

Land Consultants Association Inc

Number: CC0325(12

Construction Certificate.

K

0 6 DEC 2012

Endorsed by:

Date

ABN 64 002 841 063

Job No: 12593/2 Our Ref: 12593/2-AA

21 February 2012

Mona Vale Golf Club Ltd 1 Golf Avenue MONA VALE NSW 2103

Attention: Mr A Thompson

Dear Sir

re: **Proposed Above Ground Fuel Storage Tank Installation** Mona Vale Golf Club – 1 Golf Avenue, Mona Vale **Preliminary Contamination Assessment**

PITTWATER COUNCIL CONSTRUCTION CERTIFICATE

This is a copy of submitted plans, documents or Certificates associated with the issue of the

Further to the Preliminary Contamination Report (PCA) dated 23-December 2012, prepared by Geotechnique Pty Ltd (Geotechnique) for the above site (indicated on Figure 1 below) and as requested, one additional soil sample was recovered from the area proposed for installation of above-ground fuel storage tank (AFST) as indicated on Drawing No 12593/2-AA1 in Attachment A.

	FIGURE 1
Primary Tennis	ARTING CALL AND CALL
Ret VIII Tree	Home 2 CA SISC Beagh
S CE S S Stateboard S CE S S ST Vill S S S 12 TURIMETTA ST S	Mona Vale (Beeby Park)
35 13 ST 2 30 ST 2 ROWAN ST 2 13 M LL	Golf Club
Sol And	Mona Vale Rec

The objective of sampling and testing was to assess the contamination status of the soil and determine whether the soil presents a risk of harm to human health and the environment for the proposed AFST development.

> Lemko Place, Penrith NSW 2750 Telephone (02) 4722 2700 e-mail: info@geotech.com.au

PO Box 880, Penrith NSW 2751 Facsimile (02) 4722 2777 www.geotech.com.au

12593/2 Golf Avenue, Mona Vale

FIELD WORK & LABORATORY TESTING

An Environmental Scientist (Mr A Nguyen) from Geotechnique, who was responsible for sampling and logging the materials at the sampling location, carried out the field work on 27 January 2012, in accordance with Geotechnique standard sampling procedures.

Based on the site inspection and sampling, the proposed area was all concrete covered. The soil sample recovered from below the concrete, BH101 (0.1-0.2m), indicated fill comprising sand, fine grain, yellow, brown. The recovered sample did not reveal any visual evidence of asbestos or other indicators of contamination, such as staining, odours or significant foreign matter. A calibrated Photo Ionization Detector (PID) was used to screen for the presence of potential volatile organic compounds (VOC) and the screening indicated no VOC within the soils.

The recovered sample was forwarded under COC conditions to the National Association of Testing Authorities (NATA) accredited laboratories, SGS Environmental Services (SGS) (primary) and Envirolab (Secondary). On receipt of the samples, the laboratories returned the Sample Receipt Advice, verifying the integrity of all the samples received.

LABORATORY ANALYSIS

The recovered sample was analysed for potential common contaminants (see Attached Table A), which include Metals, such as Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn), Total Petroleum Hydrocarbons (TPH), BTEX (Benzene, Toluene, Ethyl Benzene and Xylenes), Polycyclic Aromatic Hydrocarbons (PAH), Organochlorine Pesticides (OCP), Polychlorinated Biphenyls (PCB), Phenols and Cyanides.

FIELD AND LABORATORY QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES Field Quality Assurance (QA)/ Quality Control (QC)

In order to ensure the integrity and reliability of the chemical analysis carried out, the following field QA/QC procedures were implemented for the sampling and analytical program.

Rinsate Sample

A rinsate water sample (Rinsate R1) was recovered on completion of field work in order to identify possible cross contamination between the sampling locations. A sample of the same water source used for cleaning the equipment (clean distilled water) was previously analysed by the primary laboratory, thus with known concentrations of the selected analytes. The concentrations of the analytes in the rinsate sample were then compared with the results of the original distilled water.

The test results are summarised in Table E. The analyte concentrations of the rinsate blank samples were not significantly different from the clean distilled water sample, which indicates that adequate decontamination had been carried out in the field.

<u>Trip Spike</u>

A trip spike sample is obtained from the laboratory on a regular basis, prior to conducting field sampling where volatile substances are suspected. The sample was held in the Penrith office of Geotechnique, at less than 4 degrees Celsius, for a period of not more than seven days. During the field work, the trip spike sample is kept in the chilled container with soil samples recovered from the site. The trip spike sample is then forwarded to the primary laboratory together with the soil samples recovered from the site.

The laboratory prepares the trip spike by adding a known amount of pure petrol standard to a clean sand sample. The sample is mixed thoroughly to ensure a relatively homogenous distribution of the spike throughout the sample. When the sample is submitted for analysis, the same procedure is adopted for testing as for the soil samples being analysed from the site

12593/2 Golf Avenue, Mona Vale

The purpose of the trip spike is to detect any loss, or potential loss, of volatiles from the soil samples, during field work, transportation, sample extraction or testing.

A trip spike sample (TS1) was forwarded to the primary analytical laboratory with the samples collected from the site, and was tested for BTEX. The test results for the trip spike sample, reported as a percentage recovery of the applied and known spike concentrations, are shown in Table F.

As indicated in Table F, the results show a good recovery of the spike concentrations, ranging between 97% and 99%.

Based on the above, it is considered that any loss of volatiles from the recovered samples that might have occurred would not affect the outcome / conclusions of this report.

Duplicate Sample

The duplicate frequency adopted complies with the National Environmental Protection Measure (NEPM), which recommends a duplicate frequency of at least 5%.

The laboratory test results certificates from SGS are included in Attachment C. The duplicate sample results are summarised in Table G.

A comparison was made of the laboratory test results for the duplicate sample with the original sample and the Relative Percentage Differences (RPD) were computed, in order to assess the accuracy of the laboratory test procedures. RPD within 50% are generally considered acceptable. However, this variation can be higher for organic analysis than for inorganics and for low concentrations of analytes.

As shown in Table G, the comparisons between the duplicate and corresponding original sample indicated acceptable RPD overall, with the exception of relatively high RPD (67%) for total phenols. Due to the low concentrations, this result is not considered critical.

Based on the duplicate sample number and comparisons, it is concluded that the test results provided by SGS can be relied upon for this assessment.

Split Sample

A split sample provides a check on the analytical performance of the primary laboratory. The split sample was prepared based on sample numbers recovered during field work and the analyses undertaken by the primary laboratory.

The split sample frequency adopted complies with the NEPM, which recommends a frequency of 5%.

The laboratory test results certificates from Envirolab are included in Attachment C. The split sample results are summarised in Table H.

Based on Schedule B (3) of the NEPM, the difference in the results between the split samples should generally be within 30% of the mean concentration determined by both laboratories, i.e., RPD should be within 30%. However, this variation can be expected to be higher for organic analysis than for inorganics and for low concentrations of analytes.

As shown in Table H, comparisons between the splits and corresponding original samples indicated generally acceptable RPD overall, with the exception of some higher RPDs for metals. Due to the relatively low concentrations, these results are not considered critical.

Based on the overall split sample number and comparisons, it is concluded that the test results provided by the primary laboratory may be relied upon for this assessment.

12593/2 Golf Avenue, Mona Vale

LABORATORY QA/QC

Only laboratories accredited by the NATA for chemical analyses were used for analysis of samples recovered as part of this assessment. The laboratory must also incorporate quality laboratory management systems to ensure that trained analysts, using validated methods and suitably calibrated equipment, produce reliable results.

In addition to the quality control samples, the laboratory must also ensure that all analysts receive certification as to their competence in carrying out the analysis and participate in national and international proficiency studies. SGS and Envirolab, the two laboratories used for this assessment, are both accredited by NATA. The two laboratories also operate Quality Systems that are designed to comply with ISO/IEC 17025.

We have checked the QA/QC procedures and results adopted by the laboratories against the appropriate guidelines. The quality control sample numbers adopted by SGS and Envirolab are considered adequate for the analyses undertaken and generally conform to recommendations provided in the NEPM 1999 "*Guideline on Laboratory Analysis of Potentially Contaminated Soils*" (Reference 2) and Australian and New Zealand Environment and Conservation Council (ANZECC) -1996 "*Guidelines for the Laboratory Analysis of Contaminated Soils*".

Overall, it is considered that the quality assurance and quality control data quality indicators have been complied with, both in the field and in the laboratory. As such, it is concluded that the laboratory test data obtained as part of this assessment is reliable and useable for this assessment

ASSESSMENT CRITERIA

The assessment criteria adopted were the available Health-based Investigation Levels (HBILs) / Health Investigation Levels (HILs) for *parks, recreational open space and playing fields* development (NEHF 'E' / HILs 'E'), the provisional phytotoxicity based investigation levels (PPBILs) / Ecological Investigation Levels (EILs) and the suggested Levels in the EPA service station guidelines.

LABORATORY TEST RESULTS, ASSESSMENT & DISCUSSION

Reference may be made to the attached laboratory analytical report from SGS and Envirolab. The test results, including schedule of testing are also presented in Tables A to D, together with the assessment criteria adopted. A discussion of the test results is presented in the following sub-sections.

Metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn)

The metals test results are presented in Table B. The concentrations of metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn) for the analysed sample were well below the relevant PPBIL and NEHF 'E' adopted.

TPH and BTEX

The TPH and BTEX test results are presented in Table C.

As indicated, the concentrations of TPH/BTEX were less than the relevant EPA Level adopted.

Polycyclic Aromatic Hydrocarbons (PAH)

As shown in Table D, the concentrations of benzo(a)pyrene and Total PAH for the analysed soil samples were well below the NEHF 'E' adopted.

12593/2 Golf Avenue, Mona Vale

Organochlorine Pesticides (OCP), Polychlorinated Biphenyls (PCB), Total Phenols and Total Cyanides

The OCP, PCB, total Phenols and total Cyanides test results are presented in Table D and as shown, the concentrations of the analysed soil sample were well below the relevant NEHF 'E' adopted.

CONCLUSION AND LIMITATIONS

Based on the test results of sample BH101, the fill (sand) in the area proposed for above-ground storage tank, at 1 Golf Avenue, Mona Vale Golf Club, Mona Vale, is assessed not to pose a risk of harm to human health and environment for the proposed development.

This report has been prepared for the purpose stated within. This report may be relied upon by relevant authorities for development. Any reliance on this report by other parties shall be at such parties' sole risk, as the report might not contain sufficient information for other purposes.

This report shall only be presented in full and may not be used to support any other objective than those set out in the report, except where written approval is provided by Geotechnique.

The information in this report is considered accurate at completion of field sampling on 27 January 2012. Any variations to the site beyond this date might nullify the conclusions stated. If there are any variations in site conditions beyond this date, such as imported fill, chemical spillage, illegal dumping, etc., further assessment will be required and the conclusion stated herein could be nullified.

If any suspect materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets/pieces, ash material, etc) are encountered during any stage of future earthworks/site preparation, we recommend that this office is contacted for assessment. In the event of contamination, detailed assessment, remediation and validation will be necessary.

Reference should be made to the "Environmental Notes" in Attachment D, for details of the limitations of this assessment.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

DANDA SAPKOTA Senior Environmental Engineer

> Attachment A Attachment B Attachment C: Attachment D:

Drawing Nos 12593/2-AA1 Attached Schedule of testing and Laboratory Test Results Summary Tables (A-H) Laboratory Test Report /Certificate of Analysis Environmental Notes

> Mona Vale Golf Club Ltd DS.mh/21.02.2012

ATTACHMENT A

Drawing No 12593/2-AA1

.

Sample Location

ATTACHMENT B

- TABLE ALaboratory Testing Schedule
- TABLE B Heavy Metals Test Results
- TABLE C Total Petroleum Hydrocarbons (TPH) and BTEX Test Results
- TABLE DBenzo(a)Pyrene, Polycyclic Aromatic Hydrocarbons, Organochlorine
- Pesticides, Polychlorinated Biphenyls, Phenols and Cyanides Test Results
- TABLE ERinsate Sample
- TABLE F Trip Spike Sample
- TABLE G Duplicate Sample
- TABLE H Split Sample

TABLE A SCHEDULE OF LABORATORY TESTING (Ref No: 12593/2-AA)

Analyte /		TYPE	SAMPLING DATE	DUPLICATE	SPLIT	METALS	TPH & BTEX	РАН	OCP	РСВ	PHENOLS	CYANIDES
Sample	Depth (m)											
BH101	0.1-0.2	F	27/01/2012	D101	S101	~	~	~	~	>	~	~
Rinsate R1			27/01/2012			V	v	~				

Notes

METALS: arsenic, cadmium, chromium, copper, lead, mercury, nickel & zinc

TPH: Total Petroleum Hydrocarbons BTEX: Benzene, Toluene, Ethyl Benzene, total Xylenes

F: Fill

PAH: Polycyclic Aromatic Hydrocarbons OCP: Organochlorine Pesticides PCB: Polychlorinated Biphenyls

> Mona Vale Golf Club Ltd DS.mh/21.02.2012

.

TABLE B HEAVY METALS TEST RESULTS **DISCRETE SAMPLE**

(Ref No: 12593/2-AA)

/	Analyte	HEAVY METALS (mg/kg)							
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM	COPPER	LEAD	MERCURY	NICKEL	ZINC
BH101	0.1-0.2	4	<0.3	5.8	3.1	3	<0.05	1,9	5.2
Limits of Reporting (LOR)		3	0.3	0.3	0.5	1	0.05	0.5	0.5
GUIDELINES FOR THE N	sw								
SITE AUDITOR SCHEME	(2006)								
Provisional Phytotoxity-Bas	ed								
Investigation Levels		20	3	400/1 ^b	100	600	1	60	200
Health-Based Investigation	Levels ^a (NEHF E)	200	40	24%/200 °	2000	600	20/30 ^d	600	14000
Notes a: Parks	Notes a: Parks, recreational open space, playing fields and secondary schools.								

Notes

b:

400mg/kg for Chromium (+3) and 1mg/kg for Chromium (+6). Chromium (Cr) may exist in a number of states. Cr (+6) is easily reduced to form the most stable Cr (+3) whenever exposed to the atmosphere. Therefore Cr (+3) is adopted for this assessment.

24% (240000mg/kg) for Chromium (+3) and 200mg/kg for Chromium (+6). c:

d: 20mg/kg for Methyl Mercury and 30mg/kg for Inorganic Mercury.

TABLE C TOTAL PETROLEUM HYDROCARBONS (TPH) AND BTEX TEST RESULTS DISCRETE SAMPLE (Ref No: 12593/2-AA)

	(NO. 12		/						
Analyte		TPH (mg/kg)					BTEX (mg/kg)			
	60-90	C10-C14	C15-C28	C29-C40	C10-C40 ª	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	
Sample Location Depth (m)										
BH101 0.1-0.2	<20	<20	<50	<150	220	<0.1	<0.1	<0.1	<0.3	
LOR	20	20	50	150	NA	0.1	0.1	0.1	0.3	
EPA Levels ^b	65		C1	0-C40 =	1000	1	1.4	3.1	14	
Notes a: C10-C40 = (C10	D-C14)	+ (C15-C2	28) + (C2	29-C40);	concentral	ions les	s than P	QL are a	assum	

a: C10-C40 = (C10-C14) + (C15-C28) + (C29-C40); concentrations less than PQL are assumed equal to PQL.

b: Contaminated Sites: "Guidelines for Assessing Service Station Sites", 1994, EPA

NA: Not Applicable

TABLE D BENZO(a)PYRENE, POLYCYCLIC AROMATIC HYDROCARBONS (PAH), ORGANOCHLORINE PESTICIDES (OCP), POLYCHLORINATED BIPHENYLS (PCB), PHENOLS AND CYANIDES TEST RESULTS DISCRETE SAMPLE

(Ref No: 12593/2AA)

						ochlorin	eresu		ng/ng/				
		BENZO(a)PYRENE (mg/kg)	TOTAL PAH (mg/kg)	HEPTACHLOR	ALDRIN	DIELDRIN	DDD	DDE	DDT	CHLORDANE (trans & cis)	TOTAL PCB (mg/kg)	TOTAL PHENOLS (mg/kg)	TOTAL CYANIDES (mg/kg)
Sample Location	Depth (m)												
BH101	0.1-0.2	<0.1	<0.8	<0.1	<0.1	<0.05	<0.2	<0.2	<0.2	<0.2	<1	0.2	<0.1
LOR		0.05	NA	0.1	0.1	0.05	0.2	0.2	0.2	0.2	1	0.1	0.1
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (204 Health-Based Investigation Lev	•	2	40	20	20 ^b	20 ^b		400 °		100	20	17000	500 ^d / 1000 ^e

Aldrin + Dieldrin b:

Total of DDD + DDE + DDT C;

d: Cyanide (free)

Cyanide (complex) e:

NA: Not Applicable

TABLE E RINSATE SAMPLE (Ref No: 12593/2-AA)

