

PALMDEV PTY LTD

Geotechnical Investigation

1112-1116 Barrenjoey Road, Palm Beach NSW

E25203.G03_Rev2 7 December 2021

Document Control

Report Title:	Geotechnical Investigation
кероп пше.	Geolechnical Investigation

Report No: E25203.G03_Rev2

Copies	Recipient	
1 Soft Copy (PDF – Secured, issued by email)	William Allen Palmdev Pty Ltd Level 1, 600 Darling Street, ROZELLE NSW 2039	
2 Original (Saved to Digital Archives) (Z:\07 - Projects\E25203_Palmdev_Palm Beach_GI\05_Deliverables\Work in Progress\E25203.G03_Rev2 - Geotechnical Investigation Report.docx)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	

Author

Kayn

Technical Reviewer

Kaiyu Xu Geotechnical Engineer		Shahzada Rizvi Principal Engineering Geologist		
Revision	Details	Date	Amended By	
	Original	15 July 2021		
1	Fixed typo	7 September 2021	КХ	
2	Included architectural drawings and additional boreholes	7 December 2021	КХ	

© 2021 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Proposed Development	1
	1.3	Objectives	1
	1.4	Scope of Works	2
	1.5	Constraints	3
2.	SITE	E DESCRIPTION	4
	2.1	Site Description and Identification	4
	2.2	Local Land Use	5
	2.3	Regional Setting	5
3.	INV	ESTIGATION RESULTS	7
	3.1	Stratigraphy	7
	3.2	Groundwater Observations	7
	3.3	Test Results	8
4.	REC	COMMENDATIONS	9
	4.1	Geotechnical Issues	9
	4.2	Dilapidation Surveys	9
	4.3	Demolition Considerations	9
	4.4	Excavation Methodology	9
		4.4.1 Excavation Assessment	9
		4.4.2 Excavation Monitoring	11
	4.5	Groundwater Considerations	11
	4.6	Excavation Retention	12
		4.6.1 Support Systems	12
		4.6.2 Geotechnical Hazard Risk Zone	13
		4.6.3 Slope Stability & Risk Assessment:4.6.4 Excavation adjacent to RMS Assets	13 14
		4.6.5 Retaining Wall Design Parameters	14
	4.7	Foundations	16
	4.7	4.7.1 Shallow Footings in Rock	16
		4.7.2 Pile Footings	16
	4.8	Basement Floor Slab	16
	4.9	Existing Fill	10
		-	
5.	FUR	RTHER GEOTECHNICAL INPUTS	18
6.	STA	ATEMENT OF LIMITATIONS	19
RE	FERE	ENCES	20

ABBREVIATIONS

Schedule of Tables

Table 1-1	Augering and Rock Coring Depths	2
Table 2-1	Summary of Site Information	4
Table 2-2	Summary of Local Land Use	5
Table 2-3	Topographic and Geological Information	5
Table 3-1	Summary of Subsurface Conditions	7
Table 3-2	Summary of Soil Laboratory Test Results	8
Table 4-1	Property Risk Assessment for Proposed Development (based on DP Report)	13
Table 4-2	Geotechnical Design Parameters	15

Appendices

FIGURES

- Figure 1 Site Locality Plan
- Figure 2 Borehole Location Plan

APPENDIX A – BOREHOLE LOGS AND EXPLANATORY NOTES

APPENDIX B – LABORATORY CERTIFICATES

APPENDIX C – VIBRATION LIMITS

APPENDIX D – IMPORTANT INFORMATION

20

1. Introduction

1.1 Background

At the request of Palmdev Pty Ltd (the Client), El Australia (El) has carried out a Geotechnical Investigation (GI) for the proposed development at 1112-1116 Barrenjoey Road, Palm Beach NSW (the Site).

This GI report has been prepared to provide advice and recommendations to assist in the preparation of designs for the proposed development. The investigation has been carried out in accordance with the agreed scope of works outlined in EI's proposal referenced P19388.2, dated 11 May 2019, and with the Client's signed authorisation to proceed, dated 2 June 2021.

1.2 Proposed Development

The following documents, supplied by the Client, were used to assist with the preparation of this GI report:

- Architectural drawings prepared by Koichi Takada Architects Project at 1112-1118 Barrenjoey Road, Palm Beach, Drawing Nos. A0000 to A0003, A0010 to A0013, A0099 to A0105, A0200 to A0203, and A0300 to A0302, Revision A, dated 20 August 2021;
- Geotechnical Investigation Report prepared by Douglas Partners (DP) Project No. 36684 02, dated October 2009. This investigation was carried out to provide information on subsurface conditions for DA purpose and for the preliminary assessment for site works and design. It comprised a detailed geological inspection of the site, general inspection of slopes and hand augering of one borehole with Dynamic Cone Penetrometer test in the existing carpark. This report was later updated in accordance with the requirements of Pittwater Geotechnical Risk Management Policy (2009); and
- Site survey plan prepared by Beveridge Williams Project No. 2101343, Drawing Ref. 2101343, Version B, dated 6 September 2021. The datum in the survey plan is in Australian Height Datum (AHD), hence all Reduced Levels (RL) mentioned in this report are henceforth in AHD.

Based on the email correspondence, EI understands that the proposed development involves the demolition of the existing site structures and the construction of a five-storey mixed-use building overlying a single-level basement. The basement level is proposed to have a Finished Floor Level (FFL) of RL -0.40m and -1.24m. A Bulk Excavation Level (BEL) ranging between RL -0.70m and -1.54m is assumed, which includes allowance for the construction of the basement slab. To achieve the BEL, excavation depths varying from 3.80m (towards east of site) to 14.70m (towards west of site) Below Existing Ground Level (BEGL) have been estimated. Locally deeper excavations may be required for footings, lift overrun pits, crane pads, and service trenches.

1.3 Objectives

The objective of the GI was to assess site surface and subsurface conditions at two borehole locations, and to provide preliminary geotechnical advice and recommendations addressing the following:

- Dilapidation Surveys;
- Excavation methodologies and monitoring requirements;

- Groundwater considerations;
- Vibration considerations;
- Excavation support requirements, including preliminary geotechnical design parameters for retaining walls and shoring systems;
- Building foundation options, including;
 - Preliminary design parameters.
 - Earthquake loading factor in accordance with AS1170.4:2007.
- The requirement for additional geotechnical works.

1.4 Scope of Works

The scope of works for the GI included:

- Preparation of a Work Health and Safety Plan;
- Review of relevant geological maps for the project area;
- Site walkover inspection by a Geotechnical Engineer to assess topographical features and site conditions;
- Scanning of proposed borehole locations for buried conductive services using a licensed service locator with reference to Dial Before You Dig (DBYD) plans;
- Auger drilling of BH101M and BH102 (carried out during month of June 2021) by a trackmounted drill rig using solid flight augers equipped with a 'Tungsten-Carbide' (T-C) bit, and hand auger drilling (carried out during month of October 2021) of additional boreholes, BH103 and BH104M. The boreholes were auger drilled to depths as shown in Table1-1 below:

	Α	ugering	I	Rock Coring		
Borehole ID	Depth (m)	RL (m AHD)	Depth (m)	RL (m AHD)		
BH101M	3.23	-0.92	8.80	-6.49		
BH102	9.87	-7.37	-	-		
BH103	1.00	11.00	13.00	-1.00		
BH104M	0.47	11.53	12.57	-0.57		

Table 1-1 Augering and Rock Coring Depths

 Standard Penetration Testing (SPT) was carried out (as per AS 1289.6.3.1-2004), where possible, during auger drilling of the boreholes to assess soil strength/relative densities;

- Measurements of groundwater seepage/levels, where possible, in the augered sections of the boreholes during and shortly after completion of auger drilling;
- The strength of the bedrock in the augered sections of the boreholes was assessed by observation of the auger penetration resistance using a T-C drill bit and examination of

the recovered rock cuttings. It should be noted that rock strengths assessed from augered boreholes are approximate and strength variances can be expected;

- The approximate surface levels shown on the borehole logs were interpolated from spot levels shown on the supplied survey plan. Approximate borehole locations are shown on Figure 2;
- Continuation of BH101M, BH103 and BH104M using NMLC diamond coring techniques to termination depths shown above in **Table 1-1**. The rock core photographs are presented in **Appendix A**;
- Two Dynamic Cone Penetrometer (DCP) tests (DCP1 and DCP2) were carried out adjacent to BH103 and BH104M to refusal depths of 0.52m (RL 11.48m) and 0.55m BEGL (RL 11.45m), respectively;
- Borehole BH101M and BH104M were converted into groundwater monitoring wells with depths of 7.00m (RL -4.69m) and 11.00m BEGL (RL 1.00m). Data logger was installed in BH101M to allow for long-term groundwater monitoring;
- Borehole BH102 and BH103 were backfilled with drilling spoils and BH102 was capped with concrete upon completion;
- Soil and rock samples were sent to STS Geotechnics Pty Ltd (STS) and SGS Australia (SGS), which are National Australian Testing Authority (NATA) accredited laboratories, for testing and storage and
- Preparation of this GI report.

El's Geotechnical Engineer was present full-time onsite to set out the borehole locations, direct the testing and sampling, log the subsurface conditions and record groundwater levels.

1.5 Constraints

The GI was limited by the intent of the investigation and the presence of existing site structures. The discussions and advice presented in this report are preliminary and intended to assist in the preparation of initial designs for the proposed development. Further additional investigation in the form of boreholes in the northern side of the site is required following demolition. Further geotechnical inspections should be carried out during construction to confirm the geotechnical and groundwater models, and the preliminary design parameters provided in this report.

2. Site Description

2.1 Site Description and Identification

The site identification details and associated information are presented in **Table 2-1** below while the site locality is shown on **Figure 1**. An aerial photograph of the site is presented in **Plate 1** below.

Information	Detail 1112-1116 Barrenjoey Road, Palm Beach NSW Lot 21 in DP 571298		
Street Address			
Lot and Deposited Plan (DP) Identification			
Brief Site Description	At the time of our investigation, the site was occupied by a single-storey commercial building located within the north-western portion of the site, a two-storey residential building located within the north-eastern portion of the site, a carpark located within the south-western portion of the site and a densely vegetated slope of about 30° within the south-eastern portion of the site. The building structures appeared to be in fair condition based on a cursory inspection of the exterior walls. The carpark is retained by a brick retaining wall of 0.5m to 2.0m height to the south and east.		
Site Area	The site area is approximately 1362m ² (based on the provided survey plan referenced above).		

Plate 1: Aerial photograph of the site (source: SIX Maps, accessed 30/6/21)

2.2 Local Land Use

The site is situated within an area of commercial and residential use. Current uses on surrounding land at the time of our presence on site are described in **Table 2-2** below. For the sake of this report, the site boundary adjacent to Barrenjoey Road shall be adopted as the western site boundary.

Table 2-2 Summary of Local Land Use

Direction Relative to Site	Land Use Description			
North	Property at No. 1120 Barrenjoey Road, a two-level residential building with concrete driveway. The main house has an offset of about 0.5m from the northern site boundary and appeared to be in fair condition. No. 1120 Barrenjoey Road is on a similar elevation to the site. No basements were observed on this site.			
East	Properties at No. 21A and 23 Palm Beach Road, two, two-to-three storey residential building with concrete drive way. The two properties are on a higher elevation to the site.			
South	Property at No. 1108 Barrenjoey Road, a two-storey commercial building with brick paved driveway and concrete carpark. The driveway abuts the southern boundary of the site. The main house appeared to be in good condition based on inspection of the external walls. No. 1108 Barrenjoey Road is on a similar elevation to the site. No basements were observed on this site.			
West	Barrenjoey Road, a two-lane, asphalt paved road. Beyond this is an asphalt paved carpark.			

