

GEOTECHNICAL INVESTIGATION

FOR

D.J THOMPSON PTY LIMITED

23-25 BASSETT STREET, MONA VALE

REPORT GG11415.001 12 MARCH 2024

Regulated Design Record					
Project Address: 2	23-35 Bassett Stree	et, Moi	na Vale		
	Project Title	e: Prop	osed Aged (Care Facility	
Consent No: Body Corporate Reg				ody Corporate Reg	No: N/A
Drawing Title: Geotechnical Investigation Report, 23-35 Bassett Street. Mona Vale			Drawin	g No: Report Ref: G	G11415.001A
Rev	Date	De	scription	DP Full Name	Reg No
-		Geotechnical Report			

Geotechnical Investigation for proposed alterations and additions to an aged care facility at 23-25 Bassett Street, Mona Vale

Prepared for

D.J Thompson Pty Limited 20/924 Pacific Highway Gordon NSW 2072

Prepared by

Green Geotechnics Pty Limited PO Box 3244 Rouse Hill, NSW, 2155 ABN: 786 438 493 89 www.greengeo.com.au matt@greengeo.com.au

12 March 2024

Document Authorisation

Our Ref: GG11415.001A

For and on behalf of Green Geotechnics

Matthew Green Principal Engineer – Geotechnics

Document Control

Revision	Description	Format	Date	Author	Distributed to
	Final	PDF	12/03/2024	MG	D.J Thompson Pty Limited (Client)

Table of Contents

1.	INTE	RODUCTION	.1
2.	PRE	VIOUS GEOTECHNICAL INVESTIGATION	.2
3.	FIEL	DWORK DETAILS	.2
4.	RES	ULTS OF INVESTIGATION	.3
4.	.1	Site Description	.3
4.	.2	Regional Geology & Subsurface Conditions	.3
5.	GEC	DTECHNICAL RECOMMENDATIONS	.5
5.	.1	Primary Geotechnical Considerations	.5
5.	.2	Site Classification to AS2870	.5
5.	.3	Excavation Conditions and Vibration Control	.5
5.	.4	Temporary Batter Slopes	.7
5.	.5	Retaining Wall Design	.7
5.	.6	Drainage and Basement Floor Slab Construction	.9
5.	.7	Foundation Design	.9
5.	.8	Site Classification to AS1170.4 (Earthquake)	10
6.	FUR	THER GEOTECHNICAL INPUT	11
7.	GEN	IERAL RECOMMENDATIONS	11

FIGURES

FIGURE 11415.001A – Site Location

FIGURE 11415.001B – Site Plan and Borehole Locations

FIGURE 11415.001C – Site Photographs

APPENDICIES

Appendix A – Borehole Logs & DCP Test Results

1. **INTRODUCTION**

This report presents the results of a geotechnical investigation undertaken by Green Geotechnics Pty Limited for proposed alterations and additions to an existing residential aged care facility at 23 & 25 Bassett Street, Mona Vale, NSW. The investigation was commissioned by Northside Constructions on behalf of D.J Thompson Pty Limited by return acceptance of Proposal PROP-2024-072, dated 21 February 2024.

We understand that the development comprises partial demolition of existing structures on the site prior to the construction of a two-level aged care facility with a single level of basement car parking and flood flow zone. The finished floor level of the basement is set at Reduced Level (RL) 1.2 metres Australian Height Datum (AHD). Construction of the basement will require excavating to depths of between 2.5 and 3.5 metres below the existing ground surface, which includes a nominal 200mm allowance for the basement floor slab. Localised deeper excavations will also be required for lift overrun pits, sumps and foundations.

Structural loads have not been advised but we have assumed column loads in the moderate range will apply for this type of development.

The purpose of the investigation was to:

- assess the subsurface conditions over the site including the determination of bedrock and groundwater levels,
- provide a Site Classification to AS2870,
- provide a Subsoil Classification to AS1170.4,
- provide recommendations regarding the appropriate foundation system for the site including design parameters,
- comment on excavation conditions including recommendations for rock excavation and vibration control, and
- provide parameters for the temporary and permanent support of the excavation.

2. **PREVIOUS GEOTECHNICAL INVESTIGATION**

A previous geotechnical investigation was undertaken in March 2020 by White Geotechnical Group (Reference J2485, dated 17 March January 2020). The previous investigations included the drilling of two (2) hand augered boreholes and six (6) Dynamic Cone Penetrometer (DCP) tests.

The subsurface conditions were reported as a layer of topsoil and fill overlying natural sandy soils to the maximum depth of drilling, 2.0 meters. Bedrock was not encountered to a depth of at least 4.2 metres based on the Dynamic Cone Penetrometer (DCP) test results, however the DCP rods were noted as being wet on extraction, indicating the likely presence of groundwater.

3. FIELDWORK DETAILS

The fieldwork was carried out on 4 and 5 March 2024 and comprised a detailed site walkover together with the drilling of six (6) boreholes numbered BH1 to BH6. BH1 and BH2 were drilled using rotary solid flight augers attached to a track mounted Christie Engineering drilling rig, supplied and operated by BG Drilling. BH3, BH4 and BH5 were drilled using a utility mounted Christie Engineering drilling rig supplied and operated by Green Geotechnics. Due to the presence of buried services BH6 was drilled using a hand auger.

The site location is shown in the attached Figure A. The borehole locations, as shown on Figure B, were determined by taped measurements from existing surface features overlain on available survey drawings of the site. Photographs of the site indicating the borehole locations are shown on Figure C.

The strength of the soils encountered in the boreholes was assessed by undertaking DCP tests adjacent BH3, BH4 and BH5 and Standard Penetration Tests (SPT's) in BH1 and BH2. The consistency of cohesive soils encountered in BH1 and BH2 were augmented by carrying out pocket penetrometer readings on cohesive soil samples obtained from the SPT split spoon sampler. The strength of the weathered bedrock in BH1 and BH2 was assessed by observation of the auger penetration resistance when using a tungsten carbide drilling bit, together with examination of the recovered rock cuttings.

Groundwater observations were made in all boreholes during drilling, on completion of drilling and a short time after completion of drilling. To assist with assessing long term groundwater levels, PVC Standpipe Piezometers were installed in BH1 and BH2.

The fieldwork was completed in the full-time presence of our senior field geologist who set out the boreholes, nominated the sampling and testing, and prepared the borehole logs. The logs are attached to this report, together with a glossary of the terms and symbols used in the logs.

For further details of the investigation techniques adopted, reference should be made to the attached explanation notes.

Environmental and contamination testing of the soils was beyond the agreed scope of the works.

4. **RESULTS OF INVESTIGATION**

4.1 Site Description

The site is located on the southern side of Bassett Street and is legally described as Lot 38 in Deposited Plan (DP) 7236 and Lot 2 in DP 748426. The site is rectangular in shape with a combined area of approximately 6,503m². At the time of the fieldwork No.23 (Lot 38) was occupied by a single storey clad residential cottage with tile roof and separate clad garage with metal roof in the rear garden area. At the time of the fieldwork No.25 (Lot 2) comprised single storey brick cottage with tile roof at its eastern end with a frontage of around 15 metres, to the west of which is a one and two storey brick aged car facility with tile roof.

The aged care facility includes a suspended tennis court with garage parking below, areas of concrete hard stand and parking, together with garden areas and a concrete driveway which extends down the western side of the building. There are existing concrete block retaining walls on the site.

The ground surface on the site falls approximately 1.2 metres to the south from RL 4.5 metres AHD to RL3.3 metres AHD. Site vegetation comprised grassed lawns, garden beds, shrubs and trees.

To the north of the site is Bassett Street and to the south of the site are residential dwellings and units fronting Heath Street. To the east of the site is No. 21 Bassett Street, a single storey brick cottage with metal roof set back around 0.9 metres from the site boundary. To the west of the site is a multi dwelling residential complex identified as No.37, 37A and 37B Bassett Street. Structures on the site to the west are set back around 3 metres from the boundary.

4.2 Regional Geology & Subsurface Conditions

The 1:100,000 series geological map of Sydney (Geological Survey of NSW, Geological Series Sheet 9130) indicates that the site is underlain by Triassic Age bedrock belonging to the Hawkesbury Sandstone formation. Bedrock within this formation comprises fine to medium grained quartz sandstone.

Reference to available digital mapping on MinView indicates that the site is underlain by Holocene age deposits comprising clay, silt and fluvial/marine sand, with a geological boundary with the Hawkesbury Sandstone formation located some 35 metres north of the site.

For the development of a site-specific geotechnical model, the observed subsurface conditions from the boreholes have been grouped into four (4) geotechnical units which are summarised below in Table 4.1.

		Depth to	Depth to	
Unit	Material Type	top of Layer	base of	Material Description
		(m)	Layer (m)	
1	Fill	Surface	0.5 to 2.0m	Concrete was encountered in BH1 and BH5 with thicknesses of 150mm to 210mm. Gravelly clayey sand, silty sandy clay and clayey silty sand fill was encountered across the site, being deepest in BH1. The fill is dark grey brown to orange, fine to medium grained, moist and appears variably compacted.
2	Loose Becoming Medium Dense Sands and clayey silty sands	0.5 to 2.0m	3.4 to 3.6m	Sand, silty sand and clayey sand, generally loose to a depth of 2.5 to 3.0 metres becoming loose to medium dense with depth. Fine to medium grained with low plasticity fines, moist becoming wet with depth.
3	Stiff and Very stiff Clays	3.4 to 3.6m	8.8 to >12.0m	Sandy silty clays and silty clays with ironstone gravel, generally medium to high plasticity and moist
4	Class 5 Sandstone Bedrock	8.8 to >12.0m	Unknown	Highly weathered very low strength sandstone bedrock with low strength bands and ironstone and claystone lenses. Dry to moist

TABLE 4.1 – Summary of Subsurface Conditions

Groundwater observations made during auger drilling of the boreholes and in the piezometers are summarised below in Table 4.2.