(Ref NO: 12593/2-AA)										
	RINSATE	CLEAN								
ANALYTE	R1	DISTILLED WATER								
	(mg/L)	(mg/L)								
HEAVY METALS										
Arsenic	<0.05	<0.05								
Cadmium	<0.005	<0.002								
Chromium	<0.005	<0.005								
Copper	<0.01	<0.01								
Lead	<0.02	<0.02								
Mercury	<0.0001	<0.0005								
Nickel	<0.01	<0.009								
Zinc	<0.01	<0.006								
TOTAL PETROLEUM HYDROCARBONS	(TPH)									
C6 - C9	0.099	<0.04								
C10 - C14	<0.1	<0.10								
C15 - C28	<0.2	<0.20								
C29 - C40	<0.4	<0.20								
BTEX										
Benzene	<0.0005	<0.001								
Toluene	<0.0005	<0.001								
Ethyl Benzene	<0.0005	<0.001								
Total Xylenes	<0.0015	<0.003								
POLYCYCLIC AROMATIC HYDROCARB	ONS (PAH)									
Benzo(a)Pyrene	<0.0001	<0.0005								
Total PAH	<0.001	0.008								

TABLE F TRIP SPIKE SAMPLE (Ref No: 12593/2-AA)

	TRIP
ANALYTE	SPIKE
	TS1
BTEX	
Benzene	99%
Toluene	97%
Ethyl Benzene	97%
Total Xylenes	98%
1	

Note : results are reported as percentage recovery of known spike concentration

Mona Vale Golf Club Ltd DS.mh/21.02.2012

TABLE G DUPLICATE SAMPLE (Ref No: 12593/2-AA)

(Rei N	<u>lo: 12593/2-A</u>	~)	
	BH101	DUPLICATE	RELATIVE PERCENTAGE
ANALYTE	0.1-0.2m	D101	DIFFERENCE
	mg/kg	mg/kg	%
HEAVY METALS			
Arsenic	4	3	29
Cadmium	<0.3	<0.3	-
Chromium	5.8	4.5	25
Copper	3.1	5.1	49
Lead	3	2	40
Mercury	<0.05	<0.05	-
Nickel	1.9	2.6	31
Zinc	5.2	7.3	34
TOTAL PETROLEUM HYDROCARBONS (TPH)			
C6 - C9	<20	<20	-
C10 - C14	<20	<20	-
C15 - C28	<50	<50	-
C29 - C40	<150	<150	-
BTEX			
Benzene	<0.1	<0.1	-
Toluene	<0.1	<0.1	-
Ethyl Benzene	<0.1	<0.1	-
Total Xylenes	<0.3	<0.3	-
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)			
BENZO(a)PYRENE	<0.1	<0.1	-
Total PAH	<0.8	<0.8	-
ORGANOCHLORINE PESTICIDES (OCP)			
Heptachlor	<0.1	<0.1	-
Aldrin	<0.1	<0.1	-
Dieldrin	<0.05	<0.05	-
DDD	<0.2	<0.2	-
DDE	<0.2	<0.2	· ·
DDT	<0.2	<0.2	-
Chlordane (trans & cis)	<0.2	<0.2	-
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<1	<1	-
PHENOLS & CYANIDES			
Total Phenols	0.2	0.1	67
Total Cyanides	<0.1	<0.1	-

TABLE H SPLIT SAMPLE (Ref No: 12593/2-AA)

	BH101	SPLIT SAMPLE	RELATIVE PERCENTAGE
ANALYTE	0.1-0.2m	S101	DIFFERENCE
	mg/kg	mg/kg	
	(SGS)	(ENVIROLAB)	%
HEAVY METALS			
Arsenic	4	<4	-
Cadmium	<0.3	<0.5	-
Chromium	5.8	5	15
Copper	3.1	5	47
Lead	3	2	40
Mercury	<0.05	<0.1	-
Nickel	1.9	3	45
Zinc	5.2	5	4
TOTAL PETROLEUM HYDROCARBONS (TPH)			
C6 - C9	<20	<25	-
C10 - C14	<20	<50	-
C15 - C28	<50	<100	-
C29 - C40 or *** C29-C36 for Envirolab***	<150	<100	-
BTEX			
Benzene	<0.1	<0.2	-
Toluene	<0.1	<0.5	-
Ethyl Benzene	<0.1	<1	-
Total Xylenes	<0.3	<3	-
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)			
Benzo(a)Pyrene	<0.1	<0.05	-
Total PAH	<0.8	<1.55	-
ORGANOCHLORINE PESTICIDES (OCP)			
Heptachlor	<0.1	<0.1	-
Aldrin	<0.1	<0.1	-
Dieldrin	<0.05	<0.1	-
DDD	<0.2	<0.2	-
DDE	<0.2	<0.2	-
DDT	<0.2	<0.2	-
Chlordane (trans & cis)	<0.2	<0.2	-
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<1	<0.7	-
PHENOLS & CYANIDES			
Total Phenols	0.2	<5	-
Total Cyanides	<0.1	<0.5	-

SGS ANALYTICAL REPORT AND ENVIROLAB CERTIFICATE OF ANALYSIS

.....

ANALYTICAL REPORT

		LABORATORY DETAIL	.S
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	12593/2 - Mona Vale	SGS Reference	SE105013 R0
Order Number	(Not specified)	Report Number	0000017500
Samples	4	Date Reported	07 Feb 2012
		Date Received	27 Jan 2012

COMMENTS .

The document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES _

/sr

Andy Sutton Organics Chemist

Amore

Huong Crawford Laboratory Manager

Dong Liang Inorganics Metals Team Leader

Member _____

Ly Kim Ha Organics Supervisor

Stoward Ibrahum

Edward Ibrahim Business Manager

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.co

.