2.3 Regional Setting

The site topography and geological information for the locality is summarised in **Table 2-3** below.

Table 2-3	Topographic and Geological Information
Attribute	Description
Topography	The site is located on the high east side of the road with steeply (18° to 20°) west dipping topography with site levels varying from R.L. 14.0m at the south-eastern site corner to R.L. 2.3m at the south-western site corner.
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1983) indicates the site to be underlain by Newport Formation (Rnn) and Garie Formation, which consists of interbedded laminite, shale, and quartz, to lithic-quartz sandstone, and minor red claystone.

Plate 2: Excerpt of geological map showing location of site.

3. Investigation Results

3.1 Stratigraphy

For the development of a site-specific geotechnical model, the stratigraphy observed in the GI has been grouped into three geotechnical units. A summary of the subsurface conditions across the site, interpreted from the assessment results, is presented in **Table 3-1** below. More detailed descriptions of subsurface conditions at each borehole location are available on the borehole logs presented in **Appendix A**. The details of the methods of soil and rock classifications, explanatory notes and abbreviations adopted on the borehole logs are also presented in **Appendix A**.

Unit	Material ²	al ² Depth to RL of Top Observed Top of Unit of Unit Thickness (m BEGL) ¹ (m AHD) ¹ (m)		Comments			
1	Fill Surface to 2.31 to 0.3 to 0.13 12.00			0.3 to 1.00	Concrete pavements of 130mm thickness observed in BH102 only. Low plasticity sandy clay fill observed in BH101M. Silty sand fill observed in BH102, BH103 and BH104M. Fill was assessed, based on our observations during drilling to be poorly to moderately compacted;		
2a	Alluvial Soil	0.30 to 0.50	2.00 to 2.01	2.50 to 2.93	Fine grained, loose, becoming dens with depth silty sand. SPT N value range from 4 to 32;		
2b	Residual Soil	3.0	-0.5	<u>_</u> 3	Encountered in BH102 only. High plasticity, very stiff silty clay with trace ironstone gravels. SPT values ranged from 17 to 19;		
3	Very Low to Low Strength Sandstone/ Laminite	0.47 to 9.87	-7.37 to 11.53	_4	Distinctly weathered, very low to low strength sandstone/laminite. Bands of medium strength observed in BH103.		

 Table 3-1
 Summary of Subsurface Conditions

Note 1 Approximate depth and level at the time of our assessment. Depths and levels may vary across the site. Note 2 For more detailed descriptions of the subsurface conditions, reference should be made to the borehole logs

attached to **Appendix A.** Note 3 Observed up to termination depth in BH102.

Note 4 Observed up to termination depth in BH101M, BH103 and BH104M.

3.2 Groundwater Observations

Groundwater seepage was observed during auger drilling of BH102 at 2.0m depth BEGL (RL 0.5m). Following their completion, a groundwater monitoring well was installed in BH101M and a set of Mini-Diver and Baro-Diver has been installed for long-term groundwater monitoring.

The long-term groundwater monitoring at BH101M during the period of 11 June 2021 to 8 September 2021 showed fairly consistent groundwater levels with minimal fluctuation between RL 1.38m to RL 1.08m.

Water circulation due to coring within the borehole prevented further observations of groundwater levels within cored boreholes. We note that the groundwater levels may not have become evident or stabilised in the augered boreholes within the limited observation period.

3.3 Test Results

Two soil samples were selected for laboratory testing to assess the following:

Soil aggressivity (pH, chloride and sulfate content and electrical conductivity).

A summary of the soil test results is provided in **Table 3-2** below. Laboratory test certificates are presented in **Appendix B**.

Table 3-2	Summarv	of	Soil	Laboratory	Test	Results
	Gainnary	<u> </u>	0011	Laboratory	1000	11004110

Test/ S	ample ID	BH101M_0.5-095	BH102_3.0-3.45		
Unit		2a	2b		
Materia	I Description ¹	Silty SAND	Silty CLAY		
>	Chloride Cl (ppm)	18	110		
ssivit	Sulfate SO ₄ (ppm)	22	63		
Aggressivity	рН	5.7	4.8		
A	Electrical Conductivity (µS/cm)	27	130		
	Moisture Content (%)	9.2	34.3		

Note 1 More detailed descriptions of the subsurface conditions at each borehole location are available on the borehole logs presented in **Appendix A**.

The assessment indicated high permeability soil was present above the groundwater table. In accordance with Tables 6.4.2(C) and 6.5.2(C) of AS 2159:2009 'Piling – Design and Installation', the results of the pH, chloride and sulfate content and electrical conductivity of the soil provided the following exposure classifications:

- 'Moderate' to 'Mild' for buried concrete structural elements; and
- 'Mild' to 'Non-Aggressive' for buried steel structural elements.

27 selected rock core samples were tested by STS to estimate the Point Load Strength Index (Is_{50}) values to assist with rock strength assessment. The results of the testing are summarised on the attached borehole logs.

The point load strength index tests correlated reasonably well with our field assessments of rock strength. The approximate Unconfined Compressive Strength (UCS) of the rock core, estimated from correlations with the point load strength index test results, varied from 0.1 MPa to 12.8 MPa.

4. Recommendations

4.1 Geotechnical Issues

Based on the results of the assessment, we consider the following to be the main geotechnical issues for the proposed development:

- Presence of loose sands;
- Basement excavation and retention to limit lateral deflections and ground loss as a result of excavations, resulting in damage to nearby structures;
- Highly variable subsurface conditions;
- Rock excavation;
- Groundwater within the depth of the excavation;
- Existing footings of neighbouring properties; and
- Foundation design for building loads.

4.2 Dilapidation Surveys

Prior to excavation and construction, we recommend that detailed dilapidation surveys be carried out on all structures and infrastructures surrounding the site that falls within the zone of influence of the excavation to allow assessment of the recommended vibration limits and protect the client against spurious claims of damage. The zone of influence of the excavation is defined by a distance back from the excavation perimeter of twice the total depth of the excavation. The reports would provide a record of existing conditions prior to commencement of the work. A copy of each report should be provided to the adjoining property owner who should be asked to confirm that it represents a fair assessment of existing conditions. The reports should be carefully reviewed prior to demolition and construction.

4.3 Demolition Considerations

Care should be taken during demolition, particularly the concrete pavement, to avoid damaging neighbouring structures and infrastructures. Demolition of concrete slabs, pavement and floor slabs may require breaking into smaller size prior to disposal offsite. We recommend that saw cut slots be provided near adjoining buildings to reduce the risk of vibrations being transferred to nearby structures and infrastructures. If possible, the concrete slabs should be removed using hydraulic equipment rather than impact hammers.

4.4 Excavation Methodology

4.4.1 Excavation Assessment

Prior to any excavation commencing, we recommend that reference be made to the Safe Work Australia Excavation Work Code of Practice, dated January 2020.

El assumes that the proposed development will require an excavation depth of about 3.0m BEGL. Locally deeper excavations for footings, service trenches, crane pads and lifts overrun pits may be required.

Based on the borehole logs, the proposed basement excavations will therefore extend through Unit 1 and 2 and likely Unit 3 towards east of the site and all Units towards west of site as

outlined in **Table 3-1** above. As such, an engineered retention system must be installed prior to excavation commencing. Additional geotechnical investigation in the form of cored boreholes is recommended due to highly variable subsurface conditions of the site.

Units 1 and 2 could be excavated using buckets of conventional earthmoving Hydraulic Excavators, particularly if fitted with 'Tiger Teeth'. Excavation of Unit 3 (where encountered) may present hard or heavy ripping, or "hard rock" excavation conditions. Ripping would require a high capacity and heavy bulldozer for effective production. Wear and tear should also be allowed for. The use of a smaller size bulldozer will result in lower productivity and higher wear and tear, and this should be allowed for. Alternatively, hydraulic rock breakers, rock saws, ripping hooks or rotary grinders could be used, though productivity would be lower and equipment wear increased, and this should be allowed for.

The primary issues associated with the excavation will be controlling the groundwater and provide adequate support to adjoining structures/infrastructures. Groundwater is expected to be encountered during excavation. Therefore, to allow for the construction of the basement slab, lift pits and service trenches in 'dry' condition, temporary dewatering will be required. In this regards, it is anticipated that the groundwater table will be maintained at a depth of about 1 m below the bulk excavation level and potentially deeper around lift pits or working platforms (if required).

Dewatering has the potential to cause some drawdown and ground settlement below the adjoining sites; the extent of the drawdown depends upon the depth to which the cut-off system is installed and the pumping operations. Outlets into the stormwater system will require Council approval.

Should rock hammers be used for the excavation of the bedrock, excavation should commence away from the adjoining structures and the transmitted vibrations monitored to assess how close the hammer can operate to the adjoining structures while maintaining transmitted vibrations within acceptable limits. To fall within these limits, we recommend that the size of rock hammers do not exceed a medium sized rock hammer, say 900 kg, such as a Krupp 580, and be trialled prior to use. The transmitted vibrations from rock hammers should be measured to determine how close each individual hammer can operate to the adjoining buildings.

The vibration measurements can be carried out using either an attended or an unattended vibration monitoring system. An unattended vibration monitoring system must be fitted with an alarm in the form of a strobe light or siren or alerts sent directly to the site supervisor to make the plant operator aware immediately when the vibration limit is exceeded. The vibration monitor must be set to trigger the alarm when the overall Peak Particle Velocity (PPV) exceeds set limits outlined by a vibration monitoring plan. Reference should be made to **Appendix C** for a guide to acceptable limits of transmitted vibrations.

If it is found that the transmitted vibrations by the use of rock hammers are unacceptable, then it would be necessary to change to a smaller excavator with a smaller rock hammer, or to a rotary grinder, rock saws, jackhammers, ripping hooks, chemical rock splitting and milling machines. Although these are likely to be less productive, they would reduce or possibly eliminate risks of damage to adjoining properties through vibration effects transmitted via the ground. Such equipment would also be required for detailed excavation, such as footings or service trenches, and for trimming of faces. Final trimming of faces may also be completed using a grinder attachment rather than a rock breaker in order to assist in limiting vibrations. The use of rotary grinders generally generates dust and this may be supressed by spraying with water.

To assist in reducing vibrations and over-break of the sandstone, we recommend that initial saw cutting of the excavation perimeters through the bedrock may be provided using rock saw attachments fitted to the excavator. Rock sawing of the excavation perimeter has several advantages as it often reduces the need for rock bolting as the cut faces generally remain more

stable and require a lower level of rock support than hammer cut excavations, ground vibrations from rock saws are minimal and the saw cuts will provide a slight increase in buffer distance for use of rock hammers. However, the effectiveness of such approach must be confirmed by the results of vibration monitoring.

Groundwater seepage monitoring should be carried out during bulk excavation works and prior to finalising the design of a pump out facility. Outlets into the stormwater system will require Council approval.

Furthermore, any existing buried services, which run below the site, will require diversion prior to the commencement of excavation or alternatively be temporarily supported during excavation, subject to permission or other instructions from the relevant service authorities. Enquiries should also be made for further information and details, such as invert levels, on the buried services.

4.4.2 Excavation Monitoring

Consideration should be made to the impact of the proposed development upon neighbouring structures, roadways and services. Basement excavation retention systems should be designed so as to limit lateral deflections.

Contractors should also consider the following limits associated with carrying out excavation and construction activities:

- Limit lateral deflection of temporary or permanent retaining structures;
- Limit vertical settlements of ground surface at common property boundaries and services easement; and
- Limit Peak Particle Velocities (PPV) from vibrations, caused by construction equipment or excavation, experienced by any nearby structures and services.

