Endemic                                                              | Endemic                                                                                                                                                                                                               | Endemic                                                                                                      |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Notes                                |                                                                                                                     |                                                                                                                                        |                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                                                       |                                                                                                              |
| Observations and Defects             | Co-Dominant Stems<br>(included bark) , Crown<br>Density (60-80%) ,<br>Deadwood Moderate (30-<br>100mm) , Suppressed | Co-Dominant Stems<br>(included bark) ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Included Union<br>(insignificant) | Co-Dominant Stems<br>(included bark) , Crown<br>Density (40-60%) ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(moderate) , Included<br>Union (moderate) ,<br>Suppressed , Wounds<br>(moderate) | Co-Dominant Stems ,<br>Deadwood Moderate (30-<br>100mm) , Suppressed | Co-Dominant Stems<br>(included bark), Crown<br>Density (40-60%),<br>Deadwood Moderate (30-<br>100mm), Dieback<br>(isolated), Included Union<br>(insignificant), Suppressed<br>, Weak Branch<br>Attachments (isolated) | Co-Dominant Stems<br>(included bark),<br>Deadwood Moderate (30-<br>100mm), Dieback<br>(isolated), Suppressed |
| Retention<br>Value<br>(STARS)        | High                                                                                                                | High                                                                                                                                   | Low                                                                                                                                                                                                  | Medium                                                               | High                                                                                                                                                                                                                  | High                                                                                                         |
| Landscape<br>Significance<br>(STARS) | High                                                                                                                | High                                                                                                                                   | Low                                                                                                                                                                                                  | Medium                                                               | High                                                                                                                                                                                                                  | High                                                                                                         |
| E.L.E                                | 15-<br>40yrs                                                                                                        | 40<br>plus                                                                                                                             | 5-<br>15yrs                                                                                                                                                                                          | 15-<br>40yrs                                                         | 15-<br>40yrs                                                                                                                                                                                                          | 15-<br>40yrs                                                                                                 |
| Health                               | Fair                                                                                                                | Good                                                                                                                                   | Poor                                                                                                                                                                                                 | Fair                                                                 | Good                                                                                                                                                                                                                  | Fair                                                                                                         |
| Structure                            | Fair                                                                                                                | Good                                                                                                                                   | Poor                                                                                                                                                                                                 | Fair                                                                 | Good                                                                                                                                                                                                                  | Fair                                                                                                         |
| Age<br>Class                         | Semi<br>Mature                                                                                                      | Mature                                                                                                                                 | Semi<br>Mature                                                                                                                                                                                       | Semi<br>Mature                                                       | Early<br>Mature                                                                                                                                                                                                       | Semi<br>Mature                                                                                               |
| SRZ<br>Area<br>(M2)                  | 20.8                                                                                                                | 24.3                                                                                                                                   | 12.2                                                                                                                                                                                                 | 12.2                                                                 | 17.9                                                                                                                                                                                                                  | 16.3                                                                                                         |
| SRZ<br>Radius<br>(M)                 | 2.6                                                                                                                 | 2.8                                                                                                                                    | 2.0                                                                                                                                                                                                  | 2.0                                                                  | 2.4                                                                                                                                                                                                                   | 2.3                                                                                                          |
| TPZ<br>Area<br>(M2)                  | 72.4                                                                                                                | 122.3                                                                                                                                  | 26.1                                                                                                                                                                                                 | 26.1                                                                 | 87.6                                                                                                                                                                                                                  | 46.3                                                                                                         |
| TPZ<br>Radius<br>(M)                 | 4.8                                                                                                                 | 6.2                                                                                                                                    | 2.9                                                                                                                                                                                                  | 2.9                                                                  | с.                                                                                                                                                                                                                    | 3.8                                                                                                          |
| DRB<br>(M)                           | 0.55                                                                                                                | 0.66                                                                                                                                   | 0.29                                                                                                                                                                                                 | 0.29                                                                 | 0.46                                                                                                                                                                                                                  | 0.41                                                                                                         |
| DBH<br>(M)                           | 0.4                                                                                                                 | 0.52                                                                                                                                   | 0.24                                                                                                                                                                                                 | 0.24                                                                 | 0.44                                                                                                                                                                                                                  | 0.32                                                                                                         |
| Spread<br>(M) N,<br>E, S, W          | 4,2,2,4                                                                                                             | 6,4,6,5                                                                                                                                | 2,2,2,2                                                                                                                                                                                              | 3,2,2,3                                                              | 6,5,6,7                                                                                                                                                                                                               | 5,5,4,4                                                                                                      |
| Height<br>(M)                        | 17                                                                                                                  | 17                                                                                                                                     | 13                                                                                                                                                                                                   | 14                                                                   | 19                                                                                                                                                                                                                    | 16                                                                                                           |
| Tree Species                         | Casuarina glauca<br>(Swamp-Oak)                                                                                     | Casuarina glauca<br>(Swamp-Oak)                                                                                                        | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                      | Casuarina glauca<br>(Swamp-Oak)                                      | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                                       | Casuarina glauca<br>(Swamp-Oak)                                                                              |
| Tree<br>ID                           | T19                                                                                                                 | Т20                                                                                                                                    | Т21                                                                                                                                                                                                  | Т22                                                                  | T23                                                                                                                                                                                                                   | T24                                                                                                          |



| Species<br>Origin                    | Endemic                                                                                                                                                                                                         | Endemic                                                                                                                                                                              | Endemic                                                                                                                                            | Endemic                                                                                                                                                                                               | Endemic                                                                                                                                       | Endemic                                      |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Notes                                |                                                                                                                                                                                                                 |                                                                                                                                                                                      |                                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                               |                                              |
| Observations and Defects             | Co-Dominant Stems<br>(included bark),<br>Deadwood Moderate (30-<br>100mm), Dieback<br>(isolated), Included Union<br>(insignificant), Mechanical<br>Damage, Over Extended<br>Limbs (isolated), Wounds<br>(minor) | Co-Dominant Stems<br>(included bark),<br>Deadwood Moderate (30-<br>100mm), Dieback<br>(isolated), Suppressed,<br>Weak Branch Attachments<br>(isolated), Wounds<br>(isolated), Wounds | Co-Dominant Stems<br>(included bark) , Crown<br>Density (60-80%) ,<br>Deadwood Moderate (30-<br>100mm) , Included Union<br>(moderate) , Suppressed | Co-Dominant Stems<br>(included bark), Crossing<br>Rubbing Branches ,<br>Deadwood Moderate (30-<br>100mm), Dieback<br>(isolated), Included Union<br>(insignificant), Over<br>Extended Limbs (isolated) | Co-Dominant Stems<br>(included bark), Crossing<br>Rubbing Branches ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Suppressed | Co-Dominant Stems<br>(included bark) , Crown |
| Retention<br>Value<br>(STARS)        | Б<br>Б                                                                                                                                                                                                          | ы<br>Ба                                                                                                                                                                              | Medium                                                                                                                                             | ы<br>Б                                                                                                                                                                                                | High                                                                                                                                          | Low                                          |
| Landscape<br>Significance<br>(STARS) | High High                                                                                                                                                                                                       |                                                                                                                                                                                      | Medium                                                                                                                                             | Medium<br>High                                                                                                                                                                                        |                                                                                                                                               | Low                                          |
| E.L.E                                | 40<br>plus                                                                                                                                                                                                      | 40<br>plus<br>15-<br>40yrs                                                                                                                                                           |                                                                                                                                                    | 40<br>plus                                                                                                                                                                                            | 15-<br>40yrs                                                                                                                                  | 5-<br>15yrs                                  |
| Health                               | Good                                                                                                                                                                                                            | Good                                                                                                                                                                                 | Fair                                                                                                                                               | Good                                                                                                                                                                                                  | Good                                                                                                                                          | Fair                                         |
| Structure                            | Good                                                                                                                                                                                                            | Fair                                                                                                                                                                                 | Fair                                                                                                                                               | Fair                                                                                                                                                                                                  | Fair                                                                                                                                          | Fair                                         |
| Age<br>Class                         | Mature                                                                                                                                                                                                          | Mature<br>Early<br>Mature                                                                                                                                                            |                                                                                                                                                    | Mature                                                                                                                                                                                                | Early<br>Mature                                                                                                                               | Juvenile                                     |
| SRZ<br>Area<br>(M2)                  | 20.2                                                                                                                                                                                                            | 19.9                                                                                                                                                                                 | 15.9                                                                                                                                               |                                                                                                                                                                                                       | 24.3                                                                                                                                          | 8.5                                          |
| SRZ<br>Radius<br>(M)                 | 2.5                                                                                                                                                                                                             | 2.5                                                                                                                                                                                  | 2.3                                                                                                                                                | 3.0                                                                                                                                                                                                   | 2.8                                                                                                                                           | 1.6                                          |
| TPZ<br>Area<br>(M2)                  | 76.0                                                                                                                                                                                                            | 68.8                                                                                                                                                                                 | 46.3                                                                                                                                               | 147.0                                                                                                                                                                                                 | 95.7                                                                                                                                          | 10.2                                         |
| TPZ<br>Radius<br>(M)                 | 6.<br>9.                                                                                                                                                                                                        | 4.7                                                                                                                                                                                  | з.<br>8.                                                                                                                                           | 6<br>.8                                                                                                                                                                                               | 5.5                                                                                                                                           | 1.8                                          |
| DRB<br>(M)                           | 0.53                                                                                                                                                                                                            | 0.52                                                                                                                                                                                 | 0.4                                                                                                                                                | 0.77                                                                                                                                                                                                  | 0.66                                                                                                                                          | 0.19                                         |
| DBH<br>(M)                           | 0.41                                                                                                                                                                                                            | 0.39                                                                                                                                                                                 | 0.32                                                                                                                                               | 0.57                                                                                                                                                                                                  | 0.46                                                                                                                                          | 0.15                                         |
| Spread<br>(M) N,<br>E, S, W          | 4,5,4,6                                                                                                                                                                                                         | 4,5,6,5                                                                                                                                                                              | 3,3,3,3                                                                                                                                            | 8,4,4,8                                                                                                                                                                                               | 5,5,5,5                                                                                                                                       | 2,3,4,2                                      |
| Height<br>(M)                        | 19                                                                                                                                                                                                              | 18                                                                                                                                                                                   | 16                                                                                                                                                 | 19                                                                                                                                                                                                    | 19                                                                                                                                            | 7                                            |
| Tree Species                         | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                                 | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                      | Casuarina glauca<br>(Swamp-Oak)                                                                                                                    | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                       | Casuarina glauca<br>(Swamp-Oak)                                                                                                               | Casuarina glauca<br>(Swamp-Oak)              |
| Tree<br>ID                           | T25                                                                                                                                                                                                             | Т26                                                                                                                                                                                  | Т27                                                                                                                                                | Т28                                                                                                                                                                                                   | Т29                                                                                                                                           | T30                                          |

ABNOBA ARBOR AF LEVEL 5 ARBORISTIGTRA REGISTERED ABN: 1971 602469 LIAM STRACHAN 0426215539 LIAMSTRACHANARB96GMAIL.COM

| Species<br>Origin                    |                                                                                                 | Endemic                                                                                                                                                                                                              | Endemic                                                                                                                                                                                                                                                                                                    | Endemic                                                                                                | Exotic                                   | Exotic                                                                                               |
|--------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------|
| Notes                                |                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                          |                                                                                                      |
| Observations and Defects             | Density (60-80%) ,<br>Deadwood Minor (0-<br>30mm) , Epicormic Shoots<br>(moderate) , Suppressed | Co-Dominant Stems<br>(included bark), Crossing<br>Rubbing Branches ,<br>Deadwood Moderate (30-<br>100mm), Dieback<br>(isolated), Included Union<br>(insignificant), Over<br>Extended Limbs (isolated),<br>Suppressed | Co-Dominant Stems ,<br>Crossing Rubbing Branches<br>, Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Included Bark<br>(branches) , Included<br>Union (insignificant) , Over<br>Extended Limbs (isolated) ,<br>Weak Branch Attachments<br>(isolated) , Wounds<br>(isolated) , Wounds<br>(minor) | Co-Dominant Stems ,<br>Crossing Rubbing Branches<br>, Deadwood Minor (0-<br>30mm) , Dieback (isolated) | Co-Dominant Stems<br>(included bark)     | Co-Dominant Stems<br>(included bark) , Crossing<br>Rubbing Branches ,<br>Deadwood Minor (0-<br>30mm) |
| Retention<br>Value<br>(STARS)        |                                                                                                 | High                                                                                                                                                                                                                 | H                                                                                                                                                                                                                                                                                                          | High                                                                                                   | Exempt                                   | Exempt                                                                                               |
| Landscape<br>Significance<br>(STARS) |                                                                                                 | нġ<br>Н                                                                                                                                                                                                              | тġ                                                                                                                                                                                                                                                                                                         | High                                                                                                   | Exempt                                   | Exempt                                                                                               |
| E.L.E                                |                                                                                                 | 15-<br>40yrs                                                                                                                                                                                                         | 40<br>plus                                                                                                                                                                                                                                                                                                 | 40<br>plus                                                                                             | 15-<br>40yrs                             | 40<br>plus                                                                                           |
| Health                               |                                                                                                 | Fair                                                                                                                                                                                                                 | Good                                                                                                                                                                                                                                                                                                       | Good                                                                                                   | Fair                                     | Good                                                                                                 |
| Structure                            |                                                                                                 | Good                                                                                                                                                                                                                 | good                                                                                                                                                                                                                                                                                                       | Good                                                                                                   | Fair                                     | Good                                                                                                 |
| Age<br>Class                         |                                                                                                 | Early<br>Mature                                                                                                                                                                                                      | Mature                                                                                                                                                                                                                                                                                                     | Mature                                                                                                 | Semi<br>Mature                           | Mature                                                                                               |
| SRZ<br>Area<br>(M2)                  |                                                                                                 | 15.3                                                                                                                                                                                                                 | 17.9                                                                                                                                                                                                                                                                                                       | 19.2                                                                                                   | 13.2                                     | 21.1                                                                                                 |
| SRZ<br>Radius<br>(M)                 |                                                                                                 | 2.2                                                                                                                                                                                                                  | 2.4                                                                                                                                                                                                                                                                                                        | 2.5                                                                                                    | 2.1                                      | 2.6                                                                                                  |
| TPZ<br>Area<br>(M2)                  |                                                                                                 | 40.7                                                                                                                                                                                                                 | 76.0                                                                                                                                                                                                                                                                                                       | 79.8                                                                                                   | 28.3                                     | 72.4                                                                                                 |
| TPZ<br>Radius<br>(M)                 |                                                                                                 | ю.<br>ñ                                                                                                                                                                                                              | 6.                                                                                                                                                                                                                                                                                                         | 5.0                                                                                                    | 3.0                                      | 4.8                                                                                                  |
| DRB<br>(M)                           |                                                                                                 | 0.38                                                                                                                                                                                                                 | 0.46                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                    | 0.32                                     | 0.56                                                                                                 |
| DBH<br>(M)                           |                                                                                                 | 0.3                                                                                                                                                                                                                  | 0.41                                                                                                                                                                                                                                                                                                       | 0.42                                                                                                   | 0.25                                     | 0.4                                                                                                  |
| Spread<br>(M) N,<br>E, S, W          |                                                                                                 | 4,2,5,3,                                                                                                                                                                                                             | 5,4,5,4                                                                                                                                                                                                                                                                                                    | 4,5,5,4                                                                                                | 5,5,5,5                                  | 5,4,2,5                                                                                              |
| Height<br>(M)                        |                                                                                                 | 16                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                         | 19                                                                                                     | σ                                        | 14                                                                                                   |
| Tree Species                         |                                                                                                 | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                                      | Casuarina glauca<br>(Swamp-Oak)                                                                                                                                                                                                                                                                            | Casuarina glauca<br>(Swamp-Oak)                                                                        | Harpophyllum<br>caffrum<br>(Kaffir Plum) | Cupressus<br>species<br>(Conifer)                                                                    |
| Tree<br>ID                           |                                                                                                 | 131                                                                                                                                                                                                                  | T32                                                                                                                                                                                                                                                                                                        | T33                                                                                                    | Т34                                      | T35                                                                                                  |

ABNOBA ARBOR AF LEVEL 5 ARDORSTOTAR REGISTERED ABN11971602469 LIAM STRACHAN 0426215559 LIAMSTRACHANARB66MAIL COM

| ~                             |
|-------------------------------|
| _                             |
|                               |
| Ξ.                            |
| -0                            |
| 5                             |
| $\leq$                        |
| _                             |
|                               |
| <u> </u>                      |
| <u> </u>                      |
| 0                             |
| $\circ$                       |
| ~                             |
| _                             |
|                               |
|                               |
| ~~~                           |
| m                             |
|                               |
| 5                             |
| (۵)                           |
| Ľ.                            |
| -                             |
| .0                            |
| 2                             |
| ~                             |
| ÷.                            |
| ÷                             |
|                               |
| <u> </u>                      |
| ~~                            |
| $\sim$                        |
| 00                            |
|                               |
| $\nabla$                      |
| _                             |
|                               |
| -                             |
| <u> </u>                      |
| (٦)                           |
| ~                             |
|                               |
| <u> </u>                      |
|                               |
| SIT                           |
| SSIT                          |
| essn                          |
| essn                          |
| sessn                         |
| ssessm                        |
| Assessm                       |
| Assessm                       |
| t Assessm                     |
| ct Assessm                    |
| ict Assessm                   |
| act Assessm                   |
| oact Assessm                  |
| ipact Assessm                 |
| npact Assessn                 |
| mpact Assessm                 |
| Impact Assessm                |
| l Impact Assessm              |
| al Impact Assessm             |
| ral Impact Assessm            |
| ural Impact Assessm           |
| ural Impact Assessm           |
| tural Impact Assessm          |
| iltural Impact Assessm        |
| ultural Impact Assessm        |
| cultural Impact Assessm       |
| icultural Impact Assessm      |
| ricultural Impact Assessm     |
| oricultural Impact Assessm    |
| oricultural Impact Assessm    |
| boricultural Impact Assessm   |
| rboricultural Impact Assessm  |
| Arboricultural Impact Assessm |
| Arboricultural Impact Assessm |

| Species<br>Origin                    | Exotic                                   | Exotic                                                                                                                                                                                                                                                          | Noxious<br>Weed                                                                                         | Endemic                                                   | Exotic                            | Exotic                                   | Endemic                                                                                | Endemic                                                                                    | Endemic                     |
|--------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|
| Notes                                |                                          |                                                                                                                                                                                                                                                                 |                                                                                                         |                                                           |                                   |                                          |                                                                                        |                                                                                            |                             |
| Observations and Defects             | Co-Dominant Stems                        | Co-Dominant Stems<br>(included bark),<br>Deadwood Minor (0-<br>30mm), Epicormic Shoots<br>(minor), Included Bark<br>(branches), Over Extended<br>Limbs (isolated), Previous<br>Failures (isolated), Weak<br>Branch Attachments<br>(isolated), Wounds<br>(minor) | Co-Dominant Stems<br>(included bark) , Crossing<br>Rubbing Branches ,<br>Epicormic Shoots<br>(moderate) | Deadwood Minor (0-<br>30mm) , Included Bark<br>(branches) | Co-Dominant Stems                 | Co-Dominant Stems<br>(included bark)     | Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Epicormic<br>Shoots (minor) | Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Previous<br>Failures (isolated) | Deadwood Minor (0-<br>30mm) |
| Retention<br>Value<br>(STARS)        | Exempt                                   | Exempt                                                                                                                                                                                                                                                          | Exempt                                                                                                  | Medium                                                    | Exempt                            | Exempt                                   | High                                                                                   | High                                                                                       | Medium                      |
| Landscape<br>Significance<br>(STARS) | Exempt                                   | Exempt                                                                                                                                                                                                                                                          | Environmental<br>Weed                                                                                   | Medium                                                    | Exempt                            | Exempt                                   | High                                                                                   | High                                                                                       | Medium                      |
| E.L.E                                | 15-<br>40yrs                             | 40<br>plus                                                                                                                                                                                                                                                      | 40<br>plus                                                                                              | 15-<br>40yrs                                              | 15-<br>40yrs                      | 15-<br>40yrs                             | 40<br>plus                                                                             | 15-<br>40yrs                                                                               | 15-<br>40yrs                |
| Health                               | Good                                     | Good                                                                                                                                                                                                                                                            | Good                                                                                                    | Good                                                      | Fair                              | Good                                     | Fair                                                                                   | Fair                                                                                       | Fair                        |
| Structure                            | Good                                     | Fair                                                                                                                                                                                                                                                            | Fair                                                                                                    | Fair                                                      | Good                              | Fair                                     | Good                                                                                   | Good                                                                                       | Good                        |
| Age<br>Class                         | Mature                                   | Mature                                                                                                                                                                                                                                                          | Juvenile                                                                                                | Semi<br>Mature                                            | Juvenile                          | Early<br>Mature                          | Semi<br>Mature                                                                         | Semi<br>Mature                                                                             | Juvenile                    |
| SRZ<br>Area<br>(M2)                  | 24.3                                     | 37.6                                                                                                                                                                                                                                                            | 24.3                                                                                                    | 12.9                                                      | 7.0                               | 27.6                                     | 16.6                                                                                   | 16.6                                                                                       | 10.0                        |
| SRZ<br>Radius<br>(M)                 | 2.8                                      | ы<br>С                                                                                                                                                                                                                                                          | 2.8                                                                                                     | 2.0                                                       | 1.5                               | 3.0                                      | 2.3                                                                                    | 2.3                                                                                        | 1.8                         |
| TPZ<br>Area<br>(M2)                  | 72.4                                     | 662.3                                                                                                                                                                                                                                                           | 52.3                                                                                                    | 35.5                                                      | 7.6                               | 141.9                                    | 58.6                                                                                   | 61.9                                                                                       | 14.7                        |
| TPZ<br>Radius<br>(M)                 | 4.8                                      | 14.5                                                                                                                                                                                                                                                            | 4.1                                                                                                     | 3.4                                                       | 1.6                               | 6.7                                      | 4.3                                                                                    | 4.4                                                                                        | 2.2                         |
| DRB<br>(M)                           | 0.66                                     | 1.11                                                                                                                                                                                                                                                            | 0.66                                                                                                    | 0.31                                                      | 0.15                              | 0.77                                     | 0.42                                                                                   | 0.42                                                                                       | 0.23                        |
| (M)                                  | 0.4                                      | 1.21                                                                                                                                                                                                                                                            | 0.34                                                                                                    | 0.28                                                      | 0.13                              | 0.56                                     | 0.36                                                                                   | 0.37                                                                                       | 0.18                        |
| Spread<br>(M) N,<br>E, S, W          | 5,5,5,5                                  | 6'6'6                                                                                                                                                                                                                                                           | 4,4,4                                                                                                   | 4,4,5                                                     | 2,2,2,2                           | 6,5,6,6                                  | 6,5,6,4                                                                                | 6,6,6,6                                                                                    | 2,2,2,2                     |
| Height<br>(M)                        | 14                                       | 16                                                                                                                                                                                                                                                              | თ                                                                                                       | 12                                                        | 11                                | ∞                                        | 16                                                                                     | 12                                                                                         | 14                          |
| Tree Species                         | Harpophyllum<br>caffrum<br>(Kaffir Plum) | Harpophyllum<br>caffrum<br>(Kaffir Plum)                                                                                                                                                                                                                        | Cinnamomum<br>camphora<br>(Camphor Laurel)                                                              | Glochidion<br>ferdinandi<br>(Cheese Tree)                 | Cupressus<br>species<br>(Conifer) | Harpophyllum<br>caffrum<br>(Kaffir Plum) | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)                                           | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)                                               | Eucalyptus<br>robusta       |
| Tree<br>ID                           | Т36                                      | T37                                                                                                                                                                                                                                                             | T38                                                                                                     | T39                                                       | Т40                               | Т41                                      | Т42                                                                                    | T43                                                                                        | T44                         |

ABNOBA ARBOR AGF LEVEL 5 ARDORISTIGTAR REGISTERED ABN/1971 602469 LIAM STRACHAN 0426215559 LIAMSTRACHANARB6CMAIL COM

| Species<br>Origin                    |                     | Noxious<br>Weed                          | Native                                             | Endemic                                      | Endemic                                                                                                        | Endemic                                                                                                              | Native                                             | Native                                          | Native                                             | Native                      |
|--------------------------------------|---------------------|------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------|
| Notes                                |                     |                                          |                                                    |                                              |                                                                                                                |                                                                                                                      |                                                    |                                                 |                                                    |                             |
| Observations and Defects             |                     |                                          | Deadwood Moderate (30-<br>100mm) , Dieback (major) | Suppressed                                   | Co-Dominant Stems ,<br>Deadwood Minor (0-<br>30mm) , Dieback (isolated)<br>, Over Extended Limbs<br>(isolated) | Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Epicormic<br>Shoots (minor) , Included<br>Bark (branches) | Co-Dominant Stems                                  | Co-Dominant Stems<br>(included bark)            | Co-Dominant Stems ,<br>Deadwood Minor (0-<br>30mm) | Deadwood Minor (0-<br>30mm) |
| Retention<br>Value<br>(STARS)        |                     | Exempt                                   | Low                                                | Medium                                       | High                                                                                                           | High                                                                                                                 | Exempt                                             | Medium                                          | Medium                                             | Medium                      |
| Landscape<br>Significance<br>(STARS) |                     | Environmental<br>Weed                    | Low                                                | Medium                                       | High                                                                                                           | High                                                                                                                 | Exempt                                             | Medium                                          | Medium                                             | Medium                      |
| E.L.E                                |                     | 40<br>plus                               | 1-<br>5yrs                                         | 15-<br>40yrs                                 | 40<br>plus                                                                                                     | 40<br>plus                                                                                                           | 15-<br>40yrs                                       | 15-<br>40yrs                                    | 40<br>plus                                         | 15-<br>40yrs                |
| Health                               |                     | Good                                     | Very<br>Poor                                       | Fair                                         | Good                                                                                                           | Good                                                                                                                 | Good                                               | Good                                            | Good                                               | Fair                        |
| Structure                            |                     | Good                                     | Good                                               | Fair                                         | Good                                                                                                           | Good                                                                                                                 | Fair                                               | Good                                            | Good                                               | Good                        |
| Age<br>Class                         |                     | Semi<br>Mature                           | Juvenile                                           | Juvenile                                     | Semi<br>Mature                                                                                                 | Semi<br>Mature                                                                                                       | Juvenile                                           | Semi<br>Mature                                  | Semi<br>Mature                                     | Semi<br>Mature              |
| SRZ<br>Area<br>(M2)                  |                     | 11.8                                     | 12.2                                               | 9.6                                          | 16.6                                                                                                           | 15.6                                                                                                                 | 8.5                                                | 11.8                                            | 17.3                                               | 9.6                         |
| SRZ<br>Radius<br>(M)                 |                     | 1.9                                      | 2.0                                                | 1.8                                          | 2.3                                                                                                            | 2.2                                                                                                                  | 1.6                                                | 1.9                                             | 2.3                                                | 1.8                         |
| TPZ<br>Area<br>(M2)                  |                     | 21.9                                     | 21.9                                               | 13.1                                         | 58.6                                                                                                           | 43.5                                                                                                                 | 14.7                                               | 21.9                                            | 58.6                                               | 16.3                        |
| TPZ<br>Radius<br>(M)                 |                     | 2.6                                      | 2.6                                                | 2.0                                          | 4.3                                                                                                            | 3.7                                                                                                                  | 2.2                                                | 2.6                                             | 4.3                                                | 2.3                         |
| DRB<br>(M)                           |                     | 0.28                                     | 0.29                                               | 0.22                                         | 0.42                                                                                                           | 0.39                                                                                                                 | 0.19                                               | 0.28                                            | 0.44                                               | 0.22                        |
| DBH<br>(M)                           |                     | 0.22                                     | 0.22                                               | 0.17                                         | 0.36                                                                                                           | 0.31                                                                                                                 | 0.18                                               | 0.22                                            | 0.36                                               | 0.19                        |
| Spread<br>(M) N,<br>E, S, W          |                     | 2,2,2,2                                  | 3,2,4 e                                            | 5,3,2,5                                      | 4,5,6,4                                                                                                        | 5,6,5,5                                                                                                              | 3,3,3,3                                            | 3,2,4,3                                         | 4,4,3,4                                            | 3,2,2,4                     |
| Height<br>(M)                        |                     | 6                                        | 11                                                 | ω                                            | 14                                                                                                             | 14                                                                                                                   | و                                                  | Q                                               | 12                                                 | 10                          |
| Tree Species                         | (Swamp<br>Mahogany) | Syagrus<br>romanzoffiana<br>(Cocos Palm) | Angophora<br>costata<br>(Sydney Red<br>Gum)        | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany) | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)                                                                   | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)                                                                         | Pittosporum<br>undulatum<br>(Sweet<br>Pittosporum) | Melaleuca<br>linarifolia<br>(Snow in<br>Summer) | Angophora<br>costata<br>(Sydney Red<br>Gum)        | Angophora<br>costata        |
| Tree<br>ID                           |                     | T45                                      | T46                                                | T47                                          | T48                                                                                                            | T49                                                                                                                  | T50                                                | T51                                             | T52                                                | T53                         |

ABNOBA ARBOR AF LEVEL 5 ARBORISTIGTRA REGISTERED ABN: 1971002469 LIAM STRACHAN 0426215559 LIAMSTRACHANARB6GMAILCOM

| Species<br>Origin                    |                     | Endemic                                                                                           | Endemic                                              | Endemic                                                               | Endemic                                            | Endemic                         | Endemic                                                         | Native                                                                        | Native                                                                                             | Exotic                                      | Endemic                                                                         |
|--------------------------------------|---------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|
| Notes                                |                     |                                                                                                   |                                                      |                                                                       |                                                    |                                 |                                                                 |                                                                               |                                                                                                    |                                             |                                                                                 |
| Observations and Defects             |                     | Deadwood Minor (0-<br>30mm) , Included Bark<br>(branches) , Weak Branch<br>Attachments (isolated) | Co-Dominant Stems<br>(included bark) ,<br>Suppressed | Co-Dominant Stems<br>(included bark) ,<br>Deadwood Minor (0-<br>30mm) | Co-Dominant Stems ,<br>Deadwood Minor (0-<br>30mm) | Deadwood Minor (0-<br>30mm)     | Co-Dominant Stems ,<br>Deadwood Minor (0-<br>30mm) , Suppressed | Co-Dominant Stems<br>(included bark) , Included<br>Bark (natural for species) | Co-Dominant Stems<br>(included bark) , Dieback<br>(minor) , Included Bark<br>(natural for species) | Co-Dominant Stems                           | Co-Dominant Stems ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) |
| Retention<br>Value<br>(STARS)        |                     | High                                                                                              | High                                                 | High                                                                  | High                                               | High                            | High                                                            | Medium                                                                        | Medium                                                                                             | Medium                                      | High                                                                            |
| Landscape<br>Significance<br>(STARS) |                     | High                                                                                              | High                                                 | High                                                                  | High                                               | High                            | High                                                            | Medium                                                                        | Medium                                                                                             | Γοw                                         | High                                                                            |
| E.L.E                                |                     | 15-<br>40yrs                                                                                      | 15-<br>40yrs                                         | 15-<br>40yrs                                                          | 15-<br>40yrs                                       | 40<br>plus                      | 40<br>plus                                                      | 40<br>plus                                                                    | 15-<br>40yrs                                                                                       | 40<br>plus                                  | 40<br>plus                                                                      |
| Health                               |                     | Good                                                                                              | Good                                                 | Good                                                                  | Good                                               | Good                            | Good                                                            | Good                                                                          | Good                                                                                               | Good                                        | Good                                                                            |
| Structure                            |                     | Fair                                                                                              | Fair                                                 | Good                                                                  | Good                                               | Good                            | Fair                                                            | Good                                                                          | Good                                                                                               | Good                                        | Fair                                                                            |
| Age<br>Class                         |                     | Semi<br>Mature                                                                                    | uvenile                                              | Semi<br>Mature                                                        | Semi<br>Mature                                     | Semi<br>Mature                  | Semi<br>Mature                                                  | Mature                                                                        | Mature                                                                                             | Semi<br>Mature                              | Mature                                                                          |
| SRZ<br>Area<br>(M2)                  |                     | 11.1                                                                                              | l 9.6                                                | 14.2                                                                  | 13.6                                               | 15.9                            | 14.6                                                            | 16.3                                                                          | 15.6                                                                                               | 12.5                                        | 37.6                                                                            |
| SRZ<br>Radius<br>(M)                 |                     | 1.9                                                                                               | 1.8                                                  | 2.1                                                                   | 2.1                                                | 2.3                             | 2.2                                                             | 2.3                                                                           | 2.2                                                                                                | 2.0                                         | 3.5                                                                             |
| TPZ<br>Area<br>(M2)                  |                     | 23.9                                                                                              | 13.1                                                 | 95.7                                                                  | 30.6                                               | 46.3                            | 43.5                                                            | 72.4                                                                          | 65.3                                                                                               | 33.0                                        | 289.5                                                                           |
| TPZ<br>Radius<br>(M)                 |                     | 2.8                                                                                               | 2.0                                                  | 5.5                                                                   | 3.1                                                | 3.8                             | 3.7                                                             | 4.8                                                                           | 4.6                                                                                                | 3.2                                         | 9.6                                                                             |
| DRB<br>(M)                           |                     | 0.26                                                                                              | 0.22                                                 | 0.35                                                                  | 0.33                                               | 0.4                             | 0.36                                                            | 0.41                                                                          | 0.39                                                                                               | 0.3                                         | 1.11                                                                            |
| DBH<br>(M)                           |                     | 0.23                                                                                              | 0.17                                                 | 0.46                                                                  | 0.26                                               | 0.32                            | 0.31                                                            | 0.4                                                                           | 0.38                                                                                               | 0.27                                        | 0.8                                                                             |
| Spread<br>(M) N,<br>E, S, W          |                     | 2,2,3,2                                                                                           | 2,2,2,2                                              | 3,3,3,4                                                               | 3,3,3,3                                            | 4,4,4,4                         | 4,4,3,2                                                         | 4,5,6,4                                                                       | 4,3,5,4                                                                                            | 3,3,3,3                                     | 5,6,7,5                                                                         |
| Height<br>(M)                        |                     | 12                                                                                                | 12                                                   | 14                                                                    | 13                                                 | 14                              | 15                                                              | Q                                                                             | Q                                                                                                  | 7                                           | 15                                                                              |
| Tree Species                         | (Sydney Red<br>Gum) | Casuarina glauca<br>(Swamp-Oak)                                                                   | Casuarina glauca<br>(Swamp-Oak)                      | Casuarina glauca<br>(Swamp-Oak)                                       | Casuarina glauca<br>(Swamp-Oak)                    | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak)                                 | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush)                          | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush)                                               | Magnolia<br>grandiflora<br>(White magnolia) | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                       |
| Tree<br>ID                           |                     | T54                                                                                               | T55                                                  | T56                                                                   | T57                                                | T58                             | T59                                                             | T60                                                                           | T61                                                                                                | Т62                                         | T63                                                                             |



| Species<br>Origin                    | Native                                               | Native                                                                  | Exotic                               | Exotic                            | Native                                            | Native                               | Native                                                                        | Native                                               | Endemic                                                                                              | Endemic                                                       |
|--------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Notes                                |                                                      |                                                                         |                                      |                                   | Group of 4 clumping<br>palms                      |                                      |                                                                               |                                                      | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted |
| Observations and Defects             | Co-Dominant Stems<br>(included bark) ,<br>Suppressed | Co-Dominant Stems ,<br>Deadwood Minor (0-<br>30mm) , Dieback (isolated) | Co-Dominant Stems<br>(included bark) | Co-Dominant Stems                 |                                                   | Co-Dominant Stems<br>(included bark) | Co-Dominant Stems<br>(included bark) , Included<br>Bark (natural for species) | Poor Pruning (powerlines)                            |                                                                                                      |                                                               |
| Retention<br>Value<br>(STARS)        | Low                                                  | High                                                                    | Exempt                               | Exempt                            | Medium                                            | Exempt                               | Medium                                                                        | Medium                                               | High                                                                                                 | High                                                          |
| Landscape<br>Significance<br>(STARS) | Medium                                               | High                                                                    | Exempt                               | Exempt                            | Medium                                            | Exempt                               | Medium                                                                        | Medium                                               | High                                                                                                 | High                                                          |
| E.L.E                                | 5-<br>15yrs                                          | 40<br>plus                                                              | 15-<br>40yrs                         | 15-<br>40yrs                      | 40<br>plus                                        | 5-<br>15yrs                          | 15-<br>40yrs                                                                  | 15-<br>40yrs                                         | 40<br>plus                                                                                           | 40<br>plus                                                    |
| Health                               | Poor                                                 | Good                                                                    | Good                                 | Good                              | Good                                              | Poor                                 | Good                                                                          | Good                                                 | Good                                                                                                 | Good                                                          |
| Structure                            | Fair                                                 | Fair                                                                    | Good                                 | Good                              | Fair                                              | Good                                 | Good                                                                          | Fair                                                 | Good                                                                                                 | Good                                                          |
| Age<br>Class                         | Semi<br>Mature                                       | Mature                                                                  | Early<br>Mature                      | Early<br>Mature                   | Semi<br>Mature                                    | Juvenile                             | Early<br>Mature                                                               | Early<br>Mature                                      | Semi<br>Mature                                                                                       | Semi<br>Mature                                                |
| SRZ<br>Area<br>(M2)                  | 15.9                                                 | 22.4                                                                    | 12.9                                 | 13.6                              | 17.3                                              | 12.5                                 | 17.3                                                                          | 18.2                                                 | 15.9                                                                                                 | 15.6                                                          |
| SRZ<br>Radius<br>(M)                 | 2.3                                                  | 2.7                                                                     | 2.0                                  | 2.1                               | 2.3                                               | 2.0                                  | 2.3                                                                           | 2.4                                                  | 2.3                                                                                                  | 2.2                                                           |
| TPZ<br>Area<br>(M2)                  | 49.3                                                 | 136.8                                                                   | 21.9                                 | 38.0                              | 14.7                                              | 38.0                                 | 58.6                                                                          | 87.6                                                 | 52.3                                                                                                 | 35.5                                                          |
| TPZ<br>Radius<br>(M)                 | 4.0                                                  | 6.6                                                                     | 2.6                                  | 3.5                               | 2.2                                               | 3.5                                  | 4.3                                                                           | 5.3                                                  | 4.1                                                                                                  | 3.4                                                           |
| DRB<br>(M)                           | 0.4                                                  | 0.6                                                                     | 0.31                                 | 0.33                              | 0.44                                              | 0.3                                  | 0.44                                                                          | 0.47                                                 | 0.4                                                                                                  | 0.39                                                          |
| DBH<br>(M)                           | 0.33                                                 | 0.55                                                                    | 0.22                                 | 0.29                              | 0.18                                              | 0.29                                 | 0.36                                                                          | 0.44                                                 | 0.34                                                                                                 | 0.28                                                          |
| Spread<br>(M) N,<br>E, S, W          | 1,2,3,1                                              | 6,4,6,3                                                                 | 2,3,2,3                              | 3,3,3,2                           | 2,2,2,2                                           | 4,4,4                                | 4,4,4                                                                         | 5,4,3,5                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                       |
| Height<br>(M)                        | б                                                    | 15                                                                      | 6                                    | 10                                | ø                                                 | 9                                    | Q                                                                             | Q                                                    | 13                                                                                                   | 13                                                            |
| Tree Species                         | Syzygium<br>paniculatum<br>(Magenta Lilly<br>Pilly)  | Syzygium<br>paniculatum<br>(Magenta Lilly<br>Pilly)                     | Cupressus<br>species<br>(Conifer)    | Cupressus<br>species<br>(Conifer) | Archontophoenix<br>spp.<br>(Alex/Bagalow<br>Palm) | Ficus benjimina<br>(Weeping Fig)     | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush)                          | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush) | Casuarina glauca<br>(Swamp-Oak)                                                                      | Casuarina glauca<br>(Swamp-Oak)                               |
| Tree<br>ID                           | Т64                                                  | T65                                                                     | T66                                  | T67                               | Т68                                               | T69                                  | 170                                                                           | T71                                                  | 172                                                                                                  | T73                                                           |

ABNOBA ARBOR AF LEVEL 5 ARDORST[OTRA REGISTERED] ABN/1971602469 LIAM STRACHAN 0428215559 LIAMSTRACHANARB66CMAILCOM

| Species<br>Origin                    |                                     | Endemic                                                                                              |
|--------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Notes                                | growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen |
| Observations and Defects             |                                     |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |
| Retention<br>Value<br>(STARS)        |                                     | High                                                                                                 |
| Landscape<br>Significance<br>(STARS) |                                     | High                                                                                                 |
| E.L.E                                |                                     | 40<br>plus                                                                                           |
| Health                               |                                     | Good                                                                                                 |
| Structure                            |                                     | Good                                                                                                 |
| Age<br>Class                         |                                     | Semi<br>Mature                                                                                       |
| SRZ<br>Area<br>(M2)                  |                                     | 15.9                                                                                                 | 12.5                                                                                                 | 12.5                                                                                                 | 16.3                                                                                                 | 11.8                                                                                                 | 16.9                                                                                                 | 14.2                                                                                                 |
| SRZ<br>Radius<br>(M)                 |                                     | 2.3                                                                                                  | 2.0                                                                                                  | 2.0                                                                                                  | 2.3                                                                                                  | 1.9                                                                                                  | 2.3                                                                                                  | 2.1                                                                                                  |
| TPZ<br>Area<br>(M2)                  |                                     | 18.1                                                                                                 | 28.3                                                                                                 | 28.3                                                                                                 | 58.6                                                                                                 | 18.1                                                                                                 | 46.3                                                                                                 | 40.7                                                                                                 |
| TPZ<br>Radius<br>(M)                 |                                     | 2.4                                                                                                  | 3.0                                                                                                  | 3.0                                                                                                  | 4.3                                                                                                  | 2.4                                                                                                  | 3.8                                                                                                  | 3.6                                                                                                  |
| DRB<br>(M)                           |                                     | 0.4                                                                                                  | 0.3                                                                                                  | 0.3                                                                                                  | 0.41                                                                                                 | 0.28                                                                                                 | 0.43                                                                                                 | 0.35                                                                                                 |
| DBH<br>(M)                           |                                     | 0.2                                                                                                  | 0.25                                                                                                 | 0.25                                                                                                 | 0.36                                                                                                 | 0.2                                                                                                  | 0.32                                                                                                 | 0.3                                                                                                  |
| Spread<br>(M) N,<br>E, S, W          |                                     | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              |
| Height<br>(M)                        |                                     | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   |
| Tree Species                         |                                     | Casuarina glauca<br>(Swamp-Oak)                                                                      |
| Tree<br>ID                           |                                     | T74                                                                                                  | T75                                                                                                  | T76                                                                                                  | T77                                                                                                  | T78                                                                                                  | T79                                                                                                  | T80                                                                                                  |



| Species<br>Origin                    | Endemic                                                                                              | Endemic                                                       |
|--------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Notes                                | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted |
| Observations and Defects             |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                               |
| Retention<br>Value<br>(STARS)        | High                                                                                                 | High                                                          |
| Landscape<br>Significance<br>(STARS) | High                                                                                                 | High                                                          |
| E.L.E                                | 40<br>plus                                                                                           | 40<br>plus                                                    |
| Health                               | Good                                                                                                 | Good                                                          |
| Structure                            | Good                                                                                                 | Good                                                          |
| Age<br>Class                         | Semi<br>Mature                                                                                       | Semi<br>Mature                                                |
| SRZ<br>Area<br>(M2)                  | 12.5                                                                                                 | 12.5                                                                                                 | 12.5                                                                                                 | 12.5                                                                                                 | 12.5                                                                                                 | 12.5                                                                                                 | 17.6                                                                                                 | 15.9                                                          |
| SRZ<br>Radius<br>(M)                 | 2.0                                                                                                  | 2.0                                                                                                  | 2.0                                                                                                  | 2.0                                                                                                  | 2.0                                                                                                  | 2.0                                                                                                  | 2.4                                                                                                  | 2.3                                                           |
| TPZ<br>Area<br>(M2)                  | 28.3                                                                                                 | 28.3                                                                                                 | 28.3                                                                                                 | 28.3                                                                                                 | 28.3                                                                                                 | 28.3                                                                                                 | 6.66                                                                                                 | 52.3                                                          |
| TPZ<br>Radius<br>(M)                 | 3.0                                                                                                  | 3.0                                                                                                  | 3.0                                                                                                  | 3.0                                                                                                  | 3.0                                                                                                  | 3.0                                                                                                  | 5.6                                                                                                  | 4.1                                                           |
| DRB<br>(M)                           | 0.3                                                                                                  | 0.3                                                                                                  | 0.3                                                                                                  | 0.3                                                                                                  | 0.3                                                                                                  | 0.3                                                                                                  | 0.45                                                                                                 | 0.4                                                           |
| (M)                                  | 0.25                                                                                                 | 0.25                                                                                                 | 0.25                                                                                                 | 0.25                                                                                                 | 0.25                                                                                                 | 0.25                                                                                                 | 0.47                                                                                                 | 0.34                                                          |
| Spread<br>(M) N,<br>E, S, W          | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                       |
| Height<br>(M)                        | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                            |
| Tree Species                         | Casuarina glauca<br>(Swamp-Oak)                                                                      | Casuarina glauca<br>(Swamp-Oak)                               |
| Tree<br>ID                           | T81                                                                                                  | T82                                                                                                  | T83                                                                                                  | Т84                                                                                                  | T85                                                                                                  | Т86                                                                                                  | T87                                                                                                  | T88                                                           |

ABNOBA ARBOR AF LEVEL 5 ARDORISTIGTA REGISTERED ARN/197/602469 LIAM STRACHAN 0426215559 LIAMSTRACHANARB66CMAIL.COM

| Species<br>Origin                    |                                     | Endemic                                                                                              |
|--------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Notes                                | growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen |
| Observations and Defects             |                                     |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |
| Retention<br>Value<br>(STARS)        |                                     | High                                                                                                 |
| Landscape<br>Significance<br>(STARS) |                                     | High                                                                                                 |
| E.L.E                                |                                     | 40<br>plus                                                                                           |
| Health                               |                                     | Good                                                                                                 |
| Structure                            |                                     | Good                                                                                                 |
| Age<br>Class                         |                                     | Semi<br>Mature                                                                                       |
| SRZ<br>Area<br>(M2)                  |                                     | 12.5                                                                                                 | 12.5                                                                                                 | 13.2                                                                                                 | 15.6                                                                                                 | 12.5                                                                                                 | 12.5                                                                                                 | 15.9                                                                                                 |
| SRZ<br>Radius<br>(M)                 |                                     | 2.0                                                                                                  | 2.0                                                                                                  | 2.1                                                                                                  | 2.2                                                                                                  | 2.0                                                                                                  | 2.0                                                                                                  | 2.3                                                                                                  |
| TPZ<br>Area<br>(M2)                  |                                     | 28.3                                                                                                 | 28.3                                                                                                 | 35.5                                                                                                 | 58.6                                                                                                 | 28.3                                                                                                 | 28.3                                                                                                 | 46.3                                                                                                 |
| TPZ<br>Radius<br>(M)                 |                                     | 3.0                                                                                                  | 3.0                                                                                                  | 3.4                                                                                                  | 4.3                                                                                                  | 3.0                                                                                                  | 3.0                                                                                                  | 8.<br>8.                                                                                             |
| DRB<br>(M)                           |                                     | 0.3                                                                                                  | 0.3                                                                                                  | 0.32                                                                                                 | 0.39                                                                                                 | 0.3                                                                                                  | 0.3                                                                                                  | 0.4                                                                                                  |
| DBH<br>(M)                           |                                     | 0.25                                                                                                 | 0.25                                                                                                 | 0.28                                                                                                 | 0.36                                                                                                 | 0.25                                                                                                 | 0.25                                                                                                 | 0.32                                                                                                 |
| Spread<br>(M) N,<br>E, S, W          |                                     | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              |
| Height<br>(M)                        |                                     | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   |
| Tree Species                         |                                     | Casuarina glauca<br>(Swamp-Oak)                                                                      |
| Tree<br>ID                           |                                     | Т89                                                                                                  | 06T                                                                                                  | T91                                                                                                  | Т92                                                                                                  | Т93                                                                                                  | Т94                                                                                                  | T95                                                                                                  |



| Species<br>Origin                    | Endemic                                                                                                                                                            |
|--------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes                                | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Stand of trees with<br>integrated root<br>system, roots noted<br>growing through<br>existing bitumen | Tree species<br>renowned for having<br>expansive root<br>system, root<br>concentration maybe<br>higher in the carpark<br>due to the curbstone                      |
| Observations and Defects             |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      |                                                                                                      | Cavity (minor) , Co-<br>Dominant Stems (included<br>bark) , Deadwood Minor<br>(0-30mm) , Decay ,<br>Dieback (isolated) ,<br>Included Bark (natural for<br>species) |
| Retention<br>Value<br>(STARS)        | High                                                                                                                                                               |
| Landscape<br>Significance<br>(STARS) | High                                                                                                                                                               |
| E.L.E                                | 40<br>plus                                                                                           | 40<br>plus                                                                                           | 40<br>plus                                                                                           | 40<br>plus                                                                                           | 40<br>plus                                                                                           | 40<br>plus                                                                                           | 15-<br>40yrs                                                                                                                                                       |
| Health                               | Good                                                                                                                                                               |
| Structure                            | Good                                                                                                                                                               |
| Age<br>Class                         | Semi<br>Mature                                                                                       | Semi<br>Mature                                                                                       | Semi<br>Mature                                                                                       | Semi<br>Mature                                                                                       | Semi<br>Mature                                                                                       | Semi<br>Mature                                                                                       | Mature                                                                                                                                                             |
| SRZ<br>Area<br>(M2)                  | 18.2                                                                                                 | 18.9                                                                                                 | 12.5                                                                                                 | 14.2                                                                                                 | 13.9                                                                                                 | 24.6                                                                                                 | 37.8                                                                                                                                                               |
| SRZ<br>Radius<br>(M)                 | 2.4                                                                                                  | 2.5                                                                                                  | 2.0                                                                                                  | 2.1                                                                                                  | 2.1                                                                                                  | 2.8                                                                                                  | 3.5<br>3.5                                                                                                                                                         |
| TPZ<br>Area<br>(M2)                  | 76.0                                                                                                 | 95.7                                                                                                 | 28.3                                                                                                 | 38.0                                                                                                 | 40.7                                                                                                 | 162.9                                                                                                | 443.4                                                                                                                                                              |
| TPZ<br>Radius<br>(M)                 | 4.9                                                                                                  | 5.5                                                                                                  | 3.0                                                                                                  | 3.5                                                                                                  | 3.6                                                                                                  | 7.2                                                                                                  | 11.9                                                                                                                                                               |
| DRB<br>(M)                           | 0.47                                                                                                 | 0.49                                                                                                 | 0.3                                                                                                  | 0.35                                                                                                 | 0.34                                                                                                 | 0.67                                                                                                 | 1.12                                                                                                                                                               |
| DBH<br>(M)                           | 0.41                                                                                                 | 0.46                                                                                                 | 0.25                                                                                                 | 0.29                                                                                                 | 0.3                                                                                                  | 0.6                                                                                                  | 66.0                                                                                                                                                               |
| Spread<br>(M) N,<br>E, S, W          | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 3,3,3,3                                                                                              | 7,8,7,8                                                                                                                                                            |
| Height<br>(M)                        | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 13                                                                                                   | 18                                                                                                                                                                 |
| Tree Species                         | Casuarina glauca<br>(Swamp-Oak)<br>(Swamp-Oak)<br>(Swamp-Oak)                                        |                                                                                                      | Casuarina glauca<br>(Swamp-Oak)                                                                      | Casuarina glauca<br>(Swamp-Oak)                                                                      | Casuarina glauca<br>(Swamp-Oak)                                                                      | Casuarina glauca<br>(Swamp-Oak)                                                                      | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                          |
| Tree<br>ID                           | T96                                                                                                  | T97                                                                                                  | T98                                                                                                  | T99                                                                                                  | T100                                                                                                 | T101                                                                                                 | T102                                                                                                                                                               |

ABNOBA ARBOR AP LEVEL 5 ABORISTIGTRA REGISTERED ABN/1971602469 LIAM STRACHAN 0426215559 LIAMSTRACHANARB6GMAILCOM

| Species<br>Origin                    |                                          | Endemic Endemic                                                                                                                                                                       |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   | Endemic                                                                 | Endemic                                                                 |
|--------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Notes                                | on the Pittwater Rd.<br>side of the tree |                                                                                                                                                                                       |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   | Root spread likely<br>constrained due to<br>sandstone retaining<br>wall | Root spread likely<br>constrained due to<br>sandstone retaining<br>wall |
| Observations and Defects             |                                          | Co-Dominant Stems<br>(included bark), Crossing<br>Rubbing Branches ,<br>Deadwood Minor (0-<br>30mm) , Dieback (isolated)<br>, Included Bark (natural for<br>species) , Wounds (minor) | Co-Dominant Stems<br>(included bark), Crossing<br>Rubbing Branches ,<br>Deadwood Minor (0-<br>30mm), Dieback (isolated)<br>, Included Bark (natural for<br>species), Root Scalping ,<br>Wounds (minor) | Co-Dominant Stems<br>(included bark), Crossing<br>Rubbing Branches,<br>Deadwood Minor (0-<br>30mm), Dieback (isolated)<br>, Included Bark (natural for<br>species), Over Extended<br>Limbs (isolated), Root<br>Scalping, Weak Branch<br>Attachments (isolated),<br>Wounds (minor) | Co-Dominant Stems                                                       | Co-Dominant Stems<br>(included bark)                                    |
| Retention<br>Value<br>(STARS)        |                                          | Н<br>Ча                                                                                                                                                                               | Нġ                                                                                                                                                                                                     | Е́в                                                                                                                                                                                                                                                                               | Medium                                                                  | Medium                                                                  |
| Landscape<br>Significance<br>(STARS) |                                          | High                                                                                                                                                                                  | нġ<br>Н                                                                                                                                                                                                | Ев<br>Ев                                                                                                                                                                                                                                                                          | Medium                                                                  | Medium                                                                  |
| E.L.E                                |                                          | 40<br>plus                                                                                                                                                                            | 40<br>plus                                                                                                                                                                                             | 40<br>plus                                                                                                                                                                                                                                                                        | 15-<br>40yrs                                                            | 15-<br>40yrs                                                            |
| Health                               |                                          | Good                                                                                                                                                                                  | Good                                                                                                                                                                                                   | Good                                                                                                                                                                                                                                                                              | Good                                                                    | Good                                                                    |
| Structure                            |                                          | Good                                                                                                                                                                                  | Good                                                                                                                                                                                                   | b<br>G<br>O<br>G                                                                                                                                                                                                                                                                  | Good                                                                    | Good                                                                    |
| Age<br>Class                         |                                          | Mature                                                                                                                                                                                | Mature                                                                                                                                                                                                 | Mature                                                                                                                                                                                                                                                                            | Semi<br>Mature                                                          | Semi<br>Mature                                                          |
| SRZ<br>Area<br>(M2)                  |                                          | 34.4                                                                                                                                                                                  | 33.<br>33                                                                                                                                                                                              | 34.1                                                                                                                                                                                                                                                                              | 16.9                                                                    | 20.8                                                                    |
| SRZ<br>Radius<br>(M)                 |                                          | ů.                                                                                                                                                                                    | ů<br>vi                                                                                                                                                                                                | n.<br>M                                                                                                                                                                                                                                                                           | 2.3                                                                     | 2.6                                                                     |
| TPZ<br>Area<br>(M2)                  |                                          | 350.3                                                                                                                                                                                 | 358.3                                                                                                                                                                                                  | 452.4                                                                                                                                                                                                                                                                             | 52.3                                                                    | 95.7                                                                    |
| TPZ<br>Radius<br>(M)                 |                                          | 10.6                                                                                                                                                                                  | 10.7                                                                                                                                                                                                   | 12.0                                                                                                                                                                                                                                                                              | 4.1                                                                     | 5.5                                                                     |
| DRB<br>(M)                           |                                          | 1                                                                                                                                                                                     | 0.98                                                                                                                                                                                                   | 66.0                                                                                                                                                                                                                                                                              | 0.43                                                                    | 0.55                                                                    |
| DBH<br>(M)                           |                                          | 0.88                                                                                                                                                                                  | 0.89                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                 | 0.34                                                                    | 0.46                                                                    |
| Spread<br>(M) N,<br>E, S, W          |                                          | 6,7,6,7                                                                                                                                                                               | 7,7,8,7                                                                                                                                                                                                | 8,6,6,8                                                                                                                                                                                                                                                                           | 5,5,5,5                                                                 | 5,4,4,5                                                                 |
| Height<br>(M)                        |                                          | 14                                                                                                                                                                                    | 15                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                | Q                                                                       | ~                                                                       |
| Tree Species                         |                                          | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                             | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                                              | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                                                                                                                         | Glochidion<br>ferdinandi<br>(Cheese Tree)                               | Glochidion<br>ferdinandi<br>(Cheese Tree)                               |
| Tree<br>ID                           |                                          | T103                                                                                                                                                                                  |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   | T106                                                                    | T107                                                                    |



| Species<br>Origin                    | Endemic                                                                 | Endemic                                                                                                                                     | Endemic                                                                                                                                       | Endemic                                   | Endemic                              | Endemic                                                                                                                                                                         | Exotic                                   |
|--------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Notes                                | Root spread likely<br>constrained due to<br>sandstone retaining<br>wall | Root spread likely<br>constrained due to<br>sandstone retaining<br>wall                                                                     | Root spread likely<br>constrained due to<br>sandstone retaining<br>wall                                                                       |                                           |                                      | Root spread likely<br>constrained due to<br>sandstone retaining<br>wall                                                                                                         |                                          |
| Observations and Defects             | Co-Dominant Stems<br>(included bark) ,<br>Deadwood Minor (0-<br>30mm)   | Co-Dominant Stems<br>(included bark) ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Included Bark<br>(natural for species) | Co-Dominant Stems<br>(included bark) , Crossing<br>Rubbing Branches ,<br>Deadwood Minor (0-<br>30mm) , Included Bark<br>(natural for species) | Co-Dominant Stems                         | Co-Dominant Stems<br>(included bark) | Co-Dominant Stems<br>(included bark) ,<br>Deadwood Moderate (30-<br>100mm) , Dieback<br>(isolated) , Included Bark<br>(natural for species) , Over<br>Extended Limbs (isolated) |                                          |
| Retention<br>Value<br>(STARS)        | Medium                                                                  | Н<br>Ц                                                                                                                                      | Н<br>Цġ                                                                                                                                       | Medium                                    | Medium                               | н<br>Б                                                                                                                                                                          | Exempt                                   |
| Landscape<br>Significance<br>(STARS) | Medium                                                                  | High                                                                                                                                        | High                                                                                                                                          | Medium                                    | Low                                  | High                                                                                                                                                                            | Exempt                                   |
| E.L.E                                | 15-<br>40yrs                                                            | 40<br>plus                                                                                                                                  | 40<br>plus                                                                                                                                    | 40<br>plus                                | 15-<br>40yrs                         | 40<br>plus                                                                                                                                                                      | 40<br>plus                               |
| Health                               | Good                                                                    | Good                                                                                                                                        | Good                                                                                                                                          | Fair                                      | Good                                 | Good                                                                                                                                                                            | Good                                     |
| Structure                            | Good                                                                    | Good                                                                                                                                        | Good                                                                                                                                          | Fair                                      | Fair                                 | Good                                                                                                                                                                            | Good                                     |
| Age<br>Class                         | Semi<br>Mature                                                          | Mature                                                                                                                                      | Mature                                                                                                                                        | Semi<br>Mature                            | Juvenile                             | Mature                                                                                                                                                                          | Mature                                   |
| SRZ<br>Area<br>(M2)                  | 18.6                                                                    | 45.6                                                                                                                                        | 27.9                                                                                                                                          | 20.8                                      | 8.5                                  | 43.7                                                                                                                                                                            | 13.6                                     |
| SRZ<br>Radius<br>(M)                 | 2.4                                                                     | ю.<br>Ю                                                                                                                                     | 3.0                                                                                                                                           | 2.6                                       | 1.6                                  | 3.7                                                                                                                                                                             | 2.1                                      |
| TPZ<br>Area<br>(M2)                  | 52.3                                                                    | 684.4                                                                                                                                       | 203.1                                                                                                                                         | 72.4                                      | 12.6                                 | 358.3                                                                                                                                                                           | 35.5                                     |
| TPZ<br>Radius<br>(M)                 | 4.1                                                                     | 14.8                                                                                                                                        | 8.0                                                                                                                                           | 4.8                                       | 2.0                                  | 10.7                                                                                                                                                                            | 3.4                                      |
| DRB<br>(M)                           | 0.48                                                                    | 1.4                                                                                                                                         | 0.78                                                                                                                                          | 0.55                                      | 0.19                                 | 1.33                                                                                                                                                                            | 0.33                                     |
| DBH<br>(M)                           | 0.34                                                                    | 1.23                                                                                                                                        | 0.67                                                                                                                                          | 0.4                                       | 0.16                                 | 0.89                                                                                                                                                                            | 0.28                                     |
| Spread<br>(M) N,<br>E, S, W          | 5,6,7,5                                                                 | 8,2,3,8                                                                                                                                     | 5,6,4,6                                                                                                                                       | 4,5,4,5                                   | 2,2,2,2                              | 6,7,5,6                                                                                                                                                                         | 4,4,4                                    |
| Height<br>(M)                        | ω                                                                       | 18                                                                                                                                          | 15                                                                                                                                            | œ                                         | 7                                    | 18                                                                                                                                                                              | 12                                       |
| Tree Species                         | Glochidion<br>ferdinandi<br>(Cheese Tree)                               | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                   | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                     | Glochidion<br>ferdinandi<br>(Cheese Tree) | Casuarina glauca<br>(Swamp-Oak)      | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                       | Syagrus<br>romanzoffiana<br>(Cocos Palm) |
| Tree<br>ID                           | T108                                                                    | T109                                                                                                                                        | T110                                                                                                                                          | Т111                                      | T112                                 | Т113                                                                                                                                                                            | Т114                                     |