ANALYTICAL REPORT

``````````````````````````````````````		No. 11 1 10 - 10	r SE105013.001	SE105013.002	SE105013.003	SE105013.004
		Sample Numbe Sample Matri	x Soil	Soil	Water	Soli
		Sample Dat Sample Nam		27 Jan 2012 Duplicate D101	27 Jan 2012 Rinsate R1	27 Jan 2012 Tripspike TS1
		dan nga o na m			etando en aj	
Parameter	Units	LOR				
VOC's in Soil Method: AN433/A	N434					
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg		<0.1	<0.1	-	[99%]
Toluene	mg/kg		<0.1	<0.1	-	[97%]
Ethylbenzene	mg/kg		<0.1	<0.1	-	[97%]
m/p-xylene	mg/kg		<0.2	<0.2	-	[99%] [98%]
o-xylene	mg/kg	0.1	<0.1	<0.1	-	[30.96]
Oxygenated Compounds						
MIBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	-	<0.1
mbe (notification buy, only)						
Surrogates						
	%	_	100	95	-	98
Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	-	101	97	-	95
da-toluene (Surrogate)	%	-	104	102	-	99
Bromofluorobenzene (Surrogale)	%	-	105	106	-	119
Totals						
Total Xylenes*	mg/kg	g 0.3	<0.3	<0.3	-	-
Total BTEX*	mg/kg	<b>,</b> -	0	0	-	-
Volatile Petroleum Hydrocarbon	s in Soil Method: AN433/AN4	134				
TRH C6-C9	mg/k	g 20	<20	<20	-	-
Surrogates						
Trifluorotoluene (Surrogate)	%	-	76	87	-	-
Dibromofluoromethane (Surrogate)	%	-	-	•		-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	-
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogale)	%	-	-	-	-	-
TRH (Total Recoverable Hydroc	arbons) in Soil – Method: AN4	03				
TRH C10-C14	mg/k		<20	<20	-	-
TRH C15-C28	mg/k		<50 <150	<50 <150	-	_
TRH C29-C40	mg/k	ig 150	< 150	- 100	-	
Surrogates						
TRH (Surrogate)	%	-	-	-	-	-
(14) (Gulogato)						
PAH (Polynuclear Aromatic Hyd	rocarbons) in Soil Method: /	4N420				
i Milli Giffibeloar Frienado Fife						
Naphthalene	mg/	÷	<0.1	<0.1	-	-
2-methylnaphthalene	mg/		<0.1	<0.1	-	
1-methylnaphthalene	mg/		<0.1	<0.1 <0.1	-	
Acenaphthylene	mg/i		<0.1 <0.1	<0.1	-	-
Acenaphthene	mg/i mg/i	-	<0.1	<0.1	-	•
Fluorene Phenanthrene	mg/	-	<0.1	<0.1	-	•
Anthracene	mg/	•	<0.1	<0.1	-	-
Fluoranthene	mg/	-	<0.1	<0.1	-	-
Pyrene	mg/		<0.1	<0.1	-	-
Benzo(a)anthracene	mg/		<0.1	<0.1	-	-
Chrysene	mg/		<0.1	<0.1	-	-
Benzo(b)fluoranthene	mg/	kg 0.1	<0.1	<0.1	-	. <b>-</b>
Benzo(k)fluoranthene	mg/	kg 0.1	<0.1	<0.1	-	
Benzo(a)pyrene	mg/		<0.1	<0.1	-	-
Indeno(1,2,3-cd)pyrene	mg/		<0.1	<0.1	-	-
Dibenzo(a&h)anthracene	mg/	'kg 0.1	<0.1	<0.1	-	-

-----



# ANALYTICAL REPORT

	5)	nple Number ample Matrix Sample Date ample Name LOR	SE105013.001 Soil 27 Jan 2012 BH101_0.1-0.2	SE105013.002 Soli 27 Jan 2012 Duplicate D101	SE105013.003 Water 27 Jan 2012 Rinsate R1	SE105013.004 Soll 27 Jan 2012 Tripspike TS1
Parameter PAH (Polynuclear Aromatic Hydrocarbons) in So			d)			
Benzo(ghi)perylena	mg/kg	0.1	<0.1	<0.1		-
Total PAH	mg/kg	0.8	<0.8	<0.8	-	-
Surrogates						
d5-nitrobenzene (Surrogale)	%	-	87	101	-	-
2-fluorobiphenyl (Surrogate)	%	-	99	110	-	-
d14-p-terphenyl (Surrogate)	%	-	104	110	-	•
OC Pesticides in Soil Method: AN400/AN420						
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
Lindane	mg/kg	0.1	<0.1	<0.1	-	-
Heptachlor	mg/kg	0.1	<0.1	<0.1	-	-
Aldrin	mg/kg	0.1	<0.1	<0.1	-	-
Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
Delta BHC	mg/kg	0.1	<0.1	<0.1	-	-
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
Alpha Chiordane	mg/kg	0.1	<0.1	<0.1	-	-
trans-Nonachlor	mg/kg	0,1	<0.1	<0.1	-	-
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
Dieldrin	mg/kg	0.05	<0.05	<0.05	-	-
Endrin	mg/kg	0.2	<0.2	<0.2	-	-
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
Methoxychior	mg/kg	0.1	<0.1	<0.1	-	-
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-



í

# ANALYTICAL REPORT

SE105013 R0

Parameter	S: S Units	nple Number ample Matrix Sample Date ample Name LOR	SE105013.001 Soil 27 Jan 2012 BH101_0.1-0.2	SE105013.002 Soil 27 Jan 2012 Duplicate D101	SE105013.003 Water 27 Jan 2012 Rinsato R1	SE105013.004 Soli 27 Jan 2012 Tripspike TS1
OC Pesticides in Soil Method: AN400/AN420 (continue	nuj					
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	128	128	-	-
PCBs in Soil Method: AN400/AN420						
Arochior 1016	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	•
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
Arochior 1254	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	•
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	128	128	-	-
Total Phenolics in Soil Method: AN289	mg/kg	0.1	0.2	0.1	-	-
Total Cyanide in soil by Discrete Analyser (Aquakem)	Method:	AN077/AN28	7			
Total Cyanide	mg/kg	0.1	<0.1	<0.1	-	-
Total Recoverable Metals in Soil by ICPOES from EPA 2	200.8 Dige	st Method:	AN040/AN320			
Arsenic, As	mg/kg	3	4	3	-	-
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	-	-
Chromium, Cr	mg/kg	0.3	5.8	4.5	-	-
Copper, Cu	mg/kg	0.5	3.1	5.1	-	-
Lead, Pb	mg/kg	1	3	2	-	-
Nickel, Ni	mg/kg	0.5	1.9	2.6	-	-
Zinc, Zn	mg/kg	0.5	5.2	7.3	-	-
Mercury in Soil Method: AN312						
Mercury	mg/kg	0.05	<0.05	<0.05	-	-
VOCs in Water Method: AN433/AN434 Monocyclic Aromatic Hydrocarbons						
Benzene	µg/L	0.5	-	-	<0.5	-
Toluene	µg/L	0.5	-	-	<0.5	-
Ethylbenzene	µg/L	0.5	-	-	<0.5	-
m/p-xylene	µց/∟	1	-	-	<1	-
o-xylene	µg/L	0.5	-	-	<0.5	-



# ANALYTICAL REPORT

SE105013 R0

	San	ole Number ople Matrix	SE105013.001 Soil	SE105013.002 Soll	SE105013.003 Water	SE105013:004 Soli
	Sar	ample Date nple Name	27 Jan 2012 BH101_0.1-0.2	27 Jan 2012 Duplicate D101	27 Jan 2012 Rinsate R1	27 Jan 2012 Tripspike TS1
Parameter	Units	14013				
VOCs in Water Method: AN433/AN434 (continued)		-				
Oxygenated Compounds					_	
MIBE (Methyl-tert-butyl ether)	µg/L	0.5	-	-	<0.5	-
Surrogales						
Dibromofluoromethane (Surrogale)	%	-	-	-	96	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	99	-
d8-toluene (Surrogate)	%	-	-	-	96	-
Bromofluorobenzene (Surrogate)	%	-	-	-	100	-
Totals						
					<1.5	
Total Xylenes	µg/L	1.5	-	-	<3	-
Total BTEX	µg/L	3	-	-	<3	-
va 1.125. C. L. C. L. Strand VI. Strand March 1. Strader March 1.	1. ANIA39/AKKA93					
Volatile Petroleum Hydrocarbons in Water Method	I: AN433/AN434	\$				
TRH C6-C9	µg/L	40	-	-	99	-
Surrogates						
Trifluorotoluene (Surrogate)	%	-	-	-	96	-
Dibromofluoromethane (Surrogate)	%	-	-	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-	-	•
d8-toluene (Surrogate)	%	-	-	-	-	-
Bromofluorobenzene (Surrogale)	%	-	-	-	-	-
TRH (Total Recoverable Hydrocarbons) in Water	Vethod: AN403					
TRH C10-C14	µg/L	100	-	-	<100	-
TRH C15-C28	µg/L	200	-	-	<200	-
TRH C29-C40	µg/L	400	-	-	<400	-
Surrogates						
TRH (Surrogate)	%	-	-	-	-	-
PAH (Polynuclear Aromatic Hydrocarbons) in Water	Method: AN	420				
		0.1		-	<0.1	-
Naphthalene	μg/L μg/L	0.1	-	-	<0.1	-
2-methylnaphthalene	μg/L	0.1	_	-	<0.1	-
1-melhyinaphthalene	րց/Ը	0.1	_		<0.1	-
	μg/L	0.1	_	-	<0.1	-
Acenaphlhene	μg/L	0.1	_	-	<0.1	-
Fluorene	μg/L	0.1		-	<0.1	-
Phenanthrene Anthracene	μg/L	0.1	_	-	<0.1	-
Fluoranthene	μg/L	0.1	-	-	<0.1	-
Pyrene	μg/L	0.1	-	-	<0.1	-
	μg/L	0.1	-	-	<0.1	-
Benzo(a)anthracene Chrysene	μg/L	0.1		-	<0.1	-
Benzo(b)fluoranihene	μg/L	0.1	-	-	<0.1	-
Benzo(k)fluoranthene	μg/L	0.1	-	-	<0.1	-
Benzo(a)pyrene	μg/L	0.1	-	-	<0.1	-
Indeno(1,2,3-cd)pyrene	բց/ե	0.1	-		<0.1	-
Dibenzo(a&h)anihracene	μg/L	0.1	-	-	<0.1	-
Benzo(ghi)perylene	μg/L	0.1	-		<0.1	-
Total PAH (18)	µg/L	1	-	_	<1	-
	-8-					



-----

 $\prod$ 

# ANALYTICAL REPORT

	\$ <del>1</del>	nple Number Imple Matrix Sample Date Ample Name	SE105013.001 Soil 27 Jan 2012 BH101_0.1-0.2	SE106013,002 Soil 27 Jan 2012 Duplicate D101	SE105013:003 Water 27 Jan 2012 Rinsate R1	SE106013.004 Soil 27 Jan 2012 Tripspike TS1
Parameter	Units	11018				
PAH (Polynuclear Aromatic Hydrocarbons) in Water Surrogates	Method: AN	1420 (contini	ued)			
d5-nitrobenzene (Surrogate)	%	-	-	-	71	-
2-fluorobiphenyl (Surrogate)	%	-	-	-	79	-
d14-p-terphenyl (Surrogate)	%	-	-	-	106	-
Metals in Water (Dissolved) by ICPOES Method: A	N320/AN321					
Arsenic, As	mg/L	0.05	-	-	<0.05	-
Cadmium, Cd	mg/L	0.005	-	-	<0.005	-
Chromium, Cr	mg/L	0.005	-	-	<0.005	-
Copper, Cu	mg/L	0.01	-	-	<0.01	-
Lead, Pb	mg/L	0.02	-	-	<0.02	-
Nickel, Ni	mg/L	0.01	•	-	<0.01	-
Zinc, Zn	mg/L	0.01	-	-	<0.01	-
Mercury (dissolved) in Water Method: AN311/AN31	2					
Mercury	mg/L	0.0001	-	-	<0.0001	-
Moisture Content Method: AN234						
% Moisture	%	0.5	22	14	-	-

### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311/AN312

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Mercury	LB013240	mg/L	0.0001	<0.0001	0%	115%	109%

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Mercury	LB013289	mg/kg	0.05	<0.05	0%	106%	93%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Arsenic, As	LB013223	mg/L	0.05	<0.05	0%	96%
Cadmium, Cd	LB013223	mg/L	0.005	<0.005	0%	99%
Chromium, Cr	LB013223	mg/L	0.005	<0.005	0%	97%
Copper, Cu	LB013223	mg/L	0.01	<0.01	0%	97%
Lead, Pb	LB013223	mg/L	0.02	<0.02	0%	98%
Nickel, Ni	LB013223	mg/L	0.01	<0.01	0%	98%
Zinc, Zn	LB013223	mg/L	0.01	<0.01	0%	99%

Moisture Content Method: ME-(AU)-[ENV]AN234

Parameter	0,0	Units	LOR	DUP %RPD
	Reference			
% Moisture	LB013245	%	0.5	2 - 7%

OC Pesticides In Soil Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Hexachlorobenzene (HCB)	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Alpha BHC	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Lindene	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Heplachlor	LB013151	mg/kg	0.1	<0.1	0%	120%	75%
Aldrin	LB013151	mg/kg	0.1	<0.1	0%	130%	75%
Beta BHC	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Delta BHC	LB013151	mg/kg	0.1	<0.1	0%	120%	70%
Heptachlor epoxide	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
o,p'-DDE	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Alpha Endosulfan	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Gamma Chlordane	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Alpha Chlordane	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
trans-Nonachlor	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
p,p'-DDE	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Dieldrin	LB013151	mg/kg	0.05	<0.05	0%	120%	70%
Endrin	LB013151	mg/kg	0.2	<0.2	0%	120%	80%
o,p'-DDD	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
o,p'-DDT	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Beta Endosulfan	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
p,p'-DDD	LB013151	mg/kg	0,1	<0.1	0%	NA	NA
р.р'-DDT	LB013151	mg/kg	0.1	<0.1	0%	80%	85%
Endosulían sulphale	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Endrin Aldehyde	LB013151	mg/kg	0,1	<0.1	0%	NA	NA
Methoxychlor	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Endrin Kelone	LB013151	mg/kg	0.1	<0.1	0%	NA	NA
Surrogates							
Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB013151	%	-	125%	0 - 15%	95%	73%

#### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

PAH (Polynuclear Aromatic Hydrocarbons) in Soll Method: ME-(AU)-[ENV]AN420

PAR (Polyhucieal Atomatic Hydrocarbolis) in 364 method.	QD	Units	LOR	MB	DUP %RPD	LCS	MS
Parameter	Reference	Unite	ITAK	NO DE	DOF MINED	%Recovery	%Recovery
Naphthalene	LB013154	mg/kg	0.1	<0.1	0%	113%	110%
2-methylnaphthalene	LB013154	mg/kg	0.1	<0.1	0%	NA	NA
1-methylnaphthalene	LB013154	mg/kg	0.1	<0.1	0%	NA	NA
Acenaphthylene	LB013154	mg/kg	0.1	<0.1	0%	114%	113%
Acenaphthene	LB013154	mg/kg	0.1	<0.1	0%	120%	125%
Fluorene	LB013154	mg/kg	0.1	<0.1	0%	NA	NA
Phenanthrene	LB013154	mg/kg	0.1	<0.1	0 - 86%	116%	115%
Anthracene	LB013154	mg/kg	0.1	<0.1	0%	123%	122%
Fluoranthene	LB013154	mg/kg	0.1	<0.1	46 - 52%	120%	113%
Pyrene	LB013154	mg/kg	0.1	<0.1	43 - 57%	124%	104%
Benzo(a)anthracene	LB013154	mg/kg	0.1	<0.1	0 - 43%	NA	NA
Chrysene	LB013154	mg/kg	0.1	<0.1	0 - 31%	NA	NA
Benzo(b)fluoranthene	LB013154	mg/kg	0.1	<0.1	24 - 26%	NA	NA
Benzo(k)fluoranthene	LB013154	mg/kg	0.1	<0.1	0 - 40%	NA	NA
Benzo(a)pyrene	LB013154	mg/kg	0.1	<0.1	0 - 27%	119%	116%
Indeno(1,2,3-cd)pyrene	LB013154	mg/kg	0.1	<0.1	0 - 24%	NA	NA
Dibenzo(a&h)anthracene	LB013154	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(ghi)perviene	LB013154	mg/kg	0.1	<0.1	0 - 27%	NA	NA
Total PAH	LB013154	mg/kg	0.8	<0.8	0 - 41%	NA	NA

Surrogates

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
d5-nitrobenzene (Surrogate)	LB013154	%	-	95%	1 - 4%	98%	126%
2-fluorobiphenyi (Surrogale)	LB013154	%	-	109%	2 - 3%	111%	109%
d14-p-terphenyl (Surrogale)	LB013154	%	-	115%	0 - 6%	114%	118%

PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Naphthalene	LB013144	µg/L	0.1	<0.1	91%
2-methylnaphthalene	LB013144	µg/L	0.1	<0.1	NA
1-methylnaphthalene	LB013144	µg/L	0.1	<0.1	NA
Acenaphthylene	LB013144	µg/L	0.1	<0.1	103%
Acenaphthene	LB013144	µg/L	0.1	<0.1	113%
Fluorene	LB013144	µg/L	0.1	<0.1	NA
Phenanthrene	LB013144	µg/L	0.1	<0.1	121%
Anthracene	LB013144	µg/L	0.1	<0.1	109%
Fluoranthene	LB013144	µg/L	0.1	<0.1	119%
Pyrene	LB013144	µg/L	0.1	<0.1	120%
Benzo(a)anthracene	LB013144	µg/L	0.1	<0.1	NA
Chrysene	LB013144	μg/L	0.1	<0.1	NA
Benzo(b)fluoranthene	LB013144	µg/L	0.1	<0.1	NA
Benzo(k)/luoranthene	LB013144	μg/L	0.1	<0.1	NA
Benzo(a)pyrene	LB013144	µg/L	0.1	<0.1	118%
Indeno(1,2,3-cd)pyrene	LB013144	μg/L	0.1	<0.1	NA
Dibenzo(a&h)anthracene	LB013144	hð\F	0.1	<0.1	NA
Benzo(ghi)perylene	LB013144	µg/L	0,1	<0.1	NA
Total PAH (18)	LB013144	µg/L	1	<1	

Surrogates

Parameter	ଗ୍ରତ	Units	LOR	MB	LCS
	Reference				%Recovery
d5-nitrobenzene (Surrogate)	LB013144	%	-	108%	98%
2-fluorobiphenyi (Surrogale)	LB013144	%	-	101%	101%
d14-p-terphenyl (Surrogate)	LB013144	%	-	112%	116%

### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### PCBs in Soli Method: ME-(AU)-[ENV]AN400/AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arochlor 1016	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1221	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1232	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Arochior 1242	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1248	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1254	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1260	LB013151	mg/kg	0.2	<0.2	0%	129%	78%
Arochlor 1262	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Arochlor 1268	LB013151	mg/kg	0.2	<0.2	0%	NA	NA
Total PCBs (Arochlors)	LB013151	mg/kg	1	<1	0%	NA	NA

#### Surrogates

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery	MS %Recovery
Tetrachloro-m-xylene (TCMX) (Surrogale)	LB013151	%	•	125%	0 - 15%	72%	73%

Total Cyanide in soil by Discrete Analyser (Aquakern) Method: ME-(AU)-[ENV]AN077/AN287

Parameter	ପ୍ରତ	Units	LOR	MB	LCS	MSD %RPD
	Reference	P.6			%Recovery	
Total Cyanide	LB013182	mg/kg	0.1	<0.1	97%	NA

Total Phenolics in Soil Method: ME-(AU)-[ENV]AN289

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MSD %RPD
Total Phenols	LB013123	mg/kg	0.1	<0.1	18%	90%	NA

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arsenic, As	LB013286	mg/kg	3	<3	0 - 12%	98%	72%
Cadmium, Cd	LB013286	mg/kg	0.3	<0.3	0%	103%	81%
Chromium, Cr	LB013286	mg/kg	0.3	<0.3	0 - 1%	100%	75%
Copper, Cu	LB013286	mg/kg	0.5	<0.5	1 - 12%	102%	81%
Lead, Pb	LB013286	mg/kg	1	<1	6 - 9%	102%	69%
Nickel, Ni	LB013286	mg/kg	0.5	<0.5	0 - 7%	102%	79%
Zinc, Zn	LB013286	mg/kg	0.5	<0.5	3 - 4%	102%	78%

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	МВ	LCS %Recovery
TRH C10-C14	LB013149	mg/kg	20	<20	103%
TRH C15-C28	LB013149	mg/kg	50	<50	98%
TRH C29-C40	LB013149	mg/kg	150	<150	NA

TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
TRH C10-C14	LB013144	µg/L	100	<100	93%
TRH C15-C28	LB013144	µg/L	200	<200	94%
TRH C29-C40	LB013144	µg/L	400	<400	NA

### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434

Monocyclic Aromatic Hydrocarbons

Parameter	(D)9)	Units	(L(0)R)	MB	LCS
	Reference				%Recovery
Benzene	LB013141	mg/kg	0.1	<0.1	90%
Toluene	LB013141	mg/kg	0.1	<0.1	90%
Ethylbenzene	LB013141	mg/kg	0.1	<0.1	90%
m/p-xylene	LB013141	mg/kg	0.2	<0.2	92%
o-xylene	LB013141	mg/kg	0.1	<0.1	96%

Oxygenated Compounds

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
MIBE (Methyl-tert-butyl ether)	LB013141	mg/kg	0.1	<0.1	NA

Surrogales					
Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Dibromofluoromethane (Surrogate)	LB013141	%	-	103%	102%
d4-1,2-dichloroethane (Surrogale)	LB013141	%	-	106%	103%
d8-toluene (Surrogate)	LB013141	%	-	101%	101%
Bromofluorobenzene (Surrogate)	LB013141	%	-	96%	108%

Totals						
Parameter		QC	Units	LOR	MB	LCS %Recovery
	and the second	Reference				%Recovery
Total Xylenes*		LB013141	mg/kg	0.3	<0.3	NA
Total BTEX*		LB013141	mg/kg	-	0	NA

VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434

Monocyclic Aromatic Hydrocarbons

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Benzene	LB013388	µg/L	0.5	<0.5	98%
Toluene	LB013388	µg/L	0.5	<0.5	93%
Ethylbenzene	LB013388	µg/L	0.5	<0.5	93%
m/p-xylene	LB013388	µg/L	1	<1	89%
o-xylene	LB013388	μg/L	0.5	<0.5	97%

Oxygenated Compounds					
Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
MIBE (Methyl-tert-butyl ether)	LB013388	µg/L	0.5	<0.5	NA

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dibromofluoromethane (Surrogate)	LB013388	%	-	96%	99%
d4-1,2-dichloroethane (Surrogate)	LB013388	%	-	93%	101%
d8-toluene (Surrogate)	LB013388	%	-	98%	99%
Bromofluorobenzene (Surrogate)	LB013388	%	-	83%	111%



#### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Soil - Method: ME-(AU)-[ENV]AN433/AN434

Parameter	QC Réference	Units	LOR	MB	LGS %Recovery
TRH C6-C9	LB013141	mg/kg	20	<20	111%

Surrogates

Parameter	ର୍ଷ	Units	LOR	MB	LCS
	Reference				%Recovery
Trifluorotoluene (Surrogate)	LB013141	%	-	101%	90%

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433/AN434

Parameter	QC Reference	Unite	LOR	MB	LCS %Recovery
TRH C6-C9	LB013388	μg/L	40	<40	102%

Surrogates					
Parameter	QC	Units	LOR	MB	LCS
	Reference			a de la se	%Recovery
Trifluorotoluene (Surrogate)	LB013388	%	-	98%	71%



-

_ ]

# METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
N020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
N040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analsysis by ASS or ICP as per USEPA Method 200.8.
N083	Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples are prepared by spiking organic free water with target analytes and extracting as per samples.
N088	Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.
N234	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
N311/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
N312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
N320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
N400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with diffential polarity of the elluent solvents.



-----

# METHOD SUMMARY

METHOD         VETHOD/CORPORATION           ANK03         The GC/FD method is a web stated to the analysis of refined high boiling point materials (is lubicating oils of greases) but is particularly suited to the manufactors lipide, minute the provide and loader analysis occurring information lipide, minute the provide of the state of point of vehilling is laken. The manufactor lipide, minute the provide of the state of point of vehilling is laken. The state of the state of point of vehilling is laken. The state of the state of point of the state of							