Monitoring of deflections of retaining structures and surface settlements should be carried out by a registered surveyor at agreed points along the excavation boundaries and along existing building foundations / services / pavements and other structures located within or near the zone of influence of the excavation. Owners of existing services adjacent to the site should be consulted to assess appropriate deflection limits for their infrastructures. Measurements should be taken in the following sequence:

- Before commencing installation of retaining structures where appropriate to determine the baseline readings. Two independent sets of measurements must be taken confirming measurement consistency;
- After installation of the retaining structures, but before commencement of excavation;
- After excavation to a depth of 1.5m;
- After excavation to the base of the excavation;
- After de-stressing and removal of any rows of supports or anchors; and
- One month after completion of the permanent retaining structure or after three consecutive measurements not less than a week apart showing no further movements, whichever is the latter.

4.5 Groundwater Considerations

Groundwater was observed in all monitoring wells as detailed in **Section 3-2**, all of which is shallower than the excavation depth of 3.0m.

Due to the topography of the bedrock profile any groundwater inflows into the excavation should not have an adverse impact on the proposed development or on the neighbouring sites and should be manageable. However, we expect that some groundwater inflows into the excavation along the soil/rock interface and through any defects within the sandstone bedrock (such as jointing, and bedding planes, etc.) particularly following a period of heavy rainfall. The initial flows into the excavation may be locally high, but would be expected to decrease considerably with time as the bedding seams/joints are drained. We recommend that monitoring of seepage be implemented during the excavation works to confirm the capacity of the drainage system.

We expect that any seepage that does occur will be able to be controlled by a conventional sump and pump system. We recommend that a sump-and-pump system be used both during construction and for permanent groundwater control below the basement floor slab.

In the long term, drainage should be provided behind all basement retaining walls, around the perimeter of the basement and below the basement slab. The completed excavation should be inspected by the hydraulic engineer to confirm that adequate drainage has been allowed for. Drainage should be connected to the sump-and-pump system and discharging into the stormwater system. The permanent groundwater control system should take into account any possible soluble substances in the groundwater which may dictate whether or not groundwater can be pumped into the stormwater system.

The design of drainage and pump systems should take the above issues into account along with careful ongoing inspections and maintenance programs.

4.6 Excavation Retention

4.6.1 Support Systems

From a geotechnical perspective, it is critical to maintain the stability of all adjacent structures and infrastructures during demolition, excavation and construction works.

Based on the provided architectural plans, the proposed basement outline abuts the western site boundary and has a minimum setback of approximately 3.00m from the northern, eastern and southern boundaries. Based on the depth of the excavation, the encountered subsurface conditions and limited setbacks, temporary batters are not recommended for this site. Unsupported vertical cuts of the soil are not recommended for this site as these carry the risk of potential slumping/collapse especially after a period of wet weather. Slumping/Collapse of the material may result in injury to personnel and/or damage to nearby structures/infrastructures and equipment.

Where space for temporary batters is not available, a suitable retention system will be required for the support of the entire depth of the excavation. For this site, we consider that a cantilevered contiguous pile wall with mass concrete in between the piles installed to below BEL and into Unit 3 or better to be the most suitable. Mass concrete must be installed progressively as excavation proceeds.

Only grout injected CFA piles should be used for this site for contiguous piles. Due to the collapsible nature of the sandy soils and the presence of groundwater, bored piers are not recommended for this site. The proposed pile locations should take into account the presence of the neighbouring anchors and/or the presence of buried services. Further advice should be sought from prospective piling contractors who should be provided with a copy of this report.

The retention system will need to be installed to depths which satisfy stability, piping, founding and groundwater cut-off considerations. Anchors/props and shotcrete must be installed progressively as excavation proceeds.

Working platforms may also be required. We can complete the design of the working platform, if commissioned to do so.

4.6.2 Geotechnical Hazard Risk Zone

Please note that with reference to Pittwater Council's LEP 2014 Geotechnical Risk Management Map (GTH_015), the site is classified as being within the H1 (highest category) landslip hazard zone therefore the site requires a Geotechnical Landslip Risk Assessment to be conducted. An excerpt of the geotechnical hazard map is shown below in **Plate 3**:

Plate 3: Site location over geotechnical hazard map (Pittwater LEP 2014)

4.6.3 Slope Stability & Risk Assessment:

As per El's proposal P19388.2, dated 11 May 2019, slope stability and risk assessment was not part of the agreed scope of work for this project, therefore a risk assessment for the proposed development was not carried out. However DP (October 2009) carried out a risk assessment for the previously proposed development at this site and identified the following risks for property, summarised in **Table 4-1** below.

Hazard	Likelihood	Consequences	Risk
Rapid and significant erosion/slumping of slope on the eastern side of the development as a result of water flows from upslope	Unlikely for properly graded and drained surface runoff control measures and appropriately designed and constructed retaining walls	Minor	Low
Rapid collapse of proposed retaining walls	Rare – for engineer designed, inspected and constructed wall	Major	Low
Minor creep effects on landscaping walls	Possible	Insignificant	Very Low
Major rapid soil mass movement and impact to building	Rare for a site with engineer designed retaining structures and no features (cliff lines undercuts or floaters) observed suggesting	Medium	Low

Table 4-1 Property Risk Assessment for Proposed Development (based on DP Report)

Hazard	Likelihood	Consequences	Risk
	incipient instability		

A quantitative assessment of risk of loss of life (person most at risk) related to the identified slope instability hazards has been calculated as varying from 1×10^{-6} to 1×10^{-8} . It is concluded that as per requirements of Geotechnical Risk Management Policy 2007, the proposed development will achieve the "Acceptable Risk Management" criteria for both property and life under current and foreseeable conditions and that the site is suitable for the proposed development.

It is recommended that site inspections during and after completion of construction works should be carried out to ensure that there is no ensuing risk of slope instability.

4.6.4 Excavation adjacent to RMS Assets

Reference should be made to the RMS Geotechnical Technical Direction (GTD) 2020/001 dated 2 July 2020, with regards to excavation/shoring adjacent to Barrenjoey Road. This document outlines requirements for excavations adjacent to RMS infrastructure and includes the level of geotechnical investigation required, dilapidation surveying, instrumentation and monitoring during construction, trigger levels and contingency plans.

Instrumentation (e.g. inclinometers) and monitoring is typically required where the excavation exceeds 3 m in height (for cantilevered shoring walls) or 6 m in height (for anchored or propped shoring walls). A geotechnical monitoring plan may be required by RMS prior to construction for this site.

As the site of the proposed development lies adjacent to both RMS assets, the asset owner may require further assessment of the potential impact of the proposed development on their assets. In order to assess the latter, a 2D numerical model using a commercially available computer program, such as WALLAP and/or PLAXIS, will be required. This model will enable the assessment of the potential impact of the proposed development on the RMS assets and predict the likely movements in the shoring wall. El can provide such a service if commissioned to do so.

4.6.5 Retaining Wall Design Parameters

The following parameters may be used for static design of temporary and permanent retaining walls at the subject site:

- Conventional free-standing cantilever walls which support areas where movement is of little concern (i.e. where only gardens or open areas are to be retained), may be designed using a triangular lateral earth pressure distribution and an 'active' earth pressure coefficient, K_a, as shown in Table 4-1;
- Cantilevered walls, where the tops of which are restrained by the floor slabs of the permanent structure or which support movement sensitive elements, should be designed using a triangular lateral earth pressure distribution and an 'at rest' earth pressure coefficient, K_o, as shown in **Table 4-1** below;
- All surcharge loading affecting the walls (including from construction equipment, construction loads, adjacent high level footings, etc.) should be adopted in the retaining wall design as an additional surcharge using an 'at rest' earth pressure coefficient, Ko;

- The retaining walls should be designed as drained and measures are to be taken to provide complete and permanent drainage behind the walls. Strip drains protected with a nonwoven geotextile fabric should be used behind the shotcrete infill panels for soldier pile walls. Alternatively, for the contiguous pile walls, weepholes comprising 20mm diameter, slotted PVC pipes installed into holes or gaps between adjacent piles at 1.2m centres (horizontal and vertical), may be used. The embedded pipes must, however, be wrapped with a non-woven geotextile fabric (such as Bidim A34) to act as a filter against subsoil erosion;
- For piles embedded into Unit 3 or better, the allowable lateral toe resistance values outlined in Table 4-1 below may be adopted. These values assume excavation is not carried out within the zone of influence of the wall toe and the rock does not contain adverse defects etc. The upper 0.3m depth of the socket should not be taken into account to allow for tolerance and disturbance effects during excavation.

	Material ¹	Unit 1 Fill	Unit 2a Alluvial Soil	Unit 2b Residual Soil	Unit 3 Very Low to Low Strength Sandstone/ Laminite
RL of To	op of Unit (m AHD) ²	2.31 to 2.37	2.0 to 2.01	-0.5	-0.92
Bulk U	nit Weight (kN/m³)	17	17	17	22
Frict	ion Angle, φ' (°)	25	25	25	34
Earth	At rest, K _o ³	0.58	0.58	0.58	-
Pressure Coefficients	Active, Ka ³	0.41	0.41	0.41	-
	Passive, K_p^3	-	-	2.46	-
Allowable Bea	aring Pressure (kPa) 5	-	-	-	700
Allowable Sha		-	-	-	70
Adhesion (kPa 4, 5	a) in Uplift	-	-	-	35
Allowable Toe	Resistance (kPa)	-	-	-	-
Allowable Bor	nd Stress (kPa)	-	-	-	35

Table 4-2 **Geotechnical Design Parameters**

Soil)

AS 1170.4:2007 indicates that the hazard factor (z) for Sydney is 0.08.

Notes:

Earthquake Site Risk Classification

More detailed descriptions of subsurface conditions are available on the borehole logs presented in Appendix A. 1

2 Approximate levels of top of unit at the time of our investigation. Levels may vary across the site.

- 3 Earth pressures are provided on the assumption that the ground behind the retaining walls is horizontal.
- 4 Side adhesion values given assume there is intimate contact between the pile and foundation material and should achieve a clean socket roughness category R2 or better. Design engineer to check both 'piston pull-out' and 'cone liftout' mechanics in accordance with AS4678-2002 Earth Retaining Structures. 5

To adopt these parameters we have assumed that:

- Footings have a nominal socket of at least 0.3m, into the relevant founding material;
- For piles, there is intimate contact between the pile and foundation material (a clean socket roughness category of R2 or better);
- Potential soil and groundwater aggressivity will be considered in the design of piles and footings;
- Piles should be drilled in the presence of a Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used;
- The bases of all pile, pad and strip footing excavations are cleaned of loose and softened material and water is pumped out prior to placement of concrete;
- The concrete is poured on the same day as drilling, inspection and cleaning.
- The allowable bearing pressures given above are based on serviceability criteria of settlements at the footing base/pile toe of less than or equal to 1% of the minimum footing dimension (or pile diameter).

4.7 Foundations

The most competent foundation stratum at the site is the weathered sandstone and in view of the moderate depths to the bedrock, we recommend that building is supported on shallow or pile footings (depending on the footprint of proposed basement and subsurface conditions) founded into weathered bedrock. However, the option of high level footings founded in the residual clay is also provided. Since this investigation revealed that the site subsurface condition is highly variable, additional geotechnical investigation in the form of cored boreholes is recommended.

4.7.1 Shallow Footings in Rock

Following basement excavation to RL -0.70 to -1.54m, we expect Unit 3 material to be exposed at BEL.

It is recommended that all footings for the building be founded within the sandstone bedrock of similar strength of at least Unit 3 or better to provide uniform support and reduce the potential for differential settlements.

Pad or strip footings founded within Unit 3 may be preliminarily designed for an allowable bearing capacity of 700kPa, based on serviceability.