Borehole ld	Seepage Level – m (RL)	Standing Water Level After Drilling – m (RL)	Standing Water Level 24 hours after Drilling – m (RL)
1	2.0m (RL1.6m AHD)	2.0m (RL1.6m AHD)	2.0m (RL1.6m AHD)
2	2.0m (RL2.4m AHD)	Not Recorded	2.6m (RL1.8m AHD)
3	2.0m (RL1.6m AHD)	2.1m (RL1.5m AHD)	-
4	2.0m (RL1.8 AHD)	2.0m (RL1.8 AHD)	-
5	2.0m (RL1.7m AHD)	2.1m (RL1.6m AHD)	-
6	Not Encountered	Not Encountered	Not Encountered

TABLE 4.1 – Summary of Groundwater Observations

5. **GEOTECHNICAL RECOMMENDATIONS**

5.1 Primary Geotechnical Considerations

Based on the results of the assessment, we consider the following to be the primary geotechnical considerations for the development:

- Basement excavation and retention to limit lateral deflections and ground loss as a result of excavations, resulting in damage to nearby structures,
- Constructing a basement below the water table and the need for construction stage dewatering, and
- Foundation design for structural loads.

5.2 Site Classification to AS2870

The classification has been prepared in accordance with the guidelines set out in the "Residential Slabs and Footings" Code, AS2870 – 2011.

Because there are existing structures present, abnormal moisture conditions (AMC) prevail at the site. (Refer to Section 1.3.3 of AS2870).

Because of the AMC and loose sands present, the site is classified a **Problem Site (P)**. However, provided the recommendations given in Section 5.7 are adopted and footings are founded in at least stiff natural clays, the site may be reclassified **Moderately Reactive (M)**.

5.3 Excavation Conditions and Vibration Control

All excavation recommendations should be complemented with reference to the NSW Government Code of Practice for Excavation work, dated January 2020.

It would be appropriate before commencing excavation to undertake a dilapidation survey of any adjacent structures that may potentially be damaged. This will provide a reasonable basis for assessing any future claims of damage.

Based on the subsurface conditions observed in boreholes, the proposed basement excavation is expected to encounter concrete and fill overlying primarily sandy soils and a limited volume of clayey soils. The clayey soils are likely to be encountered close to bulk excavation level and during detailed excavation of footings and pits. We do not anticipate the excavations encountering he underling sandstone bedrock.

Excavation of the soils will be achievable using conventional excavation equipment, such as the buckets of hydraulic excavators. We do not anticipate the use of hydraulic rock hammers during the bulk excavation works.

Based on the observations made during drilling and in the piezometers, the basement is expected to encounter a groundwater table. The groundwater appears to be perched in the sandy soils above the underlying silty clay layer, which we would expect to be relatively impermeable. Construction of the basement below the groundwater table has implications for both the construction and long-term phases of the project.

To control groundwater both during construction and in the long term, the temporary support system selected must be impermeable, otherwise lowering the water table will cause ground settlement and possible damage to the roadways and buildings on adjacent properties. The support system can be embedded into the underling clayey materials or sandstone bedrock to both generate passive resistance in the shoring system, and to control seepage around the base of the support system (i.e., cutting off the groundwater).

Contiguous pile walls are often used for support, however, experience indicates they are difficult to make watertight if there is considerable water flow. A version of this system is secant piles, where adjoining piles drill into one another. This system would usually be more watertight and has been successfully used in similar ground conditions.

Steel pile walls are often used to support excavations, however because of their nature, they are very difficult to make watertight, however, when used together with shotcrete they may be successfully employed.

Regardless of which system is adopted, a specialist piling contractor should be engaged to carry out the works. The equipment used should also be capable of penetrating the underlying bedrock if required to by the structural design.

Localised dewatering within the confines of the basement shoring system will be required during the bulk excavation process. Dewatering can be achieved by excavating a pit in one corner of the site down to bulk excavation level and installing a submersible pump.

Based on currently available groundwater data, and the proposed basement layout, we estimate that the total volume of water to be excavated from the confines of the basement to be in the order of 1ML. This calculation has been determined based on the following:

- Groundwater Level RL 1.8 metres AHD
- Bulk Excavation Level RL1.0 metres AHD
- Basement footprint 2,200m²
- Void ratio for a loose sand 0.6

Water extracted from the site during the bulk excavation process is expected to be a one-off occurrence, provided an impermeable temporary shoring wall is installed.

Local and/or state approval may be required for the offsite disposal of groundwater during any dewatering.

5.4 Temporary Batter Slopes

As discussed above in Section 5.3, an impermeable temporary shoring system will be required to control groundwater inflow for the basement structure. However, for areas of the site outside the basement footprint, or in areas where excavation depths are limited, temporary batters may be considered.

Suggested temporary batter slope angles for dry cut slopes (i.e., above the groundwater table) not exceeding 2 metres in height are presented in Table 5.2 below. These recommendations are provided based on no surcharge loads, including construction loads and existing footing loads, being placed within H of the top of the batters, where H is the total batter height.

Material	Temporary Batter Slope Ratio (H:V)
Unit 1 and 2 – Fill and Natural Sands	2:1
Unit 3 – Natural Clays	1:1

5.5 Retaining Wall Design

As per the recommendations given in Section 5.3, we recommend that the basement excavations be temporary supported by an impermeable shoring wall.

When considering the design of the support system, it will be necessary to allow for the loading from structures in adjoining properties, any ground surface slope and the water table present.

For the design of temporary structures where some ground movement is acceptable, an active earth pressure coefficient (K_a) may be adopted. However, where adjoining structures are within the zone of influence of the excavation, or it is necessary to limit lateral deflections, it will be necessary to adopt at rest (K_o) conditions. K_o conditions should also be used to design the permanent support system.

A triangular lateral earth pressure distribution should be adopted for cantilevered walls, and a rectangular or trapezoidal lateral earth pressure distribution should be adopted for walls that are progressively propped at their top and base, and/or where two or more rows of anchors are used.

The lateral earth pressure for a cantilevered wall should be determined as a proportion of the vertical stress, as given in the following formula:

 $\begin{aligned} \sigma z = K \; z \; \gamma, \; \text{where} & \sigma z = \text{Horizontal pressure at depth } z \; (\text{kPa}) \\ & K = \text{Earth pressure coefficient} \\ & z = \text{Depth (m)} \\ & \gamma = \text{Unit weight of soil or rock (kN/m^3)} \end{aligned}$

The design of propped/anchored or internally braced walls is more complex and therefore should be carried out using specialist software (i.e., Wallap, Plaxis etc.)

Retaining walls may be designed using the parameters provided below in Table 5.3.

Material Unit	Bulk We (kN,	Unit ight /m³)	Effective Cohesion C' (kPa)	Effective Angle of Friction, φ	Poisson's Ratio	Elastic Modulus E' (MPa)	Earth Pressure Co-efficients		ure its
	Dry	Saturated		(Deg)			Active (K _a)	At Rest (K _o)	Passive (k _p)²
1	18	8	0	24	0.3	8	0.4	0.6	-
2	18	8	0	27	0.3	15	0.4	0.6	2.5
3	19	N/A	5	27	0.3	30	0.38	0.57	2.8
4	22	N/A	50	30	0.25	100	-	-	3.5

TABLE	5.3 -	Retaining	Wall Design	Parameters
IADLL	5.5	netuning	Wan Design	i arameters

1. These values assume that some wall movement and relaxation of horizontal stress will occur due to the excavation. Actual in-situ K₀ values may be higher, particularly in the rock units.

2. Includes a reduction factor to the ultimate value of K_p to consider strain incompatibility between active and passive pressure conditions. Parameters assume horizontal backfill and no back of wall friction.

The embedment of retaining walls can be used to achieve passive support. A triangular passive earth pressure distribution (increasing linearly with depth) may be assumed, starting from 0.5 m below excavation toe/base level.

5.6 Drainage and Basement Floor Slab Construction

The basement structure extends below the groundwater table and therefore it will need to be constructed as a tanked structure. Tanked basement structures are subject to hydrostatic uplift when constructed below a permanent groundwater table. We understand that the site is located within a flood zone and therefore we recommend adopting an uplift pressure equal to the maximum predicted flood level.

Where stiff clayey soils are exposed over the excavation footprint, no special treatment is required other than the removal of loose and softened material. In some areas there may be some remaining loose wet sands which will likely need to be excavated. Areas, which have to be built-up to infill low points in the excavations should be filled with properly compacted sub-base material.

Slab-on-grade construction is considered appropriate for the basement floor slab provided that it is isolated from internal columns or footings.

5.7 Foundation Design

On completion of bulk excavation, stiff clayey soils are expected to be exposed in the base of any pad/strip footings (assuming a nominal footing depth of 0.5m). Any slab on ground sections of the ground floor which are outside the basement footprint are likely to encounter fill or loose sands at founding level.

To limit the potential for differential settlement we recommend that the proposed structures be uniformly supported on footings founded in either the stiff natural clays, or the underlying sandstone bedrock.

Foundation design parameters for the various units are provided in Table 5.4 below.