preases) but is particularly satisfied for measuring diseat, knowner and peerfor forme to control validity is taken. This     immethods will devel number is control validity is taken. This     immethods will devel number is control validity is taken. This     immethods will devel number is control validity. Reference USEPA 35108,     80158.  AN420     (SVOCa) Including OC, OP, PCB, Herbindes, PAH, Phihalates and Specialed Phanols (edd) in sols, sediments     uses and eleminined by OCMOSECD technique following appropriate advent soft action process (Based on     USEPA 35002 and 62700).  AN420     SVOC Compound: Semi-Validite Organic Compounds (SVOCa) including OC, OP, PCB, Herbindles, PAH, Phithalates and Specialed Phanols (edd) in sols, sediments     and waters are determined by OCMOSECD technique     biolowing appropriate advent software formed to process (Based on OCCA)     SVOC Compounds: Semi-Validite Organic Compounds (SVOCa) including OC, OP, PCB, Herbindles, PAH, Phithalates and Specialed Phanols, eddiments and valides are datermined by GCMMECD technique     biolowing appropriate advent starked brondes (SVOCa) including OC, OP, PCB, Herbindles, PAH, Phithalates and Specialed Phanols, eddiments and valides and adventional on the set of the set o					the enclosis of a fine d bisk bottom	a point materials (is lubricating ails or	
IN420       SVCC Compounds: Sami-Valiatile Organic Compounds (SVCCQ) including OC. OP, PCG, MAYECD technique following appropriate solvent existence of the solution and solution of the solution of t	AN4	03	greases) but is particularly suit method will detect naturally oc sufficient levels, dependant on	ed for me	easuring diesel, kerosene and petro vdrocarbons, lipids, animal fats, ph	ol if care to control volatility is taken. This enols and PAHs if they are present at	
Phihales and Speciale Phenols in solls, sediments and waters are determined by GCMSIECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270).         AN433/AN434       VOCs and C6-C6 Hydrocarbors by GC-MS PGT: VOC's are volaile organic compounds. The sample is presented to a gas chromelograph via a puge and trap (PGT) concentrator and autosmpter and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whitel Hydro samples are processed directly. References: USEPA 60308, 8020A, 8260.         FOOTNOTES	AN4	20	and waters are determined by	CB, Herb GCMS/E	icides, PAH, Phthalates and Speci CD technique following appropriate	ated Phenols (etc) in soils, sediments e solvent extraction process (Based on	
FOOTNOTES         IS       Insufficient sample for analysis.         GE       GFH       QC result is above the upper folerance         UNR       Sample samples are initially extracted with methanol whilst liquid samples are processed         directly.       References. USEPA 5030B, 6020A, 6260.         FOOTNOTES	AN4	20	Phthalates and Speciated Phe	enols in s	oils, sediments and waters are dete	ermined by GCMS/ECD technique	
IS       Insufficient sample for analysis.       QFH       QC result is above the upper tolerance         LNR       Sample listed, but not received.       QFL       QC result is below the lower tolerance         •       This analysis is not covered by the scope of accreditation.       QFL       QC result is below the lower tolerance         •       Performed by outside laboratory.       NL       Not Validated         NCR       Entit of Reporting       NL       Not Validated         Samples analysed as received.       Solid samples expressed on a dry weight basis.       Some totals may not appear to add up because the total is rounded after adding up the raw values.         The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:         http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf         This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at thtp://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.         Ary other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction fore exercising all their rights and obligations under the transaction documents.	AN4	33/AN434	to a gas chromatograph via a Spectrometer (MSD). Solid sa	purge an amples a	d trap (P&T) concentrator and auto re initially extracted with methanol	sampler and is detected with a Mass	
IS       Insufficient sample for analysis.       QFH       QC result is above the upper tolerance         LNR       Sample listed, but not received.       QFL       QC result is below the lower tolerance         •       This analysis is not covered by the scope of accreditation.       QFL       QC result is below the lower tolerance         •       Performed by outside laboratory.       NL       Not Validated         NCR       Entit of Reporting       NL       Not Validated         Samples analysed as received.       Solid samples expressed on a dry weight basis.       Some totals may not appear to add up because the total is rounded after adding up the raw values.         The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:         http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf         This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at thtp://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.         Ary other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction fore exercising all their rights and obligations under the transaction documents.							
IS       Insufficient sample for analysis.       QFH       QC result is above the upper tolerance         LNR       Sample listed, but not received.       QFL       QC result is below the lower tolerance         •       This analysis is not covered by the scope of accreditation.       QFL       QC result is below the lower tolerance         •       Performed by outside laboratory.       NL       Not Validated         NCR       Entit of Reporting       NL       Not Validated         Samples analysed as received.       Solid samples expressed on a dry weight basis.       Some totals may not appear to add up because the total is rounded after adding up the raw values.         The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:         http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf         This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at thtp://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.         Ary other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction fore exercising all their rights and obligations under the transaction documents.	FOC	NUNTES					
LNR       Sample listed, but not received.       QFL       QC result is below the lower tolerance         •       This analysis is not covered by the scope of accreditation.       NVL       Not Validated         •       Performed by outside laboratory.       NVL       Not Validated         LOR       Limit of Reporting       NVL       Not Validated         11       Raised or Lowered Limit of Reporting       NVL       Not Validated         Samples analysed as received.       Solid samples expressed on a dry weight basis.       Some totals may not appear to add up because the total is rounded after adding up the raw values.         The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-en-vqu-022-qa-qc-plan-en-09.pdf         This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/lerms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.         Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.	FUC						
<ul> <li>This analysis is not covered by the scope of accreditation.</li> <li>Performed by outside laboratory.</li> <li>LOR Limit of Reporting 1. Raised or Lowered Limit of Reporting</li> <li>Samples analysed as received.</li> <li>Solid samples expressed on a dry weight basis.</li> <li>Some totals may not appear to add up because the total is rounded after adding up the raw values.</li> <li>The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf</li> <li>This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/letrms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.</li> <li>Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a tarensection from exercising all their rights and obligations under the transaction documents.</li> </ul>	IS						
accreditation.       NVL       Not Validated         A       Performed by outside laboratory.         LOR       Limit of Reporting         1       Raised or Lowered Limit of Reporting         Samples analysed as received.       Solid samples expressed on a dry weight basis.         Some totals may not appear to add up because the total is rounded after adding up the raw values.         The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf         This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation or liability, indemnification and jurisdiction issues defined therein.         Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a tansaction from exercising all their rights and obligations under the transaction documents.		• •		QFL			
LOR       Limit of Reporting         11       Raised or Lowered Limit of Reporting         Samples analysed as received.       Solid samples expressed on a dry weight basis.         Some totals may not appear to add up because the total is rounded after adding up the raw values.         The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:         http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf         This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.         Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.	•	•	by the scope of	NVL			
Solid samples expressed on a dry weight basis. Some totals may not appear to add up because the total is rounded after adding up the raw values. The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.	LOR	Limit of Reporting	-				
The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.			eight basis.				
<ul> <li>http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf</li> <li>This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.</li> <li>Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.</li> </ul>	Som	e totals may not appear to add	up because the total is rounded	after add	ing up the raw values.		
http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.	The ( http:/	QC criteria are subject to intern //www.au.sgs.com/sgs-mp-au-e	al review according to the SGS ( nv-qu-022-qa-qc-plan-en-09.pdf	QAQC pl f	an and may be provided on reques	t or alternatively can be found here:	
and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.	http:/	//www.sgs.com/terms_and_con	e Client's behalf, by the Co ditions.htm. The Client's att	mpany ( tention	under its General Conditions o is drawn to the limitation of	f Service available on request and accessible a f liability, indemnification and jurisdiction issue	at #S
This report must not be reproduced, except in full.	and	within the limits of Client's	nstructions, if any. The Comp	pany's s	ole responsibility is to its Client	any's findings at the time of its intervention onl and this document does not exonerate parties t	у .о
	This	report must not be reproduced,	except in full.				



# STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS			LABORATORY DETAIL	.S	
ontact	John Xu		Manager	Huong Crawford	
ient	Geotechnique		Laboratory	SGS Alexandria Envir	onmental
ldress	P.O. Box 880 PENRITH NSW 2751		Address	Unit 16, 33 Maddox S Alexandria NSW 2015	
lephone	02 4722 2700		Telephone	+61 2 8594 0400	
csimile	02 4722 6161		Facsimile	+61 2 8594 0499	
mail	john.xu@geotech.com.au		Email	au.environmental.syd	ney@sgs.com
roject	12593/2 - Mona Vale		SGS Reference	SE105013 R0	
rder Number	(Not specified)		Report Number	0000017501	
amples	4		Date Reported	07 Feb 2012	
ata Quality O ne data relatin nis QA/QC St	ry data for each environmer bjectives (DQO). Comments ng to sampling was taken fro atement must be read in co and the Analytical Report m	arising from the comparis om the Chain of Custody d njunction with the referenc	on were made and are n ocument and was suppli ed Analytical Report.	eported below.	
Data Quality	y Objectives were met with t	he exception of the followi	ng:		
Matrix Spike	Total Recove	erable Metals in Soil by ICPOES fro	m EPA 200.8 Digest		1 item
	IARY		Type of documentation		COC
SAMPLE SUMM		3 Soils, 1 Water		rocolived	LTR.

SGS Australia Piy Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499



## HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
sinsate R1	SE105013.003	LB013240	27 Jan 2012	27 Jan 2012	24 Feb 2012	01 Feb 2012	24 Feb 2012	02 Feb 2012
ercury in Soll							Method: ¹	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE105013.001	LB013289	27 Jan 2012	27 Jan 2012	24 Feb 2012	02 Feb 2012	24 Feb 2012	02 Feb 2012
Duplicate D101	SE105013.002	LB013289	27 Jan 2012	27 Jan 2012	24 Feb 2012	02 Feb 2012	24 Feb 2012	02 Feb 2012
letals in Water (Dissolved)							Method: ME-(AU	I)-[ENV]AN320/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE105013.003	LB013223	27 Jan 2012	27 Jan 2012	25 Jul 2012	01 Feb 2012	25 Jul 2012	01 Feb 2012
Iolsture Content							Method:	ME-(AU)-[ENV]AI
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE105013.001	LB013245	27 Jan 2012	27 Jan 2012	10 Feb 2012	01 Feb 2012	06 Feb 2012	02 Feb 2012
Duplicate D101	SE105013.002	LB013245	27 Jan 2012	27 Jan 2012	10 Feb 2012	01 Feb 2012	06 Feb 2012	02 Feb 2012
C Pesticides in Soll							Method: ME-(AL	J)-[ENV]AN400/A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE105013.001	LB013151	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	03 Feb 2012
Duplicate D101	SE105013.002	LB013151	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	03 Feb 2012
AH (Polynuclear Aromatic	Hydrocarbons) in Soil							ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE105013.001	LB013154	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	03 Feb 2012
Duplicate D101	SE105013.002	LB013154	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	03 Feb 2012
AH (Polynuclear Aromatic	Hydrocarbons) in Water			·				ME-(AU)-[ENV]A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE105013.003	LB013144	27 Jan 2012	27 Jan 2012	03 Feb 2012	31 Jan 2012	11 Mar 2012	03 Feb 2012
PCBs in Soil							Method: ME-(Al	U)-[ENV]AN400/A
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE105013.001	LB013151	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	03 Feb 2012
Duplicate D101	SE105013.002	LB013151	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	03 Feb 2012
fotal Cyanide in soil by Dis	crete Analyser (Aquakem)	)					Method: ME-(Al	U}-[ENV]AN077//
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE105013.001	LB013182	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	10 Feb 2012	01 Feb 201
Duplicate D101	SE105013.002	LB013182	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	10 Feb 2012	01 Feb 201
Total Phenolics in Soll							Method:	ME-(AU)-[ENV]
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analyse
BH101_0.1-0.2	SE105013.001	LB013123	27 Jan 2012	27 Jan 2012	24 Feb 2012	31 Jan 2012	24 Feb 2012	31 Jan 201
Duplicate D101	SE105013.002	LB013123	27 Jan 2012	27 Jan 2012	24 Feb 2012	31 Jan 2012	24 Feb 2012	31 Jan 201
Total Recoverable Metals in		PA 200.8 Digest					Method: ME-(A	U)-[ENV]AN040/
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analyse
AND AS THE CALL HALF AND A COLOR FOR THE ADDRESS OF	SE105013.001	LB013286	27 Jan 2012	27 Jan 2012	25 Jul 2012	02 Feb 2012	25 Jul 2012	03 Feb 201
BH101_0.1-0.2				27 Jan 2012	25 Jul 2012	02 Feb 2012	25 Jul 2012	03 Feb 201
	SE105013.002	LB013286	27 Jan 2012	27 0011 2012				
BH101_0.1-0.2 Duplicate D101		LB013286	21 Jan 2012				Method.	: ME-(AU)-[ENV]
BH101_0.1-0.2 Duplicate D101 TRH (Total Recoverable Hy	ydrocarbons) in Soll				Extraction Due	Extracted	Method: Analysis Due	ME-(AU)-[ENV] Analyse
BH101_0.1-0.2 Duplicate D101 TRH (Total Recoverable H) Sample Name	ydrocarbons) in Soil Sample No.	QC Ref	Sampled	Received	Extraction Due 10 Feb 2012	Extracted 31 Jan 2012		
BH101_0.1-0.2 Duplicate D101 TRH (Total Recoverable Hy Sample Name BH101_0.1-0.2	ydrocarbons) in Soll Sample No. SE105013.001						Analysis Due	Analyse 03 Feb 20
BH101_0.1-0.2 Duplicate D101 TRH (Total Recoverable Hy Sample Name BH101_0.1-0.2 Duplicate D101	ydrocarbons) in Soil Sample No. SE105013.001 SE105013.002	QC Ref LB013149	Sampled 27 Jan 2012	Received 27 Jan 2012	10 Feb 2012	31 Jan 2012	Analysis Due 11 Mar 2012 11 Mar 2012	Analyse 03 Feb 20 03 Feb 20
BH101_0.1-0.2 Duplicate D101 TRH (Total Recoverable Hy Sample Name BH101_0.1-0.2	ydrocarbons) in Soil Sample No. SE105013.001 SE105013.002	QC Ref LB013149	Sampled 27 Jan 2012	Received 27 Jan 2012	10 Feb 2012	31 Jan 2012	Analysis Due 11 Mar 2012 11 Mar 2012	Analyse 03 Feb 20

VOC's in Solf



## HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued)	f.						Method: ME-(At	J)-{ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE105013.001	LB013141	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	07 Feb 2012
Duplicate D101	SE105013.002	LB013141	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	07 Feb 2012
Tripspike TS1	SE105013.004	LB013141	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	07 Feb 2012
VOCs in Water							Method: ME-(At	U)-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE105013.003	LB013388	27 Jan 2012	27 Jan 2012	03 Feb 2012	03 Feb 2012	14 Mar 2012	03 Feb 2012
Volatile Petroleum Hydrod	carbons in Soli						Method: ME-{A	U)-[ENVJAN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.1-0.2	SE105013.001	LB013141	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	07 Feb 2012
Duplicate D101	SE105013.002	LB013141	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	07 Feb 2012
Tripspike TS1	SE105013.004	LB013141	27 Jan 2012	27 Jan 2012	10 Feb 2012	31 Jan 2012	11 Mar 2012	07 Feb 2012
Volatile Petroleum Hydrod	carbons in Water						Method: ME-(Ai	U)-[ENV]AN433/AN434
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R1	SE105013.003	LB013388	27 Jan 2012	27 Jan 2012	03 Feb 2012	03 Feb 2012	14 Mar 2012	03 Feb 2012



## SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

ļ						
}	OC Pesticides In Soli				Method: ME-(AU)-(EN	VJAN400/AN420
	Parameter	Sample Name	Sample Number	Unite	Criteria	Recovery %
	Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.1-0.2	SE105013.001	%	60 - 130%	128
	• • • • • •	Duplicate D101	SE105013.002	%	60 - 130%	128
	many market and the state of th				Mathad ME.G	AU)-[ENV]AN420
	FAH (Polynuclear Aromatic Hydrocarbons) in Soli			Units		Recovery %
5	Parameter	Sample Name	Sample Number		60 - 130%	99
	2-fluorobiphenyl (Surrogate)	BH101_0.1-0.2	SE105013.001 SE105013.002	%	60 - 130% 60 - 130%	110
		Duplicate D101 BH101_0.1-0.2	SE105013.002 SE105013.001	%	60 - 130%	104
	d14-p-terphenyl (Surrogate)	Duplicate D101	SE105013.002	%	60 - 130%	110
9	dE siteshaanse (Ourseets)	BH101_0.1-0.2	SE105013.001	%	60 - 130%	87
Contraction of the local distribution of the	d5-nitrobenzene (Surrogate)	Duplicate D101	SE105013.002	%	60 - 130%	101
		Daphogto Direi				AU)-[ENV]AN420
	PAH (Polynuclear Aromatic Hydrocarbons) in Water			Units	Criteria	
2	Parameter	Sample Name	Sample Number		40 - 130%	Recovery % 79
	2-fluorobiphenyl (Surrogate)	Rinsate R1	SE105013.003 SE105013.003	% %	40 - 130%	106
	d14-p-terphenyl (Surrogate)	Rinsale R1	SE105013.003	%	40 - 130%	71
*	d5-nitrobenzene (Surrogate)	Rinsate R1	3E105015.005	76		
1	PCBs in Soil				Method: ME-(AU)-[Ef	
	Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
	Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.1-0.2	SE105013.001	%	60 - 130%	128
		Duplicate D101	SE105013.002	%	60 - 130%	128
	VOC's in Solt				Method: ME-(AU)-[EI	NVJAN433/AN434