Geotechnical inspections of foundations are recommended to determine that the required bearing capacity has been achieved and to determine any variations that may occur between the boreholes and inspected locations.

4.7.2 Pile Footings

Alternatively, the proposed development may be supported on deep foundations, such as piles, founded into sandstone bedrock.

For piles founded into weathered sandstone bedrock, these must be embedded a minimum of 0.5m into sandstone, and can be designed for a maximum allowable bearing pressure of 700kPa. The allowable shaft adhesion in sandstone bedrock may be designed as 10% of the allowable bearing pressure (or 5% for uplift) for the socket length in excess of 0.5m.

At least the initial drilling of piles should be completed in the presence of a geotechnical engineer to verify that ground conditions meet design assumptions.

Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used. Concrete must be poured on the same day as drilling, inspection and drilling.

The aggressivity of natural soils and groundwater (if encountered) should be taken into consideration in the design.

4.8 Basement Floor Slab

Following bulk excavations for the proposed basement, sandstone bedrock is expected to be exposed at the basement floor BEL however it depends on the actual footprint of the proposed development.

Additional geotechnical investigation will be required to confirm the depth and conditions of the bedrock once the architectural drawings showing the actual footprint of the proposed development are available.

Following the removal of all loose and softened materials, we recommend that underfloor drainage be provided and should comprise a strong, durable, single sized washed aggregate such as 'blue metal gravel'. Joints in the concrete floor slab should be designed to accommodate shear forces but not bending moments by using dowelled and keyed joints. The basement floor slab should be isolated from columns. The completed excavation should be inspected by the hydraulic engineer to confirm the extent of the drainage required.

In addition, a system of sub-soil drains comprising a durable single sized aggregate with perforated drains/pipes leading to sumps should be provided. The basement floor slab should be isolated from columns.

Permission may need to be obtained from the NSW Department of Primary Industries (DPI) and possibly Council for any permanent discharge of seepage into the drainage system. Given the subsurface conditions, we expect that seepage volumes would be low and within the DPI limits. However, if permission for discharge is not obtained, the basement may need to be designed as a tanked basement.

4.9 Existing Fill

Based on the investigation results, the site is covered by a layer of fill between 0.3m and 0.5m deep. Based on observation, it appears that it has generally been poorly to moderately compacted. However, the SPT tests do not give a precise determination of in-situ densities, since they are affected by friction during driving, the presence of gravel, and the changes in moisture content. Based on available information, the fill on site is not considered to be 'controlled fill'. AS2870 defines 'controlled' fill as material that has been placed and compacted in layers by compaction equipment within a defined moisture range, to a defined density requirement, and placed in accordance with AS3798.

5. Further Geotechnical Inputs

Below is a summary of the previously recommended additional work that needs to be carried out:

- Additional Geotechnical Investigation in the form of two to three cored boreholes following demolition to confirm the depth and quality of Unit 3 sandstone bedrock or better within the northern side of the site;
- Aggressivity testing for buried concrete and steel structures;
- Dilapidation surveys;
- Landslide risk assessment after confirming the actual extent of the proposed development ;
- Design of working platforms (if required) for construction plant by an experienced and qualified geotechnical engineer;
- Classification of all excavated material transported off site;
- Witnessing installation of support measures and proof-testing of anchors (if required);
- Geotechnical inspections of all new footings/piles by an experienced geotechnical professional before concrete or steel are placed to verify their bearing capacity and the insitu nature of the founding strata; and
- Ongoing monitoring of groundwater inflows into the bulk excavation.

We recommend that a meeting be held after initial structural design has been completed to confirm that our recommendations have been correctly interpreted. We also recommend a meeting at the commencement of construction to discuss the primary geotechnical issues and inspection requirements.

6. Statement of Limitations

This report has been prepared for the exclusive use of William Allen and Palmdev Pty Ltd who is the only intended beneficiary of El's work. The scope of the assessment carried out for the purpose of this report is limited to those agreed with William Allen and Palmdev Pty Ltd

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the geotechnical industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling and test locations chosen to be as representative as possible under the given circumstances.

El's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. El may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by El.

El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during construction. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

We draw your attention to the document "Important Information", which is included in **Appendix D** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by EI, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact El.

References

AS1289.6.3.1:2004, Methods of Testing Soils for Engineering Purposes, Standards Australia.

AS1726:2017, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling - Design and Installation, Standards Australia.

AS3600:2009, Concrete Structures, Standards Australia

Safe Work Australia Excavation Work Code of Practice, dated January 2020 - WorkCover NSW

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

Abbreviations

AHD	Australian Height Datum
AS	Australian Standard
BEL	Bulk Excavation Level
BEGL	Below Existing Ground Level
BH	Borehole
DBYD	Dial Before You Dig
DP	Deposited Plan
EI	El Australia
GI	Geotechnical Investigation
NATA	National Association of Testing Authorities, Australia
RL	Reduced Level
SPT	Standard Penetration Test
T-C	Tungsten-Carbide
UCS	Unconfined Compressive Strength

Figures

- Figure 1 Site Locality Plan
- Figure 2 Borehole Location Plan

- Location of Geotechnical Borehole/Monitoring Well/DCP Test

Drawn:	P.M./J.W.	Pa
Approved:	S.R	Geote 1112-1116 Barre
Date:	15/12/2021	Bore

rehole Location Plan

Project: E25203.G03_Rev2

Appendix A – Borehole Logs And Explanatory Notes

BOREHOLE LOG

BH NO. BH101M

L	Projec ocati Positio ob No	on on	1112- Refer		velopment arrenjoey Road, P re 2	alm Be	each N	ISW			C C	Sheet Date Started Date Completed Logged By KX	1 of 2 11/06/2021 11/06/2021 Date 11/06/2021
	lient			dev Pty	Ltd							Reviewed By SR	Date 14/07/2021
			ntactor		6 Drilling			Sur	face RL ≈2.31 m AHD				
	Drill F			CE	180			Incl	ination -90°				
			lling		Sampling				Field Material Des				
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENC	STRUC ADD OBSEI	CTURE AND DITIONAL RVATIONS
			0-	2.31			\bigotimes	-	FILL: Sandy CLAY; low plasticity, dark brown.	M		FILL	
			-	0.30 2.01			\not	SM	Silty SAND; fine grained, brown.	(<pl< th=""><th></th><th>RESIDUAL SOIL</th><th></th></pl<>		RESIDUAL SOIL	
			-		BH101M_0.50-0.95 SPT 0.50-0.95 m								
			-		3,2,3 N=5						L		
			1								-		
			-										
AD/T	-	GWNE	-	1.50 0.81	BH101M_1.50-1.95								
A		0	-		SPT 1.50-1.95 m 6,13,19 N=32					м			
			2—		11-52								
			-								D		
			-										
			-										
7-09-26			3-	2.02	BH101M_3.00-3.28								
0.1 201			-	3.23	BH101M_3.00-3.28 SPT 3.00-3.28 m 10,18/130mm HB				Continued as Cored Borehole				
EIA 2.0			-										
1-21 Prj:			-										
2017-1			4										
A 2.00.3			-										
Lib: EV			-										
I-DGD			-										
Situ Too			5										
and In			-										
atgel Lat			-										
000 D			-										
:13 10.0			6										
/2021 11			-										
 15/07. 			-										
ingFile>			-										
< <draw< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></draw<>			7										
SS.GPJ			-										
DLE LOC			-										
SOREHC			-										
33.G03 E			8										
1 E252(-										
HOLE			-										
ED BORE			-										
N-CORE			9										
EIA NOF			-										
-B Log			-										
EA 200.3 LB GLB Log EA NON-CORED BOREHOLE 1 E25203 G03 BOREHOLE LOGS GPJ < <drawingfile>> 1507/202111:13 100.000 DaggeLab and In Stu Tool-DOD LLIb: EA 2.00.3 2017-11-21 Prj: EIA 2.00.1 2017-04-26</drawingfile>			- 10										
EIA 2.00.			10		This bore	hole lo	og sho	uld b	e read in conjunction with EI Australia's accompanying	standa	rd no	tes.	
-				-									

CORED BOREHOLE LOG

BH NO. BH101M

Po Jol Cli	catio sitio b No ent	n	111 Ref E25 Pal	2-1116 fer to F 5203.G mdev F	igure 2 03 Pty Ltd	njoey R	toad, Palm Beach NSW			Sheet Date Started Date Completed Logged By KX Reviewed By SR		/2021	
	rillin rill R	g Co lig	ntact		BG Dril CE180	ling	Surface RL ≈2.31 m AHD Inclination -90°						
			Drilli	ng	1		Field Material Description			Defect Information	ו		
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIPTION & Additional Observations		Avera Defe Spaci (mm	ect ing 1)
				0	<u>3.23</u> -0.92		Continuation from non-cored borehole SANDSTONE; fine grained, brown-pale grey, thinly bedded.	DW					
O	ETURN	100	93	4 - - 5 - - - -	<u>5.82</u> -3.51		From 5.82 m, grey.			4.73: JT, 50 - 60°, CN, PR, RF 5.54-5.61: XWS, 70 mm			
NMLC	90-100% RETURN	100	81	6 — - - 7 — - - - - - - - - - - - - - - - - - - -			n on 5.62 m, grey.		 ↓ ↓	6.27-6.29: XWS, 20 mm 6.43-6.46: XWS, 30 mm 6.54-6.60: XWS, 60 mm			
				9	<u>8.80</u> -6.49		Hole Terminated at 8.80 m Target Depth Reached.			8.27-8.29: XWS, 20 mm			

MONITORING WELL LOG

MW NO. BH101M

	roject		•		lopment		Sheet	1 of 2
	ocatio ositio				renjoey Road, Palm Beach NSW		Date Started	11/06/2021 11/06/2021
	ositio ob No		Refer to E25203.		۷		Date Completed Logged By KX	Date 11/06/2021
	lient		Palmdev		d		Reviewed By SR	Date 14/07/2021
	Drillin	g Cont)rilling Surface RL ≈2.31 m AH	D		
	Drill R			CE18				
METHOD	WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	PIEZOMETER C ID Type Stick Up & RL BH101M Standpipe	ONSTRUCTION DETA Tip Depth & RL Install 7.00 m -4.69 m	AILS ation Date Static Water Level
		-0-			FILL: Sandy CLAY; low plasticity, dark brown.	M 101 M	Gatic Cove	er
			2-		Silty SAND; fine grained, brown.			
2017-09-26 AD/T	GWNE	1-					Grout	nm Casing
2.00.1		3-] -					
1 Prj: ElA			-1	· · · · · ·	SANDSTONE; fine grained, brown-pale grey, thinly bedded.		Bentonite	
EA 2003 LBIGLB LOG EA PIEZOMETER NSTALLATION LOG E25203603 BOREHOLE LOGS GPJ < <drawngfile> 1507/2021 11:14 10.0000 DageLlab and in Situ Tool - DGD Lib: EIA 2.003 2017-11-21 PJ: EIA 2.001 2017-09-26 NMLC</drawngfile>	90-100% RETURN	4 5 6 7			— From 5.82 m, grey.	4.00 m	Sand uPVC 50 r	nm Screen
METER INSTALLATION LOG E25203.G03B		8-	 6 					
LIB.GLB Log EIA PIEZO		9-	 7 		Hole Terminated at 8.80 m Target Depth Reached.			
A 2.00.3 L		l	I		This well log should be read in conjunction with	El Australia's accompanying standard r	notes.	
Ē					- · · · · ·	, , , , , , , , , , , , , , , , , , , ,		