(II-ii) Meterial	Maximum Al	lowable (Serviceabili	ty) Values (kPa)	Ultimate Strength Limit State Values (kPa)			
(Unit) Material	End Bearing Pressure	Shaft Friction in compression#	Shaft Friction in tension*	End Bearing Pressure	Shaft Friction in compression#	Shaft Friction in tension*	
(1) Topsoil	-	-	-	-	-	-	
(2) Loose Sands	100	-	-	-	-	-	
(3A) Stiff Clays	150	20	10	450	40	20	
(3B) Very Stiff Clays	300	10	10	750	40	20	
(4) Class 5 Sandstone	700	70	35	2,100	210	105	

* Uplift capacity of piles in tension loading should also be checked for inverted cone pull out mechanism.

clean socket of roughness category R2 or better is assumed

In accordance with AS2159-2009 "Piling–Design and Installation", for limit state design, the ultimate geotechnical pile capacity shall be multiplied by a geotechnical reduction factor (Φ_g). This factor is derived from an Average Risk Rating (ARR) which considers geotechnical uncertainties, redundancy of the foundation system, construction supervision, and the quantity and type of pile testing (if any). Where testing is undertaken, or more comprehensive ground investigation is carried out, it may be possible to adopt a larger Φ_g value that results in a more economical pile design. Further geotechnical advice will be required in consultation with the pile designer and piling contractor, to develop an appropriate Φ_g value.

Settlements for pad footings in stiff clays are anticipated to be up to about 15mm where loading does not exceed the maximum allowable values presented in Table 5.4. Settlements for piled foundations in sandstone bedrock are anticipated to be about 1% of the pile diameter, based on serviceability parameters as per Table 5.4.

All shallow footings should be poured with minimal delay (i.e. preferably on the same day of excavation) or the base of the footing should be protected by a concrete blinding layer after cleaning of loose spoil and inspection.

Piles drilled for the temporary shoring system will encounter groundwater and sandy soils, and therefore will need to be drilled using continuous flight auger (CFA) injected methods. Piles drilled below bulk excavation level from inside the confines of the basement (i.e., foundation piles drilled from bulk level after installation of the cut-off wall) may be feasible using conventional open hole bored cast in-situ drilling methods, however some limited groundwater inflow should be anticipated. Drilling of rock sockets into the underlying sandstone bedrock will require the use of large purpose-built piling rigs equipped with rock augers.

Bored pile footings drilled using open hole methods should be drilled, cleaned, inspected and poured with minimal delay, on the same day. Water should be prevented from ponding in the base of footings as this will tend to soften the foundation material, resulting in further excavation and cleaning being required.

The initial stages of footing excavation/drilling, particularly if bored piles are adopted, should be inspected by a geotechnical engineer/engineering geologist to ascertain that the recommended foundation material has been reached and to check initial assumptions about foundation conditions and possible variations that may occur between borehole locations. The need for further inspections can be assessed following the initial visit.

5.8 Site Classification to AS1170.4 (Earthquake)

The site sub-soil classification has been determined using AS1170.4-2007. The classification is based on the results of the borehole drilling. The depth of soil recorded in the subsurface profile exceeds 3 metres, therefore the site is classified as a Shallow Soil Site (C_e). An earthquake hazard factor (Z) of 0.08 applies to sites within the Sydney region.

6. FURTHER GEOTECHNICAL INPUT

The following summarises the scope of further geotechnical work recommended within this report. For specific details reference should be made to the relevant sections of this report.

- Complete dilapidation surveys of the adjoining buildings and structures.
- Inspection of shoring piles during installation to ensure there is adequate support for the excavations.
- Inspection of footing excavations to ascertain that the recommended foundation has been reached and to check initial assumptions regarding foundation conditions and possible variations that may occur.
- We also recommend that Green Geotechnics view the proposed earthworks and structural drawings in order to confirm they are within the guidelines of this report.

Nevertheless, it will be essential during excavation and construction works that progressive geotechnical inspections be commissioned to check initial assumptions about excavation and foundation conditions and possible variations that may occur between inspected and tested locations and to provide further relevant geotechnical advice.

7. **GENERAL RECOMMENDATIONS**

The recommendations presented in this report include specific issues to be addressed during the construction phase of the project. In the event that any of the construction phase recommendations presented in this report are not implemented, the general recommendations may become inapplicable and Green Geotechnics accept no responsibility whatsoever for the performance of the structure where recommendations are not implemented in full and properly tested, inspected and documented.

Occasionally, the subsurface conditions may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact this office.

This report provides advice on geotechnical aspects for the proposed civil and structural design. As part of the documentation stage of this project, Contract Documents and Specifications may be prepared based on our report. However, there may be design features we are not aware of or have not commented on for a variety of reasons. The designers should satisfy themselves that all the necessary advice has been obtained. If required, we could be commissioned to review the geotechnical aspects of contract documents to confirm the intent of our recommendations has been correctly implemented.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described in this report then all recommendations should be reviewed. Copyright in this report is the property of Green Geotechnics. We have used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report. The report shall not be reproduced except in full.

REPORT INFORMATION

Introduction

These notes have been provided to amplify Green Geotechnics report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

Green Geotechnics reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several limitations, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. The borehole must be flushed, and any water must be extracted from the hole if further water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, Green Geotechnics will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, Green Geotechnics cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, Green Geotechnics will be pleased to assist with investigations or advice to resolve the matter.

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, Green Geotechnics requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Copyright

This report is the property of Green Geotechnics Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

FIGURES

<image/>		<image/>	
GREEN GEOTECHNICS	Project No: GG11415.001 Client: DJ Thompson Family Trust Date: 12 March 2024	Geotechnical Investigation 23-25 Bassett Street, Mona Vale SITE LOCATION PLAN	Figure No: GG11415.001A Drawn By: MG Scale: Unknown

Position of BH1

Position of BH2

	1		1
Ĉ	Project No: GG11415.001	Geotechnical Investigation	Page: 1 of 3
	Client: DJ Thompson Family Trust		
GREEN	Date: 12 March 2024	SITE PHOTOGRAPHS	

Position of BH3

Position of BH4

Ĉ.	Project No: GG11415.001	Geotechnical Investigation	Page: 2 of 3
	Client: DJ Thompson Family Trust		
GEOTECHNICS	Date: 12 March 2024	SITE PHOTOGRAPHS	

Position of BH5

Position of BH6

6	Project No: GG11415.001	Geotechnical Investigation	Page: 3 of 3
	Client: DJ Thompson Family Trust	23-25 Bassett Street, Mona Vale	
GREEN GEOTECHNICS	Date: 12 March 2024	SITE PHOTOGRAPHS	

APPENDIX A – BOREHOLE LOGS

Page 1 of 3

E	ngi	inee	rin	g Log - I	Зо	reh	ole				Project No.:	GG1	1415.	001
	Clier Proje Hole Hole	nt: ect Na e Loca e Posit	ime: tion: ion:	DJ Tho Geotec 23-25 B See Pla	mps nnic ass n	son Fa al Inv sett St	amily ⁻ estiga reet, N	Frust ition: 2 Mona \	23-25 I Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	4/3/2 4/3/2 JK MG	024 024	
	Drill Hole	Mode Diam	l anc ieter	I Mounting:	Ch 110	ristie () mm	CE180)		Inclination: -90° Bearing:	RL Surface: 3.6 Datum: AF	i0 m ID	O	perator:
			Drill	ing Informat	ion					Soil Descrip	tion			Observations
Mathed	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Descr Fraction, Colour, Struc Plasticity, Sensitivity	iption ture, Bedding, , Additional	Moisture Condition	Consistency Relative Density	Structure and Additional Observations
20-10-				0.50m SPT 9,9,7 N=16 0.95m 1.50m SPT 2,1,1 N=2		2.6	- - 1		SC	CONCRETE: 210mm thick. 0.21m FILL Gravelly Clayey SAND: f orange brown with pale grey,	ne to medium grained, with sandstone gravel.	м	-	FILL
1.01.3 2020/01/00 Fiji cerent core invite	_		/2024, Measured after drilling	1.95m		1.6	2— - - -		SM	2.00m Silty SAND: fine to medium gr grey.	ained, pale brown and	W 	- , L	ALLUVIAL SOIL
			5/3	3.00m SPT 6,8,7 N=15 3.45m		0.6	3	× × ×	SM	Clayey Silty SAND: fine to me with pale grey. 3.40m Silty Sandy CLAY: medium to	dium grained, dark grey	y vv	MD	
1413/010 ~~~~~~~~ 11/3/2024/08/20 10/00/00/08 Darget Lab and 11/010 100		1 0.8.7 N=15 1 <							ЛСН	with pale grey, sand is tine gra interbeds.	iined; with sandy	м	St	4.50: P.P = 200kPa
				6.00m			-		СН	Silty CLAY: high plasticity, pal	e grey.	М	VSt	
ויטויט בווויסנים בטא סואברוא סבי	Method Penetration AS - Auger Screwing ADVA Auger V Bit ADF Auger Tungsten Carbide Bit WB- Washbore No resistance ranging to refusal <i>Carbide Bit</i> WB- Washbore								Vater vel (Dat ow tial Los mplete	Samples and Tex e) U Undisturbed Sample D - Disturbed Sample SPT-Standard Penetrat Is PP Pocket Penetrome Loss Classification Symplement	its Moistur le D - D on Test W - W ter W - N PL - P LL - L	re Cond ry loist /et loisture lastic Li iquid Lir	Conte mit mit	Consistency/Relative Density VS - Very Soft S - Soft F - Firm ent VSt VSt - Very Stiff H - Hard Fr - Friable VL - Very Loose L - Loose
GIVEEN GEO	С	<u>зарра</u> : - Са	ising			indica Core	tecove ates ma loss	ied (ha iterial)	icning	<u>and Soil Descript</u> Based on Unified Classification Syst	<u>ons</u> Soil æm			MD - Medium Dense D - Dense VD - Very Dense