-	Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
٤						105
	Bromofluorobenzene (Surrogate)	BH101_0.1-0.2	SE105013.001	%	60 - 130%	105
	Bromofluorobenzene (Surrogate)	BH101_0.1-0.2 Duplicate D101	SE105013.001 SE105013.002	% %	60 - 130% 60 - 130%	105 106
	Bromofluorobenzene (Surrogate)					
	Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Duplicate D101	SE105013.002	%	60 - 130%	106
in the second second		Duplicate D101 Tripspike TS1	SE105013.002 SE105013.004	%	60 - 130% 60 - 130%	106 119
and the second second		Duplicate D101 Tripspike TS1 BH101_0.1-0.2	SE105013.002 SE105013.004 SE105013.001	% %	60 - 130% 60 - 130% 60 - 130%	106 119 101 97 95
function for the second second		Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101	SE105013.002 SE105013.004 SE105013.001 SE105013.002	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	106 119 101 97 95 104
manual manual fraction	d4-1,2-dichloroethane (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002	% % % % %	60 - 130% 60 - 130%	106 119 101 97 95 104 102
antices provide antices and	d4-1,2-dichloroethane (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004	% % % % %	60 - 130% 60 - 130%	106 119 97 95 104 102 99
Material Construction (Material Construction)	d4-1,2-dichloroethane (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001	% % % % % %	60 - 130% 60 - 130%	106 119 97 95 104 102 99 100
normal for an and a second sec	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002	% % % % % %	60 - 130% 60 - 130%	106 119 97 95 104 102 99 100 95
anime "alterioranimatication" "analiteteranimatication" (anime	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001	% % % % % %	60 - 130% 60 - 130%	106 119 97 95 104 102 99 100 95 98
normal for an and the second second for a second	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002	% % % % % %	60 - 130% 60 - 130% Method: ME-(AU)-{E	106 119 101 97 95 104 102 99 100 95 98 88
animal hardeness and the second s	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002	% % % % % % % %	60 - 130% 60 - 130% Method: ME (AU)-{E	106 119 101 97 95 104 102 99 100 95 98 88 NVJAN433/AN434 Recovery %
landarana l	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.004 SE105013.004 SE105013.001 SE105013.004 SE105013.004	% % % % % % % Units %	60 - 130% 60 - 130% Method: ME-(AU)-[E Criteria 60 - 130%	106 119 101 97 95 104 102 99 100 95 98 88 NVJAN433/AN434 Recovery % 100
anande and and an and an and an an and an an an and an	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.004 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.003 SE105013.003	% % % % % % % % <b>Units</b> %	60 - 130% 60 - 130% Method: ME-(AU)-{E Criteria 60 - 130% 40 - 130%	106 119 101 97 95 104 102 99 100 95 98 88 NVJAN433/AN434 Recovery % 100 99
antipation (antipation) (anti	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.003 SE105013.003 SE105013.003 SE105013.003	% % % % % % % \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	60 - 130% 60 - 130% Method: ME+(AU)-{E Criteria 60 - 130% 40 - 130% 60 - 130%	106 119 101 97 95 104 102 99 100 95 98 88 ₩VJAN433/AN434 Recovery % 100 99 96
landerstanding landerstanding landerstanding landerstanding landerstanding landerstanding landerstanding lander	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.004 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.003 SE105013.003	% % % % % % % % <b>Units</b> %	60 - 130% 60 - 130% Method: ME-(AU)-{E Criteria 60 - 130% 40 - 130% 60 - 130% 60 - 130%	106 119 101 97 95 104 102 99 100 95 98 100 95 98 NVJAN433/AN434 <b>Recovery %</b> 100 99 99 96
laugumenteer ^{ee} 'second teaceere 'allocation 'allocation' 'allocation' 'allocation' 'allocation'	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.003 SE105013.003 SE105013.003 SE105013.003	% % % % % % % \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	60 - 130% 60 - 130% Method: ME+(AU)-{E Criteria 60 - 130% 40 - 130% 60 - 130%	106 119 101 97 95 104 102 99 100 95 98 100 95 98 NVJAN433/AN434 <b>Recovery %</b> 100 99 99 96
urinee humanaanaanaa humanaanaa humanaanaa humanaanaanaa humanaanaanaanaa humanaanaanaanaa humanaanaanaa humana	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.003 SE105013.003 SE105013.003 SE105013.003	% % % % % % % \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	60 - 130% 60 - 130% Method: ME-(AU)-{E Criteria 60 - 130% 40 - 130% 60 - 130% 60 - 130%	106 119 101 97 95 104 102 99 100 95 98 100 95 98 NVJAN433/AN434 <b>Recovery %</b> 100 99 99 96
and a second the second the second to the	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) Votatile Petroleum Hydrocarbons in Solt	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.004 SE105013.004 SE105013.004 SE105013.004 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.003	% % % % % % % <b>Units</b> % % %	60 - 130% 60 - 130% Method: ME (AU)-(E Criteria 60 - 130%	106 119 101 97 95 104 102 99 100 95 98 88 NVJAN433/AN434 Recovery % 96 96
lanearangenerited hangenerited hereited between the conservation of the conservation of the conservation of the	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Dibromofluoromethane (Surrogate) Dibromofluoromethane (Surrogate) Votatile Petroleum Hydrocarbons in Solt Parameter	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.004 SE105013.004 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.003	% % % % % % % % % % % % %	60 - 130% 60 - 130% Method: ME (AU)-{E Criteria	106 119 101 97 95 104 102 99 100 95 88 NVJAN433/AN434 Recovery % 100 99 96 96
international contractions international	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-toluene (Surrogate) Dibromofluoromethane (Surrogate) Dibromofluoromethane (Surrogate) Votatile Petroleum Hydrocarbons in Soit Parameter Trifluorotoluene (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.004 SE105013.002 SE105013.004 SE105013.004 SE105013.004 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.003	% % % % % % % \$ % % % %	60 - 130% 60 - 130% Method: ME-(AU)-{E Criteria 60 - 130% 60 - 130%	106 119 101 97 95 104 102 99 100 99 88 NVJAN433/AN434 Recovery % 100 99 96 96 96 96
unine languagementation languagementation languagementation languagementation languagementation languagementation	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-toluene (Surrogate) Dibromofluoromethane (Surrogate) Dibromofluoromethane (Surrogate) Votatile Petroleum Hydrocarbons in Solt Parameter Trifluorotoluene (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.004 SE105013.002 SE105013.004 SE105013.004 SE105013.004 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.001 SE105013.001 SE105013.002	% % % % % % % <b>Units</b> % % %	60 - 130% 60 - 130%	106 119 101 97 95 104 102 99 100 85 88 NV]AN433/AN434 Recovery % 100 99 96 96 96 96 96 96 96 96
anonamenta international in	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Dibromofluoromethane (Surrogate) VOCs in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-toluene (Surrogate) Dibromofluoromethane (Surrogate) Dibromofluoromethane (Surrogate) Votatile Petroleum Hydrocarbons in Soit Parameter Trifluorotoluene (Surrogate)	Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 BH101_0.1-0.2 Duplicate D101 Tripspike TS1 Sample Name Rinsate R1 Rinsate R1	SE105013.002 SE105013.004 SE105013.001 SE105013.002 SE105013.004 SE105013.004 SE105013.002 SE105013.004 SE105013.004 SE105013.004 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.003 SE105013.003	% % % % % % % \$ % % % %	60 - 130% 60 - 130% Method: ME-(AU)-{E Criteria 60 - 130% 60 - 130%	106 119 101 97 95 104 102 99 100 99 88 NVJAN433/AN434 Recovery % 100 99 96 96 96 96



7/2/2012

## **METHOD BLANKS**

## SE105013 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

1 I					
				1 5 13 5 6 8 ¹⁰ 13	
1	Mercury (dissolved) in Water				U)-[ENV]AN311/AN312
	Sample Number	Parameter	Units	LOR	Result
	LB013240.001	Mercury	mg/L	0.0001	<0.0001
1	Mercury in Coll			Methor	I: ME-(AU)-[ENV]AN312
	Mercury in Soil		Units	LOR	Result
1	Sample Number	Parameter		0.05	<0.05
	LB013289.001	Mercury	mg/kg	0.00	~0.00
_					
- 3	Metals in Water (Dissolved) by ICPOES			Method: ME-(/	4U)-[ENV]AN320/AN321
	Sample Number	Parameter	Units	LOR	Result
and the	LB013223.001	Arsenic, As	mg/L	0.05	<0.05
		Cadmium, Cd	mg/L	0.005	<0.005
		Chromium, Cr	mg/L	0.005	<0.005
1		Copper, Cu	mg/L	0.01	<0.01
		Lead, Pb	mg/L	0.02	<0.02
3		Nickel, Ni	mg/L	0.01	<0.01
		Zinc, Zn	mg/L	0.01	<0.01
)				Method: MF-(	AU)-JENVJAN400/AN420
Ì	OC Pesticides in Soll		1000		
1	Sample Number	Parameter	Units	LOR	Result
	LB013151.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
downed to		Lindane	mg/kg	0.1	<0.1
		Heplachlor	mg/kg	0.1	<0.1
- 13 -		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
1		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
Ì		p,p'-DDE	mg/kg	0.1	<0.1
1		Dieldrin	mg/kg	0.05	<0.05
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
august.		p,p'-DDD	mg/kg	0.1	<0.1
1		ρ,ρ'-DDT	mg/kg	0.1	<0.1
. )		Endosulían sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
·		Methoxychior	mg/kg	0.1	<0.1
		Endrin Kelone	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	125
		Tonadimo the Afond (Fonny) (confeguro)		6 é a sin	od: ME-(AU)-[ENV]AN42
	PAH (Polynuclear Aromatic Hydrocarbons) in Soll				
	Sample Number	Parameter	Units	LOR	Result
1	LB013154.001	Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0,1
		1-methylnaphthalene	mg/kg	0.1	<0.1
ł		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
4		Anthracene	mg/kg	0.1	<0.1
ł		Fluoranthene	mg/kg	0.1	<0.1
ĺ		Pyrene	mg/kg	0.1	<0.1
}		Benzo(a)anlhracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
1		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
.1		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
		Dibenzo(ash)antinacene Benzo(ghi)perylene	mg/kg	0.1	<0,1
		הפוולאלו אפו אפוים			
1					Dens 5 -1



## METHOD BLANKS

## SE105013 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Arom:	tatle Hydrocarbons) in Solt (	(continued)			od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB013154.001		Total PAH	mg/kg	0.8	<0.8
LUVIO IO INTE I	Surrogates	d5-nitrobenzene (Surrogate)	%	-	95
		2-fluorobiphenyl (Surrogate)	%		109
		d14-p-terphenyi (Surrogate)	%	-	115
······································	· · · · · · · · · · · · · · · · · · ·			Meth	od: ME-(AU)-[ENV]AN420
An	natic Hydrocarbons) in Wate		(Inter-		
Sample Number		Parameter	Units	LOR	Result
LB013144.001		Naphthalene	μg/L	0.1	<0.1
		2-methylnaphthalene	μg/L 	0.1	<0.1
		1-methylnaphthalene	μg/L	0.1	<0.1
		Acenaphthylene	μg/L	0.1	<0.1
		Acenaphthene	μg/L	0.1	<0.1
		Fluorene	µg/L	0.1	<0.1
		Phenanthrene	μg/L	0.1	<0.1
		Anthracene	μg/L	0.1	<0.1
		Fluoranthene	µg/L	0.1	<0.1
		Pyrene	μ9/L	0.1	<0.1
		Benzo(a)anthracene	µg/L	0.1	<0.1
		Chrysene	µg/L	0.1	<0.1
		Benzo(a)pyrene	µg/L	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
		Dibenzo(a&h)anthracene	µg/L	0.1	<0.1
		Benzo(ghi)perylena	μg/L	0.1	<0.1
	Surrogates	d5-nitrobenzene (Surrogale)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	108
	SUIIOgaico	2-fluorobiphenyl (Surrogate)	%	-	101
		d14-p-terphenyl (Surrogate)	%	-	112
		a lap-rathmenta (convolario)		senitrad str	E-(AU)-[ENV]AN400/AN4
PCBs in Soil					
Sample Number		Parameter	Units	LOR	Result
LB013151.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochior 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochior 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogale)	%	-	125
				Mainad M	E-(AU)-[ENV]AN077/AN
	y Discrete Analyser (Aquaki				
Sample Number		Parameter	Units	LOR	Result
LB013182.001		Total Cyanide	mg/kg	0.1	<0.1
Total Phenolics in Soll				Mef	thod: ME-(AU)-[ENV]AN
			Units	LOR	Result
Sample Number		Parameter Total Phoneix	mg/kg	0.1	<0.1
LB013123.001		Total Phenois		0.1	
Total Recoverable Met	tals in Soil by ICPOES from	m EPA 200.8 Digest		Method: Mr	E-(AU)-[ENV]AN040/A
Sample Number		Parameter	Units	LOR	Result
		Arsenic, As			
LB013286.001		Arsenic, As Cadmium, Cd	mg/kg	0.3	<0.3
		Cadmium, Ca Chromium, Cr	mg/kg	0.3	<0.3
			mg/kg	0.5	<0.5
		Copper, Cu		1	<1
		Lead, Pb	mg/kg mg/kg	י 0.5	<0.5
		Nickel, Ni	mg/kg mg/kg	0.5	<0.5 <0.5
		Zinc, Zn	mg/kg	0.0	-0.0


# METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

1	<u>(</u>					
	TRH (Total Recoverable	e Hvdrocarbons) in Soil			Metho	ad: ME-(AU)-(ENV)AN403
	Sample Number		Parameter	Units	LOR	Result
	Construction - Construction of the second se		TRH C10-C14	mg/kg	20	<20
	LB013149.001		TRH C15-C28	mg/kg	50	<50
-			TRN 010-020	* *		
4	man ( my ) i franciscu de l	11 to another in Window			Methy	od: ME-(AU)-[ENV]AN403
		le Hydrocarbons) in Water		Units	LOR	Result
١	Sample Number		Parameter	µg/L	100	<100
	LB013144.001		TRH C10-C14	µց/ւ.	200	<200
ļ			TRH C15-C28	իցչո	200	
					Method: ME-	(AU)-[ENV]AN433/AN434
	VOC's in Soll			Units	LOR	Result
N. Second	Sample Number		Parameter		0.1	<0.1
.)	LB013141.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
		Hydrocarbons	Toluene	mg/kg		<0.1 <0.1
î			Ethylbenzene	mg/kg	0.1	
			m/p-xylene	mg/kg	0.2	<0.2
			o-xylene	mg/kg	0.1	<0.1
		Oxygenated Compounds	MIBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Surrogates	Dibromofluoromethane (Surrogate)	%	-	103
			d4-1,2-dichloroethane (Surrogate)	%	-	106
{			d8-toluene (Surrogate)	%	-	101
.1			Bromofluorobenzene (Surrogale)	%	-	96
		Totals	Total BTEX*	mg/kg	-	0
1	Volatile Petroleum Hydr				Method: ME	-(AU)-[ENV]AN433/AN434
	Sample Number		Parameter	Units	LOR	Result
. 1	LB013141.001		TRH C6-C9	mg/kg	20	<20
	LD010141.001	Surrogates	Trifluorotoluene (Surrogate)	%	-	101
1		ourogato				
	Volatile Petroleum Hyd	drocarbons in Water			Method: ME	-(AU)-[ENV]AN433/AN434
	Sample Number		Parameter	Units	LOR	Result
	LB013388.001		TRH C6-C9	μg/L	40	<40
Ĩ.	LB013300.001	Surrogales	Trifluorotoluene (Surrogate)	%	-	98
		GUILOGAIGS	Interesting to an address			

# SGS

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 It is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

ercury (dissolved)	j in Water							Method: ME-(Al		
riginal	Duplicate	Parameter	er		U)	tits LOR	Original		Any and the second second second	School and Conductor
E105013.003	LB013240.013	Mercury				g/L 0.0001	<0,0001	<0.0001	200	0
rcury in Soil	· · · · · startinet-regisserence-digitization (Mineter				00000000000000000000000000000000000000				d: ME- (AU)-[	
riginal	Duplicate	Parameter	er			nits LOR	Original			
E105002.015	LB013289.014	Mercury				g/kg 0.05	<0.05	<0.05	147	0
E105046A.029	LB013289.023	Mercury			mį	g/kg 0.05	<0.05	<0.05	200	0
· · · · · · · · · · · · · · · · · · ·								Melhod: ME-(A	ALL IENVIA	**1320/
	issolved) by ICPOES	Paramete	<b>9</b> -1		U I	nits LOR	Original			
riginal =105013.003	Duplicate LB013223.011	Paramete Arsenic, As				nns LOR ng/L 0.05	<0.05	<0.05	200	1.10 (
2300010,000	LDV 10220.0 1 1	Cadmium, C				ig/L 0.005		<0.005	200	0
		Chromium,				ig/L 0.005		<0.005	200	ů
		Copper, Cu				ng/L 0.01	<0.01	<0.01	200	٥
		Lead, Pb	7			ng/L 0.02	<0.02	<0.02	200	0
		Nickel, Ni			rr	ng/L 0.01	<0.01	<0.01	200	C
		Zinc, Zn				ng/L 0.01	<0.01	<0.01	200	(
isture Content									d: ME-(AU)-	
riginal	Duplicate	Paramete % Moisture				nits LOR		Duplicate 0		RP
E105035.002	LB013245.011	% Moisture % Moisture				% 0.5 % 0.5		605.2427184466 0622.9074889867	40 32	
E105040.002 E105040.003	LB013245.022 LB013245.024	% Moisture % Moisture				% 0.5 % 0.5		3495.2777777777777777777777777777777777777	32	
			3			76				
Pesticides in Sc		Decostor			T.		(Internal)	Method: ME-(A		
riginal E104976.009	Duplicate LB013151.004	Paramete	ter robenzene (HCB)			nits LOR 1g/kg 0.1	Original <0.1	Ouplicate 0	Criteria % 200	136
2104976.009	LB013151.004	Hexachioro Alpha BHC	and a second			ıg/kg 0.1 ıg/kg 0.1	<0.1	<0.1	200	
		Lindane				ig/kg 0.1	<0.1	<0.1	200	
		Heptachlor	nr.			ng/kg 0.1	<0.1	<0.1	200	
		Aldrin	·			ng/kg 0.1	<0.1	<0.1	200	
		Beta BHC	;			ng/kg 0.1	<0.1	<0.1	200	
		Delta BHC				ng/kg 0.1	<0.1	<0.1	200	
		Heptachlor				ng/kg 0.1	<0.1	<0.1	200	
		o,p'-DDE				ng/kg 0.1	<0.1	<0.1	200	
		Alpha Endo				ng/kg 0.2	<0,2	<0.2	200	
		Gamma Ch				ng/kg 0.1	<0.1	<0.1	200	
		Alpha Chlo	lordane			ng/kg 0.1	<0.1	<0.1	200	
		trans-Nona	achlor		'n	ng/kg 0.1	<0.1	<0.1	200	
		p,p'-DDE			ú	ng/kg 0.1	<0.1	<0.1	200	
		Dieldrin				ng/kg 0.05		<0.2	200	
		Endrin			,	ng/kg 0.2	<0.2	<0.2	200	
		o,p'-DDD				ng/kg 0.1	<0.1	<0.1	200	
		o,p'-DDT				ng/kg 0.1	<0.1	<0.1	200	
		Beta Endos				ng/kg 0.2	<0.2	<0.2	200	
		p,p'-DDD				ng/kg 0.1	<0.1	<0.1	200	
		p,p'-DDT				ng/kg 0.1	<0.1	<0.1	200	
			an sulphate			ng/kg 0.1	<0.1	<0.1	200	
		Endrin Alde				ng/kg 0.1	<0.1	<0.1	200	
		Methoxych				ng/kg 0.1	<0.1	<0.1	200	
					n	ng/kg 0,1	<0.1	<0.1	200	
		Endrin Keto							30	
		Endrin Kete progates Tetrachloro	oro-m-xylene (TCMX) (Surrogate)	)	_	% -	130	130		
SE105002.011	Surr LB013151.016	Endrin Keto progates Tetrachloro Hexachloro	pro-m-xylene (TCMX) (Surrogale) probenzene (HCB)	•		ng/kg 0.1	<0.1	<0.1	200	
SE105002.011		Endrin Keto nrogates Tetrachloro Hexachloro Alpha BHC	pro-m-xylene (TCMX) (Surrogale) probenzene (HCB)	•	n	ng/kg 0.1 ng/kg 0.1	<0.1 <0.1	<0.1 <0.1	200 200	
SE105002.011		Endrin Keta Irrogates Tetrachloro Hexachloro Alpha BHC Lindane	oro-m-xylene (TCMX) (Surrogale) probenzene (HCB) HC	)	n	ng/kg 0.1 ng/kg 0.1 ng/kg 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	200 200 200	
SE105002.011		Endrin Kelt urrogates Tetrachlorc Hexachlorc Alpha BHC Lindane Heptachlor	oro-m-xylene (TCMX) (Surrogale) probenzene (HCB) HC	)	n n n	ng/kg 0.1 ng/kg 0.1 ng/kg 0.1 ng/kg 0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0 <u>.1</u> <0.1	200 200 200 200	
SE105002.011		Endrin Kelt urrogates Tetrachlorc Hexachlorc Alpha BHC Lindane Heptachlor Aldrin	oro-m-xylene (TCMX) (Surrogate) probenzene (HCB) HC or	)	ח ח ח ח	ng/kg 0.1 ng/kg 0.1 ng/kg 0.1 ng/kg 0.1 ng/kg 0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	200 200 200 200 200	
SE105002.011		Endrin Kelt urrogates Tetrachlorc Hexachlorc Alpha BHC Lindane Heptachlor	oro-m-xylene (TCMX) (Surrogate) probenzene (HCB) łC or	)	ת ה ת ת	ng/kg 0.1 ng/kg 0.1 ng/kg 0.1 ng/kg 0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0 <u>.1</u> <0.1	200 200 200 200	

Page 8 of 1

# SGS

# **DUPLICATES**

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

C Pesticides in Soli	il (continued)					N	lethod: ME-(	(AU)-[ENV]AN	4400/AM
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE105002.011	LB013151.016	And the second s	o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
2105002.011	LEO 19 19 10 10 10				0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg					
			Gamma Chiordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	0	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.05	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg					u 0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	
			p,p'-DDD	mg/kg	0.1	<0,1	<0.1	200	(
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	(
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	(
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	C
			Endrin Kelone	mg/kg	0.1	0	0	200	(
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	130	110	30	1
			I BURCHIOLO-III-XAIRIIG (I OMAA) Controgenoy	<i>i</i> ~	-	100			
H (Polynuclear Ar	vromatic Hydrocarbo	ons) in Soil					Metho	od: ME-(AU)-{	(ENV)