CORE PHOTOGRAPH OF BOREHOLE: BH101M

Project	Proposed Development			Depth Range	3.23m to8.	80m BEG	L	
Location	1112-1116 Barrenjoey Road, Palm Beach NSW			Contractor	BG Drilling	g		
Position	See Figure 2	Surface RL	≈ 2.31 m	Drill Rig	CE180			
Job No.	E25203.G03	Inclination	- 90°	Logged	KX	Date	11 / 06 / 2021	
Client	Palmdev Pty Ltd	Box	1-2 of 2	Checked	SR	Date	14 / 07 / 2021	

BOREHOLE LOG

	Loc Pos	oject catic sitio o No ent	on n	1112- Refer E2520			m Be	each N	ISW				Sheet Date Started Date Completed Logged By KX Reviewed By SR	1 of 1 11/06/2021 11/06/2021 Date 11/06/2021 Date 14/07/2021	
		illin ill R	-	ntactor		Drilling				face RL ≈2.50 m AHD lination -90°					
	_		Dril	ling		Sampling				Field Material Des		_			_
	MEIHOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADD OBSEF	TURE AND ITIONAL RVATIONS	
ł	5			0	0.13 2.37				-	CONCRETE; 130 mm thick.	-	-	PAVEMENT		-
				-	0.50					FILL: Silty SAND; fine grained, dark brown.	м	-			
				- - 1	2.00	BH102_0.50-0.95 SPT 0.50-0.95 m 4,3,3 N=6			SM	Silty SAND; fine grained, brown.	м		RESIDUAL SOIL		-
				-		BH102_1.50-1.95 SPT 1.50-1.95 m 2,2,2 N=4						L			
			Δ	2							w				-
2017-09-26				- 3—	3.00 -0.50	BH102_3.00-3.45 SPT 3.00-3.45 m 5,9,10			СН	Silty CLAY; high plasticity, pale grey.			-		-
In Situ Tool - DGD LIb: E.K. 2.00.3 2017-11-21 Pg: E.K.2.00.1 2017-09-26				- - 4		N=19									-
) Lib: EIA 2.00.3 201				-	<u>4.50</u> -2.00	BH102_4.50-4.95 SPT 4 50-4 95 m				From 4.5 m, pale grey to red-brown.	_				
	AU/I	-		5		SPT 4.50-4.95 m 8,7,10 N=17									-
EA 200.3 LB CLB Lq EA NON-CORED BOREHOLE 1 E2203.503 BOREHOLE LOGS.GPJ < <drawingfile>> 15/07/202111:13 10.0.000 DatgeLab and</drawingfile>					<u>6.00</u> -3.50	BH102_6.00-6.40				From 6.0 m, pale grey.	_				-
2021 11:10				-		SPT 6.00-6.40 m 2,10,20/100mm HB					м				
le>> 15/07/.				-							(<pl< td=""><td>_) VSt</td><td></td><td></td><td></td></pl<>	_) VSt			
C DrawingFil				7—											-
GS.GPJ <-				-											
EHOLE LC				-											
3.G03 BOR				8—											-
E 1 E2520:				-											
BORE HOL.				-											
N-CORED				9											-
Log EIA NC				-											
3 LIB.GLB 1	+	-			9.87			<u>p</u>		Hole Terminated at 9.87 m T/C Bit Refusal.					-
EIA 2.00.3				10 —		This boreho	le lo	bg sho	uld b	e read in conjunction with EI Australia's accompanying s	tanda	ard no	otes.		

BOREHOLE LOG

	Lo Po	oject catio sitio	n n	1112- Refer	1116 Ba to Figur	velopment arrenjoey Road, Paln e 2	n Bea	ich NS	W				Sheet Date Started Date Completed	1 of 3 27/10/2021 27/10/2021	
		b No ent	•)3.G03 lev Pty l	td							Logged By KX Reviewed By SR	Date 27/10/2021 Date 14/12/2021	
┢			g Co	ntactor		htSite			Sur	face RL ≈12.00 m AHD				2400 1 // 12/2021	_
	D	rill Ri	-		Ha	nd Portable			Inc	ination -90°					
-		7		ling		Sampling			Ы	Field Material Des					
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY		TURE AND ITIONAL RVATIONS	
	НА		١E		12.00	DS 0.25-0.35 m			-	FILL: Silty SAND; fine grained, brown, trace rootlets, medium to coarse angular to sub-angular gravels.			FILL		
	WB	-	GWNE	-							D	-			
┢	_			—1—	1.00					Continued as Cored Borehole					_
				-											
				-											
				2 —											-
				-											
				-											
6				3—											-
2017-09-2				-											
Situ Tool - DGD Lib: ElA 2.00.3 2017-11-21 Prj: ElA 2.00.1 2017-09-26				-											
1-21 Prj: E				- 4											
0.3 2017-1				4 -											
b: EIA 2.0				-											
- DGD Li				-											
Situ Tool				5											-
Lab and Ir				-											
00 Datgel				_											
18 10.0.0				6											-
1/2021 10:				-											
EIA 200 3.LIB GLB Log EIA NON-CORED BOREHOLE 1 E2203.G03 BOREHOLE LOGS.GPJ < <drawingfile>> 15/11/2021 10:18 10.000 Dated Lab and In</drawingfile>				-											
<drawingf< th=""><td></td><td></td><td></td><td>7 —</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawingf<>				7 —											-
ss.GPJ <				-											
HOLE LOC				-											
03 BORE				8											-
E25203.G				-											
HOLE 1				-											
RED BORE				- 9											-
NON-COF				-											
Log EIA				-											
3 LIB.GLB				- 10											
EIA 2.00.				10		This bore	hole	log sh	ould I	be read in conjunction with EI Australia's accompanying sta	Indarc	d note			

CORED BOREHOLE LOG

Project Location Position Job No. Client			Ref E2		6 Barrer igure 2 03	pment njoey R	oad, Palm Beach NSW	Sheet Date Started Date Completed Logged By KX Reviewed By SR	2 OF 3 27/10/2021 27/10/2021 Date 27/10/2021 Date 14/12/2021					
	rillin rill R	ig Co Rig	ntaci		TightSi Hand P		Surface RL ≈12.00 m AHE Inclination -90°)						
			Drilli	ng	1		Field Material Description			Defect Information	ı		_	_
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIPTION & Additional Observations		De De	vera vefe baci mm	ec cin n)
				0	1.00 11.00		Continuation from non-cored borehole LAMINITE; SANDSTONE and CLAYSTONE; sandstone is fine grained, red-brown, orange-brown,	XW						
		100	59	- - 2			pale brown and pale grey, thinly bedded.		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓					
		100	15	- - - 3	-			DW		2.55-2.58: XWS, 30 mm 2.70-2.80: XWZ, 100 mm 2.85: JT, 70°, CN, UN, RF 3.12: JT, 70 - 80°, CN, UN, RF				
		100	35	4	-					3.67: JT, 60 - 70°, CN, PR, RF 4.05-4.33: SZ, 280 mm				
	80-90% RETURN	100	34	- 5 - - - 6 - - - - -	7.16 4.84					4.70-4.86: XWZ, 160 mm 4.95-5.11: XWZ, 160 mm 5.20-5.27: XWS, 70 mm 5.32-5.36: XWS, 40 mm 5.56-5.62: XWS, 60 mm				
	80-9	100	37							5.76-5.79: XWS, 30 mm 6.00-6.40: XWZ, 400 mm 6.67-6.77: XWS, 100 mm				
				7			LAMINITE; SANDSTONE and SHALE; sandstone is fine grained, grey and brown, with pale grey laminations, thinly bedded.	_		7.08-7.12: XWS, 40 mm				
		100	46	- 8 - - - - 9	-					7.82: JT, 40 - 50°, CN, PR, RF				
		100	16	9	-					9.64-9.68: XWS, 40 mm 9.90-10.08: CS, 90 mm				

CORED BOREHOLE LOG

	Project Location Position Job No.				12-1110	igure 2		oad, Palm Beach NSW	Sheet Date Started Date Completed Logged By KX	3 OF 27/10/ 27/10/ Date 2	2021		
	Client				mdev I				Reviewed By SR		14/12/2021		
ſ	Drilling Contactor TightS							Surface RL ≈12.00 m AHD Inclination -90°					
-	Drill Rig Hand P Drilling							Field Material Description	Defect Information				
	MEIHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIPTION & Additional Observations		Average Defect Spacing (mm)
STMI	NMLC	80-90% RETURN	100	87	10	-		AMINITE; SANDSTONE and SHALE; sandstone is the grained, grey and brown, with pale grey minations, thinly bedded.	 IIII IIIII IIIII IIIIII IIIIIIII IIIIIIIIII IIIIIIIIIIII 				
		80	100	63	- 12 — - - - -	13.00	3.00						
EA 200.3 LB/GLB Log EA CORED BOREHOLE 1 E28203 G03 BOREHOLE LOGS/GPJ << DrawingFile>> 10/122021 14.43 10.0.000 Daggal Lab and In Situ Tod - DGD Little EA 2.00.3 2017-11-21 Pg: EA 2.00.1 2017-09-26								Hole Terminated at 13.00 m Target Depth Reached.					
EIA 2.00.3 LIB	20 - This borehole log should be read in conjunction with El Australia's accompanying standard notes.												

CORE PHOTOGRAPH OF BOREHOLE: BH103

Project	Proposed Development			Depth Range	1.00m to9.	00m BEG	L
Location	1112-1116 Barrenjoey Road, Palm Beach NSW		Contractor	TightSite			
Position	Refer to Figure 2	Surface RL	≈ 12.0 m	Drill Rig	Hand Port	able	
Job No.	E25203.G03	Inclination	- 90°	Logged	KX	Date	27 / 10 / 2021
Client	Palmdev Pty Ltd	Box	1-2 of 3	Checked		Date	

1 1 1 2 3 4 5 6 7 8 9 10 11 11 11 13 14 15 16 17 18 19 20 21 22 23 27 25 26 27 28 29 30 31 32 33 34 35 67 8 9 0 1 2 3 4 5 6 7