Page 2 of 3

Clent: DJ Thompson Family Trust. Commenced: 4/3/2024 Project Name: Geotechnical Investigation: 22-25 Bassett Street, Mona Vale Completed: 4/3/2024 Hole Doation: 22-25 Bassett Street, Mona Vale Logget By: MG Dill Model and Mounting: Christe CE190 Inclination: -90° Datum: AHD Operator: Dill Model and Mounting: Christe CE190 Inclination: -90° Datum: AHD Operator: Dill Model and Mounting: Christe CE190 Inclination: -90° Datum: AHD Operator: Dill Model and Mounting: Christe CE190 Inclination: -90° Datum: AHD Operator: Dill Model and Mounting: Christe CE190 Inclination: -90° Datum: AHD Operator: Using and the first		001	415.(5114	GG1	(Project No.:		gineering Log - Borehole												
Dell Model and Mounting Christie CE180 Inclination: -90° RL Surface: 3.60 m Datum: AHD Operator: Drilling Information Soil Description Drilling Information Soil Description Soil Description Observe Image: State of the state o			124 124	/20 /20	4/3/2 4/3/2 JK MG	2	Commenced: Completed: Logged By: Checked By:	ona Vale	ssett Street, M	23-25 Ba Vale	rust tion: 2 Iona	amily T estiga reet, N	on Fa al Inv ett St	mps hnic Bass an	DJ Tho Geotecl 23-25 B See Pla	e: on: n:	Nam catio	ient: ojec ole L ole P	С Р Н		
Drilling Information Soil Description Observa Image: Soil of the second secon		erator:	Op		m)	3.60 AHD	RL Surface: Datum:	-90°	Inclination: Bearing:)	CE180	istie () mm	Chr 110	ounting:	ind Mou er:	del a amet	ill M ble D	D H		
Total State Samples & Samp	servations	Observati	Ť				ption	Soil Descri						ion	Informat	rilling l	Dr				
$\frac{1}{52}$	ructure and nal Observations	Structure a Additional Obse	Consistency Relative Density	Condition	Moisture		cription cture, Bedding, ty, Additional	Material Des n, Colour, Stru ticity, Sensitiv	Fractio Plas	Group Symbol	Graphic Log	Depth (m)	RL (m)	Recovery	amples & ield Tests	Sa slevel Fie	Groundwater	lindque	Method		
$\frac{1}{10}$	L JkPa	ALLUVIAL SOIL 6.00: P.P = 350kPa					ale grey <i>(continued)</i>	jh plasticity, p	Silty CLAY: hig	СН) n	SPT 5,6,10 N=16 6.45m					
10 12.0m Pertation Water Samples and Tests Moisture Condition Consistency/Re AS: Auger Screwing ADP: A	lkPa	7.00: P.P = 350kPa										7	- 7 . - 7 .								
Low Boom T 9.45m 9.45m 9.45m -7 10 -7 11 -7 12.00m -7 12.00m -7 11 -7 11 -7 12.00m -7 12.00m -7 10 -7 11 -7 11 -7 11 -7 11 -7 11 -7 11 -7 11 -7 11 -7 11 -7 11 -7 12.00m -7 12.00m -7 12.00m -7 12.00m -7 11 -7 11 -7 12.00m -7 12.00m -7 11 -7 11 -7 12.00m -7 12.00m -7 13 -7 14 -7 15 -7 16 -7 17 -7 11 -7 10 -7 11 -7	JkPa	8.00: P.P = 450kPa										8	III 7.95m III 7.95m III 9.00m III 9.00m III 9.00m III 9.00m								
Method Penetration Water Samples and Tests Moisture Condition Consistency/Re AS - Auger Screwing ADV Auger V Bit Carbide Bit RR - Rock Roller No resistance refusal ¥ Level (Date) U U Undisturbed Sample SPT - Standard Penetration Test PP - Pocket Penetrometer D D Jory VS - Very W - Wet V - Partial Loss	JkPa	9.00: P.P = 450kPa	VSt -	и	М							9	9.00m 9.00m SPT 10.12.16 N=28 9.45m 9.45m						AD/T		
Method Penetration Water Samples and Tests Moisture Condition Consistency/Re AS - Auger Screwing ADV Auger V Bit ADF Auger Tungsten Carbide Bit RR - Rock Roller Penetration Water Samples and Tests Moisture Condition Consistency/Re Method Penetration Water Samples and Tests Moisture Condition Consistency/Re ADF Auger Tungsten Carbide Bit Penetration Year Visit Second Penetration Test Moist S - Soft R R- Rock Roller Partial Loss PP - Pocket Penetrometer PL - Plastic Limit H - Hard												10	<u>9.46m</u> - ° °								
Method Penetration Water Samples and Tests Moisture Condition Consistency/Reg AS - Auger Screwing No resistance Level (Date) U - Undisturbed Sample D - Dry VS - Very ADV Auger V Bit Inflow SPT - Standard Penetration Test M - Moist S - Soft ADT Auger Tungsten Partial Loss PP - Pocket Penetrometer W - Wet F - Firm RR - Rock Roller Complete Loss P - Standard Penetrometer PL - Plastic Limit H - Hard													12.00m								
WB- Washbore Complete Loss LL - Liquid Limit Fr - Friable Graphic Log/Core Loss Classification Symbols LL - Liquid Limit Fr - Friable Support Core recovered (hatching indicates material) Classification Symbols L - Loose Based on Unified Soil D - Densit	<u>iccy/Relative Density</u> · Very Soft · Soft · Firm · Very Stiff - Hard · Friable · Very Loose · Loose · Medium Dense - Dense	Consistency/Rela VS - Very S S - Soft F - Firm VSt - Very S H - Hard Fr - Friable VL - Very L L - Loose MD - Mediuu D - Dense	Conternit	re (Lin	Con ist ist isture stic L uid Li	oisture - Dry - Moi / - We - Moi L - Pla L - Liqu	ests <u>M</u> pple D e N tation Test V eter W P L <u>mbols</u> 1 Soil	amples and 1 disturbed Sampl ndard Penetr cket Penetron sification Sy I Soil Descrip sed on Unifier	<u>Si</u> U - Un D - Dis SPT - St PP - Po s S <u>Clas</u> Ba	Vater vel (Date) low rtial Loss mplete Lo <u>ss</u> atching	⊻ Le > Infl ⊲ Pa ⊲ Co ore Lo red (ha terial)	Method Penetration AS - Auger Screwing ADV Auger V Bit Carbide Bit WB- Washbore No resistance ranging to refusal S RR - Rock Roller WB- Washbore Graphic Log/Co indicates ma Support C - Casing Core recover indicates ma									

Page 3 of 3

E	ng	inee	rin	g Log - E	30	reh	ole				Project No .:	G	G11	415.	001
	Clie Proj Hole Hole	nt: ject Na e Loca e Posit	me: tion: ion:	DJ Thor Geotech 23-25 B See Pla	nps inic ass n	on Fa al Inv ett St	amily 1 estiga reet, N	Frust ition: 2 Mona '	23-25 Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	4 4 J M	/3/20 /3/20 K 1G)24)24	
	Drill Hole	Mode e Diam	l and eter:	Mounting:	Chi 110	ristie () mm	CE180)		Inclination: -90° Bearing:	RL Surface: Datum:	3.60 i AHD	m	Op	perator:
			Drill	ing Informati	on					Soil Descri	otion				Observations
Method	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Desc Fraction, Colour, Stru Plasticity, Sensitivit	ription cture, Bedding, y, Additional		Moisture Condition	Consistency Relative Density	Structure and Additional Observations
				SPT 22 N=22+ 12.15m			-		СН	Silty CLAY: high plasticity, pa Red brown and orange brown 12.30mRed brown and orange brown	ale grey <i>(continued)</i> n with ironstone grave n with ironstone grave	9	М	VSt	
AD/T					-		-			(<i>continued</i>) SANDSTONE: fine to mediur orange brown and pale grey. (Class 5).	n grained, red brown estimate very low str	with ength	M / D		ROCK
						-9.4	- 13 - -			13.00m Hole Terminated at 13.00 m Discontinued on weathered s	andstone				
						 -10.4	- 14 — -								
						- 11.4	- 15— -								
						 -12.4	- - 16 — -								
						 -13.4	- 17— - -								
MALEN OLO 1010 LEG COL LOG COLLE	AS - ADV ADT RR - WB-	Metho Auger Auger Carbid Rock F Washt Suppo C - Ca	b <u>d</u> Screv V Bit Tung e Bit Roller bore bore	Pene wing Nr sten	trat	tion sistand ing to usal aphic Core indica Core	ce <u>s</u> Log/Ce recove tes ma loss	<u>µ</u> ∠ Lev > Infl ⊲ Pa ⊲ Co ore Los ore Los ore Los	Vater vel (Dat ow rtial Los mplete s <u>s</u> atching	e) U - Undisturbed Samples and Te b) U - Undisturbed Sample SPT - Standard Penetra SS PP - Pocket Penetrom Loss Classification Syl and Soil Descrip Based on Unified Classification Sys	sts <u>Mois</u> ple D tion Test W eter W PL LL <u>nbols</u> Soil stem	sture (- Dry - Mois - Wet - Mois - Plas - Liqu	Cond st sture (tic Lir id Lin	Conte mit nit	Consistency/Relative Density VS - Very Soft S - Soft F - Firm INT VSt VS - Very Stiff H - Hard Fr - Friable VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