Driginal	Duplicate		Parameter	Units	LOR	Original	<b>Duplicate</b>	Criteria %	RP
E105001.001	LB013154.004		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	
100001.001	LDU 10 104.00-				0.1	<0.1	<0.1	200	
			2-methylnaphthalene	mg/kg				200	
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1		
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	1
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	1
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene	mg/kg	0.1	0.1	0.3	87	8
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	0.4	0.6	52	4
					0.1	0,4	0.6	51	
			Pyrene Boozo/o)anthmoozo	mg/kg					
			Benzo(a)anthracene	mg/kg	0,1	0.2	0.3	73	•
			Chrysene	mg/kg	0.1	0.2	0.3	74	
			Benzo(b)fluoranthene	mg/kg	0.1	0.3	0.4	60	:
			Benzo(k)fluoranthene	mg/kg	0.1	0.1	0.2	97	
			Benzo(a)pyrene	mg/kg	0.1	0.3	0.3	63	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.2	0.2	89	
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	200	
							0.3	200 75	
			Benzo(ghi)perylene	mg/kg	0.1	0.2			
			Total PAH	mg/kg	0.8	1.8	2.7	65	
		Surrogales	d5-nitrobenzene (Surrogate)	%	-	94.0	95.0	30	
			2-fluorobiphenyl (Surrogate)	%	-	109.0	106.0	30	
			d14-p-terphenyl (Surrogate)	%	-	108.0	102.0	30	
SE105002.013	LB013154.016		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	
2100000			2-methylnaphthaiene	mg/kg	0.1	<0.1	<0.1	200	
					0.1		<0.1	200	
			1-methylnaphthalene	mg/kg		<0.1			
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	<0.1	0.2	107	
					0.1	0.1	0.2	101	
			Pyrene Desert (a) and	mg/kg					
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.1	200	
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(b)fluoranihene	mg/kg	0.1	<0.1	0.1	125	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0,1	200	
						<0.1	<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1			200	
				· · · · · · · · · · · · · · · · · · ·	~ 4		ar 1 1 1		
			Dibenzo(a&h)anthracene Benzo(ghl)perylene	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	200	

# SGS

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

CALL (Caluaratea)	A secola Linterrarbe	nee) le Sell (centinu	theory				Meth	nd MF-/AU	(ENVIAN420
Original	Aromatic Hydrocarbo	ofis) in oon (commu	Parameter	Units	LOR	Original		Criteria %	
SE105002.013	LB013154.016		Total PAH	mg/kg	0.8	<0.8	<0.8	200	0
02,00002.010	2001010101	Surrogates	d5-nitrobenzene (Surrogate)	%	-	98.0	94.0	30	4
		Canogutoo	2-fluorobiphenyl (Surrogate)	%	-	108,0	106.0	30	2
			d14-p-terphenyl (Surrogate)	%	-	109.0	109.0	30	0
PCBs in Soil							Method: ME	-(AU)-[ENV]A	N400/AN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE104976.009	LB013151.004		Arochior 1016	mg/kg	0.2	<0.2	<0.2	200	0
021010/0.000			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochior 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochior 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachioro-m-xylene (TCMX) (Surrogale)	%	-	130	130	30	0
SE105002.011	LB013151.016		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochior 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochior 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	130	110	30	15
Total Phenolics I	n Soll						Met	hod: ME-(AU	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		
SE104939.001	LB013123.006		Total Phenols	mg/kg	0.1	0.2	0.2	63	18

Total Recoverable Metals in Soli by ICPOES from EPA 200.8 Digest

Method: ME-(AU)-[ENV]AN040/AN320

and theorem and to	Therefore its could be been so that							
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE105013.001	LB013286.014	Arsenic, As	mg/kg	3	4	3	117	12
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.3	5.8	5.7	35	. 1
		Copper, Cu	mg/kg	0.5	3.1	3.5	45	12
		Lead, Pb	mg/kg	1	3	3	63	9
		Nickel, Ni	mg/kg	0.5	1.9	2.1	55	7
		Zinc, Zn	mg/kg	0.5	5.2	5.4	39	4
E105063.001	LB013286.024	Arsenic, As	mg/kg	3	13.28632110	683.256697059	53	0
		Cadmium, Cd	mg/kg	0.3	0.040565485	30.0448060511	200	0
		Chromium, Cr	mg/kg	0.3	3.212992909	63.2230809602	39	0
		Copper, Cu	mg/kg	0.5	0.625013624	60.6187636420	110	1
		Lead, Pb	mg/kg	1	1.292448270	21.3775617165		6
		Nickel, Ni	mg/kg	0.5	2.183653289	12.1856273721		0
		Zinc, Zn	mg/kg	0.5	2.532136547	92.4468310702	2 50	3



# LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	(							
								101000000
1	Mercury (dissolved) in Water					Method: N	ME-(AU)-(ENV)A	W317/AN312
ć	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria % F	Recovery %
	LB013240.002	Mercury	mg/L	0.0001	0.0092	0.008	80 - 120	115
1	20010240.002	molouly	-					
1							ethod: ME-(AU)	CABOAN949
	Mercury in Soli							
	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
1	LB013289.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	106
Ì		-						
3								
		5.5				Method: (	ME-(AU)-[ENV]/	AN320/AN321
7	Metals in Water (Dissolved) by ICPO	F8						
	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	
	LB013223.002	Arsenic, As	mg/L	0.05	1.9	2	80 - 120	96
		Cadmium, Cd	mg/L	0.005	2.0	2	80 - 120	99
		Chromium, Cr	mg/L	0,005	1.9	2	80 - 120	97
1		Copper, Cu	mg/L	0.01	1.9	2	80 - 120	97
		Lead, Pb	mg/L	0.02	2.0	2	80 - 120	98
.)		Nickel, Ni	mg/L	0.01	2.0	2	80 - 120	98
		Zînc, Zn	mg/L	0.01	2.0	2	80 - 120	99
-1						Mathody	ME-(AU)-[ENV]	ANIA00/ANIA20
	OC Pesticides in Soil							
1	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	
	LB013151.002	Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	120
		Aldrin	mg/kg	0.1	0.3	0.2	60 - 140	130
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	120
Contract of Contra		Dieldrin	mg/kg	0.05	0.24	0.2	60 - 140	120
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	120
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	80
	<b>0</b>		%	-	95	100	60 - 140	95
]	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogale)	10					
							2 22 2 2 2 ATT 1 A 2 3	N TOTALS TO A SPACE
1	PAH (Polynuclear Aromatic Hydrocar	bons) in Soil					/lethod: ME-(AU	
		bons) in Soil Parameter	Units	LOR	Result	Expected		
1	PAH (Polynuclear Aromatic Hydrocar Sample Number LB013154.002		Units mg/kg	LOR 0.1	Result 4.5			
	Sample Number	Parameter Naphthalene				Expected	Criteria %	Recovery %
	Sample Number	Parameter Naphthalene Acenaphthylene	mg/kg	0.1	4.5	Expected 4	<b>Criteria %</b> 60 - 140	Recovery % 113
	Sample Number	Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg	0.1 0.1	4.5 4.6	Expected 4 4	<b>Criteria %</b> 60 - 140 60 - 140	Recovery % 113 114
	Sample Number	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6	Expected 4 4 4	<b>Criteria %</b> 60 - 140 60 - 140 60 - 140	Recovery % 113 114 120
	Sample Number	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9	Expected 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 113 114 120 116 123
	Sample Number	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8	Expected 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120
i i i i i i i i i i i i i i i i i i i	Sample Number	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0	Expected 4 4 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124
	Sample Number LB013154.002	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7	Expected 4 4 4 4 4 4 4 4 4 4 4	Criteria % 60 - 140 60 - 140	Resovery % 113 114 120 116 123 120 124 119
And a second sec	Sample Number	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg %	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0	Expected 4 4 4 4 4 4 4 4 4 4 4 100	Criteria % 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98
and the second se	Sample Number LB013154.002	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg %	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0	Expected 4 4 4 4 4 4 4 4 4 100 100	Criteria % 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111
And the second se	Sample Number LB013154.002	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg %	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0	Expected 4 4 4 4 4 4 4 4 4 4 4 100	Criteria % 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98
	Sample Number LB013154.002 Surrogates	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg %	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100	Criteria % 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111 114
And a second sec	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar	Parameter         Naphthalene         Acenaphthylene         Acenaphthene         Phenanthrene         Phenanthrene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         rbons) in Water	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % %	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0	Expected 4 4 4 4 4 4 4 4 4 4 4 100 100 100	Criteria % 60 - 140 60 - 140 80 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENVJAN42
	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Phenanthrene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogale)         2-fluorobiphenyl (Surrogale)         d14-p-terphenyl (Surrogale)         rbons) in Water         Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % %	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - -	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b>	Expected 4 4 4 4 4 4 4 4 4 4 4 4 100 100 100	Criteria % 60 - 140 60 - 140 Kethod: ME-(AL Criteria %	Recovery % 113 114 120 116 123 120 124 119 96 111 114 3)-{ENV}AN42 Recovery %
international international international international international international international international	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Phenanthrene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         rbons) in Water         Parameter         Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % % <b>LUnits</b> µg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - - - - - - - - - - - - - - - - -	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36	Expected 4 4 4 4 4 4 4 4 4 4 4 4 100 100 100 100	Criteria % 60 - 140 60 - 140 80 - 140 80 - 140 Method: ME-(At Criteria % 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111 114 3)-{ENVJAN42 Recovery % 91
and the second the sec	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthrene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         rbons) in Water         Parameter         Naphthalene         Acenaphthylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>LUnits</b> μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - - - - - - - - - - - - - - - - -	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41	Expected 4 4 4 4 4 4 4 4 4 4 4 100 100 100 100 1	Criteria % 60 - 140 60 - 140 80 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENV}AM42 Recovery % 91 103
	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Phenanthrene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         rbons) in Water         Parameter         Naphthalene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - <b>LOR</b> 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45	Expected 4 4 4 4 4 4 4 4 4 4 4 100 100 100 100 1	Criteria % 60 - 140 60 - 140 80 - 140 Method: ME-(AL Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENV}AM42 Recovery % 91 103 113
and the second sec	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthrene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         rbons) in Water         Parameter         Naphthalene         Acenaphthylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>LUnits</b> μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - - - - - - - - - - - - - - - - -	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49	Expected 4 4 4 4 4 4 4 4 4 4 4 100 100 100 100 1	Criteria % 60 - 140 60 - 140 80 - 140 Method: ME-(AU Criteria % 60 - 140 60 - 1	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENVJAN42 Recovery % 91 103 113 121
in the second seco	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthrene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         rbons) in Water         Parameter         Naphthalene         Acenaphthylene         Acenaphthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - <b>LOR</b> 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 100	Criteria % 60 - 140 60 - 140 <b>Criteria %</b> 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENV}A2 Recovery % 91 103 113 121 109
international international international international international international international international	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         rbons) in Water         Parameter         Naphthalene         Acenaphthylene         Acenaphthene         Phenanthrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - - - - - - - - - - - - - - - - -	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44 48	Expected 4 4 4 4 4 4 4 4 4 100 100 1	Criteria % 60 - 140 60 - 140 <b>Criteria %</b> 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENV}A42 Recovery % 91 103 113 121 109 119
and the second the sec	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate) d14-p-terphenyl (Surrogate) teons) in Water Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 - - - <b>LOR</b> 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 100	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 96 111 114 J)-{ENV}AM42 Recovery % 91 103 113 121 109 119 120
and have been been and	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyt (Surrogate) d14-p-terphenyt (Surrogate) d14-p-terphenyt (Surrogate) thons) in Water Parameter Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44 48	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 Expected 40 40 40 40 40 40 40	Criteria % 60 - 140 60 - 140 <b>Criteria %</b> 60 - 140 60 - 140	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENV}A42 Recovery % 91 103 113 121 109 119
international international international international international international international international	Sample Number LB013154.002 Surrogates PAH (Polynuclear Aromatic Hydrocar Sample Number LB013144.002	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         dtons) in Water         Parameter         Naphthalene         Acenaphthylene         Acenaphthene         Phenanthrene         Phenanthrene         Phenanthrene         Physene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44 48 48	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 <b>Expected</b> 40 40 40 40 40 40 40 40 40	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 96 111 114 J)-{ENV}AM42 Recovery % 91 103 113 121 109 119 120
international international international international international international international international	Sample Number LB013154.002 Surrogales PAH (Polynuclear Aromatic Hydrocar Sample Number	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         drbons) in Water         Paramoter         Naphthalene         Acenaphthene         Phenanthrene         Anghthalene         Acenaphthene         Phenanthrene         Phonathrene         Phonathrene         Phyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44 48 48 48 47	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 100	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 98 111 114 3)-{ENV}AN42 Recovery % 91 103 113 121 109 119 120 118
international internationa	Sample Number LB013154.002 Surrogates PAH (Polynuclear Aromatic Hydrocar Sample Number LB013144.002	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Phenanthrene         Phenanthrene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogale)         2-fluorobiphenyl (Surrogale)         d14-p-terphenyl (Surrogale)         rbons) in Water         Parameter         Naphthalene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogale)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44 48 48 48 47 98.0	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 <b>Expected</b> 40 40 40 40 40 40 40 40 40 40 40 40 40	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 96 111 114 J)-{ENV}AN42 Recovery % 91 103 113 121 109 119 120 118 98
international internationa	Sample Number LB013154.002 Surrogates PAH (Polynuclear Aromatic Hydrocar Sample Number LB013144.002	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surrogate)         d14-p-terphenyl (Surrogate)         drbons) in Water         Paramoter         Naphthalene         Acenaphthene         Phenanthrene         Anghthalene         Acenaphthene         Phenanthrene         Phonathrene         Phonathrene         Phyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44 48 48 47 98.0 101.0	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 <b>Expected</b> 40 40 40 40 40 40 40 40 40 40 40 100 10	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 96 111 114 J)-{ENV}AN42 Recovery % 91 103 113 121 109 119 120 118 98 101 116
According to the second se	Sample Number LB013154.002 Surrogates PAH (Polynuclear Aromatic Hydrocar Sample Number LB013144.002	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Phenanthrene         Phenanthrene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogale)         2-fluorobiphenyl (Surrogale)         d14-p-terphenyl (Surrogale)         rbons) in Water         Parameter         Naphthalene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogale)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % <b>Units</b> μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44 48 48 47 98.0 101.0 116.0	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 Expected 40 40 40 40 40 40 40 40 40 40 40 40 100 10	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENV}AN42 Recovery % 91 103 113 121 109 119 120 118 98 101 116 /AN420/AN44
international	Sample Number LB013154.002 Surrogates PAH (Polynuclear Aromatic Hydrocar Sample Number LB013144.002	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Phenanthrene         Phenanthrene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogale)         2-fluorobiphenyl (Surrogale)         d14-p-terphenyl (Surrogale)         rbons) in Water         Parameter         Naphthalene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogale)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % <b>Units</b> μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 40 41 45 49 44 48 48 47 98.0 101.0 116.0	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 <b>Expected</b> 40 40 40 40 40 40 40 40 40 40 40 40 40	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENV}AN42 Recovery % 91 103 113 121 109 119 120 118 98 101 118 98 101 116 /AN420/AN44 Recovery %
and the second the sec	Sample Number LB013154.002 Surrogates PAH (Polynuclear Aromatic Hydrocar Sample Number LB013144.002 Surrogates PCBs in Soli	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surogate)         d14-p-terphenyl (Surogate)         dbens) in Water         Parameter         Naphthalene         Acenaphthylene         Acenaphthene         Phenanthrene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surogate)         2-fluorobiphenyl (Surogate)         2-fluorobiphenyl (Surogate)	mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 36 41 45 49 44 48 48 47 98.0 101.0 116.0 <b>Result</b> 0.5	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 0 0 0 0	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 96 111 114 3)-{ENV}AN42 Recovery % 91 103 113 121 109 119 120 118 98 101 116 7AN400/AN44 Recovery % 129
international	Sample Number LB013154.002 Surrogates PAH (Polynuclear Aromatic Hydrocar Sample Number LB013144.002 Surrogates PCBs in Soli Sample Number	Parameter         Naphthalene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthylene         Acenaphthene         Phenanthrene         Anthracene         Fluoranthene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surogate)         d14-p-terphenyl (Surogate)         d14-p-terphenyl (Surogate)         Acenaphthene         Acenaphthene         Acenaphthene         Acenaphthene         Acenaphthene         Phenanthrene         Pyrene         Benzo(a)pyrene         d5-nitrobenzene (Surrogate)         2-fluorobiphenyl (Surogate)         d14-p-terphenyl (Surogate)         d14-p-terphenyl (Surogate)	mg/kg         mg/L         mg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4.5 4.6 4.8 4.6 4.9 4.8 5.0 4.7 98.0 111.0 114.0 <b>Result</b> 40 41 45 49 44 48 48 47 98.0 101.0 116.0	Expected 4 4 4 4 4 4 4 4 4 4 100 100 100 100 <b>Expected</b> 40 40 40 40 40 40 40 40 40 40 40 40 40	Criteria % 60 - 140 60 -	Recovery % 113 114 120 116 123 120 124 119 98 111 114 J)-{ENV}AN42 Recovery % 91 103 113 121 109 119 120 118 98 101 118 98 101 116 /AN420/AN44 Recovery %



# LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

								* talian di '	*** 7810 IENOA	KI022/ANJ987
	Total Cyanide in soil i	, by Discrete Ana ^r	Jyser (Aquakem)						ME-(AU)-[ENV]AI	
	Sample Number		Parameter		Units	LOR	Result		Criteria % R	
	LB013182.002		Total Cyanide		mg/kg	0.1	0.2	0.25	70 - 130	97
	LD010102									
	market was a started of							N	lethod: ME-(AU)-	-(ENVJAN289
	Total Phenotics in So	)			11-22-2	INCE	Thomas	Expected	Crîteria % F	
	Sample Number		Parameter		Units	LOR	Result		70 - 130	90
	LB013123.002		Total Phenols		mg/kg	0.1	2.3	2.5	70 - 150	90
	Total Recoverable K	Votale in Soil by	ICPOES from EPA 200.8 Digest					Method:	ME-(AU)-[ENV]A	4N040/AN320
					Units	LOR	Result	Expected	Criteria % F	Recovery %
	Sample Number		Parameter		mg/kg	3	49	50	80 - 120	98
	LB013286.002		Arsenic, As				49 51	50	80 - 120	103
			Cadmium, Cd		mg/kg	0.3			80 - 120 80 - 120	100
			Chromium, Cr		mg/kg	0.3	50	50		-
			Copper, Cu		mg/kg	0.5	51	50	80 - 120	102
			Lead, Pb		mg/kg	1	51	50	80 - 120	102
			Nickel, Ni		mg/kg	0.5	51	50	80 - 120	102
			Zinc, Zn		mg/kg	0.5	51	50	80 - 120	102
								t	Method: ME-(AU)	HENVIAN403
	TRH (Total Recover	able Hydrocarbo	uns) in Soll	3						
	Sample Number		Parameter		Units		Result	Expected		
	LB013149.002		TRH C10-C14		mg/kg	20	41	40	60 - 140	103
			TRH C15-C28		mg/kg	50	<50	40	60 - 140	98
			1111 010 02							
								1	Method: ME-(AU)	AJENVIAN403
	TRH (Total Recover	rable Hydrocarbo	ons) in Water							
	Sample Number		Parameter		Units		Result	Expected		
	LB013144.002		TRH C10-C14		µg/L	100	1100	1200	60 - 140	93
	LOUIVIANCE		TRH C15-C28		µg/L	200	1100	1200	60 - 140	94
			HALO IO OLO							
								Method	I: ME-(AU)-[ENV]	MM433/AN434
	VOC's in Soil									
	Sample Number		Parameter		Units		Result	Expected		
	LB013141.002	Monocyclic	Benzene		mg/kg	0.1	2.7	3	60 - 140	90
	LUCIO	Aromatic	Toluene		mg/kg	0.1	2.7	3	60 - 140	90
		AUthaus	Ethylbenzene		mg/kg	0.1	2.7	3	60 - 140	90
					mg/kg	0.2	5.4	5.9	60 - 140	92
			m/p-xylene			0.2	2,8	2,9	60 - 140	96
			o-xylene		mg/kg			100	60 - 140	102
		Surrogates	Dibromofluoromethane (Surrogate)		%	-	102.0			102
			d4-1,2-dichloroethane (Surrogate)		%	-	103.0	100	60 - 140	
			d8-toluene (Surrogate)		%	-	101.0	100	60 - 140	101
			Bromofluorobenzene (Surrogate)		%	-	108.0	100	60 - 140	108
								Method	: ME-(AU)-[ENV]	//AN433/AN43
	VOCs in Water					- Maria	in the second			
	Sample Number		Parameter		Units			Expected		
	LB013388.002	Monocyclic	Benzene		µg/L	0.5	44	45.45	60 - 140	98
		Aromatic	Toluene		µg/L	0.5	42	45.45	60 - 140	93
		Promoto	Ethylbenzene		µg/L	0.5	42	45.45	60 - 140	93
			- · · ·		μg/L	1	81	90.9	60 - 140	89
			m/p-xylene		μg/L	0.5	44	45.45	60 - 140	97
			o-xylene		h9r =	0.0	.,			
	Volatile Petroleum I	Hydrocarbons ir	n Soil					Method	d: ME-(AU)-[ENV	
	Sample Number		Parameter		Unit	s LOR	Result	Expected	Griteria%	Recovery %
					mg/kg		27	24.4	60 - 140	111
	LB013141.002		TRH C6-C9		**a**a					·
									وی پا سونی این د. د.	
	Votatile Petroleum I	. Hydrocarbons ir	n Water					Methor	d: ME-(AU)-(ENV	/JAN433/AN4.
			Parameter		Unit	is Lor	Result	Expected	Criteria %	Recovery %
	Sample Number				µg/L	40	840	827	60 - 140	102
Į	LB013388.002		TRH C6-C9		- e-					



# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

fercury (dissolved) in Water			VOD	Result	Original	E- (AU)-[ENV]A Spike	Recovery
QC Sample Sample Number SE104964.001 LB013240.004	Parameter Mercury	Units mg/L	LOR 0.0001	0.0087	0,0078	0.008	109
tercury in Soil					Mel	ihod: ME-(AU)	-[ENV]AN3

QC Sample	Sample Number	Parameter	Units	(40)64	Result	Original	эріке	Recovery
SE105002.006	LB013289.004	Mercury	mg/kg	0.05	0.23	<0.05	0.2	93

C Sample	Sample Number	- 15 M	Parameter	Units	LOR	Result	Original	Spike	Reco
E104976.021	LB013151.006		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	
210101010121			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	
			Lindane	mg/kg	0.1	<0.1	<0.1	-	
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	
			Delta BHC	mg/kg	0.1	0,1	<0.1	0.2	
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	
			Alpha Chiordane	mg/kg	0.1	<0.1	<0.1	-	
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	
			Dieldrin	mg/kg	0.05	0.14	<0.2	0.2	
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	
			0,p'-DDT	mg/kg	0.1	<0.1	<0,1	-	
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	
			Endrin Kelone		0.1	<0.1	<0.1	-	
		Surrogales	Endrin Kelone Tetrachloro-m-xylene (TCMX) (Surrogale)	mg/kg %	0.1	<0.1 73	<0.1 130	- 100	
sti den in de servicio de s	- Annually the day	Surrogates	Endrin Ketone Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg			130		I)-[EN
	ar Aromatic Hydrocarbo		Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg %	-	73	130 Met	thod: ME-(AU	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter	mg/kg % Units	LOR	73 Result	130 Met Original	thod: ME-(AU Spike	
C Sample			Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Naphthalene	mg/kg % Units mg/kg	LOR 0.1	73 Result 4.4	130 Met Original <0.1	thod: ME-(AU	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Naphthalene 2-methylnaphthalene	mg/kg % Units mg/kg mg/kg	LOR 0.1 0.1	73 Result 4.4 <0.1	130 Met Original <0,1 <0,1	thod: ME-(AU Spike	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene	mg/kg % Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1	130 Met <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 -	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogate) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5	130 Met <0.1 <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 - - 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0	130 Met coriginal <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 -	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthee Fluorene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0,1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1	130 [//et <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	thod: ME-(AU Spike 4 - 4 4 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parameter Naphthalene 2-methylnaphthalene Acenaphthylene Acenaphthee Fluorene Phenanthrene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7	130 Met <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 - - 4 4 - 4 - 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 <b>Result</b> 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9	130 Met <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 - 4 4 4 - 4 4 4 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.9	130 Met Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.4	thod: ME-(AU Spike 4 - 4 4 4 - 4 4 4 4 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parametor Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Fluorene Phenanthrene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 <b>Result</b> 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.9 4.5	130 Met 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 0.4 0.4 0.4	thod: ME-(AU Spike 4 - 4 4 4 - 4 4 4 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parametor Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Fluorene Phenanthrene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Benzo(a)anthracene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.9 4.5 <0.1	130 Met Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.4 0.4 0.4 0.2	thod: ME-(AU Spike 4 - 4 4 4 - 4 4 4 4 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parameton Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Phenanthrene Fluorenthene Fluorenthene Chrysene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	130 Met Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 - 4 4 4 - 4 4 4 4 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parametor Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Fluorene Phenanthrene Fluorene Fluorene Fluorene Fluorene Fluorene Fluorene Benzo(a)anthracene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	130 Met Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 0.2 0.3	thod: ME-(AU Spike 4 - 4 4 4 - 4 4 4 4 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale) Parameton Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Phenanthrene Fluorenthene Fluorenthene Chrysene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	130 Met Original <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 0.2 0.3 0.2	thod: ME-(AU Spike 4 - 4 4 4 4 4 4 4 4 - - - - - -	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg % UDIts mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	130 Met <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 - 4 4 4 - 4 4 4 4 4	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	130 Met <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 - 4 4 4 4 4 4 4 4 - - - - - -	
AH (Polynuclea IC Bample E105001.003	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale)  Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthrene Fluorene Phenanthrene Anthracene Fluoranthene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	130 Met <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	thod: ME-(AU Spike 4 - 4 4 4 4 4 4 4 4 - - - - - -	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale)  Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Fluorene Fluorene Fluorene Fluorene Fluorene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg % UDIts mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	130 Met 071ginal <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 <0.1 0.2 <0.3 0.2 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	thod: ME-(AU Spike 4 - 4 4 4 4 4 4 4 4 - - - - - -	
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale)  Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluorene Fluoranthrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 4.9 <0.1 <0.1 38	130 Met 071ginal <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.1 0.2 0.3 0.2 0.3 0.2 <0.3 0.2 <0.3 0.2 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.1 <0.2 <0.3 <0.2 <0.3 <0.2 <0.1 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	thod: ME-(AU Spike 4 - 4 4 4 4 4 4 4 4 - - - 4 4 - - 4 - - 4 - - - 4 - - - - 4 - - - - - - - - - - - - - - - - - - - -	I)-{EN Re
C Sample	Sample Number		Tetrachloro-m-xylene (TCMX) (Surrogale)  Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthrene Fluorene Phenanthrene Fluorene Phenanthrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)prene Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene Benzo(a)pirperylene	mg/kg % Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	73 Result 4.4 <0.1 <0.1 4.5 5.0 <0.1 4.7 4.9 4.9 4.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	130 Met 071ginal <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.2 <0.1 0.2 <0.3 0.2 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	thod: ME-(AU Spike 4 - 4 4 4 4 4 4 4 4 - - - - - -	



.

## MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

ar a othereroos	r Aromalíc Hydrocark	weed as construction to a term	deround)						
C Sample	Sample Number		Parameter	Units	LOR	Result	Original		Recovery
E105001.003	LB013154.007	Surrogates	d14-p-terphenyl (Surrogate)	%	-	118.0	103.0	100	118
Bs in Soil								E-(AU)-[ENV]A	-
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E104976.022	LB013151.007		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochior 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochtor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.3	<0.2	0.4	78
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochior 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochiors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	73	71	100	73
(al Recoverabi	ie Metals in Soll by IC	OPOES from EP/	A 200.8 Digest				Method: Mr	(E-(AU)-{ENV}	jAN040/Al
C Sample	Sample Number	2	Parameter	Units	LOR	Result	Original	Spike	Recov
E105002.013	LB013286.004		Arsenic, As	mg/kg	3	40	4	50	72
			Cadmium, Cd	mg/kg	0,3	41	<0.3	50	81
			Chromium, Cr	mg/kg	0.3	65	27	50	75
			Соррег, Си	mg/kg	0.5	51	11	50	8
			Lead, Pb	mg/kg	1	57	23	50	69
			Nickel, Ni	mg/kg	0.5	46	6.1	50	7
			Zinc, Zn	mg/kg	0.5	65	26	50	7



2.4

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	soil by Discrete Analyser (	(Aquakem) <b>Para</b> meter	Units	LOR	Duplicate	Method: ME-(AU)-[ENV]AN077/AN287
QC Sample SE105002.001	Sample Number LB013182.004	Total Cyanide	mg/kg	0.1	0.5	
Total Phenolics (	n Sali					Method: ME-(AU)-[ENV]AN289
QC Sample	Sample Number	Parameter	Units	LOR	Duplicate	

refer ensuring the	Sample Romos			
SE104976.005	LB013123.012	Total Phenols	mg/kg	0.1



# FOOTNOTES

## Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

- Non-accredited analysis.
- Sample not analysed for this analyte.
- Analysis performed by external laboratory.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.

Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).

- ICR was raised due to sample matrix interference.
- ⑦ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at <a href="http://www.sgs.com/terms_and_conditions.htm">http://www.sgs.com/terms_and_conditions.htm</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

Ja 30/1/2012@ 318pm	Ship Laboratory Test Request / Chain of Custody Record	Page 1 of 1		Location: Mona Vale		Friday 3 February 2012 (Normal 1A1)	PCB TOTAL TOTAL BTEX KEEP SAMPLE			YES YES	YES	YES YES			Received by	Signature 22 (if it is		
		Ę		Project Manager: JX		Results required by: Friday 3	TPH [•] PAH OCP & PAH OCP BTEX									Name .	T	SP Soil sample (plastic page)
	Ser of the series of the serie	Tel: (02) 4722 2700 P O Box 880 Fax: (02) 4722 5161 PENRITH NSW 2751 email: info@geotec		(: 02 8594 0499		Soil Water	Heavy Metals As, Cd, Cr, Cu, Ph. Ho. Ni and Zh	SG	SG	SG		MG				Date		soil sample (glass jar)
	ΕΡΤΥ ΚΤΟ	PENRITH		FAX:		Date Time		27/01/2012 -	27/01/2012 -	27/01/2012 -	,	27/01/2012 -			Relinauished by	Signature	X	rttie SG ottie
	GEOTECHNIQUE PTY LTD	Lemko Place PENRITH NSW 2750	TO: SGS ENVIRONMENTAL SERVICES UNIT 16 33 MADDOX STREET ALEXANDRIA NSW 2015	PH: 02 8594 0400	ATTN: MS ANGELA MAMALICOS	Sampling details Location Depth (m)		BH101 0.1-0.2		BH101 0.7-0.8	2. Duplicate D101 -	Rinsate R1				Name	JOHN XU Legend:	WG Water sample, glass bottle WP Water sample, plastic bottle



# SAMPLE RECEIPT ADVICE

				Hugen Crew	ford
ontact	John Xu		Manager	Huong Craw	rord dria Environmental
ent	Geotechnique			Unit 16, 33 M	
dress	P.O. Box 880 PENRITH NSW 27	751	Address	Alexandria N	
elephone	02 4722 2700		Telephone	+61 2 8594	0400
acsimile	02 4722 6161		Facsimile	+61 2 8594	0499
nail	john.xu@geotech.	com.au	Email	au.environm	ental.sydney@sgs.com
oject	12593/2 - Mona Va	ale	Samples Received	Fri 27/1/201	
rder Number	(Not specified)		Report Due	Fri 3/2/2012	
amples	4		SGS Reference	SE105013	
erence SE105013 v Sample counts b Date documenta	vhen making enquiries. Re y matrix lion received	fer below for details relating 3 Soils, 1 Water 30/1/12@3:18pm	s are expected to be ready by Friday 3 to sample integrity upon receipt. Type of documentation rece Samples received in good o	aived order	COC Yes
	d without headspace	Yes	Sample temperature upon r		3.9°C
Sample containe	r provider d in correct containers	SGS Yes	Turnaround time requested Sufficient sample for analys		Standard Yes
Samples receive Sample cooling r		Ice Bricks	Samples clearly labelled	10	Yes
amples will be held t	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	ucted.
amples will be held f	or one month for water sa	mples and two months for se	oil samples from date of report, unless	otherwise instru	ucted.
OMMENTS	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	ucted.
·	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	ucted.
	or one month for water sa	mples and two months for se	oil samples from date of report, unless	s otherwise instru	ucted.
	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	ucted.
	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	Joted.
·	or one month for water sa	mples and two months for s	oil samples from date of report, unless	s otherwise instru	ucted.
·	or one month for water sa	mples and two months for s	oil samples from date of report, unless	s otherwise instru	ucted.
·	or one month for water sa	mples and two months for s	oil samples from date of report, unless	s otherwise instru	Joted.
·	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	Joted.
·	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	Joted.
	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	Joted.
- 	or one month for water sa	mples and two months for s	oil samples from date of report, unless	s otherwise instru	Joted.
- 	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	Joted.
- 	or one month for water sa	mples and two months for s	oil samples from date of report, unless	e otherwise instru	Joted.
	or one month for water sa	mples and two months for s	oil samples from date of report, unless	otherwise instru	Joted.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 WA 6105 Australia WA 6896 Australia



# SAMPLE RECEIPT ADVICE

SE105013

ent Geotechn	ique				Project			1259	93/2 - Mona	Vale
SUMMARY OF ANALYSIS										
No. Sample ID	OC Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in	PCBs in Soil	Total Cyanide in soil by Discrete Analyser	Total Phenolics in Soil	Total Recoverable Metals in Soil by ICPOES from	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil	
001 BH101_0.1-0.2	26	22	11	1		17	4	12	6	
002 Duplicate D101	26	22	11	1		1 7	4	12	6	
004 Tripspike TS1	-	-	-	-			-	12	-	

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction.



# SAMPLE RECEIPT ADVICE

SE105013

SUMMARY OF ANALYSIS	700       700       700       1       -       1       1       1       0       00       00         700       700       7       1       -       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	CLIENT DETAIL		chnique				Project			12593/2	- Mona Vale	
No.     Sample ID     E       001     BH101_0.1-0.2     -     1     -     -     -       002     Duplicate D101     -     1     -     1     -     -	No.         Sample ID         E F           001         BH101_0.1-0.2         -         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<	SUMMARY OF	ANALYSIS										
