

21 Page 5 of

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	Recovery Details			
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E0080 OC Pesticides in Water (ug/L)							
НСВ	10	10			104%		
a-BHC	10	11			110%		
g-BHC	10	11			108%		
Heptachlor	10	11			106%		
Aldrin	10	11			105%		
b-BHC	10	12			115%		
d-BHC	10	10			101%		
Oxychlordane	10	10			103%		
Heptachlor epoxide	10	10			103%		
Endosulfan 1	10	10			103%		
Chlordane-Trans	10	11			105%		
Chlordane-Cis	10	11			106%		
trans-Nonachlor	10	10			102%		
DDE	20	21			104%		
Dieldrin	10	11			106%		
Endrin	10	11			106%		
DDD	20	21			104%		
Endosulfan 2	10	10			102%		
DDT	20	22			108%		
Endosulfan sulfate	10	10			101%		
Methoxychlor	10	10			97%		

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

Page 6 of 21

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E0080 OC Pesticides in Water (ug/L)						
НСВ	1	nd				
a-BHC	1	nd				
g-BHC	1	nd				
Heptachlor	1	nd				
Aldrin	1	nd				
b-BHC	1	nd				
d-BHC	1	nd				
Oxychlordane	1	nd				
Heptachlor epoxide	1	nd				
Endosulfan 1	1	nd				
Chlordane-Trans	1	nd				
Chlordane-Cis	1	nd				
trans-Nonachlor	1	nd				
DDE	1	nd				
Dieldrin	1	nd				
Endrin	1	nd				
DDD	1	nd				
Endosulfan 2	1	nd				
DDT	1	nd				
Endosulfan sulfate	1	nd				
Methoxychlor	1	nd				

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

Page 7 of 21

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	Recovery Details			
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E0090 OP Pesticides in Water (ug/L)							
Dichlorvos	100	100			100%		
Mevinphos	100	100			106%		
Ethoprop	100	100			98%		
Phorate	100	100			98%		
Demeton-s-methyl	100	100			102%		
Diazinon	100	100			98%		
Disulfoton	100	100			97%		
Ronnel	100	100			99 %		
Chlorpyrifos methyl	100	100			100%		
Chlorpyrifos	100	100			100%		
Merphos							
Parathion methyl	100	100			102%		
Fenthion	100	100			102%		
Malathion	100	100			102%		
Fenitrothion	100	100			102%		
Prothiofos	100	100			99 %		
Stirophos	100	100			103%		
Ethion	100	100			102%		
Bolstar	100	100			101%		
Fensulfothion	100	100			106%		
Azinphos methyl	100	120			115%		
Coumaphos	100	100			104%		

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

Page 8 of 21

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E0090 OP Pesticides in Water (ug/L)						
Dichlorvos	10	nd				
Mevinphos	10	nd				
Ethoprop	10	nd				
Phorate	10	nd				
Demeton-s-methyl	10	nd				
Diazinon	10	nd				
Disulfoton	10	nd				
Ronnel	10	nd				
Chlorpyrifos methyl	10	nd				
Chlorpyrifos	10	nd				
Merphos	10	nd				
Parathion methyl	10	nd				
Fenthion	10	nd				
Malathion	10	nd				
Fenitrothion	10	nd				
Prothiofos	10	nd				
Stirophos	10	nd				
Ethion	10	nd				
Bolstar	10	nd				
Fensulfothion	10	nd				
Azinphos methyl	10	nd				
Coumaphos	10	nd				

= Practical Quantitation Limit = <PQL = Not Applicable PQL nd --

Page 9 of 21

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	ed	Recovery Details		
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E0110 Priority PAH's in Water (ug/L)							
Naphthalene	10	7			71%		
Acenaphthylene	10	7			71%		
Acenaphthene	10	7			70%		
Fluorene	10	7			71%		
Phenanthrene	10	7			72%		
Anthracene	10	7			71%		
Fluoranthene	10	7			70%		
Pyrene	10	7			70%		
Benz(a)anthracene	10	7			72%		
Chrysene	10	8			79%		
Benzo(b) & (k)fluoranthene	20	15			74%		
Benzo(a)pyrene	10	7			73%		
Indeno(1.2.3-cd)pyrene	10	7			72%		
Dibenz(a.h)anthracene	10	7			74%		
Benzo(g.h.i)perylene	10	8			79%		