Page 1 of 2

Е	ngi	nee	rin	g Log -	Во	reh	ole			Project No.:	GG1 ²	1415.	001	
	Clier Proje Hole Hole	nt: ect Na Loca Posit	ime: tion: ion:	DJ Tho Geotec 23-25 E See Pla	omps chnic Bass an	son Fa cal Inv sett St	amily ⁻ vestiga treet, N	Trust ition: 2 Mona '	23-25 Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	4/3/20 4/3/20 JK MG)24)24	
	Drill Hole	Mode Diarr	l anc	Mounting:	Ch 11(ristie 0 mm	CE180)		Inclination: -90° Bearing:	RL Surface: 4 Datum: A	.40 m	O	perator:
F		2.011	Drill	ing Informat	tion					Soil Descript	ion		-	Observations
Method	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Descri Fraction, Colour, Struct Plasticity, Sensitivity,	ption ure, Bedding, Additional	Moisture Condition	Consistency Relative Density	Structure and Additional Observations
							-		CL	FILL Silty Sandy CLAY: low pla is fine grained.	asticity, dark brown, s	sand M		FILL
				1.00m SPT 3,3,4 N=7		3.4	- - 1		SC	Clayey SAND: fine to medium	grained, orange brov	vn. M	L	COLLUVIAL SOIL
			•	1:60m SPT 2,2,3 N=5 1.95m		2.4	- - 2 -		SP	SAND: fine to medium grained brown.	, pale brown and ora	M / W	L	ALLUVIAL SOIL
AD/T		2024, Measured after drilling 						× × × ×	SM	2.80m Silty SAND: fine to medium gra grey. 3.50m	ined, dark grey with	pale W	MD to MD	
		1 1 300m F.' 1 1 1 2.4.4 1 1 1 2.4.4 N=8 3.45m 3.45m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							CI /CH	Silty CLAY: high plasticity, pale	e grey.		St	
				4.95m		-0.6	5					M	VSt	5.00: P.P = 450kPa
	AS - ADV ADT RR - WB-	Metho Auger Auger Carbic Rock I Washt Suppo - Ca	D <u>d</u> Scre V Bit Tung le Bit Roller Dore	6.00m Wing Isten	No re rang re <u>Gi</u>	tion sistand fusal raphic Core indica - Core	ce <u></u> Log/Co recove ates ma loss	⊻ Lev > Infl ⊲ Pai ⊲ Co ore Los red (ha aterial)	<u>Vater</u> vel (Dat ow rtial Los mplete <u>ss</u> ttching	Lee Samples and Tes Samples and Tes D - Undisturbed Sample SPT - Standard Penetratic SS PP - Pocket Penetromet Loss Classification Symi and Soil Description Based on Unified S Classification Symi	ts <u>Mois</u> e D - m Test W - er W - PL - LL - bols ons em	ture Conc Dry Moist Wet Moisture Plastic Li Liquid Lir	l <u>ition</u> Conte mit nit	Consistency/Relative Density VS - Very Soft S - Soft F - Firm ent VSt - Very Stiff H - Hard - Fr - Friable - VL - Very Loose - L - Loose - D - Dense - VD - Very Dense -

Page 2 of 2

Eı	۱g	inee	rin	g Log	- Bo	reh	ole				Project No.:	GG11	415.	001
(Clie Proj Hole Hole	nt: ect Na e Loca e Posit	ime: tion: ion:	DJ TI Geot 23-25 See I	nomps echnic 5 Bass Plan	son Fa cal Inv sett St	amily ⁻ vestiga treet, I	Trust ation: 2 Mona	23-25 Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	4/3/20 4/3/20 JK MG)24)24	
I H	Drill Hole	Mode Diam	l and leter:	Mounting	: Ch 110	ristie 0 mm	CE18()		Inclination: -90° Bearing:	RL Surface:	4.40 m AHD	Op	perator:
			Drilli	ing Inform	ation					Soil Descri	ption			Observations
Method	Support	Penetration	Groundwater Levels	Samples Field Tes	si & Recoverv	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Des Fraction, Colour, Stru Plasticity, Sensitivi	cription icture, Bedding, ity, Additional	Moisture Condition	Consistency Relative Density	Structure and Additional Observations
				SPT 16,19,19 N=38 6.45m			-		CI /CH	Silty CLAY: high plasticity, p Trace of ironstone gravel	ale grey(continued)	м	VSt	6.00: P.P = 450kPa
AD/T				7.50m SPT 16,23 N=29+		-2.6	7		CI /CH	7.30m Silty Sandy CLAY: medium t with orange brown and pale medium grained; (completel)	o high plasticity, red br grey, sand is fine to y weathered sandstone	own 9).		RESIDUAL SOIL
			-	7.85m		-3.6	8					М	VSt to H	8.00: P.P = 450kPa
				9.00m SPT 25		4.6	9-	×		8.80m SANDSTONE: fine to mediu with pale grey and red brown 9.15m very low strength (Class 5).	m grained, orange bro n, with clay seams. est	wn mateM / D		ROCK
				9.15m			-			Hole Terminated at 9.15 m Discontinued on weathered	sandstone			
						-5.6	 10 -							
	-œ							•						
Method Penetration AS - Auger Screwing ADV Auger V Bit Carbide Bit RR - Rock Roller WB- Washbore No resistance ranging to refusal								<u>⊭</u> ∠ Le > Inf ⊲ Pa ⊲ Co ore Lo	Vater vel (Dat low rtial Los mplete	Samples and T ie) U - Undisturbed Sam D - Disturbed Samples SPT - Standard Penetr. SS PP - Pocket Penetrorr Loss Classification Sy	rests <u>Mois</u> pple D - e M - tion Test W - neter W - PL - LL - mbols	ture Cond Dry Moist Wet Moisture Plastic Lin Liquid Lin	l ition Conte mit nit	Consistency/Relative Density VS - Very Soft S - Soft F - Firm ent VSt - Very Stiff H - Hard - Friable VL - Very Loose - Loose
	C	<u>supp</u> C - Ca	<u>n (</u> Ising			Core indica Core	recove ates ma loss	red (ha aterial)	atching	and Soil Descrip Based on Unified Classification Sy	o <u>tions</u> d Soil stem			D - Medium Dense D - Dense VD - Very Dense

Page 1 of 2

E	ng	inee	erin	g Log - E	30	reh	ole			F	Project No.:	GG1	1415.	.001
	Clie Proj Hole Hole	ent: ject Na e Loca e Posit	ame: tion: tion:	DJ Thon Geotech 23-25 B See Pla	nps nic ass n	on Fa al Inv ett St	amily ⁻ estiga reet, I	Trust ition: 2 Mona 1	23-25 Vale	G Bassett Street, Mona Vale L (Commenced: Completed: Logged By: Checked By:	4/3/2 4/3/2 JK MG	024 024	
	Drill Hole	Mode Diam	I and neter:	Mounting:	Chr 105	istie ismm	Utility			Inclination: -90° F Bearing: [RL Surface: 3 Datum: 7	3.70 m AHD	O	perator: JK
			Drill	ing Informati	on					Soil Description	on			Observations
Mathed	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Descrip Fraction, Colour, Structur Plasticity, Sensitivity, A	tion re, Bedding, Additional	Moisture Condition	Consistency Relative Density	Structure and Additional Observations
							-	* *	SM	FILL / TOPSOIL Clayey Silty SA grained, dark brown.	ND: fine to mediun	n M		FILL / TOPSOIL
						2.7	- - 1 -		SC	Clayey SAND: fine to medium g trace of sandstone gravel.	rained, orange brov	wn, M	L	COLLUVIAL SOIL
· · · · · · · · · · · · · · · · · · ·			d after drilling			1.7	- 2 -		SP	1.80m SAND: fine to medium grained,	pale brown and gre	ey. M / W	L	ALLUVIAL SOIL
T/UV									SM	Silty SAND: fine to medium grain grey.	ned, dark grey with	pale W	L	-
						-0.3	- - 4 -		CL	3.50m Silty Sandy CLAY: low plasticity grained.	, pale grey, sand is	fine W	St	
5						-1.3	- - 5- - -		СН	4.60m Silty CLAY: high plasticity, pale y	grey.	М	VSt	
	AS - ADV ADT RR - WB-	Methu Auger Auger Carbio Rock I Washi Supp C - Ca	Ded Screv V Bit Tung de Bit Roller pore Dert asing	ving Nu sten r	trat	<u>ion</u> sistand ing to usal aphic Core indica Core	ce <u></u> Log/C recove ates ma loss	× × × × × × × × × × × × × × × × × × ×	Vater vel (Dat low rtial Los mplete <u>ss</u> atching	e) U - Undisturbed Sample D - Disturbed Sample SPT - Standard Penetration s PP - Pocket Penetromete Loss <u>Classification Symbol</u> <u>and Soil Description</u> Based on Unified So Classification Syster	s <u>Mois</u> D - M - Test W - r PL - LL - <u>DIS</u> 15 n	ture Com Dry Moist Wet Moisture Plastic L Liquid Li	<i>dition</i> Conte imit mit	Consistency/Relative Density VS - Very Soft S - Soft F - Firm ent VSt VSt Very Stiff H - Hard Fr - Friable VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

Page 2 of 2

E	ng	inee	erin	g Log -	Во	reh	ole				Project No .:	GG1 ⁻	1415.	001
	Clie Proj Hole Hole	ent: ject Na e Loca e Posi	ame: tion: tion:	DJ Tho Geoteo 23-25 See Pl	omps chnic 3ass an	son Fa cal Inv sett St	amily ⁻ vestiga reet, N	Frust ition: 2 ⁄Iona `	23-25 Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	4/3/2 4/3/2 JK MG	024 024	
	Drill Hole	Mode e Dian	l and	I Mounting:	Ch 10	ristie 5 mm	Utility			Inclination: -90° Bearing:	RL Surface: Datum:	3.70 m AHD	0	perator: JK
F			Drill	ing Informa	tion					Soil Descr	iption			Observations
Mathod	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Des Fraction, Colour, Str Plasticity, Sensitiv	scription ucture, Bedding, ity, Additional	Moisture Condition	Consistency Relative Density	Structure and Additional Observations
						-7.3 -6.3 -5.3 -4.3 -3.3			CH CH	8.00m Silty Sandy CLAY: medium with occasional red brown, s	vale grey <i>(continued)</i> to high plasticity, pal sand is fine grained.	e grey M	VSt	ALLUVIAL SOIL
	AS - ADV ADT RR - WB-	Metha Auger Auger Auger Carbio Rock Wash	od Screv V Bit Tung de Bit Roller bore	wing sten	No re ranç re	<u>tion</u> esistane ging to fusal		× ⊥ × × ⊥ × × Lev > Infl ⊂ Pai	<u>Vater</u> vel (Dat ow rtial Los mplete	Hole Termin stanpelet2-Altern Discontinued file te) D - Disturbed Samp SPT - Standard Penetr ss PP - Pocket Penetror Loss	Tests <u>Ma</u> 미원 D le M ation Test W neter w LL	Disture Conc - Dry - Moist - Wet - Moisture - Plastic Li - Liquid Lir	lition Conte mit nit	Consistency/Relative Density VS Very Soft S - Soft F - Firm ent VSt - Very Stiff H - Hard Fr - Firable
	(<u>Supp</u> C - Ca	<u>ort</u> asing		<u>G</u> 	Core Indica	Log/Co recove ates ma loss	ore Los red (ha iterial)	<u>s</u> s Itching	<u>Classification Sy</u> <u>and Soil Descri</u> Based on Unifie Classification S	<u>/mbols</u> ptions d Soil ystem	,		VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