001       BH101_0.1-0.2       -       1       -       1       -       -       -       -         002       Duplicate D101       -       1       -       1       -       -       -       -	001       BH101_0.1-0.2       -       1       -       -       -       -       -         002       Duplicate D101       -       1       -       1       -       -       -	Νο	Sample ID	Mercury (dissolved) in Water	Mercury in Soil	Metals in Water (Dissolved) by ICPOES	Moisture Content	PAH (Polynuclear Aromatic Hydrocarbons) in	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water		
002 Duplicate D101 - 1 - 1	002 Duplicate D101 - 1 - 1			-	1	-	1	-	-	-	_		
003 Rinsate R1 1 - 7 - 22 4 12 6	003 Rinsate R1 1 - 7 - 22 4 12 6	002	Duplicate D101	-	1	-	1	-	-	-	-		
		003	Rinsate R1	1	-	7	-	22	4	12	6		

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details. Testing as per this table shall commence immediately unless the client intervenes with a correction.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

## **CERTIFICATE OF ANALYSIS**

68251

Client: Geotechnique Pty Ltd PO Box 880 Penrith NSW 2751

Attention: John XU

## Sample log in details:

Your Reference:	12593/1, Moi	na Val	Ð
No. of samples:	1 Soil		_
Date samples received / completed instructions received	30/01/12	1	30/01/12

## Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

## **Report Details:**

 Date results requested by: / Issue Date:
 3/02/12
 / 3/02/12

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

# **Results Approved By:**

Nancy Zhang

Chemist

Kluigh Morgen

Rhian Morgan Reporting Supervisor

Nick Sarlamis Inorganics Supervisor



vTRH & BTEX in Soil		
Our Reference:	UNITS	68251-1
Your Reference		S101
Date Sampled		27/01/12
Type of sample		Soil
Date extracted	-	31/01/2012
Date analysed	-	01/02/2012
vTRHC6 - C9	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	91

Envirolab Reference: 68251 Revision No: R 00

# Client Reference: 12593/1, Mona Vale

sTRH in Soil (C10-C36)		
Our Reference:	UNITS	68251-1
Your Reference		S101
Date Sampled	There and they are then over pass and back the face too	27/01/12
Type of sample		Soil
Date extracted	-	31/01/2012
Date analysed	-	31/01/2012
TRHC10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
Surrogate o-Terphenyl	%	90

Envirolab Reference: 68251 Revision No: R 00

12593/1, Mona Vale

PAHs in Soil		
Our Reference:	UNITS	68251-1
Your Reference		S101
<b>Date Sampled</b>		27/01/12
Type of sample		Soil
Date extracted	Pia .	31/01/2012
Date analysed	-	01/02/2012
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Surrogate p-Terphenyl-d14	%	87

-

: 1

12593/1, Mona Vale

Organochlorine Pesticides		
Our Reference:	UNITS	68251-1
Your Reference		S101
Date Sampled		27/01/12
Type of sample		Soil
Date extracted	-	31/01/2012
Date analysed	-	02/02/2012
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfanl	mg/kg	<0.1
DDE	mg/kg	<0.2
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
DDD	mg/kg	<0.2
Endosulfan II	mg/kg	<0.1
DDT	mg/kg	<0.2
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCLMX	%	88

Page 5 of 16

# Client Reference: 12593/1, Mona Vale

PCBs in Soil		
Our Reference:	UNITS	68251-1
Your Reference		S101
DateSampled		27/01/12
Type of sample		Soil
Date extracted	-	31/01/2012
Date analysed	-	02/02/2012
Arochlor 1016	mg/kg	<0.1
Arochlor 1221	mg/kg	<0.1
Arochlor 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Surrogate TCLMX	%	88

Ì

# Client Reference: 12593/1, Mona Vale

Total Phenolics in Soil		
Our Reference:	UNITS	68251-1
Your Reference		S101
Date Sampled	***********	27/01/12
Type of sample		Soil
Date extracted	-	01/02/2012
Date analysed	-	01/02/2012
Total Phenolics (as Phenol)	mg/kg	<5

1

1

-----

-

Envirolab Reference: 68251 Revision No: R 00

# Client Reference:

12593/1, Mona Vale

Acid Extractable metals in soil		
Our Reference:	UNITS	68251-1
Your Reference		S101
Date Sampled	*********	27/01/12
Type of sample		Soil
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.5
Chromium	mg/kg	5
Copper	mg/kg	5
Lead	mg/kg	2
Мегсигу	mg/kg	<0.1
Nickel	mg/kg	3
Zinc	mg/kg	5

1

al contraction of

---

1

Envirolab Reference: 68251 Revision No: R 00 Page 8 of 16

#### **Client Reference:** 12593/1, Mona Vale

31/01/2012

31/01/2012

<0.5

cellaneous Inorg - soil		
Our Reference:	UNITS	68251-1
Your Reference		S101
Date Sampled		27/01/12
Type of sample		Soil

-

-

mg/kg

Miscellaneous

Date prepared

Date analysed

Total Cyanide

68251 Envirolab Reference: R 00 **Revision No:** 

# Client Reference: 12593/1, Mona Vale

Moisture		
Our Reference:	UNITS	68251-1
Your Reference		S101
Date Sampled		27/01/12
Type of sample		Soil
Date prepared	-	31/01/2012
Date analysed	-	01/02/2012
Moisture	%	18

 $\square$ 

{_.,

Envirolab Reference: 68251 Revision No: R 00

# Client Reference: 12593/1, Mona Vale

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-030	Total Phenolics - determined colorimetrically following disitillation, based upon APHA 21st ED 5530 D.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-013	Cyanide - total determined colourimetrically after distillation, based on APHA 21st ED, 4500-CN_C,E. Free cyanide determined colourimetrically after filtration.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.

- }

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recove
TRH&BTEX in Soil						Base II Duplicate II % RPD		
Date extracted	-			31/01/2 012	[NT]	[NT]	LCS-2	31/01
Date analysed	-			01/02/2 012	[NT]	[NT]	LCS-2	01/02
vTRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-2	10
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-2	10
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-2	10
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-2	1
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-2	10
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-2	10
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	93	[NT]	[TN]	LCS-2	10
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike Recov
TRH in Soil (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			31/01/2 012	[NT]	[NT]	LCS-2	31/0
Date analysed	-			31/01/2 012	[NT]	[NT]	LCS-2	31/0
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-2	1
TRHC15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	1
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-2	1
Surrogate o-Terphenyl	%		Org-003	97	[NT]	[NT]	LCS-2	1
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike Reco
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			31/01/2 012	[NT]	[TM]	LCS-2	31/
Date analysed	-			01/02/2 012	[NT]	[NT]	LCS-2	01/
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TN]	[NR]	
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TM]	LCS-2	
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[TN]	[TN]	LCS-2	
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TM]	[NR]	
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TN]	LCS-2	

Envirolab Reference:	68251
Revision No:	R 00

 $\square$ 

 $\left[\right]$ 

Annangenetisti Phritis

annen Bakkinger, sature

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		Recover
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-2	1239
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR
Surrogate p-Terphenyl- d14	%		Org-012 subset	91	[NT]	[NT]	LCS-2	105
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides						Base II Duplicate II %RPD		Recover
Date extracted	-			31/01/2	[NT]	[NT]	LCS-2	31/01/2
Date analysed	-			012 01/02/2 012	[NT]	[NT]	LCS-2	01/02/2
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NF
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	119
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NI
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	126
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	114
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[N
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	10
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	11
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[N
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[N
Endosulfan l	mg/kg	0.1	Org-005	<0.1	[NT]	[TN]	[NR]	[N
DDE	mg/kg	0.2	Org-005	<0.2	[NT]	[NT]	LCS-2	13
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	12
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	12
DDD	mg/kg	0.2	Org-005	<0.2	[NT]	[NT]	LCS-2	13
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[TN]	[NR]	[N
DDT	mg/kg	0.2	Org-005	<0.2	[NT]	[NT]	[NR]	[1
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[1
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-2	12
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[]
Surrogate TCLMX	%		Org-005	98	[NT]	[NT]	LCS-2	9

-

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PCBs in Soil						Base II Duplicate II % RPD		Recovery
Date extracted	-			31/01/2 012	[NT]	[NT]	LCS-2	31/01/2
Date analysed	-			01/02/2 012	[NT]	[NT]	LCS-2	01/02/2
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[TN]	[NR]	[NR
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[TN]	[NR]	[NR
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-2	124
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NF
Surrogate TCLMX	%		Org-006	98	[NT]	[NT]	LCS-2	103
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recover
Total Phenolics in Soil						Base II Duplicate II % RPD		
Date extracted	-			01/02/2 012	[NT]	[NT]	LCS-1	01/02/
Date analysed	-			01/02/2 012	[NT]	[NT]	LCS-1	01/02/
Total Phenolics (as Phenol)	mg/kg	5	Inorg-030	<5	[NT]	[NT]	LCS-1	111
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recove
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-2	107
Cadmium	mg/kg	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-2	10
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	10
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	10
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[TN]	[NT]	LCS-2	10
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-2	11
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	10
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-2	1

And the second second

		Clir	ent Referenc	se: 1:	2593/1, Mona	Vale		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %RPD		
Date prepared	-			31/01/2 012	[NT]	[NT]	LCS-1	31/01/20
Date analysed	-			31/01/2 012	[NT]	[NT]	LCS-1	31/01/20
Total Cyanide	mg/kg	0.5	Inorg-013	<0.5	[NT]	[NT]	LCS-1	106%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-	-		[NT]	-			
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				

.

1...

# **Report Comments:**

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this testPQL: Practical Quantitation LimitNA: Test not requiredRPD: Relative Percent Difference<: Less than</td>>: Greater than

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

## **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

## Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

	Custody Record	Page 1 Of 1		JX Location: Mona Vale		Results required by: Friday 3 February 2012 (Normal TAT)		OCP PCB TOTAL TOTAL TOTAL KEEP KEEP SAMPLE	Combination 9 YES						Signature 20.0		Soil sample (plastic bag) • Purge & Trap Test required
Lev Teachard: 68 251 Lov Teachard: 68 251 Time Runnied: 05:05		email: info@geotech.com.au	Sampling By:	201 Project Manager:		Results requir		Heavy Metais TPH* As, Cd, Cr, Cu, & & PAH Pb. Ho. Ni and Zn								30/01/2012 J. J. KONOLOWSKO	Soil sample (glass jar)
	Y I TD	PENRITH	q	FAX: 02 9910 6201		Sample type	Date Time Soil Water		27/01/2012 - SG					Relinguished by	Signature	×	SG Soil samp
		Lemko Place PENRITH NSW 2750	TO: ENVIROLAB SERVICES PTY LD 12 ASHLEY STREET CHATSWOOD NSW 2067	PH: 02 9910 6200	ATTN: AILEEN HIE		Location Depth (m) C		C101 - 27/0						Name		Legend: WG Water sample, glass bottle WP Water sample, plastic bottle



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# SAMPLE RECEIPT ADVICE

<u>Client:</u> Geotechnique Pty Ltd PO Box 880 Penrith NSW 2751	ph: 02 4722 2700 Fax: 02 4722 6161
Attention: John XU	
Sample log in details: Your reference: Envirolab Reference: Date received: Date results expected to be reported:	12593/1, Mona Vale 68251 30/01/12 3/02/12

Samples received in appropriate condition for analysis:	YES
No. of samples provided	1 Soil
Turnaround time requested:	Standard
Temperature on receipt	Cool
Cooling Method:	Ice Pack
Cooling Method:	Ice Pack

## Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details: Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Page 1 of 1



# **ENVIRONMENTAL NOTES**

-----

-----

-----

# GEOTECHNIQUE PTY LTD

### IMPORTANT INFORMATION REGARDING YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Geotechnique Pty Ltd, using guidelines prepared by the ASFE (Associated Soil and Foundation Engineers). The notes are offered to assist in the interpretation of your environmental site assessment report.

## **REASONS FOR AN ENVIRONMENTAL ASSESSMENT**

Environmental site assessments are typically, though not exclusively, performed in the following circumstances:

- As a pre-acquisition assessment on behalf of a purchaser or a vendor, when a property is to be sold
- As a pre-development assessment, when a property or area of land is to be redeveloped, or the land use has changed, e.g. from a factory to a residential subdivision
- As a pre-development assessment of greenfield sites, to establish baseline conditions and assess environmental, geological and hydrological constraints to the development of e.g. a landfill
- As an audit of the environmental effects of previous and present site usage

Each circumstance requires a specific approach to assessment of soil and groundwater contamination. In all cases the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the ongoing proposed activity. Such risks may be financial (clean-up costs or limitations in site use) and physical (health risks to site users or the public).

## **ENVIRONMENTAL SITE ASSESSMENT LIMITATIONS**

Although information provided by an environmental site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment might not detect all contamination within a site. Contaminants could be present in areas that were not surveyed or sampled, or migrate to areas that did not show signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant that may occur; only the most likely contaminants are screened.

# AN ENVIRONMENTAL SITE ASSESSMENT REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

In the following events and in order to avoid cost problems, you should ask your consultant to assess any changes in the conclusion and recommendations made in the assessment:

- When the nature of the proposed development is changed e.g. if a residential development is proposed, rather than a commercial development
- When the size or configuration of the proposed development is altered e.g. if a basement is added
- When the location or orientation of the proposed structure is modified
- When there is a change of land ownership, or
- For application to an adjacent site

## **ENVIRONMENTAL SITE ASSESSMENT FINDINGS ARE PROFESSIONAL ESTIMATES**

Site assessment identifies actual sub-surface conditions only at those points where samples are taken, when they are taken. Data obtained from the sampling and subsequent laboratory analyses are interpreted by geologists, engineers or scientists and opinions are drawn about the overall sub-surface conditions, the nature and extent of contamination, the likely impact on any proposed development and appropriate remediation measures. Actual conditions may differ from those inferred, because no professional, no matter how qualified and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, however, steps can be taken to help minimise the impact. For this reason site owners should retain the services of their consultants throughout the development stages of the project in order to identify variances, conduct additional tests that may be necessary and to recommend solutions to problems encountered on site.

Soil and groundwater contamination is a field in which legislation and interpretation of legislation by government departments is changing rapidly. Whilst every attempt is made by Geotechnique Pty Ltd to be familiar with current policy, our interpretation of the investigation findings should not be taken to be that of the relevant authority. When approval from a statutory authority is required for a project, approval should be directly sought.

**Environmental Notes continued** 

## STABILITY OF SUB-SURFACE CONDITIONS

Sub-surface conditions can change by natural processes and site activities. As an environmental site assessment is based on conditions existing at the time of the investigation, project decisions should not be based on environmental site assessment data that may have been affected by time. The consultant should be requested to advise if additional tests are required.

# ENVIRONMENTAL SITE ASSESSMENTS ARE PERFORMED FOR SPECIFIC PURPOSES AND CLIENTS

Environmental site assessments are prepared in response to a specific scope of work required to meet the specific needs of specific individuals e.g. an assessment prepared for a consulting civil engineer may not be adequate to a construction contractor or another consulting civil engineer.

An assessment should not be used by other persons for any purpose or by the client for a different purpose. No individual, other than the client, should apply an assessment, even for its intended purpose, without first conferring with the consultant. No person should apply an assessment for any purpose other than that originally contemplated, without first conferring with the consultant.

## MISINTERPRETATION OF ENVIRONMENTAL SITE ASSESSMENTS

Costly problems can occur when design professionals develop plans based on misinterpretation of an environmental site assessment. In order to minimise problems, the environmental consultant should be retained to work with appropriate design professionals, to explain relevant findings and to review the adequacy of plans and specifications relative to contamination issues.

### LOGS SHOULD NOT BE SEPARATED FROM THE REPORT

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists, based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these would not be redrawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however, contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. Should this occur, delays and disputes, or unanticipated costs may result.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of sub-surface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations, such as contractors.

### **READ RESPONSIBILITY CLAUSES CLOSELY**

An environmental site assessment is based extensively on judgement and opinion; therefore, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. In order to aid in prevention of this problem, model clauses have been developed for use in written transmittals. These are definitive clauses, designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment and you are encouraged to read them closely. Your consultant will be happy to give full and frank answers to any questions you may have.