# **12.2 SCHEDULE 2: DEVELOPMENT IMPACT**

## Table 18

| cific Tree Protection Measures            |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                      |                                      |                                      |                                      |                                      |
|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Generic<br>Tree<br>Protection<br>Measures |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                      |                                      |                                      |                                      |                                      |
| Retain/<br>Remove                         | Remove                                    | Remove                               | Remove                               | Remove                               | Remove                               | Remove                               |
| Encroachment Type                         | Realligned stormwater<br>and wetland area | Bulk Earthworks for new<br>clubhouse |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  | In Footprint                              | In Footprint                         | In Footprint                         | In Footprint                         | In Footprint                         | In Footprint                         |
| TPZ<br>Encroachment<br>%                  | 0.00%                                     | 0.00%                                     | 0.00%                                     | 0.00%                                     | 0.00%                                     | 0.00%                                     | 0.00%                                     | 0.00%                                     | 0.00%                                     | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                |
| TPZ<br>Encroachment<br>(M2)               | 0.73                                      | 0                                         | 0                                         | 0                                         | 0                                         | 0                                         | 0                                         | 0                                         | 0                                         | 0                                    | 0                                    | 0                                    | 6.13                                 | 4.26                                 |
| ln<br>SRZ                                 |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                      |                                      |                                      |                                      |                                      |
| ln<br>Development<br>Footprint            | Yes                                       | Yes                                  | Yes                                  | Yes                                  | Yes                                  | Yes                                  |
| SRZ<br>Area<br>(M2)                       | 12.9                                      | 21.1                                      | 26.7                                      | 25.2                                      | 20.2                                      | 11.5                                      | 20.2                                      | 20.2                                      | 27.6                                      | 31.8                                 | 15.9                                 | 10.0                                 | 20.8                                 | 15.3                                 |
| SRZ<br>Radius<br>(M)                      | 2.0                                       | 2.6                                       | 2.9                                       | 2.8                                       | 2.5                                       | 1.9                                       | 2.5                                       | 2.5                                       | 3.0                                       | 3.2                                  | 2.3                                  | 1.8                                  | 2.6                                  | 2.2                                  |
| TPZ<br>Area<br>(M2)                       | 30.6                                      | 87.6                                      | 162.9                                     | 131.9                                     | 6.66                                      | 18.1                                      | 79.8                                      | 87.6                                      | 191.1                                     | 275.2                                | 52.3                                 | 16.3                                 | 79.8                                 | 43.5                                 |
| Height<br>(M)                             | 12                                        | 15                                        | 15                                        | 15                                        | 15                                        | 11                                        | 15                                        | 16                                        | 17                                        | 18                                   | 19                                   | 14                                   | 17                                   | 14                                   |
| Tree Species                              | Casuarina glauca<br>(Swamp-Oak)           | Casuarina glauca<br>(Swamp-Oak)      | Casuarina glauca<br>(Swamp-Oak)      | Casuarina glauca<br>(Swamp-Oak)      | Casuarina glauca<br>(Swamp-Oak)      | Casuarina glauca<br>(Swamp-Oak)      |
| Tree                                      | 11                                        | T2                                        | T3                                        | T4                                        | T5                                        | T6                                        | 1                                         | T8                                        | T9                                        | T10                                  | T11                                  | T12                                  | T13                                  | T14                                  |



| Specific Tree Protection Measures         |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Generic<br>Tree<br>Protection<br>Measures |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| Retain/<br>Remove                         | Remove                               |
| Encroachment Type                         | Bulk Earthworks for new<br>clubhouse |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  | In Footprint                         |
| TPZ<br>Encroachment<br>%                  | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                |
| TPZ<br>Encroachment<br>(M2)               |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      | 0                                    | 0                                    | 0                                    | 0                                    | 0                                    | 0                                    | 0                                    | 0                                    |
| ln<br>SRZ                                 |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| In<br>Development<br>Footprint            | Yes                                  |
| SRZ<br>Area<br>(M2)                       | 9.6                                  | 12.5                                 | 12.2                                 | 21.1                                 | 20.8                                 | 24.3                                 | 12.2                                 | 12.2                                 | 17.9                                 | 16.3                                 | 20.2                                 | 19.9                                 | 15.9                                 | 27.6                                 | 24.3                                 | 8.5                                  |
| SRZ<br>Radius<br>(M)                      | 1.8                                  | 2.0                                  | 2.0                                  | 2.6                                  | 2.6                                  | 2.8                                  | 2.0                                  | 2.0                                  | 2.4                                  | 2.3                                  | 2.5                                  | 2.5                                  | 2.3                                  | 3.0                                  | 2.8                                  | 1.6                                  |
| TPZ<br>Area<br>(M2)                       | 14.7                                 | 21.9                                 | 23.9                                 | 87.6                                 | 72.4                                 | 122.3                                | 26.1                                 | 26.1                                 | 87.6                                 | 46.3                                 | 76.0                                 | 68.8                                 | 46.3                                 | 147.0                                | 95.7                                 | 10.2                                 |
| Height<br>(M)                             | 13                                   | 13                                   | 14                                   | 18                                   | 17                                   | 17                                   | 13                                   | 14                                   | 19                                   | 16                                   | 19                                   | 18                                   | 16                                   | 19                                   | 19                                   | 2                                    |
| Tree Species                              | Casuarina glauca<br>(Swamp-Oak)      |
| Tree                                      | T15                                  | T16                                  | T17                                  | T18                                  | T19                                  | T20                                  | T21                                  | T22                                  | T23                                  | T24                                  | T25                                  | T26                                  | T27                                  | T28                                  | T29                                  | T30                                  |



| Specific Tree Protection Measures         |                                      |                                      |                                      |                                          |                                                                                                                                             |                                                                                                                                             |                                                                                                                                             |                                                                                                                             |                                                                                                    |
|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Generic<br>Tree<br>Protection<br>Measures |                                      |                                      |                                      |                                          |                                                                                                                                             |                                                                                                                                             |                                                                                                                                             |                                                                                                                             |                                                                                                    |
| Retain/<br>Remove                         | Remove                               | Remove                               | Remove                               | Remove                                   | Remove                                                                                                                                      | Remove                                                                                                                                      | Remove                                                                                                                                      | Remove                                                                                                                      | Remove                                                                                             |
| Encroachment Type                         | Bulk Earthworks for new<br>clubhouse     | Exempt species, tree is<br>earmarked for removal<br>on demolition plan,<br>presumably for upgrades<br>to the stormwater and<br>wetland area | Exempt species, tree is<br>earmarked for removal<br>on demolition plan,<br>presumably for upgrades<br>to the stormwater and<br>wetland area | Exempt species, tree is<br>earmarked for removal<br>on demolition plan,<br>presumably for upgrades<br>to the stormwater and<br>wetland area | tree is earmarked for<br>removal on demolition<br>plan, presumably for<br>upgrades to the<br>stormwater and wetland<br>area | Exempt species, tree is<br>earmarked for removal<br>on demolition plan,<br>presumably for upgrades |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  | In Footprint                         | In Footprint                         | In Footprint                         | In Footprint                             | In Footprint                                                                                                                                | In Footprint                                                                                                                                | In Footprint                                                                                                                                | In Footprint                                                                                                                | In Footprint                                                                                       |
| TPZ<br>Encroachment<br>%                  | 0.00%                                | 0.00%                                | 0.00%                                | 0.00%                                    | 0.00%                                                                                                                                       | 0.00%                                                                                                                                       | 0.00%                                                                                                                                       | 0.00%                                                                                                                       | 0.00%                                                                                              |
| TPZ<br>Encroachment<br>(M2)               | 0                                    | 0                                    | 0                                    | o                                        | o                                                                                                                                           | O                                                                                                                                           | O                                                                                                                                           | O                                                                                                                           | 0                                                                                                  |
| ln<br>SRZ                                 |                                      |                                      |                                      |                                          |                                                                                                                                             |                                                                                                                                             |                                                                                                                                             |                                                                                                                             |                                                                                                    |
| ln<br>Development<br>Footprint            | Yes                                  | Yes                                  | Yes                                  | Yes                                      | Yes                                                                                                                                         | Yes                                                                                                                                         | Yes                                                                                                                                         | Yes                                                                                                                         | Yes                                                                                                |
| SRZ<br>Area<br>(M2)                       | 15.3                                 | 17.9                                 | 19.2                                 | 13.2                                     | 21.1                                                                                                                                        | 24.3                                                                                                                                        | 37.6                                                                                                                                        | 24.3                                                                                                                        | 12.9                                                                                               |
| SRZ<br>Radius<br>(M)                      | 2.2                                  | 2.4                                  | 2.5                                  | 2.1                                      | 2.6                                                                                                                                         | 2.8                                                                                                                                         | ы<br>Г                                                                                                                                      | 2.8                                                                                                                         | 2.0                                                                                                |
| TPZ<br>Area<br>(M2)                       | 40.7                                 | 76.0                                 | 79.8                                 | 28.3                                     | 72.4                                                                                                                                        | 72.4                                                                                                                                        | 662.3                                                                                                                                       | 52.3                                                                                                                        | 35.5                                                                                               |
| Height<br>(M)                             | 16                                   | 18                                   | 19                                   | 6                                        | 14                                                                                                                                          | 14                                                                                                                                          | 16                                                                                                                                          | Q                                                                                                                           | 12                                                                                                 |
| Tree Species                              | Casuarina glauca<br>(Swamp-Oak)      | Casuarina glauca<br>(Swamp-Oak)      | Casuarina glauca<br>(Swamp-Oak)      | Harpophyllum<br>caffrum<br>(Kaffir Plum) | Cupressus<br>species<br>(Conifer)                                                                                                           | Harpophyllum<br>caffrum<br>(Kaffir Plum)                                                                                                    | Harpophyllum<br>caffrum<br>(Kaffir Plum)                                                                                                    | Cinnamomum<br>camphora<br>(Camphor Laurel)                                                                                  | Glochidion<br>ferdinandi<br>(Cheese Tree)                                                          |
| Tree<br>ID                                | T31                                  | T32                                  | T33                                  | T34                                      | T35                                                                                                                                         | Т36                                                                                                                                         | Т37                                                                                                                                         | Т38                                                                                                                         | T39                                                                                                |

ABNOBA ARBOR AF LEVEL 5 ARBORISTIGTRA REGISTERED ABN: 1971602469 LIAM STRACHAN 0426215539 LIAMSTRACHANARB96MAIL.COM

| Specific Tree Protection Measures         |                                       |                                                                                                                                             |                                                                                                                                             |                                                                                                           |                                                                     |                                                                     |                                          |                                             |                       |
|-------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|---------------------------------------------|-----------------------|
| Generic<br>Tree<br>Protection<br>Measures |                                       |                                                                                                                                             |                                                                                                                                             |                                                                                                           | TPZ Fencing                                                         | TPZ Fencing                                                         | TPZ Fencing                              | TPZ Fencing                                 | TPZ Fencing           |
| Retain/<br>Remove                         |                                       | Remove                                                                                                                                      | Remove                                                                                                                                      | Remove                                                                                                    | Retain                                                              | Retain                                                              | Retain                                   | Retain                                      | Retain                |
| Encroachment Type                         | to the stormwater and<br>wetland area | Exempt species, tree is<br>earmarked for removal<br>on demolition plan,<br>presumably for upgrades<br>to the stormwater and<br>wetland area | Exempt species, tree is<br>earmarked for removal<br>on demolition plan,<br>presumably for upgrades<br>to the stormwater and<br>wetland area | Endemic tree species<br>earmarked for removal<br>on demolition plan from<br>carpark passes through<br>SRZ | Endemic tree species<br>earmarked for removal<br>on demolition plan | Endemic tree species<br>earmarked for removal<br>on demolition plan |                                          |                                             |                       |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  |                                       | In Footprint                                                                                                                                | In Footprint                                                                                                                                | In Footprint                                                                                              | In Footprint                                                        | In Footprint                                                        | lin                                      | īž                                          | ī                     |
| TPZ<br>Encroachment<br>%                  |                                       | 0.00%                                                                                                                                       | 0.00%                                                                                                                                       | %00.0                                                                                                     | 0.00%                                                               | 0.00%                                                               | 0.00%                                    | 0.00%                                       | 0.00%                 |
| TPZ<br>Encroachment<br>(M2)               |                                       | O                                                                                                                                           | O                                                                                                                                           | O                                                                                                         | 0                                                                   | 0                                                                   | 0                                        | O                                           | 0                     |
| ln<br>SRZ                                 |                                       |                                                                                                                                             |                                                                                                                                             |                                                                                                           |                                                                     |                                                                     |                                          |                                             |                       |
| In<br>Development<br>Footprint            |                                       | Yes                                                                                                                                         | Yes                                                                                                                                         | Yes                                                                                                       | Yes                                                                 | Yes                                                                 | No                                       | °<br>Z                                      | N                     |
| SRZ<br>Area<br>(M2)                       |                                       | 7.0                                                                                                                                         | 27.6                                                                                                                                        | 16.6                                                                                                      | 16.6                                                                | 10.0                                                                | 11.8                                     | 12.2                                        | 9.6                   |
| SRZ<br>Radius<br>(M)                      |                                       | 1.5                                                                                                                                         | 3.0                                                                                                                                         | 2.3                                                                                                       | 2.3                                                                 | 1.8                                                                 | 1.9                                      | 2.0                                         | 1.8                   |
| TPZ<br>Area<br>(M2)                       |                                       | 7.6                                                                                                                                         | 141.9                                                                                                                                       | 58.6                                                                                                      | 61.9                                                                | 14.7                                                                | 21.9                                     | 21.9                                        | 13.1                  |
| Height<br>(M)                             |                                       | 11                                                                                                                                          | œ                                                                                                                                           | 16                                                                                                        | 12                                                                  | 14                                                                  | 6                                        | 11                                          | 8                     |
| Tree Species                              |                                       | Cupressus<br>species<br>(Conifer)                                                                                                           | Harpophyllum<br>caffrum<br>(Kaffir Plum)                                                                                                    | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)                                                              | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)                        | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)                        | Syagrus<br>romanzoffiana<br>(Cocos Palm) | Angophora<br>costata<br>(Sydney Red<br>Gum) | Eucalyptus<br>robusta |
| Tree                                      |                                       | T40                                                                                                                                         | T41                                                                                                                                         | T42                                                                                                       | T43                                                                 | T44                                                                 | T45                                      | T46                                         | Т47                   |

ABNOBA ARBOR AF LEVEL 5 ARDORISTIGTRA REGISTERED ABN: 1971 602469 LIAM STRACHAN 0426215559 LIAMSTRACHANARB6GMAIL.COM

| Specific Tree Protection Measures         |                     |                                                                 |                                              |                                                    |                                                 |                                             |                                             |                                 |                                 |                                 |                                 |
|-------------------------------------------|---------------------|-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Generic<br>Tree<br>Protection<br>Measures |                     | TPZ Fencing                                                     | TPZ Fencing                                  | TPZ Fencing                                        | TPZ Fencing                                     | TPZ Fencing                                 | TPZ Fencing                                 | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     |
| Retain/<br>Remove                         |                     | Retain                                                          | Retain                                       | Retain                                             | Retain                                          | Retain                                      | Retain                                      | Retain                          | Retain                          | Retain                          | Retain                          |
| Encroachment Type                         |                     | TPZ extends on to the<br>subject site,<br>encroachemnt marginal |                                              |                                                    |                                                 |                                             |                                             |                                 |                                 |                                 |                                 |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  |                     | Minor                                                           | N.                                           | ĨŻ                                                 | Nil                                             | N.                                          | I.I.Z                                       | Nil                             | Nil                             | Nil                             | Nil                             |
| TPZ<br>Encroachment<br>%                  |                     | 1.25%                                                           | 0.00%                                        | 0.00%                                              | 0.00%                                           | 0.00%                                       | 0.00%                                       | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           |
| TPZ<br>Encroachment<br>(M2)               |                     | o                                                               | 0                                            | č.                                                 | o                                               | 0                                           | o                                           | 9.57                            | 56.4                            | 27.6                            | 24.9                            |
| In<br>SRZ                                 |                     |                                                                 |                                              |                                                    |                                                 |                                             |                                             |                                 |                                 |                                 |                                 |
| In<br>Development<br>Footprint            |                     | No                                                              | NO                                           | 0<br>N                                             | No                                              | NO                                          | NO                                          | No                              | No                              | No                              | N                               |
| SRZ<br>Area<br>(M2)                       |                     | 16.6                                                            | 15.6                                         | 8.5                                                | 11.8                                            | 17.3                                        | 9.6                                         | 11.1                            | 9.6                             | 14.2                            | 13.6                            |
| SRZ<br>Radius<br>(M)                      |                     | 2.3                                                             | 2.2                                          | 1.6                                                | 1.9                                             | 2.3                                         | 1.8                                         | 1.9                             | 1.8                             | 2.1                             | 2.1                             |
| TPZ<br>Area<br>(M2)                       |                     | 58.6                                                            | 43.5                                         | 14.7                                               | 21.9                                            | 58.6                                        | 16.3                                        | 23.9                            | 13.1                            | 95.7                            | 30.6                            |
| Height<br>(M)                             |                     | 14                                                              | 14                                           | Q                                                  | Q                                               | 12                                          | 10                                          | 12                              | 12                              | 14                              | 13                              |
| Tree Species                              | (Swamp<br>Mahogany) | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany)                    | Eucalyptus<br>robusta<br>(Swamp<br>Mahogany) | Pittosporum<br>undulatum<br>(Sweet<br>Pittosporum) | Melaleuca<br>linarifolia<br>(Snow in<br>Summer) | Angophora<br>costata<br>(Sydney Red<br>Gum) | Angophora<br>costata<br>(Sydney Red<br>Gum) | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak) |
| Tree                                      |                     | Т48                                                             | Т49                                          | T50                                                | T51                                             | T52                                         | T53                                         | T54                             | T55                             | T56                             | T57                             |



| Specific Tree Protection Measures         |                                 |                                 |                                                        |                                                        |                                             |                                                           |                                                     |                                                     |                                   |                                   |                         |
|-------------------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------|-----------------------------------|-------------------------|
| Generic<br>Tree<br>Protection<br>Measures | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                                            | TPZ Fencing                                            |                                             |                                                           |                                                     |                                                     |                                   |                                   |                         |
| Retain/<br>Remove                         | Retain                          | Retain                          | Retain                                                 | Retain                                                 | Remove                                      | Remove                                                    | Remove                                              | Remove                                              | Remove                            | Remove                            | Remove                  |
| Encroachment Type                         |                                 |                                 | TPZ extend onto subject<br>site, minor<br>encroachment | TPZ extend onto subject<br>site, minor<br>encroachment | New tennis courts                           | New tennis courts                                         | New tennis courts                                   | New tennis courts                                   | New tennis courts                 | New tennis courts                 | New tennis courts       |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  | Nil                             | Nil                             | Minor                                                  | Minor                                                  | In Footprint                                | In Footprint                                              | In Footprint                                        | In Footprint                                        | In Footprint                      | In Footprint                      | In Footprint            |
| TPZ<br>Encroachment<br>%                  | 0.00%                           | 0.00%                           | 8.47%                                                  | 6.52%                                                  | 0.00%                                       | 0.00%                                                     | 0.00%                                               | 0.00%                                               | 0.00%                             | 0.00%                             | 0.00%                   |
| TPZ<br>Encroachment<br>(M2)               | 47.8                            | 0                               | o                                                      | o                                                      | 144.73                                      | o                                                         | o                                                   | o                                                   | 75                                |                                   |                         |
| ln<br>SRZ                                 |                                 |                                 |                                                        |                                                        |                                             |                                                           |                                                     |                                                     |                                   |                                   |                         |
| In<br>Development<br>Footprint            | No                              | No                              | NO                                                     | NO                                                     | Yes                                         | Yes                                                       | Yes                                                 | Yes                                                 | Yes                               | Yes                               | Yes                     |
| SRZ<br>Area<br>(M2)                       | 15.9                            | 14.6                            | 16.3                                                   | 15.6                                                   | 12.5                                        | 37.6                                                      | 15.9                                                | 22.4                                                | 12.9                              | 13.6                              | 17.3                    |
| SRZ<br>Radius<br>(M)                      | 2.3                             | 2.2                             | 2.3                                                    | 2.2                                                    | 2.0                                         | 3.5                                                       | 2.3                                                 | 2.7                                                 | 2.0                               | 2.1                               | 2.3                     |
| TPZ<br>Area<br>(M2)                       | 46.3                            | 43.5                            | 72.4                                                   | 65.3                                                   | 33.0                                        | 289.5                                                     | 49.3                                                | 136.8                                               | 21.9                              | 38.0                              | 14.7                    |
| Height<br>(M)                             | 14                              | 15                              | 9                                                      | و                                                      | 7                                           | 15                                                        | 6                                                   | 15                                                  | 6                                 | 10                                | 8                       |
| Tree Species                              | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak) | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush)   | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush)   | Magnolia<br>grandiflora<br>(White magnolia) | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | Syzygium<br>paniculatum<br>(Magenta Lilly<br>Pilly) | Syzygium<br>paniculatum<br>(Magenta Lilly<br>Pilly) | Cupressus<br>species<br>(Conifer) | Cupressus<br>species<br>(Conifer) | Archontophoenix<br>spp. |
| Tree                                      | T58                             | T59                             | T60                                                    | T61                                                    | T62                                         | T63                                                       | T64                                                 | T65                                                 | T66                               | T67                               | T68                     |



| Specific Tree Protection Measures         |                        |                                  |                                                      |                                                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
|-------------------------------------------|------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Generic<br>Tree<br>Protection<br>Measures |                        |                                  | TPZ Fencing                                          | TPZ Fencing                                          | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     |
| Retain/<br>Remove                         |                        | Remove                           | Retain                                               | Retain                                               | Retain                          | Retain                          | Retain                          | Retain                          | Retain                          | Retain                          | Retain                          | Retain                          | Retain                          | Retain                          | Retain                          |
| Encroachment Type                         |                        | New tennis courts                |                                                      |                                                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  |                        | In Footprint                     | Nil                                                  | Nil                                                  | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             |
| TPZ<br>Encroachment<br>%                  |                        | 0.00%                            | 0.00%                                                | 0.00%                                                | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           |
| TPZ<br>Encroachment<br>(M2)               |                        |                                  |                                                      |                                                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| ln<br>SRZ                                 |                        |                                  |                                                      |                                                      |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| In<br>Development<br>Footprint            |                        | Yes                              | N                                                    | NO                                                   | No                              | No                              | N                               | No                              |
| SRZ<br>Area<br>(M2)                       |                        | 12.5                             | 17.3                                                 | 18.2                                                 | 15.9                            | 15.6                            | 15.9                            | 12.5                            | 12.5                            | 16.3                            | 11.8                            | 16.9                            | 14.2                            | 12.5                            | 12.5                            |
| SRZ<br>Radius<br>(M)                      |                        | 2.0                              | 2.3                                                  | 2.4                                                  | 2.3                             | 2.2                             | 2.3                             | 2.0                             | 2.0                             | 2.3                             | 1.9                             | 2.3                             | 2.1                             | 2.0                             | 2.0                             |
| TPZ<br>Area<br>(M2)                       |                        | 38.0                             | 58.6                                                 | 87.6                                                 | 52.3                            | 35.5                            | 18.1                            | 28.3                            | 28.3                            | 58.6                            | 18.1                            | 46.3                            | 40.7                            | 28.3                            | 28.3                            |
| Height<br>(M)                             |                        | 9                                | و                                                    | ę                                                    | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              |
| Tree Species                              | (Alex/Bagalow<br>Palm) | Ficus benjimina<br>(Weeping Fig) | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush) | Callistemon<br>viminalis<br>(Weeping<br>Bottlebrush) | Casuarina glauca<br>(Swamp-Oak) |
| Tree                                      |                        | T69                              | Т70                                                  | 171                                                  | T72                             | 173                             | T74                             | 175                             | T76                             | 177                             | T78                             | 179                             | T80                             | T81                             | T82                             |



| Specific Tree Protection Measures         |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
|-------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Generic<br>Tree<br>Protection<br>Measures | TPZ Fencing                     |
| Retain/<br>Remove                         | Retain                          |
| Encroachment Type                         |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 | New carpark                     |                                 |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Nil                             | Minor                           | Nil                             |
| TPZ<br>Encroachment<br>%                  | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 0.00%                           | 3.45%                           | 0.00%                           |
| TPZ<br>Encroachment<br>(M2)               |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| ln<br>SRZ                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| In<br>Development<br>Footprint            | No                              |
| SRZ<br>Area<br>(M2)                       | 12.5                            | 12.5                            | 12.5                            | 12.5                            | 17.6                            | 15.9                            | 12.5                            | 12.5                            | 13.2                            | 15.6                            | 12.5                            | 12.5                            | 15.9                            | 18.2                            | 18.9                            | 12.5                            |
| SRZ<br>Radius<br>(M)                      | 2.0                             | 2.0                             | 2.0                             | 2.0                             | 2.4                             | 2.3                             | 2.0                             | 2.0                             | 2.1                             | 2.2                             | 2.0                             | 2.0                             | 2.3                             | 2.4                             | 2.5                             | 2.0                             |
| TPZ<br>Area<br>(M2)                       | 28.3                            | 28.3                            | 28.3                            | 28.3                            | 6.66                            | 52.3                            | 28.3                            | 28.3                            | 35.5                            | 58.6                            | 28.3                            | 28.3                            | 46.3                            | 76.0                            | 95.7                            | 28.3                            |
| Height<br>(M)                             | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              | 13                              |
| Tree Species                              | Casuarina glauca<br>(Swamp-Oak) |
| Tree                                      | T83                             | T84                             | T85                             | T86                             | T87                             | T88                             | T89                             | 190                             | T91                             | T92                             | T93                             | T94                             | T95                             | T96                             | T97                             | Т98                             |



| Specific Tree Protection Measures         |                                 |                                 |                                 | Employ tree sensitive construction<br>for the carpark i.e. build at grade<br>with no excavation, or project<br>arborist supervision to ensure all<br>roots are cut cleanly and employ<br>remediation plan for remainder of<br>TPZ to encourage replacement<br>root growth. |                                                           |                                                           | Employ tree sensitive construction<br>for the carpark i.e. build at grade<br>with no excavation, or project<br>arborist supervision to ensure all<br>roots are cut cleanly and employ<br>remediation plan for remainder of<br>TPZ to encourage replacement<br>root growth. |                                           |                                           |
|-------------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Generic<br>Tree<br>Protection<br>Measures | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                     | TPZ Fencing                                                                                                                                                                                                                                                                | TPZ Fencing                                               | TPZ Fencing                                               | TPZ Fencing                                                                                                                                                                                                                                                                | TPZ Fencing                               | TPZ Fencing                               |
| Retain/<br>Remove                         | Retain                          | Retain                          | Retain                          | Retain                                                                                                                                                                                                                                                                     | Retain                                                    | Retain                                                    | Retain                                                                                                                                                                                                                                                                     | Retain                                    | Retain                                    |
| Encroachment Type                         |                                 |                                 | New carpark                     | New carpark                                                                                                                                                                                                                                                                | New carpark                                               | New carpark                                               | New carpark                                                                                                                                                                                                                                                                |                                           |                                           |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  | Nil                             | Nil                             | Minor                           | Major                                                                                                                                                                                                                                                                      | Minor                                                     | Minor                                                     | Major                                                                                                                                                                                                                                                                      | Nil                                       | Ī                                         |
| TPZ<br>Encroachment<br>%                  | 0.00%                           | 0.00%                           | 5.88%                           | 12.72%                                                                                                                                                                                                                                                                     | 7.88%                                                     | 6.95%                                                     | 10.57%                                                                                                                                                                                                                                                                     | 0.00%                                     | 0.00%                                     |
| TPZ<br>Encroachment<br>(M2)               |                                 |                                 |                                 |                                                                                                                                                                                                                                                                            |                                                           |                                                           |                                                                                                                                                                                                                                                                            |                                           |                                           |
| ln<br>SRZ                                 |                                 |                                 |                                 |                                                                                                                                                                                                                                                                            |                                                           |                                                           |                                                                                                                                                                                                                                                                            |                                           |                                           |
| ln<br>Development<br>Footprint            | No                              | No                              | No                              | ° Z                                                                                                                                                                                                                                                                        | NO                                                        | NO                                                        | °2                                                                                                                                                                                                                                                                         | No                                        | N                                         |
| SRZ<br>Area<br>(M2)                       | 14.2                            | 13.9                            | 24.6                            | 37.8                                                                                                                                                                                                                                                                       | 34.4                                                      | 33.8                                                      | 34.1                                                                                                                                                                                                                                                                       | 16.9                                      | 20.8                                      |
| SRZ<br>Radius<br>(M)                      | 2.1                             | 2.1                             | 2.8                             | ы<br>л                                                                                                                                                                                                                                                                     | 3.3                                                       | 3.3                                                       | n.<br>N                                                                                                                                                                                                                                                                    | 2.3                                       | 2.6                                       |
| TPZ<br>Area<br>(M2)                       | 38.0                            | 40.7                            | 162.9                           | 443.4                                                                                                                                                                                                                                                                      | 350.3                                                     | 358.3                                                     | 452.4                                                                                                                                                                                                                                                                      | 52.3                                      | 95.7                                      |
| Height<br>(M)                             | 13                              | 13                              | 13                              | 18                                                                                                                                                                                                                                                                         | 14                                                        | 15                                                        | 15                                                                                                                                                                                                                                                                         | 9                                         | 7                                         |
| Tree Species                              | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak) | Casuarina glauca<br>(Swamp-Oak) | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                                                                                                                  | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                                                                                                                                                  | Glochidion<br>ferdinandi<br>(Cheese Tree) | Glochidion<br>ferdinandi<br>(Cheese Tree) |
| Tree                                      | 199                             | T100                            | T101                            | T102                                                                                                                                                                                                                                                                       | T103                                                      | T104                                                      | T105                                                                                                                                                                                                                                                                       | T106                                      | T107                                      |



| Specific Tree Protection Measures         |                                           | Tree is loacted on Pittwater Rd.<br>which is separated from the<br>subject site via a sandstone<br>retaining wall. No foreseen<br>impact. |                                                           |                                           |                                 | Tree is loacted on Pittwater Rd.<br>which is separated from the<br>subject site via a sandstone<br>retaining wall. No foreseen<br>impact. |                                          |
|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Generic<br>Tree<br>Protection<br>Measures | TPZ Fencing                               | TPZ Fencing                                                                                                                               | TPZ Fencing                                               | TPZ Fencing                               | TPZ Fencing                     | TPZ Fencing                                                                                                                               |                                          |
| Retain/<br>Remove                         | Retain                                    | Retain                                                                                                                                    | Retain                                                    | Retain                                    | Retain                          | Retain                                                                                                                                    | Remove                                   |
| Encroachment Type                         |                                           | New carpark and access<br>road                                                                                                            |                                                           |                                           |                                 | Realligned stormwater<br>and wetland area                                                                                                 | New Tennis courts                        |
| In<br>Footprint/<br>Major/<br>Minor/ Nil  | Sil                                       | Major                                                                                                                                     | Ē                                                         | Si                                        | Nil                             | Major                                                                                                                                     | In Footprint                             |
| TPZ<br>Encroachment<br>%                  | 0.00%                                     | 21.15%                                                                                                                                    | 0.00%                                                     | 0.00%                                     | 0.00%                           | 20.93%                                                                                                                                    | 0.00%                                    |
| TPZ<br>Encroachment<br>(M2)               |                                           |                                                                                                                                           |                                                           |                                           |                                 |                                                                                                                                           |                                          |
| ln<br>SRZ                                 |                                           |                                                                                                                                           |                                                           |                                           |                                 |                                                                                                                                           |                                          |
| In<br>Development<br>Footprint            | No                                        | NO                                                                                                                                        | No                                                        | No                                        | No                              | 02                                                                                                                                        | Yes                                      |
| SRZ<br>Area<br>(M2)                       | 18.6                                      | 45.6                                                                                                                                      | 27.9                                                      | 20.8                                      | 8.5                             | 43.7                                                                                                                                      | 13.6                                     |
| SRZ<br>Radius<br>(M)                      | 2.4                                       | 8.<br>8.                                                                                                                                  | 3.0                                                       | 2.6                                       | 1.6                             | 3.7                                                                                                                                       | 2.1                                      |
| TPZ<br>Area<br>(M2)                       | 52.3                                      | 684.4                                                                                                                                     | 203.1                                                     | 72.4                                      | 12.6                            | 358.3                                                                                                                                     | 35.5                                     |
| Height<br>(M)                             | ø                                         | 18                                                                                                                                        | 15                                                        | ø                                         | ٢                               | 18                                                                                                                                        | 12                                       |
| Tree Species                              | Glochidion<br>ferdinandi<br>(Cheese Tree) | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                 | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark) | Glochidion<br>ferdinandi<br>(Cheese Tree) | Casuarina glauca<br>(Swamp-Oak) | Melaleuca<br>quinquenervia<br>(Broad-Leafed<br>Paperbark)                                                                                 | Syagrus<br>romanzoffiana<br>(Cocos Palm) |
| Tree                                      | T108                                      | T109                                                                                                                                      | T110                                                      | T111                                      | T112                            | T113                                                                                                                                      | T114                                     |



## **13 APPENDIX 2: STARS**

## IACA Significance of a Tree, Assessment Rating System (STARS)© (IACA 2010)©

In the development of this document IACA acknowledges the contribution and original concept of the Footprint Green Tree Significance & Retention Value Matrix, developed by Footprint Green Pty Ltd in June 2001

The landscape significance of a tree is an essential criterion to establish the importance that a particular tree may have on a site. However, rating the significance of a tree becomes subjective and difficult to ascertain in a consistent and repetitive fashion due to assessor bias. It is therefore necessary to have a rating system utilising structured qualitative criteria to assist in determining the retention value for a tree. To assist this process all definitions for terms used in the Tree Significance -Assessment Criteria and Tree Retention Value - Priority Matrix, are taken from the IACA Dictionary for Managing Trees in Urban Environments 2009,

This rating system will assist in the planning processes for proposed works, above and below ground where trees are to be retained on or adjacent a development site. The system uses a scale of *High*, *Medium* and *Low* significance in the landscape. Once the landscape significance of an individual tree has been defined, the retention value can be determined. An example of its use in an Arboricultural report is shown as Appendix A.

## Tree Significance - Assessment Criteria

## 1. High Significance in landscape

- The tree is in good condition and good vigour;
- The tree has a form typical for the species
- The tree is a remnant or is a planted locally indigenous specimen and/or is rare or uncommon in the local area or of botanical interest or of substantial age;
- The tree is listed as a Heritage Item, Threatened Species or part of an Endangered ecological community or listed on Councils significant Tree Register;
- The tree is visually prominent and visible from a considerable distance when viewed from most directions within the landscape due to its size and scale and makes a positive contribution to the local amenity. The tree supports social and cultural sentiments or spiritual associations, reflected by the broader population or community
- group or has commemorative values; The tree's growth is unrestricted by above and below ground influences, supporting its ability to reach dimensions typical for the
- taxa in situ tree is appropriate to the site conditions.

### 2. Medium Significance in landscape

- The tree is in fair-good condition and good or low vigour;
- The tree has form typical or atypical of the species;
- The tree is a planted locally indigenous or a common species with its taxa commonly planted in the local area
- The tree is visible from surrounding properties, although not visually prominent as partially obstructed by other vegetation or buildings when viewed from the street,
- The tree provides a fair contribution to the visual character and amenity of the local area,
- The tree's growth is moderately restricted by above or below ground influences, reducing its ability to reach dimensions typical for the taxa in situ.

### 3. Low Significance in landscape

- The tree is in fair-poor condition and good or low vigour;
- The tree has form atypical of the species; The tree is not visible or is partly visible from surrounding properties as obstructed by other vegetation or buildings,
- The tree provides a minor contribution or has a negative impact on the visual character and amenity of the local area, The tree is a young specimen which may or may not have reached dimension to be protected by local Tree Preservation orders
- or similar protection mechanisms and can easily be replaced with a suitable specimen, The tree's growth is severely restricted by above or below ground influences, unlikely to reach dimensions typical for the taxa in
- situ tree is inappropriate to the site conditions, The tree is listed as exempt under the provisions of the local Council Tree Preservation Order or similar protection mechanisms,
- The tree has a wound or defect that has potential to become structurally unsound. Environmental Pest / Noxious Weed Species
- The tree is an Environmental Pest Species due to its invasiveness or poisonous/ allergenic properties.
- The tree is a declared noxious weed by legislation
- Hazardous/Irreversible Decline The tree is structurally unsound and/or unstable and is considered potentially dangerous, The tree is dead, or is in irreversible decline, or has the potential to fail or collapse in full or part in the immediate to short term.

### The tree is to have a minimum of three (3) criteria in a category to be classified in that group.

Note: The assessment criteria are for individual trees only, however, can be applied to a monocultural stand in its entirety e.g. hedge.

IACA 2010, IACA Significance of a Tree, Assessment Rating System (STARS), Institute of Australian Consulting Arboriculturists, www.jaca.org.au







|       |                  |      | Т      | ree Significan | ce  |  |
|-------|------------------|------|--------|----------------|-----|--|
|       |                  | High | Medium |                | Low |  |
|       | Long             |      |        |                |     |  |
| tancy | >40 years        |      |        |                |     |  |
| bect  | Medium           |      |        |                |     |  |
| fe Ex | 15-40 years      |      |        |                |     |  |
| e Li  | Short            |      |        |                |     |  |
| Ĕ     | <1-15 years      |      |        |                |     |  |
|       | Remove /<br>Dead |      |        |                |     |  |

| Legend for Matrix Assessment                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Priority for Retention (High)</b> – These trees are considered important for retention and should be retained and protected. Design modification and re-location of building/s should be considered to accommodate the setbacks as prescribed by the Australian Standard 4970 <i>Protection of tree on development sites</i> . Tree sensitive construction measures must be implemented if works are to proceed within the Tree Protection Zone. |
| <b>Consider for Retention (Medium)</b> – These trees may be retained and protected. These are considered less critical; however, their retention should remain priority with removal considered only if adversely affecting the proposed building/works and all other alternatives have been considered and exhausted.                                                                                                                              |
| <b>Consider for Removal (Low)</b> – These trees are not considered important for retention, nor require special works or design modification to be implemented for their retention.                                                                                                                                                                                                                                                                 |
| Priority for Removal – These trees are considered hazardous, or in irreversible decline,<br>or weeds and should be removed irrespective of development.                                                                                                                                                                                                                                                                                             |

IACA, 2010, IACA Significance of a Tree, Assessment Rating System (STARS), Institute of Australian Consulting Arboriculturists, Australia, <u>http://www.iaca.org.au</u>



## 14 APPENDIX 3: SULE

|    | 1. Long                             | 2. Medium                          | 3. Short                            | 4. Removal                         | 5. Moved or Replaced                |  |
|----|-------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|--|
|    | Trees that appeared to be           | Trees that appeared to be          | Trees that appeared to be           | Trees that should be removed       | Trees which can be reliably moved   |  |
|    | retainable at the time of           | retainable at the time of          | retainable at the time of           | within the next 5 years.           | or replaced.                        |  |
|    | assessment for more than 40 years   | assessment for 15 – 40 years with  | assessment for 5 – 15 years with    |                                    |                                     |  |
|    | with an acceptable level of risk.   | an acceptable level of risk.       | an acceptable level of risk.        |                                    |                                     |  |
| ۲  | Structurally sound trees located in | Trees that may only live between   | Trees that may only live between 5  | Dead, dying, suppressed or         | Small trees less than 5m in height. |  |
|    | positions that can accommodate      | 15 and 40 years.                   | and 15 more years.                  | declining trees through disease or |                                     |  |
|    | future growth.                      |                                    |                                     | inhospitable conditions.           |                                     |  |
| 8  | Trees that could be made suitable   | Trees that may live for more than  | Trees that may live for more than   | Dangerous trees through            | Young trees less than 15 years old  |  |
|    | for retention in the long term by   | 40 years but would be removed for  | 15 years but would be removed for   | instability on recent loss of      | but over 5m in heights              |  |
|    | remedial tree care.                 | safety or nuisance reasons.        | safety or nuisance reasons.         | adjacent trees.                    |                                     |  |
| U  | Trees of special significance for   | Trees that may live for more than  | Trees that may live for more than   | Damaged trees through structural   | Trees that have been pruned to      |  |
|    | historical, commemorative or        | 40 years but would be removed to   | 15 years but should be removed to   | defects including cavities, decay, | artificially control growth.        |  |
|    | rarity reasons that would warrant   | prevent interference with more     | prevent interference with more      | included bark, wounds or poor      |                                     |  |
|    | extraordinary efforts to secure     | suitable individuals or to provide | suitable individuals or to provide  | form.                              |                                     |  |
|    | their long term retention.          | space for new planting.            | space for new planting.             |                                    |                                     |  |
| ۵  |                                     | Trees that could be made suitable  | Trees that require substantial      | Damaged trees that are clearly not |                                     |  |
|    |                                     | for retention in the medium term   | remedial tree care and are only     | safe to retain.                    |                                     |  |
|    |                                     | by remedial tree care.             | suitable for retention in the short |                                    |                                     |  |
|    |                                     |                                    | term.                               |                                    |                                     |  |
| ш  |                                     |                                    |                                     | Trees that may live for more than  |                                     |  |
|    |                                     |                                    |                                     | 5 years but should be removed to   |                                     |  |
|    |                                     |                                    |                                     | prevent interference with more     |                                     |  |
|    |                                     |                                    |                                     | suitable individuals or to provide |                                     |  |
|    |                                     |                                    |                                     | space for new plantings.           |                                     |  |
| u. |                                     |                                    |                                     | Trees that are damaging or may     |                                     |  |
|    |                                     |                                    |                                     | cause damage to existing           |                                     |  |
|    |                                     |                                    |                                     | structures within 5 years.         |                                     |  |
| U  |                                     |                                    |                                     | Trees that will become dangerous   |                                     |  |
|    |                                     |                                    |                                     | after removal of other trees for   |                                     |  |
|    |                                     |                                    |                                     | reasons given in (A) to (F).       |                                     |  |



# **15 APPENDIX 4: TREE PROTECTION (GENERIC)**





Examples Of Trunk, Branch and Ground Protection



2. Scaffolding Within TPZ





4. TPZ Encroachment Compensation



## **16 TRUNK AND GROUND PROTECTION**






ABNOBA ARBOR APE LEVEL 5 ARBORISTIGTRA REGISTERED ABN: 1971002469 LIAM STRACHAN 0426215539 LIAMSTRACHANARB6GMAIL.COM

82

# **18 SITE DRAWINGS**

# DRAWING 1: TREE LOCATION PLAN/TREE PROTECTION PLAN

# SITE DRAWING LEGEND

| Ground Protection               | TPZ Fencing                    | Trunk and Branch Protection |
|---------------------------------|--------------------------------|-----------------------------|
|                                 |                                | $\bigcirc$                  |
| Radial TPZ Trees to be retained | Radial TP2 Trees to be removed | Radial SRZ                  |
|                                 |                                | ()                          |







PO Box 151 Freshwater NSW 2096

09 November 2022

Warringah Golf Club 397 Condamine Street North Manly NSW 2100

c/o Graeme McMullan <graeme@cleanenergyengineering.com.au>

Flood Management Report for the development of the New Warringah Golf & Community Club House at 433 Pittwater Road North MANLY

Dear Graeme,

#### 1.0 Introduction

Stellen Consulting was engaged to assess the proposed development (Lot 2742 DP 752038) at 433 Pittwater Road, North Manly in reference to potential impacts arising from overland flow in Brookvale Creek. This report provides a detailed assessment of the flow information specific to the site and development.

The following documentation has been used in the preparation of this Flood Risk Management Report:

- Design drawings listed in Appendix A
- Council provided flood information and pre-DA advice flooding extract in Appendix B

The proposed development has been assessed in accordance with the flood requirements of Clause E11 of the Warringah Development Control Plan, using the information provided by the Council from the Manly Lagoon Flood Study (2013).

#### 2.0 Description of the Development

The site, known as Warringah Recreation Area (Lot 2742 DP 752038), is approximately 1.04 ha. The existing development of the site consists of a clubhouse, squash court, sporting courts, driveway, and car parks (the existing site is shown below in Figure 1).



PO Box 151 Freshwater NSW 2096



Figure 1 - Site locality and previous development (SIX Maps)

The proposed master plan is shown in Figure 2. It introduces 6 new tennis courts, a club building with a loading area, parking, and car access. The architecture plans listed in Appendix A show the scope of the DA application of the new main building with a loading area of approximately 0.26 ha as part of the master plan. The design drawings also highlight the layout of the tennis courts, car parks, and the access driveway as shown in Figure 3.



Figure 2 - Proposed master plan layout



PO Box 151 Freshwater NSW 2096



Figure 3 - Proposed architectural plan

The main building proposes two floors: Ground floor at RL 3.60 and the first floor at RL 8.00. The proposed works also include site grading according to the civil design prepared by Stellen Consulting (Ref: P171112-DR-CV-002-01). The proposed work and design levels are shown in the architectural and civil drawings in Appendix A.

Advice from Northern Beaches Council at the time of preparation of this report is that the council will be removing the trees, removing the fencing and floodlights, demolishing the squash courts and tennis offices and digging up / demolishing the tennis courts to provide a clear and level site. Stellen Consulting, at the Clients direction, has considered that in all Flood & Overland Flow calculations

#### 3.0 Flood Analysis & Assessment

Council's flood data predicts that during the 1% AEP event, the club will be inundated with floodwaters arising from flooding within Brookvale Creek. The overland flow path runs northeast through the site toward Pittwater Road. The main building has areas designated as medium risk, and Brookvale Creek is identified as being within the High Flood Risk Precinct, as shown in Figure 4.



PO Box 151 Freshwater NSW 2096



Figure 4 - Flood Risk Precinct

The following information was provided by Council for the vicinity of the main building:

- 1% AEP (100-year) maximum water level: 3.2-3.3m AHD
- Probable Maximum Flood (PMF) maximum water level: 5.69m AHD

Council's flood data suggests the floodwater depth across the site during a 1% AEP event peaks are not more than 0.3 and the velocity x depth product is less than  $0.3m^2s^{-1}$  presenting a Flood Fringe hydraulic category.

For the main building assessment, the council has suggested that all floor levels within the development shall be at or above the Flood Planning Level (FPL) (flood level + 300mm freeboard). For this site, a Flood Planning Level (FPL) of 3.6m AHD has been adopted for the main building.

FPL = 3.60m AHD

The design has the proposed main building at RL 3.60 which is at the FPL.

#### 4.0 Assessment of Council Conditions

The proposed development is categorised as a "business and industrial use, entertainment or recreation facility" development type. The main building has areas designated as medium risk. Below address the relevant controls that apply to the development.

#### Flood Effects Caused by Development - A1

 The proposed main building results in a significant fill of approximately 670.50 m<sup>3</sup>. However, the master plan along with the civil design proposes a conservative compensatory net cut volume of 134.47 m<sup>3</sup>.



PO Box 151 Freshwater NSW 2096

considering that the council will be removing the trees, removing the fencing and floodlights, demolishing the squash courts and tennis offices, and digging up / demolishing the tennis courts to provide a clear and level site. Considering the provision of the compensatory cut as described in the civil design prepared by Stellen consulting:

- The development will not likely have significant adverse impacts on flood levels or velocities caused by alterations to the flood conveyance;
- o There will be no adverse impacts on surrounding properties; and
- o Flood hazards will likely remain unchanged due to the development.

#### Flood Effects Caused by Development - A2

 Considering the provision of the compensatory cut as described in the civil design prepared by Stellen consulting, the development results in a net increase in the flood storage of at least 134.47 m<sup>3</sup>.

#### **Building Components and Structural Soundness - B1**

 The proposed development shall be constructed as flood compatible in accordance with the *Reducing Vulnerability of Buildings to Flood Damage: Guidance on Building in Flood Prone Areas*, Hawkesbury-Nepean Floodplain Management Steering Committee (2006), up to the flood planning level of 3.6m AHD.

#### **Building Components and Structural Soundness – B2**

 New development must be designed and constructed to ensure structural integrity up to the Flood Planning Level, taking into account the forces of floodwater, wave action, flowing water with debris, buoyancy and immersion. The structural integrity of the refuge is to be up to the Probable Maximum Flood level. Structural certification shall be provided confirming the above.

#### Building Components and Structural Soundness - B3

 New electrical equipment, power points, wiring, fuel lines, sewerage systems or other service pipes and connections to be located above the Flood Planning Level of 3.6m AHD.

#### Floor Levels – C1

- The floor levels within the main building are proposed at or above the Flood Planning Level of 3.6m AHD.

#### Floor Levels – C2

– NA

#### Floor Levels – C3

The main building at the development is categorised in a flood fringe in a 1% AEP event. It proposes a compensatory cut of 57.46 m<sup>3</sup> (minimum) described in the civil design prepared by Stellen consulting. This results in a net increase in flood storage.

#### Floor Levels – C4

– NA



PO Box 151 Freshwater NSW 2096

#### Floor Levels – C5

- the proposed works improve the flood storage within site.

#### Floor Levels – C6

– NA

#### Floor Levels – C7

- No floor level is proposed below the flood planning level

#### Car Parking – D1

 Proposed car park within the loading area is proposed within Flood Fringe hydraulic category during the 1% AEP

#### Car Parking – D2

- No car park is proposed below the natural ground level; however, the whole site is graded a maximum of 0.5% according to the civil design for the cut and fill plan. As a result, the water depths at 9 car parks within the loading area are expected to be greater than 300mm. □ Vehicle barriers or restraints are to be provided to prevent floating vehicles from leaving the site.

#### Car Parking – D3

– NA

#### Car Parking – D4

Vehicle barriers or restraints are to be provided to prevent floating vehicles from leaving the site. Protection
must be provided for all event up to the 1 % AEP flood event.

#### Car Parking – D5, D6, and D7

– NA

#### **Emergency Response – E1**

 The flood life hazard category within the site is H5, and therefore flood emergency response plan is required.

The recommended Flood Emergency Response Plan during critical storm events is to shelter-in-place until floodwaters subside or emergency services advise otherwise. In the event that floodwaters begin to overtop Brookvale Creek, the recommended actions are:

- The occupants of the property shall be directed to the first floor (set at RL 8.00 m AHD), which is higher than the predicted PMF water level (5.69m AHD).
- The occupants must not exit until advised by emergency services or floodwaters subside.



PO Box 151 Freshwater NSW 2096

• Emergency services shall be contacted stating the property's location; the situation faced, the number of people on the property and any additional measures to be carried out.

It is also recommended that a copy of this Flood Emergency Response plan is kept on the premises at all times.

#### Fencing – F1

Any proposed fencing within the area affected by the 1% AEP floodwaters level up to the 1% AEP flood level of 3.3m AHD must be an open style fencing to allow clear passage of floodwaters and not to increase flood affectation on surrounding land. The fencing must be designed with a minimum of 50% open area from the natural ground level up to the 1% AEP flood level of 5.69m AHD. Openings should be minimum of 75 mm x 75 mm.

#### Storage of Goods – G1

 All proposed stores are located in the main building area, which is adequately protected from floodwaters to above the applicable Flood Planning Level (refer to architectural drawings). Given that all hazardous or potentially polluting materials will be stored above the FPL, all goods will be adequately protected from floodwater.

#### Pools – H1

– NA

#### 5.0 Conclusions and Recommendations

This Flood Management Report has been undertaken by Stellen Consulting based on information provided by Northern Beaches Council (Warringah) and available architectural plans and proposed civil design for site grading and levelling. The site has been identified by Council as within the 1% AEP flood and PMF extents.

Based on the information, the proposed main building results in a significant fill of approximately 670.50m<sup>3</sup>. However, the master plan, with the support of the civil design, propose a conservative compensatory net cut of 134.47 m<sup>3</sup>. Considering the provision of the compensatory cut as described in the civil design prepared by Stellen consulting:

- The proposed works will not likely have adverse impacts on flood levels or velocities caused by alterations to the flood conveyance;
- There are no significant adverse impacts on surrounding properties; and
- Flood hazards will likely remain unchanged due to the development.

As noted in this report, the proposed development, if carried out in accordance with the recommendations within this report, is consistent with the flood-related requirements of Clause E11 of the Warringah DCP.



PO Box 151 Freshwater NSW 2096

# Appendix A

## **Architectural Drawings**

# The driveway design is described in the following Group Architects drawings dated 12/10/2022

Sheets and Views

- CLEANED WARRINGAH-000
- CLEANED WARRINGAH-001
- CLEANED WARRINGAH-002
- CLEANED WARRINGAH-003
- CLEANED WARRINGAH-D01
- CLEANED WARRINGAH-100
- CLEANED WARRINGAH-101
- CLEANED WARRINGAH-101a
- CLEANED WARRINGAH-101b
- CLEANED WARRINGAH-101c
- CLEANED WARRINGAH-102
- CLEANED WARRINGAH-103
- CLEANED WARRINGAH-104
- CLEANED WARRINGAH-200
- CLEANED WARRINGAH-201
- CLEANED WARRINGAH-202
- CLEANED WARRINGAH-300
- CLEANED WARRINGAH-900

# **Civil Design Drawings**

The driveway design is described in the following Stellen Consulting drawings dated 09/11/2022:

| CV-000 | Revision 1 | Master Plan                              |
|--------|------------|------------------------------------------|
| CV-001 | Revision 2 | Civil Design Master Plan                 |
| CV-100 | Revision 1 | Cut/Fill Plan – Main Building and Access |
| CV-102 | Revision 2 | Cut/Fill Plan – Tennis Court             |



PO Box 151 Freshwater NSW 2096 +61 450 460 496 tel ABN 61 149 095 189

# Appendix B Council Supplied Flood Information



#### Flooding

The site for the proposed Warringah Golf Club main building is identified in the Manly Lagoon Flood Study (2013) as being located in the Medium Flood Risk Precinct, with the following flood data applicable in the vicinity of the main building:

• 1% AEP flood level: 3.2-3.3m AHD

 $\bullet$  Freeboard: 0.3m, since the depth is less than 0.3m and the velocity x depth product is less than 0.3m<sub>2</sub>/s

• Flood Planning Level (FPL): 3.5-3.6m AHD

• Probable Maximum Flood (PMF) Level: 5.69m AHD

• Hydraulic Category in 1% AEP flood: Flood Fringe

Page 9 of 10

#### **Specialist Advice**

Hydraulic Category in PMF: Floodway

• Flood Life Hazard Category: H5

Brookvale Creek and part of the car park on the western side of the creek are identified as being within the High Flood Risk Precinct. For more detailed flood information, a comprehensive Flood Information Report should be obtained from Council, from

https://www.northernbeaches.nsw.gov.au/council/forms/flood-information-report-application. As part of the application for the Flood Information Report, flood information can be provided at multiple, specific locations if requested.

A Flood Management Report would need to be submitted with the DA, demonstrating that the proposed development meets all of the flood requirements of Clause E11 of the Warringah DCP. In particular for this site please note:

• There are to be no adverse impacts (defined in Clause A.8 of the Warringah DCP) on flood levels or velocities caused by alterations to the flood conveyance (Control A1).

• All structures are to be designed and constructed to ensure structural integrity up to the PMF, taking into account the forces of floodwater, wave action, flowing water with debris, buoyancy and immersion. (Control B2).

• All electrical equipment, power points, wiring, fuel lines, sewerage systems or any other service pipes and connections are to be waterproofed and/or located above the FPL (Control B3).

• All floor levels must be set at or above the FPL (Control C1).

• Where there is more than 300mm depth of flooding in the car park during a 1% AEP flood event, vehicle barriers or restraints are to be provided to prevent floating vehicles from leaving the site (Control D4).

• There must be an appropriately sized area to safely shelter in place above the PMF level and appropriate access to this area is to be available from all areas within the development (Control E1).

• Any hazardous or potentially polluting materials are not to be stored below the FPL unless adequately protected from floodwaters in accordance with industry standards. (Control G1).



# **FLOOD INFORMATION REPORT – COMPREHENSIVE**

Property: Lot 2742/9999 Condamine Street MANLY VALE NSW 2093 Lot DP: Lot 2742 DP 752038 Issue Date: 09/05/2022 Flood Study Reference: Manly Lagoon Flood Study 2013, BMT WBM

# Flood Information for lot <sup>1</sup>:

#### Flood Risk Precinct – See Map A

#### Flood Planning Area – See Map A

Maximum Flood Planning Level (FPL) <sup>2, 3, 4</sup>: 9.46 m AHD

#### 1% AEP Flood – See Flood Map B

1% AEP Maximum Water Level <sup>2, 3</sup>: 8.89 mAHD

**1% AEP Maximum Depth from natural ground level**<sup>3</sup>: 2.84 m

1% AEP Maximum Velocity: 6.62 m/s

1% AEP Hydraulic Categorisation: N/A See Flood Map D

#### Probable Maximum Flood (PMF) – See Flood Map C

PMF Maximum Water Level 4: 9.87 m AHD

PMF Maximum Depth from natural ground level: 5.24 m

PMF Maximum Velocity: 7.64 m/s

**PMF Hydraulic Categorisation:** N/A See Flood Map E

Issue Date: 09/05/2022

Page 1 of 15

### Flooding with Climate Change (See Flood Map F)

The following is for the 30% Rainfall intensity increase and 0.9m Sea Level Rise Scenario:

1% AEP Maximum Water Level with Climate change <sup>3</sup>: 8.85 m AHD

1% AEP Maximum Depth with Climate Change<sup>3</sup>: 3.03 m

**1% AEP Maximum Velocity with Climate Change**<sup>3</sup>: m/s

#### Flood Life Hazard Category – See Map G

#### Indicative Ground Surface Spot Heights – See Map H

<sup>1</sup> The flood information does not take into account any local overland flow issues nor private stormwater drainage systems.