CORE PHOTOGRAPH OF BOREHOLE: BH103

Project .ocation	Proposed Development 1112-1116 Barrenjoey Road, Palm Beach NSW			Depth Range Contractor	9.00m te TightSi	o13.00m BE ite	EGL
osition	Refer to Figure 2	Surface RL	≈ 12.0 m	Drill Rig	Hand P		
ob No.	E25203.G03	Inclination	- 90°	Logged	KX	Date	27 / 10 / 2021
lient	Palmdev Pty Ltd	Box	3 of 3	Checked		Date	
	3. 4 6 6 7 8 9 10 1: 11 13	A					
) 1, 2 3 4 € 6 7 8 9 10 1: 13) 2 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4 1	14 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8	9 20 21 22 23 22 2 9 0 1 2 3 4 5 6 7 8 9 60 1 2 3	5 26 27 28 29 3 4 5 6 7 8 9 70 1 2 3 4 5 6	0 31 32 7 8 9/80 1 .	<i>33 34</i> 2345678	35 67 37 38 99012345678
	92 - 4 5 6 7 8 9 10 1. 13 13 2 - 4 5 6 7 8 5 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4	14 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8	9 20 21 22 23 213 2 9 0 1 2 3 4 5 6 7 8 9 60 1 2 3	5 26 27 28 29 3 4 5 6 7 6 9 70 1 2 3 4 5 6	0 31 32 7 8 9/80 1	33 34 2345678	35 67 37 38 99012345678
9		14 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8	9 20 21 22 23 27 2 9 1 2 3 4 5 6 7 8 9 60 1 2 3	5 26 27 28 29 3 4 5 6 7 8 9 70 1 2 3 4 5 6	0 31 192 7 8 9/80 1	33 34 2 3 4 5 6 7 8	35 17 37 38 9 12 3 4 5 6 7 8
9	2 3 4 5 6 7 8 9 10 1: 11 13 2 4 5 6 7 8 5 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4 1	14 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8	9 20 21 22 23 23 2 9 1 2 3 4 5 6 7 8 9 60 1 2 3	5 26 27 28 29 3 4 5 6 7 8 9 70 1 2 3 4 5 6	0 31 32 7 8 9/80 1	2 3 4 5 6 7 8	35 07 37 38 9 20 1 2 3 4 5 6 7 8
9	2 - 4 5 6 7 8 5 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4	14 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8	9 20 21 22 23 21 2 9 1 2 3 4 5 6 7 8 9 60 1 2 3	5 26 27 28 29 3 4 5 6 7 8 9 70 1 2 3 4 5 6	0 31 92 7 8 9/801	33 34 2 3 4 5 6 7 8	350 12 3 4 5 8 7 8 900 12 3 4 5 8 7 8
9	2 - 4 5 6 7 8 5 10 1 2 3 4 5 6 7 8 9 10 1: 10 1: 10 13 - 4 5 6 7 8 5 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4	14 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8	9	26 27 28 29 3 4 5 6 7 8 9 10 1 2 3 4 5	0 37 37 7 8 9/501	2 3 4 5 6 7 8	35 07 37 38 9 1 2 3 4 5 6 7 8
9	2 - 4 5 6 7 B 5 10 1 2 3 4 5 6 7 B 9 20 1 2 3 4 5 6 7 B 9 30 1 2 3 4	14 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8	9 20 21 22 23 21 2 9 11 2 3 4 5 6 7 8 9 601 2 3	5 26 27 28 29 3 4 5 6 7 8 9 70 1 2 3 4 5 6	0 31 02 7 8 9/801	3 3 4 5 6 7 8	35 67 37 38 9 12 2 4 5 6 7 3 10 12 2 4 5 6 7 3
9	1 1 <td>114 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8</td> <td>920 - 21 - 22 - 23 27 - 2 9 - 31 2 3 4 5 6 7 8 9 601 2 3</td> <td>20 27 28 29 3 4 5 6 7 8 9 10 1 2 4 5 6</td> <td>0 37 82 7 8 9/80 1</td> <td>2 3 4 5 6 7 8</td> <td>35 Ef2 37 38 990 12 3 4 5 6 7 8</td>	114 15 16 17 18 1 5 6 7 8 9 40 1 2 3 4 5 6 7 8	920 - 21 - 22 - 23 27 - 2 9 - 31 2 3 4 5 6 7 8 9 601 2 3	20 27 28 29 3 4 5 6 7 8 9 10 1 2 4 5 6	0 37 82 7 8 9/80 1	2 3 4 5 6 7 8	35 Ef2 37 38 990 12 3 4 5 6 7 8
9 10 11	2 2 3 5 6 7 8 5 10 1 2 3 4 5 6 7 8 9 10 11 11 11 11 13 2 4 5 6 7 8 5 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 30 1 2 3 4	14 15 16 17 18 1 5 6 7 8 9 401 2 3 4 5 6 7 8	9 20 21 22 23 21 2 9 11 2 3 4 5 6 7 8 9 601 2 3	5 26 27 28 29 3 4 5 6 7 8 9 70 1 2 3 4 5 6	0 31 02 7 8 9/801	33 34 2 3 4 5 6 7 8	30 12 37 38 90 12 3 4 5 8 7 8
9			9 - 20 - 21 - 22 - 23 27 - 2 9 - 51 2 3 4 5 6 7 8 9 60 1 2 3	5 20 27 28 29 3 4 5 6 7 8 9 70 1 2 3 4 5 6	0 37 82 7 8 9/80 1		35 67 37 38 990 12 3 4 5 6 7 8

eiaustralia Pratical Solutions for Built Environments

2017-09-26

Pri-FIA 2 00 '

2017-11-21

11000

000

0.53 10.0

AND

TFXT

ц Ц

DYNAMIC CONE PENETROMETER TEST RESULTS

DCP NO. DCP1

BOREHOLE LOG

BH NO. BH104M

	Lo Po Jol	oject catio sitio b No	n n	1112- Refer E2520	1116 Ba to Figur 3.G03		n Bea	ach NS	W			1	Sheet Date Started Date Completed Logged By KX	1 of 3 27/10/2021 27/10/2021 Date 27/10/2021	
Ļ		ent			ev Pty I							I	Reviewed By SR	Date 14/12/2021	
		rilling rill Ri		ntactor		htSite nd Portable				face RL ≈12.00 m AHD lination -90°					
┢				ling	i iai	Sampling			IIIC	Field Material Desc	rintic	<u></u>			
	METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION		STRUC ADD OBSEF	TURE AND ITIONAL RVATIONS	
	ΗA	-	GWNE	0	12.00 0.47	1 DS 0.20-0.30 m			-	FILL: Sitty SAND; fine grained, brown, trace rootlets, medium to coarse, angular to sub-angular gravels.	D	-	FILL		
F				_	0.47					Continued as Cored Borehole					F
				-											Ĺ
				1—											-
				-											Ĺ
				-											Ĺ
				2-											
				-											
				-											
				-											
88				3 —											-
2017-09-				-											
A 2.00.1				-											ĺ
21 Prj: El				-											
017-11-2				4 —											-
2.00.3 2				_											ĺ
Situ Tool - DGD Lib: EIA 2.00.3 2017-11-21 Prj: EIA 2.00.1 2017-09-26				-											
ol - DGD				- 5 —											
n Situ Too				5 –											
ab and I				-											
Datgel L				-											
10.0.000				6 —											-
1 10:18				-											
15/11/202				-											
gFile>>				_											
< <drawin< th=""><td></td><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawin<>				7											-
S.GPJ				-											
OLE LOC				-											
BOREH				8											-
203.G03				-											
E 1 E25				_											Ĺ
CLEHOL				-											
DRED BC				9 —											-
NON-CC				-											
Log EIA				-											
LIB.GLB				=											
EIA 200 3 LIB GLB LQ; EIA NON-CORED BOREHOLE 1 E25203 G03 BOREHOLE LOGS GPJ < <drawingfile>> 15/11/2021 10:18 10.0.000 Datget Lab and In</drawingfile>	I			10—		This bore	hole	log sho	uld l	e read in conjunction with EI Australia's accompanying sta	ndard	Inote	S.		L

CORED BOREHOLE LOG

BH NO. BH104M

	Proje Locat Positi	ion	11	oposed Development 12-1116 Barrenjoey Road, Palm Beach NSW fer to Figure 2							Sheet Date Started Date Completed	2 OF 3 27/10/2 27/10/2	2021
	Job N	о.	E2	5203.G	603						Logged By KX		7/10/2021
	Clien			Imdev I	-						Reviewed By SR	Date 1	4/12/2021
	Drilli Drill	ng Co Ria	ntac		TightSit Hand P		e Inclination -90°)					
-		-	Drill				Field Material Description				Defect Information		
METHOD	WATER		RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	IN ST Is V ^{T0-1}	FERRED RENGTH s ₍₅₀₎ MPa	DEFECT DESCRIPTION & Additional Observations		Average Defect Spacing (mm)
		100	64 85 37 57		<u><i>A.65</i></u> 7.35		Continuation from non-cored borehole LAMINITE; SANDSTONE and CLAYSTONE; sandstone is fine grained, red-brown, orange-brown, pale brown and pale grey, thinly bedded. LAMINITE; SANDSTONE and SHALE; sandstone is fine grained, grey and brown, with pale grey laminations, thinly bedded.				6.36: JT, 70 - 80°, Fe SN, PR, RF		
BOREHOLE 1 E25203.G03 BORE		100	67	8	-				-		8.49-8.53: CS, 40 mm		
0.3 LIB.GLB Log EIA CORED		100	80	10-	-					↓ ↓ ↓ ↓ ↓	9.30-9.40: CZ, 100 mm		
EIA 2.(TI	nis borehole log should be read in conjunction with	EIA	ustr	alia's acc	companying standard notes.		

CORED BOREHOLE LOG

BH NO. BH104M

	Pro	ject		Proposed Development Sheet 3 OF 3									
		atio					ijoey R	load, Palm Beach NSW			Date Started	27/10/	
		itio				igure 2					Date Completed	27/10/	
		No.	•		5203.G						Logged By KX		27/10/2021
_	Clie				mdev F	-					Reviewed By SR	Date 1	14/12/2021
		lling Il Ri	g Co ia	ntaci		TightSit Hand P		Surface RL ≈12.00 m AHD Inclination -90°					
-	Dri			<u> </u>		Hanu P	onable				D. C. H. C		
-				Drilli	ng			Field Material Description			Defect Information		A
	MEIHOU	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	INFERRED STRENGTH Is ₍₅₀₎ MPa	& Additional Observations		Average Defect Spacing (mm)
0.111	NMLC	80-90% RETURN	100	80	10	-		LAMINITE; SANDSTONE and SHALE; sandstone is fine grained, grey and brown, with pale grey laminations, thinly bedded.	DW	•	10.43: JT, 45°, CN, UN, RF		
					12— - -	<u>12.57</u> -0.57							
EA 200.3 LBIGLB Log EA CORED BOREHOLE 1 E28203.603 BOREHOLE LOGS.GPJ < <drawingfile>> 10/12/2021 14;43 10.0.000 DagelLab and in Situ Tod - DGD LLIb EA 2.00.3 2017-11-21 Ph; EM 2.00.1 2017-09-28</drawingfile>								Hole Terminated at 12.57 m Target Depth Reached.					
A 2.00.3 LIB.C					20—		Th	is borehole log should be read in conjunction with	El Au	ustralia's act	companying standard notes.		

CORE PHOTOGRAPH OF BOREHOLE: BH104M

Proje	ect	Proposed Development			Depth Range	ange 0.47m to10.00m BEGL				
Loca	tion	1112-1116 Barrenjoey Road, Palm Beach NSW	Contractor	TightSite						
Posit	tion	Refer to Figure 2	Surface RL	≈ 12.0 m	Drill Rig	Hand Port	table			
Job I	No.	E25203.G03	Inclination	- 90°	Logged	KX	Date	27 / 10 / 2021		
Clien	nt	Palmdev Pty Ltd	Вох	1-2 of 3	Checked		Date			

CORE PHOTOGRAPH OF BOREHOLE: BH104M

12-1116 Barrenjoey Road, Palm Beach NSW			Contractor	TightSite		
			Contractor	rightone		
fer to Figure 2	Surface RL	≈ 12.0 m	Drill Rig	Hand Port	able	
		- 90°	Logged	KX	Date	27 / 10 / 2021
mdev Pty Ltd	Box	3 of 3	Checked		Date	
52	03.G03	03.G03 Inclination	Inclination -90°	03.G03 Inclination -90° Logged	03.G03 Inclination -90° Logged KX	103.G03 Inclination -90° Logged KX Date