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

6) amdel

Job Number : 5E0734

Page 10 of 21

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E0110 Priority PAH's in Water (ug/L)						
Naphthalene	1	nd				
Acenaphthylene	1	nd				
Acenaphthene	1	nd				
Fluorene	1	nd				
Phenanthrene	1	nd				
Anthracene	1	nd				
Fluoranthene	1	nd				
Pyrene	1	nd				
Benz(a)anthracene	1	nd				
Chrysene	1	nd				
Benzo(b) & (k)fluoranthene	2	nd				
Benzo(a)pyrene	1	nd				
Indeno(1.2.3-cd)pyrene	1	nd				
Dibenz(a.h)anthracene	1	nd				
Benzo(g.h.i)perylene	1	nd				
				,		

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

Page 11 of 21

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	Recovery Details			
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E2670 Suspended Solids in Water							
Suspended Solids	75	69			91%		
E2550 Nitrate as N in Water							
Nitrate as N	1.0	1.00			100%		
E2560 Nitrite as N in Water							
Nitrite as N	1.0	1.02	1.02		102%	102%	
E2770 Kjeldahl Nitrogen in Water							
Kjeldahl Nitrogen	1	1.0			102%		
E2330 Ammonia as N in Water							
Ammonia as N	1.0	0.97	1.01		97%	101%	
E2640 Total Phosphorus in Water							
Phosphorus	0.40	0.44			110%		
E2630 Dissolved Phosphorus in Water							
Dissolved Phosphorus	1.0	1.04	1.01		104%	101%	
E2530 Total Hardness							
Total Hardness as CaCO3	66.2	62			94%		

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

Page 12 of 21

QAQC : Laboratory Duplicate(s)

Analyte	Dupl A	Dupl B	Average	RPD (%)	Dupl A	Dupl B	Average	RPD (%)
E2395 Chlorophyll-a in Water (E180316)								
Chlorophyll-a	0.037	0.037	0.037	0%				
					1			
	<u>, ,</u>							
								-
					-			
					-			

= Practical Quantitation Limit = <PQL = Not Applicable PQL nd

(S) Soils : mg/kg (ppm) dry weight (W) Waters : mg/L (ppm) unless otherwise specified

The number in brackets after the method header identifies the sample tested.

(g) am del

Job Number : 5E0734

Page 13 of 21

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E2670 Suspended Solids in Water	1.42					
Suspended Solids	1	nd				
E2550 Nitrate as N in Water						
Nitrate as N	0.02	nd				
E2560 Nitrite as N in Water						
Nitrite as N	0.02	nd				
E2770 Kjeldahl Nitrogen in Water						
Kjeldahl Nitrogen	0.1	nd				
E2330 Ammonia as N in Water						
Ammonia as N	0.01	nd				
E2640 Total Phosphorus in Water						
Phosphorus	0.02	nd				
E2630 Dissolved Phosphorus in Water						
Dissolved Phosphorus	0.01	nd				
E2530 Total Hardness						
Total Hardness as CaCO3	0.5	nd				
E2395 Chlorophyll-a in Water						
Chlorophyll-a	0.005	nd				

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

Page 14 of 21

QAQC : Laboratory Control Sample(s)

evel 50 50 50	Result1 51 50	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
50 50	50			1019/		
50 50	50			10194		
50				10170		
				100%		
50	46			93%		
50	47			95%		
50	50			100%		
0.50	0.40			80%		
					:	
	0.50	0.50 0.40				

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

Page 15 of 21

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E5910 Metals in Soil						
Chromium	5	nd				
Lead	5	nd				
Zinc	5	nd				
Arsenic	5	nd				
Copper	5	nd				
E5950 Mercury in Soil						
Mercury	0.05	nd				

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

Page 16 of 21

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	ed	Recovery Details			
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)	
E1140 Phenols By GC/MS In Soil								
Phenol	10	9.6			96%			
2-Chlorophenol	10	9.4			94%			
2-Methylphenol								
3-Methylphenol & 4-Methylpheno								
2-Nitrophenol								
2.4-Dimethylphenol								
2.4-Dichlorophenol								
2.6-Dichlorophenol								
4-Chloro-3-methylphenol	10	9.6			96%			
2.4.5-Trichlorophenol								
2.4.6-Trichlorophenol								
2.4-Dinitrophenol								
4-Nitrophenol	10	11			107%			
2.3.4.6-Tetrachlorophenol								
4.6-Dinitro-2-methylphenol								
Pentachlorophenol	10	9			94%			
4.6-Dinitro-2-sec-butylphenol								