<sup>2</sup> Overland flow/mainstream water levels may vary across a sloping site, resulting in variable minimum floor/ flood planning levels across the site. The maximum Flood Planning Level may be in a different location to the maximum 1% AEP flood level.

<sup>3</sup> Intensification of development in the former Pittwater LGA requires the consideration of climate change impacts which may result in higher minimum floor levels.

<sup>4</sup> Vulnerable/critical developments require higher minimum floor levels using the higher of the PMF or FPL.

#### General Notes:

- All levels are based on Australian Height Datum (AHD) unless otherwise noted.
- This is currently the best available information on flooding; it may be subject to change in the future.
- Council recommends that you obtain a detailed survey of the above property and surrounds to AHD by a
  registered surveyor to determine any features that may influence the predicted extent or frequency of
  flooding. It is recommended you compare the flood level to the ground and floor levels to determine the
  level of risk the property may experience should flooding occur.
- Development approval is dependent on a range of issues, including compliance with all relevant provisions of Northern Beaches Council's Local Environmental Plans and Development Control Plans.
- Please note that the information contained within this letter is general advice only as a detail survey of the property as well as other information is not available. Council recommends that you engage a suitably experienced consultant to provide site specific flooding advice prior to making any decisions relating to the purchase or development of this property.
- The Flood Studies on which Council's flood information is based are available on Council's website.

# FLOOD MAP A: FLOOD RISK PRECINCT MAP



- Low Flood Risk precinct means all flood prone land not identified within the High or Medium flood risk precincts.
- Medium Flood Risk precinct means all flood prone land that is (a) within the 1% AEP Flood Planning Area; and (b) is not within the high flood risk precinct.
- High Flood Risk precinct means all flood prone land (a) within the 1% AEP Flood Planning Area; and (b) is either subject to a high hydraulic hazard, within the floodway or subject to significant evacuation difficulties (H5 or H6 Life Hazard Classification).
- The **Flood Planning Area** extent is equivalent to the Medium Flood Risk Precinct extent, and includes the High Flood Risk Precinct within it. The mapped extent represents the 1% annual Exceedance Probability (AEP) flood event + freeboard.
- None of these mapped extents include climate change.

# FLOOD LEVEL POINTS



Note: Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Manly Lagoon Flood Study 2013, BMT WBM) and aerial photography (Source: NearMap 2014) are indicative only.

#### **Flood Levels**

| ID | 5%<br>AEP<br>Max<br>WL<br>(m<br>AHD) | 5%<br>AEP<br>Max<br>Depth<br>(m) | 1%<br>AEP<br>Max<br>WL<br>(m<br>AHD) | 1%<br>AEP<br>Max<br>Depth<br>(m) | 1% AEP<br>Max<br>Velocity<br>(m/s) | Flood<br>Planning<br>Level<br>(m) | PMF<br>Max<br>WL<br>(m<br>AHD) | PMF<br>Max<br>Depth<br>(m) | PMF<br>Max<br>Velocity<br>(m/s) |
|----|--------------------------------------|----------------------------------|--------------------------------------|----------------------------------|------------------------------------|-----------------------------------|--------------------------------|----------------------------|---------------------------------|
| 1  | 3.55                                 | 0.29                             | 3.69                                 | 0.43                             | 1.21                               | 4.19                              | 5.69                           | 2.43                       | 1.91                            |
| 2  | 3.33                                 | 0.23                             | 3.47                                 | 0.37                             | 1.24                               | 3.97                              | 5.69                           | 2.59                       | 2.17                            |

WL – Water Level

PMF – Probable Maximum Flood

N/A = no peak water level/depth/velocity available in flood event

Climate Change Flood Levels (30% Rainfall intensity and 0.9m Sea Level Rise)

| ID | CC 1% AEP Max<br>WL (m AHD) | CC1 % AEP Max<br>Depth (m) |  |
|----|-----------------------------|----------------------------|--|
| 1  | 3.70                        | 0.44                       |  |
| 2  | 3.54                        | 0.45                       |  |

WL – Water Level

PMF – Probable Maximum Flood

N/A = no peak water level/depth/velocity available in flood event.

A variable Flood Planning Level might apply. Freeboard is generally 0.5m above the maximum 1% AEP water level. However for overland flow with a depth less than 0.3m and a VelocityxDepth product less than 0.3m<sup>2</sup>/s, a freeboard of 0.3m may be able to be justified.

# FLOOD MAP B: FLOODING - 1% AEP EXTENT



- Extent represents the 1% annual Exceedance Probability (AEP) flood event.
- Flood events exceeding the 1% AEP can occur on this site.
- Extent does not include climate change.
- Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Manly Lagoon Flood Study 2013, BMT WBM) and aerial photography (Source Near Map 2014) are indicative only.

# FLOOD MAP C: PMF EXTENT MAP



- Extent represents the Probable Maximum Flood (PMF) flood event
- Extent does not include climate change
- Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Manly Lagoon Flood Study 2013, BMT WBM) and aerial photography (Source: NearMap 2014) are indicative only

# FLOOD MAP D: 1% AEP FLOOD HYDRAULIC CATEGORY EXTENT MAP



- Extent represents the 1% annual Exceedance Probability (AEP) flood event
- Extent does not include climate change
- Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Manly Lagoon Flood Study 2013, BMT WBM) and aerial photography (Source: NearMap 2014) are indicative only

# FLOOD MAP E: PMF FLOOD HYDRAULIC CATEGORY EXTENT MAP



- Extent represents the Probable Maximum Flood (PMF) event
- Extent does not include climate change
- Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Manly Lagoon Flood Study 2013, BMT WBM) and aerial photography (Source: NearMap 2014) are indicative only

# FLOOD MAP F: FLOODING – 1% AEP EXTENT PLUS CLIMATE CHANGE



- Extent represents the 1% annual Exceedance Probability (AEP) flood event including 30% rainfall intensity and 0.9m Sea Level Rise climate change scenario
- Flood events exceeding the 1% AEP can occur on this site.
- Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Manly Lagoon Flood Study 2013, BMT WBM) and aerial photography (Source: NearMap 2014) are indicative only

# FLOOD MAP G: FLOOD LIFE HAZARD CATEGORY



Notes:

• Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Manly Lagoon Flood Study 2013, BMT WBM) and aerial photography (Source Near Map 2014) are indicative only.

# MAP H: INDICATIVE GROUND SURFACE SPOT HEIGHTS



Ground surface spot heights in location of proposed works

- The surface spot heights shown on this map were derived from Airborne Laser Survey and are indicative only.
- Accuracy is generally within ± 0.2m vertically and ± 0.15m horizontally, and Northern Beaches Council does not warrant that the data does not contain errors.
- If accuracy is required, then survey should be undertaken by a registered surveyor.

# **Preparation of a Flood Management Report**

#### Introduction

These guidelines are intended to provide advice to applicants on how to determine what rules apply on flood prone land, and how to prepare a Flood Management Report. The purpose of a Flood Management Report is to demonstrate how a proposed development will comply with flood related planning requirements.

#### Planning Requirements for Flood Prone Land

Development must comply with the requirements for developing flood prone land set out in the relevant Local Environment Plan (LEP) and Development Control Plan (DCP). There are separate LEPs and DCPs for each of the former Local Government Areas (LGAs), although preparation of a LGA-wide LEP and DCP is currently under way.

The clauses specific to flooding in the LEPs and DCPs are as follows:

| LEP Clauses                                      | DCP Clauses                                      |
|--------------------------------------------------|--------------------------------------------------|
| Manly LEP (2013) – 6.3 Flood Planning            | Manly DCP (2013) – 5.4.3 Flood Prone Land        |
| Warringah LEP (2011) – 6.3 Flood Planning        | Warringah DCP (2011) – E11 Flood Prone Land      |
| Warringah LEP (2000) – 47 Flood Affected Land *  |                                                  |
| Pittwater LEP (2014) – 7.3 Flood Planning        | Pittwater 21 DCP (2014) – B3.11 Flood Prone Land |
| Pittwater LEP (2014) – 7.4 Flood Risk Management | Pittwater 21 DCP (2014) – B3.12 Climate Change   |

\* The Warringah LEP (2000) is relevant only for the "deferred lands" which affects only a very small number of properties, mostly in the Oxford Falls area.

Development on flood prone land must also comply with Council's Water Management for Development Policy, and if it is in the Warriewood Release Area, with the Warriewood Valley Water Management Specification. Guidelines for Flood Emergency Response Planning are available for addressing emergency response requirements in the DCP. These documents can be found on Council's website on the Flooding page.

Note that if the property is affected by estuarine flooding or other coastal issues, these need to be addressed separately under the relevant DCP clauses.

#### When is a Flood Management Report required?

A Flood Management Report must be submitted with any Development Application on flood prone land (with exceptions noted below), for Council to consider the potential flood impacts and applicable controls. For Residential or Commercial development, it is required for development on land identified within the Medium or High Flood Risk Precinct. For Vulnerable or Critical development, it is required if it is within any Flood Risk Precinct.

There are some circumstances where a formal Flood Management Report undertaken by a professional engineer may not be required. However the relevant parts of the DCP and LEP would still need to be addressed, so as to demonstrate compliance. Examples where this may apply include:

- If all proposed works are located outside the relevant Flood Risk Precinct extent
- First floor addition only, where the floor level is above the Probable Maximum Flood level
- Internal works only, where habitable floor areas below the FPL are not being increased

Note that development on flood prone land will still be assessed for compliance with the relevant DCP and LEP, and may still be subject to flood related development controls.

#### What is the purpose of a Flood Management Report?

The purpose of a Flood Management Report is to demonstrate how a proposed development will comply with flood planning requirements, particularly the development controls outlined in the relevant LEP and DCP clauses. The report must detail the design, measures and controls needed to achieve compliance, following the steps outlined below.

A Flood Management Report should reflect the size, type and location of the development, proportionate to the scope of the works proposed, and considering its relationship to surrounding development. The report should also assess the flood risk to life and property.

#### **Preparation of a Flood Management Report**

The technical requirements for a Flood Management Report include (where relevant):

- 1. <u>Description of development</u>
  - Outline of the proposed development, with plans if necessary for clarity
  - Use of the building, hours of operation, proposed traffic usage or movement
  - Type of use, eg vulnerable, critical, residential, business, industrial, subdivision, etc
- 2. Flood analysis
  - 1% AEP flood level
  - Flood Planning Level (FPL)
  - Probable Maximum Flood (PMF) level
  - Flood Risk Precinct, ie High, Medium or Low
  - Flood Life Hazard Category
  - Mapping of relevant extents
  - Flood characteristics for the site, eg depth, velocity, hazard and hydraulic category, and the relevance to the proposed development

If the property is affected by an Estuarine Planning Level (EPL) which is higher than the FPL, then the EPL should be used as the FPL. If the FPL is higher than the PMF level, then the FPL should still be used as the FPL, as it includes freeboard which the PMF does not.

- 3. Assessment of impacts
- Summary of compliance for each category of the DCP, as per the table below.

|                                               | C   | ompliance |    |
|-----------------------------------------------|-----|-----------|----|
|                                               | N/A | Yes       | No |
| A) Flood effects caused by Development        |     |           |    |
| B) Building Components & Structural Soundness |     |           |    |
| C) Floor Levels                               |     |           |    |
| D) Car parking                                |     |           |    |
| E) Emergency Response                         |     |           |    |
| F) Fencing                                    |     |           |    |
| G) Storage of Goods                           |     |           |    |
| H) Pools                                      |     |           |    |

- Demonstration of how the development complies with any relevant flood planning requirements from the DCP, LEP, Water Management for Development Policy, and if it is in the Warriewood Valley Urban Land Release Area, with the Warriewood Valley Water Management Specification (2001)
- For any non-compliance, a justification for why the development should still be considered.
- Calculations of available flood storage if compensatory flood storage is proposed
- Plan of the proposed development site showing the predicted 1% AEP and PMF flood extents, as well as any high hazard or floodway affectation
- Development recommendations and construction methodologies
- Qualifications of author Council requires that the Flood Management Report be prepared by a suitably qualified Engineer with experience in flood design / management who has, or is eligible for, membership to the Institution of Engineers Australia
- Any flood advice provided by Council
- Any other details which may be relevant

Further information and guidelines for development are available on Council's website at:

https://www.northernbeaches.nsw.gov.au/planning-and-development/building-andrenovations/development-applications/guidelines-development-flood-prone-land

Council's Flood Team may be contacted on 1300 434 434 or at <u>floodplain@northernbeaches.nsw.gov.au</u>.



# Flora and Fauna Assessment Report and Waterway Impact Statement

Proposed Warringah Golf and Community Club

Report prepared by Narla Environmental

for Warringah Golf Club

September 2023



environmental

| Report:       | Flora and Fauna Assessment Report and Waterway Impact Statement – Proposed Warringah Golf and Community Club |
|---------------|--------------------------------------------------------------------------------------------------------------|
| Prepared for: | Warringah Golf Club                                                                                          |
| Prepared by:  | Narla Environmental Pty Ltd                                                                                  |
| Project no:   | WGC1                                                                                                         |
| Date:         | September 2023                                                                                               |
| Version:      | Final v2.0                                                                                                   |

© Narla Environmental Pty Ltd

Disclaimer

The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of the Engagement for the commission. This report and all information contained within is rendered void if any information herein is altered or reproduced without the permission of Narla Environmental. Unauthorised use of this document in any form

This report is invalid for submission to any third party or regulatory authorities while it is in draft stage. Narla Environmental Pty Ltd will not endorse this report if it has been submitted to council while it is still in draft stage. This document is and shall remain the property of Narla Environmental Pty Ltd. The sole purpose of this report and the associated services performed by Narla Environmental was to undertake a Flora and Fauna Assessment for an activity under Part 4 of the EP&A Act in accordance with the scope of services set out in the contract between Narla Environmental and the client who commissioned this report. That scope of services, as described in this report, was developed with the client who commissioned this

report

Any survey of flora and fauna will be unavoidably constrained in a number of respects. In an effort to mitigate those constraints, we applied the precautionary principle described in the methodology section of this report to develop our conclusions. Our conclusions are not therefore based solely upon conditions encountered at the site at the time of the survey. The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and re-evaluation of the data, findings, observations and conclusions expressed in this report. Narla Environmental has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Narla Environmental for use of any part of this report thas ono been developed by a legal professional and the relevant legislation should be consulted and/or legal advice sought, where appropriate, before applying the information in particular circumstances. This report has been prepared on behalf of, and for the exclusive use of, the client who commissioned this report. Narla Environmental excepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party. Narla Environmental Pty Ltd accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party. Narla Environmental Pty Ltd accepts no liability for any loss or damages sustained as a result of relaxed and guide to reave upurpose other than the wintervelop ano this report. Narl

# Narla Environmental Pty Ltd www.narla.com.au



# **Report Certification**

Works for this report were undertaken by:

| Staff Name     | Position                          |
|----------------|-----------------------------------|
| Jonathan Coy   | Narla Environmental               |
| BEnv           | Project Manager/ Ecologist        |
| Jayden Maloney | Narla Environmental               |
| BSc MConBio    | Ecologist                         |
| Chris Moore    | Narla Environmental               |
| BBioCon        | General Manager/ Senior Ecologist |

# **Document Control**

| Revision   | Document Name                                                                                                      | Issue Date | Internal Document Review |
|------------|--------------------------------------------------------------------------------------------------------------------|------------|--------------------------|
| Draft v1.0 | Flora and Fauna Assessment Report and<br>Waterway Impact Statement – Proposed<br>Warringah Golf and Community Club | 17/08/2023 | Chris Moore              |
| Final v1.0 | Flora and Fauna Assessment Report and<br>Waterway Impact Statement – Proposed<br>Warringah Golf and Community Club | 31/08/2023 | Chris Moore              |
| Final v2.0 | Flora and Fauna Assessment Report and<br>Waterway Impact Statement – Proposed<br>Warringah Golf and Community Club | 22/09/2023 | Jonathan Coy             |



# Table of Contents

| 1. | INTR            | ODUCTION                                                                                                                   | 8            |
|----|-----------------|----------------------------------------------------------------------------------------------------------------------------|--------------|
|    | 1.1             | Project Background                                                                                                         | 8            |
|    | 1.2             | Site Description and Location                                                                                              | 8            |
|    | 1.3             | Topography, Geology and Soil                                                                                               | 8            |
|    | 1.4             | Hydrology                                                                                                                  | 8            |
|    | 1.5             | Relevant Legislation and Policy                                                                                            | 10           |
|    | 1.6             | Biodiversity Assessment Pathway                                                                                            | 11           |
|    | 1.7             | Warringah Local Environmental Plan 2011 (WLEP)                                                                             | 12           |
|    | 1.7.1           | Zoning                                                                                                                     | 12           |
|    | 1.8             | Warringah Development Control Plan 2011 (WDCP)                                                                             | 12           |
|    | 1.8.1           | Preservation of Trees or Bushland Vegetation                                                                               | 12           |
|    | 1.8.2           | Prescribed Vegetation                                                                                                      | 13           |
|    | 1.8.3<br>legisl | Threatened species, populations, ecological communities listed under State or Commonwe ation, or High Conservation Habitat | alth:<br>13: |
|    | 1.8.4           | Wildlife Corridors                                                                                                         | 14           |
|    | 1.8.5           | Native Vegetation                                                                                                          | 14           |
|    | 1.8.6           | Waterways and Riparian land                                                                                                | 14           |
|    | 1.9<br>Protect  | State Environmental Planning Policy (Biodiversity and Conservation) 2021: Chapter 4 - Koala Hab                            | oitat<br>15  |
|    | 1.10            | Water Management Act 2000                                                                                                  | 16           |
|    | 1.11            | Fisheries Management Act 1994                                                                                              | 16           |
|    | 1.12            | Scope of Assessment                                                                                                        | 19           |
|    | 1.12.           | 1 Objectives of the Fauna and Flora Assessment                                                                             | 19           |
|    | 1.12.           | 2 Objectives of the Water Impact Statement                                                                                 | 19           |
|    | 1.13            | Study Limitations                                                                                                          | 19           |
| 2. | MET             | HODOLOGY                                                                                                                   | 20           |
|    | 2.1             | Desktop Assessment and Literature Review                                                                                   | 20           |
|    | 2.2             | Ecological Site Assessment                                                                                                 | 20           |
|    | 2.2.1           | Ecological Survey                                                                                                          | 20           |
|    | 2.2.2           | Weather Conditions                                                                                                         | 21           |
|    | 2.2.3           | Mapping and Analysis of Vegetation Communities                                                                             | 21           |
|    | 2.2.4           | Impact Assessment                                                                                                          | 21           |
|    | 2.3             | Waterways Impact Assessment                                                                                                | 21           |
|    | 2.3.1           | Waterways Impact Survey                                                                                                    | 21           |

| 3.                     |     | NATIVE VEGETATION |        |                                                                                                                                              |            |  |
|------------------------|-----|-------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| 4. THREATENED ENTITIES |     |                   | ATEN   | IED ENTITIES                                                                                                                                 | 29         |  |
|                        |     | 4.1.1<br>and S    | South  | Listing under the BC Act: Swamp Oak Floodplain Forest in the NSW North Coast, Sydney Bast Corner Bioregions, Endangered Ecological Community | asin<br>29 |  |
|                        |     | 4.1.2<br>Quee     | enslar | Listing under the EPBC Act: Coastal Swamp Oak ( <i>Casuarina glauca</i> ) Forest of South-o                                                  | east<br>29 |  |
|                        | 4.3 | 1                 | Threa  | atened Flora                                                                                                                                 | 31         |  |
|                        | 4.2 | 2                 | Threa  | atened Fauna                                                                                                                                 | 37         |  |
|                        |     | 4.2.1             |        | Migratory Fauna Species                                                                                                                      | 38         |  |
| 5.                     |     | IMPA              | CT SI  | JMMARY                                                                                                                                       | 57         |  |
|                        | 5.2 | 1                 | Vege   | tation Impact                                                                                                                                | 57         |  |
|                        |     | 5.1.1             |        | Threatened Ecological Communities: Swamp Oak Floodplain Forest Local Occurrence                                                              | 57         |  |
|                        | 5.2 | 2                 | Threa  | atened Species                                                                                                                               | 57         |  |
|                        | 5.3 | 3                 | Ripar  | ian Land and Waterway Impact                                                                                                                 | 59         |  |
|                        |     | 5.3.1             |        | Impact Upon Water Quality                                                                                                                    | 59         |  |
|                        |     | 5.3.2             |        | Impacts On Channel Form, Erosion Rate and Bank Stability                                                                                     | 59         |  |
|                        |     | 5.3.3             |        | Riparian Ecological Impacts of the Development                                                                                               | 59         |  |
|                        |     | 5.3.4             |        | Landscape Impacts of the Development                                                                                                         | 60         |  |
| 6.                     |     | RECC              | MME    | ENDATIONS                                                                                                                                    | 61         |  |
|                        | 6.3 | 1                 | Impa   | ct Mitigation and Minimisation Recommendations                                                                                               | 61         |  |
| 7.                     |     | CON               | CLUSI  | ON                                                                                                                                           | 64         |  |
| 8.                     |     | REFE              | RENC   | ES                                                                                                                                           | 65         |  |
| 9.                     |     | APPE              | NDIC   | ES                                                                                                                                           | 66         |  |

# Tables

| Table 1. Relevant legislation and policy addressed         1                                                            |
|-------------------------------------------------------------------------------------------------------------------------|
| Table 2. Biodiversity offset scheme entry thresholds. Bold indicates the threshold relevant to this report 1            |
| Table 3. Developmental controls required by the pursuant for Part E8 of the WDCP (2011)                                 |
| Table 4. Classification of waterways for fish passage. Green shading = Class within the Subject Site (DPI 2013). 1      |
| Table 5. Key fish habitat and associated sensitivity classification scheme. Green shading = Class within the Subject    |
| Site (DPI 2013)                                                                                                         |
| Table 6. Weather conditions recorded at Terrey Hills AWS (station 066059) preceding and during the sit                  |
| assessment (site assessment date in bold)2                                                                              |
| Table 7 Description of Estuarine Swamp Oak Twig-rush Forest identified within the and surrounding the Subject           |
| Site                                                                                                                    |
| Table 8 Description of Exotic Dominated Vegetation identified within the and surrounding the Subject Site2              |
| Table 9. Key Diagnostic Characteristics of Coastal Swamp Oak ( <i>Casuarina glauca</i> ) Forest of South-east Queenslan |
| and New South Wales                                                                                                     |

| Table 10. Condition Thresholds for Coastal Swamp Oak (Casuarina glauca) Forest of South-east Queensland        | and  |
|----------------------------------------------------------------------------------------------------------------|------|
| New South Wales (Green Box indicates condition class)                                                          | . 30 |
| Table 11. Assessment of likely occurrence of threatened flora species within the Subject Site. E = Endangered, | , CE |
| = Critically Endangered, EP = Endangered Population, V = Vulnerable                                            | . 32 |
| Table 12. Fauna habitat values within the Subject Site                                                         | . 37 |
| Table 13. Assessment of likely occurrence of threatened fauna species within the Subject Site. E = Endanger    | ed,  |
| CE = Critically Endangered, EP = Endangered Population, V = Vulnerable.                                        | . 40 |
| Table 14. Measures to be implemented before, during and after construction to avoid and minimise the impa      | icts |
| of the proposed development                                                                                    | . 61 |

# Figures

| Figure 1. Components of the Subject Site.                                   | 9 |
|-----------------------------------------------------------------------------|---|
| Figure 2. Key Fish Habitat within the Subject Site                          |   |
| Figure 3. Historical Vegetation Mapping of the Subject Site.                |   |
| Figure 4. Field Validated Vegetation Mapping of the Subject Site            |   |
| Figure 5. Threatened Species and Fauna Habitat Survey Effort.               |   |
| Figure 6. Local Occurrence of Swamp Oak Floodplain Forest (BC and EPBC Act) |   |



# Glossary

| Acronym/ Term                                                          | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BAM                                                                    | Biodiversity Assessment Methodology                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BC Act                                                                 | New South Wales Biodiversity Conservation Act 2016                                                                                                                                                                                                                                                                                                                                                                                                                |
| BDAR                                                                   | Biodiversity Development Assessment Report                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DA                                                                     | Development Application                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DAFF                                                                   | Department of Agriculture, Fisheries and Forestry                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DCCEEW                                                                 | Department of Climate Change, Energy, the Environment and Water                                                                                                                                                                                                                                                                                                                                                                                                   |
| Development                                                            | The use of land, and the subdivision of land, and the carrying out of a work, and the demolition of a building or work, and the erection of a building, and any other act, matter or thing referred to in section 26 that is controlled by an environmental planning instrument but does not include any development of a class or description prescribed by the regulations for the purposes of this definition (Environmental Planning and Assessment Act 1979) |
| DPE                                                                    | Department of Planning and Environment                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DPI                                                                    | Department of Primary Industries                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DPIE                                                                   | Department of Planning, Industry and Environment (Now DPE)                                                                                                                                                                                                                                                                                                                                                                                                        |
| EP&A Act                                                               | Environmental Planning & Assessment Act 1979                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EPBC Act                                                               | Environment Protection and Biodiversity Conservation Act 1999                                                                                                                                                                                                                                                                                                                                                                                                     |
| FFA                                                                    | Flora and Fauna Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ha                                                                     | Hectares                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| km                                                                     | Kilometre                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LGA                                                                    | Local Government Area                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Locality                                                               | The area within a 10 km radius of the Subject Property                                                                                                                                                                                                                                                                                                                                                                                                            |
| m                                                                      | metres                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WDCP                                                                   | Warringah Development Control Plan 2011                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WLEP                                                                   | Warringah Local Environmental Plan 2011                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mm                                                                     | millimetres                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NSW                                                                    | New South Wales                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OEH                                                                    | Office of Environment and Heritage (now known as the DPE)                                                                                                                                                                                                                                                                                                                                                                                                         |
| SEPP                                                                   | State Environmental Planning Policy                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Subject Property                                                       | 292 Condamine Street North Manly 2100 (Lot 2742/-/DP752038).                                                                                                                                                                                                                                                                                                                                                                                                      |
| Subject Site                                                           | The footprint of the proposed development                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Threatened<br>species,<br>populations and<br>ecological<br>communities | Species, populations and ecological communities specified in Schedules 1 and 2 of the BC<br>Act 2016                                                                                                                                                                                                                                                                                                                                                              |
| TPZ                                                                    | Tree Protection Zone                                                                                                                                                                                                                                                                                                                                                                                                                                              |



# 1. Introduction

#### 1.1 Project Background

Narla Environmental (Narla) were engaged by Warringah Golf Club ('the proponent') to prepare a Flora and Fauna Assessment (FFA) and a Waterway Impact Statement (WIS), for the proposed development at 292 Condamine Street North Manly 2100 (Lot 2742/-/DP752038), hereafter referred to as the 'Subject Property' (**Figure 1**). The proposed development involves the building of a new clubhouse and will include ancillary works including the demolition of existing buildings and infrastructure, tree removal and the development of parking areas, a pedestrian bridge, landscaping, wastewater treatment system, a rainwater tank and new recreation facilities. All works associated with the proposed development will hereafter be referred to as the 'Subject Site' (**Figure 1**, **Appendix A**,).

Narla have produced this report in order to assess any potential impacts associated with the proposed development on terrestrial ecology, particularly threatened species, populations, and ecological communities listed under the Biodiversity Conservation Act 2016 (BC Act), and, the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). The report will also recommend appropriate measures to mitigate any potential impacts in line with all relevant State Environmental Planning Policies (SEPP) and local government plans, namely the Warringah Local Environmental Plan 2011 (WLEP 2011) the Warringah Development Control Plan 2011 (WDCP 2011), and the Warringah Council Waterways Impact Statement Guidelines.

#### 1.2 Site Description and Location

The Subject Property is located within the locality of North Manly in the Northern Beaches Local Government Area (LGA). The site boundary was defined by cadastral boundaries provided on the NSW Government Land and Property Information Spatial Information Exchange map viewer (NSW SixMaps 2023). The Subject Property is currently utilised as a golf course and covers an area of approximately 17.3ha, bound by Pittwater Road to the east, Kentwell Road to the south and Condamine Street to the west. The surrounding area is a highly urbanised landscape.

The Subject Site covers an area of approximately 1.28ha and currently contains the Warringah Recreation Centre comprising of tennis courts, soccer fields, and squash courts located in the south-eastern portion of the Warringah Golf Course. Riparian vegetation is present on both sides of Brookvale Creek that intersects the Subject Site.

#### 1.3 Topography, Geology and Soil

The Subject Site is located in a low-lying area with elevation ranging from approximately 3m above sea level (asl) to approximately 5m asl (Google 2023) and is situated on the Warriewood soil landscape as described in the Soil Landscapes of the Sydney 1:100,000 sheet (Chapman et al. 2009). This soil landscape is characterised by level to gently undulating plains with local relief <10 m and slope gradients <5% on in-filled coastal barrier dunes, lakes and lagoons as well as swale depressions in dunefields. Geology consists of Quaternary (Holocene) silty to peaty quartz sand and medium to fine marine sand with podzols. Dominant soil materials include dark grey loamy sand, massive sand, black sticky peat, brown soft iron pan and dark brown soft organic pan.

#### 1.4 Hydrology

One (1) mapped 3<sup>rd</sup> order stream, Brookvale Creek, is located within the Subject Site. No other mapped or unmapped water features were identified within the Subject Site.




Figure 1. Components of the Subject Site.



### 1.5 Relevant Legislation and Policy

The legislation and policy that are addressed in this report are listed in Table 1.

| Legislation/Policy                                                                                     | Relevant Ecological Feature on Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Triggered | Action Required                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Planning and<br>Assessment Act 1979<br>(EP&A Act)                                     | All threatened species, populations, and<br>ecological communities and their<br>habitat that occur or are likely to occur<br>on the Subject Property during a part of<br>their lifecycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes       | This Flora and Fauna<br>Assessment and all subsequent<br>recommendations relevant to<br>the planning process under<br>'Part 4 Development<br>assessment and consent'.                                                                                                                                                                                                                                             |
| Biodiversity<br>Conservation Act (BC<br>Act) (New South<br>Wales)                                      | <ul> <li>One (1) BC Act listed endangered ecological community occurs within the Subject Site: <ul> <li>Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner Bioregion.</li> </ul> </li> <li>One (1) BC Act listed species, <i>Callistemon linearifolius</i> (Netted Bottle Brush), occurs within close proximity to the Subject Site, however it will not be directly impacted by the proposal.</li> <li>No other threatened species or populations listed under the BC Act were identified within the Subject Site at the time of the site assessment; however, suitable habitat for various threatened species listed under the BC Act was identified.</li> </ul> | Yes       | This FFA, particularly the<br>likelihood tables for threatened<br>fauna and flora species<br>occurring or potentially<br>occurring within the Subject<br>Site, as well as severity of<br>potential impacts. A test of<br>significance (5 Part Test) was<br>prepared for Swamp Oak<br>Floodplain Forest of the NSW<br>North Coast, Sydney Basin and<br>South East Corner Bioregion<br>( <b>Appendix D</b> ).       |
| Environment<br>Protection and<br>Biodiversity<br>Conservation Act<br>1999 (EPBC Act)<br>(Commonwealth) | <ul> <li>One (1) EPBC Act listed Threatened</li> <li>Ecological Communities is present</li> <li>within the Subject Site: <ul> <li>Coastal Swamp Oak (<i>Casuarina glauca</i>)</li> <li>Forest of South-east Queensland and New South Wales.</li> </ul> </li> <li>No threatened species, populations or endangered ecological communities listed under the EPBC Act were identified within the Subject Site at the time of the site assessment; however, suitable habitat for various threatened species listed under the EPBC Act was identified included.</li> </ul>                                                                                                                                  | Yes       | This FFA, particularly the<br>likelihood tables for threatened<br>fauna and flora species<br>occurring or potentially<br>occurring within the Subject<br>Site, as well as severity of<br>potential impacts. An<br>assessment of significant<br>impact was prepared for<br>Coastal Swamp Oak ( <i>Casuarina</i><br><i>glauca</i> ) Forest of South-east<br>Queensland and New South<br>Wales ( <b>Appendix E</b> ) |
| Biosecurity Act 2015<br>(Bio Act)                                                                      | <ul> <li>Four (4) Priority weeds for the Greater</li> <li>Sydney region were identified within the Subject Property: <ul> <li>Asparagus aethiopicus</li> <li>(Ground Asparagus);</li> <li>Rubus fruticosus spp. agg</li> <li>(Blackberry);</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes       | The listed Priority weeds must<br>be managed in accordance with<br>the Biosecurity Act 2015.                                                                                                                                                                                                                                                                                                                      |

Table 1. Relevant legislation and policy addressed



Flora and Fauna Assessment Report and Waterway Impact Statement – Proposed Warringah Golf and Community Club | 10

| Legislation/Policy                                                                                                                   | Relevant Ecological Feature on Site                                                                                                                                                  | Triggered | Action Required                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                      | <ul> <li>Lantana camara (Lantana);<br/>and</li> <li>Anredera cordifolia (Madeira<br/>Vine).</li> </ul>                                                                               |           |                                                                                                                                                                                                                                                                                          |
| State Environmental<br>Planning Policy<br>(Resilience and<br>Hazards) 2021 -<br>Chapter 2 Coastal<br>Management                      | The Subject Site does not contain areas<br>mapped as 'Coastal Wetlands', 'Littoral<br>Rainforest', or proximity to either,<br>therefore, Chapter 2 of this SEPP does<br>not apply.   | No        | None                                                                                                                                                                                                                                                                                     |
| State Environmental<br>Planning Policy<br>(Biodiversity and<br>Conservation) 2021 –<br>Chapter 4 Koala<br>Habitat Protection<br>2021 | The Subject Site occurs within an LGA<br>listed in Schedule 2 of the SEPP and the<br>Subject Property has an area of more<br>than 1 ha. Therefore, chapter 4 of this<br>SEPP applies | Yes       | The requirements of this chapter have been discussed in <b>Section 1.9</b> and no further action should be required.                                                                                                                                                                     |
| Water Management<br>Act 2000                                                                                                         | Brookvale Creek, a 3 <sup>rd</sup> order stream, and<br>its associated riparian corridor is<br>mapped as occurring in the centre of<br>the Subject Site.                             | Yes       | Works occurring within 40 metres of the highest bank of the river, lake or estuary are considered controlled activities under the WM Act. Applicants may need to obtain a controlled activity approval from the NSW DPE – Water before commencing the controlled activity (Section 1.10) |
| Fisheries<br>Management Act<br>1994                                                                                                  | The Subject Site contains land mapped<br>as Key Fish Habitat (KFH). Therefore, the<br>Fisheries Management Act 1994<br>applies.                                                      | Yes       | Any works that involve dredging<br>or reclamation will require a<br>Part 7 permit under the act<br>( <b>Section 1.11</b> ).                                                                                                                                                              |

# 1.6 Biodiversity Assessment Pathway

The requirements of the BC Act 2016 and Biodiversity Conservation Regulation 2017 are mandatory for all Development Applications (DA) assessed pursuant to Part 4 of the Environmental Planning and Assessment Act 1979 (EP&A Act) submitted in the Northern Beaches LGA.

The Biodiversity Values (BV) Map (DPE 2023a) identifies land with high biodiversity values that are particularly sensitive to impacts from development and clearing. The map forms part of the Biodiversity Offsets Scheme Entry Threshold which is one of the triggers for determining whether the Biodiversity Offset Scheme (BOS) applies to a clearing or development proposal. The map has been prepared by the Department of Planning and Environment (DPE) under Part 7 of the Biodiversity Conservation Act 2016 (BC Act). No areas identified as containing Biodiversity Values are located within the Subject Site or broader Subject Property.

The BC Act and its regulations also stipulate clearing 'area threshold' values (**Table 2**) that determine whether a development is required to be assessed in accordance with the BOS. Minimum entry thresholds for vegetation clearing depend on the minimum lot size (shown in the Lot Size Maps made under the relevant Local Environmental Plan [LEP]), or actual lot size (where there is no minimum lot size provided for the relevant land under the LEP).



As no minimum lot size is prescribed by the WLEP to the Subject Property, the actual lot size of 17.3ha determines the clearing threshold. To avoid triggering the BOS, the proponent must avoid the clearing/management of native vegetation in excess of 0.5ha. The proposed development will require approximately 0.19ha of native vegetation to be cleared within the Subject Site; therefore, the BOS is not triggered by the clearing threshold.

As such, the Biodiversity Offset Scheme is not triggered and a Biodiversity Development Assessment Report (BDAR) is not required. As such, a standard Flora and Fauna Assessment Report (this report) has been produced to assess the impact of the proposed DA.

| Table 2. Biodiversity offset scheme | entry thresholds. | Bold indicates the threshold | d relevant to this report. |
|-------------------------------------|-------------------|------------------------------|----------------------------|
|                                     |                   |                              |                            |

| Minimum lot size associated with the property | Threshold for clearing, above which the BAM and offsets scheme apply |
|-----------------------------------------------|----------------------------------------------------------------------|
| Less than 1ha                                 | 0.25ha or more                                                       |
| 1ha to less than 40ha                         | 0.5 ha or more                                                       |
| 40ha to less than 1000ha                      | 1ha or more                                                          |
| 1000ha or more                                | 2ha or more                                                          |

# 1.7 Warringah Local Environmental Plan 2011 (WLEP)

#### 1.7.1 Zoning

The Subject Property is zoned 'RE1: Public Recreation'. The WLEP requires that the development satisfies the zone objectives which are:

- To enable land to be used for public open space or recreational purposes.
- To provide a range of recreational settings and activities and compatible land uses.
- To protect and enhance the natural environment for recreational purposes.
- To protect, manage and restore public land that is of ecological, scientific, cultural or aesthetic value.
- To prevent development that could destroy, damage or otherwise have an adverse effect on those values.

The proposed development satisfies the objectives of this zone by providing public recreation activities.

# 1.8 Warringah Development Control Plan 2011 (WDCP)

#### 1.8.1 Preservation of Trees or Bushland Vegetation

Part E1 of the WDCP applies to the land. The objectives of this clause are to:

- To protect and enhance the urban forest of the Northern Beaches;
- To effectively manage the risks that come with an established urban forest through professional management of trees;
- To minimise soil erosion and to improve air quality, water quality, carbon sequestration, storm water retention, energy conservation and noise reduction;
- To protect, enhance bushland that provides habitat for locally native plant and animal species, threatened species populations and endangered ecological communities;
- To promote the retention and planting of trees which will help enable plant and animal communities to survive in the long-term; and



• To protect and enhance the scenic value and character that trees and/or bushland vegetation provide.

Although the proposed development will require the removal of native bushland, revegetation is proposed to enhance the long-term survival of the community present and protect retained vegetation during and following construction.

#### 1.8.2 Prescribed Vegetation

Part E2 of the WDCP applies to land identified within mapping as containing high conservation habitat, wildlife corridors or native vegetation The objectives of this clause are to:

- To preserve and enhance the area's amenity, whilst protecting human life and property;
- To improve air quality, prevent soil erosion, assist in improving water quality, carbon sequestration, storm water retention, energy conservation and noise reduction;
- To provide habitat for local wildlife, generate shade for residents and provide psychological & social benefits;
- To protect and promote the recovery of threatened species, populations and endangered ecological communities;
- To protect and enhance the habitat of plants, animals and vegetation communities with high conservation significance;
- To retain and enhance native vegetation communities and the ecological functions of wildlife corridors;
- To reconstruct habitat in non-vegetated areas of wildlife corridors that will sustain the ecological functions of a wildlife corridor and that, as far as possible, represents the combination of plant species and vegetation structure of the original 1750 community; and
- Promote the retention of native vegetation in parcels of a size, condition and configuration which will as far as possible enable plant and animal communities to survive in the long-term.

Development is to be situated and designed to minimise the impact on prescribed vegetation, including remnant canopy trees, understorey vegetation, and ground cover species. Although the proposed development will require the removal of native bushland, revegetation is proposed to enhance the long-term survival of the community present and protect retained vegetation during and following construction.

# 1.8.3 Threatened species, populations, ecological communities listed under State or Commonwealth legislation, or High Conservation Habitat

This control applies to land identified on WDCP Map as an Endangered Ecological Community (EEC) is present; therefore, this control applies. The objectives of this control are:

- To protect and promote the recovery of threatened species, populations and endangered ecological communities;
- To protect and enhance the habitat of plants, animals and vegetation communities with high conservation significance;
- To preserve and enhance the area's amenity, whilst protecting human life and property;
- To improve air quality, prevent soil erosion, assist in improving water quality, carbon sequestration, storm water retention, energy conservation and noise reduction; and
- To provide natural habitat for local wildlife, maintain natural shade profiles and provide psychological & social benefits.

Although the proposed development will require the removal of native bushland, revegetation is proposed to enhance the long-term survival of the community present and protect retained vegetation during and following construction. A VMP will be implemented for the continued enhancement and protection of the EEC within and adjacent to the Subject Site.



#### 1.8.4 Wildlife Corridors

No areas mapped as 'Wildlife Corridors' on the WDCP Map are present within the Subject Property. No wildlife corridors will be affected by the proposed development. Therefore, this clause does not apply.

#### 1.8.5 Native Vegetation

Although no areas mapped as 'Native Vegetation' on the WDCP Map are present within the Subject Property; native vegetation was observed during the site assessment, therefore, this clause applies. The objectives of this clause are:

- To preserve and enhance the area's amenity, whilst protecting human life and property;
- To improve air quality, prevent soil erosion, assist in improving water quality, carbon sequestration, storm water retention, energy conservation and noise reduction;
- To provide natural habitat for local wildlife, maintain natural shade profiles and provide psychological & social benefits;
- Promote the retention of native vegetation in parcels of a size, condition and configuration which will as far as possible enable local plant and animal communities to survive in the long term; and
- To maintain the amount, local occurrence and diversity of native vegetation in the area.

Although the proposed development will require the removal of native bushland, revegetation is proposed to enhance the long-term survival of the community present and protect retained vegetation during and following construction. A VMP will be implemented for the continued enhancement and protection of the EEC within and adjacent to the Subject Site.

#### 1.8.6 Waterways and Riparian land

Part E8 of the WDCP applies to land identified as waterways and riparian lands. Objectives are:

- Protect, maintain and enhance the ecology and biodiversity of waterways and riparian land;
- Encourage development to be located outside waterways and riparian land;
- Avoid impacts that will result in an adverse change in watercourse or riparian land condition;
- Minimise risk to life and property from stream bank erosion and flooding by incorporating appropriate controls and mitigation measures;
- Maintain and improve access, amenity and scenic quality of waterways and riparian lands; and
- Development on waterways and riparian lands shall aim to return Group B and Group C creeks to a Group A standard (as described in Warringah Creek Management Study, 2004) through appropriate siting and development of development.

The proposed development is located adjacent to Brookvale Creek which is classed as a Group C creek. Catchments that are classed as Group C generally have a low to moderate ecological value with the catchment also containing a 15 to 20% connected impervious area (WDCP 2011). As a portion of the project development and activities are to occur within land mapped as Waterways and Riparian Land, the controls required by this part of the WDCP are to be implemented by (**Table 3**).

| Control requirement pursuant to Part E8                                                                                            | Response of the Proposal                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Development is to be designed to address<br>any distinctive environmental features of the<br>site and on adjoining nearby land. | The proposal has been designed to minimise direct impacts on<br>the creek. The proposed pedestrian bridge will be located<br>above the creek to avoid instream works and impacts. Riparian<br>vegetation which is associated with a Threatened Ecological<br>Community (TEC) will be impacted by the proposal, however<br>this impact is mainly associated within the proposed bridge |

#### Table 3. Developmental controls required by the pursuant for Part E8 of the WDCP (2011)



| Control requirement pursuant to Part E8                                                                                                                                     | Response of the Proposal                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                             | and will be supplemented by a VMP. The threatened <i>Callistemon linearifolius</i> (Netted Bottle Brush) is located near the Subject Site, however is not anticipated to be impacted.                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                             | The proposed bridge has been designed to sit above the water<br>level of the creek, at the same height as the creek banks, so<br>that the proposed development does not impede on water<br>flow.                                                                                                                                                                                                                                                 |  |
| 2. Development should respond to these<br>features through location of structures,<br>outlook, design and materials.                                                        | A Construction Management Plan (CMP) has been prepared to<br>ensure any excess sediment and erosion will be controlled to<br>avoid discharges into Brookvale Creek and minimise surface<br>water flow velocity. Temporary stabilisation techniques such<br>as strategically placed erosion matting, sediment screens, hay<br>bale energy dissipaters, mulching and annual grass species<br>establishment will be implemented on disturbed areas. |  |
| 3. The applicant shall submit a Waterway Impact Statement.                                                                                                                  | Proposal complies through the preparation of this FFA and WIS.                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 4. Developments shall comply with the requirements of Council's Protection of Waterway and Riparian Land Policy and Water Management Policy.                                | Proposal complies as it satisfies all the objectives laid out in the WLEP 2011 and WDCP 2011.                                                                                                                                                                                                                                                                                                                                                    |  |
| 5. Infrastructure such as roads, drainage,<br>stormwater structures, services, etc. should<br>be located outside land identified as<br>Waterways and Riparian Land.         | Owing to the location of the existing recreation centre, all of<br>the proposed development could not be located outside of the<br>Waterways and Riparian Land. However, mitigation methods<br>have been outlined in this report and the CMP to limit impacts<br>to this land and Brookvale Creek.                                                                                                                                               |  |
| 6. The Asset Protection Zone must not extend<br>into land identified as Waterways and<br>Riparian Land. Refer to NSW Rural Fire<br>Service for site assessment methodology. | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

# State Environmental Planning Policy (Biodiversity and Conservation) 2021: Chapter 4 Koala Habitat Protection 2021

This chapter applies to LGAs that are listed in Schedule 2 'Local government areas' of the SEPP. As the Northern Beaches LGA is included in Schedule 2, this SEPP applies to the Subject Site. As such, the following development control provisions apply to development applications relating to the land, as the land:

- Has an area of at least 1 hectare (including adjoining land within the same ownership); and
- Does not have an approved koala plan of management applying to the land.

Before a council may grant consent to a development application for consent to carry out development on the land, the council must assess whether the development is likely to have any impact on koalas or koala habitat. If the council is satisfied that the development is likely to have low or no impact on koalas or koala habitat, the council may grant consent to the development application.

A site assessment was undertaken to determine whether the land contained core koala habitat, which is defined by the SEPP as:

a) an area of land which has been assessed by a suitably qualified and experienced person as being highly suitable koala habitat and where koalas are recorded as being present at the time of assessment of the land as highly suitable koala habitat, or

b) an area of land which has been assessed by a suitably qualified and experienced person as being highly suitable koala habitat and where koalas have been recorded as being present in the previous 18 years.



The Subject Property did contain suitable habitat (where 15% or greater of the total number of trees are the regionally relevant species of those listed in Schedule 3 of the SEPP), however no signs of koalas or koala occupancy (scats, scratch marks) were observed at the time of the site assessment. Furthermore, there are only two (2) records of Koalas within 2.5km of the Subject Property in the last 18 years. Due to the urban nature of the Subject Site and low number of proximal records, it is considered unlikely to be core Koala habitat and no further assessment under the SEPP (i.e. Koala Assessment Report) should be required.

# 1.10 Water Management Act 2000

Controlled activities carried out in, on or under waterfront land are regulated by the Water Management Act 2000 (WM Act). The Natural Resources Access Regulator (NRAR) administers the WM Act and is required to assess the impact of any proposed controlled activity to ensure that no more than minimal harm will be done to waterfront land. Water front land include the bed and bank of any river, lake or estuary and all land within 40 meters of the highest bank of the river, lake or estuary.

The proposed development involves a water crossing and riparian works, which are considered a controlled activity. Therefore, a controlled activity approval must be obtained from the NRAR before commencing the proposed development. Additionally, when a proposed controlled activity disturbs or substantially modifies the riparian corridor (e.g. through vegetation removal or excavation), its restoration and/or rehabilitation will be a requirement of the controlled activity approval. A Vegetation Management Plan (VMP) may be required that details how the restoration or rehabilitation will be carried out for crossing and riparian works.

# 1.11 Fisheries Management Act 1994

One of the objectives of the Fisheries Management Act 1994 is to 'conserve key fish habitats'. 'Key Fish Habitat' (KFH) was defined to include all marine and estuarine habitats up to highest astronomical tide level (that are reached by 'king' tides) and most permanent and semi-permanent freshwater habitats including rivers, creeks, lakes, lagoons, billabongs, weir pools and impoundments up to the top of the bank.

Brookvale Creek within the Subject Site is mapped as containing KFH (**Figure 2**). NSW DPI assesses development proposals with consideration to the water way class (**Table 4**) and habitat sensitivity type (**Table 5**), which factors in the importance, resilience and functionality of the waterway as fish habitat (DPI 2013). Brookvale Creek within the Subject Site meets the definition of 'Class 1 – Major key fish habitat' and 'Type 3 – Minimally sensitive key fish habitat'.

Any works that involve dredging or temporary obstruction of fish passage within KFH would require a Part 7 Fisheries Permit under section 201 and 219 of the FM Act.

| Water Way<br>Classification                  | Characteristics of Waterway Class                                                                                                                                                                                                                                                 | Features present within the Subject Site                                |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Class 1 –<br>Major key<br>fish habitat       | Marine or estuarine waterway, or permanently flowing or flooded freshwater waterway (e.g. river or major creek), habitat of a threatened or protected fish species or 'critical habitat'.                                                                                         | Brookvale Creek is a<br>perennial<br>(permanently flowing)<br>waterway. |
| Class 2 –<br>Moderate<br>key fish<br>habitat | Non-permanently flowing (intermittent) stream, creek or waterway (generally named) with clearly defined bed and banks with semi-<br>permanent to permanent waters in pools or in connected wetland areas. Freshwater aquatic vegetation is present. Type 1 and 2 habitat present. | N/A                                                                     |
| Class 3 –<br>Minimal key<br>fish habitat     | Named or unnamed waterway with intermittent flow and sporadic<br>refuge, breeding or feeding areas for aquatic fauna (e.g. fish,<br>yabbies). Semi-permanent pools form within the waterway or                                                                                    | N/A                                                                     |

#### Table 4. Classification of waterways for fish passage. Green shading = Class within the Subject Site (DPI 2013).



| Water Way<br>Classification               | Characteristics of Waterway Class                                                                                                                                                                                                                                                      | Features present<br>within the Subject Site |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                           | adjacent wetlands after a rain event. Otherwise, any minor waterway that interconnects with wetlands or other Class 1-3 fish habitats                                                                                                                                                  |                                             |
| Class 4 –<br>Unlikely key<br>fish habitat | Waterway (generally unnamed) with intermittent flow following rain<br>events only, little or no defined drainage channel, little or no flow or<br>free-standing water or pools post rain events (e.g. dry gullies or<br>shallow floodplain depressions with no aquatic flora present). | N/A                                         |

| Table 5. Key fish habitat and associated sensitivity classi | fication scheme. Green shading = Class within the |
|-------------------------------------------------------------|---------------------------------------------------|
| Subject Site (DPI 2013).                                    |                                                   |

| Sensitivity<br>Classification                                         | Characteristics of Sensitivity Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Features present<br>within the Subject Site                                                                  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Type 1 –<br>Highly<br>sensitive key<br>fish habitat                   | <ul> <li>Posidonia australis (strapweed)</li> <li>Zostera, Heterozostera, Halophila and Ruppia species of seagrass beds &gt;5m2 in area</li> <li>Coastal saltmarsh &gt;5m2 in area</li> <li>Coral communities</li> <li>Coastal lakes and lagoons that have a natural opening and closing regime (i.e. are not permanently open or artificially opened or are subject to one off unauthorised openings)</li> <li>Marine Park, an aquatic reserve or intertidal protected area</li> <li>SEPP 14 coastal wetlands, wetlands recognised under international agreements (e.g. Ramsar, JAMBA, CAMBA, ROKAMBA wetlands), wetlands listed in the Directory of Important Wetlands of Australia</li> <li>Freshwater habitats that contain in-stream gravel beds, rocks greater than 500 mm in two dimensions, snags greater than 300 mm in diameter or 3 metres in length, or native aquatic plants</li> <li>Any known or expected protected or threatened species habitat or area of declared 'critical habitat' under the FM Act</li> <li>Mound springs</li> </ul> | Not present                                                                                                  |
| Type 2 –<br>Moderately<br>sensitive key<br>fish habitat:              | <ul> <li>Zostera, Heterozostera, Halophila and Ruppia species of seagrass beds &lt;5m<sup>2</sup> in area</li> <li>Mangroves</li> <li>Coastal saltmarsh &lt;5m<sup>2</sup> in area</li> <li>Marine macroalgae such as <i>Ecklonia</i> and <i>Sargassum</i> species</li> <li>Estuarine and marine rocky reefs</li> <li>Coastal lakes and lagoons that are permanently open or subject to artificial opening via agreed management arrangements (e.g. managed in line with an entrance management plan)</li> <li>Aquatic habitat within 100 m of a marine park, an aquatic reserve or intertidal protected area</li> <li>Stable intertidal sand/mud flats, coastal and estuarine sandy beaches with large populations of in-fauna</li> <li>Freshwater habitats and brackish wetlands, lakes and lagoons other than those defined in Type 1</li> <li>Weir pools and dams up to full supply</li> </ul>                                                                                                                                                         | Not Present                                                                                                  |
| Type 3 –<br>Minimally<br>sensitive key<br>fish habitat<br>may include | <ul> <li>Unstable or unvegetated sand or mud substrate, coastal<br/>and estuarine sandy beaches with minimal or no in-fauna</li> <li>Coastal and freshwater habitats not included in Type 1 or 2</li> <li>Ephemeral aquatic habitat not supporting native aquatic or<br/>wetland vegetation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Present. Brookvale<br>Creek is a coastal<br>habitat that does not<br>have features listed in<br>Type 1 or 2. |



Figure 2. Key Fish Habitat within the Subject Site.

# 1.12 Scope of Assessment

#### 1.12.1 Objectives of the Fauna and Flora Assessment

The objectives of this FFA were to:

- Establish the likelihood of occurrence of migratory species, threatened species, endangered populations, and threatened ecological communities as listed under the BC Act and/or the EPBC Act;
- Assess any potential impacts to species and/or communities listed under the BC Act and EPBC Act;
- Assess the ecological impacts of the proposed development on the waterway and riparian land that is within the Subject Site;
- Identify and map the distribution of vegetation communities within the Subject Property;
- Record presence and the extent of any known or potential fauna habitat features such as nests, dreys, caves, crevices, culverts, pools, soaks, flowering trees, fruiting trees, or hollow-bearing trees and provide recommendations for on-going management of these habitat features and any fauna present;
- Record presence and the extent of any priority weeds or weed infestations and provide recommendations for on-going management; and
- Recommend any controls or additional actions to be taken to protect or improve environmental outcomes of the proposed activity.

#### 1.12.2 Objectives of the Water Impact Statement

The objectives of this WIS were to:

- Determine impacts upon water quality;
- Determine impacts on channel form, erosion rate and bank stability;
- Identify ecological impacts of the proposed development;
- Establish any landscaping impacts of the proposed development;
- Assess bank stability by demonstrating that the building and development is not at risk from erosion processes;
- Identify the extent of native vegetation proposed to be removed; and
- Determine any modifications to natural creek lines and overland flow.

### 1.13 Study Limitations

This study was not intended to provide a complete inventory of all flora and fauna species with potential to occur on the Subject Property. The species list provided for the Subject Property in this report was restricted to what was observed during the site assessment by the Narla Ecologist. The timing of the survey may not have coincided with emergence times of some species of flora and fauna, such as seasonally flowering herbs, seasonal migratory fauna, or nocturnal fauna. To account for those species that could not be identified during the field survey, detailed habitat assessments were combined with desktop research and local ecological knowledge to establish an accurate prediction of the potential for such species to occur on or adjacent the Subject Property.



# 2. Methodology

### 2.1 Desktop Assessment and Literature Review

A thorough literature review of local information relevant to the Northern Beaches Council area was undertaken. Searches using NSW Wildlife Atlas (BioNet; DPE 2023b) and the Commonwealth Protected Matters Search Tool (DCCEEW 2023) were conducted to identify all current threatened flora and fauna, as well as migratory fauna records within a 10km x 10km cell search area centred on the Subject Site. These data were used to assist in establishing the presence or likelihood of any ecological values as occurring on or adjacent the Subject Site, and helped inform the Ecologist on what to look for during the site assessment.

Soil landscape and geological mapping was examined to understanding of the environment on the Subject Site and assisted in determining whether any threatened flora or ecological communities may occur there (Chapman et al. 2009).

### 2.2 Ecological Site Assessment

#### 2.2.1 Ecological Survey

A site assessment was undertaken by Narla Ecologists, Jonathan Coy and Jayden Maloney, on Wednesday 2<sup>nd</sup> of August 2023. During the site assessment, the following activities were undertaken:

- Identifying and recording the vegetation communities present within the Subject Site, with focus on identifying any threatened ecological communities (TEC);
- Recording a detailed list of flora species encountered within the Subject Site, with a focus on threatened species, species diagnostic of threatened ecological communities, and priority weeds;
- Recording opportunistic sightings of any fauna species seen or heard on or within the immediate surrounds of the Subject Site;
- Targeted surveys for threatened flora;
- Identifying and recording the locations of notable fauna habitat such as important nesting, roosting, or foraging microhabitats;
- Assessing the impact of the proposed development on the present waterway and riparian land;
- Assessing the connectivity and quality of the vegetation within the Subject Site and surrounding area; and
- Targeting the habitat of any threatened and regionally significant fauna including:
  - Tree hollows (habitat for threatened large forest owls, parrots, and arboreal mammals);
  - Caves and crevices (habitat for threatened reptiles, small mammals, and microbats);
  - Termite mounds (habitat for threatened reptiles);
  - Soaks (habitat for threatened frogs);
  - Wetlands (habitat for threatened fish, frogs, and water birds);
  - Drainage lines (habitat for threatened fish and frogs);
  - Fruiting trees (food for threatened frugivorous birds and mammals);
  - Flowering trees (food for threatened nectarivorous birds and mammals);
  - Trees and shrubs supporting nest structures (habitat for threatened birds and arboreal mammals); and
  - Any other habitat features that may support fauna (particularly threatened) species.