MONITORING WELL LOG

MW NO. BH104M

		ject				lopment						Shee	et	1 of 2
		atio				renjoey Road, Palm Beach NSW							Started	27/10/2021
		sitior		lefer to	-	2							Completed	27/10/2021
		o No. ent		25203. almdev		d							ged By KX	Date 27/10/2021
												Revi	ewed By SR	Date 14/12/2021
			g Conta	actor	Tight		≈12.00 m AH	D						
		ill Ri	g		Hand	Portable Inclination	-90°	1						
METHOD		WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIF	PTION	ID BH104M	Type Standpipe	PIEZOMETEI Stick Up & I		Tip D		AILS allation Date Static Water Level
	_		-0	-12-		FILL: Silty SAND; fine grained, brown, trace root	ets medium to			8///			Gatic Co	ver
HA		GWNE	_	_	\bigotimes	coarse, angular to sub-angular gravels.	lets, medium to				101			
			- - 2	- - - 10		LAMINITE; SANDSTONE and CLAYSTONE; sar grained, red-brown, orange-brown, pale brown a thinly bedded.	ndstone is fine nd pale grey,	-			本			
l-21 Prj: ElA 2.00.1 2017-09-26			- 4	- 8 -		LAMINITE; SANDSTONE and SHALE; sandston grained, grey and brown, with pale grey lamination	e is fine ons, thinly						 ← Grout 	
Lab and In Situ Tool - DGD Lib: EIA 2.00.3 2017-11- NMI_C	INMEC	80-90% RETURN	- 6	- 6 - -		bedded.							uPVC 50	mm Casing
>> 10/12/2021 14:44 10.0.000 Datgel			- 8 -	- 4 -				8.00 m						mm Screen
ORE HOLE LOGS GPJ << DrawingFile			- - 10	- - 2—									Sand	nin Sceen
EA 200.3 LB GLB LQ EA PIEZOMETER NSTALLATION LOG E25203603B0REHOLE LOGS GPJ < <drawingfile>> 10/122021 14:44 10.0.000 Dange Lab and in Siu Too - DGD LUIX EIA 2.00.3 20/17-11-21 Prj: EIA 2.00.1 20/7-09-26 NMI C</drawingfile>			- - 12 - -	- - - - - -		Hole Terminated at 12.57 m Target Depth Reached.		<u>11.00 m</u>						
.3 LIB.G			-	-										
EIA 2.00.						This well log should be read in co	njunction with I	El Australia	a's accomp	panying standa	ard no	otes.		

eiaustralia

DYNAMIC CONE PENETROMETER TEST RESULTS

DCP NO. DCP2

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRILLING/EXCAVATION METHOD

HA	Hand Auger	ADH	Hollow Auger	NQ	Diamond Core - 47 mm				
DT	Diatube Coring	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm				
NDD	Non-destructive digging	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm				
AD*	Auger Drilling	RC	Reverse Circulation	HMLC	Diamond Core - 63 mm				
*V	V-Bit	PT	Push Tube	EX	Tracked Hydraulic Excavator				
*T	TC-Bit, e.g. AD/T	WB	Washbore	HAND	Excavated by Hand Methods				
PENE	TRATION RESISTANCE								
L	Low Resistance	Rapid penet	ration/ excavation possible v	vith little effort from e	equipment used.				
м	Medium Resistance	Penetration/	enetration/ excavation possible at an acceptable rate with moderate effort from equipment used.						
н	High Resistance	Penetration/ equipment u	excavation is possible but a sed.	t a slow rate and rec	quires significant effort from				
R	Refusal/Practical Refusal	No further p	rogress possible without risk	of damage or unacc	ceptable wear to equipment used.				
	e assessments are subjective and a g tools and experience of the operat		on many factors, including ed	quipment power and	weight, condition of excavation or				
WATE	ER								
	aggreen Standing Water Le	evel		Partial v	vater loss				
	➢ Water Seepage				te Water Loss				
GWN			SERVED - Observation of g page or cave-in of the borel		r present or not, was not possible				
GWN			COUNTERED - Borehole/ t		after excavation. However,				
	groundwater could been left open for			w may have been ol	oserved had the borehole/ test pit				
SAME	PLING AND TESTING	a longer perio	u.						
SPT		ration Test to	AS1289.6.3.1-2004						
4,7,11 N			N = Blows per 300mm pen						
30/80m RW			s, the blows and penetration ie rod weight only, N<1	for that interval are	reported, N Is not reported				
HW	Penetration occ	urred under th	e hammer and rod weight or	nly, N<1					
HB Sampl		bouncing on	anvil, N is not reported						
DS	Disturbed Samp								
ES	Sample for envi Bulk disturbed S		ting						
BDS GS	Gas Sample	ample							
WS	Water Sample								
U50 Testin		e sample - nur	nber indicates nominal samp	ble diameter in millin	netres				
Testing FP	9 Field Permeabil	ity test over se	ection noted						
FVS			sed as uncorrected shear str	ength (sv= peak val	ue, sr= residual value)				
PID	Photoionisation Pressuremeter		0 11						
PM PP			ressed as instrument readin	g in kPa					
WPT	Water Pressure			-					
DCP CPT	Dynamic Cone Static Cone Per		test						
CPTu			vith pore pressure (u) measu	irement					
GEOL	OGICAL BOUNDARIES			2 2	2 Doundon				
	= Observed Boundary (position known)		= Observed Bounda (position approxim	ai y	 ?= Boundary (interpreted or inferred) 				
ROCH			v -11 -	,					
	TCR=Total Core Reco	overy (%)		RQD = Rock Qu	ality Designation (%)				
	Length of core recover	ed		$\sum Axial \ lengths$	of core > 100mm				
	$=\frac{Length of core recover}{Length of core run}$	—×100		$=\frac{1}{Length of}$	of core > 100mm f core run × 100				
L									

eiaus	tralia				METHO			SCRIPTION			
Contamination Rem	FILL		<u>46 46 46</u> 46 46		ANIC SOILS		 	CLAY (CL, C	CI or CH)		
\overline{Q}_{n}	COUBL BOULD				(ML or MH)			SAND (SP c	or SW)		
00000		L (GP or GW)	Combinat sandy cla		f these basic s	ymbols may	be used to	indicate mixed ma	aterials such as		
Soil is broa					Logs using the	e preferred n	nethod give	en in AS 1726:201	7, Section 6.1 –		
PARTICL	E SIZE CH	ARACTERISTIC	S		GROUP S	YMBOLS					
Fraction	Component	s Sub Division	Size mm		Major Di	visions	Symbol		vel and gravel-sand		
Oversize	BOULDERS	6	>200		- <u>p</u> _	% of on is	GW	mixtures, little o	or no fines, no dry ength.		
	COBBLES	Coarse	63 to 200		COARSE GRAINED SOILS More than 65% of soil excluding oversize fraction is greater than 0.075mm	GRAVEL More than 50% c coarse fraction i	GP	mixtures, little of	avel and gravel-sand or no fines, no dry ength.		
	GRAVEL	Medium	6.7 to 19		BD Soil e. Brea	GF ore th parse	GM		el-sand-silt mixtures, um dry strength.		
Coarse	ONVEL	Fine	2.36 to 6.7	7	ZAIN of s on is 75mr	Υ ^C Δ	GC	Clayey gravel,	gravel-sand-clay to high dry strength.		
grained soil		Fille 2.30 to 0.7 20 % G to 0.7 Coarse 0.6 to 2.36 30 % G to 0.7		COARSE GRAINED Coarse Graine ore than 65% of soil ∈ versize fraction is gree 0.075mm	6 of 1 is	SW	Well graded sand	d and gravelly sand, s, no dry strength.			
0011	SAND	Medium	0.21 to 0.6	6	DAR: e thai size	D 50% mm	SP	Poorly graded sar	nd and gravelly sand, s, no dry strength.		
	Fine 0.0				More	SAND More than 50% of coarse fraction is <2.36 mm	SM	Silty sand, sand-	silt mixtures, zero to dry strength.		
Fine	Fine SILT 0.002 to				-	More coar	SC	Clayey sand, sa	ndy-clay mixtures, gh dry strength.		
grained soil	CLAY		<0.002		in g an	∨ ss	ML	Inorganic silts of lo sands, rock flour	w plasticity, very fine , silty or clayey fine		
⁶⁰	PLAST		TIES		SOILS exclud less tha	imit les 50%	CL, CI	Inorganic clays plasticity, gravelly	edium dry strength. of low to medium y clays, sandy clays,		
50 -			5 (M. *		FINE GRAINED SOILS More than 35% of soil excluding oversized fraction is less than 0.075mm	Liquid Limit less < 50%	OL	Organic silts and	Silty clays, medium to high dry strength. Organic silts and organic silty clays of low plasticity, low to medium dry		
40 - 40 -		CH or OH	118 A 111, 200		3FAI 35% 1 frac 0.07		-	strength.			
30 X INDE					INE (than sized	iid t > 50%	MH	very high	dry strength. high plasticity, high to		
PLASTICITY INDEX 1/9 07 00 07		CI or OI MH	or OH		Aore over	Liquid Limit > :han 50%	CH	very high	dry strength. of medium to high		
	CL or OL CL : ML 10 20 30	ML or OL 40 50 60 LIQUID LIMIT W _L , %	70 80 90	100	Highly Organic PT Peat mu			plasticity, medium Peat muck and o	to high dry strength. other highly organic oils.		
	RE CONDIT										
Symbol		Description									
D M		Non- cohesive and Soils feel cool, da	0	r Soil	tanda ta atiak t	agothar					
W		· · · · ·				0	water forn	ns when handling.			
Moisture content a	content of col as follows: Mo it ($w \approx LL$), We	nesive soils shall b	be described in mit (<i>w</i> < PL); M	relatio	n to plastic lim	it (PL) or liqu	id limit (LL) for soils with high plastic limit (<i>w</i> < F			
Symbol		Undrained Shear	SPT "N" #	┢	Symbol	Term		Density Index %	SPT "N" #		
VS	Very Soft	Strength (kPa) ≤ 12	SFIN# ≤2		VL	Very Lo		≤ 15	0 to 4		
s s	Soft	12 >12 to ≤ 25	≤ ∠ >2 to ≤ 4	\vdash	L	Loos		≤ 15 >15 to ≤ 35	4 to 10		
F	Firm	>25 to ≤ 50	>4 to 8		MD	Medium D		>35 to ≤ 65	10 to 30		
St VSt	Stiff Very Stiff	>50 to ≤ 100 >100 to ≤ 200	>8 to 15 >15 to 30	\vdash	D VD	Dens Very De		>65 to ≤ 85 >85	30 to 50 Above 50		
Н	Hard	>200	>30		VD	very De	1130	205	Above 30		
# SPT corr and equipr	relations are n ment type.	ot stated in AS172						served behaviour pressure, moisture	of the material. content of the soil,		
MINOR COMPONENTS							P-	oportion by Mass			
	Term Assessment Guide Add (Trace) Presence just detectable by feel or eye but soil pro							se grained soils: \leq			
Add 'Trac	e or no diffe	rent to general pro easily detectable l	operties of prima	ary cor	mponent	Fine grained soil: ≤ 15%					
Add 'With	or no diffe	rent to general pro	perties of prima	ary cor	mponent	Fine grained soil: 15 - 30%					
Prefix sol name	refix soil Presence easily detectable by feel or eye in conjunction with general properties of primary component						e Coarse grained soils: >12% Fine grained soil: >30%				

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 -2017, Section 6.2 - Rock identification, description and classification.

	ymbol Term Point Load Index, Is ₍₅₀₎ (MPa) [#]		Field Guide
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.
#Rock Str	ength Test Res	ults 🔻	Point Load Strength Index, Is ₍₅₀₎ , Axial test (MPa)

Relationship between rock strength test result $(Is_{(50)})$ and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. However UCS is typically 20 x $Is_{(50)}$.

ROCK MATERIAL WEATHERING CLASSIFICATION

Sym	bol	Term	Field Guide					
RS	RS Residual So		Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.					
XW	XW Extremely Weathered		Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.					
	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or					
DW	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.					
SW	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.					
FR Fresh		Fresh	Rock shows no sign of decomposition or staining.					

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 2017, Section 6.2 – Rock identification, description and classification.