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

Page 17 of 21

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E1140 Phenols By GC/MS In Soil						
Phenol	0.5	nd				
2-Chlorophenol	0.5	nd				
2-Methylphenol	0.5	nd				
3-Methylphenol & 4-Methylpheno	0.5	nd				
2-Nitrophenol	0.5	nd				
2.4-Dimethylphenol	0.5	nd				
2.4-Dichlorophenol	0.5	nd				
2.6-Dichlorophenol	0.5	nd				
4-Chloro-3-methylphenol	0.5	nd				
2.4.5-Trichlorophenol	0.5	nd				
2.4.6-Trichlorophenol	0.5	nd				
2.4-Dinitrophenol	5	nd				
4-Nitrophenol	1	nd				
2.3.4.6-Tetrachlorophenol	0.5	nd				
4.6-Dinitro-2-methylphenol	2	nd				
Pentachlorophenol	1	nd				
4.6-Dinitro-2-sec-butylphenol	2	nd				

= Practical Quantitation Limit
= < PQL
= Not Applicable PQL nd

Page 18 of 21

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	ed	Recover	ry Details	
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E1080 Organochlorine Pesticides in Soil							
НСВ	0.5	0.5			106%		
a-BHC	0.5	0.5			108%		
g-BHC	0.5	0.5			106%		
Heptachlor	0.5	0.5			108%		
Aldrin	0.5	0.5			106%		
ь-внс	0.5	0.5			100%		
d-BHC	0.5	0.6			110%		
Oxychlordane	0.5	0.5			106%		
Heptachlor epoxide	0.5	0.5			106%		
Endosulfan 1	0.5	0.5			106%		
Chlordane-Trans	0.5	0.5			106%		
Chlordane-Cis	0.5	0.5			104%		
trans-Nonachlor	0.5	0.5			108%		
DDE	1	1.0			100%		
Dieldrin	0.5	0.5			106%		
Endrin	0.5	0.5			106%		
DDD	1	1.0			100%		
Endosulfan 2	0.5	0.5			106%		
DDT	1	1.0			100%		
Endosulfan sulfate	0.5	0.5			106%		
Methoxychlor	0.5	0.5			106%		

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

Page 19 of 21

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E1080 Organochlorine Pesticides in Soil						
НСВ	0.1	nd				
a-BHC	0.1	nd				
g-BHC	0.1	nd				
Heptachlor	0.1	nd				
Aldrin	0.1	nd				
b-BHC	0.1	nd				
d-BHC	0.1	nd				
Oxychlordane	0.1	nd				
Heptachlor epoxide	0.1	nd				
Endosulfan 1	0.1	nd				
Chlordane-Trans	0.1	nd				
Chlordane-Cis	0.1	nd				
trans-Nonachlor	0.1	nd				
DDE	0.1	nd				
Dieldrin	0.1	nd				
Endrin	0.1	nd				
DDD	0.1	nd				
Endosulfan 2	0.1	nd				
DDT	0.1	nd				
Endosulfan sulfate	0.1	nd				
Methoxychlor	0.1	nd				

 = Practical Quantitation Limit
 = < PQL
 = Not Applicable PQL nd

Page 20 of 21

QAQC : Laboratory Control Sample(s)

		Level Detected			Recovery Details		
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E1110 Priority PAH's in Soil							
Naphthalene	5	4.2			84%		
Acenaphthylene	5	4.2			86%		
Acenaphthene	5	4.2			84%		
Fluorene	5	4.2			84%		
Phenanthrene	5	4.2			86%		
Anthracene	5	4.2			86%		
Fluoranthene	5	4.2			86%		
Pyrene	5	4.2			83%		
Benz(a)anthracene	5	4.2			83%		
Chrysene	5	4.2			85%		
Benzo(b) & (k)fluoranthene	10	8			83%		
Benzo(a)pyrene	5	3.8			78%		
Indeno(1.2.3-cd)pyrene	5	4.0			81%		
Dibenz(a.h)anthracene	5	4.2			84%		
Benzo(g.h.i)perylene	5	4.2			86%		

(g) amdel

Page 21 of 21

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E1110 Priority PAH's in Soil						
Naphthalene	0.5	nd				
Acenaphthylene	0.5	nd				
Acenaphthene	0.5	nd				
Fluorene	0.5	nd				
Phenanthrene	0.5	nd				
Anthracene	0.5	nd				
Fluoranthene	0.5	nd				
Pyrene	0.5	nd				
Benz(a)anthracene	0.5	nd				
Chrysene	0.5	nd				
Benzo(b) & (k)fluor anthene	1	nd				
Benzo(a)pyrene	0.5	nd				
Indeno(1.2.3-cd)pyrene	0.5	nd				
Dibenz(a.h)anthracene	0.5	nd				
Benzo(g.h.i)perylene	0.5	nd				