#### 2.2.2 Weather Conditions

Weather conditions recorded at the nearest weather station (Terrey Hills AWS #066059) prior to and during the site assessment are provided in **Table 6** (BOM 2022). The data revealed mild to low temperatures and no rainfall in the lead up to the site assessment, these conditions may not have been conducive to the emergence of flowering plants.

| Survey date | Day       | Minimum Temp. (°C) | Maximum Temp. (°C) | Rainfall (mm) |
|-------------|-----------|--------------------|--------------------|---------------|
| 27/07/2023  | Thursday  | 7.9                | 19.5               | 0             |
| 28/07/2023  | Friday    | 10.7               | 22.7               | 0             |
| 29/07/2023  | Saturday  | 13.9               | 21.2               | 0             |
| 30/07/2023  | Sunday    | 12.9               | 24                 | 0             |
| 31/07/2023  | Monday    | 11.5               | 21.8               | 0             |
| 01/08/2023  | Tuesday   | 7.7                | 19.4               | 0             |
| 02/08/2023  | Wednesday | 11.3               | 17.8               | 0             |

Table 6. Weather conditions recorded at Terrey Hills AWS (station 066059) preceding and during the site assessment (site assessment date in bold)

#### 2.2.3 Mapping and Analysis of Vegetation Communities

Narla examined local satellite imagery, geological mapping, soil landscape mapping, and topographic mapping, in addition to existing vegetation mapping the State Vegetation Type Map (DPE 2022) in order to stratify the Subject Site and guide the site assessment survey efforts. The following documents were also consulted during the site assessment to assist with the identification of vegetation communities present within the Subject Site:

- Chapman G.A., Murphy C.L., Tille P.J., Atkinson G. and Morse R.J. (2009) Soil Landscapes of the Sydney 1:100,000 Sheet map, Ed. 4, Department of Environment, Climate Change and Water, Sydney.
- Department of Planning and Environment (DPE) (2023d) eSPADE v2.2 https://www.environment.nsw.gov.au/eSpade2Webapp#
- Department of Planning and Environment (DPE) (2022) State Vegetation Type Map

#### 2.2.4 Impact Assessment

An assessment of likely occurrence was carried out for locally occurring threatened species (**Table 11** and **Table 13**) and threatened migratory species. It was then determined if a further impact assessment (5-Part Test; test of significance) was required for any locally occurring threatened species or communities (**Appendix D**; **Appendix E**).

#### 2.3 Waterways Impact Assessment

#### 2.3.1 Waterways Impact Survey

A site assessment was undertaken by Narla Ecologist, Jonathan Coy and Jayden Maloney, on Wednesday 2<sup>nd</sup> of August 2023. During the site assessment, the following activities were undertaken:

- Observing water quality and turbidity;
- Recording the presence of litter, rubbish and pollutants;
- Identifying potential development-related impacts upon water quality;
- Determining potential impacts on channel form, erosion rate and bank stability;
- Identifying any potential fauna habitat;
- Establishing any potential landscaping impacts of the proposed development;



- Assessing the current state of bank stability; and
- Determining any potential modifications to natural creek lines and overland flow.



# 3. Native Vegetation

### 3.1 Historically Mapped Vegetation Communities

Historical vegetation mapping of the Subject Property utilizing the "State Vegetation Type Map" (DPE 2022) was conducted and identified the vegetation on site as non-classified. The nearest native vegetation mapped is Estuarine Swamp Oak Twig-rush Forest (**Figure 3**).

#### 3.2 Field-validated Vegetation Communities

The field survey conducted by Narla identified the vegetation within the Subject Property as best conforming to two (2) vegetation community (**Figure 4**):

- Estuarine Swamp Oak Twig-rush Forest (Table 7);
- Exotic Dominated Vegetation (Table 8).





Figure 3. Historical Vegetation Mapping of the Subject Site.





Figure 4. Field Validated Vegetation Mapping of the Subject Site.



Table 7 Description of Estuarine Swamp Oak Twig-rush Forest identified within the and surrounding the Subject Site.



Estuarine Swamp Oak Twig-rush Forest

Extent within the Subject Site 0.19ha

#### Description (DPE 2022)

A tall to very tall open forest or woodland featuring *Casuarina glauca* and usually *Baumea juncea* and *Juncus kraussii* subsp. *australiensis*, occurring on the edges of tidal estuarine flats and tidal creek flats along the NSW coast, usually at elevations of below 10 metres asl. *Casuarina glauca* almost always forms a sparse to mid-dense tree layer, rarely accompanied by *Melaleuca quinquenervia*. A sparse or very sparse small tree or scrub layer of *Melaleuca ericifolia* is occasionally present, while other *Melaleuca* species and other trees or shrubs only rarely occur. The mid-dense ground layer is primarily comprised of sedges, rushes, reeds and grasses that are tolerant of inundation, very frequently including *Baumea juncea* and *Juncus kraussii* subsp. *australiensis*, commonly with Phragmites australis. Other species occasionally occurring in the ground layer include *Samolus repens, Lobelia anceps* and *Gahnia clarkei*, while more rare species include *Sporobolus virginicus, Apium prostratum* and *Hemarthria uncinata*, the latter three with variable cover from site to site.

This PCT has been recorded from Sawtell south to Tuross Head, however is likely to occur elsewhere along the NSW coast on the margins of brackish water bodies and watercourses. It is floristically related to PCT 4026 which occurs in similar environments, however PCT 4028 has a more consistent cover of *Casuarina glauca* and includes more species that are not tolerant of saline conditions. PCT 4028 occurs at slightly higher elevations than PCT 4026, or further upstream in areas with less frequent inundation. PCT 4028 overlaps spatially in the Hunter region with PCT 4038, with which it also weakly overlaps floristically, however PCT 4038 has thick *Melaleuca nodosa* which is only very rare and very sparse in PCT 4028.



#### Estuarine Swamp Oak Twig-rush Forest

#### Description of the Vegetation within and adjacent to the Subject Site

This vegetation community was a tall open forest that was historically disturbed with a weed dominated understorey. The canopy layer was dominated by *Casuarina glauca* in conjunction with high quantities of *Melaleuca quinquenervia, Melaleuca linariifolia* and *Callistemon salignus,* with sporadic occurrences of *Eucalyptus robusta* and *Angophora costata*. Minor occurrences of the weeds *Cinnamomum camphora* and *Erythrina x sykesii* were also present within this stratum. The midstratum was generally sparse and dominated by *Homalanthus populifolius, Pittosporum undulatum* and *Acacia longifolia*. Exotic species in the midstratum included *Senna pendula, Lantana camara* and *Asparagus aethiopicus*. The ground layer was primarily exotic, however native species present included *Pteridium esculentum, Commelina cyanea, Lomandra longifolia, Cissus antarctica* and *Dichondra repens* Dominated exotic species includes *Ipomoea purpurea, Araujia sericifera, Ehrharta erecta, Ageratina adenophora, Parietaria Judaica, Cenchrus clandestinus, Anredera cordifolia* and *Eragrostis curvula*.

| Justification of Vegetation<br>Assignment | This vegetation within the Subject Land is located on a tidal creek flat below 10m asl and contains diagnostic species in the canopy and midstratum, particularly <i>Casuarina glauca, Melaleuca quinquenervia</i> and <i>Melaleuca linariifolia</i> . |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BC Act 2016 Status                        | The vegetation within the Subject Site conforms to the BC Act listed EEC Swamp<br>Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East<br>Corner Bioregions                                                                       |
| EPBC Act 1999 Status                      | The vegetation within the Subject Site conforms to the EPBC Act listed EEC Coastal<br>Swamp Oak Forest of South-east Queensland and New South Wales Community                                                                                          |



Table 8 Description of Exotic Dominated Vegetation identified within the and surrounding the Subject Site.Exotic Dominated Vegetation



Extent within the Subject Site (approx.)

#### Description of the Vegetation within the Subject Property

This vegetation community was dominated by common garden environmental exotics and noxious weeds, as well as areas of turf and planted gardens and trees. The canopy layer contained exotic species including *Phoenix canariensis* and *Harpephyllum caffrum*. The mid-storey was dominated by exotic species such as *Anethum graveolens, Lantana camara, Solanum nigrum, Ricinus communis* and *Strelitzia nicolai*. The ground layer was heavily dominated by exotic species, including *Ipomoea purpurea, Araujia sericifera, Ehrharta erecta, Ageratina adenophora, Parietaria Judaica, Cenchrus clandestinus, Anredera cordifolia* and *Eragrostis curvula*. The only native species within this zone was *Cynodon dactylon* which was located in areas of turf.

| Justification of Vegetation<br>Assignment | This assemblage of species within the landscape of the Subject Property did not conform to any locally occurring community. |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| BC Act 2016 Status                        | Not Listed.                                                                                                                 |
| EPBC Act 1999 Status                      | Not Listed.                                                                                                                 |



### 4.1 Threatened Ecological Communities

# 4.1.1 Listing under the BC Act: Swamp Oak Floodplain Forest in the NSW North Coast, Sydney Basin and South East Corner Bioregions, Endangered Ecological Community

Estuarine Swamp Oak Twig-rush Forest is associated with to Swamp Oak Floodplain Forest (SOFF) in the Sydney Basin Bioregion Endangered Ecological Community (EEC). Swamp Oak Floodplain Forest is associated with greyblack clay-loams and sandy loams, where the groundwater is saline or sub-saline, on waterlogged or periodically inundated flats, drainage lines, lake margins and estuarine fringes associated with coastal floodplains, generally below 20 m (NSW Scientific Committee 2011). The Subject Site occurs on such soils on a costal floodplain below 20m asl, and contains the following diagnostic species:

- Callistemon salignus;
- Casuarina glauca;
- Commelina cyanea;
- Glochidion ferdinandi;
- Lomandra longifolia; and
- Melaleuca quinquenervia.

Therefore, this community within the conforms to the EEC SOFF in the Sydney Basin Bioregion.

# 4.1.2 Listing under the EPBC Act: Coastal Swamp Oak (*Casuarina glauca*) Forest of South-east Queensland and New South Wales

Estuarine Swamp Oak Twig-rush Forest is associated with Coastal Swamp Oak (*Casuarina glauca*) Forest of Southeast Queensland and New South Wales (CWOF) EEC. In order to be considered a Matter of National Significance, areas of the ecological community must meet both:

- the key diagnostic characteristics (Table 9); and
- at least the minimum condition thresholds for Category C (Table 10).

As Estuarine Swamp Oak Twig-rush Forest within the Subject Site meets the key diagnostic characteristics and minimum condition thresholds (Category C), this vegetation meets the definition of CWOF EEC.

# Table 9. Key Diagnostic Characteristics of Coastal Swamp Oak (*Casuarina glauca*) Forest of South-east Queensland and New South Wales.

| Key Diagnostic Characteristic                                                                                                                                                                                                                                                                                                                                                                 | Features Present within the<br>Subject Site?                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Occurs from south-east Queensland to southern NSW within the South<br>Eastern Queensland, NSW North Coast, Sydney Basin, or South East<br>Corner bioregions                                                                                                                                                                                                                                   | Yes. The Subject Site is located<br>within the Sydney Basin<br>Bioregion. |
| Occurs in coastal catchments at elevations up to 50 m ASL, typically less<br>than 20 m ASL, on coastal flats, floodplains, drainage lines, lake margins,<br>wetlands and estuarine fringes where soils are at least occasionally<br>saturated, water-logged or inundated. There are also minor occurrences<br>on coastal dune swales or flats, particularly deflated dunes and dune<br>soaks. | Yes. The Subject Site occurs at <10m asl on a coastal floodplain.         |



| Key Diagnostic Characteristic                                                                                                                                                                                                                                                                           | Features Present within the<br>Subject Site?                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Occurs on soils derived from unconsolidated sediments (including alluvium), typically hydrosols (grey-black clay-loam and/or sandy loam soils) and sometimes organosols (peaty soils). It may occur in transitional soils (or catenas) where shallow unconsolidated sediments border lithic substrates. | Yes. The Subject Site is mapped as occurring on alluvial soils including loamy sand and peaty soils. |
| Has an open woodland, woodland, forest, or closed forest structure, with a tree canopy that has a total crown cover of at least 10 per cent.                                                                                                                                                            | Yes. Canopy cover is < 10%.                                                                          |
| Has a canopy of trees dominated by Casuarina glauca                                                                                                                                                                                                                                                     | Yes. <i>Casuarina glauca</i> is the dominant species.                                                |

# Table 10. Condition Thresholds for Coastal Swamp Oak (*Casuarina glauca*) Forest of South-east Queensland and New South Wales (Green Box indicates condition class).

| Vegetation Quality Class                                                                                                                                                                                                                  | <b>Large Patch</b><br>The patch ≥5<br>ha | <b>Medium Patch</b><br>The patch ≥2ha<br>and <5 ha | Small Contiguous PatchMedium PatchThe patch ≥0.5ha andThe patch ≥2ha<br>and <5 ha<2ha, and is connected to<br>a larger area of native<br>vegetation of at least 5 ha |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| High Quality -<br>Predominantly native<br>understorey<br>Non-native species<br>comprise less than 20%<br>of total understorey<br>vegetation cover                                                                                         | Category A                               | C                                                  | Category B                                                                                                                                                           | Category C    |
| Good Quality -Mostly<br>native understorey<br>Non-native species<br>comprise less than 50%<br>of total understorey<br>vegetation cover and<br>transformer species<br>comprise less than 30%<br>of total understorey<br>vegetation cover*  | Category B                               | C                                                  | Category C                                                                                                                                                           | N/A           |
| Moderate Quality -Some<br>native understorey<br>Non-native species<br>comprise less than 80%<br>of total understorey<br>vegetation cover and<br>transformer species<br>comprise less than 50%<br>of total understorey<br>vegetation cover | Cate                                     | egory C                                            | N/A                                                                                                                                                                  | N/A           |
| As non-native species com                                                                                                                                                                                                                 | nrise less than 80                       | % of total understore                              | v vegetation cover and transfe                                                                                                                                       | ormer species |

As non-native species comprise less than 80% of total understorey vegetation cover and transformer species comprise less than 50% of total understorey vegetation cover with a patch size >5ha, Estuarine Swamp Oak Twig-rush Forest within the Subject Site conforms to Condition Class C.



# 4.1 Threatened Flora

Desktop analysis revealed a range of threatened flora as occurring or having the potential to occur on or within a 10km x 10km cell centred on the Subject Site. Thorough targeted surveys were undertaken throughout the Subject Site for potentially occurring threatened flora whose survey period coincided within the time of the site assessment (August 2023; **Figure 5**). No threatened flora whose survey period coincided with the time of the site assessment were identified at the time of the site assessment.

A comprehensive list of flora species identified during the site assessment is presented in **Appendix B**. The following locally occurring species were assessed for their potential to occur within the Subject Site (**Table 11**). Based on unsuitable habitat, geographic distribution and/or the small scale of the development, it was determined that the proposed works are unlikely to significantly impact upon these species. Therefore, no further assessment of impacts pursuant the BC Act (e.g. Biodiversity Development Assessment Report [BDAR]) and/or EPBC Act Referral to Commonwealth will be required.



Table 11. Assessment of likely occurrence of threatened flora species within the Subject Site. E = Endangered, CE = Critically Endangered, EP = Endangered Population, V = Vulnerable.

| Further<br>Impact<br>Assessment<br>Required?     | o<br>Z                                                                                                                                                                                                                          | oz oz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | °<br>Z                                                                                                                                                                                                                                                                                           | N                                                                                                         |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Likelihood of occurrence within the Subject Site | Absent. No heath or dry sclerophyll forest occurs within<br>the Subject Site; however, a targeted survey was<br>conducted during the approved survey period for this<br>species (DPE 2023b) and no individuals were identified. | <ul> <li>conducted during the approved survey period for this species (DPE 2023b) and no individuals were identified.</li> <li>ils.</li> <li>low. Sandy soils were not present within the Subject Site; furthermore, the degraded and altered state of the an Subject Site makes this species presence unlikely.</li> <li>low. The original known habitat of the Neilsen Park Sheoarly cast.</li> <li>Low. The original known habitat of the Neilsen Park Sheoarly are area. There are no plants left at the original site where it was discovered. However, propagation material has been fully planted successfully at a number of locations at Nielsen nas in Park and other locations in the local area, e.g. Gap Bluff, Hermit Point and Vaucluse House. The Subject Site is outside this distribution.</li> </ul>                                                                                           |                                                          | Low. As the Subject Site is outside of this current distribution it is unlikely to occur.                                                                                                                                                                                                        | Present outside of the Subject Site. This species was observed adjacent to Brookvale Creek outside of the |
| Habitat Requirements (DPE 2023e)                 | Occurs in heath or dry sclerophyll forest on sandy soils.<br>Prefers open, sometimes slightly disturbed sites such as trail<br>margins, edges of roadside spoil mounds and in recently burnt<br>patches.                        | Prefers open, sometimes slightly disturbed sites such as tra<br>margins, edges of roadside spoil mounds and in recently bu<br>patches.<br>Coastal scrub and dry sclerophyll woodland on sandy soils<br>Habitat is generally sparse and scattered. Most areas of<br>habitat or potential habitat are small and isolated. Most sit<br>are highly modified or disturbed due to surrounding urbai<br>development. Flowers in autumn but may be through to ea<br>winter.<br>The original known habitat of the Neilsen Park She-oak is a<br>Nielsen Park, in Woollahra local government area. There ai<br>no plants left at the original site where it was discovered<br>However, propagation material has been planted successfu<br>at a number of locations at Nielsen Park and other locations<br>the local area, e.g. Gap Bluff, Hermit Point and Vaucluse<br>House. The Subject Site is outside this distribution. |                                                          | Within NSW, <i>Caladenia tessellata</i> is currently known from two disjunct areas; one population near Braidwood on the Southern Tablelands and three populations in the Wyong area on the Central Coast. Records in the Sydney area old from 1945 and it is likely extinct in these locations. | Grows in dry sclerophyll forest on the coast and adjacent ranges.                                         |
| EPBC<br>Act                                      | EPBC Act                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ш                                                        | >                                                                                                                                                                                                                                                                                                |                                                                                                           |
| BC<br>Act                                        | ш                                                                                                                                                                                                                               | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ш                                                        | ш                                                                                                                                                                                                                                                                                                | >                                                                                                         |
| Species                                          | Acacia<br>bynoeana<br>(Bynoe's<br>Wattle)                                                                                                                                                                                       | Acacia<br>terminalis<br>subsp.<br>terminalis<br>(Sunshine<br>Wattle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Allocasuarina<br>portuensis<br>(Nielsen Park<br>She-oak) | Caladenia<br>tessellata<br>(Thick Lip<br>Spider Orchid)                                                                                                                                                                                                                                          | Callistemon<br>linearifolius                                                                              |



| Further<br>Impact<br>Assessment<br>Required?     |                                                                  | °<br>Z                                                                                                                                                                                                                                                                                                | °<br>Z                                                                                                                                                                                                                                        | °<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O N                                                                                                                                                                                                                                                        |
|--------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Likelihood of occurrence within the Subject Site | Subject Site. Therefore, no impact is expected for this species. | Absent. No fore-shore dunes, pebbly strandlines,<br>exposed headlands or the species associated with this<br>species are located within the Subject Site. A targeted<br>survey was conducted during the approved survey period<br>for this species (DPE 2023b) and no individuals were<br>identified. | Low. The Subject Site does not contain strongly shale influenced soils. Furthermore, the degraded state of the Subject Site makes this species presence unlikely.                                                                             | Absent. While the Subject Site occurs on Hawkesbury<br>sandstone, a targeted survey was conducted during the<br>approved survey period for this species (DPE 2023b) and<br>no individuals were identified.                                                                                                                                                                                                                                                                                              | Low. The associated habitat for this species (dry<br>sclerophyll forest) does not occur within the Subject Site.<br>Furthermore, the highly disturbed nature of the Subject<br>Site also makes the occurrence of this threatened plant<br>highly unlikely. |
| Habitat Requirements (DPE 2023e)                 |                                                                  | Grows on fore-dunes, pebbly strandlines and exposed<br>headlands, often with Spinifex ( <i>Spinifex sericeus</i> ) and Prickly<br>Couch ( <i>Zoysia macrantha</i> ).                                                                                                                                  | Found in a range of habitat types, most of which have a strong shale soil influence. Lifespan is recorded to be 5-20 years, requiring 2-4 years before seed is produced in the wild. Killed by fire and re-establishes from soil-stored seed. | Occurs in poor coastal country in shallow sandy soils overlying<br>Hawkesbury sandstone. Coastal heath mostly on exposed<br>sandy ridges. Occurs mostly in small scattered stands near the<br>boundary of tall coastal heaths and low open woodland of the<br>slightly more fertile inland areas. Associated species<br>frequently include stunted species of <i>E. oblonga</i> Narrow-<br>leaved Stringybark, <i>E. capitellata</i> Brown Stringybark and <i>E.</i><br><i>haemastoma</i> Scribbly Gum. | Grows in dry sclerophyll forest and moss gardens over<br>sandstone. Flowers February to March.                                                                                                                                                             |
| EPBC<br>Act                                      |                                                                  |                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ш                                                                                                                                                                                                                                                          |
| BC<br>Act                                        |                                                                  | ш                                                                                                                                                                                                                                                                                                     | >                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ш                                                                                                                                                                                                                                                          |
| Species                                          | (Netted Bottle<br>Brush)                                         | Chamaesyce<br>psammogeton<br>(Sand Spurge)                                                                                                                                                                                                                                                            | Epacris<br>purpurascens<br>var.<br>purpurascens                                                                                                                                                                                               | <i>Eucalyptus</i><br><i>camfieldii</i><br>(Camfield's<br>Stringybark)                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>Genoplesium</i><br><i>baueri</i><br>(Bauer's<br>Midge Orchid)                                                                                                                                                                                           |



| Further<br>Impact<br>Assessment<br>Required?     | °<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                | °<br>Z                                                                                                                                                                                                                                     | °<br>Z                                                                                                                                                                                                                    | °<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Likelihood of occurrence within the Subject Site | Absent. No ridgetops between elevations of 170-240 asl<br>are present within the Subject Site, however, a targeted<br>survey was conducted during the approved survey period<br>for this species (DPE 2023b) and no individuals were<br>identified.                                                                                                                                                                   | Absent. No ridgetops near the shale/sandstone boundary<br>are present within the Subject Site. A targeted survey<br>was conducted during the approved survey period for<br>this species (DPE 2023b) and no individuals were<br>identified. | Absent. Although suitable habitat for this species is present within the Subject Site, a targeted survey was conducted during the approved survey period for this species (DPE 2023b) and no individuals were identified. | Low. The Subject Site does not contain strongly shale<br>influenced soils; furthermore, the degraded and altered<br>state of the Subject Site makes this species presence<br>unlikely.                                                                                                                                                                                                                                                                                                                                     |
| Habitat Requirements (DPE 2023e)                 | All natural remnant sites occur within a habitat that is both characteristic and consistent between sites. All sites occur on the ridgetop between elevations of 170 to 240m asl, in association with laterite soils and a vegetation community of open forest, generally dominated by <i>Eucalyptus sieberi</i> and <i>E. gummifera</i> . Commonly found in the endangered Duffys Forest ecological community (EEC). | Flowering time is July to December. The species occurs on sandstone ridgetops often near the shale/sandstone boundary. Occurs in both open woodland and heathland, and appears to prefer open disturbed areas, such as tracksides.         | Biconvex Paperbark generally grows in damp places, often<br>near streams or low-lying areas on alluvial soils of low slopes<br>or sheltered aspects. Flowering occurs over just 3-4 weeks in<br>September and October.    | It is not easy to define the preferred natural habitat of this orchid as the Ingleside location is highly disturbed. The dominant species occurring on the site are introduced weeds <i>Hyparrhenia hirta</i> (Coolatai grass) and <i>Acacia saligna</i> . The Ingleside population occurs on soils that have been modified but were originally those of the restricted ridgetop lateritic soils in the Duffys Forest - Terrey Hills - Ingleside and Belrose areas. These soils support a specific and distinct vegetation |
| EPBC<br>Act                                      | CE                                                                                                                                                                                                                                                                                                                                                                                                                    | I                                                                                                                                                                                                                                          | >                                                                                                                                                                                                                         | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BC<br>Act                                        | CE                                                                                                                                                                                                                                                                                                                                                                                                                    | ш                                                                                                                                                                                                                                          | >                                                                                                                                                                                                                         | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Species                                          | <i>Grevillea</i><br><i>caleyi</i> (Caley's<br>Grevillea)                                                                                                                                                                                                                                                                                                                                                              | Hibbertia<br>superans                                                                                                                                                                                                                      | <i>Melaleuca</i><br><i>biconvexa</i><br>(Biconvex<br>Paperbark)                                                                                                                                                           | <i>Microtis</i><br>angusii<br>(Angus's<br>Onion Orchid)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| BC Habitat Requirements (DPE 2023e)<br>ct type, the Duffys Forest Vegetation Community and ranges                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| from open forest to lov<br>The Hairy Geebung is fo<br>sclerophyll open forest, v<br>Mittagong Formatio<br>Sandstone. It is usually p<br>sm                                                                                                                                                                                                                                                  |
| Occurs on shaley/lateritic soils ov<br>shale/sandstone transition soils on ridg<br>amongst woodlands. Also recorded<br>Grassy Woodland habitat at Albion<br>coastal plain.                                                                                                                                                                                                                  |
| Coccurs in localised patches in or in clc<br>endangered Duffys Forest ecological co<br>deeply weathered clay-loam soils assoc<br>and scattered shale lenses, a soil type v<br>ridge tops and has been extensiv                                                                                                                                                                              |
| E       Occurs in coastal districts north from B         South Wales, approximately 280 km sourinland of Bundaberg in Queensland. <i>inland</i> of Bundaberg in Queensland. <i>inbescens</i> typically occur in coastal regivextend inland onto escarpments up to 66         rainfall of 1,000-1,600 mm. Found in litter and subtropical rainforest and wet scler on volcanic and sedimenta |
| Coast Groundsel occurs in Nadgee Natu<br>Howe) and between Kurnell in Sydney                                                                                                                                                                                                                                                                                                                |

Flora and Fauna Assessment Report and Waterway Impact Statement – Proposed Warringah Golf and Community Club | 35



| Further<br>Impact<br>Assessment<br>Required?     |                                                                                                                                                                                                  | °<br>Z                                                                                                                                                                                                                                                                                                                             | °<br>Z                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Likelihood of occurrence within the Subject Site | approved survey period for this species (DPE 2023b) and no individuals were identified.                                                                                                          | Low. Appropriate habitat requirements were not<br>identified within the Subject Site, furthermore, the<br>degraded and altered state of the Subject Site makes this<br>species presence unlikely.                                                                                                                                  | Low. Appropriate habitat requirements were not<br>identified within the Subject Site, furthermore, the<br>degraded and altered state of the Subject Site makes this<br>species presence unlikely.                                                                                                                     |
| Habitat Requirements (DPE 2023e)                 | National Park (with a possible occurrence at Cudmirrah). In<br>Victoria there are scattered populations from Wilsons<br>Promontory to the NSW border. Coast Groundsel grows on<br>frontal dunes. | On the south coast the Magenta Lilly Pilly occurs on grey soils<br>over sandstone, restricted mainly to remnant stands of littoral<br>(coastal) rainforest. On the central coast Magenta Lilly Pilly<br>occurs on gravels, sands, silts and clays in riverside gallery<br>rainforests and remnant littoral rainforest communities. | Associated with shale-sandstone transition habitat where<br>shale-cappings occur over sandstone, with associated soil<br>landscapes such as Lucas Heights, Gymea, Lambert and<br>Faulconbridge. Topographically, the plant occupies ridgetops,<br>upper-slopes and to a lesser extent mid-slope sandstone<br>benches. |
| EPBC<br>Act                                      |                                                                                                                                                                                                  | >                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |
| BC<br>Act                                        |                                                                                                                                                                                                  | ш                                                                                                                                                                                                                                                                                                                                  | >                                                                                                                                                                                                                                                                                                                     |
| Species                                          | (Coastal<br>Groundsel)                                                                                                                                                                           | <i>Syzygium</i><br><i>paniculatum</i><br>(Magenta Lilly<br>Pilly)                                                                                                                                                                                                                                                                  | Tetratheca<br>glandulosa                                                                                                                                                                                                                                                                                              |



### 4.2 Threatened Fauna

Details of the fauna habitat recorded within the Subject Site are included in **Table 12** and displayed **Figure 5**. The likelihood of occurrence of threatened fauna species within the Subject Site is presented in **Table 13**.

Based on unsuitable habitat, geographic distribution and/or the small scale of the development, it was determined that the proposed works are unlikely to significantly impact upon a local viable population or occurrence of any of the threatened species. Therefore, no assessment under the '5-Part Test Assessment of Significance' was required and no BDAR or EPBC Act Referral to the Commonwealth is considered necessary for the proposed development.

Common avian fauna species were identified within and surrounding the Subject Site during the site assessment. All native fauna species encountered were listed as 'protected' under the BC Act. The list of fauna recorded during the site visit was produced opportunistically (**Appendix C**).

| Habitat component                                             | Site values                                                                                                                                                                         |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coarse woody debris                                           | Absent.                                                                                                                                                                             |
| Rock outcrops and bush rock                                   | Absent.                                                                                                                                                                             |
| Caves, crevices and overhangs                                 | Absent.                                                                                                                                                                             |
| Culverts, bridges, mine<br>shafts, or abandoned<br>structures | Absent.                                                                                                                                                                             |
| Nectar/lerp-bearing Trees                                     | <i>Eucalyptus spp.</i> were present within the Subject Site. This species of tree may provide intermittent nectar sources for nomadic nectivores such as the Greyheaded Flying-fox. |
| Nectar-bearing shrubs                                         | Present. Melaleuca spp. and Callistemon spp. were present within the Subject Site.                                                                                                  |
| Koala use trees                                               | Present.                                                                                                                                                                            |
| Large stick nests                                             | Absent.                                                                                                                                                                             |
| Sap and gum sources                                           | <i>Eucalyptus spp.</i> were present within the Subject Site. and can potentially be a sap and gum source.                                                                           |
| She-oak fruit (Glossy Black<br>Cockatoo feed)                 | Present in the form of <i>Casuarina glauca</i>                                                                                                                                      |
| Seed-bearing trees and shrubs                                 | Seed-bearing trees including <i>Angophora</i> species may provide foraging habitat for various bird species.                                                                        |
| Soft-fruit-bearing trees                                      | <i>Pittosporum undulatum</i> was identified within the Subject Site and may provide foraging habitat for fructivores such as the Grey-headed Flying-fox.                            |
| Dense shrubbery and leaf<br>litter                            | Absent.                                                                                                                                                                             |
| Tree hollows                                                  | Absent.                                                                                                                                                                             |
| Decorticating bark                                            | Absent.                                                                                                                                                                             |
| Wetlands, soaks, and streams                                  | Brookvale Creek is present within the Subject Site.                                                                                                                                 |
| Open water bodies                                             | Absent.                                                                                                                                                                             |
| Estuarine, beach, mudflats, and rocky foreshores              | Absent.                                                                                                                                                                             |
| Smaller nests and possums dreys                               | Absent.                                                                                                                                                                             |

Table 12. Fauna habitat values within the Subject Site.



#### 4.2.1 Migratory Fauna Species

Desktop analysis revealed the following EPBC Act listed migratory terrestrial fauna species were considered to have the potential to utilise habitat within the Subject Site (e.g. foraging or passage) during part of their lifecycles:

- Cuculus optatus (Oriental Cuckoo)
- Hirundapus caudacutus (White-throated Needletail);
- Monarcha melanopsis (Black Faced Monarch);
- Motacilla flava (Yellow Wagtail);
- Myiagra cyanoleuca (Satin Flycatcher);
- Rhipidura rufifrons (Rufous Fantail); and
- Monarcha trivirgatus (Spectacled Monarch).

It was determined that the proposed works are unlikely to have a significant impact on these species. Therefore, a Referral to Commonwealth pursuant to the EPBC Act is not required.





Figure 5. Threatened Species and Fauna Habitat Survey Effort.



Table 13. Assessment of likely occurrence of threatened fauna species within the Subject Site. E = Endangered, CE = Critically Endangered, EP = Endangered Population, V = Vulnerable.

| Further<br>Impact<br>Assessment<br>Required?        | Q                                                                                                                                                                                                                                                                                                                                                                                        | õz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated loss of<br>foraging or breeding<br>habitat. Furthermore,<br>the Subject Site is not<br>located on the<br>important areas map<br>for this species.                                                              | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                                                                                                                                                                         |
| Breeding Habitat Present Within the<br>Subject Site | There are three known key breeding<br>areas, two of them in NSW - Capertee<br>Valley and Bundarra-Barraba regions.<br>The species breeds between July and<br>January in Box-Ironbark and other<br>temperate woodlands and riparian<br>gallery forest dominated by River<br>Sheoak. Such habitat is not present<br>within the Subject Site                                                | Nest is an open, cup-shape, nest sites<br>vary greatly, but generally occur in<br>shrubs or low trees, living or dead,<br>horizontal or upright forks in branches,<br>spouts, hollow stumps or logs, behind<br>loose bark or in a hollow in the top of a<br>wooden fence post. Nest sites may be<br>exposed or well concealed by foliage.<br>No such nests were observed within<br>the Subject Site. Due to highly<br>urbanized and degraded nature of the<br>Subject Site, the species is highly<br>unlikely to use the Subject Site as<br>breeding habitat. |
| Foraging Habitat Present Within the<br>Subject Site | Inhabits dry open forest and woodland,<br>particularly Box-Ironbark woodland,<br>and riparian forests of River Sheoak<br>These woodlands have significantly<br>large numbers of mature trees, high<br>canopy cover and abundance of<br>mistletoes. Foraging habitat may be<br>present within the Subject Site,<br>however, due to its degraded nature it<br>is sub-optimal in condition. | Primarily inhabit dry, open eucalypt<br>forests and woodlands, including<br>mallee associations, with an open or<br>sparse understorey of eucalypt<br>saplings, acacias and other shrubs, and<br>ground-cover of grasses or sedges and<br>fallen woody debris. Foraging habitat<br>may be present within the Subject Site,<br>however, due to its degraded nature it<br>is sub-optimal in condition.                                                                                                                                                          |
| Likelihood of<br>Occurrence                         | ۲<br>۲                                                                                                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EPBC<br>Act                                         | CE                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BC<br>Act                                           | Ш                                                                                                                                                                                                                                                                                                                                                                                        | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Species                                             | <i>Anthochaera</i><br><i>phrygia</i><br>(Regent<br>Honeyeater)                                                                                                                                                                                                                                                                                                                           | Artamus<br>cyanopterus<br>(Dusky Wood<br>swallow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



| Further<br>Impact<br>Assessment<br>Required?        | °2                                                                                                                                                                                                                                                                                                                                                                                           | ê                                                                                                                                                                                                                                                                     | Z                                                                                                                                                                                                                                                                                             | O                                                                                                                                                                                                                                                     |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat.                                                                                                                                                                                                                                                                                                                | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                             | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                                                     | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                             |
| Breeding Habitat Present Within the<br>Subject Site | This species nests in densely vegetated wetlands. No such habitat was identified within the Subject Site.                                                                                                                                                                                                                                                                                    | This species nests on the ground in a scrape or small bare patch. No such nests were identified within the Subject Site. Due to highly urbanized and degraded nature of the Subject Site, the species is highly unlikely to use the Subject Site as breeding habitat. | N/A. Breeding occurs in the Northern<br>Hemisphere.                                                                                                                                                                                                                                           | N/A. Breeding occurs in the Northern<br>Hemisphere.                                                                                                                                                                                                   |
| Foraging Habitat Present Within the<br>Subject Site | This species favours permanent<br>freshwater wetlands with tall, dense<br>vegetation, particularly bullrushes<br>( <i>Typha</i> spp.) and spikerushes<br>( <i>Eleocharis</i> spp.). Hides during the day<br>amongst dense reeds or rushes and<br>feed mainly at night on frogs, fish,<br>yabbies, spiders, insects and snails. No<br>such habitat was identified within the<br>Subject Site. | This species inhabits open forests and<br>woodlands with a sparse grassy ground<br>layer and fallen timber. No such habitat<br>was identified within the Subject Site.                                                                                                | This species is found in coastal areas on<br>low beaches of firm sand, near reefs<br>and inlets, along tidal mudflats and<br>bare open coastal lagoons; individuals<br>are rarely recorded in near-coastal<br>wetlands.<br>No suitable foraging habitat was found<br>within the Subject Site. | This species mainly occurs in small<br>numbers on intertidal mudflats,<br>estuaries, bays, inlets, lagoons,<br>harbours and sandflats and sandy<br>beaches of sheltered coasts. No<br>suitable foraging habitat was found<br>within the Subject Site. |
| Likelihood of<br>Occurrence                         | Very Low                                                                                                                                                                                                                                                                                                                                                                                     | Low                                                                                                                                                                                                                                                                   | Low                                                                                                                                                                                                                                                                                           | Low                                                                                                                                                                                                                                                   |
| EPBC<br>Act                                         | ш                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                             | ш                                                                                                                                                                                                                                                     |
| BC<br>Act                                           | ш                                                                                                                                                                                                                                                                                                                                                                                            | ш                                                                                                                                                                                                                                                                     | >                                                                                                                                                                                                                                                                                             | ı                                                                                                                                                                                                                                                     |
| Species                                             | <i>Botaurus</i><br><i>poiciloptilus</i><br>(Australasian<br>Bittern)                                                                                                                                                                                                                                                                                                                         | <i>Burhinus<br/>grallarius</i><br>(Bush Stone-<br>curlew)                                                                                                                                                                                                             | <i>Calidris alba</i><br>(Sanderling)                                                                                                                                                                                                                                                          | Calidris canutus<br>(Red Knot)                                                                                                                                                                                                                        |

Flora and Fauna Assessment Report and Waterway Impact Statement – Proposed Warringah Golf and Community Club | 41



| Further<br>Impact<br>Assessment<br>Required?        | 0<br>Z                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>Z                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>Z                                                                                                                                                                                                                                                                                                                   | No                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Anticipated Impact                                  | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                                                                                                                                                    | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                                                                                                                                                         | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                                                                                                               | Minimal impact to<br>potential sub-optimal                                    |
| Breeding Habitat Present Within the<br>Subject Site | N/A. Breeding occurs in the Northern<br>Hemisphere.                                                                                                                                                                                                                                                                                                                                          | N/A. Breeding occurs in the Northern<br>Hemisphere.                                                                                                                                                                                                                                                                                                                                               | Dependent on large hollow-bearing<br>eucalypts for nest sites. No hollows<br>were present within the Subject Site                                                                                                                                                                                                        | Shelters in tree hollows, rotten stumps, holes in the ground, abandoned bird- |
| Foraging Habitat Present Within the<br>Subject Site | The species generally occupies littoral<br>and estuarine habitats, and in New<br>South Wales is mainly found in<br>intertidal mudflats of sheltered coasts.<br>It forages in or at the edge of shallow<br>water, occasionally on exposed algal<br>mats or waterweed, or on banks of<br>beach-cast seagrass or seaweed. No<br>suitable foraging habitat was found<br>within the Subject Site. | This species occurs within sheltered,<br>coastal habitats containing large,<br>intertidal mudflats or sandflats,<br>including inlets, bays, harbours,<br>estuaries and lagoons. Often recorded<br>on sandy beaches with mudflats<br>nearby, sandy spits and islets and<br>sometimes on exposed reefs or rock<br>platforms. No potential foraging<br>habitat was found within the Subject<br>Site. | This species feeds almost exclusively on<br>the seeds of several species of she-oak<br>( <i>Casuarina</i> and <i>Allocasuarina</i> species).<br>Inhabits open forest and woodlands of<br>the coast and the Great Dividing Range<br>where stands of she-oak occur. Such<br>habitat is present within the Subject<br>Site. | This species is found in a broad range<br>of habitats from rainforest through |
| Likelihood of<br>Occurrence                         | Pok                                                                                                                                                                                                                                                                                                                                                                                          | Pok                                                                                                                                                                                                                                                                                                                                                                                               | Low                                                                                                                                                                                                                                                                                                                      | Low                                                                           |
| EPBC<br>Act                                         | Ю                                                                                                                                                                                                                                                                                                                                                                                            | Ü                                                                                                                                                                                                                                                                                                                                                                                                 | >                                                                                                                                                                                                                                                                                                                        | 1                                                                             |
| BC<br>Act                                           | ш                                                                                                                                                                                                                                                                                                                                                                                            | >                                                                                                                                                                                                                                                                                                                                                                                                 | >                                                                                                                                                                                                                                                                                                                        | >                                                                             |
| Species                                             | Calidris ferruginea<br>(Curlew<br>Sandpiper)                                                                                                                                                                                                                                                                                                                                                 | <i>Calidris</i><br><i>tenuirostris</i><br>(Great Knot)                                                                                                                                                                                                                                                                                                                                            | <i>Calyptorhynchus<br/>lathami lathami</i><br>(Southern Glossy<br>Black-Cockatoo)                                                                                                                                                                                                                                        | Cercartetus nanus                                                             |

Flora and Fauna Assessment Report and Waterway Impact Statement – Proposed Warringah Golf and Community Club | 42



| Further<br>Impact<br>Assessment<br>Required?        |                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>Z                                                                                                                                                                                                                                                      | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Anticipated Impact                                  | foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                                                                                                                                                                                                                          | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                                                  | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Breeding Habitat Present Within the<br>Subject Site | nests, Ringtail Possum dreys or thickets<br>of vegetation, although hollows are<br>preferred. No such habitat was present<br>within the Subject Site.                                                                                                                                                                                                                                 | Roosts in caves (near their entrances),<br>crevices in cliffs, old mine workings and<br>in the disused, bottle-shaped mud<br>nests of the Fairy Martin ( <i>Petrochelidon</i><br><i>arie</i> )). No such habitat was identified<br>within the Subject Site. | N/A. This species does not breed in<br>Australia.                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Foraging Habitat Present Within the<br>Subject Site | sclerophyll (including Box-Ironbark)<br>forest and woodland to heath, but in<br>most areas woodlands and heath<br>appear to be preferred. Feeds largely<br>on nectar and pollen collected from<br>banksias, eucalypts and bottlebrushes,<br>as well as insects. Such habitat is<br>present within the Subject Site.,<br>although sub-optimal due to its<br>degraded and urban nature. | This species forages for small, flying<br>insects in well-timbered areas. Such<br>habitat is present within the Subject<br>Site., although sub-optimal due to its<br>degraded and urban nature.                                                             | Almost entirely restricted to coastal<br>areas in NSW, occurring mainly on<br>sheltered sandy, shelly or muddy<br>beaches or estuaries with large<br>intertidal mudflats or sandbanks.<br>Roosts during high tide on sandy<br>beaches and rocky shores; begin<br>foraging activity on wet ground at low<br>tide, usually away from the edge of the<br>water; individuals may forage and roost<br>with other waders. No suitable foraging<br>habitat was found within the Subject<br>Site. |  |
| Likelihood of<br>Occurrence                         |                                                                                                                                                                                                                                                                                                                                                                                       | Low                                                                                                                                                                                                                                                         | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| EPBC<br>Act                                         |                                                                                                                                                                                                                                                                                                                                                                                       | >                                                                                                                                                                                                                                                           | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| BC<br>Act                                           |                                                                                                                                                                                                                                                                                                                                                                                       | >                                                                                                                                                                                                                                                           | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Species                                             | (Eastern Pygmy-<br>possum)                                                                                                                                                                                                                                                                                                                                                            | <i>Chalinolobus</i><br><i>dwyeri</i><br>(Large-eared Pied<br>Bat)                                                                                                                                                                                           | Charadrius<br>Ieschenaultii<br>(Greater Sand-<br>plover)                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |



| Further<br>Impact<br>Assessment<br>Required?        | o<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z                                                                                                                                                                                                                                                                                                                                                         | 0<br>Z                                                                                                                                                                                                     |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                                                                                                                 | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat. |
| Breeding Habitat Present Within the<br>Subject Site | N/A. This species does not breed in<br>Australia.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hollows in standing dead or live trees<br>and tree stumps are essential for<br>nesting. No hollows were present<br>within the Subject Site                                                                                                                                                                                                                | This species nests in shrubs and low<br>trees, creating an open cup shaped<br>nest. No such nests were observed<br>within the Subject Site. No such nests<br>were observed within the Subject Site.        |
| Foraging Habitat Present Within the<br>Subject Site | This species almost entirely coastal in<br>NSW, favouring the beaches of<br>sheltered bays, harbours and estuaries<br>with large intertidal sandflats or<br>mudflats; occasionally occurs on sandy<br>beaches, coral reefs and rock<br>platforms. Roosts during high tide on<br>sandy beaches, spits and rocky shores;<br>forage individually or in scattered<br>flocks on wet ground at low tide,<br>usually away from the water's edge. No<br>suitable foraging habitat was found<br>within the Subject Site. | Mainly inhabits woodlands dominated<br>by stringybarks or other rough-barked<br>eucalypts, usually with an open grassy<br>understorey, sometimes with one or<br>more shrub species. Fallen timber is an<br>important habitat component for<br>foraging. No fallen timber was present<br>within the Subject Site making it<br>unsuitable for this species. | Species feeds on arthropods from<br>crevices in rough or decorticating bark.<br>Such habitat is present within the<br>Subject Site, although sub-optimal due<br>to its degraded and urban nature.          |
| Likelihood of<br>Occurrence                         | Pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pow                                                                                                                                                                                                                                                                                                                                                       | Low                                                                                                                                                                                                        |
| EPBC<br>Act                                         | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ı                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                                                                                                          |
| BC<br>Act                                           | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                         | >                                                                                                                                                                                                          |
| Species                                             | <i>Charadrius</i><br><i>mongolus</i><br>(Lesser Sand-<br>plover)                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Climacteris</i><br><i>picumnus</i><br><i>victoriae</i><br>(Brown<br>Treecreeper<br>(eastern<br>subspecies))                                                                                                                                                                                                                                            | Daphoenositta<br>chrysoptera<br>(Varied Sittella)                                                                                                                                                          |


| Further<br>Impact<br>Assessment<br>Required?        | °<br>Z                                                                                                                                                                                                                              | °<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>Z                                                                                                                                                                           | °<br>Z                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                          | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                                                                                                                                                                                                                                                                           | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                        | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No                                                                                                                           |
| Breeding Habitat Present Within the<br>Subject Site | This species uses hollow-bearing trees,<br>fallen logs, small caves, rock outcrops<br>and rocky-cliff faces as den sites. No<br>such habitat is present within the<br>Subject Site.                                                 | Beach Stone-curlews breed above the<br>littoral zone, at the backs of beaches,<br>or on sandbanks and islands, among<br>low vegetation of grass, scattered<br>shrubs or low trees; also among open<br>mangroves. There are no beaches<br>within the Subject Site, thus no suitable<br>breeding habitat is present.                                                                                                                  | This endangered population occurs<br>from just north of Smedley's Point to<br>Cannae Point, North Sydney Harbour,<br>Manly. The Subject Site is not within<br>this distribution. | Nests in proximity to feeding areas if<br>possible, most typically selecting<br>hollows in the limb or trunk of smooth-<br>barked Eucalypts. Entrance is small<br>(3cm) and usually high above the<br>ground (2–15m). No such habitat is<br>present within Subject Site.             |
| Foraging Habitat Present Within the<br>Subject Site | Consumes a variety of prey, including gliders, possums, small wallabies, rats, birds, bandicoots, rabbits, reptiles and insects. Also eats carrion and takes domestic fowl. Potential prey items may exist within the Subject Site. | Beach Stone-curlews are found<br>exclusively along the coast, on a wide<br>range of beaches, islands, reefs and in<br>estuaries, and may often be seen at the<br>edges of or near mangroves. They<br>forage in the intertidal zone of beaches<br>and estuaries, on islands, flats, banks<br>and spits of sand, mud, gravel or rock,<br>and among mangroves. No suitable<br>foraging habitat was present within the<br>Subject Site. | N/A. This species forages at sea.                                                                                                                                                | This species forages primarily in the canopy of open Eucalyptus Forest and woodland, yet also finds food in <i>Angophora</i> , <i>Melaleuca</i> , and other tree species. Mostly feeds on nectar and pollen of flowers in the open canopy of woodland trees. Such habitat is present |
| Likelihood of<br>Occurrence                         | Low                                                                                                                                                                                                                                 | Pok                                                                                                                                                                                                                                                                                                                                                                                                                                 | Low                                                                                                                                                                              | Low                                                                                                                                                                                                                                                                                  |
| EPBC<br>Act                                         | ш                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                     | I                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |
| BC<br>Act                                           | >                                                                                                                                                                                                                                   | Ü                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ъ<br>Ш                                                                                                                                                                           | >                                                                                                                                                                                                                                                                                    |
| Species                                             | <i>Dasyurus</i><br><i>maculatus</i><br>(Spotted-tailed<br>Quoll)                                                                                                                                                                    | <i>Esacus</i><br><i>magnirostris</i><br>(Beach Stone-<br>curelw)                                                                                                                                                                                                                                                                                                                                                                    | <i>Eudyptula minor</i><br>(Little Penguin in<br>the Manly Point<br>Area)                                                                                                         | <i>Glossopsitta</i><br><i>pusilla</i><br>(Little Lorikeet)                                                                                                                                                                                                                           |



| Further<br>Impact<br>Assessment<br>Required?        |                                                                                            | ON                                                                                                                                                                          | 0<br>Z                                                                                                                                                                                                                                                                 | 0<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                    | °<br>Z                                                                                                                                                                                                     |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | anticipated net loss<br>of breeding habitat.                                               | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat.                                                                                                   | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat                                                                                                                                                                                               | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                                                                                                                                                                                                                                | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat.                                                                                                                              |
| Breeding Habitat Present Within the<br>Subject Site |                                                                                            | Breeds in spring and summer, almost<br>exclusively on offshore islands, and<br>occasionally on isolated promontories.<br>No such habitat is present within<br>Subject Site. | This species nests mostly on coastal or<br>estuarine beaches although<br>occasionally they use saltmarsh or<br>grassy areas. No suitable breeding<br>habitat was found within the Subject<br>Site.                                                                     | Breeding habitat consists of mature tall<br>open forest, open forest, tall<br>woodland, and swamp sclerophyll<br>forest close to foraging habitat. Nests<br>are large structures built from sticks<br>and lined with leaves or grass. No nests<br>or potential breeding sites were<br>identified during the site assessment.                                                                                                              | The species breeds in soaks and second<br>order streams. As Brookvale Creek is a<br>third order stream, such habitat is not<br>present within the Subject Site.                                            |
| Foraging Habitat Present Within the<br>Subject Site | within the Subject Site, although sub-<br>optimal due to its degraded and urban<br>nature. | Forages on exposed rock or coral at<br>low tide for foods such as limpets and<br>mussels. No suitable foraging habitat<br>was present within the Subject Site.              | This species favours intertidal flats of<br>inlets and bays, open beaches and<br>sandbanks. Forages on exposed sand,<br>mud and rock at low tide, for molluscs,<br>worms, crabs and small fish. No<br>suitable foraging habitat is present<br>within the Subject Site. | Habitats are characterised by the<br>presence of large areas of open water<br>including larger rivers, swamps, lakes,<br>and the sea. Occurs at sites near the<br>sea or sea-shore, such as around bays<br>and inlets, beaches, reefs, lagoons,<br>estuaries, and mangroves. Feed mainly<br>on fish and freshwater turtles, but also<br>waterbirds, reptiles, mammals and<br>carrion. Such habitat is present within<br>the Subject Site. | Species occurs in heath, woodland and<br>dry sclerophyll forest. It forages on<br>invertebrates up to 300m from<br>breeding site. No such habitat is<br>present within or surrounding the<br>Subject Site. |
| Likelihood of<br>Occurrence                         |                                                                                            | Pow                                                                                                                                                                         | Pow                                                                                                                                                                                                                                                                    | Pow                                                                                                                                                                                                                                                                                                                                                                                                                                       | Low                                                                                                                                                                                                        |
| EPBC<br>Act                                         |                                                                                            | 1                                                                                                                                                                           | ı                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                         | >                                                                                                                                                                                                          |
| BC<br>Act                                           |                                                                                            | >                                                                                                                                                                           | ш                                                                                                                                                                                                                                                                      | >                                                                                                                                                                                                                                                                                                                                                                                                                                         | >                                                                                                                                                                                                          |
| Species                                             |                                                                                            | Haematopus<br>fuliginosus<br>(Sooty<br>Oystercatcher)                                                                                                                       | Haematopus<br>longirostris<br>(Pied<br>Oystercatcher)                                                                                                                                                                                                                  | Haliaeetus<br>leucogaster<br>(White-bellied<br>Sea-Eagle)                                                                                                                                                                                                                                                                                                                                                                                 | <i>Heleioporus</i><br><i>australiacus</i><br>(Giant Burrowing<br>Frog)                                                                                                                                     |



| Further<br>Impact<br>Assessment<br>Required?        | 0<br>Z                                                                                                                                                                                                                                                                                    | 0<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                                                                                | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                                                                                                                                                                                                                           | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                                                                                                                                                                                                                                       |
| Breeding Habitat Present Within the<br>Subject Site | Nests in tall living trees within a remnant patch, where pairs build a large stick nest in winter. No suitably sized nests were identified during the site assessment.                                                                                                                    | N/A. Does not breed in Australia.                                                                                                                                                                                                                                                                                                                                                                                                    | Nest during the day in a shallow<br>depression in the ground covered by<br>leaf litter, grass or other plant material.<br>Nests may be located under Grass<br>trees <i>Xanthorrhoea</i> spp., blackberry<br>bushes, and other shrubs, or in rabbit<br>burrows. No such breeding habitat is<br>present within the Subject Site.                                                                                                                   |
| Foraging Habitat Present Within the<br>Subject Site | This species occupies open eucalypt<br>forest, woodland or open woodland.<br>Preys on birds, reptiles and mammals,<br>occasionally adding large insects and<br>carrion. Such habitat is present within<br>the Subject Site, although sub-optimal<br>due to its degraded and urban nature. | This species feeds on flying insects,<br>such as termites, ants, beetles and<br>flies. They catch the insects in flight in<br>their wide gaping beaks. Birds usually<br>feed in rising thermal currents<br>associated with storm fronts and<br>bushfires and they are commonly seen<br>moving with wind fronts. Such habitat<br>is present within the Subject Site,<br>although sub-optimal due to its<br>degraded and urban nature. | Typically found in heath or open forest<br>with a heathy understorey on sandy or<br>friable soils. They feed on a variety of<br>ground-dwelling invertebrates and the<br>fruit-bodies of hypogeous<br>(underground-fruiting) fungi. The<br>Subject Site may provide suboptimal<br>foraging habitat for this species given<br>the lack of heath or a heathy<br>understorey, no distinctive scratching's<br>were observed within the Subject Site. |
| Likelihood of<br>Occurrence                         | Pow                                                                                                                                                                                                                                                                                       | Pok                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pok                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EPBC<br>Act                                         | ı                                                                                                                                                                                                                                                                                         | >                                                                                                                                                                                                                                                                                                                                                                                                                                    | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BC<br>Act                                           | >                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Species                                             | Hieraaetus<br>morphnoides<br>(Little Eagle)                                                                                                                                                                                                                                               | <i>Hirundapus</i><br><i>caudacutus</i><br>(White-throated<br>Needletail)                                                                                                                                                                                                                                                                                                                                                             | Isoodon obesulus<br>obesulus<br>(Southern Brown<br>Bandicoot<br>[eastern])                                                                                                                                                                                                                                                                                                                                                                       |



| Further<br>Impact<br>Assessment<br>Required?        | 0<br>Z                                                                                                                                                                                                    | °<br>Z                                                                                                                                                                                                                                                                                     | °<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>Z                                                                                                                                                       |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat.                                                                                                                             | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat. The<br>Subject Site is not<br>mapped on the Swift<br>Parrot Important<br>Areas Map (DPE<br>2023b).                                                                                                           | Minimal impact to<br>potential sub-optimal<br>foraging and<br>breeding habitat<br>given the small area<br>of removal and the<br>degraded nature of<br>the Subject Site.                                                                                                                                                                                                                                                                                                                                                                       | Minimal, impact to<br>potential foraging<br>and breeding habitat<br>given the small area                                                                     |
| Breeding Habitat Present Within the<br>Subject Site | Nests, built in spring, are located on a<br>branch overhanging water and consist<br>of a bed of sticks and reeds on a base<br>of larger sticks. No such nests were<br>identified within the Subject Site. | N/A. This species breeds in Tasmania.                                                                                                                                                                                                                                                      | Breeding habitat in NSW includes<br>water bodies that are still, shallow,<br>ephemeral, unpolluted (but the frog<br>can be found in polluted habitats),<br>unshaded, with aquatic plants and free<br>of Mosquito Fish (Gambusia holbrooki)<br>and other predatory fish, with<br>terrestrial habitats that consisted of<br>grassy areas and vegetation no higher<br>than woodlands, and a range of diurnal<br>shelter site. Brookvale Creek within<br>the Subject Site lacks aquatic<br>vegetation, making it sub-optimal for<br>this species. | Species nests along or near<br>watercourses, in a fork or a larger<br>horizontal limb. No nests were seen                                                    |
| Foraging Habitat Present Within the<br>Subject Site | Inhabits both terrestrial and estuarine<br>wetlands, generally in areas of<br>permanent water and dense<br>vegetation. No such habitat was<br>identified within the Subject Site.                         | On the mainland, this species occurs in<br>areas where eucalypts are flowering<br>profusely or where there are abundant<br>lerp infestations (from sap-sucking<br>bugs). Such habitat is present within<br>the Subject Site, although sub-optimal<br>due to its degraded and urban nature. | This species inhabits marshes, dams<br>and stream-sides, particularly those<br>containing bullrushes ( <i>Typha</i> spp.) or<br>spikerushes ( <i>Eleocharis</i> spp.).<br>Brookvale Creek within the Subject Site<br>lacks aquatic vegetation, making it sub-<br>optimal for this species.                                                                                                                                                                                                                                                    | Found in a variety of timbered habitats<br>including dry woodlands and open<br>forests. The species is a Is a specialist<br>hunter of passerines, especially |
| Likelihood of<br>Occurrence                         | Low                                                                                                                                                                                                       | Low                                                                                                                                                                                                                                                                                        | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low                                                                                                                                                          |
| EPBC<br>Act                                         | 1                                                                                                                                                                                                         | Ü                                                                                                                                                                                                                                                                                          | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                                                                                                                            |
| BC<br>Act                                           | >                                                                                                                                                                                                         | ш                                                                                                                                                                                                                                                                                          | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                            |
| Species                                             | <i>Ixobrychus</i><br><i>flavicollis</i><br>(Black Bittern)                                                                                                                                                | Lathamus discolor<br>(Swift Parrot)                                                                                                                                                                                                                                                        | Litoria aurea<br>(Green and Gold<br>Bell Frog)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Lophoictinia isura</i><br>(Square-tailed<br>Kite)                                                                                                         |