DETAILED ROCK DEFE	ECT SF	ACING							
Defect Spacing					Bedd	ing Tl	hickness (Stra	tification	
Spacing/width (mm)	De	scriptor		Symbol	Term				Spacing (mm)
				•	Thinly		nated		<6
<20	-	tremely Clos	se	EC	Lamin				6 – 20
20-60	-	ry Close		VC			bedded		20 – 60
60-200		ose		С	Thinly				60 – 200
200-600		edium		Μ	Mediu				200 - 600
600-2000	Wi			W	Thick				600 - 2,000
2000-6000		ry Wide		VW	Very 1	thickly	bedded		> 2,000
ABBREVIATIONS AND	DESC			YPES					
Defect Type		Abbr.	Description						
Joint		JT		racture or parting, forme d or filled by air, water o		•			ne rock has little or no tensile strengtherement.
Bedding Parting		BP	layering/ bedd		he layerir	ng or s			ength, parallel or sub-parallel to icating orientation during deposition,
Contact		CO	The surface b	etween two types or age	es of rock	κ.			
Sheared Surface		SSU	A near planar	, curved or undulating s	urface wh	nich is	usually smooth	n, polishe	d or slickensided.
Sheared Seam/ Zone (Fault)		SS/SZ		•		undaries of rocl ts or cleavage		ce cut by closely spaced (often <50	
Crushed Seam/ Zone (Fault)		CS/CZ		•	ed usually angular fragments of the host rock substance, with roughly paralle ed fragments may be of clay, silt, sand or gravel sizes or mixtures of these.				
Extremely Weathered Seam/ Zone	>	(WS/XWZ	Seam of soil s	substance, often with gra	adational	dational boundaries, formed by weathering of the rock material in places.			
Infilled Seam		IS		ubstance, usually clay o joint or open cavity.	or clayey,	, with v	very distinct rou	ighly para	llel boundaries, formed by soil
Vein		VN	Distinct sheet-	like body of minerals cr	ystallised	l withi	n rock through t	ypically o	pen-space filling or crack-seal growth
NOTE: Defects size of	<100m	m SS, CS a	nd XWS. Defec	cts size of >100mm SZ,	CZ and >	KWZ.			
ABBREVIATIONS AND	DESC	RIPTIONS F	FOR DEFECT S	SHAPE AND ROUGHN	ESS				
Shape	Abbr	. Descrip	tion	Roughness	Abbr.	Des	cription		
Planar	PR	Consist	ent orientation	Polished	POL	Shin	y smooth surfa	ce	
Curved	CU	Gradua orientat	l change in ion	Slickensided	SL	Groo	oved or striated	surface,	usually polished
Undulating	UN	Wavy s	urface	Smooth	SM	Smo	oth to touch. Fe	ew or no s	surface irregularities
Stepped	ST	One or steps	more well defin	ed Rough	RO		y small surface s like fine to co	•	ties (amplitude generally <1mm).
Irregular	IR	Many sł orientat	narp changes ir ion	ר Very Rough	VR		y large surface very coarse sar	•	ies, amplitude generally >1mm. Feels
Drientation:				(inclination from horizont lination is measured as t					
ABBREVIATIONS AND	DESC	RIPTIONS F	OR DEFECT C	OATING			DEFECT APE	RTURE	
Coating	Abbr	. Descript	ion	_			Aperture	Abbr.	Description
Clean	CN	No visible	coating or infilli	ing			Closed	CL	Closed.
Stain	SN		coating but sur nite (orange-bro	faces are discoloured by own)	y staininę] ,	Open	OP	Without any infill material.
Veneer	VNR		oating of soil or < 1 mm); may b	r mineral substance, usu be patchy	ually too t	thin to	Infilled	-	Soil or rock i.e. clay, silt, talc, pyrite, quartz, etc.

Appendix B – Laboratory Certificates

GEOTECHNIC CONSULTING GEOTECH	CS PTY LTD			14/1 Cowpas	sture Place, V	hnics Pty Ltd Wetherill Park ail: enquiries@st				NATA Compl	ited for iance with C 17025 - Testing 50
Project: E2520 Client: El Aust Address: Suite Test Method:	ralia 6.01, 55 Mill		, .		ad Stren	gth Index i	Report		Report No.: eport Date:	31264/52590 21/1884 22/06/2021 1 OF 1)-L
Sampling Proc Scope of Accre		les Supplied By	/ Client (Not	covered under	NATA	Sampling Proc Scope of Accre		les Supplied By	/ Client (Not	covered unde	r NATA
Date Samples	Drilled / Take	en: 11/06/2021	L			Date Samples	Drilled / Take	en:			
Borehole No.	101M					Borehole No.					
Depth	Test Type	ls(50) (Mpa)	Rock Type	Failure Type	Moisture	Depth	Test Type	ls(50) (Mpa)	Rock Type	Failure Type	Moisture
3.30	А	0.052	TS	3	М						
4.39	А	0.062	TS	3	Μ						
5.28	А	0.086	TS	3	М						
5.84	А	0.110	TS	3	М						
6.34	А	0.085	TS	3	Μ						
7.40	А	0.130	TS	3	Μ						
8.34	A	0.089	TS	3	Μ						
1= FRACTURE THROUGH BEDDING OR WEAK PLANEA=.2= FRACTURE ALONG BEDDINGD=3= FRACTURE THROUGH ROCK MASSI= II						TEST TYPEMOISTURE CONA= AXIALW= WETD= DIAMETRALM= MOISTI= IRREGULARD= DRYC= CUBE		ONDITION	ROCK TYPE SS= SANDSTONE ST= SILTSTONE SH= SHALE YS= CLAYSTONE IG= IGNEOUS		
Remarks:									Approved Si	gnatory	pula?
Technician: FV	,							Orlando Men	doza - Labor	atory Manage	r

				14/1 Cowpa	sture Place, N	nnics Pty Ltd Wetherill Park I ail: enquiries@st				Compli	lited for iance with C 17025 - Testing 50
Project: E2520 Client: El Aust i Address: Suite Test Method: <i>i</i>	ralia Pty Ltd 6.01, 55 Mille	-		m Beach	ad Stren	gth Index I	Report		Report No.: Report Date:	31380/5855D 21/3558 30/11/2021 1 of 1)-L
Sampling Proce of Accreditatio	-	es Supplied By	Client (Not c	overed under	NATA Scope	Sampling Proce of Accreditatio	-	es Supplied By	Client (Not o	overed under	NATA Scope
Date Samples	Drilled / Take	n: 27/10/21				Date Samples I	Drilled / Take	n: 27/10/21			
Borehole No.	103					Borehole No.	104				
Depth	Test Type	ls(50) (Mpa)	Rock Type	Failure Type	Moisture	Depth	Test Type	ls(50) (Mpa)	Rock Type	Failure Type	Moisture
1.47	A	0.023	SS	3	W	1.27	А	0.024	SS	3	М
2.40	А	0.400	SS	3	Μ	2.38	А	0.020	SS	3	М
3.78	А	0.039	TS	3	W	4.65	А	0.057	SS	3	М
4.53	А	0.750	SS	3	W	5.79	А	0.120	SS	3	М
6.49	А	0.640	SS	3	Μ	7.44	А	0.160	SS	3	М
7.44	А	0.073	SS	3	Μ	8.71	А	0.063	SS	3	М
9.22	А	0.180	SS	3	Μ	9.67	А	0.260	SS	3	М
10.34	А	0.120	SS	3	Μ	10.38	А	0.330	SS	3	М
11.43	А	0.290	SS	3	Μ	11.51	А	0.340	SS	3	М
12.43	А	0.200	SH	3	Μ	12.43	А	0.200	SS	3	М
FAILURE TYPE TEST TYPE MOISTURE CONDITION ROCK TYPE 1= FRACTURE THROUGH BEDDING OR WEAK PLANE A= AXIAL W= WET SS= SANDSTONE 2= FRACTURE ALONG BEDDING D= DIAMETRAL M= MOIST ST= SILTSTONE 3= FRACTURE THROUGH ROCK MASS I= IRREGULAR D= DRY SH= SHALE 4= FRACTURE INFLUENCED BY NATURAL DEFECT OR DRILLING C= CUBE YS= CLAYSTONE 5= PARTIAL FRACTURE OR CHIP (INVALID RESULT) IG= IGNEOUS						IE NE					
Technician: FV	,								Approved Sig	a - Laborator	ry Manager

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Kaiyu Xu	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25203.G03 1112-1116 Barrenjoey Rd, Palm	SGS Reference	SE220690 R0
Order Number	E25203.G03	Date Received	15/6/2021
Samples	2	Date Reported	22/6/2021

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

iona

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Soluble Anions (1:5) in Soil/Solids by Ion Chromatography [AN245] Tested: 17/6/2021

			BH101M 0.5-0.95m	BH102 3.0-3.45m
			SOIL	SOIL
			11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220690.001	SE220690.002
Chloride	mg/kg	0.25	18	110
Sulfate	mg/kg	5	22	63

pH in soil (1:5) [AN101] Tested: 17/6/2021

			BH101M 0.5-0.95m	BH102 3.0-3.45m
			SOIL	SOIL
			- 11/6/2021	- 11/6/2021
PARAMETER	UOM	LOR	SE220690.001	SE220690.002
pH	pH Units	0.1	5.7	4.8

Conductivity and TDS by Calculation - Soil [AN106] Tested: 17/6/2021

			BH101M 0.5-0.95m	BH102 3.0-3.45m
			SOIL	SOIL
			11/6/2021	11/6/2021
PARAMETER	UOM	LOR	SE220690.001	SE220690.002
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	27	130

Moisture Content [AN002] Tested: 21/6/2021

			BH101M 0.5-0.95m	BH102 3.0-3.45m
			SOIL	SOIL
			- 11/6/2021	- 11/6/2021
PARAMETER	UOM	LOR	SE220690.001	SE220690.002
% Moisture	%w/w	1	9.2	34.3

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos /cm or µS/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

	TNIOT	LEC.

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	¢↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

Appendix C – Vibration Limits

German Standard DIN 4150 – Part 3: 1999 provides guideline levels of vibration velocity for evaluating the effects of vibration in structures. The limits presented in this standard are generally considered to be conservative.

The DIN 4150 values (maximum levels measured in any direction at the foundation, OR, maximum levels measured in (x) or (y) directions, in the plane of the uppermost floor), are summarised in **Table A** below.

It should be noted that peak vibration velocities higher than the minimum figures in **Table A** for low frequencies may be quite 'safe', depending on the frequency content of the vibration and the actual conditions of the structures.

It should also be noted that these levels are 'safe limits', up to which no damage due to vibration effects has been observed for the particular class of building. 'Damage' is defined by DIN 4150 to include even minor non-structural cracking in cement render, the enlargement of cracks already present, and the separation of partitions or intermediate walls from load bearing walls. Should damage be observed at vibration levels lower than the 'safe limits', then it may be attributed to other causes. DIN 4150 also states that when vibration levels higher than the 'safe limits' are present, it does not necessarily follow that damage will occur. Values given are only a broad guide.

		Peak Vibration Velocity (mm/s)							
Group	Type of Structure	At Foundatio	Plane of Floor of Uppermost Storey						
		Less than 10 Hz	10 Hz to 50 Hz	50 Hz to 100 Hz	All Frequencies				
1	Buildings used for commercial purposes, industrial buildings and buildings of similar design	20	20 to 40	40 to 50	40				
2	Dwellings and buildings of similar design and/or use	5	5 to 15	15 to 20	15				
3	Structures that because of their particular sensitivity to vibration, do not correspond to those listed in Group 1 and 2 and have intrinsic value (e.g. buildings that are under a preservation order)	3	3 to 8	8 to 10	8				

Table A DIN 4150 – Structural Damage – Safe Limits for Building Vibration

Note: For frequencies above 100 Hz, the higher values in the 50 Hz to 100 Hz column should be used.

Appendix D – Important Information

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client And El Australia ("El"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

El has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. El has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, El will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to El.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies. The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. El should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that EI be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. El assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of El or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

El will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.