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

KEVERSE SEL **Patterson Britton** job number sheet number of & Partners Pty Ltd job title prepared by chk'd S12 & S3 consulting engineers date 22 FORM No. 5.004.1 (DEC 1992) 'o Amde \$ 5180316 2 S 310 US 23/2 3-5-3 JULIL leok solids 10 Sus pero Total 1 Ni Anna 10 1.1+01+ NItre PHOSP -g 101 10 + aily thosphar · File ខប · Chromiti Lead FEB 2005 Ø ·Zinc 5E073 B-1 - AAR · CONP 6 Menolic Lompon PAIN Perhice · chlorophyll

EF REVERSE

Patterson Britton & Partners Pty Ltd

ĵob number	sheet number	of	
job title	prepared by	chk'd	
	date		

consulting engineers

FORM No. 5.004.1 (DEC 1992)

please also tent the following SO// Samples 518319 - S351US -23/2/05 330, N - 0180300 - S351 DS -23/2/05 3159 molic com DOW Chronnich \$\$ (· Zin-..... · Mericani * Coppe -2-:4 - FEB 2005 150734 MAICHAELISIA aets a pathrit-comau MICA 16. ł

SILLIKER MICROTECH E-MAILED

Attention: Ms Julie Edman

AMDEL LIMITED 99 Mitchell Road CARDIFF NSW 2285

E-mail To: jedman@amdel.com cc: Angela Karsch akarsch@amdel.com

1 March 2005

12.0°C

24 February 2005

CERTIFICATE OF ANALYSIS

Report Date:

Date Tested:

Arrival Temp:

05009970 ci \mathbf{S} Report No:

24 February 2005 **Date Received:**

S046575 Standing Order:

RESULTS

Sample Description

Order No. 5E0734

Water	Samples -	DD:	24.2.05
-------	-----------	-----	---------

Sample Description	Thermotolerant Coliforms <u>CFU per 100ml</u> <u>M12.2</u>			
\$1275DS	490			
\$310US	520			
S310DS	390			

The data pertains solely to the analytical and sampling procedure(s) used and the condition and homogeneity of the sample(s) as received. The data therefore may not be representative of the lot or barch or other samples. Consequendy the data may not necessarily justify the acceptance or rejection of a lot or batch, ap product recall or support legal proceedings. It is the responsibility of the client to provide all information relevant to the analysis requested. This resport does not imply that Siliker Microteit Py Lid has been enguged to consult upon the consequences of the analysis and for any action that should be taken as a result of the analysis.

.

.

SELINA BEGUM MAppSci, MAIFST CONSULTANT MICROBIOLOGIST

N

NATA accredited Laboratory Number 2766. This Laboratory to accredited by the National Association of Texting Authornae, Australia. The test(s) reported herein have been performed in accordence with its scope of accreditation. This document shall not be reproduced except in full.

TGA Licence No: 152612

SILLIKER MICROTECH PTY LTD

SILLIKER MICROTECH PTY LTD ABN 94 006 462 335 UNIT C2 REGENTS PARK ESTATE 391 PARK ROAD REGENTS PARK NSW 2143 PO BOX 377, REGENTS PARK BC NSW 2143 TEL. +61 2 8718 6888 FAX, +61 2 8718 6899 EMAIL sales@microtechlab.com MELBOURNE: TEL. +61 3 9877 8222 FAX. +61 3 9877 8444 WWW.MICROTECHLAB.COM - WWW.SILLIKER.COM

The tests, calibration: document have been part requirements which is 1 17025 and are traceed of measurement. This is a set except in full.

ents covered by this coordance with NATA pirements of ISO/IEC an national standards auto all not be reproduced.