| Further<br>Impact<br>Assessment<br>Required?        |                                                                                                                                        | 0<br>Z                                                                                                                                                                                                                                                                                             | 0<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                     | °<br>Z                                                                                                                                                                                                       |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | of removal and<br>degraded nature of<br>the Subject Site.                                                                              | Minimal, impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and<br>degraded nature of<br>the Subject Site.                                                                                                                                              | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.                                                                                                                                                                                                                                 | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat.   |
| Breeding Habitat Present Within the<br>Subject Site | within the Subject Site. Potential for<br>nesting sites, however unlikely.                                                             | Roost in caves, tunnels, tree hollows,<br>abandoned mines, stormwater drains,<br>culverts, bridges, and sometimes<br>buildings during the day. A building,<br>tree hollow and stormwater channel<br>are present within the Subject Site. No<br>such habitat is present within the<br>Subject Site. | Only five (5) nursery sites/maternity<br>colonies are known in Australia. They<br>require large colonies roosting<br>together to provide the high<br>temperatures needed to rear their<br>young. No suitable breeding habitat<br>was identified within the Subject Site.                                                                                                                                                                   | This species only breeds in caves. No<br>cave habitat was identified within the<br>Subject Site.                                                                                                             |
| Foraging Habitat Present Within the<br>Subject Site | honeyeaters, and most particularly<br>nestlings, and insects in the tree<br>canopy. Prey species may occur within<br>the Subject Site. | Species insectivorous and occur in dry sclerophyll forest, woodland, swamp forests and mangrove forests east of the Great Dividing Range. Potential prey items may exist within the Subject Site.                                                                                                  | Found in moist eucalypt forest,<br>rainforest, vine thicket, wet and dry<br>sclerophyll forest, Melaleuca swamps,<br>dense coastal forests and banksia<br>scrub. Generally found in well-<br>timbered areas. At night, this species<br>forages for small insects beneath the<br>canopy of densely vegetated habitats.<br>Such habitat is present within the<br>Subject Site, although sub-optimal due<br>to its degraded and urban nature. | Hunt in forested areas, catching moths<br>and other flying insects above the tree<br>tops. Such habitat is present within the<br>Subject Site, although sub-optimal due<br>to its degraded and urban nature. |
| Likelihood of<br>Occurrence                         |                                                                                                                                        | Pow                                                                                                                                                                                                                                                                                                | Pow                                                                                                                                                                                                                                                                                                                                                                                                                                        | Low                                                                                                                                                                                                          |
| EPBC<br>Act                                         |                                                                                                                                        | I                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              |
| BC<br>Act                                           |                                                                                                                                        | >                                                                                                                                                                                                                                                                                                  | >                                                                                                                                                                                                                                                                                                                                                                                                                                          | >                                                                                                                                                                                                            |
| Species                                             |                                                                                                                                        | <i>Micronomus</i><br><i>norfolkensis</i><br>(Eastern Coastal<br>Free-tailed Bat)                                                                                                                                                                                                                   | <i>Miniopterus</i><br><i>australis</i><br>(Little Bent-<br>winged Bat)                                                                                                                                                                                                                                                                                                                                                                     | Miniopterus<br>orianae<br>oceanensis<br>(Large Bent-<br>winged Bat)                                                                                                                                          |



| Further<br>Impact<br>Assessment<br>Required?        | 0<br>Z                                                                                                                                                                                                                                                                     | 0<br>N                                                                                                                                                                                                                                                          | °<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | Minimal impact to<br>potential foraging<br>habitat given the<br>small area of removal<br>and degraded nature<br>of the Subject Site.<br>Minimal impact to<br>breeding habitat due<br>to its degraded<br>nature and sub-<br>optimal condition.                              | Minimal, impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and<br>degraded nature of<br>the Subject Site.                                                                                                           | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat                                                                                                                                                                                                                                                                                                                  |
| Breeding Habitat Present Within the<br>Subject Site | Generally, roost in groups of 10-15<br>close to water in caves, mine shafts,<br>hollow-bearing trees, storm water<br>channels, buildings, under bridges, and<br>in dense foliage. No suitable breeding<br>habitat was identified within the<br>Subject Site.               | This species nests in tree hollows, logs<br>or posts. No suitable breeding habitat<br>was identified within the Subject Site.                                                                                                                                   | This species nests in large hollows. No<br>large hollows were seen within the<br>Subject Site.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Foraging Habitat Present Within the<br>Subject Site | This species forages over streams and<br>pools catching insects and small fish by<br>raking their feet across the water<br>surface. Foraging habitat may be<br>present within the Subject Site,<br>however, due to its degraded nature, it<br>is sub-optimal in condition. | This species lives on the edges of<br>eucalypt woodland adjoining clearings,<br>timbered ridges and creeks in<br>farmland. It forges on seeds or grasses<br>and herbaceous plants. Sub-optimal<br>potential foraging habitat is present on<br>the Subject Site. | Inhabits woodland and open forest,<br>including fragmented remnants and<br>partly cleared farmland. It is flexible in<br>its habitat use, and hunting can extend<br>in to closed forest and more open<br>areas. Preferentially hunts small<br>arboreal mammals such as Squirrel<br>Gliders and Common Ringtail Possums,<br>but when loss of tree hollows<br>decreases these prey populations the<br>owl becomes more reliant on birds,<br>invertebrates, and terrestrial mammals<br>such as rodents and rabbits. Potential |
| Likelihood of<br>Occurrence                         | Low                                                                                                                                                                                                                                                                        | Low                                                                                                                                                                                                                                                             | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EPBC<br>Act                                         | ,                                                                                                                                                                                                                                                                          | ı                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BC<br>Act                                           | >                                                                                                                                                                                                                                                                          | >                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Species                                             | <i>Myotis macropus</i><br>(Southern Myotis)                                                                                                                                                                                                                                | Neophema<br>pulchella<br>(Turquoise Parrot)                                                                                                                                                                                                                     | <i>Ninox connivens</i><br>(Barking Owl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| Further<br>Impact<br>Assessment<br>Required?        |                                                  | °<br>Z                                                                                                                                                                                                                                                 | °<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                        | °<br>Z                                                                                                                                                                                            | N                                                                                                                             |
|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  |                                                  | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat                                              | Negligible. No<br>anticipated loss of<br>foraging or breeding<br>habitat                                                                                                                                                                                                                                                                                                                                                                      | Minimal, impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and<br>degraded nature of<br>the Subject Site.                                             | Minimal impact to<br>potential sub-optimal<br>foraging habitat given                                                          |
| Breeding Habitat Present Within the<br>Subject Site |                                                  | This species favours hollows >20cm in<br>diameter. No suitable breeding habitat<br>was identified within the Subject Site.                                                                                                                             | N/A. This species does not breed in<br>Australia                                                                                                                                                                                                                                                                                                                                                                                              | Nests are made high up in dead trees<br>or in dead crowns of live trees, usually<br>within one kilometre of the sea. No<br>suitably sized nests were identified<br>within the Subject Site.       | This species' nest is an open cup made<br>of plant fibres and cobwebs and is built<br>in the fork of tree usually more than 2 |
| Foraging Habitat Present Within the<br>Subject Site | prey items may occur within the<br>Subject Site. | The species breeds and hunts in open<br>or closed sclerophyll forest or<br>woodlands and hunts small mammals.<br>Foraging habitat may be present within<br>the Subject Site, however, due to its<br>degraded nature, it is sub-optimal in<br>condition | The species generally occupies coastal<br>lakes, inlets, bays and estuarine<br>habitats, and in New South Wales is<br>mainly found in intertidal mudflats and<br>sometimes saltmarsh of sheltered<br>coasts. It forages in or at the edge of<br>shallow water, occasionally on exposed<br>algal mats or waterweed, or on banks<br>of beach-cast seagrass or seaweed. No<br>such habitat is present within or<br>surrounding the Subject Site. | Favour coastal areas, especially the<br>mouths of large rivers, lagoons, and<br>lakes. Feed on fish over clear, open<br>water. Suboptimal foraging habitat is<br>present within the Subject Site. | The species live in dry eucalypt forests<br>and woodlands, habitat usually<br>contains abundant logs and fallen               |
| Likelihood of<br>Occurrence                         |                                                  | Low                                                                                                                                                                                                                                                    | Low                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low                                                                                                                                                                                               | Low                                                                                                                           |
| EPBC<br>Act                                         |                                                  | 1                                                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                 | 1                                                                                                                             |
| BC<br>Act                                           |                                                  | >                                                                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                 | >                                                                                                                             |
| Species                                             |                                                  | Ninox strenua<br>(Powerful Owl)                                                                                                                                                                                                                        | <i>Numenius</i><br><i>madagascariensis</i><br>(Eastern Curlew)                                                                                                                                                                                                                                                                                                                                                                                | Pandion cristatus<br>(Eastern Osprey)                                                                                                                                                             | Petroica boodang<br>(Scarlet Robin)                                                                                           |



| Further<br>Impact<br>Assessment<br>Required?        |                                                                                                                                                                                                                                                                                                                             | 0<br>Z                                                                                                                                                                                                                                                                                                                                       | O                                                                                                                                                                                                              | °<br>N                                                                                                                                                                                                                                                             |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat                                                                                                                                                                                           | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site. No<br>anticipated net loss<br>of breeding habitat                                                                                                                                    | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat.                                                                                                                                  | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat.                                                                                                                                                                                      |
| Breeding Habitat Present Within the<br>Subject Site | metres above the ground. No such<br>nests were seen within the Subject<br>Site.                                                                                                                                                                                                                                             | The urbanised and fragmented nature<br>of the Subject Site makes the potential<br>for Koala presence extremely low.                                                                                                                                                                                                                          | This species breeds in burrows. No<br>burrows were identified within the<br>Subject Site.                                                                                                                      | Breeding congregations occur in dense<br>vegetation and debris beside<br>ephemeral creeks and gutters. No<br>potential breeding habitats were seen<br>within the Subject Site.                                                                                     |
| Foraging Habitat Present Within the<br>Subject Site | timber. Birds forage from low perches,<br>fence-posts or on the ground, from<br>where they pounce on small insects<br>and other invertebrates which are<br>taken from the ground. Foraging<br>habitat may be present within the<br>Subject Site, however, due to its<br>degraded nature, it is sub-optimal in<br>condition. | Inhabit eucalypt woodlands and<br>forests.<br>Feed on the foliage of more than 70<br>eucalypt species and 30 non-eucalypt<br>species, but in any one area will select<br>preferred browse species. Foraging<br>habitat may be present within the<br>Subject Site, however, due to its<br>degraded nature, it is sub-optimal in<br>condition. | Species is known to inhabit open<br>heathlands, woodlands and forests<br>with a heathland understorey and<br>vegetated sand dunes. The Subject Site<br>does not contain woodland and<br>heathland understorey. | Occurs in open forests, mostly on<br>Hawkesbury and Narrabeen<br>Sandstones. Inhabits periodically wet<br>drainage lines below sandstone ridges<br>that often have shale lenses or<br>cappings. No potential foraging habitat<br>was seen within the Subject Site. |
| Likelihood of<br>Occurrence                         |                                                                                                                                                                                                                                                                                                                             | Low                                                                                                                                                                                                                                                                                                                                          | Low                                                                                                                                                                                                            | Low                                                                                                                                                                                                                                                                |
| EPBC<br>Act                                         |                                                                                                                                                                                                                                                                                                                             | ш                                                                                                                                                                                                                                                                                                                                            | >                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                  |
| BC<br>Act                                           |                                                                                                                                                                                                                                                                                                                             | ш                                                                                                                                                                                                                                                                                                                                            | ı                                                                                                                                                                                                              | >                                                                                                                                                                                                                                                                  |
| Species                                             |                                                                                                                                                                                                                                                                                                                             | Phascolarctos<br>cinereus<br>(Koala)                                                                                                                                                                                                                                                                                                         | <i>Pseudomys</i><br><i>novaehollandiae</i><br>(New Holland<br>Mouse)                                                                                                                                           | <i>Pseudophryne</i><br><i>australis</i><br>(Red-crowned<br>Toadlet)                                                                                                                                                                                                |



| Further<br>Impact<br>Assessment<br>Required?        | °<br>Z                                                                                                                                                                                                                                     | °<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | °<br>Z                                                                                                                                                                                                                                                                                     | No                                                                             |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Anticipated Impact                                  | Minimal impact to<br>potential sub-optimal<br>foraging habitat given<br>the small area of<br>removal and the<br>degraded nature of<br>the Subject Site.<br>Negligible anticipated<br>loss of breeding<br>habitat.                          | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat.                                                                                                                                                                                                                                                                                                                                                                                                                       | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat.                                                                                                                                                                                                              | Negligible, no<br>anticipated net loss                                         |
| Breeding Habitat Present Within the<br>Subject Site | No breeding camps were identified within or surrounding the Subject Site.                                                                                                                                                                  | The nest is a typical pigeon nest - a<br>flimsy platform of sticks on a thin<br>branch or a palm frond, often over<br>water, usually 3 - 10 m above the<br>ground.                                                                                                                                                                                                                                                                                                                                  | The species nest in rainforests with<br>dense growth vines. The nest is a frail<br>loosely woven cup of twigs and<br>tendrils. No such nests were observed<br>on site. No potential breeding habitat<br>was seen within the Subject Site.                                                  | The nest is a structure of fine interlocked forked twigs, giving a             |
| Foraging Habitat Present Within the<br>Subject Site | Feed on the nectar and pollen of native<br>trees, in particular <i>Eucalyptus</i> ,<br><i>Melaleuca</i> , and <i>Banksia</i> , and fruits of<br>rainforest trees and vines. Foraging<br>habitat may be present within the<br>Subject Site. | Occurs in, or near rainforest, low<br>elevation moist eucalypt forest and<br>brush box forests.<br>Feeds on a diverse range of tree and<br>vine fruits and is locally nomadic -<br>following ripening fruit. Thought to be<br>an effective medium to long-distance<br>vector for seed dispersal. Feeds alone,<br>or in loose flocks at any height in the<br>canopy. Rainforest, low elevation moist<br>eucalypt forest or brush box forests are<br>not located in proximity to the Subject<br>Site. | Rose-crowned Fruit-doves occur mainly<br>in sub-tropical and dry rainforest and<br>occasionally in moist eucalypt forest<br>and swamp forest, where fruit is<br>plentiful. Sub-tropical, dry rainforest,<br>moist eucalypt forest or swamp forest<br>do not occur within the Subject Site. | Inhabits rainforest and similar closed<br>forests where it forages high in the |
| Likelihood of<br>Occurrence                         | Low                                                                                                                                                                                                                                        | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Low                                                                                                                                                                                                                                                                                        | Low                                                                            |
| EPBC<br>Act                                         | >                                                                                                                                                                                                                                          | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                          | ı                                                                              |
| BC<br>Act                                           | >                                                                                                                                                                                                                                          | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >                                                                                                                                                                                                                                                                                          | >                                                                              |
| Species                                             | <i>Pteropus</i><br><i>poliocephalus</i><br>(Grey-headed<br>Flying-fox)                                                                                                                                                                     | Ptilinopus<br>magnificus<br>(Wompoo Fruit-<br>Dove)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ptilinopus regina<br>(Rose-crowned<br>Fruit-Dove)                                                                                                                                                                                                                                          | Ptilinopus<br>superbus                                                         |



| Further<br>Impact<br>Assessment<br>Required?        |                                                                                                                                                                                                                                               | °<br>Z                                                                                                                                                                                                               | °<br>Z                                                                                                                                                                                                                                                              | °<br>Z                                                                                                                                                                                                                                                                           | o<br>Z                                                                                                                                                                                           |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | of foraging or<br>breeding habitat.                                                                                                                                                                                                           | Minimal impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and<br>degraded nature of<br>the Subject Site.                                                                 | Minimal impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and<br>degraded nature of<br>the Subject Site.                                                                                                                | Negligible, no<br>anticipated net loss<br>of foraging or<br>breeding habitat.                                                                                                                                                                                                    | Minimal impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and                                                                                        |
| Breeding Habitat Present Within the<br>Subject Site | stronger structure than its flimsy<br>appearance would suggest, and is<br>usually 5-30m up in rainforest and<br>rainforest edge tree and shrub species.<br>No nests were observed within the<br>Subject Site.                                 | This species roosts in trees hollows and dilapidated buildings. No such habitat is present within the Subject Site.                                                                                                  | This species roosts in trees hollows and dilapidated buildings. No such habitat is present within the Subject Site.                                                                                                                                                 | Usually breed from August to March on<br>sandy ocean beaches strewn with<br>beachcast seaweed, in a narrow strip<br>between the high-water mark and the<br>base of the fore-dunes. No such<br>habitat is present within the Subject<br>Site.                                     | This species nests in large hollows. No<br>breeding habitat was present within<br>the Subject Site.                                                                                              |
| Foraging Habitat Present Within the<br>Subject Site | canopy, eating the fruits of many tree<br>species such as figs and palms. It may<br>also forage in eucalypt or acacia<br>woodland where there are fruit-<br>bearing trees. The Subject Site does<br>not contain rainforest or closed forests. | This species forages for small, flying<br>insects. The species flies high and fast<br>over the forest canopy, but lower in<br>more open country. Potential foraging<br>habitat is present within the Subject<br>Site | Species Forages after sunset, flying<br>slowly and directly along creek and<br>river corridors at an altitude of 3 - 6 m.<br>Foraging habitat may be present within<br>the Subject Site, however, due to its<br>degraded nature, it is sub-optimal in<br>condition. | Prefer sandy ocean beaches, especially<br>those that are broad and flat, with a<br>wide wave-wash zone for feeding,<br>much beachcast seaweed, and backed<br>by sparsely vegetated sand-dunes for<br>shelter and nesting. No such habitat is<br>present within the Subject Site. | Lives in dry eucalypt forests and<br>woodlands from sea level to 1100m.<br>The species often hunts along the<br>edges of forests, including roadsides.<br>Its diet consists of tree-dwelling and |
| Likelihood of<br>Occurrence                         |                                                                                                                                                                                                                                               | Low                                                                                                                                                                                                                  | Low                                                                                                                                                                                                                                                                 | Low                                                                                                                                                                                                                                                                              | Low                                                                                                                                                                                              |
| EPBC<br>Act                                         |                                                                                                                                                                                                                                               | r                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                   | >                                                                                                                                                                                                                                                                                | I                                                                                                                                                                                                |
| BC<br>Act                                           |                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                    | >                                                                                                                                                                                                                                                                   | CE                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                |
| Species                                             | (Superb Fruit-<br>dove)                                                                                                                                                                                                                       | Saccolaimus<br>flaviventris<br>(Yellow-bellied<br>Sheathtail-bat)                                                                                                                                                    | <i>Scoteanax</i><br><i>rueppellii</i><br>(Greater Broad-<br>nose bat)                                                                                                                                                                                               | Thinornis<br>cucullatus<br>cucullatus<br>(Eastern Hooded<br>Dotterel)                                                                                                                                                                                                            | <i>Tyto</i><br><i>novaehollandiae</i><br>Masked Owl)                                                                                                                                             |



| Further<br>Impact<br>Assessment<br>Required?        |                                                                                                            | 0<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                  | °<br>Z                                                                                                                                                                                                                                       | °<br>N                                                                                                                                                                              |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anticipated Impact                                  | degraded nature of<br>the Subject Site.<br>Negligible anticipated<br>loss of breeding<br>habitat.          | Minimal impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and<br>degraded nature of<br>the Subject Site.<br>Negligible anticipated<br>loss of breeding<br>habitat.                                                                                                                                                                                                          | Minimal impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and<br>degraded nature of<br>the Subject Site.<br>Negligible anticipated<br>loss of breeding<br>habitat.                               | Minimal impact to<br>potential foraging<br>and breeding habitat<br>given the small area<br>of removal and<br>degraded nature of                                                     |
| Breeding Habitat Present Within the<br>Subject Site |                                                                                                            | Nests in very large tree-hollows. No<br>potential breeding habitat was present<br>within the Subject Site.                                                                                                                                                                                                                                                                                                              | The species lays up to 14 eggs in a termite mound; the hatchlings dig themselves out of the mounds. No termite mounds were identified within the Subject Site. No breeding habitat was present within the Subject Site.                      | A cave-roosting species that is usually<br>found in dry open forest and<br>woodland, near cliffs or rocky<br>overhangs. No breeding habitat was<br>present within the Subject Site. |
| Foraging Habitat Present Within the<br>Subject Site | ground mammals, especially rats.<br>Suboptimal foraging habitat was<br>identified within the Subject Site. | Occurs in rainforest, including dry<br>rainforest, subtropical and warm<br>temperate rainforest, as well as moist<br>eucalypt forests. Hunts by night for<br>small ground mammals or tree-<br>dwelling mammals such as the<br>Common Ringtail Possum<br>( <i>Pseudocheirus peregrinus</i> ) or Sugar<br>Glider ( <i>Petaurus breviceps</i> ).<br>Suboptimal foraging habitat was<br>identified within the Subject Site. | Species is found in heath, open forest<br>and woodland and associated with<br>termites. The species feeds on carrion,<br>birds, eggs, reptiles and small<br>mammals. Sub-optimal foraging habitat<br>was identified within the Subject Site. | Little is understood of its feeding or<br>breeding requirements or behaviour.<br>Therefore, foraging habitat may be<br>present within the Subject Site.                             |
| Likelihood of<br>Occurrence                         |                                                                                                            | Pow                                                                                                                                                                                                                                                                                                                                                                                                                     | Pok                                                                                                                                                                                                                                          | Γοώ                                                                                                                                                                                 |
| EPBC<br>Act                                         |                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                                                                                                            | I                                                                                                                                                                                   |
| BC<br>Act                                           |                                                                                                            | >                                                                                                                                                                                                                                                                                                                                                                                                                       | >                                                                                                                                                                                                                                            | >                                                                                                                                                                                   |
| Species                                             |                                                                                                            | Tyto tenebricosa<br>(Sooty Owl)                                                                                                                                                                                                                                                                                                                                                                                         | <i>Varanus</i><br><i>rosenbergi</i><br>(Rosenburg's<br>Goanna)                                                                                                                                                                               | <i>Vespadelus</i><br><i>troughtoni</i><br>(Eastern Cave Bat)                                                                                                                        |



| Further<br>Impact<br>Assessment<br>Required?        |                                                                             |
|-----------------------------------------------------|-----------------------------------------------------------------------------|
| Anticipated Impact                                  | the Subject Site.<br>Negligible anticipated<br>loss of breeding<br>habitat. |
| Breeding Habitat Present Within the<br>Subject Site |                                                                             |
| Foraging Habitat Present Within the<br>Subject Site |                                                                             |
| Likelihood of<br>Occurrence                         |                                                                             |
| EPBC<br>Act                                         |                                                                             |
| BC<br>Act                                           |                                                                             |
| Species                                             |                                                                             |



# 5. Impact Summary

# 5.1 Vegetation Impact

The proposed development will require the removal of the following vegetation within the Subject Site:

- 0.19ha of Estuarine Swamp Oak Twig-rush Forest which conforms to the BC Act listed Swamp Oak Floodplain Forest in the NSW North Coast, Sydney Basin and South East Corner Bioregions and EPBC listed Coastal Swamp Oak (*Casuarina glauca*) Forest of South-east Queensland and New South Wales; and
- 0.32ha of Exotic Dominated Vegetation.

#### 5.1.1 Threatened Ecological Communities: Swamp Oak Floodplain Forest Local Occurrence

Local occurrence is defined as the ecological community that occurs within the study area (OEH 2018). However, the local occurrence may include adjacent areas if the ecological community on the study area forms part of a larger contiguous area of that ecological community and the movement of individuals and exchange of genetic material across the boundary of the study area can be clearly demonstrated (OEH 2018).

Narla estimated that approximately 0.19ha of SOFF/CSOF occurs within the locality (the local occurrence) utilising the State Vegetation Type Map (DPE 2022) and field validated vegetation mapping of the Subject Site (**Figure 6**). The vegetation proposed for removal on the Subject Site therefore represents approximately 3.3% of the estimated local occurrence of SOFF.

# 5.2 Threatened Species

No threatened species are anticipated to be significantly impacted by the proposed works. One (1) threatened species, *Callistemon linearifolius* (Netted Bottle Brush), does occur in close proximity to the site, however it has been purposely avoided. Furthermore, a VMP will be prepared to guide the ongoing management and protection of the species within the vicinity of the works.



|                                                                                                              | - Parts Blog                                                                                                          |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                                                              |                                                                                                                       |
| TEC Local Occurence                                                                                          | 0 200 400 m                                                                                                           |
| Subject Site<br>Subject Property<br>Swamp Oak Floodplain Forest (BC and EPBC Act) Local Occurence (DPE 2022) | NARLA<br>environmental                                                                                                |
|                                                                                                              | Date: 17/08/2023<br>Coordinate System: GDA94 MGA Zone 56<br>Image Source: Nearmap Australia Pty Ltd (January<br>2023) |

Figure 6. Local Occurrence of Swamp Oak Floodplain Forest (BC and EPBC Act)



# 5.3 Riparian Land and Waterway Impact

Potential impacts of construction and operation on the riparian land and waterway are to be controlled as per the CMP.

#### 5.3.1 Impact Upon Water Quality

The existing waterway within the Subject Site is in a poor condition due to the continuous stormwater runoff it receives, with the water appearing murky and turbid. Although the health of the waterway on site is already degraded, water quality may be further impacted by pollutants during construction through the increase of stormwater and erosion during construction. A stormwater overflow outlet will be constructed to flow into Brookvale Creek, however it is not expected that this would impact water quality as it would only occur during overflow events.

In order to minimise impacts to water quality and the waterway on site, a CMP will be implemented during construction, which will apply the following principles:

- Sediment and erosion control measures will be constructed in accordance with "Managing Urban Stormwater: Soils and Construction (Landcom 2004)" The Blue Book
- All stormwater and erosion control structures will be in place before the commencement of construction and continue to operate after completion of the construction until the land is stabilised.
- Uncontaminated runoff from outside the construction site will be diverted around the site.
- No untreated construction site runoff will be discharged into receiving waters such including Brookvale Creek and Kentwell Road stormwater drains.
- Drainage through and from areas of construction will be designed to minimise surface flow velocities.
- All silt fences, silt traps and sedimentation basins will be cleaned out once 30% of their capacity has been filled.
- Bare areas will be stabilised within 20 days of the completion of construction activities or 14 days in areas where erosion is more likely to occur.
- Temporary stabilisation techniques such as strategically placed erosion matting, sediment screens, hay bale energy dissipaters, mulching and annual grass species establishment will be implemented on disturbed areas.

If the mitigation measures recommended in the CMP are undertaken, water quality within the waterway on site (which is already in a poor health) will not be adversely impacted by the proposed development.

# 5.3.2 Impacts On Channel Form, Erosion Rate and Bank Stability

There was no evidence of erosion or sedimentation issues identified during the site visit with the banks consisting primarily of sandstone blocks. Although minor impacts to the banks stability and erosion may occur during construction of the pedestrian bridge, it is not expected the impact the channel form. A stormwater overflow outlet will be constructed to flow into Brookvale Creek; however, it is not expected that this would impact bank stability as it will be supported by rock headwall via a lined swale to flow into the creek. Bank stability and erosion will be managed by an CMP during construction, and a VMP will be prepared to guide to management of the vegetation on the banks and riparian area post-construction.

# 5.3.3 Riparian Ecological Impacts of the Development

The vegetation surrounding the degraded waterway was exotic dominated, particularly in the groundlayer. Overall, 0.19ha of native riparian vegetation and 0.32ha of exotic riparian vegetation will be removed as part of the proposal, which may impact up bank stability and general ecological health. However, a VMP will be prepared



to mitigate against the impacts to riparian vegetation through requirements of revegetation following construction and the ongoing management of the remnant riparian vegetation.

The proposal has the potential to impose indirect impacts on vegetation and within the stormwater channel that are on site, as well to those that occur downstream. Alteration to the amount and quality of runoff from the development areas has the potential to alter sensitive downstream environments, through the introduction of hard surfaces (roofs, driveways, access roads, hard landscaping) and the reduction of vegetation cover. Furthermore, it is possible to the proposed development will introduce weeds to vegetation directly adjacent the Subject Site. Such impacts will be managed through the implementation of the CMP and VMP.

#### 5.3.4 Landscape Impacts of the Development

The natural landscape of the Subject Site will remain largely intact. No alterations to the naturally occurring waterway will occur, with only minor impacts to the banks associated with the proposed pedestrian bridge. The proposal has been designed to minimise impacts to the natural waterway and potential overland flows across the site, which will be managed through the implementation of CMP. No other modification to the landscape of the waterway is expected as part of the proposal.



Recommendations <u>ن</u>

# 6.1 Impact Mitigation and Minimisation Recommendations

This section of the report details recommended efforts to avoid and minimise impacts on biodiversity values associated with the proposed development. Measures to be implemented before, during, and post construction are detailed in Table 14.

| Iable 14. Measures to be im              | plemented before, during and after construction to avoid and minimise the impacts of the proposed deve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | elopment                      |                                |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|
| Action                                   | Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Timing                        | Responsibility                 |
| Project Location, Design<br>and Planning | The development proposal is concentrated in the areas of existing infrastructure and disturbance with aims to avoid remnant riparian vegetation, where possible. One (1) threatened species, <i>Callistemon linearifolius</i> (Netted Bottle Brush), does occur in close proximity to the site, however it has been purposely avoided by the proposal.                                                                                                                                                                                                                                                                                                                                                                  | Pre-<br>construction<br>phase | Proponent                      |
| Assigning a Project<br>Ecologist         | Prior to the implementation of the development, the proponent should commission the services of a qualified and experienced Ecologist with a minimum tertiary degree in Science, Conservation, Biology, Ecology, Natural Resource Management, Environmental Science or Environmental Management. The Ecologist must be licensed with a current Department of Primary Industries Animal Research Authority permit and New South Wales Scientific License issued under the BC Act. The Ecologist will be commissioned to:                                                                                                                                                                                                 | Pre-<br>construction          | Proponent                      |
|                                          | <ul> <li>Undertake an extensive pre-clearing survey; delineating habitat-bearing trees and shrubs to be retained/removed; and</li> <li>Supervise the clearance of trees and shrubs (native and exotic) in order to capture, treat and/or relocate any displaced fauna particularly</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | pnase                         |                                |
| Vegetation Management<br>Plan (VMP)      | A Vegetation Management Plan (VMP) is to be prepared by a suitably qualified Ecologist to guide the revegetation of the riparian corridor following construction. All revegetation should use species that conform to Estuarine Swamp Oak Twig-rush Forest and be undertaken in accordance with <i>'Controlled activities – Guidelines for vegetation management plans on waterfront land'</i> (DPE 2022). The VMP should also guide the management of retained riparian vegetation adjacent to the Subject Site within the Subject Property, particularly the management and enhancement of Swamp Oak Floodplain forest EEC and <i>Callistemon linearifolius</i> (Netted Bottle Brush) through the reduction of weeds. | Pre-<br>construction<br>phase | Proponent<br>Project Ecologist |



| Action                                    | Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Timing                        | Responsibility            |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|
|                                           | Australian Standard 4970 (2009) Protection of Trees on Development Sites (AS-4970) outlines that a Tree Protection Zone (TPZ) is the principal means of protecting trees on construction sites. It is an area isolated from construction disturbance so that the tree remains viable. Ideally, works should be avoided within the TPZ.                                                                                                                                                        |                               |                           |
| Tree Protections                          | A Minor Encroachment is less than 10% of the TPZ and is outside the SRZ. A Minor Encroachment is considered acceptable by AS-4970 when it is compensated for elsewhere and contiguous within the TPZ. A Major Encroachment is greater than 10% of the TPZ or inside the SRZ. Major Encroachments generally require root investigations undertaken by non-destructive methods or the use of tree sensitive construction methods.                                                               | Pre-<br>construction<br>phase | Proponent<br>Arborist     |
|                                           | Trees proposed for retention should be delineated by temporary fencing by the Project Arborist. Temporary fencing should be erected at a minimum distance of the structural root zone of each tree proposed for retention.                                                                                                                                                                                                                                                                    |                               |                           |
|                                           | The four (4) Priority weeds identified within the Subject Site should be removed in accordance with the Biosecurity Act 2015 and NSW Weedwise, these weed species include:                                                                                                                                                                                                                                                                                                                    |                               |                           |
| Removal of Priority<br>Weeds              | <ul> <li>Asparagus aethiopicus (Ground Asparagus);</li> <li>Rubus fruticosus spp. agg (Blackberry);</li> <li>Lantana camara (Lantana); and</li> <li>Anredera cordifolia (Madeira Vine).</li> </ul>                                                                                                                                                                                                                                                                                            | Construction<br>Phase         | Proponent<br>Ecologist    |
|                                           | A CMP has been prepared to guide the management of Erison, Sediment and Stormwater during construction. The following principles will be applies to ensure effects of Brookvale Creek and minimised:                                                                                                                                                                                                                                                                                          |                               |                           |
| Erosion, Sedimentation<br>and Stormwater. | <ul> <li>Sediment and erosion control measures will be constructed in accordance with "Managing<br/>Urban Stormwater: Soils and Construction (Landcom 2004)" – The Blue Book;</li> <li>All stormwater and erosion control structures will be in place before the commencement of<br/>construction and continue to operate after completion of the construction until the land is</li> </ul>                                                                                                   | Construction<br>phase         | Proponent<br>Construction |
|                                           | <ul> <li>Uncontaminated runoff from outside the construction site will be diverted around the site;</li> <li>Uncontaminated runoff from outside the construction site will be diverted around the site;</li> <li>No untreated construction site runoff will be discharged into receiving waters such including Brookvale Creek and Kentwell Road stormwater drains;</li> <li>Drainage through and from areas of construction will be designed to minimise surface flow velocities;</li> </ul> |                               |                           |



| Action                                          | Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Timing                | Responsibility                      |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|
|                                                 | <ul> <li>All silt fences, silt traps and sedimentation basins will be cleaned out once 30% of their capacity has been filled;</li> <li>Bare areas will be stabilised within 20 days of the completion of construction activities or 14 days in areas where erosion is more likely to occur; and</li> <li>Temporary stabilisation techniques such as strategically placed erosion matting, sediment screens, hay bale energy dissipaters, mulching and annual grass species establishment will be implemented on disturbed areas.</li> </ul> |                       |                                     |
| Landscaping                                     | Landscaping within the Subject Property should incorporate species representative of the local community being Estuarine Swamp Oak Twig-rush Forest.                                                                                                                                                                                                                                                                                                                                                                                        | Post-<br>construction | Proponent<br>Landscape Architect    |
| Storage and Stockpiling<br>(Soil and Materials) | Allocate all storage, stockpile, and laydown sites away from any vegetation that is planned to be retained. Avoid importing any soil from outside the site as this can introduce weeds and pathogens to the site in order to avoid the potential of incurring indirect impacts on biodiversity values.                                                                                                                                                                                                                                      | Construction<br>phase | Construction<br>Contractors         |
|                                                 | Impact mitigation and minimisation measures are to be implemented and followed before, during and after construction works as described within the project CMP. This plan outlines measures to be followed in regards to impacts on vegetation, riparian ecology, bank stability, erosion and sedimentation, water quality and landscaping.                                                                                                                                                                                                 |                       |                                     |
| Riparian Lands and<br>Waterways                 | <ul> <li>Specific outcomes of these mitigation and minimisation measures include:</li> <li>Protecting native species and communities;</li> <li>Preventing loss of natural diversity through protecting waterway and riparian vegetation (including non-native vegetation);</li> <li>Minimising damage to public and private property by waterway processes through maintaining the relative stability of the beds and banks; and</li> <li>Preserving natural ecological processes.</li> </ul>                                               | All phases            | Proponent<br>Construction Architect |



# 7. Conclusion

This assessment indicates that the relevant biodiversity conservation provisions of the Environmental Planning and Assessment Act 1979 and the relevant provisions of the WLEP 2011 and the WDCP 2011 have been fulfilled. The proposed development will require the removal of the following vegetation within the Subject Site:

- 0.19ha of Estuarine Swamp Oak Twig-rush Forest which conforms to the BC Act listed Swamp Oak Floodplain Forest in the NSW North Coast, Sydney Basin and South East Corner Bioregions and EPBC listed Coastal Swamp Oak (*Casuarina glauca*) Forest of South-east Queensland and New South Wales; and
- 0.32ha of Exotic Dominated Vegetation.

No threatened species are expected to be significantly impacts by the proposed development. One (1) threatened species, *Callistemon linearifolius* (Netted Bottle Brush), does occur in close proximity to the site, however it has been purposely avoided.

In addition, the proposed development is considered unlikely to result in adverse impacts on the waterway. Brookvale Creek is already heavily disturbed with turbid water and weed dominated riparian vegetation. The overall impact to the creek is minimal, with no instream works proposed.

If the appropriate recommendations in this report are followed, the proposed DA will have minimal ecological impacts. This includes the preparation of a VMP and the implementation of the site CMP.



# 8. References

Australian Standard 4970 (2009) Protection of Trees on Development Sites (AS-4970)

Bureau of Meteorology (BOM) (2023) Terrey Hills AWS, New South Wales, July 2022 Daily Weather Observations http://www.bom.gov.au/climate/dwo/IDCJDW2154.latest.shtml

Chapman G.A., Murphy C.L., Tille P.J., Atkinson G. and Morse R.J. (2009) Soil Landscapes of the Sydney 1:100,000 Sheet map, Ed. 4, Department of Environment, Climate Change and Water, Sydney

Department of Climate Change, Energy, the Environment and Water (DCCEEW) (2023) Protected Matters Search Tool, http://www.environment.gov.au/epbc/pmst/

Department of Planning, Industry and Environment (DPIE) (2020) Surveying Threatened Plants and Their Habitats

Department of Planning and Environment (DPE) (2022) State Vegetation Type Map

Department of Planning and Environment (DPE) (2023a) Biodiversity Values Map and Threshold Tool

Department of Planning and Environment (DPE) (2023b) BioNet. The website of the Atlas of NSW Wildlife http://www.bionet.nsw.gov.au/

Department of Planning and Environment (DPE) (2023c) BioNet Vegetation Classification. https://www.environment.nsw.gov.au/research/Visclassification.htm

Department of Planning and Environment (DPE) (2023d) eSPADE v2.2 https://www.environment.nsw.gov.au/eSpade2Webapp#

Department of Planning and Environment (DPE) (2023e) Threatened Species Profiles. https://www.environment.nsw.gov.au/threatenedspeciesapp/

Department of Primary Industries (DPI) (2023) NSW WeedWise: Priority weeds for the Greater Sydney https://weeds.dpi.nsw.gov.au/WeedBiosecurities?AreaId=3

Google (2023) Google Earth Pro.

Landcom (2004) Managing Urban Stormwater: Soils and Construction 'The Blue Book', Volume 1, Fourth Edition, New South Wales Government, ISBN 0-9752030-3-7

Group Architects (2023) Overall Site Plan

Northern Beaches Council (2011a) Warringah Development Control Plan (WDCP)

Northern Beaches Council (2011b) Warringah Environmental Plan (WLEP)

NSW Government Spatial Services (NSW SixMaps) (2023) NSW Government Land & Property Information Spatial Information Exchange map viewer, https://six.nsw.gov.au/

PlantNET (2023) The NSW Plant Information Network System, Royal Botanic Gardens and Domain Trust, Sydney. http://plantnet.rbgsyd.nsw.gov.au



# 9. Appendices

Appendix A. Site Plan (Group Architects 2023)

Appendix B. Flora species identified within the Subject .

Appendix C. Fauna species identified within and surrounding the Subject Property.

Appendix D. Biodiversity Conservation Act 2016 - Test of Significance for Swamp Oak Floodplain Forest.

Appendix E. EPBC Act Assessment of Significant Impact for Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland







| Acacia longifaliaxAcetos sagituta"xAgeratina adenophora"xAnethum graveolens"xAnethum graveolens"xAngophora costataxXXAnagia sericfera"xAraujia sericfera"xBidens piloso"xBidens piloso"xBrachychiton acerfalusxCallistemon linear/folusxCallistemon salignusxCallistemon salignusxCallistemon adminolisxConcentric conditionsxColocasia spp. *xColocasia spp. *xCupaniopsis anacardioidesxCupaniopsis anacardioidesxCupaniopsis anacardioidesxCupaniopsis curvila"xCupaniopsis curvila"xCupaniopsis curvila"xCupaniopsis curvila"xEtrahythin a sykesi*xCupaniopsis curvila"xCupaniopsis curvila"xEtrahythin a sykesi*xCupaniopsis curvila"xEtrahythin a sykesi*xEtrahythin a sykesi*xEtrahythin a sykesi*xLichida repensxEtrahythin a sykesi*xEtrahythin as sykesi*x<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Scientific Name                        | Canopy | Mid-Story | Ground |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|-----------|--------|
| Acetosa sagittata*xAgeratina adenophora*xAnethum graveolens*xAngophora costataxAnredera cordifolia**xAnredera cordifolia sericifera*xAnredera cordifolia sericifera*xAnaujia sericifera*xBidens piloso*xBidens piloso*xBidens piloso*xBrachychiton acerifaliusxArouig sericifera*xBidens piloso*xCallistemon salignusxCallistemon viminalisxCallistemon viminalisxCanomomum camphora*xCinnamomum camphora*xCinnamomum camphora*xColocasia spp.*xColocasia spp.*xColocasia spp.*xCupaniopsis anacardioidesxCynodon dactylonxCynodon dactylonxEtrianta erecta*xEtrianta erecta*xEucolyptus robustoxFlumaria difficinils*xCiochidan ferinans*xCupaniopsis anacardioidesxCupaniopsis anacardioidesx <td>Acacia longifolia</td> <td></td> <td>Х</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acacia longifolia                      |        | Х         |        |
| Ageratina adenophora*xAnethum graveolens*xAnedphora costataxAngophora costataxAnredera codifolia**xAraujia sericifera*xXXBidens pilosa*xBidens pilosa*xBrachychiton acerifoliusxBronus catharticus*xCallistemon singalusxCallistemon viminalisxCalsuarina glaucaxCionamum camphora*xCionamum camphora*xColocasio spp.*xConventionaxConventionaxConventionaxColocasio spp.*xCyathea australisxCynadon dactylonxCynadon dactylonxChrinar conventionxColocasio spp.*xColocasio spp.*xCupaniopsis anacardioidesxCynadon dactylonxCynadon dactylonxEryphrina xsylesi*xEucolyptus robustaxFlumaria erecta*xFumaria officiniis*xFumaria officiniis*xHarpephyllum caffrum*XHomalanthus populjoliusxLantana comara*xLantana comara*xLomandra langifaliaxKarda costrolisxLantana comara*xLomandra langifaliaxKarda costrolisxLantana cumara*xLomandra lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acetosa sagittata*                     |        |           | x      |
| Anethum graveolens*xAngophora costataxAnredera cordifolia**xArreujia seric[fera*xArreujia seric[fera*xBidens pilosa*xBrachychiton acerifoliusxBrachychiton acerifoliusxCallistemon linearifolius (Vulnerable)xCallistemon viminalisxCallistemon viminalisxCallistemon viminalisxCallistemon viminalisxCallistemon viminalisxCallistemon viminalisxCanadestinus*xCanadestinus*xConchrus clandestinus*xCinnamomum camphora*xXXConcasia spp.*xCommelina cyaneaxCupanipasis anacardioidesxCupanipasis anacardioidesxCynada dactylonxCitsus eragrostis*xCupanipasis curvula*xCupanipasis curvula*xCitsus eragrostis*xCupanda dactylonxCitsus eragrostis*xCitsus eragrostis*xCupandon dactylonxKXCitanation repensxFugarostis curvula*xFumaria officinalis*xKXCitananadificiesxKXCitanadificiesxKXCitanatis curvula*xKonda australisxKitana australisx <td< td=""><td>Ageratina adenophora*</td><td></td><td></td><td>x</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ageratina adenophora*                  |        |           | x      |
| Angophora costataxAnredera cordifolia**xAraujia sericifera*xAsparagus aethiopicus**xBidens pilosa*xBidens pilosa*xBrachychiton acerifoliusxBromus catharticus*xCallistemon selignusxCallistemon selignusxCallistemon selignusxCallistemon selignusxCallistemon selignusxCallistemon selignusxCosuarina glaucaxConchrus clandestinus*xCisus antarcticoXCiolocasia spp. *xColocasia spp. *xCupyza bonariensis*xCupyza bonariensis*xCupando actylonxCyathea australisxCyperus eragrostis*xEragrostis curvula*xFicus rubiginosaxFicus rubiginosaxChrina x sykesii*xFicus rubiginosaxFicus rubiginosaxFicus rubiginosaxFicus rubiginosaxFicus rubiginosaxFicus rubiginosaxHordaraltus populifoliusxHordaraltus populifoliusxLantana camara**XLomandra longifoliaxLomandra longifoliaxLomandra longifoliaxHelaleuca ulinoriffoliaxLomandra longifoliaxKathelauca ulinoriffoliaxLomandra longifolia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anethum graveolens*                    |        | х         |        |
| Anredera cordifolia**×Araujia sericifera*×Asparagus aethiopicus**×Bidens pilosa*×Brachychiton acerifolius×Bromus catharticus*×Callistemon linearifolius (Vulnerable)×Callistemon solignus×Callistemon viminalis×Casuarina glauca×Cinnamorum camphora*×Cioncasia spp. *×Concrus anteritor×Concrus anteritor×Cinnamorum camphora*×X×Conmelina cardioides×Condicasia spp. *×Condicasia spp. *×Conserve anteritor×Condicasia spp. *×Cupaniopsis anacardioides×X×Cupaniopsis anacardioides×X×Cynodon dactylon×Cibchordra repens×Euralyotus robusta×Furbarta erecta*×Euralyotus robusta×Fumaria officinalis*×Harpephyllum caffrum*×Hornalanthus populfolius×Hornalanthus populfolius×Hornalanthus populfolius×Lantana camare**×Lomandra longifolia×Meloleuca uinquenervia×Meloleuca uinquenervia×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Angophora costata                      | х      |           |        |
| Araujia sericifera*×Asparagus acthiopicus**×Bidens pilosa*×Brachychiton acerifolius×Bromus atharticus*×Callistemon linearifolius (Vulnerable)×Callistemon salignus×Callistemon viminalis×Casuarina glauca×Cenchrus clandestinus*×Cinnamomum camphora*×Cirsus antarctica×Corocasia spp. *×Commelina cyanea×Conyca bonariensis*×Cupaniopsis anacardioides×Cypatha australis×Cypatha australis×Erryprus eragrostis*×Eucalyptus robusta×Ficus rubiginosa×Ciolichina repens×Chrina x sykesji*×Ficus rubiginosa×Fumaria afficinalis*×Homalanthus populifolius×Hormalanthus populifolius×Hormala cindingi×Hormala cindingi×Hormala cindingi×Hormala cindingi×Hormala cindingi×Hormalanthus populifolius×Hormala cindingifolia×Hormala cindingifolia×Hormala cindingifolia×Hormala cindingifolia×Hormala cindingifolia×Hormala cindingifolia×Kathara cindingifolia×Kelaleuca linarififolia×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Anredera cordifolia**                  |        |           | x      |
| Asparagus aethiopicus**×Biclens pilosa*×Brochychton acerifolius×Bromus catharticus*×Callistemon salignus×Callistemon salignus×Convas antarctica×Colocasia spp.*×Colocasia spp.*×Cupaniopsis anacardioles×Yahea australis×Cynodon dactylon×Cyperus eragrostis*×Cynodon dactylon×Ehrharta erecta*×Ehrharta erecta*×Eucalyptus robusta×Ficus rubiginosa×K×Hormalanthus populifolius×Hormalanthus populifolius×Lantana camara**×Lomandra longifo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Araujia sericifera*                    |        |           | x      |
| Bidens pilosa*xBrachychiton acerifoliusxBroms catharticus*xCallistemon salignusxCallistemon sulgnusxCallistemon viminalisxCallistemon viminalisxCasuarina glaucaxCasuarina glaucaxCanamoum camphora*xCisus antarcticaxColocsia spp.*xConyza bonariensis*xCupaniopsis ancardioidesxCypanica cargoristisxConyza bonariensis*xCypanica cargoristisxCypanica cargoristis*xCibcondra repensxCibcondra repensxEtrhharta erecta*xEurophyllipoliusxFurmaria officinalis*xFumaria officinalis*xHomalanthus poullifoliusxHormalanthus poullifoliusxHormalanthus poullifoliusxLantana camara**xLivistona australisxKXMelaleuca linariffulaxHelaleuca linariffulaxLomandra longifoliaxMelaleuca linariffulaxLivistona australisxKelaleuca vingensis*x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Asparagus aethiopicus**                |        | х         |        |
| Brachychiton acerifoliusxxBromus catharticus*xxCallistemon linearifolius (Vulnerable)xxCallistemon solignusxxCallistemon viminalisxxCasuarina glaucaxxCenchrus clandestinus*xxCinnamomur camphora*xxCisus antarcticaxxConzeaira spp.*xxConzaira sps.*xxConzaira sps.*xxConyza bonariensis*xxCupaniopsis anacardioidesxxCynodon dactylonxxCyperus eragrostis*xxEhrharta erecta*xxEucalyptus robustaxxFicus rubiginosaxxGlochidon ferilinandixxGlochidon ferilinandixxFicus rubiginosaxxFicus rubiginosaxxHarpephyllum caffrum*xxHorolanthus populifoliusxxHarpendyllum caffrum*xxHorolantinus autorisis*xxHorolantinus populifoliusxxHarpendulum caffrum*xxHorolantinus populifoliusxxHorolantinus populifoliusxxHorolantinus populifoliusxxHarpendulum caffrum*xxHorolantinus populifoliusxxHorolantinus populifoliusx <t< td=""><td>Bidens pilosa*</td><td></td><td></td><td>X</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bidens pilosa*                         |        |           | X      |
| Bromus catharticus*xCallistemon linearifolius (Vulnerable)xCallistemon sulignusxCallistemon viminalisxCasuarina glaucaxCenchrus clandestinus*xCinnamomum camphora*xCissus antarcticaxColocasia spp.*xColocasia spp.*xCommelina cyaneaxComyza bonariensis*xCyathea australisxCyathea australisxCyperus eragrostis*xChristina regensxCuponiopsis onacardioidesxCynodon dactylonxCuperus eragrostis*xEhrharta erecta*xEhrharta erecta*xFicus rubiginosaxFicus rubiginosaxFicus rubiginosaxHarpephyllum coffrum*xHomalanthus populifoliusxLivistona australisxKicus rubiginosaxKudanthus populifoliusxKudanthus populifoliusxKudanthus populifoliusxKudanthus populifoliusxKudanthus populifoliusxKudanta comar**xKudanta comariensis*xKudanta comariensis*xKudanta comariensis*xKudaleuca linarifoliaxKudaleuca linarifoliaxKudaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Brachychiton acerifolius               | Х      |           |        |
| Callistemon linearifolius (Vulnerable)xCallistemon salignusxCallistemon viminalisxCallistemon viminalisxCasuarina glaucaxCenchrus clandestinus*xCinnamomum camphora*xCissus antarcticaxColocasia spp. *xColocasia spp. *xCommelina cyaneaxCupaniopsis anacardioidesxCynodo dactylonxCynodo dactylonxCyperus eragrostis*xEhrharta erecta*xErythrina x sykesii*xFicus rubiginosaxFicus rubiginosaxFicus rubiginosaxHarpephyllum coffrum*xHomalanthus populifoliusxLintana camare*xLintana camare**xLintana camare**xMelaleuca quinquenerviaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromus catharticus*                    |        |           | X      |
| Callistemon salignusxxCallistemon viminalisxxCasuarina glaucaxxCenchrus clandestinus*xxCinnamomum camphora*xxCissus antarcticaxxColocasia spp. *xxColocasia spp. *xxCommelina cyaneaxxCupaniopsis anacardioidesxxCyathea australisxxCynodon dactylonxxCyperus eragrostis*xxDichondra repensxxEuragrostis curvula*xxEuralyptus robustaxxFilus rubiginosaxxFilus rubiginosaxxHarpephyllum caffrum*xxHomalanthus populifoliusxxLionandra longifoliaxxFumaria officinalis*xxMelaleuca linariifoliaxxHarpephyllum caffurum*xxHarpephyllum caffurum*xxMelaleuca linariifoliaxxLivistona australisxxLivistona australisxxLivistona australisxxLivistona australisxxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Callistemon linearifolius (Vulnerable) |        | X         |        |
| Callistemon viminalisxCasuarina glaucaxCenchrus clandestinus*xCinnamomum camphora*xXXCissus antarcticaxColocasia spp. *XCommelina cyaneaxConyca bonariensis*xCupaniopsis anacardioidesxCyathea australisxCyperus eragrostis*xDichondra repensxErargostis curvula*xErargostis curvula*xFicus rubiginosaxFicus rubiginosaxFicus rubiginosaxImage: Stress and curvula*xEucalyptus robustaxFicus rubiginosaxFicus rubiginosaxHarpephyllum caffrum*xHomalanthus populifoliusxLivistona australisxLivistona australisxMelaleuca quinquenerviaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Callistemon salignus                   | X      |           |        |
| Casuarina glaucaxCenchrus clandestinus*xCinnamomum camphora*xCissus antarcticaxCissus antarcticaxColocasia spp.*xCommelina cyaneaxComyza bonariensis*xCupaniopsis anacardioidesxCyathea australisxCynodon dactylonxCynodon dactylonxCynodon dactylonxEhrharta repensxEurophytis robustaxFicus rubiginosaxFicus rubiginosaxFicus rubiginosaxHarpephyllum caffrum*xHarpephyllum caffrum*xIndicata australisxLantana camara**xLomandra longifoliaxKatana camaraxKatana camarax <t< td=""><td>Callistemon viminalis</td><td></td><td>X</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Callistemon viminalis                  |        | X         |        |
| Cenchrus clandestinus*xCinnamomum camphora*xCissus antarcticaxCissus antarcticaxColocasia spp. *xColocasia spp. *xCommelina cyaneaxConyza bonariensis*xCupaniopsis anacardioidesxCyathea australisxCyathea australisxCynodon dactylonxCyperus eragrostis*xDichondra repensxEhrharta erecta*xEucalyptus robustaxFicus rubiginosaxFicus rubiginosaxGlochidion ferdinandixHarpephyllum caffrum*xHarpephyllum caffrum*xLintana camara**xLintana australisxKxMelaleuca linariifoliaxKxKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKX<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Casuarina glauca                       | x      |           |        |
| Clinnamomum camphora*xCissus antarcticaXXColocasia spp. *XXCommelina cyaneaXXConyza bonariensis*XXCupaniopsis anacardioidesXXCyathea australisXXCynodon dactylonXXCyperus eragrostis*XXDichondra repensXXEhrharta erecta*XXEucalyptus robustaXXFicus rubiginosaXXFicus rubiginosaXXFumaria officinalis*XXHarpephyllum caffrum*XXHomalanthus populifoliusXXLivistona australisXXLivistona australisXXLivistona australisXXMelaleuca linariifoliaXXMelaleuca quinquenerviaXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cenchrus clandestinus*                 |        |           | X      |
| Cissus antarctica×Colocasia spp.*×Commelina cyanea×Conyza bonariensis*×Cupaniopsis anacardioides×Cyathea australis×Cynodon dactylon×Cyperus eragrostis*×Dichondra repens×Ehrharta erecta*×Eragrostis curvula*×Eucalyptus robusta×Ficus rubiginosa×Ficus rubiginosa×Harpephyllum caffrum*×Harpephyllum caffrum*×Livistona australis×Livistona australis×Lumana camara**×Melaleuca linariifolia×Melaleuca quinquenervia×Melaleuca quinquenervia×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cinnamomum camphora*                   | x      |           |        |
| Colocasia spp. *×Commelina cyanea×Conyza bonariensis*×Cupaniopsis anacardioides×Cyathea australis×Cynodon dactylon×Cyperus eragrostis*×Dichondra repens×Ehrharta erecta*×Eragrostis curvula*×Ficus rubiginosa×Fumaria officinalis*×Glochidion ferdinandi×Harpephyllum caffrum*×Homalanthus populifolius×Livistona australis×Lutistona australis×Lutistona australis×Melaleuca linariifolia×Melaleuca quinquenervia×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cissus antarctica                      |        |           | X      |
| Commelina cyaneaxConyza bonariensis*xCupaniopsis anacardioidesxCyathea australisxCynodon dactylonxCynodon dactylonxCyperus eragrostis*xDichondra repensxEhrharta erecta*xEragrostis curvula*xEucalyptus robustaxFicus rubiginosaxFumaria officinalis*xGlochidion ferdinandixHarpephyllum caffrum*xHomalanthus populifoliusxInteracea*xLivistona australisxLivistona australisxLomandra longifoliaxMelaleuca quinquenerviaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Colocasia spp. *                       |        |           | X      |
| Conyza bonariensis*xCupaniopsis anacardioidesxCyathea australisxCynodon dactylonxCyperus eragrostis*xDichondra repensxEhrharta erecta*xEragrostis curvula*xEucalyptus robustaxFicus rubiginosaxFumaria officinalis*xHarpephyllum caffrum*xHomalanthus populifoliusxIpomoea purpurea*xLantana camara**xLivistona australisxLomandra longifoliaxMelaleuca quinquenerviaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commelina cyanea                       |        |           | x      |
| Cupaniopsis anacardioidesxCyathea australisxCynodon dactylonxCyperus eragrostis*xDichondra repensxEhrharta erecta*xEragrostis curvula*xEucalyptus robustaxFicus rubiginosaxFumaria officinalis*xGlochidion ferdinandixHarpephyllum caffrum*xHomalanthus populifoliusxLantana camara**xLivistona australisxLomandra longifoliaxMelaleuca quinquenerviaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conyza bonariensis*                    |        |           | x      |
| Cyathea australisxCynodon dactylonXCyperus eragrostis*XDichondra repensXEhrharta erecta*XEragrostis curvula*XXErythrina x sykesii*XFicus rubiginosaXXFumaria officinalis*XXGlochidion ferdinandiXXHarpephyllum caffrum*XXHomalanthus populifoliusXXIpomoea purpurea*XXLivistona australisXXLomandra longifoliaXXMelaleuca quinquenerviaXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cupaniopsis anacardioides              |        | X         |        |
| Cynodon dactylonxCyperus eragrostis*XDichondra repensXEhrharta erecta*XEhrharta erecta*XEragrostis curvula*XErythrina x sykesii*XEucalyptus robustaXFicus rubiginosaXFicus rubiginosaXGlochidion ferdinandiXHarpephyllum caffrum*XHomalanthus populifoliusXIpomoea purpurea*XLivistona australisXLomandra longifoliaXMelaleuca linariifoliaXMelaleuca quinquenerviaX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cyathea australis                      |        | X         |        |
| Cyperus eragrostis*xDichondra repensxEhrharta erecta*xEhrharta erecta*xEragrostis curvula*xEragrostis curvula*xErythrina x sykesii*xEucalyptus robustaxFicus rubiginosaxFicus rubiginosaxGlochidion ferdinandixHarpephyllum caffrum*xHomalanthus populifoliusxIpomoea purpurea*xLantana camara**xLomandra longifoliaxMelaleuca linariifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cynodon dactylon                       |        |           | x      |
| Dichondra repensxEhrharta erecta*xEhrharta erecta*xEragrostis curvula*xEragrostis curvula*xErythrina x sykesii*xEucalyptus robustaxFicus rubiginosaxFumaria officinalis*xGlochidion ferdinandixHarpephyllum caffrum*xHomalanthus populifoliusxIpomoea purpurea*xLantana camara**xLomandra longifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cyperus eragrostis*                    |        |           | x      |
| Ehrharta erecta*Eragrostis curvula*Erythrina x sykesii*xEucalyptus robustaxFicus rubiginosaxFumaria officinalis*xGlochidion ferdinandixHarpephyllum caffrum*XHydrocotyle bonariensis*xxIpomoea purpurea*xxLivistona australisxLomandra longifoliaxxMelaleuca linariifoliaxxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dichondra repens                       |        |           | X      |
| Eragrostis curvula*xErythrina x sykesii*xEucalyptus robustaxFucalyptus robustaxFicus rubiginosaxFumaria officinalis*xGlochidion ferdinandixHarpephyllum caffrum*XHomalanthus populifoliusxHydrocotyle bonariensis*xLantana camara**XLivistona australisxLomandra longifoliaxMelaleuca linariifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ehrharta erecta*                       |        |           | x      |
| Erythrina x sykesii*xImage: constraint of the system          | Eragrostis curvula*                    |        |           | x      |
| Eucalyptus robustaxImage: constraint official is and iteration of iteration          | Erythrina x sykesii*                   | X      |           |        |
| Ficus rubiginosaxFicus rubiginosaxFumaria officinalis*xGlochidion ferdinandixHarpephyllum caffrum*xHomalanthus populifoliusxHydrocotyle bonariensis*xIpomoea purpurea*xLantana camara**xLivistona australisxLomandra longifoliaxMelaleuca linariifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eucalyptus robusta                     | X      |           |        |
| Fumaria officinalis*xFumaria officinalis*xGlochidion ferdinandixHarpephyllum caffrum*XHomalanthus populifoliusxHydrocotyle bonariensis*xIpomoea purpurea*xLantana camara**xLomandra longifoliaxMelaleuca linariifoliaxXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ficus rubiginosa                       |        | X         |        |
| Glochidion ferdinandixGlochidion ferdinandixHarpephyllum caffrum*XHomalanthus populifoliusXHydrocotyle bonariensis*XIpomoea purpurea*XLantana camara**XLivistona australisXLomandra longifoliaXMelaleuca linariifoliaXMelaleuca quinquenerviaX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fumaria officinalis*                   |        |           | X      |
| Harpephyllum caffrum*XHomalanthus populifoliusXHydrocotyle bonariensis*XIpomoea purpurea*XLantana camara**XLivistona australisXLomandra longifoliaXMelaleuca linariifoliaXMelaleuca quinquenerviaX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glochidion ferdinandi                  |        | X         |        |
| Homalanthus populifoliusxHomalanthus populifoliusxHydrocotyle bonariensis*xIpomoea purpurea*xLantana camara**xLivistona australisxLomandra longifoliaxMelaleuca linariifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Harpephyllum caffrum*                  |        | X         |        |
| Hydrocotyle bonariensis*Ipomoea purpurea*Lantana camara**xLivistona australisxLomandra longifoliaMelaleuca linariifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Homalanthus populifolius               |        | X         |        |
| Ipomoea purpurea*Image: Constraint of the second secon | Hydrocotyle bonariensis*               |        |           | X      |
| Lantana camara**xLivistona australisxLomandra longifoliaxMelaleuca linariifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lpomoea purpurea*                      |        |           | X      |
| Livistona australisxLomandra longifoliaxMelaleuca linariifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lantana camara**                       |        | X         |        |
| Lomandra longifoliaxMelaleuca linariifoliaxMelaleuca quinquenerviax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Livistona australis                    | x      |           |        |
| Melaleuca linariifolia     x       Melaleuca quinquenervia     x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lomandra lonaifolia                    |        |           | X      |
| Melaleuca quinquenervia     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Melaleuca linariifolia                 | x      |           |        |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Melaleuca auinauenervia                | x      |           |        |
| Modiola caroliniana* x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Modiola caroliniana*                   |        |           | X      |