Page 1 of 2

E	ngi	inee	rin	g Log -	Bo	oreh	ole				Project No.:	GG1 ⁻	1415.	001
	Clier Proje Hole Hole	nt: ect Na e Loca e Posit	ime: tion: ion:	DJ The Geote 23-25 See P	omps chnic Bass an	son F cal Inv sett S	amily ⊺ /estiga treet, N	Frust ition: 2 ⁄Iona	23-25 Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	5/3/2 5/3/2 JK MG	024 024	
	Drill Hole	Mode Diam	l and leter:	Mounting:	Ch 10	ristie 5 mm	Utility			Inclination: -90° Bearing:	RL Surface: 3.8 Datum: AH) m D	O	perator: JK
F			Drill	ing Informa	tion					Soil Descri	ption			Observations
Mathed	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recoverv	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Des Fraction, Colour, Stru Plasticity, Sensitiv	cription icture, Bedding, ity, Additional	Moisture Condition	Consistency Relative Density	Structure and Additional Observations
							-		CL	FILL Silty Sandy CLAY: low is fine grained; (with some p	plasticity, dark brown, san lastic).	d M		FILL
						2.8	- - 1		SC	Clayey SAND: fine to mediu	m grained, orange brown.	М	L	ALLUVIAL SOIL
							-		SP	1.40m SAND: fine to medium grain	ed, pale brown.			
			after drilling			1.8	2			2.40m		W /	L	
			5/3/2024, Measured			0.8	3-	× × × × ×	SM	Silty SAND: fine to medium	grained, dark grey.	w	L to MD	
						2	-	× × − × × × × × × × ×	CI /CH	Silty CLAY: medium to high pale grey.	plasticity, dark grey with	м	St	
						— •	4		СН	Silty CLAY: high plasticity, p brown, trace of ironstone gra	ale grey with occasional re avel.	ed		
						-1.2	5					М	VSt	
	Method Penetration AS - Auger Screwing ADV Auger V Bit ADT Auger Tungsten Carbide Bit RR - Rock Roller WB- Washbore Penetration Carbide Bit RR - Rock Roller WB- Washbore Carbide Dit Carbide Di Carbide Dit Carbide Di Carbide Dit Ca						ce	∠ Lev ∠ Lev > Infl ⊂ Pa Co	Vater vel (Dat ow rtial Los mplete <u>ss</u>	Samples and T e) U - Undisturbed Samples D - Disturbed Samples SPT- Standard Penetron SS PP - Pocket Penetron Loss Classification System	rests <u>Moistur</u> pple D - Du e M - M ation Test W - W neter W - M PL - Pl LL - Liu mbols	e Conc y bist et bisture astic Li quid Lir	lition Conte mit nit	Consistency/Relative Density VS - Very Soft S - Soft F - Firm ent VSt - Very Stiff H - Hard Fr - Friable VL - Very Loose
	C	<u>Suppo</u> C - Ca	ort ising]	Core indic Core	recove ates ma loss	red (ha iterial)	atching	and Soil Descrip Based on Unified Classification Sy	o <u>tions</u> d Soil /stem			D - Medium Dense D - Dense VD - Very Dense

Page 2 of 2

E	ng	inee	rin	g Log - I	Во	reh	ole				Project No.:	G	G11	415.	001
	Clie Proj Hole Hole	ent: ject Na e Loca e Posit	ime: tion: ion:	DJ Tho Geoteck 23-25 B See Pla	mps hnic lass in	son Fa al Inv sett St	amily ⁻ estiga reet, N	Frust ition: 2 Mona '	23-25 Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	5 5 J N	/3/20 /3/20 K 1G)24)24	
	Drill Hole	l Mode e Diam	l and leter:	Mounting:	Ch 105	ristie 5 mm	Utility			Inclination: -90° Bearing:	RL Surface: Datum:	3.80 AHD	m	Op	perator: JK
			Drilli	ing Informat	ion					Soil Descriț	otion				Observations
Mothod	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Desc Fraction, Colour, Stru Plasticity, Sensitivit	ription cture, Bedding, y, Additional		Moisture Condition	Consistency Relative Density	Structure and Additional Observations
							-		СН	Silty CLAY: high plasticity, pa brown, trace of ironstone gra	le grey with occasion vel.(<i>continued)</i>	nal red	М	VSt	ALLUVIAL SOIL
						-3.2	- - 7 - - -		CI /CH	6.50m Silty CLAY: medium to high p brown, trace of fine grained s gravel.	lasticity, pale grey w and; trace of ironsto	rith red	М	VSt	
						-5.2 -4.2				Hole Terminated at 8.00 m Discontinued in silty clay					
						-6.2	- 10								
						-7.2	- 11 - - -								
	AS - ADV ADT RR - WB-	Metho Auger Auger Auger Carbic Rock I Wash	od Screv V Bit Tung le Bit Roller oore	wing N sten	lo re rang ref	tion sistand ing to fusal		<u>µ</u> ⊻ Lev > Infl ⊲ Pai ■ Co	Vater vel (Dat ow rtial Los mplete	(ie) U - Undisturbed Samples and Te D - Undisturbed Samples D - Disturbed Sample SPT - Standard Penetra SPP - Pocket Penetrom Loss	ists <u>Mo</u> ple D tion Test W eter W PL LL	isture (- Dry - Mois - Wet - Mois - Plas - Liqu	Cond st sture tic Lin id Lin	Conte	Consistency/Relative Density VS - Very Soft S - Soft F - Firm Int VSt VSt - Very Stiff H - Hard Fr - Friable V Vorter Stiff
	(<u>Suppo</u> C - Ca	o <u>rt</u> ising		<u>Gr</u>]]]	Core indica Core	recove ates ma loss	red (ha iterial)	<u>as</u> atching	<u>Classification Syn</u> and Soil Descrip Based on Unified Classification Sys	nbols tions Soil stem				L - Loose MD - Medium Dense D - Dense VD - Very Dense

Page 1 of 2

E	Engineering Log - Borehole						Project No.:	GG1	1415.	001				
	Client:DJ Thompson Family TrustProject Name:Geotechnical Investigation: 23-25 BHole Location:23-25 Bassett Street, Mona ValeHole Position:See Plan						amily ⁻ restiga reet, N	Frust ition: 2 Mona '	23-25 Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	5/3/2 5/3/2 JK MG	024 024	
	Drill Hole	Mode e Diam	l and leter:	Mounting:	Chi 105	ristie 5 mm	Utility			Inclination: -90° Bearing:	RL Surface: 3. Datum: Al	70 m HD	O	perator: JK
			Drilli	ing Informat	ion					Soil Descrip	tion			Observations
Mathad	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Desc Fraction, Colour, Struc Plasticity, Sensitivit	ription ture, Bedding, _/ , Additional	Moisture Condition	Consistency Relative Density	Structure and Additional Observations
										0.15m CONCRETE: 150mm thick.				
							-		CL	FILL Silty CLAY: low plasticity brown and dark grey, trace of 0.70m	η, orange brown with da fine grained sand.	rk M		FILL
						1 2.7	- 1		SC	Clayey SAND: fine to mediun	ı grained, orange browı	n. M	L	COLLUVIAL SOIL
	ADIT		5/3/2024, Measured after drilling			1.7	- 2— -		SP	1.80m SAND: fine to medium graine	d, pale brown and grey	M / W	L	ALLUVIAL SOIL
E C <						1 0.7	3-	× × × × ×	SM	Silty SAND: fine to medium g	rained, dark grey.	w	L to MD	
							-	× ×	СН	3.60m Silty CLAY: high plasticity, pa	le grey.			
						-0.3	- 4						St	
						-1.3	- - 5- - - -			Occasional sandy interbedds		М	VSt	
6	AS - ADV ADT RR - WB-	Auger Auger Auger Auger Carbic Rock I Washi	Screv V Bit Tung le Bit Roller pore	ving N sten	lo rei rang ref	tion sistand ing to usal		$\frac{\underline{V}}{\underline{V}} Lev$ $\geq Infl$ $\triangleleft Par$ $\triangleleft Co$	Vater vel (Dat ow rtial Los mplete	e) U - Undisturbed Samples and Te D - Undisturbed Sample SPT - Standard Penetra SS PP - Pocket Penetrone Loss	sts <u>Moistu</u> ble D - tion Test W - eter W - PL - LL -	Ire Cond Dry Moist Wet Moisture Plastic L Liquid Li	dition Conte imit mit	Consistency/Relative Density VS Very Soft S Soft F Firm ent VSt VSt Very Stiff H Hard Fr Frable V Very Loose
	Support Graphic Log/Core Los C - Casing Core recovered (hat indicates material) C - Core loss			itching	<u>Classification Syn</u> and Soil Descript Based on Unified Classification Sys	n <u>bols</u> ions Soil tem			L - Loose MD - Medium Dense D - Dense VD - Very Dense					