ANALYTICAL SERVICES DIVERSION ABN 30 008 127 802 Correspondence to: MAR PO Box 331 V RI HUNTER REGIONAL MAIL Perf CENTRE NSW 2310 Version

Mitchell Rd
 RDIFF NSW 2285
 Schephone: (02) 4902 4800
 Scheshnile: (02) 4902 4899

CERTIFICATE OF ANALYSIS

Contaction :

1. Comm Pages (2)

2. Analysis Report Pages

- 3. QA/OC Appendix
- 4. Additional Reports External (if applicable)
- 5. Chain of Custody (if applicable)

<u>Report No.</u>	:	4E1488		J. Cha	at OL	Custody (ir applica
Attention	:	David Stone				
<u>Client</u>	•	Patterson Britton & Par PO Box 515 NORTH SYDNEY	rtners Pty I	Ltd		
Samples	:	18				
Reference/Order	:	4467/4142-05				
Project	:	5194/4903-01				
Received Samples	:	18/08/04	Instructi	ons	:	18/08/04
Date Reported	:	26/08/04				

PLEASE SEE FOLLOWING PAGES FOR METHOD LISTING AND RESULTS

RESULTS

All samples were analysed as received. This report relates specifically to the samples as received. Results relate to the source material only to the extent that the samples as supplied are truly representative of the sample source. This report replaces any preliminary results issued. Note that for methods indicated with "#", NATA accreditation does not cover the performance of this service. Three significant figures (or 2 for < 10PQL) are reported for statistical purposes only. Where "Total" concentrations are reported for organic suites of compounds this is the summation of the individual compounds and the PQL is noted for reporting purposes only. This report has been authorized by the NATA signator performance of the method descriptions section on the following page.

times Mcmilin

James McMahon B.Sc., Ph.D. (Chem.) Manager - Environmental

4E1488 Report No. :

Please note: Where samples are collected/submitted over several days, the date on which the last samples were analysed or extracted is reported. Unless Ferrous Iron is determined on site, the possibility of a ferrous-ferric ratio change may

occur.

Method	Description	Extracted	Analysed	Authorised
E2570 E2550 E2560 E2770 E2330 E2640 E2630 E2670 E2640R	Total Nitrogen Nitrate-N Nitrite-N TKN Ammonia as N Phosphorus-Total Dissolved Phosphorus Suspended Solids Phosphorus-Total (Filtered RESIDUE)	26/08/04 19/08/04 25/08/04 19/08/04 25/08/04 25/08/04 23/08/04 20/08/04 25/08/04	26/08/04 19/08/04 25/08/04 19/08/04 25/08/04 25/08/04 23/08/04 20/08/04 25/08/04	PKE101PKE101PKE101PKE101PKE101PKE101PKE101PKE101PKE101PKE101PKE101
LLUHUI	1 hosphorus-10tal (1 mered (LDDDD)	20,00,01	20,00,01	1101 101

NATA Signatory

<u>Initials</u>	Name	Sections/Methods
MCM	James McMahon	093, 094, 095, 101
MNG	Minh Nguyen	094, 095
MFA	Mark Fahmy	094, 095
LHA	Ly Kim Ha	094, 095
DJA	Dilanthi Jayamanne	094
GTO	Greg Towers	094
GPE	Geoff Peterson	095
DLU	Darrel Luck	093
NBL	Nina Blake	093
SHO	Steve Hopkins	093
JHO	Justin Hopghton	093
MAV	Merrin Avery	101
DBL	Dianne Blane	101
NCO	Nathan Cooper	101
AGR	Alison Graham	101
PKE	Peter Keyte	101

6 amdel

Job Number: 4E1488 Client : Patterson Britton & Partners Pty Ltd Reference : 4467/4142-05 Project : 5194/4903-01

Page 4 of 4 plus Cover Page

	Lab No	E133712	E133713	E133714	
		WS1232SB			
Analyte	Sample Id	OUT	WS302US	WS302DS	
	PQL	<u>S</u>			
Total Nitrogen	0.1	1.8	0.7	1.2	
E2550 Nitrate as N in Water					
Nitrate as N	0.01	1.18	0.34	0.75	
E2560 Nitrite as N in Water					
Nitrite as N	0.01	0.04	0.02	0.03	
E2770 Kjeldahl Nitrogen in Water		and Section			
Kjeldahl Nitrogen	0.1	0.7	0.3	0.5	
E2330 Ammonia as N in Water					
Ammonia as N	0.01	0.03	nd	0.04	
E2640 Total Phosphorus in Water					
Phosphorus	0.02	nd	0.06	0.13	
E2630 Dissolved Phosphorus in Water					
Dissolved Phosphorus	0.01	nd	nd	0.03	
E2670 Suspended Solids in Water		7			
Suspended Solids	1	3	24	31	
E2640 Total Phosphorus in filtered wate	r				
Phosphorus	0.1	nd	nd	nd	

tion Limit ot Received Soils Leachates Refer to Amdel standard laboratory qualifier codes for comments. Soils Soils Soils Soils Soils Simg/kg (ppm) dry weight unless otherwise specified Smg/L (ppm) unless otherwise specified in Method Header Method Header

AMDEL INTERNAL __ITY ASSURANCE REVIEW.

Job No. **4E14**8

<u>General</u>

 Results are uncorrected in the trix spike or surrogate recover Where 3 and 2 signification in the trix spike or surrogate recover and is provided for stational purposes only. Samples duplicated or stational are from this job only and are in the trip of trip of the trip of the trip of the trip of trip of the trip of the trip of tr	ndix. (Where applicable) equest. ere sample extracts are diluted due to interferences.
Maximum Holding Times Soils, Sediments and Waters	
Parameter	Holding Times
<u>Soils</u> Volatile and Semi-Volatile Corganic Analysis. Metals Inorganics* TCLPs*	Extracted in 14 days, analysed within 40 days. Extracted and analysed within 28 days-6 months. Extracted and analysed within 7-28 days. Extracted and analysed within 14 days, (Zero Headspace-TCLP 7 days).
<u>Waters</u> Volatile Organic Analysis Semi-Volatile Organic Analysis Inorganics* Metals (dissolved metals abund be supplied field filtered)	Analysed within 7 days (USEPA requires 14 days). Extracted in 7 days, analysed within 40 days. Analysed within 24 hrs-28 days. Prepared and analysed within 28 days.
* Please refer to 'Preservation Information Chart for Soils, Sedin (ISFORM.098). Holding there is may be extended with the use of Holding times can be calculated from dates reported in the body holding times will be noted then sufficient information is provi Reference: USEPA SW840 and AMDEL SPM-01 (incorporation	f preservation bottles and/or freezing samples. y of the report. Tests clearly exceeding ided.
Chain of Custody and Sample Integrity	Yes/NO/NA
Chain of Custody / instructions received with samples Custody seals were received intact, if used Samples were received chilled and in good condition Samples received appropriately preserved for all tests VOC/SVOC samples were ecceived in teflon lined containers Samples received with Zen Headspace Chain of Custody completed and attached (if applicable)	Yes NA Yes NA NA Yes
Chromatography Calibration/Acceptence Criteria (if application)	able)
Retention time window months acceptance criteria $(+/-2\%)$ Reference standard meets acceptance criteria $(+/-10\%)$ Recalibration standard meets acceptance criteria $(+/-15\%)$ Internal standard recovery acceptable.	NA NA NA NA

Page 1

AMDEL INTERNAL QUALITY ASSURANCE REVIEW Cont..

Amdel QA/QC Compliance Assessm	ent	
Ander QA/QC Compliance Assessin		Compliance
Surrogates performed on all appropriates acceptance limits (70% - 130% recov	Please see body of report	
Matrix Spikes performed once per pr 1 in 20 samples (Results meet accept recovery* or 80% - 120% recovery*	Please see body of report	
Laboratory Control samples perform and at least 1 in 20 samples (Results - 70% - 130% recovery* in soil or 7	NA	
Laboratory Duplicate samples perfor and at least 1 in 10 samples	med once per process batch	Yes
Laboratory duplicates meet acceptan <4 PQL - +/- 2 PQ 4-10 PQL - 25-50 or >10 PQL - 10-30 or)L 50% RPD	Please see body of report
Method Blanks performed once per 1 in 20 samples (Results not detected		NA
N/A=Not Applicable.		

Page 2

QA/QC Appendix

Please refer to the following pages for the QA/QC data. For further information on samples or non-conformance in QC protocols please see notations in the body of the report plus comments on the following page.

Additional Comments

Jones Mondon

James McMahon B.Sc., Ph.D. (Chem.) Manager - Environmental

AMDEL STANDARD LABORATORY QUALIFIER CODES.