# Appendix B. Flora species identified within the Subject Site and immediate surrounds.



| Scientific Name              | Canopy | Mid-Story | Ground |
|------------------------------|--------|-----------|--------|
| Nephrolepis cordifolia*      |        |           | Х      |
| Parietaria judaica*          |        |           | x      |
| Phoenix canariensis*         | X      |           |        |
| Phragmites australis         |        |           | х      |
| Pittosporum undulatum        |        | x         |        |
| Poa annua*                   |        |           | Х      |
| Pteridium esculentum         |        |           | Х      |
| Ricinus communis*            |        |           | Х      |
| Rubus fruticosus spp. agg.** |        | X         |        |
| Senna pendula*               |        | x         |        |
| Sifa rhombifolia*            |        |           | х      |
| Solanum nigrum*              |        | x         |        |
| Soliva sessilis*             |        |           | Х      |
| Sonchus oleraceus*           |        |           | х      |
| Stellaria media*             |        |           | х      |
| Strelitzia nicolai*          |        |           | Х      |
| Thunbergia alata*            |        |           | x      |
| Tradescantia fluminensis*    |        |           | x      |
| Vicia sativa*                |        |           | x      |

\* Denotes exotic species, \*\* Denotes Priority Weed



| Class    | Scientific Name        | Common Name          | Status    |
|----------|------------------------|----------------------|-----------|
|          | Chenonetta jubata      | Australian Wood Duck |           |
|          | Cracticus torquatus    | Grey Butcherbird     |           |
| Aves     | Manorina melanocephala | Noisy Miner          |           |
|          | Porphyrio porphyrio    | Purple Swamphen      | Protected |
|          | Vanellus miles         | Masked Lapwing       |           |
|          | Manorina melanocephala | Noisy Miner          |           |
| Reptilia | Cracticus torquatus    | Grey Butcherbird     |           |

# Appendix C. Fauna species identified within and surrounding the Subject Property.



| Appendix D. Biodiversity Conservation Act 2016 - Test of Significance for Swamp Oak Floodplain Fore | Appendix D | ). Biodiversity Con | servation Act 2016 - | Test of Significance | for Swamp | Oak Floodplain Fore | est. |
|-----------------------------------------------------------------------------------------------------|------------|---------------------|----------------------|----------------------|-----------|---------------------|------|
|-----------------------------------------------------------------------------------------------------|------------|---------------------|----------------------|----------------------|-----------|---------------------|------|

| Biodiversity Conservation Act 2016 – Test of Significance (5-part Test)<br>for                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner Bioregions<br>(SOFF)                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| BC Act Status: Endangered Ecological Community                                                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (a) in the case of a threatened<br>species, whether the proposed<br>development or activity is likely<br>to have an adverse effect on the<br>life cycle of the species such that<br>a viable local population of the<br>species is likely to be placed at<br>risk of extinction, | Not applicable – Swamp Oak Floodplain Forest of the NSW North Coast,<br>Sydney Basin and South East Corner Bioregions (SOFF) is not a species                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (b) in the case of an endangered                                                                                                                                                                                                                                                 | (i) is likely to have an adverse<br>effect on the extent of the<br>ecological community such that its<br>local occurrence is likely to be<br>placed at risk of extinction, or             | The proposed activity is not likely to<br>have an adverse effect on the extent<br>of the ecological community such that<br>its local occurrence is likely to be<br>placed at risk of extinction.<br>In total, 0.19ha of this community will<br>be impacted which accounts for less<br>than 3.3% of the local occurrence of<br>this community. Large areas of this<br>community will continue to exist in<br>the adjoining landscape.                                                                                                         |  |
| ecological community or<br>critically endangered ecological<br>community, whether the<br>proposed development or<br>activity:                                                                                                                                                    | (ii) is likely to substantially and<br>adversely modify the composition<br>of the ecological community such<br>that its local occurrence is likely to<br>be placed at risk of extinction, | The proposed activity is not likely to<br>substantially and adversely modify<br>the composition of SOFF such that its<br>local occurrence is likely to be placed<br>at risk of extinction.<br>In total, 0.19ha of the local<br>occurrence of the EEC is proposed to<br>be impacted. The vegetation to be<br>cleared is in poor condition with a<br>predominately exotic groundlayer<br>with common canopy and mid-storey<br>species present, making it unlikely the<br>composition of the community within<br>the locality would be reduced. |  |
| (c) in relation to the habitat of a<br>threatened species or ecological<br>community:                                                                                                                                                                                            | (i) the extent to which habitat is<br>likely to be removed or modified<br>as a result of the proposed<br>development or activity, and                                                     | Approximately 0.19ha will be removed to accommodate the proposed activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                  | (ii) whether an area of habitat is<br>likely to become fragmented or<br>isolated from other areas of                                                                                      | The 0.19ha SOFF to be impacted<br>located on the edge of an existing<br>patch adjacent to a road. The removal<br>of this small amount of vegetation is                                                                                                                                                                                                                                                                                                                                                                                       |  |



| Biodiversity Conservation Act 2016 – Test of Significance (5-part Test)<br>for<br>Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner Bioregions<br>(SOFF) |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BC Act Status: Endangered Ecological Community                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                               | habitat as a result of the proposed development or activity, and                                                                                                                                                                                                                                                                                                                                                                                | not expected to lead to any further fragmentation.                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                               | (iii) the importance of the habitat<br>to be removed, modified,<br>fragmented or isolated to the<br>long-term survival of the species<br>or ecological community in the<br>locality,                                                                                                                                                                                                                                                            | All areas that support viable patches<br>of SOFF are important. However,<br>impacts to the patch in question will<br>not cause significant fragmentation<br>or isolation of the EEC as<br>representative vegetation will<br>continue to occur throughout the<br>locality. Impacts to 0.19ha of the EEC<br>is highly unlikely to decrease the long-<br>term survival of the community. |
| (d) whether the proposed<br>development or activity is likely<br>to have an adverse effect on any<br>declared area of outstanding<br>biodiversity value (either directly<br>or indirectly),   | The proposed activity is not likely to area of outstanding biodiversity values                                                                                                                                                                                                                                                                                                                                                                  | have an adverse effect on any declared<br>ue, directly or indirectly.                                                                                                                                                                                                                                                                                                                 |
| (e) whether the proposed<br>development or activity is or is<br>part of a key threatening process<br>or is likely to increase the impact<br>of a key threatening process.                     | <ul> <li>The following Key Threatening Processes (KTPs) listed under Schedule 4 of the BC Act are relevant to the protection of potential habitat in the scope of the proposed activity within the Subject Site for this EEC:</li> <li>Clearing of native vegetation;</li> <li>Invasion of native plant communities by exotic perennial grasses; and</li> <li>Invasion, establishment and spread of Lantana (<i>Lantana camara</i>).</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>References</b><br>NSW Department of Planning and                                                                                                                                           | Environment (DPE) (2021) Swamp C                                                                                                                                                                                                                                                                                                                                                                                                                | ak Floodplain Forest of the New South                                                                                                                                                                                                                                                                                                                                                 |

NSW Department of Planning and Environment (DPE) (2021) Swamp Oak Floodplain Forest of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions – profile.

NSW Government (2021) NSW Legislation: Biodiversity Conservation act 2016 No 63, Schedule 4: Key Threatening Processes https://www.legislation.nsw.gov.au/acts/2016-63.pdf



# Appendix E. EPBC Act Assessment of Significant Impact for Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland

# Commonwealth Environment Protection and Biodiversity Conservation Act 1999 Assessment of Significant Impact Criteria

for

Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland (CSOF)

EPBC Act Status: Endangered

#### Significant impact criteria

An action is likely to have a significant impact on a critically endangered or endangered ecological community if there is a real chance or possibility that it will:

| • reduce the extent of an ecological community                                                                                                                                                                                                                                                                        | The proposed development is not likely to reduce the extent of<br>the ecological community. The proposed subdivision will result in<br>the removal of approximately 0.19ha of CSOF which makes up<br>approximately 3.3% of the community within the Subject<br>Property. The extent of CSOF to be removed is in poor condition<br>and is expected to persist in the broader Subject Property and<br>locality                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • fragment or increase fragmentation of<br>an ecological community, for example by<br>clearing vegetation for roads<br>or transmission lines                                                                                                                                                                          | It is not likely that CSOF within the Subject Site will become<br>fragmented. Vegetation consisting of CSOF will persist directly<br>adjacent to the Subject Site to the north and the south. A small<br>pedestrian bridge will be built within the patch however<br>connectivity is expected to remain either side of the bridge.                                                                                                                          |
| <ul> <li>adversely affect habitat critical to the<br/>survival of an ecological community</li> </ul>                                                                                                                                                                                                                  | The proposed development will not adversely affect habitat critical to the survival of CSOF. The extent of CSOF to be removed is in poor condition due to the invasion of weeds. It is not expected the removal of 0.19ha will significantly impact the long-term survival of the ecological community in the locality.                                                                                                                                     |
| • modify or destroy abiotic (non-living)<br>factors (such as water, nutrients, or soil)<br>necessary for an ecological<br>community's survival, including reduction<br>of groundwater levels, or substantial<br>alteration of surface water<br>drainage patterns                                                      | The proposed development will not modify or destroy abiotic factors necessary for the survival of CSOF. The proposed activities will result in the removal/management of approximately 0.19ha of CSOF. The removal of this small amount of vegetation is not likely to have any impact on groundwater or surface water drainage patterns, particularly through the implementation of the CMP during the construction until revegetation works are complete. |
| • cause a substantial change in the species<br>composition of an occurrence of an<br>ecological community, including<br>causing a decline or loss of functionally<br>important species, for example through<br>regular burning or flora or<br>fauna harvesting                                                        | The proposed development will result in the removal of<br>approximately 0.19ha of CSOF. The vegetation to be cleared is in<br>poor condition with a predominately exotic groundlayer with<br>common canopy and mid-storey species present, making it<br>unlikely the composition of the community within the locality<br>would be reduced within the locality.                                                                                              |
| <ul> <li>cause a substantial reduction in the<br/>quality or integrity of an occurrence of an<br/>ecological community,<br/>including, but not limited to:         <ul> <li>assisting invasive species, that are<br/>harmful to the listed ecological<br/>community, to become established, or</li> </ul> </li> </ul> | The proposed development will not cause a substantial reduction<br>in the quality or integrity of CSOF. The extent of CSOF to be<br>removed is 3.3% of the local occurrence and consists of a<br>predominately exotic groundlayer.                                                                                                                                                                                                                          |



# Commonwealth Environment Protection and Biodiversity Conservation Act 1999 Assessment of Significant Impact Criteria

for

Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland (CSOF)

| EPB                                                                                                                                                                                                                                    | C Act Status: Endangered                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>causing regular mobilisation of fertilisers,<br/>herbicides or other chemicals or pollutants<br/>into the ecological<br/>community which kill or inhibit the growth<br/>of species in the ecological community, or</li> </ul> |                                                                                                                                                                                                          |
| <ul> <li>interfere with the recovery of an<br/>ecological community</li> </ul>                                                                                                                                                         | It is not expected that the removal of 0.19ha of CSOF will<br>interfere with the recovery of this community given the<br>implementation of the impact mitigation measures as outlined in<br>this report. |
| References:                                                                                                                                                                                                                            |                                                                                                                                                                                                          |

Department of the Environment and Energy (2018). Conservation advice (incorporating listing advice) for the Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland ecological community. Canberra: Department of the Environment and Energy.







# environmental

Eastern Sydney Office Unit 2.01/4-10 Bridge Street Pymble NSW 2073 Ph: 02 9986 1295

Western Sydney Office 7 Twentyfifth Avenue West Hoxton NSW 2171

Hunter Valley Office 10/103 Glenwood Drive Thornton NSW 2322

www.narla.com.au





IdealCorp Pty Ltd t/as **Ideal Geotech** ACN 132 337 190 16-18 Sammut Street Smithfield NSW 2164 PO Box 2270 Smithfield NSW 2164 Ph: (02) 9725 5522 Fax: (02) 8786 6300 www.idealgeotech.com.au

> Our Ref: 64551 25 July 2023

Attention: Graeme McMullan

# RE: Preliminary Slope Stability Assessment at 292 Condamine Road, North Manly

# 1 INTRODUCTION

Ideal Geotech has prepared this report to discuss the results of the preliminary geotechnical assessment undertaken for the proposed development at 292 Condamine Road, North Manly. Ideal Geotech was engaged to provide a preliminary landslip risk assessment.

The site is located within **Area A** on the Landslip Risk Map- Sheet LSR\_008 which does not normally require a preliminary Geotechnical Assessment, but council has requested a report to determine if further investigation is required.

# 2 PROPOSED DEVELOPMENT

With reference to the supplied drawings prepared by Group Architects, drawing no. GA2020-023-00X and dated 24 January 2023, it is understood that the proposed development comprises the construction of a new clubhouse at the Warringah Golf and Community Club. Up to approximately 0.7m of cut and 0.6m of fill will be undertaken for the construction of the clubhouse with some possible further excavation undertaken for the footings.

# 4 GEOLOGY

The Sydney 1:100,000 scale Geological Series Map indicates that the subject site is underlain by Quaternary deposits consisting of silty to peaty quartz sand, silt and clay with some shell layers.

#### 5 SITE DESCRIPTION

The site is irregular in shape with a total area of approximately 1,239m<sup>2</sup>. The site is bound by Pittwater Road to the north and east, Kentwell Road to the south and the golf course to the west. The site is located on relatively flat terrain.

During the course of the inspection no slip scarps or tension cracks were documented nor was there any visible hummocking of the land. This leads to the assumption that no significant slope failures have occurred.

Existing development comprises an existing club house.

# 6 **RECOMMENDATIONS**

During the course of the inspection, no slip scarps or tension cracks were documented nor was there any visible hummocking of the land. This leads to the assumption that no significant slope failures or subsidence has occurred.

The stability of a site is generally governed by site factors such as slope angles, depth of in-situ soils, and strength of sub-surface material and concentrations of water. The Australian Geomechanics Society recommends that the landslide risk of a site is assessed on the basis of the likelihood of a landslide event and the consequences of that event.

A Risk Assessment related to shallow soil slips, near surface slumping and deep-seated landslides, subject to adherence to our recommendations, has been provided in Table 1 below.

| HAZARD                          | SOIL CREEP                 | NEAR SURFACE<br>SLUMPING | ACTIVE OR<br>DEEP SEATED<br>LAND SLIDE | ROCK FALL<br>(ABOVE<br>DWELLING<br>LOCATION) |
|---------------------------------|----------------------------|--------------------------|----------------------------------------|----------------------------------------------|
| Likelihood                      | Rare                       | Rare                     | Rare                                   | Barely credible                              |
| Consequence to<br>Property      | Minor                      | Medium                   | Major                                  | Major                                        |
| Risk to Proposed<br>Development | Very Low                   | Low                      | Low                                    | Very low                                     |
| Risk to Life                    | 1 x 10 <sup>6</sup> /annum | 1 x 10⁵/annum            | 1 x 10⁵/annum                          | 1 x 10 <sup>6</sup> /annum                   |
| Remarks                         | None observed              | None observed            | None observed                          | None observed                                |

Table 1: Summary of Risk to Property and Life

The site is currently in a stable condition, based on a "Very Low to Low" Risk Level of instability relating to shallow soil slips and active or deep-seated land slide. With reference to the supplied drawings prepared by Group Architects, it is our assessment that the site is suitable for the proposed development and will not be subject to subsidence, slip, slope failure or erosion, provided all construction is carried out in accordance with good engineering and hill slope practices.

The soil profile consists of high permeability silty sands and stormwater discharge will not cause significant detrimental impacts as it is understood absorption trenches are to be installed in conjunction with the high permeability soils. Due to the soil profile consisting of sand and minimal excavation is proposed, subsurface flow conditions will not be impacted.

# 7 GENERAL

The scope of Ideal Geotech services are described in the report and are subject to restrictions and limitations. Ideal Geotech did not perform a complete assessment of all possible conditions or circumstances that may exist at the site. Site conditions may also change subsequent to the investigations and assessment due to ongoing use.

Where data has been supplied by the client or a third party, it is assumed that the information is correct unless otherwise stated. No responsibility is accepted by Ideal Geotech for incomplete or inaccurate data supplied by others.

Assessment was undertaken on 18 July 2023.

For and on behalf of

Ideal Geotech

B. Bwyer

Dane Dwyer Geotechnical Engineer

Attachments - Preliminary Assessment Flow Chart

# PRELIMINARY ASSESSMENT FLOW CHART



# n-Situ Permeabilit

Accredited for compliance With ISO/IEC 17025 NATA Accreditation No. 19226

16-18 Sammut Street Smithfield NSW 2164 PO Box 2270 Smithfield NSW Phone: 02 9725 5522 Email: <u>info@idealcorp.com.au</u> Website: <u>www.idealgeotech.com.au</u> Prepared For: Warringah Golf Club



Site Address:

(WGC Pro Shop) 292 Condamine Street, North Manly

Ref No:

64338-IDF

Date:

July 2023






This document is COPYRIGHT- all rights reserved. No part of this document may be reproduced or copied in any form or by means without written permission by Ideal Foundations Pty Ltd. All other property in this submission shall not pass untill all fees for preparation have been settled. This submission is for the use onlyof the party to whom it is addressed and for no other purpose. No responsibility is accepted to any third party who may use or rely on the whole or any part of the content of this submission. No responsibility will be taken for this report if it is altered in any way, or not reproduced in full.





This document is COPYRIGHT- all rights reserved. No part of this document may be reproduced or copied in any form or by means without written permission by Ideal Foundations Pty Ltd. All other property in this submission shall not pass untill all fees for preparation have been settled. This submission is for the use onlyof the party to whom it is addressed and for no other purpose. No responsibility is accepted to any third party who may use or rely on the whole or any part of the content of this submission. No responsibility will be taken for this report if it is altered in any way, or not reproduced in full.

|                 |                                   |               |                          |            |        | _           |
|-----------------|-----------------------------------|---------------|--------------------------|------------|--------|-------------|
|                 |                                   |               |                          |            |        |             |
| <b>Title</b> Bc | 3orehole Location Plan            | Council       | Northern Beaches Council | Drawn By   | Ben    |             |
| Project In      | n-Situ Permeability               | Job Number    | 64338-IDF                | Checked By | Dane   |             |
| Site Address 29 | :92 Condamine Street, North Manly | Figure Number | Figure 1                 | Date       | Jul-23 | NORTH POINT |

| $\mathcal{O}$ | idealgeotech            |  |
|---------------|-------------------------|--|
|               | a division of idealcorp |  |

| <b>5</b> .1              | a division of id                                           |                                                         | Date:<br>Customo<br>Ideal Jol<br>Site Ado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13/07/20<br>er Job: -<br>b: 64338<br>Iress: (WGC P<br>NORTH       | 23<br>ro Shop) 2<br>MANLY, N | 292 Condamine St<br>NSW, 2100                                  | Borehole:<br>Surface RL:<br>Easting:<br>reetNorthing: | BH                                                                                | 1                                    |
|--------------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
| Water                    |                                                            | Samples                                                 | Hate<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction<br>Construction | rial Debt                                                         | Classification<br>Code       | Material D                                                     | escription                                            | Moisture                                                                          | Density /<br>Consistency             |
| r observed               |                                                            |                                                         | _ FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   | SM                           | Silty Grav<br>Dark I                                           | elly SAND SI<br>Brown                                 | ightly Moist                                                                      |                                      |
| No wate                  |                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | SM                           | Silty S                                                        | SAND SI                                               | ightly Moist                                                                      |                                      |
|                          |                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                              | End Bore (Har                                                  | id Auger) 0.8m                                        |                                                                                   |                                      |
|                          |                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                              |                                                                |                                                       |                                                                                   |                                      |
|                          |                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                              |                                                                |                                                       |                                                                                   |                                      |
|                          |                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                              |                                                                |                                                       |                                                                                   |                                      |
| 10/                      | ter Toble                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                              |                                                                |                                                       |                                                                                   |                                      |
| wat                      |                                                            | UTP - Un                                                | able to penetrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DCP - 9kg [                                                       | ynamic Cor                   |                                                                | PP - Pocket Pene                                      | trometer                                                                          |                                      |
| 3                        |                                                            | Density Index                                           | DCP Blow Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONSISTENCY                                                       |                              | Judrained Shear                                                | DCP Blow Count                                        | моізт                                                                             | URE                                  |
| VL<br>L<br>MD<br>D<br>VD | Very Loose<br>Loose<br>Medium Dense<br>Dense<br>Very Dense | < 15 %<br>15 – 35 %<br>35 – 65 %<br>65 – 85 %<br>> 85 % | (biows/100mm)<br><pre>&lt; 1 1 - 3 3 - 9 9 - 15 &gt; 15</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VS Very S<br>S Soft<br>F Firm<br>St Stiff<br>VSt Very S<br>H Hard | oft                          | 0 – 12<br>12 – 25<br>25 – 50<br>50 – 100<br>100 – 200<br>> 200 | (biows/100mm)<br><1<br>1-2<br>2-3<br>3-5<br>5-8<br>>8 | D Dry<br>M Mois<br>W Wet<br>W <sub>P</sub> Plas<br>W <sub>L</sub> Liqui<br>m Mois | st<br>tic Limit<br>id Limit<br>sture |

| 5.2                      | a division of in                                           | jeotech<br>dealcorp<br>LOG                              | ٦                              | Date:<br>Customer Jol<br>Ideal Job:<br>Site Address: | 13/07/20<br>5: -<br>64338<br>(WGC F<br>NORTH                    | )23<br>Pro Sho<br>MANI | p) 292 C<br>Y NSW          | condamine St                                     | Borehole:<br>Surface RL:<br>Easting:<br>reetNorthing: | Bł                                  | 12                                                         |
|--------------------------|------------------------------------------------------------|---------------------------------------------------------|--------------------------------|------------------------------------------------------|-----------------------------------------------------------------|------------------------|----------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------|------------------------------------------------------------|
| Water                    |                                                            | Samples                                                 | Depth                          | Material<br>Origin                                   | Depth                                                           | Classification         |                            | Material C                                       | Description                                           | Moisture                            | Density /<br>Consistency                                   |
| r observed               |                                                            |                                                         | - Fii                          | LL                                                   |                                                                 | SN<br>SN               | 1                          | Silty Grav<br>Dark I                             | elly SAND<br>Brown                                    | Slightly Moist                      |                                                            |
| No water                 |                                                            |                                                         | NA                             | ATURAL                                               |                                                                 | SM                     | 1                          | Silty S                                          | SAND<br>wn                                            | Slightly Moist                      |                                                            |
|                          |                                                            |                                                         |                                |                                                      |                                                                 |                        |                            | End Bore (Ha                                     | nd Auger) 1m                                          |                                     |                                                            |
|                          |                                                            |                                                         | -<br>-<br>-<br>-<br><u>2</u> 0 |                                                      |                                                                 |                        |                            |                                                  |                                                       |                                     |                                                            |
|                          |                                                            |                                                         | -<br>-<br>-<br><u>2.</u> 5     |                                                      |                                                                 |                        |                            |                                                  |                                                       |                                     |                                                            |
|                          |                                                            |                                                         | _<br>_<br>_<br>                |                                                      |                                                                 |                        |                            |                                                  |                                                       |                                     |                                                            |
|                          |                                                            |                                                         | -                              |                                                      |                                                                 |                        |                            |                                                  |                                                       |                                     |                                                            |
| va<br>va<br>S            | ter Table AND – Density Inde                               | U I P - Un<br>x vs Approx. Penet                        | rometer resi                   | ults                                                 | SILTS                                                           | Synamic                | Cone Pen                   | etrometer                                        | PP - Pocket Pe                                        | netrometer                          |                                                            |
|                          | DENSITY                                                    | Density Index                                           | DCP Blov<br>(blows/1           | w Count C                                            | ONSISTENC                                                       | <u> </u>               | Undrai                     | ned Shear<br>ath (kPa)                           | DCP Blow Count                                        |                                     | STURE                                                      |
| VL<br>L<br>MD<br>D<br>VD | Very Loose<br>Loose<br>Medium Dense<br>Dense<br>Very Dense | < 15 %<br>15 – 35 %<br>35 – 65 %<br>65 – 85 %<br>> 85 % | <pre> &lt; (0.0 m of 1 -</pre> | 1 V<br>-3 S<br>-9 F<br>-15 S<br>15 V                 | S Very S<br>S Soft<br>F Firm<br>St Stiff<br>St Very S<br>H Hard | Soft                   | 0<br>12<br>25<br>50<br>100 | ) - 12<br>2 - 25<br>5 - 50<br>0 - 100<br>0 - 200 | <1<br>1-2<br>2-3<br>3-5<br>5-8<br>>8                  | DD<br>MM<br>WW<br>WPP<br>WLLi<br>mM | ry<br>oist<br>/et<br>lastic Limit<br>quid Limit<br>oisture |



### PRELIMINARY SITE INVESTIGATION N6898

### Warringah Golf Club Limited

PROPOSED DEVELOPMENT AT: 292 Condamine Street North Manly NSW 2100 Wednesday, 1st February 2023

# NED CONSULTING

#### **Report Distribution**

### Preliminary Site Investigation

Address: 292 Condamine Street, North Manly, NSW 2100

Report No: N6898

Date: Wednesday, 1st February 2023

| 1 Soft Copy (PDF) – Secured and issued by email Warringah Golf Club Limited | Copies                                          | Recipient/Custodian         |
|-----------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|
|                                                                             | 1 Soft Copy (PDF) – Secured and issued by email | Warringah Golf Club Limited |

1 Original – Saved to NEO Consulting Archives Secured and Saved by NEO Consulting on Register.

| Version | Prepared by                                | Reviewed by                        | Date issue        |
|---------|--------------------------------------------|------------------------------------|-------------------|
| Draft   | Sarah Houlahan<br>Environmental Consultant | Nick Caltabiano<br>Project Manager | 31st January 2023 |
|         | J.C.                                       | plette                             |                   |
| FINAL   | Sarah Houlahan<br>Environmental Consultant | Nick Caltabiano<br>Project Manager | 1st February 2023 |
|         | Jelle_                                     | plette                             |                   |

| Report Revision | Details      | Report No. | Date          | Amended By |
|-----------------|--------------|------------|---------------|------------|
| 0               | FINAL Report | N6898      |               | -          |
| Issued By:      |              |            |               |            |
|                 |              |            | plate         | R          |
|                 |              |            | Nick Caltabic | ono        |

This report may only be reproduced or reissued in electronic or hard copy format by its rightful custodians listed above, with written permission by NEO Consulting. This report is protected by copyright law.

### Table of Contents

| Executive Summary                                                               | 4  |
|---------------------------------------------------------------------------------|----|
| 1. Introduction                                                                 | 5  |
| 1.1 Background                                                                  | 5  |
| 1.2 Objectives                                                                  | 5  |
| 1.3 Regulatory Framework                                                        | 5  |
| 2. Scope of Work                                                                | 5  |
| 3. Site Details                                                                 | 6  |
| 4. Site Condition                                                               | 6  |
| 5. Site History                                                                 | 6  |
| 5.1 History of Site                                                             | 6  |
| 5.2 Section 10.7 (2) Planning Certificate                                       | 6  |
| 5.3 NSW EPA Contaminated Land Register                                          | 7  |
| 5.4 Protection of the Environment Operation Act (POEO) Public Register          | 7  |
| 5.5 SafeWork NSW Hazardous Goods                                                | 7  |
| 5.6 Product Spill and Loss History                                              | 7  |
| 5.7 PFAS Investigation Program                                                  | 7  |
| 6. Environmental Setting                                                        | 7  |
| 6.1 Hydrology                                                                   | 7  |
| 6.2 Geology                                                                     | 7  |
| 6.3. Acid Sulphate Soil                                                         | 7  |
| 7. Areas of Environmental Concern                                               | 8  |
| 8. Conceptual Site Model                                                        | 8  |
| 9. Data Gaps                                                                    | 9  |
| 10. Assessment Criteria                                                         | 9  |
| 10.1 NEPM Health Investigation Level D (HIL-D) – Commercial/Industrial          | 9  |
| 10.2 NEPM Health Screening Level D (HSL-D) – Commercial/Industrial              | 10 |
| 10.3 NEPM Ecological Investigation Level (EIL) – Commercial/Industrial          | 11 |
| 10.4 NEPM Ecological Screening Level (ESL) – Commercial/Industrial              | 11 |
| 10.5 NEPM Management Limits – Commercial/Industrial                             | 12 |
| 10.6 NEPM Health Screening Level A (HSL-D) – Commercial/Industrial for Asbestos | 13 |
| 11. Analytical Results                                                          | 13 |
| 12. Conclusion                                                                  | 13 |
| 13. Recommendations                                                             | 13 |
| Limitations                                                                     | 14 |

### Appendices

- Appendix A Figures and Photographic Log
- Appendix B Analytical Results and Laboratory Reports
- Appendix C Property Report and Relevant Site Data

NEO CONSULTING PTY LTD ABN 26 615 633 988 PO Box 279 Riverstone NSW 2765
 0455 485 502

admin@neoconsulting.com.au meoconsulting.com.au

### **Executive Summary**

NEO Consulting was appointed by Warringah Golf Club Limited (the client) to undertake a Preliminary Site Investigation (PSI) on a property located at 292 Condamine Street, North Manly, NSW, 2100 (Lot 2742 DP752038) with a focus on the proposed development of a new golf club house on near the corner of Kentwell Road and Pittwater Road and is currently zoned as REI- Public Recreation.

The following scope of works were undertaken:

- A site inspection to identify potential sources of contamination on site;
- Historical investigations relating to the site (if any);
- Review of current and historical Certificates of Title;
- Local Council records and planning certificates;
- Review of NSW EPA Contaminated Land Records, POEO Register and PFAS Investigation Program map;
- Review of local geological and hydrogeological information, including an evaluation of the NSW Groundwater registered groundwater bore database;
- Review of Acid Sulphate Soil data maps;
- Development of a Conceptual Site Model (CSM) to identify the connections between potential sources of contamination and exposure pathways, human and/or ecological receptors; and
- Recommendations for additional investigations (if any), based on the identified data gaps and findings of this report.

A site investigation was undertaken on 20<sup>th</sup> January 2023 by NEO environmental consultants. During the site inspection, a soil investigation program was undertaken with a judgemental approach in accessing locations across proposed development area to identify areas of contamination. Historical investigations confirm the targeted area appears to have tennis courts in the same location onsite since at least 1943 which would likely mean the continuous use of the land as recreational and the low potential impact of any contamination.

Three (3) soil samples were obtained from three (3) borehole locations, each sample was obtained from the current topsoil/fill layer. The samples were submitted to a National Association of Testing Authorities, Australia (NATA) accredited laboratory for analysis of Chemicals of Potential Concern (CoPC) that may have impacted the site during historical or present activities.

Analytical results indicate no exceedance of the NEPM Health and Ecological Assessment Criteria for Commercial/Industrial (D) sites. The consent authority may be satisfied that the required considerations of Cl 4.6 of State Environmental Planning Policy (Resilience and Hazards) 2021 are satisfied for the following reasons:

- 1) Site observations did not indicate significant visible indications of contamination or contaminating sources;
- 2) Analytical results for all analytes were below the NEPM Health and Ecological Assessment Criteria for Commercial/Industrial (D) sites.

NEO Consulting considers that the potential for significant contamination of soil to be low and find that the site can be made suitable for the proposed development and land use, provided the recommendations within **Section 13** are undertaken.

### 1. Introduction

### 1.1 Background

NEO Consulting was appointed by Warringah Golf Club Limited (the client) to undertake a Preliminary Site Investigation (PSI) for the property located at 292 Condamine Street, North Manly, NSW, 2100 (Lot 2742 DP 752038) with a focus on the proposed development of a new golf club house on near the corner of Kentwell Road and Pittwater Road and is currently zoned as REI- Public Recreation.

A site inspection was undertaken on 20<sup>th</sup> January 2023 by qualified environmental consultants. Reporting, photographs and sampling were conducted on this day and with reference to the relevant regulatory criterial **(2. Scope of Work)**. Further information of the inspection is described in **4. Site Condition**.

### 1.2 Objectives

This report provides a preliminary assessment of current and/or historical potentially contaminating activities that may have impacted the soils and will determine if the site is suitable for the proposed development.

### **1.3 Regulatory Framework**

This PSI has been prepared in general accordance with the following regulatory framework:

- State Environmental Planning Policy (Resilience and Hazard) 2021;
- National Environment Protection Measures (NEPM), 2013;
- NSW Environmental Protection Authority, Guidelines on the Duty to Report Contamination under Contaminated Land Management Act, 1997;
- NSW Environmental Protection Authority, Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, 2020;
- Protection of the Environment and Operation Act 1997; and
- Protection of the Environment Operations (Waste) Regulations, 2005.

### 2. Scope of Work

To meet the requirements in Section 1.3 of this report, the following scope of works were included:

- A site inspection to identify potential sources of contamination on site;
- Historical investigations relating to the site (if any);
- Review of current and historical Certificates of Title;
- Local Council records and planning certificates;
- Review of NSW EPA Contaminated Land Records, POEO Register and PFAS Investigation Program map;
- Review of local geological and hydrogeological information, including an evaluation of the NSW Groundwater registered groundwater bore database;
- Review of Acid Sulphate Soil data maps;
- Development of a Conceptual Site Model (CSM) to identify the connections between potential sources of contamination and exposure pathways, human and/or ecological receptors; and
- Recommendations for additional investigations (if any), based on the identified data gaps and findings of this report.

### 3. Site Details

#### Table 1. Site Details

| Address        | 292 Condamine Street, North Manly, NSW, 2100               |
|----------------|------------------------------------------------------------|
| Deposited plan | Lot 2742/DP752038                                          |
| Zoning         | RE1- Public Recreation                                     |
| Locality map   | Figure 1, Appendix A                                       |
| Site Boundary  | Figure 2, Appendix A                                       |
| Area           | Area of proposed development approx. 1,239.5m <sup>2</sup> |

#### Table 2. Surrounding land-use(from the targeted area)

| Direction from site | Land-use                           |
|---------------------|------------------------------------|
| North               | Pittwater Road, followed by houses |
| East                | Pittwater Road, followed by houses |
| South               | Kentwell Road                      |
| West                | Golf Course                        |

### 4. Site Condition

A site inspection was undertaken on 20<sup>th</sup> January 2023 by NEO Consulting. During the site inspection, the following observations were noted (photographs in **Appendix A**):

- The targeted area for proposed development is currently made up of tennis courts, there are courts which appear to have a cover of astro turf, concrete or a firm synthetic material
- There is spectator seating in the form of park benches and seats surrounding the courts ;
- The site had healthy vegetation growth in the form of grass where there were no concrete coverings and bushes beyond normal access areas
- No evidence of contamination was identified;
- No indications of underground storage of petroleum products were identified;

### 5. Site History

### 5.1 History of Site

A summary of historical aerial imagery is contained below, and the images referenced can be seen in **Appendix A**.

| Year | Description                                                                                                                                                                                                                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1943 | The targeted area appears to have the tennis court layout which is similar to<br>the current tennis courts currently located today. This confirms the<br>continuous use of the land as recreational use since 1943, confirming the low<br>likely hood of potential contamination. |
| 2000 | The next available aerial image shows the current configuration of the courts.                                                                                                                                                                                                    |
| 2022 | The courts have likely have additional layers added to the surface which is<br>evident in the change in colour over the years, however the same footprint<br>confirms the same land use over time.                                                                                |

 Table 3. Historical aerial images of the site and surrounding area.

### 5.2 Section 10.7 (2) Planning Certificate

A Section 10.7 Planning Certificate describes how a property may be used and the restrictions on development. The Planning Certificate is issued under Section 149 of the Environmental Planning and Assessment Act 1979. At the time of reporting, the Planning Certificate was not available.

NEO CONSULTING PTY LTD ABN 26 615 633 988 PO Box 279 Riverstone NSW 2765
 0455 485 502

☑ admin@neoconsulting.com.au
 ⊕ neoconsulting.com.au

### 5.3 NSW EPA Contaminated Land Register

A search within the NSW EPA contaminated land register was undertaken for the site. No results were found for the site or within 200m of the site.

#### 5.4 Protection of the Environment Operation Act (POEO) Public Register

A search on the POEO public register of licensed and delicensed premises (DECC) was undertaken for the site. No results were found for the site or within 200m of the site.

#### 5.5 SafeWork NSW Hazardous Goods

A search was not undertaken with SafeWork NSW for historical dangerous goods stored onsite.

#### 5.6 Product Spill and Loss History

The visual site inspection did not identify evidence of contamination within the site (e.g. chemical staining, unhealthy vegetation).

#### 5.7 PFAS Investigation Program

The NSW Government PFAS Investigation Program map indicates the site is not currently listed for PFAS contamination investigation and management programs, nor is any site within a 1km radius.

### 6. Environmental Setting

#### 6.1 Hydrology

A groundwater bore search was conducted on 1<sup>st</sup> February 2023 and three (3) borehole was present within a 500m radius of the site, GW102334, GW107816 and GW020813.

| From   | То     | Thickness | Drillers Description                   | Geological |
|--------|--------|-----------|----------------------------------------|------------|
| (mbgl) | (mbgl) | (m)       |                                        | Material   |
| 0.00   | 0.50   | 0.50      | Topsoil                                | Topsoil    |
| 0.50   | 3.00   | 2.50      | SAND YELLOW                            | Sand       |
| 3.00   | 7.00   | 4.00      | MARINE DARK GREY/CLAY-VERY GREASY      | Clay       |
| 7.00   | 11.00  | 4.00      | MARINE WITH 15%SHELL FRAGMENTS, QUARTZ | Quartz     |
| 11.00  | 17.00  | 6.00      | MARINE NO QUARTZ                       | Quartz     |
| 17.00  | 23.00  | 6.00      | MARINE/5%SHELL FRAGMENT                | Sand       |
| 23.00  | 26.00  | 3.00      | MARINE/10%SHELL FRAGMENT               | Sand       |
| 26.00  | 28.00  | 2.00      | MARINE/15%SHELL FRAGMENT               | Sand       |
| 28.00  | 30.00  | 2.00      | SANDSTONE/BROWN/ GRAIN                 | Sandstone  |
| 30.00  | 31.00  | 1.00      | SANDSTONE/BROWN/R. QUARTZ              | Sandstone  |
| 31.00  | 35.00  | 4.00      | SANDSTONE/GREY/F/G/MINOR CLAY MATRIX   | Sandstone  |
| 35.00  | 40.00  | 5.00      | CLAY STONE GREY                        | Claystone  |
| 40.00  | 60.00  | 20.00     | SANDSTONE/WHITE MINOR QUARTZ           | Sandstone  |

#### Table 4. GW102334 drillers log

### 6.2 Geology

Data obtained from the Geological Survey of NSW and the Geoscience Australia Stratigraphic Units Database indicate the site is located within the Hawkesbury Sandstone. This formation is regionally characterized by medium to coarse-grained quartz sandstone, secondary quartz cement, with minor shale and laminate lenses.

### 6.3. Acid Sulphate Soil

Acid Sulphate Soils (ASS) naturally occur under waterlogged condition and contain iron sulphide minerals. If these soils remain undisturbed, they are considered harmless. However, if disturbed and subsequently oxidised, this reaction can cause damage to the environment and built structures that overlie the ASS. The potential for ASS has been divided into five (5) classes, with Class 1 the highest at risk of ASS. A search of the

NEO CONSULTING PTY LTD ABN 26 615 633 988 PO Box 279 Riverstone NSW 2765
 0455 485 502

☑ admin@neoconsulting.com.au
 ⊕ neoconsulting.com.au

DPIE eSpade map viewer was undertaken and indicate that site is located within an area with no known occurrence of ASS.

### 7. Areas of Environmental Concern

Based on the above information, the potential Areas of Environmental Concern (AEC) and their associated Contaminants of Potential Concern (CoPC) for the site were identified and summarised.

### Table 5. Potential Areas and Contaminants of Concern

| AEC               | Potentially<br>Contaminating /<br>Hazardous Activity                       | CoPC                                                   | Likelihood<br>of Site<br>Impact | Comments                                                                                                                                                                         |
|-------------------|----------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entire site       | Importation of fill<br>material.<br>Historical on site<br>operations.      | Metals, TRH,<br>BTEX, PAH, OCP,<br>OPP, ACM            | Low                             | The presence of imported fill<br>is possible.<br>Historical on site operations<br>may have given rise to<br>contamination events.                                                |
| Onsite structures | Hazardous material<br>within onsite<br>residential dwellings<br>and sheds. | ACM, SMF, ODS,<br>Lead (paint<br>and/or dust),<br>PCBs | Low                             | Considering the age of<br>onsite structures presence<br>of these CoPCs are likely.<br>An HMS should be<br>undertaken in order to<br>confirm the presence or<br>absence of COPCs. |

ABBREVIATIONS: ASBESTOS CONTAINING MATERIALS (ACM), BENZENE, TOLUENE, ETHYLBENZENE AND XYLENE (BTEX), POLYCYCLIC AROMATIC HYDROCARBON (PAH), ORGANOPHOSPHATE PESTICIDES (OPP), ORGANOCHLORINE PESTICIDES (OCP), TOTAL RECOVERABLE HYDROCARBONS (TRH).

### 8. Conceptual Site Model

A Conceptual Site Model (CSM) was developed to provide an indication of potential risks associated with contamination source and contamination migration pathways, receptors and exposure mechanisms. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation. Here, we consider the connections between the following elements:

- Potential contamination sources and their associated CoPC;
- Potential human receptors that may be impacted by the site contamination are current and future site users including occupants to the dwelling/infrastructures onsite, site workers and the general public within the immediate vicinity of the site;
- Potential environmental receptors to the site including but not limited to: groundwater and surface water bodies, residual soils at and/or nearby the site;
- Potential exposure pathways; and
- Whether source-pathway-receptor connections are complete based on current and future site conditions.

### Table 6. Conceptual Site Model

| Potential<br>Sources                                                                 | Potential<br>Receptor                                                      | Potential Exposure<br>Pathway                                                        | Complete connection   | Risk | Justification/<br>Control Measures                                                                                                                                          |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contaminated<br>soil from<br>importation of<br>uncontrolled fill<br>across the site. | Future site<br>occupant,<br>construction<br>workers,<br>general<br>public, | Dermal contact,<br>inhalation/<br>ingestion of<br>particulates,<br>vapour intrusion. | Complete<br>(current) | Low  | The historical land<br>use of the site does<br>not indicate any<br>concerns of<br>significant<br>contamination.                                                             |
| On site<br>On site<br>On site<br>On site car<br>parking.                             | sensitive<br>receptors                                                     |                                                                                      | Complete<br>(Future)  | Low  | If present, impacted<br>soils are to be<br>disposed of off-site in<br>accordance with an<br>unexpected finds<br>protocol.                                                   |
|                                                                                      | Natural soils                                                              | Migration of<br>contamination                                                        | Complete<br>(current) | Low  | If contamination is<br>present in the fill                                                                                                                                  |
|                                                                                      |                                                                            | nom nindyer.                                                                         | Complete<br>(Future)  | Low  | <ul> <li>Inigration to the natural layer is possible.</li> <li>If present, impacted soils are to be disposed of off-site.</li> </ul>                                        |
|                                                                                      | Manly<br>Creek                                                             |                                                                                      | Complete<br>(current) | Low  | If contamination is<br>present on site,<br>migration to this                                                                                                                |
|                                                                                      | 260m S                                                                     |                                                                                      | Complete<br>(future)  | Low  | surface water<br>receptor is possible.<br>If present, impacted<br>soils are to be<br>disposed of off-site.                                                                  |
|                                                                                      | Underlying<br>aquifer                                                      | Leaching and<br>migration of                                                         | Complete<br>(current) | Low  | Due to existing<br>sealed surfaces,                                                                                                                                         |
|                                                                                      |                                                                            | contaminants<br>through<br>groundwater<br>infiltration.                              | Complete<br>(future)  | Low  | <ul> <li>leacnability of<br/>contaminants is<br/>unlikely.</li> <li>If present,<br/>contaminated soil<br/>and/or groundwater<br/>is likely to be<br/>remediated.</li> </ul> |

### 9. Data Gaps

Hazardous materials within on site structures, considering the proposed demolition.

### 10. Assessment Criteria

The following assessment criteria were adopted for the investigation.

### 10.1 NEPM Health Investigation Level D (HIL-D) - Commercial/Industrial

HILs are scientific, risk-based guidance levels to be used as in the primary stage of assessing soil contamination to evaluate the potential risks to human health from chronic exposure to contaminants. HILs are applicable to a broad range of metals and organic substances, and generally apply to depths up to

NEO CONSULTING PTY LTD ABN 26 615 633 988

- PO Box 279 Riverstone NSW 2765
   0455 485 502
- admin@neoconsulting.com.au

3m below the surface for residential use. Tier 1 HILs are divided into sub-criteria. The sub-criteria appropriate to the site is HIL-D, Commercial/Industrial sites.

#### Table 7. HIL-D

| Assessment Criteria | Commercial/Industrial Soil HIL-D, mg/kg |
|---------------------|-----------------------------------------|

| НСВ                            | 80      |
|--------------------------------|---------|
| Heptachlor                     | 50      |
| Chlordane                      | 530     |
| Aldrin & Dieldrin              | 45      |
| Endrin                         | 100     |
| DDD+DDE+DDT                    | 3600    |
| Endosulfan                     | 2000    |
| Methoxychlor                   | 2500    |
| Mirex                          | 100     |
| Arsenic, As                    | 3000    |
| Cadmium, Cd                    | 900     |
| Chromium, Cr                   | 3600    |
| Copper, Cu                     | 240 000 |
| Lead, Pb                       | 1500    |
| Nickel, Ni                     | 6000    |
| Zinc, Zn                       | 400 000 |
| Mercury, Hg                    | 730     |
| Carcinogenic PAHs (as BaP TEQ) | 40      |
| Total PAH (18)                 | 4000    |

### 10.2 NEPM Health Screening Level D (HSL-D) - Commercial/Industrial

HSLs have been developed for selected petroleum compounds and fractions and are used for the assessment of potential risks to human health from chronic inhalation and direct contact pathways of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). HSLs are guided by land-use scenarios, specific soil physicochemical properties and generally apply to depths below surface to >4m. Tier 1 HSLs are divided into sub-criteria. The sub-criteria appropriate to the site is HSL-D, Commercial/Industrial sites. NL = Not Limiting.

PO Box 279 Riverstone NSW 2765
 0455 485 502

admin@neoconsulting.com.au

### Table 8. HSL-D

| Assessment Criteria                             | Commercial/Industrial Soil HSL-D<br>for Vapour Intrusion, 0-<1m<br>depth, Clay, mg/kg | Commercial/Industrial Soil HSL-<br>D for Vapour Intrusion, 1-<2m<br>depth, Clay, mg/kg |
|-------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Benzene                                         | 4                                                                                     | 6                                                                                      |
| Toluene                                         | NL                                                                                    | NL                                                                                     |
| Ethylbenzene                                    | NL                                                                                    | NL                                                                                     |
| Xylenes                                         | NL                                                                                    | NL                                                                                     |
| Naphthalene                                     | NL                                                                                    | NL                                                                                     |
| TRH C <sub>6</sub> -C <sub>10</sub> - BTEX (F1) | 50                                                                                    | 280                                                                                    |
| TRH >C10-C16 - N (F2)                           | 90                                                                                    | NL                                                                                     |

### 10.3 NEPM Ecological Investigation Level (EIL) - Commercial/Industrial

Ecological investigation levels (EILs) have been developed to assess the risk for the presence of metals and organic substance in a terrestrial ecosystem. EILs are guided by land-use scenarios, specific soil physicochemical properties and generally apply to the top 2m of soil. EILs can be applied for arsenic (As), copper (Cu), chromium III (Cr(III)), dichlorodiphenyltrichloroethane (DDT), naphthalene, nickel (Ni), lead (Pb) and zinc (Zn). The NEPM Soil Quality Guidelines (SQG) for EILs are calculated using the Added Contamination Limit (ACL) to determine the amount of contamination that had to be added to the soil to cause toxicity, including ambient background concentration (ABC).

### Table 9. Generic EIL

| Assessment Criteria | Soil Generic EIL for Commercial/Industrial, mg/kg |
|---------------------|---------------------------------------------------|
| Arsenic, As         | 160                                               |
| DDT                 | 640                                               |
| Naphthalene         | 370                                               |

### 10.4 NEPM Ecological Screening Level (ESL) - Commercial/Industrial

ESLs have been developed for selected petroleum hydrocarbons (BTEX, benzo(a)pyrene, TRH F1 and F2) in soil, based on fresh contamination. These parameters are applicable to coarse and fine-grained soil and apply from the surface of the soil to 2m below ground level, which corresponds with the root and habitat zone for many species.

PO Box 279 Riverstone NSW 2765
 0455 485 502

admin@neoconsulting.com.au meoconsulting.com.au

### Table 10. ESL

Assessment Criteria

Soil ESL for Commercial/Industrial, fine-grained soil, mg/kg

| Benzene                    | 95         |
|----------------------------|------------|
|                            |            |
| Toluene                    | 135        |
|                            |            |
| Ethylbenzene               | 185        |
|                            |            |
| Xylenes                    | 95         |
|                            | <u>^</u> 7 |
| BaPyr (BaP)                | 0.7        |
|                            | 015        |
| IRH $C_6$ - $C_{10}$       | 215        |
|                            | 170        |
| IKH >C10-C16               | 170        |
|                            | 2500       |
| IKT ~C16-C34 (FJ)          | 2000       |
| $TRH > C_{24}-C_{40}$ (E4) | 6400       |
| $11(1 - C_{34} - C_{40})$  | 0000       |

#### 10.5 NEPM Management Limits – Commercial/Industrial

Management Limits for petroleum have been developed for prevention of explosive vapour accumulation, prevention of the formation of observable Light Non-Aqueous Phase Liquids (LNAPL) and protection against effects on buried infrastructure. Residential, Parkland and Public Open Space limits have been adopted based on the proposed land use.

#### Table 11. Management Limits

| Assessment Criteria                        | Management Limits for Commercial/Industrial, fine-grained soil, mg/kg |
|--------------------------------------------|-----------------------------------------------------------------------|
|                                            | 800                                                                   |
| TRH >C10-C16                               | 1000                                                                  |
| TRH >C16-C34 (F3)                          | 3500                                                                  |
| TRH >C <sub>34</sub> -C <sub>40</sub> (F4) | 10000                                                                 |

### 10.6 NEPM Health Screening Level D (HSL-D) – Commercial/Industrial for Asbestos

The assessed soil must not contain Asbestos Containing Materials (ACM) in the excess of 0.05%w/w and surface soil within the site must be free of visible ACM, Asbestos Fines (AF) and Fibrous Asbestos (FA).

#### Table 12. Management Limits

| Assessment Criteria          | Health Screening Level (HSL-D) (%w/w) |
|------------------------------|---------------------------------------|
| ACM                          | 0.05%                                 |
| FA and AF (friable asbestos) | 0.001%                                |
| All forms of asbestos        | No visible asbestos for surface soils |

### 11. Analytical Results

The analytical results indicate no exceedances above the NEPM Health and Ecological Assessment Criteria for Commercial/Industrial (D) sites.

### 12. Conclusion

Based on the site investigation and analytical results, NEO Consulting considers that the potential for significant contamination of soil to be low. Historical investigations confirm the targeted area appears to have tennis courts in the same location onsite since at least 1943 which would likely mean the continuous use of the land as recreational and the low potential impact of any contamination. We find that the site is suitable for the proposed development and land use, provided the Recommendations within **Section 13** are undertaken.

### **13. Recommendations**

Based on the information collected and available during this investigation, the following recommendations have been made:

- The demolition of structures and excavation activity on site be undertaken in accordance with relevant Australian Standards, SafeWork NSW codes of practice and any other applicable requirements;
- Any soils requiring excavation, onsite reuse and/or removal must be classified in accordance with "Waste Classification Guidelines Part 1: Classifying Waste" NSW EPA (2014); and
- A site specific 'Unexpected Finds Protocol' is to be made available for reference for all occupants and/or site workers in the event unanticipated contamination is discovered.

### Limitations

The findings of this report are based on the Scope of Work outlined in Section 2. NEO Consulting performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental consulting profession. No warranties, express or implied are made.

The results of this assessment are based upon the information documented and presented in this report. All conclusions and recommendations regarding the site are the professional opinions of NEO Consulting personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, NEO Consulting assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of NEO Consulting, or developments resulting from situations outside the scope of this project.

The results of this assessment are based on the site conditions identified at the time of the site inspection and validation sampling. NEO Consulting will not be liable to revise the report to account for any changes in site characteristics, regulatory requirements, assessment criteria or the availability of additional information, subsequent to the issue date of this report.

NEO Consulting is not engaged in environmental consulting and reporting for the purpose of advertising sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity purposes.

**NEO CONSULTING** 

Prepared by: Sarah Houlahan Environmental Consultant

1. lat

Reviewed by: Nick Caltabiano Project Manager



# APPENDIX A

### Figures and Photographic Log

# NED CONSULTING





Figure 2. 3 targeted primary soil samples were obtained from the site. Site layout from January 2023, showing the surfaces of the courts have obviously been changed overtime, however the footprints of the courts appear to have remained relatively unchanged.

Sample Locations



292 Condamine Road, North Manly, NSW, 2100 Site Area Figure 2 Project Source: Nearmap 2023





Z<

Source: MetroMaps







Figure 6. Healthy grass in the foreground and tennis courts in the back ground.







Figure 8. Showing the multiple courts onsite.



# APPENDIX B

### Analytical Results and Laboratory Reports

# NED CONSULTING

**Table 13.** Total Recoverable Hydrocarbon (TRH) analytical results. Values are presented as mg/kg. NL = Not Limiting. F1 = subtract the sum of BTEX concentrations from the  $C_6$ - $C_{10}$  aliphatic hydrocarbon fraction. F2 = subtract Naphthalene from the>  $C_{10}$ - $C_{16}$  aliphatic

| $ \left  \begin{array}{ccccc} \operatorname{IC} \operatorname{C} \operatorname{IC} IC$ |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 50     50     280       5     170     280       6     170     2500       0     1000     3500       1000     1000     3500       1100     1000     1000       1100     1000     1000       1100     1000     3500       1100     1000     1000       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     3500       1100     1000     1000       1100     1000     3500       1100     1000     1000       1100     1000     1000       1100     1000     1000       1100     1000     1000       1100     1000     1000       1100     1000     1000       1100     1000     1000 <td>TRH C</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRH C |
| 215         170         2500         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6600         6120         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         6720         67200         67200         6720 <th< td=""><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 800         1000         3500         10 000           \g\kg         mg/kg         mg/kg         mg/kg         mg/kg           \g\kg         mg/kg         mg/kg         mg/kg         mg/kg           <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| g/kg         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~     |
| 25     <25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m     |
| <ul> <li>&lt;25 &lt; &lt;25 &lt; &lt;25 &lt; &lt;25 &lt; &lt;26 &lt; &lt;90 &lt;&lt;120</li> <li>&lt;25 &lt; &lt;26 &lt; &lt;90 &lt;&lt;120</li> <li>&lt;120</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     |
| <25 <25 <25 <25 <25 <25 <120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v     |

| NL = Not Limiting.               | Xylenes       | NL                                                          | 95                                              | mg/kg     | <0.3 | <0.3 | <0.3 |
|----------------------------------|---------------|-------------------------------------------------------------|-------------------------------------------------|-----------|------|------|------|
| resented as mg/kg. <u>N</u>      | Ethylbenzene  | N                                                           | 185                                             | mg/kg     | <0.1 | <0.1 | <0.1 |
| esults. Values are p             | Toluene       | NL                                                          | 135                                             | mg/kg     | <0.1 | <0.1 | <0.1 |
| (BTEX) analytical re             | Benzene       | 4                                                           | 56                                              | by/bu     | <0.1 | <0.1 | <0.1 |
| ne, Ethylbenzene and Xylene      | ment Criteria | strial Soil HSL-D for Vapour Intrusion,<br>oth, Clay, mg/kg | nercial/Industrial, fine-grained soil,<br>ng/kg | Depth (m) | 0.15 | 0.15 | 0.15 |
| <b>Table 14.</b> Benzene, Toluei | Assessr       | NEPM 2013 Commercial/Indu<br>0-<1m dep                      | NEPM 2013 Soil ESL for Comn                     | Sample    | SI   | S2   | S3   |

sample by its Benzo(a)pyrene (B(a)P) TEF. Total PAH includes Naphthalene (N), 2-methylnaphthalene (2-MN), 1-methylnaphthalene (1-MN), Acenaphthylene (Acy), Acenaphthene (Ace), Fluorene (F), Phenanthrene (P), Anthracene (Ant), Fluoranthene (F), Pyrene (Pyr) and the carcinocenic PAHs. Values are presented as marker. NI = Not Limiting Benzo(a)pyrene (BaPyr or BaP); Benzo(b+j) fluoranthene (BbjFl); Benzo(k)fluoranthene (BkFl); Benzo(g,h,i)perylene (BghiPer); Chrysene Factor (TEF). The Toxicity Equivalent Quotient (TEQ) is calculated by multiplying the concentration of each carcinogenic PAH in the Chr); and Dibenz(a,h)anthracene (DBahAnt)) potency is calculated relative to Benzo(a)pyrene to produce a Toxicity Equivalent **Table 15.** Polycyclic Aromatic Hydrocarbon (PAH) analytical results. The carcinogenic PAH (Benzo(a)anthracene (BaAnt);

|                             | Total PAH (18)                   |                                                              |                                          |                                      | 4000                                | mg/kg       | <0.8 | <0.8 | <0.8 |
|-----------------------------|----------------------------------|--------------------------------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------|-------------|------|------|------|
|                             | Carcinogenic PAH<br>(as BaP TEQ) |                                                              |                                          |                                      | 40                                  | TEQ (mg/kg) | <0.3 | <0.3 | <0.3 |
| = NOI LIIIIIII.             | Benzo(a)pyrene                   |                                                              |                                          | 0.7                                  | 1.00 TEF                            | ba/kg       | <0.1 | <0.1 | <0.1 |
| VIESEITEU US ITIG/ KG. INL  | Naphthalene                      | N                                                            | 370                                      |                                      |                                     | mg/kg       | <0.1 | <0.1 | <0.1 |
|                             | ent Criteria                     | cial/Industrial Soil HSL-D<br>1, 0-<1 m depth, Clay,<br>g/kg | iil Generic ElL for<br>Industrial, mg/kg | al/Industrial, fine-grained<br>mg/kg | cial/Industrial Soil HIL-D,<br>g/kg | Depth (m)   | 0.15 | 0.15 | 0.15 |
| <u>alia IIIe calcilloge</u> | Assessm                          | NEPM 2013 Commer<br>for Vapour Intrusion<br>m                | NEPM 2013 Sc<br>Commercial/I             | Soil ESL for Commerci<br>soil,       | NEPM 2013 Commer<br>m               | Sample      | S1   | S2   | S3   |

|                                                 | Mercury, Hg   | 730                             |                                         | mg/kg     | 0.10 | 0.17 | <0.05 |
|-------------------------------------------------|---------------|---------------------------------|-----------------------------------------|-----------|------|------|-------|
|                                                 | Zinc, Zn      | 400 000                         |                                         | mg/kg     | 54   | 80   | 9.8   |
|                                                 | Nickel, Ni    | 0009                            |                                         | mg/kg     | 2.8  | 2.0  | <0.5  |
|                                                 | Lead, Pb      | 1500                            | 1800                                    | mg/kg     | 33   | 44   | 6     |
|                                                 | Copper, Cu    | 240 000                         |                                         | ba/bu     | 11   | 10   | 6'1   |
|                                                 | Chromium, Cr  | 3600                            |                                         | mg/kg     | 7.4  | 6.7  | 4.2   |
| d as mg/kg.                                     | Cadmium, Cd   | 006                             |                                         | mg/kg     | <0.3 | <0.3 | <0.3  |
| are presente                                    | Arsenic, As   | 3000                            | 160                                     | mg/kg     | 3    | 2    | 1     |
| able 16. Heavy Metal analytical results. Values | nent Criteria | al/Industrial Soil HIL-D, mg/kg | ElL for Commercial/Industrial,<br>ng/kg | Depth (m) | 0.15 | 0.15 | 0.15  |
|                                                 | Assessn       | NEPM 2013 Commercic             | NEPM 2013 Soil Generic<br>n             | Sample    | SI   | S2   | S3    |

| Mirex                | 100                                                  |                                    | mg/kg     | <0.1 | <0.1 | <0.1 |
|----------------------|------------------------------------------------------|------------------------------------|-----------|------|------|------|
| Methoxychlor         | 2500                                                 |                                    | mg/kg     | <0.1 | <0.1 | <0.1 |
| Endosulfan           | 2000                                                 |                                    | ba/bm     | <0.5 | <0.5 | <0.5 |
| DDD+DDE<br>+DDT      | 3600                                                 |                                    | mg/kg     | <0.6 | <0.6 | <0.6 |
| DDT                  |                                                      | 640                                | mg/kg     | <0.2 | <0.2 | <0.2 |
| Endrin               | 100                                                  |                                    | mg/kg     | <0.2 | <0.2 | <0.2 |
| Aldrin &<br>Dieldrin | 45                                                   |                                    | mg/kg     | <0.3 | <0.3 | <0.3 |
| Chlordane            | 530                                                  |                                    | mg/kg     | <0.2 | <0.2 | <0.2 |
| Heptachlor           | 50                                                   |                                    | mg/kg     | <0.2 | <0.2 | <0.2 |
| НСВ                  | 80                                                   |                                    | mg/kg     | <0.1 | <0.1 | <0.1 |
| t Criteria           | hercial/Industrial<br>mg/kg                          | Seneric ElL for<br>Iustrial, mg/kg | Depth (m) | 0.15 | 0.15 | 0.15 |
| Assessmen            | NEPM 2013 Comme<br>Soil HIL-D, r<br>NEPM 2013 Soil G |                                    | Sample    | SI   | S2   | S3   |

Table 17. Pesticides analytical results. Values are presented as mg/kg.

|            | ш                | >         |           |       |       |       |
|------------|------------------|-----------|-----------|-------|-------|-------|
|            | FA and Al        | 0.001%w/v | %w/w      | -     | -     | I     |
| Asbestos   | Bonded ACM       | 0.01%w/w  | %w/w      | <0.01 | <0.01 | <0.01 |
|            | Detected         |           | N/Y       | Z     | Z     | z     |
| t Criteria | HSL-D, mg/kg     |           | Depth (m) | 0.15  | 0.15  | 0.15  |
| Assessmen  | NEPM 2013 Soil I |           | Sample    | SI    | S2    | S3    |

resented as %w/w () Table 18 Achaethe analytical recults Values

|        | 000                                                |                        |                |                | CHAI     | N OF 0    | USTO    | DY & /     | NALY    | SIS R      | EQUEST                 |                         | Page1of1                                                        |
|--------|----------------------------------------------------|------------------------|----------------|----------------|----------|-----------|---------|------------|---------|------------|------------------------|-------------------------|-----------------------------------------------------------------|
|        | ハリハ                                                |                        | Compa<br>Name: | any            | Neo C    | onsulting | Pty Ltd |            |         | Proje      | ect Name/No:           | N6898                   |                                                                 |
| SGS    | Environmental Services Sv                          | dnev                   |                |                | 186 R    | verstone  | Parade  |            | 2       | Pu         | rchase Order<br>No:    | QUOTE NUMER: 3227       | 22                                                              |
| Unit   | 16, 33 Maddox Street<br>andria NSW 2015            | form                   | A              | ddress         | : Rivers | tone NSV  | 1 2765  |            |         | Res        | ults Required<br>Date: | Normal                  |                                                                 |
| Tele   | phone No: (02) 85940400<br>imile No: (02) 85940499 |                        |                |                |          |           |         |            |         |            | Telephone:             | 0416680375              | Fax:                                                            |
| Email: | : au.samplereceipt.sydney@sqs.co                   | E                      | Contac         | t Name         | : Nick O | altabianc |         |            |         | Emai       | Results and            | nick@neoconsultin       | g, admin@neoconsulting,                                         |
| Lau    | ID INUITIDEL. (prease quote on c                   | orrespondence)         | Quota          | tion No.       |          |           |         |            |         |            | invoices to :          | oskar@neoconsulting, se | arah@neoconsulting, eshan@neoconsulting                         |
|        |                                                    |                        | Ma             | trix           |          |           |         |            | ANAI    | YSIS R     | EQUESTED               | -                       | Additional Report Formats                                       |
|        | ŝ                                                  |                        | appro          | priate)        | SAENI    |           |         |            |         |            |                        |                         | <ul> <li>NEPM</li> <li>CSV</li> <li>ESDAT</li> </ul>            |
| SGS    | Client Sample ID                                   | Sampling<br>Date/ Time | Sample         | t<br>st 29mbie | АТИОЭ ЭС | . 1       | 5       | 4          | CI sots | y Metals 8 | )                      |                         | <ul> <li>DQO</li> <li>GO, Guidelines</li> <li>Others</li> </ul> |
|        |                                                    |                        | e lio2         | Othe           | ON       | NEO       | NEO     | NEO        | ədzA    | vвэH       | ата                    |                         | Notes/Guidelines/LOR/<br>Special instructions                   |
| -      | S1                                                 |                        | ×              |                |          |           | ×       |            | ×       |            |                        |                         |                                                                 |
| d      | S2                                                 |                        | ×              |                |          |           | ×       |            | ×       |            |                        |                         |                                                                 |
| 3      | S3                                                 |                        | ×              |                |          |           | ×       |            | ×       |            |                        |                         |                                                                 |
|        |                                                    |                        |                |                |          |           |         |            |         |            |                        |                         |                                                                 |
|        |                                                    |                        |                | -              |          |           |         |            |         |            |                        |                         |                                                                 |
|        |                                                    |                        |                | -              |          |           |         |            |         |            |                        |                         | syaney LUL                                                      |
|        |                                                    |                        |                | -              |          |           |         |            |         |            |                        |                         | +C07                                                            |
|        |                                                    |                        |                | _              |          |           |         |            |         |            |                        |                         |                                                                 |
|        |                                                    |                        |                | _              |          |           |         | +          |         |            |                        | -                       | -                                                               |
|        |                                                    |                        |                |                |          |           |         |            |         |            |                        |                         |                                                                 |
| Relin  | quished By:                                        |                        | ate/Tim        |                |          |           | Receive | d By:      |         |            |                        | Date/Time: 7.8          | 20.123 7.15                                                     |
| Relin  | quished By:                                        |                        | ate/Tim        | ë              |          |           | Receive | HBY:       |         |            |                        | Date/Time:              |                                                                 |
| Samp   | oles Intact: yes No                                | F                      | empera         | ture: 8        | ° L.     | 0         | Sample  | Security S | Sealed: | Yes / V    | 0                      | Hazards: e.g. may conta | ain Asbestos                                                    |
| Comr   | ments / Subcontracting details                     | ii.                    |                |                |          |           |         |            |         |            |                        |                         |                                                                 |

source: Sydney pdf page: 8 SBS Ref: SE242054\_COC

Ref: NEW SGS COC (1)/ver.3/10.11.2015/Page 1 of 1

Uncontrolled template when printed



### **ANALYTICAL REPORT**





| CLIENT DETAILS               |                                                                      | LABORATORY DE                    | TAILS                                                                                          |
|------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|
| Contact<br>Client<br>Address | Admin<br>NEO CONSULTING PTY LTD<br>PO BOX 279<br>RIVERSTONE NSW 2765 | Manager<br>Laboratory<br>Address | Huong Crawford<br>SGS Alexandria Environmental<br>Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone                    | 0416 680 375                                                         | Telephone                        | +61 2 8594 0400                                                                                |
| Facsimile                    | (Not specified)                                                      | Facsimile                        | +61 2 8594 0499                                                                                |
| Email                        | admin@neoconsulting.com.au                                           | Email                            | au.environmental.sydney@sgs.com                                                                |
| Project                      | N6898                                                                | SGS Reference                    | <b>SE242054 R0</b>                                                                             |
| Order Number                 | N6898                                                                | Date Received                    | 20/1/2023                                                                                      |
| Samples                      | 3                                                                    | Date Reported                    | 30/1/2023                                                                                      |

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Industries and Environment recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

S. Ravender.

**Ravee SIVASUBRAMANIAM** Hygiene Team Leader

Dong LIANG Metals/Inorganics Team Leader

on

Shane MCDERMOTT Inorganic/Metals Chemist

kinter

Ly Kim HA Organic Section Head

Teresa NGUYEN Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



#### VOC's in Soil [AN433] Tested: 24/1/2023

|                    |       |     | S1           | S2           | S3           |
|--------------------|-------|-----|--------------|--------------|--------------|
|                    |       |     | SOIL         | SOIL         | SOIL         |
|                    |       |     |              |              |              |
|                    |       |     | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER          | UOM   | LOR | SE242054.001 | SE242054.002 | SE242054.003 |
| Benzene            | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Toluene            | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Ethylbenzene       | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| m/p-xylene         | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| o-xylene           | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Total Xylenes*     | mg/kg | 0.3 | <0.3         | <0.3         | <0.3         |
| Total BTEX*        | mg/kg | 0.6 | <0.6         | <0.6         | <0.6         |
| Naphthalene (VOC)* | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |


### Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 24/1/2023

|                            |       |     | S1           | S2           | S3           |
|----------------------------|-------|-----|--------------|--------------|--------------|
|                            |       |     | SOIL         | SOIL         | SOIL         |
|                            |       |     |              |              |              |
|                            |       |     | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER                  | UOM   | LOR | SE242054.001 | SE242054.002 | SE242054.003 |
| TRH C6-C9                  | mg/kg | 20  | <20          | <20          | <20          |
| Benzene (F0)               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| TRH C6-C10                 | mg/kg | 25  | <25          | <25          | <25          |
| TRH C6-C10 minus BTEX (F1) | mg/kg | 25  | <25          | <25          | <25          |



### TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 24/1/2023

|                                 |       |     | S1           | S2           | S3           |
|---------------------------------|-------|-----|--------------|--------------|--------------|
|                                 |       |     | SOIL         | SOIL         | SOIL         |
|                                 |       |     |              |              |              |
|                                 |       |     | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER                       | UOM   | LOR | SE242054.001 | SE242054.002 | SE242054.003 |
| TRH C10-C14                     | mg/kg | 20  | <20          | <20          | <20          |
| TRH C15-C28                     | mg/kg | 45  | <45          | <45          | <45          |
| TRH C29-C36                     | mg/kg | 45  | <45          | <45          | 47           |
| TRH C37-C40                     | mg/kg | 100 | <100         | <100         | <100         |
| TRH >C10-C16                    | mg/kg | 25  | <25          | <25          | <25          |
| TRH >C10-C16 - Naphthalene (F2) | mg/kg | 25  | <25          | <25          | <25          |
| TRH >C16-C34 (F3)               | mg/kg | 90  | <90          | <90          | <90          |
| TRH >C34-C40 (F4)               | mg/kg | 120 | <120         | <120         | <120         |
| TRH C10-C36 Total               | mg/kg | 110 | <110         | <110         | <110         |
| TRH >C10-C40 Total (F bands)    | mg/kg | 210 | <210         | <210         | <210         |



### PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 24/1/2023

|                                                                                                                                             |             |     | S1           | S2           | S3           |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--------------|--------------|--------------|
|                                                                                                                                             |             |     | SOIL         | SOIL         | SOIL         |
|                                                                                                                                             |             |     |              |              |              |
|                                                                                                                                             |             |     | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER                                                                                                                                   | UOM         | LOR | SE242054.001 | SE242054.002 | SE242054.003 |
| Naphthalene                                                                                                                                 | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| 2-methylnaphthalene                                                                                                                         | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| 1-methylnaphthalene                                                                                                                         | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Acenaphthylene                                                                                                                              | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Acenaphthene                                                                                                                                | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Fluorene                                                                                                                                    | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Phenanthrene                                                                                                                                | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Anthracene                                                                                                                                  | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Fluoranthene                                                                                                                                | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Pyrene                                                                                                                                      | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Benzo(a)anthracene                                                                                                                          | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Chrysene                                                                                                                                    | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Benzo(b&j)fluoranthene                                                                                                                      | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Benzo(k)fluoranthene                                                                                                                        | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Benzo(a)pyrene                                                                                                                              | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Indeno(1,2,3-cd)pyrene                                                                                                                      | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Dibenzo(ah)anthracene                                                                                                                       | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Benzo(ghi)perylene                                                                                                                          | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0*<>        | TEQ (mg/kg) | 0.2 | <0.2         | <0.2         | <0.2         |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | <0.3         | <0.3         | <0.3         |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor> | TEQ (mg/kg) | 0.2 | <0.2         | <0.2         | <0.2         |
| Total PAH (18)                                                                                                                              | mg/kg       | 0.8 | <0.8         | <0.8         | <0.8         |
| Total PAH (NEPM/WHO 16)                                                                                                                     | mg/kg       | 0.8 | <0.8         | <0.8         | <0.8         |



### SE242054 R0

### OC Pesticides in Soil [AN420] Tested: 24/1/2023

|                         |       |     | S1           | S2           | S3           |
|-------------------------|-------|-----|--------------|--------------|--------------|
|                         |       |     | SOIL         | SOIL         | SOIL         |
|                         |       |     |              |              |              |
|                         |       |     | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER               | UOM   | LOR | SE242054.001 | SE242054.002 | SE242054.003 |
| Hexachlorobenzene (HCB) | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Alpha BHC               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Lindane (gamma BHC)     | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Heptachlor              | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Aldrin                  | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Beta BHC                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Delta BHC               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Heptachlor epoxide      | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| o,p'-DDE*               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Alpha Endosulfan        | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Gamma Chlordane         | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Alpha Chlordane         | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| trans-Nonachlor         | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| p,p'-DDE                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Dieldrin                | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Endrin                  | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| o,p'-DDD*               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| o,p'-DDT*               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Beta Endosulfan         | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| p,p'-DDD                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| p,p'-DDT                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Endosulfan sulphate     | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Endrin aldehyde         | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Methoxychlor            | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Endrin ketone           | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Isodrin                 | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Mirex                   | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         |
| Total CLP OC Pesticides | mg/kg | 1   | <1           | <1           | <1           |
| Total OC VIC EPA        | mg/kg | 1   | <1           | <1           | <1           |



### SE242054 R0

### OP Pesticides in Soil [AN420] Tested: 24/1/2023

|                                   |       |     | S1           | S2           | S3           |
|-----------------------------------|-------|-----|--------------|--------------|--------------|
|                                   |       |     | SOIL         | SOIL         | SOIL         |
|                                   |       |     |              |              |              |
|                                   |       |     | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER                         | UOM   | LOR | SE242054.001 | SE242054.002 | SE242054.003 |
| Dichlorvos                        | mg/kg | 0.5 | <0.5         | <0.5         | <0.5         |
| Dimethoate                        | mg/kg | 0.5 | <0.5         | <0.5         | <0.5         |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5         | <0.5         | <0.5         |
| Fenitrothion                      | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Malathion                         | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Bromophos Ethyl                   | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Methidathion                      | mg/kg | 0.5 | <0.5         | <0.5         | <0.5         |
| Ethion                            | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         |
| Total OP Pesticides*              | mg/kg | 1.7 | <1.7         | <1.7         | <1.7         |



Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb

Nickel, Ni

Zinc, Zn

### **ANALYTICAL RESULTS**

33

2.8

54

44

2.0

80

9

<0.5

9.8

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 24/1/2023

|       |     | S1           | S2           | S3          |
|-------|-----|--------------|--------------|-------------|
|       |     |              |              |             |
|       |     | SOIL         | SOIL         | SOIL        |
|       |     |              |              |             |
|       |     | 19/1/2023    | 19/1/2023    | 19/1/2023   |
| UOM   | LOR | SE242054.001 | SE242054.002 | SE242054.00 |
| mg/kg | 1   | 3            | 2            | 1           |
| mg/kg | 0.3 | <0.3         | <0.3         | <0.3        |
| mg/kg | 0.5 | 7.4          | 6.7          | 4.2         |
| mg/kg | 0.5 | 11           | 10           | 1.9         |

1

0.5

2

mg/kg

mg/kg

mg/kg



### Mercury in Soil [AN312] Tested: 24/1/2023

|           |       |      | S1           | S2           | S3           |
|-----------|-------|------|--------------|--------------|--------------|
|           |       |      | SOIL         | SOIL         | SOIL         |
|           |       |      |              |              |              |
|           |       |      | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER | UOM   | LOR  | SE242054.001 | SE242054.002 | SE242054.003 |
| Mercury   | mg/kg | 0.05 | 0.10         | 0.17         | <0.05        |



### Moisture Content [AN002] Tested: 24/1/2023

|            |      |     | S1           | S2           | S3           |
|------------|------|-----|--------------|--------------|--------------|
|            |      |     | SOIL         | SOIL         | SOIL         |
|            |      |     |              |              |              |
|            |      |     | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER  | UOM  | LOR | SE242054.001 | SE242054.002 | SE242054.003 |
| % Moisture | %w/w | 1   | 14.9         | 9.3          | 7.5          |



### Fibre Identification in soil [AS4964/AN602] Tested: 27/1/2023

|                   |         |      | S1           | S2           | S3           |
|-------------------|---------|------|--------------|--------------|--------------|
|                   |         |      | SOIL         | SOIL         | SOIL         |
|                   |         |      |              |              |              |
|                   |         |      | 19/1/2023    | 19/1/2023    | 19/1/2023    |
| PARAMETER         | UOM     | LOR  | SE242054.001 | SE242054.002 | SE242054.003 |
| Asbestos Detected | No unit | -    | No           | No           | No           |
| Estimated Fibres* | %w/w    | 0.01 | <0.01        | <0.01        | <0.01        |



| METHOD      | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AN002       | The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating<br>basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages<br>of moisture will take some time in a drying oven for complete removal of water.                                                                                                                                                                                                                                                                                                                                                         |
| AN040/AN320 | A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete<br>the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample<br>basis. Based on USEPA method 200.8 and 6010C.                                                                                                                                                                                                                                                                                                                                                                                    |
| AN040       | A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AN312       | Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid,<br>mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury<br>vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser.<br>Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA<br>3112/3500                                                                                                                                                                                                        |
| AN403       | Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.                  |
| AN403       | Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of<br>the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of<br>analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of<br>analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.                                                                                                                                                                                            |
| AN403       | The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.                                                                                                                                                                                  |
| AN420       | (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).<br>Total PAH calculated from individual analyte detections at or above the limit of reporting.                                                                                                                                                                                                                                                                                                                           |
| AN420       | SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH,<br>Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique<br>following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                                                                                                                                                                                                                                                                                                                          |
| AN433       | VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC`s are volatile organic compounds. The sample is<br>presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected<br>with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are<br>processed directly. References: USEPA 5030B, 8020A, 8260.                                                                                                                                                                                                                                                                                |
| AN602       | Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM)<br>in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal<br>identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a<br>reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient<br>`clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of<br>suspect fibres/bundles from the sample which cannot be returned. |
| AN602       | Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AN602       | AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis<br>Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this<br>technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1<br>to 0.1 g/kg."                                                                                                                                                                                                                                                                                         |



| AN602 | The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-                 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):                                                                                                       |
|       | (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in<br>asbestos-containing materials are found to be less than 0.1g/kg: and |
|       | (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.                                |

### - FOOTNOTES -

| *   | NATA accreditation does not cover    | -   | Not analysed.                    | UOM | Unit of Measure.        |
|-----|--------------------------------------|-----|----------------------------------|-----|-------------------------|
|     | the performance of this service.     | NVL | Not validated.                   | LOR | Limit of Reporting.     |
| **  | Indicative data, theoretical holding | IS  | Insufficient sample for          | ↑↓  | Raised/lowered Limit of |
|     | time exceeded.                       | LNR | analysis.                        |     | Reporting.              |
| *** | Indicates that both * and ** apply.  |     | Sample listed, but not received. |     |                         |

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or



### **ANALYTICAL REPORT**



| - CLIENT DETAILS |                                   | LABORATORY DETAI | ILS                                          |
|------------------|-----------------------------------|------------------|----------------------------------------------|
| Contact          | Admin                             | Manager          | Huong Crawford                               |
| Client           | NEO CONSULTING PTY LTD            | Laboratory       | SGS Alexandria Environmental                 |
| Address          | PO BOX 279<br>RIVERSTONE NSW 2765 | Address          | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone        | 0416 680 375                      | Telephone        | +61 2 8594 0400                              |
| Facsimile        | (Not specified)                   | Facsimile        | +61 2 8594 0499                              |
| Email            | admin@neoconsulting.com.au        | Email            | au.environmental.sydney@sgs.com              |
| Project          | N6898                             | SGS Reference    | SE242054 R0                                  |
| Order Number     | N6898                             | Date Received    | 20 Jan 2023                                  |
| Samples          | 3                                 | Date Reported    | 30 Jan 2023                                  |
|                  |                                   |                  |                                              |

- COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Industries and Environment recommends supplying approximately 50-100g of sample in a separate container.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES -

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

> SGS Australia Pty Ltd ABN 44 000 964 278

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia t +6 Australia f +6

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group



### ANALYTICAL REPORT

- RESULTS -

### Fibre Identification in soil

Method AN602

| Laboratory<br>Reference | Client<br>Reference | Matrix | Sample<br>Description                    | Date Sampled | Fibre Identification                                          | Est.%w/w* |
|-------------------------|---------------------|--------|------------------------------------------|--------------|---------------------------------------------------------------|-----------|
| SE242054.001            | S1                  | Soil   | 65g<br>Clay,Sand,Rock<br>s               | 19 Jan 2023  | No Asbestos Found at RL of 0.1g/kg<br>Organic Fibres Detected | <0.01     |
| SE242054.002            | S2                  | Soil   | 92g<br>Clay,Sand,Rock<br>s,Plant Matter  | 19 Jan 2023  | No Asbestos Found at RL of 0.1g/kg<br>Organic Fibres Detected | <0.01     |
| SE242054.003            | S3                  | Soil   | 103g<br>Sand,Soil,Rocks<br>,Plant Matter | 19 Jan 2023  | No Asbestos Found at RL of 0.1g/kg<br>Organic Fibres Detected | <0.01     |



### **METHOD SUMMARY**

| METHOD | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN602  | Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned. |
| AN602  | Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AN602  | AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."                                                                                                                                                                                                                                                                                   |
| AN602  | <ul> <li>The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (&lt;0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-</li> <li>(a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres):</li> <li>(b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and</li> <li>(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.</li> </ul>          |

FOOTNOTES -Amosite Brown Asbestos NA Not Analysed Chrysotile White Asbestos INR Listed. Not Required --Crocidolite Blue Asbestos -NATA accreditation does not cover the performance of this service . \*\* Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles -\*\*\* Indicates that both \* and \*\* apply. -

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <a href="http://www.sgs.com.au/en-gb/environment-health-and-safety">www.sgs.com.au/en-gb/environment-health-and-safety</a>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



### STATEMENT OF QA/QC PERFORMANCE

| CLIENT DETAILS               |                                                                      | LABORATORY DETAIL                | .8                                                                                             |
|------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|
| Contact<br>Client<br>Address | Admin<br>NEO CONSULTING PTY LTD<br>PO BOX 279<br>RIVERSTONE NSW 2765 | Manager<br>Laboratory<br>Address | Huong Crawford<br>SGS Alexandria Environmental<br>Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone                    | 0416 680 375                                                         | Telephone                        | +61 2 8594 0400                                                                                |
| Facsimile                    | (Not specified)                                                      | Facsimile                        | +61 2 8594 0499                                                                                |
| Email                        | admin@neoconsulting.com.au                                           | Email                            | au.environmental.sydney@sgs.com                                                                |
| Project                      | <b>N6898</b>                                                         | SGS Reference                    | <b>SE242054 R0</b>                                                                             |
| Order Number                 | <b>N6898</b>                                                         | Date Received                    | 20 Jan 2023                                                                                    |
| Samples                      | 3                                                                    | Date Reported                    | 30 Jan 2023                                                                                    |

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

| Sample counts by matrix                | 3 Soil     | Type of documentation received  | COC      |  |
|----------------------------------------|------------|---------------------------------|----------|--|
| Date documentation received            | 20/1/2023  | Samples received in good order  | Yes      |  |
| Samples received without headspace     | Yes        | Sample temperature upon receipt | 8.8°C    |  |
| Sample container provider              | SGS        | Turnaround time requested       | Standard |  |
| Samples received in correct containers | Yes        | Sufficient sample for analysis  | Yes      |  |
| Sample cooling method                  | Ice Bricks | Samples clearly labelled        | Yes      |  |
| Complete documentation received        | Yes        |                                 |          |  |

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

| Fibre Identification in soil                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method: ME-(AU)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ENVJAS4964/AN602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Name                                                                                                                                                                                                                                                                                                                                                                                    | Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QC Ref                                                                                                                                                                                                                                                                                                         | Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extraction Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S1                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269796                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 Jan 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 Jan 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S2                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269796                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 Jan 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 Jan 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S3                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269796                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 Jan 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 Jan 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mercury in Soil                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE-(AU)-[ENV]AN312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Name                                                                                                                                                                                                                                                                                                                                                                                    | Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QC Ref                                                                                                                                                                                                                                                                                                         | Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extraction Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S1                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L B269607                                                                                                                                                                                                                                                                                                      | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30. Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S2                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269607                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S3                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269607                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moisture Content                                                                                                                                                                                                                                                                                                                                                                               | 02242004.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EB200001                                                                                                                                                                                                                                                                                                       | 10 0011 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 0011 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101052020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 0011 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F-(AU)-IENVIAN002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sampla Namo                                                                                                                                                                                                                                                                                                                                                                                    | Sample No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OC Bof                                                                                                                                                                                                                                                                                                         | Samplod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pacaivad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extraction Duo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                | Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UC Rer                                                                                                                                                                                                                                                                                                         | Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extraction Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 51                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB209000                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32<br>00                                                                                                                                                                                                                                                                                                                                                                                       | SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB209000                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OC Resticides in Sell                                                                                                                                                                                                                                                                                                                                                                          | SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB209000                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| OC Pesucides III Soli                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Meuloa. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1E-(AO)-[EINV]AN420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample Name                                                                                                                                                                                                                                                                                                                                                                                    | Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QC Ref                                                                                                                                                                                                                                                                                                         | Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extraction Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S1                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269598                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S2                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269598                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S3                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269598                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OP Pesticides in Soil                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE-(AU)-[ENV]AN420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Name                                                                                                                                                                                                                                                                                                                                                                                    | Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QC Ref                                                                                                                                                                                                                                                                                                         | Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extraction Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S1                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269598                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S2                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269598                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S3                                                                                                                                                                                                                                                                                                                                                                                             | SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB269598                                                                                                                                                                                                                                                                                                       | 19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PAH (Polynuclear Aromatic Hydro                                                                                                                                                                                                                                                                                                                                                                | ocarbons) in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE-(AU)-[ENV]AN420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name                                                                                                                                                                                                                                                                                                                                                 | ocarbons) in Soil<br>Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QC Ref                                                                                                                                                                                                                                                                                                         | Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Extraction Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method: N<br>Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE-(AU)-[ENV]AN420<br>Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1                                                                                                                                                                                                                                                                                                                                           | ocarbons) in Soil<br>Sample No.<br>SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QC Ref<br>LB269598                                                                                                                                                                                                                                                                                             | Sampled<br>19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Received<br>20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Extraction Due<br>02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Extracted<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method: N<br>Analysis Due<br>05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mark>IE-(AU)-[ENV]AN420</mark><br>Analysed<br>27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2                                                                                                                                                                                                                                                                                                                                     | ocarbons) in Soil<br>Sample No.<br>SE242054.001<br>SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QC Ref<br>LB269598<br>LB269598                                                                                                                                                                                                                                                                                 | Sampled<br>19 Jan 2023<br>19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Received<br>20 Jan 2023<br>20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Extraction Due<br>02 Feb 2023<br>02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Extracted<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method: N<br>Analysis Due<br>05 Mar 2023<br>05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IE-(AU)-[ENV]AN420<br>Analysed<br>27 Jan 2023<br>27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3                                                                                                                                                                                                                                                                                                                               | Sample No.           SE242054.001           SE242054.002           SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QC Ref<br>LB269598<br>LB269598<br>LB269598                                                                                                                                                                                                                                                                     | Sampled<br>19 Jan 2023<br>19 Jan 2023<br>19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Received<br>20 Jan 2023<br>20 Jan 2023<br>20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method: N<br>Analysis Due<br>05 Mar 2023<br>05 Mar 2023<br>05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>IE-(AU)-[ENV]AN420</b><br>Analysed<br>27 Jan 2023<br>27 Jan 2023<br>27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S4                                                                                                                                                                                                                                                                                           | Sample No.           SE242054.001           SE242054.002           SE242054.003           oil/Waste Solids/Mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QC Ref<br>LB269598<br>LB269598<br>LB269598<br>ials by ICPOES                                                                                                                                                                                                                                                   | Sampled<br>19 Jan 2023<br>19 Jan 2023<br>19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Received<br>20 Jan 2023<br>20 Jan 2023<br>20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method: N<br>Analysis Due<br>05 Mar 2023<br>05 Mar 2023<br>05 Mar 2023<br>Method: ME-(AU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE-(AU)-[ENV]AN420           Analysed           27 Jan 2023           27 Jan 2023           27 Jan 2023           27 Jan 2023           -[ENV]AN040/AN320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S0<br>Sample Name                                                                                                                                                                                                                                                                            | Sample No.<br>SE242054.001<br>SE242054.002<br>SE242054.003<br>SE242054.003<br>Oll/Waste Solids/Mater<br>Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QC Ref<br>LB269598<br>LB269598<br>LB269598<br>tals by ICPOES<br>QC Ref                                                                                                                                                                                                                                         | Sampled<br>19 Jan 2023<br>19 Jan 2023<br>19 Jan 2023<br>Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Received<br>20 Jan 2023<br>20 Jan 2023<br>20 Jan 2023<br>Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>Extraction Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method: N<br>Analysis Due<br>05 Mar 2023<br>05 Mar 2023<br>05 Mar 2023<br>Method: ME-(AU)<br>Analysis Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE-(AU)-[ENV]AN420           Analysed           27 Jan 2023           27 Jan 2023           27 Jan 2023           -[ENV]AN040/AN320           Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S0<br>Sample Name<br>S1                                                                                                                                                                                                                                                                      | Sample No.           SE242054.001           SE242054.002           SE242054.003           oll/Waste Solids/Mater           Sample No.           SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QC Ref<br>LB269598<br>LB269598<br>LB269598<br>tals by ICPOES<br>QC Ref<br>LB269604                                                                                                                                                                                                                             | Sampled<br>19 Jan 2023<br>19 Jan 2023<br>19 Jan 2023<br>Sampled<br>19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Received           20 Jan 2023           20 Jan 2023           20 Jan 2023           Received           20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023                                                                                                                                                                                                                                                                                                                                                                                                            | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Method: N<br>Analysis Due<br>05 Mar 2023<br>05 Mar 2023<br>05 Mar 2023<br>Method: ME-(AU)<br>Analysis Due<br>18 Jul 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IE-(AU)-[ENV]AN420           Analysed           27 Jan 2023           27 Jan 2023           27 Jan 2023           -[ENV]AN040/AN320           Analysed           30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in So<br>Sample Name<br>S1<br>S2                                                                                                                                                                                                                                                                | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 Coll/Waste Solids/Mater Sample No. SE242054.001 SE242054.001 SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QC Ref<br>LB269598<br>LB269598<br>LB269598<br><b>tals by ICPOES</b><br>QC Ref<br>LB269604<br>LB269604                                                                                                                                                                                                          | Sampled           19 Jan 2023           19 Jan 2023           19 Jan 2023           Sampled           19 Jan 2023           19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received           20 Jan 2023           20 Jan 2023           20 Jan 2023           Received           20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023                                                                                                                                                                                                                                                                                                                                                                                      | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method: N           Analysis Due           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IE-(AU)-[ENV]AN420           Analysed           27 Jan 2023           27 Jan 2023           27 Jan 2023           -[ENV]AN040/AN320           Analysed           30 Jan 2023           30 Jan 2023           30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in Sc<br>Sample Name<br>S1<br>S2<br>S3                                                                                                                                                                                                                                                          | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 Coll/Waste Solids/Mater Sample No. SE242054.001 SE242054.002 SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QC Ref<br>LB269598<br>LB269598<br>LB269598<br><b>LB269598</b><br><b>QC Ref</b><br>LB269604<br>LB269604<br>LB269604                                                                                                                                                                                             | Sampled           19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                             | Received           20 Jan 2023                                                                                                                                                                                                                                                                                                                                           | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>Extraction Due<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023                                                                                                                                                                                                                                                                                                                                                                                                                        | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Method: N           Analysis Due           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           18 Jul 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HE-(AU)-[ENV]AN420           Analysed           27 Jan 2023           27 Jan 2023           27 Jan 2023           27 Jan 2023           4           Analysed           30 Jan 2023           30 Jan 2023           30 Jan 2023           30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in St<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydroca                                                                                                                                                                                                                        | Sample No.           SE242054.001           SE242054.002           SE242054.003           obl/Waste Solids/Mater           Sample No.           SE242054.001           SE242054.002           SE242054.002           SE242054.003           obl/Waste Solids/Mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QC Ref           LB269598           LB269598           LB269598           Tals by ICPOES           QC Ref           LB269604           LB269604           LB269604                                                                                                                                             | Sampled           19 Jan 2023           19 Jan 2023           19 Jan 2023           Sampled           19 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                       | Received           20 Jan 2023           20 Jan 2023           20 Jan 2023           Received           20 Jan 2023           20 Jan 2023           20 Jan 2023           20 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023                                                                                                                                                                                                                                                                                                                                                                                                            | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method: N           05 Mar 2023           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IE-(AU)-[ENV]AN420           Analysed           27 Jan 2023           30 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S4<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydroca<br>Sample Name                                                                                                                                                                                                         | Sample No.           SE242054.001           SE242054.002           SE242054.003           obl/Waste Solids/Mater           Sample No.           SE242054.001           SE242054.001           SE242054.002           SE242054.003           obl/Waste Solids/Mater           Sample No.           SE242054.001           SE242054.002           SE242054.003           rbons) In Soll           Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QC Ref           LB269598           LB269598           LB269598           Tals by ICPOES           QC Ref           LB269604           LB269604           LB269604           QC Ref           QC Ref                                                                                                           | Sampled<br>19 Jan 2023<br>19 Jan 2023<br>19 Jan 2023<br>19 Jan 2023<br>Sampled<br>19 Jan 2023<br>19 Jan 2023<br>19 Jan 2023<br>19 Jan 2023<br>Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Received           20 Jan 2023                                                                                                                                                                                                                                                                                                                     | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Extraction Due                                                                                                                                                                                                                                                                                                                                                             | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method: N           Analysis Due           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: NE-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: NE-(AU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysed           27 Jan 2023           -[ENVJAN040/AN320           Analysed           30 Jan 2023           30 Jan 2023           30 Jan 2023           30 Jan 2023           16-(AU)-[ENV]AN403           Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S4<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydrocal<br>Sample Name<br>S1                                                                                                                                                                                                  | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 Sil/Waste Solids/Mater Sample No. SE242054.001 SE242054.002 SE242054.003 arbons) in Soil Sample No. SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QC Ref<br>LB269598<br>LB269598<br>LB269598<br><b>QC Ref</b><br>LB269604<br>LB269604<br>LB269604<br>LB2699604                                                                                                                                                                                                   | Sampled           19 Jan 2023                                                                                                                                                                                                                                                                                                                                           | Received           20 Jan 2023                                                                                                                                                                                                                                                                                                                     | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           20 Feb 2023                                                                                                                                                                                                                                                                                                                                                                | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method: N           Analysis Due           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: NE-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           Method: NE-(AU)           Analysis Due           05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE-(AU)-[ENV]AN420         Analysed         27 Jan 2023         27 Jan 2023         27 Jan 2023         27 Jan 2023         -[ENV]AN040/AN320         Analysed         30 Jan 2023         30 Jan 2023         30 Jan 2023         IE-(AU)-[ENV]AN403         Analysed         27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S0<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydrocal<br>Sample Name<br>S1<br>S2                                                                                                                                                                                            | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 Sil/Waste Solids/Mater Sample No. SE242054.001 SE242054.002 SE242054.003 rbons) in Soil Sample No. SE242054.001 SE242054.001 SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QC Ref           LB269598           LB269598           LB269598           tals by ICPOES           QC Ref           LB269604           LB269604           LB269604           LB2699604           LB2699604           LB2699604           LB2699604           LB2699604           LB2699604           LB2699604 | Sampled           19 Jan 2023                                                                                                                                                                                                                                                                         | Received           20 Jan 2023                                                                                                                                                                                                                                                                         | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>Extraction Due<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>02 Feb 2023<br>02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                           | Extracted<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method: N           Analysis Due           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: NE-(AU)           Analysis Due           05 Mar 2023           Method: ME-(AU)           Analysis Due           05 Mar 2023           Method: NE-(AU)           Analysis Due           05 Mar 2023           05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | He-(AU)-[ENV]AN420           Analysed           27 Jan 2023           4           Analysed           30 Jan 2023           4           Fe-(AU)-[ENV]AN403           Analysed           27 Jan 2023           27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S0<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydrocal<br>Sample Name<br>S1<br>S2<br>S3                                                                                                                                                                                      | Sample No.           SE242054.001           SE242054.002           SE242054.003           SE242054.003           Sil/Waste Solids/Mater           Sample No.           SE242054.001           SE242054.001           SE242054.001           SE242054.002           SE242054.003           rbons) In Soil           Sample No.           SE242054.001           SE242054.001           SE242054.001           SE242054.001           SE242054.002           SE242054.002           SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QC Ref           LB269598           LB269598           LB269598           LB269598           tals by ICPOES           QC Ref           LB269604           LB269604           LB269604           LB269604           LB269604           LB269604           LB269604           LB269604           LB269604        | Sampled           19 Jan 2023                                                                                                                                                                                                       | Received           20 Jan 2023                                                                                                                                                                                 | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>Extraction Due<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>20 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023                                                                                                                                                                                                                                                                                                                                                                           | Extracted<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method: N           05 Mar 2023           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: NE-(AU)           Analysis Due           05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | He-(AU)-[ENV]AN420           Analysed           27 Jan 2023           27 Jan 2023           27 Jan 2023           27 Jan 2023           4           Analysed           30 Jan 2023           4           CALU)-[ENV]AN403           Analysed           27 Jan 2023           27 Jan 2023           27 Jan 2023           27 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in Sc<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydrocal<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soil                                                                                                                                                                     | Sample No.           SE242054.001           SE242054.002           SE242054.003           bil/Waste Solids/Mater           Sample No.           SE242054.001           SE242054.002           SE242054.003           ori/Waste Solids/Mater           Sample No.           SE242054.003           rbons) in Soll           Sample No.           SE242054.001           SE242054.001           SE242054.002           SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC Ref           LB269598           LB269598           LB269598           LB269598           QC Ref           LB269604           LB269604           LB269604           LB269598           LB269598           LB269598           LB269598           LB269598           LB269598                                 | Sampled           19 Jan 2023           19 Jan 2023           19 Jan 2023           19 Jan 2023           Sampled           19 Jan 2023           19 Jan 2023           19 Jan 2023           Sampled           19 Jan 2023                                                                                                                                                                                                                                     | Received           20 Jan 2023                                                                                                                                                                                                       | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           2 Feb 2023           02 Feb 2023                                                                                                                                                                                 | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method: N           05 Mar 2023           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           Method: N           Analysis Due           18 Jul 2023           18 Jul 2023           05 Mar 2023                                                                                                                                                                                                                                                                                                                                                                                                             | IE-(AU)-[ENV]AN420           Analysed           27 Jan 2023           27 Jan 2023           27 Jan 2023           27 Jan 2023           27 Jan 2023 <b>Analysed</b> 30 Jan 2023           30 Jan 2023           30 Jan 2023           30 Jan 2023 <b>IE-(AU)-[ENV]AN403</b> Analysed           27 Jan 2023                                                                                                                                   |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in Se<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydroca<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soil<br>Sample Name                                                                                                                                                       | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 Se242054.003 SE242054.001 SE242054.001 SE242054.003 rbons) in Soil Sample No. SE242054.001 SE242054.001 SE242054.003 SE242054.003 SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC Ref<br>LB269598<br>LB269598<br>tals by ICPOES<br>QC Ref<br>LB269604<br>LB269604<br>LB269604<br>LB269508<br>LB269598<br>LB269598<br>LB269598<br>LB269598                                                                                                                                                     | Sampled           19 Jan 2023           19 Jan 2023           19 Jan 2023           19 Jan 2023           Sampled           19 Jan 2023                                                                                                                                                                                                           | Received           20 Jan 2023                                                                                                                                     | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           2 Feb 2023           02 Feb 2023                                                                                                                                                           | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method: N           05 Mar 2023           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: N           Analysis Due           05 Mar 2023           Method: N           Analysis Due                                                                                                                                                                                                        | IE-(AU)-[ENV]AN420         Analysed         27 Jan 2023         30 Jan 2023         IE-(AU)-[ENV]AN403         Analysed         27 Jan 2023            |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in Se<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydroca<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1                                                                                                                                                 | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 SitWaste Solids/Mater Sample No. SE242054.001 SE242054.002 SE242054.003 rbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 Sample No. SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QC Ref<br>LB269598<br>LB269598<br><b>tals by ICPOES</b><br>QC Ref<br>LB269604<br>LB269604<br>LB269604<br>LB269508<br>LB269598<br>LB269598<br>LB269598<br>LB269598                                                                                                                                              | Sampled           19 Jan 2023           19 Jan 2023           19 Jan 2023           19 Jan 2023           Sampled           19 Jan 2023           Sampled           19 Jan 2023                                                                                                                                                                                         | Received           20 Jan 2023                                                                                                                                                                                 | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           2 Feb 2023           02 Feb 2023                                                                                                                                     | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method: N           05 Mar 2023           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: N           Analysis Due           05 Mar 2023           05 Mar 2023 | IE-(AU)-[ENV]AN420         Analysed         27 Jan 2023         30 Jan 2023         IE-(AU)-[ENV]AN403         Analysed         27 Jan 2023            |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S0<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydrocal<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1<br>S2<br>S3                                                                                                                                    | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 SE242054.003 SE242054.001 SE242054.002 SE242054.003 SE242054.001 SE242054.001 SE242054.002 SE242054.003 SE242054.003 SE242054.001 SE242054.001 SE242054.001 SE242054.001 SE242054.001 SE242054.001 SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QC Ref<br>LB269598<br>LB269598<br>LB269598<br>tals by ICPOES<br>QC Ref<br>LB269604<br>LB269604<br>LB269504<br>LB269598<br>LB269598<br>LB269598<br>LB269598<br>LB269599<br>LB269599                                                                                                                             | Sampled           19 Jan 2023                                                                                                                                                                                                       | Received           20 Jan 2023                                                                                                                                                                                 | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>Extraction Due<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>02 Feb 2023                                                                                                                                                                                                                                                                                                | Extracted<br>24 Jan 2023<br>24 Jan | Method: N           Analysis Due           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           18 Jul 2023           05 Mar 2023           05 Feb 2023           02 Feb 2023           02 Feb 2023                                                                                                                                                                                                     | IE-(AU)-[ENV]AN420         Analysed         27 Jan 2023         4         Analysed         30 Jan 2023         30 Jan 2023         30 Jan 2023         30 Jan 2023         27 Jan 2023         20 Jan 2023         30 Jan 2023                                                                                                                                                                                                                                                                                                                     |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in Sc<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydrocal<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soil<br>Sample Name<br>S1<br>S2<br>S3                                                                                                                                    | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 SitWaste Solids/Mater Sample No. SE242054.001 SE242054.002 SE242054.001 SE242054.002 SE242054.002 SE242054.003 Sample No. SE242054.001 SE242054.001 SE242054.001 SE242054.001 SE242054.001 SE242054.002 SE242054.002 SE242054.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QC Ref<br>LB269598<br>LB269598<br>tals by ICPOES<br>QC Ref<br>LB269604<br>LB269604<br>LB269604<br>LB269598<br>LB269598<br>LB269598<br>LB269598<br>LB269599<br>LB269599<br>LB269599                                                                                                                             | Sampled           19 Jan 2023                       | Received           20 Jan 2023           20 Jan 2023 | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>Extraction Due<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>02 Feb 2023                                                                                                                                                                                                                                                                  | Extracted<br>24 Jan 2023<br>24 Jan | Method: N           Analysis Due           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           05 Mar 2023           Method: N           Analysis Due           05 Mar 2023           05 E E 2023           02 Feb 2023                                                                                                                                                                                                                            | He-(AU)-[ENV]AN420         Analysed         27 Jan 2023         4         Analysed         30 Jan 2023         30 Jan 2023         30 Jan 2023         30 Jan 2023         27 Jan 2023         30 Jan 2023                                                                                                                                 |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in Se<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydroca<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soil<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soil<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soil                                                                  | Coarbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 SE242054.003 SE242054.001 SE242054.001 SE242054.003 rbons) in Soil Sample No. SE242054.001 SE242054.003 SE242054.001 SE242054.003 SE242054.001 SE242054.001 SE242054.003 SE24054 SE24054.003 SE24054 SE2 | QC Ref           LB269598           LB269598           LB269598           ials by ICPOES           QC Ref           LB269604           LB269604           LB269604           LB269598           LB269598           LB269598           LB269599           LB269599           LB269599           LB269599        | Sampled           19 Jan 2023                                                                                                                                     | Received           20 Jan 2023                                                                                                                                                                                 | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           2 Feb 2023           02 Feb 2023                       | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method: N           05 Mar 2023           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: N           Analysis Due           05 Mar 2023           Method: N           Analysis Due           05 Mar 2023           02 Feb 2023                                                                                                                                                                                  | IE-(AU)-[ENV]AN420         Analysed         27 Jan 2023         27 Jan 2023         27 Jan 2023         IENVJAN040/AN320         Analysed         30 Jan 2023         30 Jan 2023         30 Jan 2023         30 Jan 2023         1E-(AU)-[ENV]AN403         Analysed         27 Jan 2023         1E-(AU)-[ENV]AN433         Analysed         30 Jan 2023                                                                                                                                                                                                  |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in Se<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydroca<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 SE242054.003 SE242054.001 SE242054.001 SE242054.002 SE242054.001 SE242054.001 SE242054.002 SE242054.003 SE242054.001 SE242054.001 SE242054.001 SE242054.001 SE242054.003 SE242054.003 in Soil Sample No. SE24054.003 in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QC Ref<br>LB269598<br>LB269598<br>tals by ICPOES<br>QC Ref<br>LB269604<br>LB269604<br>LB269604<br>LB269598<br>LB269598<br>LB269598<br>LB269598<br>LB269599<br>LB269599<br>LB269599<br>LB269599                                                                                                                 | Sampled           19 Jan 2023           19 Jan 2023           19 Jan 2023           19 Jan 2023           Sampled           19 Jan 2023           Sampled           19 Jan 2023                               | Received           20 Jan 2023           20 Jan 2023 | Extraction Due           02 Feb 2023           02 Feb 2023           02 Feb 2023           Extraction Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           2 Feb 2023           02 Feb 2023 | Extracted<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>24 Jan 2023<br>Extracted<br>24 Jan 2023<br>24 Jan 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method: N           05 Mar 2023           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: N           Analysis Due           05 Mar 2023           Method: N           Analysis Due           05 Mar 2023           02 Feb 2023           02 Feb 2023           02 Feb 2023           02 Feb 2023           Method: N           Method: N           Analysis Due                                                                                                                                                               | IE-(AU)-[ENV]AN420         Analysed         27 Jan 2023         27 Jan 2023         27 Jan 2023         IENVJAN040/AN320         Analysed         30 Jan 2023         30 Jan 2023         30 Jan 2023         30 Jan 2023         1E-(AU)-[ENV]AN403         Analysed         27 Jan 2023         27 Jan 2023         27 Jan 2023         1E-(AU)-[ENV]AN433         Analysed         30 Jan 2023         30 Jan 2023         27 Jan 2023         27 Jan 2023         30 Jan 2023 </td |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S4<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydrocar<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1<br>S2<br>S3<br>Votatile Petroleum Hydrocarbons<br>Sample Name<br>S1                          | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 SitWaste Solids/Mater Sample No. SE242054.001 SE242054.001 SE242054.001 SE242054.001 SE242054.002 SE242054.003 Sample No. SE242054.001 SE242054.003 in Soil Sample No. SE242054.003 in Soil Sample No. SE242054.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QC Ref<br>LB269598<br>LB269598<br>LB269598<br>fails by ICPOES<br>QC Ref<br>LB269604<br>LB269604<br>LB269508<br>LB269598<br>LB269598<br>LB269598<br>LB269599<br>LB269599<br>LB269599<br>LB269599                                                                                                                | Sampled           19 Jan 2023                       | Received           20 Jan 2023                       | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>Extraction Due<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>02 Feb 2023                                                                                                                                                                                                                                                   | Extracted<br>24 Jan 2023<br>24 Jan | Method: N           05 Mar 2023           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           Method: N           Analysis Due           05 Mar 2023           Method: N           Analysis Due           05 Mar 2023           05 Feb 2023           02 Feb 2023           02 Feb 2023           Method: N           Analysis Due           02 Feb 2023           Method: N           Analysis Due           02 Feb 2023                                                                                                                                        | IE-(AU)-[ENV]AN420         Analysed         27 Jan 2023         4         Analysed         30 Jan 2023         30 Jan 2023         30 Jan 2023         30 Jan 2023         27 Jan 2023         30 Jan 2023                             |
| PAH (Polynuclear Aromatic Hydro<br>Sample Name<br>S1<br>S2<br>S3<br>Total Recoverable Elements in S4<br>Sample Name<br>S1<br>S2<br>S3<br>TRH (Total Recoverable Hydrocar<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1<br>S2<br>S3<br>VOC's in Soll<br>Sample Name<br>S1<br>S2<br>S3<br>Volatile Petroleum Hydrocarbons<br>Sample Name<br>S1<br>S2<br>S3              | Carbons) in Soil Sample No. SE242054.001 SE242054.002 SE242054.003 SE242054.003 SE242054.001 SE242054.001 SE242054.003 SE242054.001 SE242054.002 SE242054.003 SE242054.001 SE242054.001 SE242054.003 in Soil Sample No. SE242054.001 SE242054.001 SE242054.003 in Soil Sample No. SE242054.001 SE242054.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QC Ref<br>LB269598<br>LB269598<br>LB269598<br>fails by ICPOES<br>QC Ref<br>LB269604<br>LB269604<br>LB269508<br>LB269598<br>LB269598<br>LB269598<br>LB269599<br>LB269599<br>LB269599<br>LB269599<br>LB269599<br>LB269599                                                                                        | Sampled           19 Jan 2023           19 Jan 2023 | Received           20 Jan 2023           20 Jan 2023 | Extraction Due<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>02 Feb 2023<br>Extraction Due<br>18 Jul 2023<br>18 Jul 2023<br>18 Jul 2023<br>02 Feb 2023                                                                                                                                                                        | Extracted<br>24 Jan 2023<br>24 Jan | Method: N           Analysis Due           05 Mar 2023           05 Mar 2023           05 Mar 2023           Method: ME-(AU)           Analysis Due           18 Jul 2023           18 Jul 2023           18 Jul 2023           18 Jul 2023           05 Mar 2023           02 Feb 2023                                                                                       | IE-(AU)-[ENV]AN420         Analysed         27 Jan 2023         4         Analysed         30 Jan 2023         30 Jan 2023         30 Jan 2023         30 Jan 2023         27 Jan 2023         30 Jan 2023                             |



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| OC Pesticides in Soil                           |             |               |       | Method: M | E-(AU)-[ENV]AN420 |
|-------------------------------------------------|-------------|---------------|-------|-----------|-------------------|
| Parameter                                       | Sample Name | Sample Number | Units | Criteria  | Recovery %        |
| Tetrachloro-m-xylene (TCMX) (Surrogate)         | S1          | SE242054.001  | %     | 60 - 130% | 98                |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 98                |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 95                |
| OP Pesticides in Soil                           |             |               |       | Method: M | E-(AU)-[ENV]AN420 |
| Parameter                                       | Sample Name | Sample Number | Units | Criteria  | Recovery %        |
| 2-fluorobiphenyl (Surrogate)                    | <u>S1</u>   | SE242054.001  | %     | 60 - 130% | 85                |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 81                |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 84                |
| d14-p-terphenyl (Surrogate)                     | S1          | SE242054.001  | %     | 60 - 130% | 93                |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 91                |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 93                |
| PAH (Polynuclear Aromatic Hydrocarbons) in Soil |             |               |       | Method: M | E-(AU)-[ENV]AN420 |
| Parameter                                       | Sample Name | Sample Number | Units | Criteria  | Recovery %        |
| 2-fluorobiphenyl (Surrogate)                    | S1          | SE242054.001  | %     | 70 - 130% | 85                |
|                                                 | S2          | SE242054.002  | %     | 70 - 130% | 81                |
|                                                 | S3          | SE242054.003  | %     | 70 - 130% | 84                |
| d14-p-terphenyl (Surrogate)                     | S1          | SE242054.001  | %     | 70 - 130% | 93                |
|                                                 | S2          | SE242054.002  | %     | 70 - 130% | 91                |
|                                                 | S3          | SE242054.003  | %     | 70 - 130% | 93                |
| d5-nitrobenzene (Surrogate)                     | S1          | SE242054.001  | %     | 70 - 130% | 86                |
|                                                 | S2          | SE242054.002  | %     | 70 - 130% | 86                |
|                                                 | S3          | SE242054.003  | %     | 70 - 130% | 88                |
| VOC's in Soil                                   |             |               |       | Method: M | E-(AU)-[ENV]AN433 |
| Parameter                                       | Sample Name | Sample Number | Units | Criteria  | Recovery %        |
| Bromofluorobenzene (Surrogate)                  | S1          | SE242054.001  | %     | 60 - 130% | 101               |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 103               |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 95                |
| d4-1,2-dichloroethane (Surrogate)               | S1          | SE242054.001  | %     | 60 - 130% | 126               |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 118               |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 124               |
| d8-toluene (Surrogate)                          | S1          | SE242054.001  | %     | 60 - 130% | 88                |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 96                |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 91                |
| Volatile Petroleum Hydrocarbons in Soil         |             |               |       | Method: M | E-(AU)-[ENV]AN433 |
| Parameter                                       | Sample Name | Sample Number | Units | Criteria  | Recovery %        |
| Bromofluorobenzene (Surrogate)                  | S1          | SE242054.001  | %     | 60 - 130% | 101               |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 103               |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 95                |
| d4-1,2-dichloroethane (Surrogate)               | S1          | SE242054.001  | %     | 60 - 130% | 126               |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 118               |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 124               |
| d8-toluene (Surrogate)                          | <u>S1</u>   | SE242054.001  | %     | 60 - 130% | 88                |
|                                                 | S2          | SE242054.002  | %     | 60 - 130% | 96                |
|                                                 | S3          | SE242054.003  | %     | 60 - 130% | 91                |
|                                                 |             |               |       |           |                   |



### **METHOD BLANKS**

### SE242054 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| Mercury in Soil |           | Met   | hod: ME-(AU)-[ENV]AN312 |        |
|-----------------|-----------|-------|-------------------------|--------|
| Sample Number   | Parameter | Units | LOR                     | Result |
| LB269607.001    | Mercury   | mg/kg | 0.05                    | <0.05  |

### **OC Pesticides in Soil**

| OC Pesticides in Soil     |                       |                                         |       | N   | fethod: ME-(AU)-[ENV]AN420  |
|---------------------------|-----------------------|-----------------------------------------|-------|-----|-----------------------------|
| Sample Number             |                       | Parameter                               | Units | LOR | Result                      |
| LB269598.001              |                       | Alpha BHC                               | mg/kg | 0.1 | <0.1                        |
|                           |                       | Hexachlorobenzene (HCB)                 | mg/kg | 0.1 | <0.1                        |
|                           |                       | Beta BHC                                | mg/kg | 0.1 | <0.1                        |
|                           |                       | Lindane (gamma BHC)                     | mg/kg | 0.1 | <0.1                        |
|                           |                       | Delta BHC                               | mg/kg | 0.1 | <0.1                        |
|                           |                       | Heptachlor                              | mg/kg | 0.1 | <0.1                        |
|                           | -                     | Aldrin                                  | mg/kg | 0.1 | <0.1                        |
|                           | -                     | Isodrin                                 | mg/kg | 0.1 | <0.1                        |
|                           |                       | Heptachlor epoxide                      | mg/kg | 0.1 | <0.1                        |
|                           | -                     | Gamma Chlordane                         | mg/kg | 0.1 | <0.1                        |
|                           | -                     | Alpha Chlordane                         | mg/kg | 0.1 | <0.1                        |
|                           | -                     | Alpha Endosulfan                        | mg/kg | 0.2 | <0.2                        |
|                           | -                     | p,p'-DDE                                | mg/kg | 0.1 | <0.1                        |
|                           | -                     | Dieldrin                                | mg/kg | 0.2 | <0.2                        |
|                           | -                     | Endrin                                  | mg/kg | 0.2 | <0.2                        |
|                           | -                     | Beta Endosulfan                         | mg/kg | 0.2 | <0.2                        |
|                           | -                     | p,p'-DDD                                | mg/kg | 0.1 | <0.1                        |
|                           | -                     | Endrin aldehyde                         | mg/kg | 0.1 | <0.1                        |
|                           | -                     | Endosulfan sulphate                     | mg/kg | 0.1 | <0.1                        |
|                           |                       | p,p'-DDT                                | mg/kg | 0.1 | <0.1                        |
|                           |                       | Endrin ketone                           | mg/kg | 0.1 | <0.1                        |
|                           |                       | Methoxychlor                            | mg/kg | 0.1 | <0.1                        |
|                           |                       | Mirex                                   | mg/kg | 0.1 | <0.1                        |
|                           | Surrogates            | Tetrachloro-m-xylene (TCMX) (Surrogate) | %     | -   | 98                          |
| OP Pesticides in Soil     |                       |                                         |       | N   | /lethod: ME-(AU)-[ENV]AN420 |
| Sample Number             |                       | Parameter                               | Units | LOR | Result                      |
| LB269598.001              |                       | Azinphos-methyl (Guthion)               | ma/ka | 0.2 | <0.2                        |
|                           | -                     | Bromophos Ethyl                         | ma/ka | 0.2 | <0.2                        |
|                           | -                     | Chlorpyrifos (Chlorpyrifos Ethyl)       | ma/ka | 0.2 | <0.2                        |
|                           | -                     | Diazinon (Dimpylate)                    | ma/ka | 0.5 | <0.5                        |
|                           | -                     | Dichlorvos                              | ma/ka | 0.5 | <0.5                        |
|                           | -                     | Dimethoate                              | ma/ka | 0.5 | <0.5                        |
|                           | -                     | Ethion                                  | ma/ka | 0.2 | <0.2                        |
|                           | -                     | Fenitrothion                            | ma/ka | 0.2 | <0.2                        |
|                           | -                     | Malathion                               | ma/ka | 0.2 | <0.2                        |
|                           | -                     | Methidathion                            | ma/ka | 0.5 | <0.5                        |
|                           | -                     | Parathion-ethyl (Parathion)             |       | 0.2 | <0.2                        |
|                           | Surrogates            | 2-fluorobiphenvl (Surrogate)            | %     |     | 83                          |
|                           |                       | d14-p-terphenyl (Surrogate)             | %     | -   | 92                          |
| PAH (Polynuclear Aromatic | Hydrocarbons) in Soil |                                         |       | N   | fethod: ME-(AU)-[ENV]AN420  |

| Parameter           | Units                                                                                                                                                                                                                                                                                             | LOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Result                                                                                                                                                                                                                                                                                                    |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Naphthalene         | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| 2-methylnaphthalene | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| 1-methylnaphthalene | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Acenaphthylene      | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Acenaphthene        | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Fluorene            | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Phenanthrene        | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Anthracene          | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Fluoranthene        | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Pyrene              | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Benzo(a)anthracene  | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Chrysene            | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
| Benzo(a)pyrene      | mg/kg                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                      |
|                     | Parameter         Naphthalene         2-methylnaphthalene         1-methylnaphthalene         Acenaphthylene         Acenaphthene         Fluorene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)anthracene         Chrysene         Benzo(a)pyrene | Parameter         Units           Naphthalene         mg/kg           2-methylnaphthalene         mg/kg           1-methylnaphthalene         mg/kg           Acenaphthylene         mg/kg           Acenaphthylene         mg/kg           Fluorene         mg/kg           Phenanthrene         mg/kg           Fluorene         mg/kg           Phenanthrene         mg/kg           Fluorene         mg/kg           Phenanthrene         mg/kg           Benzo(a)anthracene         mg/kg           Benzo(a)pyrene         mg/kg | ParameterUnitsLORNaphthalenemg/kg0.12-methylnaphthalenemg/kg0.11-methylnaphthalenemg/kg0.1Acenaphthylenemg/kg0.1Acenaphthylenemg/kg0.1Fluorenemg/kg0.1Phenanthrenemg/kg0.1Fluorenemg/kg0.1Phenanthrenemg/kg0.1Prenemg/kg0.1Fluoranthenemg/kg0.1Fluoranthenemg/kg0.1Chrysenemg/kg0.1Benzo(a)pyrenemg/kg0.1 |



### **METHOD BLANKS**

### SE242054 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Sample Number Result Parameter Units LB269598.001 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 Dibenzo(ah)anthracene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(ghi)perylene mg/kg <0.1 Total PAH (18) 0.8 mg/kg Surrogates d5-nitrobenzene (Surrogate) % 86 2-fluorobiphenyl (Surrogate) % 83 d14-p-terphenyl (Surrogate) % 92 -Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Units LOR Result Parameter LB269604.001 Arsenic, As <1 mg/kg 1 Cadmium. Cd mg/kg 0.3 < 0.3 Chromium, Cr mg/kg 0.5 <0.5 Copper, Cu 0.5 <0.5 mg/kg < 0.5 Nickel, Ni mg/kg 0.5 Lead, Pb mg/kg 1 <1 <2.0 Zinc, Zn 2 mg/kg TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Result Parameter Units I OR LB269598.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 45 <45 mg/kg TRH C29-C36 <45 mg/kg 45 TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units Result LB269599.001 Monocyclic Aromatic Benzene mg/kg 0.1 <0.1 Hydrocarbons <0.1 Toluene 0.1 mg/kg Ethylbenzene mg/kg 01 <0.1 0.2 <0.2 m/p-xylene mg/kg o-xylene 0.1 <0.1 mg/kg Polycyclic VOCs Naphthalene (VOC)\* mg/kg 0.1 <0.1 Surrogates d4-1,2-dichloroethane (Surrogate) % 128 d8-toluene (Surrogate) % 104 Bromofluorobenzene (Surrogate) % 115 Totals Total BTEX\* 0.6 <0.6 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Units LOR Result Parameter LB269599.001 TRH C6-C9 mg/kg 20 <20 Surrogates d4-1,2-dichloroethane (Surrogate) % 128



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

| Mercury in Soil |              |           |       |      |          | Meth      | od: ME-(AU)- | (ENVJAN31) | 2 |
|-----------------|--------------|-----------|-------|------|----------|-----------|--------------|------------|---|
| Original        | Duplicate    | Parameter | Units | LOR  | Original | Duplicate | Criteria %   | RPD %      |   |
| SE242058.006    | LB269607.014 | Mercury   | mg/kg | 0.05 | < 0.05   | < 0.05    | 200          | 0          |   |
| SE242177.002    | LB269607.021 | Mercury   | mg/kg | 0.05 | <0.05    | <0.05     | 200          | 0          |   |

### Moisture Content

| Moisture Content Method: ME-(AU)-[ENV |              |            |       |     |          | [ENV]AN002 |            |       |
|---------------------------------------|--------------|------------|-------|-----|----------|------------|------------|-------|
| Original                              | Duplicate    | Parameter  | Units | LOR | Original | Duplicate  | Criteria % | RPD % |
| SE242058.006                          | LB269600.011 | % Moisture | %w/w  | 1   | 24.7     | 25.3       | 34         | 2     |
| SE242177.002                          | LB269600.022 | % Moisture | %w/w  | 1   | 15.9     | 15.7       | 36         | 1     |

### OC Pesticides in Soil

30/1/2023

| OC Pesticides in S | ioil         |            |                                         |       |     |          | Metho        | od: ME-(AU)- | (ENVJAN420 |
|--------------------|--------------|------------|-----------------------------------------|-------|-----|----------|--------------|--------------|------------|
| Original           | Duplicate    |            | Parameter                               | Units | LOR | Original | Duplicate    | Criteria %   | RPD %      |
| SE242177.002       | LB269598.025 |            | Alpha BHC                               | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Hexachlorobenzene (HCB)                 | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Beta BHC                                | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Lindane (gamma BHC)                     | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Delta BHC                               | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Heptachlor                              | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Aldrin                                  | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Isodrin                                 | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Heptachlor epoxide                      | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Gamma Chlordane                         | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Alpha Chlordane                         | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Alpha Endosulfan                        | mg/kg | 0.2 | <0.2     | <0.2         | 200          | 0          |
|                    |              |            | o,p'-DDE*                               | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | p,p'-DDE                                | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Dieldrin                                | mg/kg | 0.2 | <0.2     | <0.2         | 200          | 0          |
|                    |              |            | Endrin                                  | mg/kg | 0.2 | <0.2     | <0.2         | 200          | 0          |
|                    |              |            | Beta Endosulfan                         | mg/kg | 0.2 | <0.2     | <0.2         | 200          | 0          |
|                    |              |            | o,p'-DDD*                               | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | p,p'-DDD                                | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Endrin aldehyde                         | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Endosulfan sulphate                     | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | o,p'-DDT*                               | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | p,p'-DDT                                | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Endrin ketone                           | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Methoxychlor                            | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Mirex                                   | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | trans-Nonachlor                         | mg/kg | 0.1 | <0.1     | <0.1         | 200          | 0          |
|                    |              |            | Total CLP OC Pesticides                 | mg/kg | 1   | <1       | <1           | 200          | 0          |
|                    |              |            | Total OC VIC EPA                        | mg/kg | 1   | <1       | <1           | 200          | 0          |
|                    |              | Surrogates | Tetrachloro-m-xylene (TCMX) (Surrogate) | mg/kg | -   | 0.15     | 0.14         | 30           | 1          |
| OP Pesticides in S | ioil         |            |                                         |       |     |          | Metho        | od: ME-(AU)- | ENVJAN420  |
| Original           | Duplicate    |            | Parameter                               | Units | LOR | Original | Duplicate    | Criteria %   | RPD %      |
| SE242054.003       | LB269598.027 |            | Azinphos-methyl (Guthion)               | mg/kg | 0.2 | <0.2     | 0.0028649884 | 200          | 0          |
|                    |              |            | Bromophos Ethyl                         | mg/kg | 0.2 | <0.2     | 0            | 200          | 0          |
|                    |              |            | Chlorpyrifos (Chlorpyrifos Ethyl)       | mg/kg | 0.2 | <0.2     | 0.0008293871 | 200          | 0          |
|                    |              |            | Diazinon (Dimpylate)                    | mg/kg | 0.5 | <0.5     | 0.0023440000 | 200          | 0          |
|                    |              |            | Dichlorvos                              | mg/kg | 0.5 | <0.5     | 0.0429316602 | 200          | 0          |
|                    |              |            | Dimethoate                              | mg/kg | 0.5 | <0.5     | 0.0037720265 | 200          | 0          |
|                    |              |            | Ethion                                  | mg/kg | 0.2 | <0.2     | 0.0006905828 | 200          | 0          |
|                    |              |            | Fenitrothion                            | mg/kg | 0.2 | <0.2     | 0            | 200          | 0          |
|                    |              |            | Malathion                               | mg/kg | 0.2 | <0.2     | 0.0009308029 | 200          | 0          |
|                    |              |            | Methidathion                            | mg/kg | 0.5 | <0.5     | 0.0030634190 | 200          | 0          |
|                    |              |            | Parathion-ethyl (Parathion)             | mg/kg | 0.2 | <0.2     | 0            | 200          | 0          |
|                    |              |            | Total OP Pesticides*                    | mg/kg | 1.7 | <1.7     | 0            | 200          | 0          |

30 Method: ME-(AU)-[ENV]AN420

30

0.4 0.4221044314

0.5

0.4656917262

mg/kg

mg/kg

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Surrogates

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

0

1



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

| PAH (Polynuclear   | Aromatic Hydrocarbo | ons) in Soil (continu | ed)                                                                                                                                         |               |     |            | Meth       | nod: ME-(AU) | -[ENV]AN42( |
|--------------------|---------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|------------|------------|--------------|-------------|
| Original           | Duplicate           |                       | Parameter                                                                                                                                   | Units         | LOR | Original   | Duplicate  | Criteria %   | RPD %       |
| SE242054.003       | LB269598.027        |                       | Naphthalene                                                                                                                                 | ma/ka         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | 2-methylnaphthalene                                                                                                                         | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | 1-methylnaphthalene                                                                                                                         | ma/ka         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       |                                                                                                                                             | ma/ka         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       |                                                                                                                                             | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Eluoropo                                                                                                                                    | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Phenanthrene                                                                                                                                | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Anthronome                                                                                                                                  | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Fluerenthene                                                                                                                                | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Provinciene                                                                                                                                 | Hig/kg        | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Pyrene                                                                                                                                      | mg/kg         | 0.1 | <0.1       | <0.1       | 200          |             |
|                    |                     |                       | Benzo(a)anthracene                                                                                                                          | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Chrysene                                                                                                                                    | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Benzo(b&j)fluoranthene                                                                                                                      | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Benzo(k)fluoranthene                                                                                                                        | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Benzo(a)pyrene                                                                                                                              | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Indeno(1,2,3-cd)pyrene                                                                                                                      | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Dibenzo(ah)anthracene                                                                                                                       | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Benzo(ghi)perylene                                                                                                                          | mg/kg         | 0.1 | <0.1       | <0.1       | 200          | 0           |
|                    |                     |                       | Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>200</td><td>0</td></lor=0*<>        | mg/kg         | 0.2 | <0.2       | <0.2       | 200          | 0           |
|                    |                     |                       | Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>175</td><td>0</td></lor=lor> | mg/kg         | 0.2 | <0.2       | <0.2       | 175          | 0           |
|                    |                     |                       | Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>134</td><td>0</td></lor=lor*<>    | mg/kg         | 0.3 | <0.3       | <0.3       | 134          | 0           |
|                    |                     |                       | Total PAH (18)                                                                                                                              | mg/kg         | 0.8 | <0.8       | <0.1       | 200          | 0           |
|                    |                     | Surrogates            | d5-nitrobenzene (Surrogate)                                                                                                                 | mg/kg         | -   | 0.4        | 0.4        | 30           | 0           |
|                    |                     | 0                     | 2-fluorobiphenyl (Surrogate)                                                                                                                | mg/kg         | -   | 0.4        | 0.4        | 30           | 0           |
|                    |                     |                       | d14-p-terphenyl (Surrogate)                                                                                                                 | mg/kg         | -   | 0.5        | 0.5        | 30           | 1           |
| Total Decoverable  | Elemente in SeilAMe | ete Colida/Materiale  |                                                                                                                                             |               |     |            |            |              | N040/4N22   |
| Total Recoverable  | Elements in Soll/wa | ste Solids/Materials  | By ICPOES                                                                                                                                   |               |     |            | Method: ME |              | 11040/41132 |
| Original           | Duplicate           |                       | Parameter                                                                                                                                   | Units         | LOR | Original   | Duplicate  | Criteria %   | RPD %       |
| SE242058.006       | LB269604.014        |                       | Arsenic, As                                                                                                                                 | mg/kg         | 1   | 5          | 4          | 51           | 9           |
|                    |                     |                       | Cadmium, Cd                                                                                                                                 | mg/kg         | 0.3 | <0.3       | <0.3       | 200          | 0           |
|                    |                     |                       | Chromium, Cr                                                                                                                                | mg/kg         | 0.5 | 34         | 36         | 31           | 4           |
|                    |                     |                       | Copper, Cu                                                                                                                                  | mg/kg         | 0.5 | <0.5       | <0.5       | 200          | 0           |
|                    |                     |                       | Nickel, Ni                                                                                                                                  | mg/kg         | 0.5 | 1.3        | 0.8        | 78           | 42          |
|                    |                     |                       | Lead, Pb                                                                                                                                    | mg/kg         | 1   | 15         | 16         | 36           | 2           |
|                    |                     |                       | Zinc, Zn                                                                                                                                    | mg/kg         | 2   | 6.4        | 5.3        | 64           | 19          |
| SE242177.002       | LB269604.021        |                       | Arsenic, As                                                                                                                                 | mg/kg         | 1   | 4          | 4          | 56           | 3           |
|                    |                     |                       | Cadmium, Cd                                                                                                                                 | mg/kg         | 0.3 | <0.3       | <0.3       | 200          | 0           |
|                    |                     |                       | Chromium. Cr                                                                                                                                | mg/kg         | 0.5 | 33         | 29         | 32           | 11          |
|                    |                     |                       | Copper, Cu                                                                                                                                  | ma/ka         | 0.5 | <0.5       | <0.5       | 200          | 0           |
|                    |                     |                       | Nickel Ni                                                                                                                                   | mg/kg         | 0.5 | 1.3        | 17         | 63           | 24          |
|                    |                     |                       | Lead Ph                                                                                                                                     | ma/ka         | 1   | 15         | 13         | 37           | 12          |
|                    |                     |                       | Zinc Zn                                                                                                                                     | mg/kg         | 2   | 13         | 3.7        | 80           | 14          |
|                    |                     |                       | 200, 20                                                                                                                                     | Ing/kg        | 2   | 4.5        | 5.7        | 00           |             |
| I KH (I otal Recov | erable Hydrocarbons | ) in Soli             |                                                                                                                                             |               |     |            | Meth       | 100: ME-(AU) | -l⊏NVJAN40  |
| Original           | Duplicate           |                       | Parameter                                                                                                                                   | Units         | LOR | Original   | Duplicate  | Criteria %   | RPD %       |
| SE242054.003       | LB269598.027        |                       | TRH C10-C14                                                                                                                                 | mg/kg         | 20  | <20        | <20        | 200          | 0           |
|                    |                     |                       | TRH C15-C28                                                                                                                                 | mg/kg         | 45  | <45        | <45        | 157          | 0           |
|                    |                     |                       | TRH C29-C36                                                                                                                                 | mg/kg         | 45  | 47         | 59         | 115          | 22          |
|                    |                     |                       | TRH C37-C40                                                                                                                                 | mg/kg         | 100 | <100       | <100       | 200          | 0           |
|                    |                     |                       | TRH C10-C36 Total                                                                                                                           | mg/kg         | 110 | <110       | <110       | 200          | 0           |
|                    |                     |                       | TRH >C10-C40 Total (F bands)                                                                                                                | mg/kg         | 210 | <210       | <210       | 200          | 0           |
|                    |                     | TRH F Bands           | TRH >C10-C16                                                                                                                                | ma/ka         | 25  | <25        | <25        | 200          | 0           |
|                    |                     |                       | TRH >C10-C16 - Naphthalene (F2)                                                                                                             | ma/ka         | 25  | <25        | <25        | 200          |             |
|                    |                     |                       | TRH >C16-C34 (F3)                                                                                                                           | ma/ka         | 90  | <90        | <90        | 148          | 0           |
|                    |                     |                       | TRH >C34-C40 (F4)                                                                                                                           | mg/kg         | 120 | <120       | <120       | 200          | 0           |
| SE242177 002       | 1 8260500 025       |                       | TPH C10_C14                                                                                                                                 | malka         | 20  | - 120      | - 120      | 200          | 0           |
| JL272111.002       | LD209090.020        |                       | TPH 015-019                                                                                                                                 | mg/kg         | 20  | ~20        | ~20        | 200          |             |
|                    |                     |                       | TPH C20 C26                                                                                                                                 | тту/ку<br>//с | 40  | ~40<br>~45 | ~40        | 200          |             |
|                    |                     |                       |                                                                                                                                             | mg/kg         | 45  | <45        | <45        | 200          |             |
|                    |                     |                       |                                                                                                                                             | mg/kg         | 100 | <100       | <100       | 200          |             |
|                    |                     |                       | TRH C10-C36 Total                                                                                                                           | mg/kg         | 110 | <110       | <110       | 200          | 0           |
|                    |                     |                       | IRH >C10-C40 Total (F bands)                                                                                                                | mg/kg         | 210 | <210       | <210       | 200          | 0           |
|                    |                     | TRH F Bands           | TRH >C10-C16                                                                                                                                | mg/kg         | 25  | <25        | <25        | 200          | 0           |



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

### TRH (Total Recoverable Hydrocarbons) in Soil (continued)

| TRH (Total Recove  | erable Hydrocarbons | ) in Soil (continued) |                                   |       |     |          | Meth      | od: ME-(AU)- | [ENV]AN403 |
|--------------------|---------------------|-----------------------|-----------------------------------|-------|-----|----------|-----------|--------------|------------|
| Original           | Duplicate           |                       | Parameter                         | Units | LOR | Original | Duplicate | Criteria %   | RPD %      |
| SE242177.002       | LB269598.025        | TRH F Bands           | TRH >C10-C16 - Naphthalene (F2)   | mg/kg | 25  | <25      | <25       | 200          | 0          |
|                    |                     |                       | TRH >C16-C34 (F3)                 | mg/kg | 90  | <90      | <90       | 200          | 0          |
|                    |                     |                       | TRH >C34-C40 (F4)                 | mg/kg | 120 | <120     | <120      | 200          | 0          |
| VOC's in Soil      |                     |                       |                                   |       |     |          | Meth      | od: ME-(AU)- | [ENV]AN433 |
| Original           | Duplicate           |                       | Parameter                         | Units | LOR | Original | Duplicate | Criteria %   | RPD %      |
| SE242058.006       | LB269599.014        | Monocyclic            | Benzene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     | Aromatic              | Toluene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     |                       | Ethylbenzene                      | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     |                       | m/p-xylene                        | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |                     |                       | o-xylene                          | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     | Polycyclic            | Naphthalene (VOC)*                | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     | Surrogates            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 11.7     | 12.0      | 50           | 3          |
|                    |                     |                       | d8-toluene (Surrogate)            | mg/kg | -   | 8.4      | 8.2       | 50           | 2          |
|                    |                     |                       | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 8.9      | 9.1       | 50           | 2          |
|                    |                     | Totals                | Total BTEX*                       | mg/kg | 0.6 | <0.6     | <0.6      | 200          | 0          |
|                    |                     |                       | Total Xylenes*                    | mg/kg | 0.3 | <0.3     | <0.3      | 200          | 0          |
| SE242177.002       | LB269599.022        | Monocyclic            | Benzene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     | Aromatic              | Toluene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     |                       | Ethylbenzene                      | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     |                       | m/p-xylene                        | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |                     |                       | o-xylene                          | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     | Polycyclic            | Naphthalene (VOC)*                | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     | Surrogates            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 12.7     | 12.3      | 50           | 3          |
|                    |                     |                       | d8-toluene (Surrogate)            | mg/kg | -   | 8.9      | 8.6       | 50           | 4          |
|                    |                     |                       | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 9.7      | 9.3       | 50           | 3          |
|                    |                     | Totals                | Total BTEX*                       | mg/kg | 0.6 | <0.6     | <0.6      | 200          | 0          |
|                    |                     |                       | Total Xylenes*                    | mg/kg | 0.3 | <0.3     | <0.3      | 200          | 0          |
| Volatile Petroleum | Hydrocarbons in Soi | i                     |                                   |       |     |          | Meth      | od: ME-(AU)- | (ENVJAN433 |
| Original           | Duplicate           |                       | Parameter                         | Units | LOR | Original | Duplicate | Criteria %   | RPD %      |
| SE242058.006       | LB269599.014        |                       | TRH C6-C10                        | mg/kg | 25  | <25      | <25       | 200          | 0          |
|                    |                     |                       | TRH C6-C9                         | mg/kg | 20  | <20      | <20       | 200          | 0          |
|                    |                     | Surrogates            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 11.7     | 12.0      | 30           | 3          |
|                    |                     |                       | d8-toluene (Surrogate)            | mg/kg | -   | 8.4      | 8.2       | 30           | 2          |
|                    |                     |                       | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 8.9      | 9.1       | 30           | 2          |
|                    |                     | VPH F Bands           | Benzene (F0)                      | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     |                       | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25      | <25       | 200          | 0          |
| SE242177.002       | LB269599.022        |                       | TRH C6-C10                        | mg/kg | 25  | <25      | <25       | 200          | 0          |
|                    |                     |                       | TRH C6-C9                         | mg/kg | 20  | <20      | <20       | 200          | 0          |
|                    |                     | Surrogates            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 12.7     | 12.3      | 30           | 3          |
|                    |                     |                       | d8-toluene (Surrogate)            | mg/kg | -   | 8.9      | 8.6       | 30           | 4          |
|                    |                     |                       | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 9.7      | 9.3       | 30           | 3          |
|                    |                     | VPH F Bands           | Benzene (F0)                      | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0          |
|                    |                     |                       | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25      | <25       | 200          | 0          |



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| Mercury in Soil |           |       |      |        |          | Vethod: ME-(A | U)-[ENV]AN312 |
|-----------------|-----------|-------|------|--------|----------|---------------|---------------|
| Sample Number   | Parameter | Units | LOR  | Result | Expected | Criteria %    | Recovery %    |
| LB269607.002    | Mercury   | mg/kg | 0.05 | 0.23   | 0.2      | 70 - 130      | 114           |
|                 |           |       |      |        |          |               |               |

| OC Pesticides in S | lioil              |                                         |        |     |        |             | Method: ME-(A | U)-[ENV]AN420 |
|--------------------|--------------------|-----------------------------------------|--------|-----|--------|-------------|---------------|---------------|
| Sample Number      |                    | Parameter                               | Units  | LOR | Result | Expected    | Criteria %    | Recovery %    |
| LB269598.002       |                    | Delta BHC                               | mg/kg  | 0.1 | 0.2    | 0.2         | 60 - 140      | 89            |
|                    |                    | Heptachlor                              | mg/kg  | 0.1 | 0.2    | 0.2         | 60 - 140      | 92            |
|                    |                    | Aldrin                                  | mg/kg  | 0.1 | 0.2    | 0.2         | 60 - 140      | 87            |
|                    |                    | Dieldrin                                | mg/kg  | 0.2 | <0.2   | 0.2         | 60 - 140      | 86            |
|                    |                    | Endrin                                  | mg/kg  | 0.2 | <0.2   | 0.2         | 60 - 140      | 93            |
|                    |                    | p,p'-DDT                                | mg/kg  | 0.1 | 0.2    | 0.2         | 60 - 140      | 76            |
|                    | Surrogates         | Tetrachloro-m-xylene (TCMX) (Surrogate) | mg/kg  | -   | 0.15   | 0.15        | 40 - 130      | 98            |
| OP Pesticides in S | ioil               |                                         |        |     |        | l l         | Method: ME-(A | U)-[ENV]AN420 |
| Sample Number      |                    | Parameter                               | Units  | LOR | Result | Expected    | Criteria %    | Recovery %    |
| LB269598.002       |                    | Chlorpyrifos (Chlorpyrifos Ethyl)       | mg/kg  | 0.2 | 1.6    | 2           | 60 - 140      | 81            |
|                    |                    | Diazinon (Dimpylate)                    | mg/kg  | 0.5 | 1.6    | 2           | 60 - 140      | 81            |
|                    |                    | Dichlorvos                              | mg/kg  | 0.5 | 1.4    | 2           | 60 - 140      | 70            |
|                    |                    | Ethion                                  | mg/kg  | 0.2 | 1.4    | 2           | 60 - 140      | 69            |
|                    | Surrogates         | 2-fluorobiphenyl (Surrogate)            | mg/kg  | -   | 0.5    | 0.5         | 40 - 130      | 90            |
|                    | -                  | d14-p-terphenyl (Surrogate)             | mg/kg  | -   | 0.5    | 0.5         | 40 - 130      | 92            |
| PAH (Polynuclear   | Aromatic Hydrocar  | rbons) in Soil                          |        |     |        | 1           | Method: ME-(A | U)-[ENV]AN420 |
| Sample Number      |                    | Parameter                               | Units  | LOR | Result | Expected    | Criteria %    | Recoverv %    |
| LB269598.002       |                    | Naphthalene                             | ma/ka  | 0.1 | 4.1    | 4           | 60 - 140      | 102           |
|                    |                    | Acenaphthylene                          | ma/ka  | 0.1 | 3.9    | 4           | 60 - 140      | 97            |
|                    |                    | Acenaphthene                            | mg/kg  | 0.1 | 4.0    | 4           | 60 - 140      | 100           |
|                    |                    | Phenanthrene                            | mg/kg  | 0.1 | 3.8    | 4           | 60 - 140      | 96            |
|                    |                    | Anthracene                              | mg/kg  | 0.1 | 4.0    | 4           | 60 - 140      | 100           |
|                    |                    | Fluoranthene                            | ma/ka  | 0.1 | 4.1    | 4           | 60 - 140      | 103           |
|                    |                    | Pvrene                                  | ma/ka  | 0.1 | 4.0    | 4           | 60 - 140      | 99            |
|                    |                    | Benzo(a)pyrene                          | mg/kg  | 0.1 | 4.5    | 4           | 60 - 140      | 114           |
|                    | Surrogates         | d5-nitrobenzene (Surrogate)             | mg/kg  | -   | 0.4    | 0.5         | 40 - 130      | 88            |
|                    | -                  | 2-fluorobiphenyl (Surrogate)            | mg/kg  | -   | 0.5    | 0.5         | 40 - 130      | 90            |
|                    |                    | d14-p-terphenyl (Surrogate)             | mg/kg  | -   | 0.5    | 0.5         | 40 - 130      | 92            |
| Total Recoverable  | Elements in Soil/V | Vaste Solids/Materials by ICPOES        |        |     |        | Method      | : ME-(AU)-IEN | VIAN040/AN320 |
| Sample Number      |                    | Paramotor                               | Unite  |     | Posult | Expected    | Critoria %    | Bocovory %    |
|                    |                    |                                         | malka  | 1   | 340    | 318 22      | 80 - 120      | 108           |
| LB209004.002       |                    | Cadmium Cd                              | mg/kg  | 0.3 | 4 1    | 4.81        | 70 - 130      | 86            |
|                    |                    | Chromium Cr                             | mg/kg  | 0.5 | 40     | 38.31       | 80 - 120      | 104           |
|                    |                    |                                         | mg/kg  | 0.5 | 310    | 290         | 80 - 120      | 107           |
|                    |                    | Nickel Ni                               | mg/kg  | 0.5 | 190    | 187         | 80 - 120      | 101           |
|                    |                    | Lead Ph                                 | ma/ka  | 1   | 93     | 89.9        | 80 - 120      | 103           |
|                    |                    | Zinc Zn                                 | ma/ka  | 2   | 270    | 273         | 80 - 120      | 97            |
| TPH (Total Pasau   | amble Hydrocerbo   |                                         | ngng   | 2   | 210    |             | Method: ME (A |               |
| Comple Number      |                    |                                         | Linite |     | Decult | Eveneted    |               |               |
| L R260508 002      |                    |                                         | Ollits | 20  | 42     | Expected 40 |               | 106           |
| LD209090.002       |                    | TPH C15-C28                             | mg/kg  | 45  | 43     | 40          | 60 - 140      | 100           |
|                    |                    | TPH C20_C36                             | mg/kg  | 40  | <45    | 40          | 60 - 140      | 80            |
|                    | TPH E Banda        | TPH 5C10-C16                            | mg/kg  |     | -40    | 40          | 60 - 140      | 107           |
|                    | TATI E Datius      | TPH 5C16-C34 (E3)                       | mg/kg  | 20  | 40     | 40          | 60 140        | 107           |
|                    |                    | TPH >C34_C40 (F4)                       | mg/kg  | 120 | < 100  | 40          | 60 140        | 74            |
|                    |                    | TTTT ~ 034-040 (F4)                     | ту/кд  | 120 | ×120   | 20          | 00 - 140      |               |
| VOC's in Soil      |                    |                                         |        |     |        |             | Method: ME-(A | U)-[ENV]AN433 |
| Sample Number      |                    | Parameter                               | Units  | LOR | Result | Expected    | Criteria %    | Recoverv %    |

| Sample Number           | Parameter                         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|-------------------------|-----------------------------------|-------|-----|--------|----------|------------|------------|
| LB269599.002 Monocyclic | Benzene                           | mg/kg | 0.1 | 4.8    | 5        | 60 - 140   | 97         |
| Aromatic                | Toluene                           | mg/kg | 0.1 | 5.1    | 5        | 60 - 140   | 102        |
|                         | Ethylbenzene                      | mg/kg | 0.1 | 4.8    | 5        | 60 - 140   | 97         |
|                         | m/p-xylene                        | mg/kg | 0.2 | 9.7    | 10       | 60 - 140   | 97         |
|                         | o-xylene                          | mg/kg | 0.1 | 5.0    | 5        | 60 - 140   | 100        |
| Surrogates              | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 11.5   | 10       | 70 - 130   | 115        |
| ·                       |                                   |       |     |        |          |            |            |



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| VOC's in Soil (conti | nued)             |                                   |       |     |        | N        | /lethod: ME-(A | U)-[ENV]AN433 |
|----------------------|-------------------|-----------------------------------|-------|-----|--------|----------|----------------|---------------|
| Sample Number        |                   | Parameter                         | Units | LOR | Result | Expected | Criteria %     | Recovery %    |
| LB269599.002         | Surrogates        | d8-toluene (Surrogate)            | mg/kg | -   | 9.9    | 10       | 70 - 130       | 99            |
|                      |                   | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 10.1   | 10       | 70 - 130       | 101           |
| Volatile Petroleum I | Hydrocarbons in S | oil                               |       |     |        | N        | /lethod: ME-(A | U)-[ENV]AN433 |
| Sample Number        |                   | Parameter                         | Units | LOR | Result | Expected | Criteria %     | Recovery %    |
| LB269599.002         |                   | TRH C6-C10                        | mg/kg | 25  | 73     | 92.5     | 60 - 140       | 79            |
|                      |                   | TRH C6-C9                         | mg/kg | 20  | 57     | 80       | 60 - 140       | 71            |
|                      | Surrogates        | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 11.5   | 10       | 70 - 130       | 115           |
|                      |                   | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 10.1   | 10       | 70 - 130       | 101           |
|                      | VPH F Bands       | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | 43     | 62.5     | 60 - 140       | 69            |



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| Mercury in Soil |               |           |       |      |        | Met      | hod: ME-(Al | J)-[ENV]AN312 |
|-----------------|---------------|-----------|-------|------|--------|----------|-------------|---------------|
| QC Sample       | Sample Number | Parameter | Units | LOR  | Result | Original | Spike       | Recovery%     |
| SE242054.001    | LB269607.004  | Mercury   | mg/kg | 0.05 | 0.33   | 0.10     | 0.2         | 117           |

### **OP Pesticides in Soil**

| OP Pesticides in | Soil                  |             |                                   |       |     |        | Meth     | iod: ME-(AU | )-[ENV]AN420 |
|------------------|-----------------------|-------------|-----------------------------------|-------|-----|--------|----------|-------------|--------------|
| QC Sample        | Sample Number         |             | Parameter                         | Units | LOR | Result | Original | Spike       | Recovery%    |
| SE242054.001     | LB269598.004          |             | Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2   | <0.2     | -           | -            |
|                  |                       |             | Bromophos Ethyl                   | mg/kg | 0.2 | <0.2   | <0.2     | -           | -            |
|                  |                       |             | Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | 1.6    | <0.2     | 2           | 77           |
|                  |                       |             | Diazinon (Dimpylate)              | mg/kg | 0.5 | 1.6    | <0.5     | 2           | 79           |
|                  |                       |             | Dichlorvos                        | mg/kg | 0.5 | 1.4    | <0.5     | 2           | 66           |
|                  |                       |             | Dimethoate                        | mg/kg | 0.5 | <0.5   | <0.5     | -           | -            |
|                  |                       |             | Ethion                            | mg/kg | 0.2 | 1.5    | <0.2     | 2           | 74           |
|                  |                       |             | Fenitrothion                      | mg/kg | 0.2 | <0.2   | <0.2     | -           | -            |
|                  |                       |             | Malathion                         | mg/kg | 0.2 | <0.2   | <0.2     | -           | -            |
|                  |                       |             | Methidathion                      | mg/kg | 0.5 | <0.5   | <0.5     | -           | -            |
|                  |                       |             | Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2   | <0.2     | -           | -            |
|                  |                       |             | Total OP Pesticides*              | mg/kg | 1.7 | 6.0    | <1.7     | -           | -            |
|                  |                       | Surrogates  | 2-fluorobiphenyl (Surrogate)      | mg/kg | -   | 0.4    | 0.4      | -           | 87           |
|                  |                       |             | d14-p-terphenyl (Surrogate)       | mg/kg | -   | 0.4    | 0.5      | -           | 86           |
| PAH (Polynuclea  | r Aromatic Hydrocarbo | ns) in Soil |                                   |       |     |        | Meth     | iod: ME-(AU | )-[ENV]AN420 |
| QC Sample        | Sample Number         |             | Parameter                         | Units | LOR | Result | Original | Spike       | Recovery%    |

| QC Sample       | Sample Number             |              | Parameter                                                                                                                                   | Units       | LUR  | Result | Original   | Spike      | Recovery %  |
|-----------------|---------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|--------|------------|------------|-------------|
| SE242054.001    | LB269598.004              |              | Naphthalene                                                                                                                                 | mg/kg       | 0.1  | 3.9    | <0.1       | 4          | 96          |
|                 |                           |              | 2-methylnaphthalene                                                                                                                         | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | 1-methylnaphthalene                                                                                                                         | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Acenaphthylene                                                                                                                              | mg/kg       | 0.1  | 3.7    | <0.1       | 4          | 92          |
|                 |                           |              | Acenaphthene                                                                                                                                | mg/kg       | 0.1  | 3.7    | <0.1       | 4          | 93          |
|                 |                           |              | Fluorene                                                                                                                                    | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Phenanthrene                                                                                                                                | mg/kg       | 0.1  | 3.6    | <0.1       | 4          | 89          |
|                 |                           |              | Anthracene                                                                                                                                  | mg/kg       | 0.1  | 3.7    | <0.1       | 4          | 92          |
|                 |                           |              | Fluoranthene                                                                                                                                | mg/kg       | 0.1  | 3.9    | <0.1       | 4          | 96          |
|                 |                           |              | Pyrene                                                                                                                                      | mg/kg       | 0.1  | 3.7    | <0.1       | 4          | 91          |
|                 |                           |              | Benzo(a)anthracene                                                                                                                          | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Chrysene                                                                                                                                    | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Benzo(b&j)fluoranthene                                                                                                                      | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Benzo(k)fluoranthene                                                                                                                        | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Benzo(a)pyrene                                                                                                                              | mg/kg       | 0.1  | 4.3    | <0.1       | 4          | 107         |
|                 |                           |              | Indeno(1,2,3-cd)pyrene                                                                                                                      | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Dibenzo(ah)anthracene                                                                                                                       | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Benzo(ghi)perylene                                                                                                                          | mg/kg       | 0.1  | <0.1   | <0.1       | -          | -           |
|                 |                           |              | Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.3</td><td>&lt;0.2</td><td>-</td><td>-</td></lor=0*<>        | TEQ (mg/kg) | 0.2  | 4.3    | <0.2       | -          | -           |
|                 |                           |              | Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.4</td><td>&lt;0.2</td><td>-</td><td>-</td></lor=lor> | TEQ (mg/kg) | 0.2  | 4.4    | <0.2       | -          | -           |
|                 |                           |              | Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.4</td><td>&lt;0.3</td><td>-</td><td>-</td></lor=lor*<>    | TEQ (mg/kg) | 0.3  | 4.4    | <0.3       | -          | -           |
|                 |                           |              | Total PAH (18)                                                                                                                              | mg/kg       | 0.8  | 30     | <0.8       | -          | -           |
|                 | S                         | urrogates    | d5-nitrobenzene (Surrogate)                                                                                                                 | mg/kg       | -    | 0.4    | 0.4        | -          | 84          |
|                 |                           |              | 2-fluorobiphenyl (Surrogate)                                                                                                                | mg/kg       | -    | 0.4    | 0.4        | -          | 87          |
|                 |                           |              | d14-p-terphenyl (Surrogate)                                                                                                                 | mg/kg       | -    | 0.4    | 0.5        | -          | 86          |
| Total Recoverab | le Elements in Soil/Waste | Solids/Mater | lais by ICPOES                                                                                                                              |             |      |        | Method: ME | -(AU)-[ENV | AN040/AN320 |
|                 |                           |              |                                                                                                                                             |             | 1.00 | -      |            |            |             |

| QC Sample        | Sample Number                 | Parameter    | Units | LOR | Result | Original | Spike       | Recovery%     |
|------------------|-------------------------------|--------------|-------|-----|--------|----------|-------------|---------------|
| SE242054.001     | LB269604.004                  | Arsenic, As  | mg/kg | 1   | 54     | 3        | 50          | 102           |
|                  |                               | Cadmium, Cd  | mg/kg | 0.3 | 49     | <0.3     | 50          | 98            |
|                  |                               | Chromium, Cr | mg/kg | 0.5 | 57     | 7.4      | 50          | 100           |
|                  |                               | Copper, Cu   | mg/kg | 0.5 | 63     | 11       | 50          | 103           |
|                  |                               | Nickel, Ni   | mg/kg | 0.5 | 53     | 2.8      | 50          | 100           |
|                  |                               | Lead, Pb     | mg/kg | 1   | 80     | 33       | 50          | 94            |
|                  |                               | Zinc, Zn     | mg/kg | 2   | 100    | 54       | 50          | 97            |
| TRH (Total Recov | verable Hydrocarbons) in Soil |              |       |     |        | Meth     | nod: ME-(AU | /)-[ENV]AN403 |

| OC Samala | Somolo Numbor | Baramatar  | Unito |     |
|-----------|---------------|------------|-------|-----|
| QC Sample | Sample Number | Faranielei | Ullis | LOK |
|           |               |            |       |     |



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| TRH (Total Recoverable  | e Hydrocarbons  | s) in Soil (continu | ed)                               |       |     |        | Met      | hod: ME-(AU                | )-[ENV]AN403 |
|-------------------------|-----------------|---------------------|-----------------------------------|-------|-----|--------|----------|----------------------------|--------------|
| QC Sample Sar           | mple Number     |                     | Parameter                         | Units | LOR | Result | Original | Spike                      | Recovery%    |
| SE242054.001 LB2        | 69598.004       |                     | TRH C10-C14                       | mg/kg | 20  | 45     | <20      | 40                         | 100          |
|                         |                 |                     | TRH C15-C28                       | mg/kg | 45  | 61     | <45      | 40                         | 102          |
|                         |                 |                     | TRH C29-C36                       | mg/kg | 45  | 52     | <45      | 40                         | 76           |
|                         |                 |                     | TRH C37-C40                       | mg/kg | 100 | <100   | <100     | -                          | -            |
|                         |                 |                     | TRH C10-C36 Total                 | mg/kg | 110 | 160    | <110     | -                          | -            |
|                         |                 |                     | TRH >C10-C40 Total (F bands)      | mg/kg | 210 | <210   | <210     | -                          | -            |
|                         |                 | TRH F               | TRH >C10-C16                      | mg/kg | 25  | 45     | <25      | 40                         | 100          |
|                         |                 | Bands               | TRH >C10-C16 - Naphthalene (F2)   | mg/kg | 25  | 45     | <25      | -                          | -            |
|                         |                 |                     | TRH >C16-C34 (F3)                 | mg/kg | 90  | <90    | <90      | 40                         | 93           |
|                         |                 |                     | TRH >C34-C40 (F4)                 | mg/kg | 120 | <120   | <120     | -                          | -            |
| VOC's in Soil           |                 |                     |                                   |       |     |        | Met      | n <mark>od: ME-(</mark> AU | )-[ENV]AN433 |
| QC Sample Sar           | mple Number     |                     | Parameter                         | Units | LOR | Result | Original | Spike                      | Recovery%    |
| SE242054.001 LB2        | 69599.004       | Monocyclic          | Benzene                           | mg/kg | 0.1 | 4.9    | <0.1     | 5                          | 98           |
|                         |                 | Aromatic            | Toluene                           | mg/kg | 0.1 | 5.4    | <0.1     | 5                          | 107          |
|                         |                 |                     | Ethylbenzene                      | mg/kg | 0.1 | 5.1    | <0.1     | 5                          | 102          |
|                         |                 |                     | m/p-xylene                        | mg/kg | 0.2 | 10     | <0.2     | 10                         | 104          |
|                         |                 |                     | o-xylene                          | mg/kg | 0.1 | 5.4    | <0.1     | 5                          | 108          |
|                         |                 | Polycyclic          | Naphthalene (VOC)*                | mg/kg | 0.1 | <0.1   | <0.1     | -                          | -            |
|                         |                 | Surrogates          | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 10.8   | 12.6     | 10                         | 108          |
|                         |                 |                     | d8-toluene (Surrogate)            | mg/kg | -   | 8.9    | 8.8      | 10                         | 89           |
|                         |                 |                     | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 9.3    | 10.1     | 10                         | 93           |
|                         |                 | Totals              | Total BTEX*                       | mg/kg | 0.6 | 31     | <0.6     | -                          | -            |
|                         |                 |                     | Total Xylenes*                    | mg/kg | 0.3 | 16     | <0.3     | -                          | -            |
| Volatile Petroleum Hydr | rocarbons in So | il .                |                                   |       |     |        | Met      | nod: ME-(AU                | )-[ENV]AN433 |
| QC Sample Sar           | mple Number     |                     | Parameter                         | Units | LOR | Result | Original | Spike                      | Recovery%    |
| SE242054.001 LB2        | 69599.004       |                     | TRH C6-C10                        | mg/kg | 25  | 82     | <25      | 92.5                       | 89           |
|                         |                 |                     | TRH C6-C9                         | mg/kg | 20  | 55     | <20      | 80                         | 68           |
|                         |                 | Surrogates          | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 10.8   | 12.6     | 10                         | 108          |
|                         |                 |                     | d8-toluene (Surrogate)            | mg/kg | -   | 8.9    | 8.8      | 10                         | 89           |
|                         |                 |                     | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 9.3    | 10.1     | -                          | 93           |
|                         |                 | VPH F               | Benzene (F0)                      | mg/kg | 0.1 | 4.9    | <0.1     | -                          | -            |
|                         |                 | Bands               | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | 51     | <25      | 62.5                       | 81           |



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.



### SE242054 R0

### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- \* NATA accreditation does not cover the performance of this service.
- \*\* Indicative data, theoretical holding time exceeded.
- \*\*\* Indicates that both \* and \*\* apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- <sup>(5)</sup> Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- IOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Image: Image:
- <sup>®</sup> LOR was raised due to high conductivity of the sample (required dilution).
- <sup>†</sup> Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



### SAMPLE RECEIPT ADVICE

| - CLIENT DETAILS                   | S                                                                    | LABORATORY DETA                                 | NILS                                                                                           |
|------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|
| Contact<br>Client<br>Address       | Admin<br>NEO CONSULTING PTY LTD<br>PO BOX 279<br>RIVERSTONE NSW 2765 | Manager<br>Laboratory<br>Address                | Huong Crawford<br>SGS Alexandria Environmental<br>Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone<br>Facsimile<br>Email    | 0416 680 375<br>(Not specified)<br>admin@neoconsulting.com.au        | Telephone<br>Facsimile<br>Email                 | +61 2 8594 0400<br>+61 2 8594 0499<br>au.environmental.sydney@sgs.com                          |
| Project<br>Order Number<br>Samples | N6898<br>N6898<br>3                                                  | Samples Received<br>Report Due<br>SGS Reference | Fri 20/1/2023<br>Mon 30/1/2023<br><b>SE242054</b>                                              |
| SUBMISSION D                       | ETAILS                                                               |                                                 |                                                                                                |

This is to confirm that 3 samples were received on Friday 20/1/2023. Results are expected to be ready by COB Monday 30/1/2023. Please quote SGS reference SE242054 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 3 Soil 20/1/2023 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 8.8°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

A separate portion was not supplied for Asbestos analysis. A sub-sample will be used from the jar provided.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



### SAMPLE RECEIPT ADVICE

### CLIENT DETAILS

### Client NEO CONSULTING PTY LTD

Project N6898

| - SUMMAR | Y OF ANALYSIS |                       |                       |                                                    |                                             |                                                 |               |                                            |
|----------|---------------|-----------------------|-----------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------|--------------------------------------------|
| No.      | Sample ID     | OC Pesticides in Soil | OP Pesticides in Soil | PAH (Polynuclear Aromatic<br>Hydrocarbons) in Soil | Total Recoverable<br>Elements in Soil/Waste | TRH (Total Recoverable<br>Hydrocarbons) in Soil | VOC's in Soil | Volatile Petroleum<br>Hydrocarbons in Soil |
| 001      | S1            | 30                    | 14                    | 26                                                 | 7                                           | 10                                              | 11            | 7                                          |
| 002      | S2            | 30                    | 14                    | 26                                                 | 7                                           | 10                                              | 11            | 7                                          |
| 003      | S3            | 30                    | 14                    | 26                                                 | 7                                           | 10                                              | 11            | 7                                          |

\_ CONTINUED OVERLEAF



### SAMPLE RECEIPT ADVICE

### CLIENT DETAILS

### Client NEO CONSULTING PTY LTD

Project N6898

| - SUMMARY | OF ANALYSIS |                              |                 |                  |
|-----------|-------------|------------------------------|-----------------|------------------|
| No.       | Sample ID   | Fibre Identification in soil | Mercury in Soil | Moisture Content |
| 001       | S1          | 2                            | 1               | 1                |
| 002       | S2          | 2                            | 1               | 1                |
| 003       | S3          | 2                            | 1               | 1                |

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



# APPENDIX C

## Property Report and Relevant Site Data

# NED CONSULTING

# DRAWING SCHEDULE

| COVER SHEET<br>3D IMAGES<br>DRAWING SCHEDULE<br>LOCATION PLAN<br>OVERALL SITE PLAN<br>MASTER PLAN<br>MASTER PLAN<br>GROUND FLOOR PLAN<br>FIRST FLOOR PLAN<br>ROOF PLAN<br>SOUTH AND EAST ELEVAT<br>NORTH, WEST, SOUTH-WE<br>SITE ELEVATIONS | SECTIONS 1,2,3 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 000<br>002<br>101<br>201<br>201<br>201<br>201<br>201<br>201<br>201                                                                                                                                                                          | 300            |

**GFA/FSR CALCULATION** 

400







40000 KENTWELL RD NORTH MANLY 44000 DRAWING SCHEDULE

scale: 5 DATE: 18.03.2022 ISSUE: 5. DATE: 18.03.2022 DWG No.: GA2020-023-002

GROUP ARCHTECTS Remarks Forthers Julier Strendby 6249 Segme Architers Julier Alant 6 000 600 Segme Architers Forthers Julier 5 000 600 1 452 960 1001 E Intelegenerativesta conta WARRINGAH GOLF CLUB

COCATION PLAN



| 6                                    | PRELIMINARY DA                                                                                                                    | 18.03.2022                                    |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 4                                    | PRELIMINARY                                                                                                                       | 14.02.2022                                    |
| ei.                                  | PRELIMINARY                                                                                                                       | 03.02.2022                                    |
| ei.                                  | PRELIMINARY                                                                                                                       | JAN 2022                                      |
| <u> </u>                             | PRELIMINARY                                                                                                                       | DEC 2021                                      |
| Issue                                | Amendment                                                                                                                         | Date                                          |
| ALL DN<br>TO BE :<br>ANY DB<br>BEFOR | IENSIONS TO BE VERIFIED ON SITE. 1<br>SOUTH NI PREFERENCE TO SCALED FO<br>SOUTHANCES TO BE REFERRED TO<br>FOROCEEDING IF IN DOUBT | DIMENSIONS<br>DIMENSIONS<br>ABCHITECT<br>ASKI |
















6246 6069



SCALE: 1:100 @ A1 ISSUE: 5. DATE: 18.03.2022 DWG No.: GA2020-023-103

addres KENTWELL RD NORTH MANLY deaved FIRST FLOOR PLAN

WARRINGAH GOLF CLUB





DEVELOPMENT APPLICATION

# DEVELOPMENT APPLICATION







CACUL ARCHITECTS CONTRACT CATTORS: JUNE RECEIPS, 524 SUMMARK CATTORS: JUNE STRUCT AND 2028 SUM 2025 NUM STRUCT AND 2029 T. 492 2030 1055 E. Info@proparatikets.com.u WARRINGAH GOLF CLUB

G R O U P ARCHITECTS

14.02.2022 03.02.2022 JAN 2022 DEC 2021 03.2022

RELIMINARY DA RELIMINARY PRELIMINARY PRELIMINARY PRELIMINARY Amendment auss AL DMENRONS TO BE VERPED ON SITE, DMENRONS TO BE TWENTIN PREFERENCE TO SCALED DMENRONS ANY DISCREPANCES TO BE RETERED TO ARCHITECT BEFORE PROCEEDING IF IN DOUBT, ASKI

Aining NORTH, WEST, SOUTH-WEST NORTH, WEST, SOUTH-WEST ELEVATIONS SOULE ISSUE: 6. DATE: 15.00.2022 DWG NO.: GA2020-023-201

NATURAL GROUND LEVEL

Address KENTWELL RD NORTH MANLY





PROPOSED GROUND LEVEL 99601 3412 02 Ň Σ -NATURAL GROUND LEVEL R bM **-**€ MR 1:2000AH ELEVATION GROUND FLOOR FFL 10.98 LEVEL 1 FFL 8.00 0000 4400 0067 9999 9960

CONCRETE
BP BROK PAVEWENT
M MASONRY
M M





LIMINARY D

SCALE: 1:200 @ A1 ISSUE: 5. DATE: 18.03.2022 DWG No.: GA2020-023-202 diamere SITE ELEVATIONS

8 NORTH SITE ELEVATION 1:200@A3



# DEVELOPMENT APPLICATION

| 1 |         |   |
|---|---------|---|
|   | Z       |   |
|   | Ę       |   |
|   |         |   |
|   | 12      |   |
|   | Ö       |   |
|   | 11<br>0 |   |
|   | LON     |   |
|   |         | • |
|   |         |   |

|                  |     | 660.6 m <sup>2</sup><br>578.9 m <sup>2</sup> | 1.239.5 m <sup>2</sup> |               | 148 m <sup>2</sup><br>163.46 m <sup>2</sup> | 311.46 m <sup>2</sup> | 162 m <sup>2</sup><br>81 54 m <sup>2</sup> | 243.54 m <sup>2</sup> |  |
|------------------|-----|----------------------------------------------|------------------------|---------------|---------------------------------------------|-----------------------|--------------------------------------------|-----------------------|--|
| GROSS FLOOR AREA | GFA | GROUND FLOOR:<br>FIRST FLOOR:                | TOTAL GFA:             | EXTERNAL AREA | GF TERRACE:<br>FF TERRACE:                  | TOTAL TERRACE AREA:   | GF COVERED AREA:<br>FF COVERED AREA:       | TOTAL COVERED AREA:   |  |
|                  |     |                                              |                        |               |                                             |                       |                                            |                       |  |
|                  |     |                                              |                        |               |                                             |                       |                                            |                       |  |





1 GROUND FLOOR GFA

TERRACE AREA — 163.46m<sup>2</sup>

| PRELIMINARY C<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>Anendment<br>Anendment<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMINARY<br>PRELIMIN | M 18.03.20    | 14.02.20    | 03.02.21    | 10N 200     | DEC 20      | Date      | ERFIED ON SITE DIMENSI<br>ENCE TO SALED DIMENSIS<br>BE REFERRED TO ANCHI<br>IF IN DOUBT, ASH |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------|-------------|-------------|-----------|----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRELIMINARY D | PRELIMINARY | PRELIMINARY | PRELIMINARY | PRELIMINARY | Amendment | ENSIONS TO BE V<br>WEN IN PREFER<br>PROCEEDING                                               |

COVERED AREA 81.54m<sup>2</sup>





addess KENTWELL RD NORTH MANLY daamd STTE ELEVATIONS

SCALE: 1:200 @ A1 ISSUE: 5. DATE: 19.09.2022 DWG No.: GA2020-023-400





WARRINGAH GOLF CLUB MARCH 2022





15 December 2022

## եկկկկկկե

Warringah Golf Club Limited 397 Condamine Street ALLAMBIE HEIGHTS NSW 2100

Dear Sir/Madam,

## Application No. DA2022/2081 - PAN-287528

### Address: Lot 2742/9999 Condamine Street MANLY VALE and WARRINGAH GOLF COURSE (DISTRICT PARK)Condamine Street NORTH MANLY and , Warringah Golf Course Pro shop 292Condamine Street NORTH MANLY and & Warringah Golf Course Pro shop 292 Condamine Street NORTH MANLY and District Park Tennis and Squash Centre - Clubhouse & District Park Tennis and Squash Centre - Clubhouse Kentwell Road NORTH MANLY

## **Request for Additional Information**

Council has conducted a review of your application in accordance with Council's *Development Application and Modification Lodgement Requirements (21/22)* and additional information is required in order to assess the proposed development.

Accordingly, you are requested to address the matter(s) listed below by submitting the additional information via the NSW Planning Portal:

### 1. Lot, Strata Plan (SP) and Deposited Plan (DP)

The details of the property included on the application form do not match Council's records. Please provide corrected address and formal particulars of the property on title, including Lot and DP/SP No. for the land on which the development is to be carried out. In this regard, our records show the property is described as Lot 2742/9999 Condamine Street, Manly Vale.

### 2. Access Report

An Access Report addressing the relevant provisions of the WDCP 2011 and any other relevant legislation and Australian Standards.

## 3. Building Code of Australia (BCA) Report

A Building Code of Australia (BCA) Report.

### 4. Contaminated Land Report

A Preliminary Site Contaminated Land Report as the history of contamination is unknown for the site. The report is to be prepared by, or reviewed and approved, by a certified consultant as defined under NSW EPA Contaminated Land Consultant Certification Policy. The investigation is to be in accordance with relevant industry guidelines including SEPP (Resilience and Hazards) and NSW EPA guidelines.

Dee Why Office: 725 Pittwater Road Dee Why NSW 2099 DX 9118 Dee Why f 02 9971 4522

Mona Vale Office: 1 Park Street Mona Vale NSW 2103 DX 9018 Mona Vale f 02 9970 1200 Manly Office: 1 Belgrave Street Manly NSW 2095 f 02 9976 1400



### DWG No: GA2020-023-101c

Site Plan zones suggests work outside the site boundary please clarify.

Council has adopted this review and checking procedure in the interests of streamlining the processing of applications, ensuring all applications are *Assessment Ready* and so applications can be processed within a reasonable timeframe.

Should you need to better understand the reason(s) why this information is being requested, you are referred to the *Development Application and Modification Lodgement Requirements (21/22)*, which can be found on Council's forms page. Please visit Council's *"Lodge your Application"* page for more information or to access Planning Portal user guides.

## You are provided 7 days to submit the additional information via the Planning Portal to avoid the application being returned to you.

Should your application be returned to you, the Planning Portal now provides the option to *Create a new Copy of your DA* allowing applicants to relodge a new application (including the additional documentation) with ease.

Should you wish to speak to an officer to obtain clarification on the above matter(s) prior to submitting the information, please do not hesitate to contact Council's Planning Officer on 1300 434 434 during our business hours of 8.30am to 5.00pm, Monday to Friday.

Your co-operation in this matter is appreciated.

Yours Faithfully

### **Development Advisory Service Team**