Page 2 of 2

Engineering Log - Borehole						Project No .:	G	G11	415.	001					
Client:DJ Thompson Family TrustProject Name:Geotechnical Investigation: 23-25 Bassett StructHole Location:23-25 Bassett Street, Mona ValeHole Position:See Plan							23-25 I Vale	Bassett Street, Mona Vale	Commenced: Completed: Logged By: Checked By:	5, 5, JI N	/3/20 /3/20 K 1G)24)24			
	Drill Hole	Mode e Diarr	l and leter:	Mounting:	Ch 105	ristie 5 mm	Utility			Inclination: -90° Bearing:	RL Surface: Datum:	3.70 r AHD	m	Op	perator: JK
			Drilli	ing Informat	tion					Soil Descri	ption				Observations
Method	Support	Penetration	Groundwater Levels	Samples & Field Tests	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Des Fraction, Colour, Stru Plasticity, Sensitivi	cription ıcture, Bedding, ty, Additional		Moisture Condition	Consistency Relative Density	Structure and Additional Observations
AD/T						3	- - - 7 - -		СН	Silty CLAY: high plasticity, p	ale grey <i>(continued)</i>		М	VSt	ALLUVIAL SOIL
EEN GEUBOKEHOLE GGT1415.0FJ <qjrawng-hao> 117.2/2/4.09.25 10.03.00.09 Jagga Lao ano moiur ioon-uou juo: ureen ueo 1.01.5 2023-07-40 Prj. Green ueo 1.01.5 2</qjrawng-hao>				ving <u>Pen</u>		-1.3 -6.3 -6.3 -6.3 -6.3 -6.3 -6.3 -6.3 -6			Vater	Hole Terminated at 8.00 m Discontinued in silty clay	ests M	loisture (Cond	ition	<u>Consistency/Relative Density</u>
AS - Auger Screwing ADV Auger V Bit Carbide Bit RR - Rock Roller WB- Washbore C - Casing Moresistance refusal Graphic Core C - Casing			Log/Co recove ates ma loss	Infl Infl Pa Co <	low rtial Los mplete <u>ss</u> atching	 D - Disturbed Sampl SPT - Standard Penetra PP - Pocket Penetrom Loss <u>Classification Sy</u> <u>and Soil Descrip</u> Based on Unified Classification Sy 	e N ation Test V leter V E <u>mbols</u> <u>otions</u> d Soil stem	ı - Mois V - Wet ν - Mois ν - Plas L - Liqui	st tic Lir id Lin	Conte mit nit	S - Soft F - Firm VSt - Very Stiff H - Hard Fr - Friable VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense				

Page 1 of 1

Client: DJ Thompson Family Trust Project Name: Geotechnical Investigation: 23-25 Bassett Street, Mona Vale Hole Location: 23-25 Bassett Street, Mona Vale Hole Position: See Plan Drill Model and Mounting: Hand Auger Hole Diameter: 65 mm Bearing: Bearing: Drilling Information Soil Descrip Project Name: Samples & Field Tests Potod driver Samples Poto	Commenced:5/3/2024Completed:5/3/2024Logged By:JKChecked By:MGRL Surface:4.30 m
Drill Model and Mounting: Hand Auger Inclination: -90° Hole Diameter: 65 mm Bearing: Drilling Information Soil Descrip Drilling Information Soil Descrip Image: Strate of the	RL Surface: 4.30 m
Drilling Information Soil Descrip u <th>Datum: AHD Operator: JK</th>	Datum: AHD Operator: JK
podian samples & Field Tests Page 2000 RL (m) Depth (m) Page 2000 Material Desci Fraction, Colour, Struct Plasticity, Sensitivity VH 1111 1111 1111 1111 1111 1111 1111 VH 1111 1111 1111 1111 1111 1111 VH 1111 1111 1111 1111 1111 1111 VH 1111 1111 1111 1111 11111 VH 1111	ription Observations
⊈ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	scription ructure, Bedding, vity, Additional
Image: Sector of the sector	v plasticity, dark brown, sand FILL bles/ gravel.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Method Penetration Water Samples and Te AS - Auger Screwing No resistance Level (Date) U - Undisturbed Sample ADT Auger Tungsten Carbide Bit Partial Loss D - Disturbed Sample RR - Rock Roller Complete Loss Complete Loss PP - Pocket Penetrome WB- Washbore Core recovered (hatching indicates material) Core are ubifed Classification Sym	Moisture Condition Consistency/Relative Dens mple D - Dry VS - Very Soft ole M - Moist S - Soft ration Test W - Wet F - Firm meter w - Moisture Content VSt - Very Stiff PL - Plastic Limit H - Hard

Dynamic Cone Penetrometer Test Report

Project Number: GG11415

Site Address: 23-25 Bassett Street, Mona Vale Test Date: 04/03/2024

Tost Mothod:	AS 1780 6 7 7					Page: 1 of 2	
Test No.	AS 1209.0.3.2	DU14	Test Ne		DUIA	Technician. JK	
	ВПЗ	BH4	Test No	ВПЗ	ВН4	Test No	ВНЗ
Starting Level	Surface Level	Surface Level	Starting Level	3.00m	3.00m	Starting Level	6.00m
Depth (m)	Penetration	Resistance (blo	ws / 150mm)	Depth (m)	Penetration	Resistance (blov	ws / 150mm)
0.00 - 0.15	1	1	3.00 - 3.15	4	10	6.00 - 6.15	15
0.15 - 0.30	2	2	3.15 - 3.30	4	11	6.15 - 6.30	16
0.30 - 0.45	2	4	3.30 - 3.45	6	12	6.30 - 6.45	17
0.45 - 0.60	4	4	3.45 - 3.60	5	10	6.45 - 6.60	22
0.60 - 0.75	5	2	3.60 - 3.75	6	8	6.60 - 6.75	Refusal
0.75 - 0.90	6	3	3.75 - 3.90	8	4	6.75 - 6.90	
0.90 - 1.05	4	2	3.90 - 4.05	12	7	6.90 - 7.05	
1.05 - 1.20	3	3	4.05 - 4.20	12	9	7.05 - 7.20	
1.20 - 1.35	3	3	4.20 - 4.35	8	16	7.20 - 7.35	
1.35 - 1.50	3	2	4.35 - 4.50	8	18	7.35 - 7.50	
1.50 - 1.65	4	4	4.50 - 4.65	9	22	7.50 - 7.65	
1.65 - 1.80	4	3	4.65 - 4.80	9	Refusal	7.65 - 7.80	
1.80 - 1.95	6	3	4.80 - 4.95	10		7.80 - 7.95	
1.95 - 2.10	7	3	4.95 - 5.10	10		7.95 - 8.10	
2.10 - 2.25	4	3	5.10 - 5.25	11		8.10 - 8.25	
2.25 - 2.40	2	4	5.25 - 5.40	11		8.25 - 8.40	
2.40 - 2.55	2	3	5.40 - 5.55	12		8.40 - 8.55	
2.55 - 2.70	2	4	5.55 - 5.70	13		8.55 - 8.70	
2.70 - 2.85	3	7	5.70 - 5.85	14		8.70 - 8.85	
2.85 - 3.00	6	8	5.85 - 6.00	15		8.85 - 9.00	
Remarks: * Pre	drilled prior to t	testing					

Dynamic Cone Penetrometer Test Report

Project Number: GG11415 Site Address: 23-25 Bassett Street, Mona Vale

Test Date: 04/03/2024

				Page: 2 of 2
Test Method:	AS 1289.6.3.2			Technician: JK
Test No	BH5	Test No	BH5	Test No
Starting Level	Surface Level	Starting Level	3.00m	Starting Level
Depth (m)	Penetration F	Resistance (blows / 150mm)	Depth (m)	Penetration Resistance (blows / 150mm)
0.00 - 0.15	*	3.00 - 3.15	3	6.00 - 6.15
0.15 - 0.30	*	3.15 - 3.30	4	6.15 - 6.30
0.30 - 0.45	2	3.30 - 3.45	4	6.30 - 6.45
0.45 - 0.60	4	3.45 - 3.60	5	6.45 - 6.60
0.60 - 0.75	3	3.60 - 3.75	5	6.60 - 6.75
0.75 - 0.90	3	3.75 - 3.90	6	6.75 - 6.90
0.90 - 1.05	3	3.90 - 4.05	7	6.90 - 7.05
1.05 - 1.20	2	4.05 - 4.20	8	7.05 - 7.20
1.20 - 1.35	2	4.20 - 4.35	10	7.20 - 7.35
1.35 - 1.50	2	4.35 - 4.50	10	7.35 - 7.50
1.50 - 1.65	3	4.50 - 4.65	10	7.50 - 7.65
1.65 - 1.80	4	4.65 - 4.80	11	7.65 - 7.80
1.80 - 1.95	3	4.80 - 4.95	12	7.80 - 7.95
1.95 - 2.10	3	4.95 - 5.10	13	7.95 - 8.10
2.10 - 2.25	2	5.10 - 5.25	14	8.10 - 8.25
2.25 - 2.40	2	5.25 - 5.40	14	8.25 - 8.40
2.40 - 2.55	3	5.40 - 5.55	17	8.40 - 8.55
2.55 - 2.70	3	5.55 - 5.70	22	8.55 - 8.70
2.70 - 2.85	3	5.70 - 5.85	Refusal	8.70 - 8.85
2.85 - 3.00	4	5.85 - 6.00		8.85 - 9.00

Remarks: * Pre drilled prior to testing

SAMPLING & IN-SITU TESTING

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock. Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure. Undisturbed samples are taken by pushing a thin walled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength and are necessary for laboratory determination of shear strength and compressibility.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the in-situ soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator.

Large Diameter Augers

Boreholes can be drilled using a large diameter auger, typically up to 300 mm or larger in diameter mounted on a standard drilling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration.