Page 3

Job NO. 4E1488

Qualifier Codes	Description
*	PQLs are raised due to matrix interference.
@	PQLs are raised due to insufficient sample provided for analysis.
\$	The mass imbalance indicates the presence of other ions not measured as part of this procedure.
nd	< PQL
	Not applicable
LNR	The sample was listed on the COC, but not received.
IS	Insufficient sample was supplied to conduct this analysis.
AN	The analysis indicates the presences of an analyte that has been 'tentatively' identified, and the associated numerical value represents it's approximate concentration.
А	Sample results are reported on an 'as received' basis (not moisture corrected).
В	The sample was not received in a suitable timeframe to allow completion within the recommended holding time.
С	This sample was received with headspace.
D	This sample was received with the incorrect preservation for this analysis.
E	The raw data indicates the absence of 0.055g of Copper Sulphate in the sample.
F	This sample contained significant amounts of solids and was therefore analysed by settling and decanting the aqueous phase to avoid including the solid in the analysis portion.
G	This test was performed outside the recommended holding time.
Н	This sample contained significant material $>$ 5mm which was removed prior to analysis.
ISD	Insufficient sample was supplied to conduct duplicate analyses.
ISM	· · · ·
W	The spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.
J	The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause.
К	The matrix spike concentration is less than five times the background concentration in the sample, and therfore the spike recovery can not be determined.
L	The surrogate recovery is outside of the recommended acceptance criteria, due to matrix interference.
Μ	The surrogate recovery is outside of the recommended acceptance criteria. Insufficent sample remains to perform re-analysis.
Ν	Results are expressed in mg/L (ppm) due to the high concentration of the analyte.
0	The results reported are 'recoverable organics' for this fraction, as the chromatogram and peak shape indicates the presence of a significant concentration of polar compounds.
Р	The concentration reported is mainly due to a single peak.
Q	This samples contains volatile halogenated oxygenated or other compounds that are included and quantitated as part of TPH C6-9.
R	Theoretically the total result should be greater or equal to the dissolved concentration. However the difference reported is within the uncertainty of the individual tests.
S	The mass imbalance was equal to or less than 0.2 milli-equivalents.
Т	During Kjeldahl digestion, nitrate (> 10mg/L) can oxidise ammonia resulting in a negative TKN interference, which may have occurred for this sample.
U	Theoretically the TKN result should be greater or equal to ammonia concentration. However the difference reported is within the uncertainty of the individual tests.
v	This sample contained significant amounts of sediment which was included in the analysis portion as requested.
SUI	· · · · · · · · · · · · · · · · · · ·

IS Form 187. (Issue Date - 19/05/03)

Page 1 of 3

QAQC : Laboratory Control Sample(s)

	Level	Level Detected			Recovery Details		
Analyte		Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E2550 Nitrate as N in Water							
Nitrate as N	1.0	0.91			91%		
E2560 Nitrite as N in Water							
Nitrite as N	1.0	1.04			104%		
E2770 Kjeldahl Nitrogen in Water							
Kjeldahl Nitrogen	1.0	1.0			93%		
E2330 Ammonia as N in Water							
Ammonia as N	1.0	1.00			100%		
E2640 Total Phosphorus in Water							
Phosphorus	0.4	0.36			91%		
E2630 Dissolved Phosphorus in Water	:						
Dissolved Phosphorus	1.0	1.01			101%		
E2670 Suspended Solids in Water							
Suspended Solids	75	70			93%		
E2640 Total Phosphorus in filtered water							
Phosphorus	0.4	0.4			98%		

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

Job Number: 4E1488

Page 2 of 3

QAQC : Laboratory Duplicate(s)

Analyte	Dupl A	Dupl B	Average	RPD (%)	Dupl A	Dupl B	Average	RPD (%)
E2550 Nitrate as N in Water (E133697)								
Nitrate as N	0.06	0.06	0.06	0%				
E2560 Nitrite as N in Water (E133697)								
Nitrite as N	0.01	0.01	0.01	0%				
E2770 Kjeldahl Nitrogen in Water (E13)	697)							
Kjeldahl Nitrogen	0.6	0.7	0.7	15%				
E2330 Ammonia as N in Water (E13369	7,E133698)							
Ammonia as N	nd	nd			0.03	0.03	0.03	0%
E2640 Total Phosphorus in Water (E133	697)							
Phosphorus	0.29	0.30	0.30	3%				
E2630 Dissolved Phosphorus in Water (I	E133697,E1	33698)				_		
Dissolved Phosphorus	0.20	0.19	0.20	5%	0.16	0.16	0.16	0%
E2670 Suspended Solids in Water (E133	708)							
Suspended Solids	27	26	27	3%				
E2640 Total Phosphorus in filtered wate	r (E133697)						
Phosphorus	0.2	0.2	0.2	0%				

= Practical Quantitation Limit = <PQL = Not Applicable PQL nd --

(S) Soils : mg/kg (ppm) dry weight (W) Waters : mg/L (ppm) unless otherwise specified

The number in brackets after the method header identifies the sample tested.

6) amdel

Job Number : 4E1488

Page 3 of 3

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E2550 Nitrate as N in Water						
Nitrate as N	0.01	nd				
E2560 Nitrite as N in Water						
Nitrite as N	0.01	nd				
E2770 Kjeldahl Nitrogen in Water						
Kjeldahl Nitrogen	0.1	nd				
E2330 Ammonia as N in Water						
Ammonia as N	0.01	nd				
E2640 Total Phosphorus in Water						
Phosphorus	0.02	nd				
E2630 Dissolved Phosphorus in Water						
Dissolved Phosphorus	0.01	nd				
E2670 Suspended Solids in Water						
Suspended Solids	1	nd				
E2640 Total Phosphorus in filtered water						
Phosphorus	0.1	nd				

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

SILLIKER MICROTECH

Attention: Ms Julie Edman

.

AMDEL LIMITED 99 Mitchell Road CARDIFF NSW 2285

Fax To: (02) 4902 4899

CERTIFICATE	OF ANALYSIS	and the same discourse from the same same same same same same same sam
Report No: S 04040437 ky Date Received: 18 August 2004 Standing Order: S024507	Report Date: Date Tested: Arrival Temp:	19 August 2004 18 August 2004 12.0°C
RESULTS Sample Description Order No. Water Samples - 18.8.04 4B1488		rant Coliforms
Sample Description	CFU -	per 100ml
Water WS301-US Water WS801-DS Water WS801-IS		1,800 2,600
Water WS801-IS2 Water WSP14-US	and a manufacture of the second	1,200 2,700 2,100
Water - WSP14-DS Water - WSP14-IS Water - WSP14WQCP1IN		2,200 1,200 310
Water - WSP14WQCP10UT Water - WSP14WQCP2IN Water - WSP14WQCP20UT		1,900 <10 480
Water – WS1232DS Water – WS1232NBIN Water – WS1232NBOUT	1990 - 1997 - 19	360 310

SILLIKER MICROTECH PTY LTD ABN 94 006 467 335 UNIT C2 REGENTS PARK ESTATE 391 PARK ROAD REGENTS PARK NSW 2143 PO BOX 377. REGENTS PARK 9C NSW 2143 TEL. +61 2 8718 6899 EMAIL seise@microtechleb.com MELBOURNE: TEL +61 3 9877 6222 FAX. +61 3 9877 8444 WWW.MICROTECHLA8.COM • WWW.SILLIKER.COM

Page I of 2 - Report No S04040437

Attn: Ms Julie Edman AMDEL LIMITED (results cont'd.....)

.

Sample Description	Thermotolerant Coliforms CFU per 100ml M85
Water - WS1232SBIN	
Water - WS1232SBOUT Water - WS30IUS	2990
Water - WS301DS	880

Note: '<' indicates Less than

The data permitti solely to the Mulyical and sumpling procedure(s) used and the condition and homogeneity of the sample(a) as received. The data therefore may not be representative of the lot of batch or other samples. Consequently the data may not necessarily justify the acceptonce or rejection of a lot or batch, a product recall or support legal proceedings. It is the responsibility of the client to provide all information relevant to the analysis formerstor. This report does not imply that Spillker Microtech By Lui hes been engaged to consult upon the consequences of the applyist and for any action that should be taken as a result of the analysis.

TGA Licence No: 152612

Page 2 of 2 - Report No S04040437

Enviro Sydney

<u></u>	
From:	David Stone [davids@patbrit.com.au]
Sent:	Wednesday, 18 August 2004 4:35 PM
То:	Enviro Sydney
Subject:	Additional Analytes - Q02012166

Importance: High

In addition to the analystes listed on the COC, could you please analyse all samples sent to you today (ie. W\$801..., W\$P14..., W\$1232..., W\$301...) for Suspended Solids.

If there are any problems please call me on 9957 1619.

Regards David Stone

1

÷

Patterson Britton & Partners Pty Ltd PO Box 515, North Sydney, Australia, 2059 Tel: (02) 9957 1619, Fax: (02) 9957 1291

This e-mail does not give rise to any binding obligation upon Patterson Britton & Partners Pty Ltd, unless the contents are confirmed officially in writing, non-electronically. Reliance on the contents of this e-mail is entirely at the risk of the recipient until such confirmation is received. This e-mail may be confidential, legally privileged or otherwise protected by law and unauthorised disclosure or copying of any or all of it may be unlawful. If you are not the intended recipient or if you receive this e-mail in error, please notify the sender immediately by return e-mail and delete the message. In this case, you may not peruse, disseminate, copy or print it or take any action in reliance on it.