Diamond Core Rock Drilling

A continuous core sample of can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter (NMLC). The borehole is advanced using a water or mud flush to lubricate the bit and removed cuttings.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1. The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable, and the test is discontinued.

The test results are reported in the following form.

- In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:
 - 4,6,7 N=13
- In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as: 15, 30/40 mm.

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

SOIL DESCRIPTIONS

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle Size (mm)
Boulder >200	Boulder >200
Cobble 63 - 200	Cobble 63 - 200
Gravel 2.36 - 63	Gravel 2.36 - 63
Sand 0.075 - 2.36	Sand 0.075 - 2.36
Silt 0.002 - 0.075	Silt 0.002 - 0.075
Clay < 0.002	Clay < 0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle Size (mm)
Coarse Gravel	20 - 63
Medium Gravel	6 – 20
Fine Sand	2.36 - 6
Coarse Sand	0.6 - 2.36
Medium Sand	0.2 - 0.6
Fine Sand	0.075 – 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion		
And	Specify		
Adjective	20 - 35%		
Slightly	12 - 20%		
With some	5 - 12%		
With a trace of	0 - 5%		

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained Shear Strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	ST	50 - 100
Very stiff	VST	100 - 200
Hard	Н	200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (DCP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N Value	CPT qc value (MPa)
Very loose	VL	<4	<2
Loose	L	4 - 10	2 -5
Medium Dense	MD	10-30	5-15
Dense	D	30-50	15-25
Very Dense	VD	>50	>25

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Fill moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

ROCK DESCRIPTIONS

Rock Strength

The Rock strength is defined by the Point Load Strength Index ($Is_{(50)}$) and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index IS ₍₅₀₎ MPa	Approximate Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200

* Assumes a ration of 20:1 for UCS to $\mathrm{IS}_{(50)}$

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Soil developed on extremely weathered rock, the mass structure and
		substance fabric are no longer evident.
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a
		soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs
		of decomposition are evident. Porosity and strength may be altered as a
		result of iron leaching or deposition. Colour and strength of original fresh
		rock is not recognisable.
Distinctly Weathered	DW	Rock strength usually changed by weathering. The rock may be highly
		discoloured usually by iron staining.
Moderately weathered	MW	Staining and discolouration of rock substance has taken place.
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of
		strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.

Degree of Fracturing

The following classification applies to the spacing of natural fractures in core samples (bedding plane partings, joints and other defects, excluding drilling breaks

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured Core	Core lengths of 40-200 mm with some shorter and longer
	sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner
	sections
Unbroken	Unbroken Core lengths mostly > 1000 mm

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	2 m

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % =

<u>cumulative length of 'sound' core sections \geq 100 mm long</u> total drilled length of section being assessed

'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling/handling, then the broken pieces are fitted back together and are not included in the calculation of RQD.

ABBREVIATIONS

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

Core Drilling
Rotary drilling
Auger Drill TC Bit
Auger Drill V Brit
Diamond core - 52 mm dia
Diamond core - 47 mm dia
Diamond core - 63 mm dia
Diamond core - 81 mm dia

Water

- Ζ Water seep
- ٧ Water level

Sampling and Testing

А	Auger sample	са	calcite
В	Bulk sample	cbs	carbonaceo
D	Disturbed sample	cly	clay
S	Chemical sample	fe	iron oxide
U50	Undisturbed tube sample (50mm)	mn	manganese
W	Water sample	slt	silty
PP	Pocket Penetrometer (kPa)		
PL	Point load strength Is(50) MPa	Channe a	

- Standard Penetration Test S
- ٧ Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

С	Crushed Seam	ро	р
DB	Drilling Break	rf	r
DL	Drilling Lift	sl	S
EW	Extremely Weathered Seam	sm	S
НВ	Handling Break	vr	١
IS	Infilled Seam		
J	Joint	Other	
MB	Mechanical Break		
Р	Parting	fg	fı
S	Sheared Surface	bnd	b
SS	Sheared Seam	qtz	q

SZ Sheared Zone

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h	horizontal
v	vertical

- v sh sub-horizontal
- sub-vertical sv

Coating or Infilling Term

cn	clean
ct	coating
sn	stained
vn	veneer

Coating Descriptor

са	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pr	planar
st	stepped
un	undulating

Roughness

00	polished
f	rough
;I	slickensided
m	smooth
٧r	very rough

g	fragmented
nd	band
ltz	quartz

SYMBOLS

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Mudstone, claystone, shale

Boulder conglomerate

Conglomeratic sandstone

Conglomerate

Sandstone

Siltstone

Laminite

Limestone

Coal

Metamorphic Rocks

Slate, phyllite, schist

Gneiss

Quartzite

Granite

Igneous Rocks

Dacite, epidote

Dolerite, basalt, andesite

Tuff, breccia

Porphyry

UNIFIED SOIL CLASSIFICATION TABLE

Field Identification Procedures (Excluding particles larger than 75um and basing fractions on estimated weights)							Group Symbols	Typical Names	Information Required for Describing Soils	Laboratory Classification Criteria		
Coarse-grained soils More than half of the material is large that 75um sieve size ^b	t the particle visible to the naked eye	Gravels More than half of the coarse fraction is larger than a 4mm sieve	Clean gravels (little or no fines)	Wide range in grain size and substantial amounts of all intermediate particle sizes			GW	Well graded gravels, gravel-sand mixtures, little or no fines	Give typical name: indicative approximate percentages of sand and gravel; maximum size; angularity; surface condition, and hardness of the coarse grains; local of geologic name and other pertinent descriptive information; and symbols in parentheses For undisturbed soils add information on stratification, degree of compactness, cementation, moisture conditions and drainage characteristics Example: <i>Silty Sand</i> , gravelly; about 20% hard, angular gravel particles 12mm maximum size; rounded and subangular sand grains, coarse to fine, about 15% non-plastic fines low dry strength; well compacted and moist in place; alluvial sand; <i>(SM)</i>		octions as given under field identification Determine percentages of gravel and sand from grain size curve Depending on percentage of fines (fraction smaller than 75um sieve size) coarse grained soils are classified as follows Less than 5% GW, GP, SW, SP More than 12% GM, GC, SM, SC 5 to 12% Borderline cases requiring use of dual symbol	$C_{u} = \underline{D}_{\underline{5}0} \qquad \text{Greater than 4}$ D_{10} $C_{c} = \underline{(D_{20})^{2}} \qquad \text{Between 1 and 3}$ $D_{10} \times D_{60}$
				Predominantly one size or range of sizes with some intermediate sizes missing			GP	Poorly graded gravels, grave-sand mixtures, little or no fines				Not meeting all graduation requirements for GW
			Gravels with fines (appreciable amount of fines)	Nonplastic fines (for identification procedures see <i>ML</i> below)			GM	Silty gravels, poorly graded gravel- sand-silt mixtures				Atterberg limits below "A" line or PI less than 4 Above "A" line with PI between 4 and 7 are borderline cases
				Plastic fines (for identification procedures see CL below)			GC	Clayey gravels, poorly graded gravel- sand-clay mixtures		lentification		Atterberg limits above "A" line with <i>PI</i> greater than 7
		Sands Sands More than half of the coarse fraction is smaller than a 4mm sieve	Clean sands (little or no fines)	Wide range in grain size and substantial amounts of all intermediate particle sizes			sw	Well graded sands, gravelly sands, little or no fines				$\begin{array}{ll} C_u = \underline{D}_{60} & \text{Greater than 6} \\ D_{10} \\ C_c = \underline{(D_{20})^2} \\ D_{10} \times D_{60} \end{array} & \text{Between 1 and 3} \end{array}$
				Predominantly one size or range of sizes with some intermediate sizes missing			SP	Poorly graded sands, gravelly sands, little or no fines		ler field id		Not meeting all graduation requirements for SW
			Sands with fines (appreciable amount of fines)	Nonplastic fines (for identification procedures see <i>ML</i> below)			SM	Silty sands, poorly graded sand-silt mixtures		given und		Atterberg limits below "A" line or PI less than 5 PI between 4 and 7
				Plastic fines (for identification procedures see CL below)			SC	Clayey sands, poorly graded sand- clay mixtures		ictions as		Atterberg limits above "A" line with PI greater than 7
Find-grained soils half of the material is smaller than 75um sieve size	The 75um sieve size is abou	Identification Procedures of Fractions Smaller than 380 um Sieve Size				ve Size				he fra		
			ss than	Dry Strength (crushing characteristics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic				entifying t		PLASTICITY CHART
		quid limit le 50		None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slit plasticity	Give typical name: indicative degree and character of plasticity, amount and maximum size of coarse grains; colour in wet condition, odour if any, local or geologic name, and other pertinent descriptive information, and symbol in parentheses For undisturbed soils add information on structure, stratification, consistency in undisturbed and remoulded states, moisture and drainage conditions			
		Silts and clays li		Medium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays		Use grain size		CH A LINE: PI = 0,73(LL-20) CL MH&OH
				Slight to medium	Slow	Slight	OL	Organic silts and organic silt-clays of low plasticity				
		and clays liquid greater than 50		Slight to medium	Slow to none	Slight to medium	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, clastic silts				MLML&OL 20 30 40 50 60 70 80 90 100
ore than				High to very high	None	High	СН	Inorganic clays of high plasticity, fat clays			LIQUID LIMIT (LL) (%)	
ЭW		;	Silts : limit _l	Medium to high	None to very slow	Slight to medium	он	Organic clays of medium to high plasticity	<i>Clayey Silt</i> , brown; slightly plastic; small percentage of fine sand;			
Highly Organic Soils Readily					Readily identified by colour, odour, spongy feel and frequently by fibrous texture		Pt	Peat and other highly organic soils	numerous vertical root holes; firm and dry in place; loess; (ML)		For labo	Plasticity Chart atory classification of fine-grained soils

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines

2 Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity