GENERAL

- 1. THIS PLAN IS TO BE USED IN CONJUNCTION WITH ARCHITECTURAL, STRUCTURAL, & LANDSCAPING PLANS. ANY DISCREPANCIES OR OMISSIONS ARE TO BE REFERRED TO THE ENGINEER FOR RESOLUTION DRIVED TO COMMENCING MICROL
- 2. ALL MATERIALS AND WORKMANSHIP IS TO MEET AS 3500.3:2015 STORMWATER DRAINAGE, BCA AND LOCAL COUNCIL DEVELOPMENT POLICIES, CONSENTS AND REQUIREMENTS.
- IT IS THE CONTRACTORS RESPONSIBILITY TO VERIFY ALL DIMENSIONS AND DRAINAGE LEVELS ON SITE PRIOR TO COMMENCEMENT OF WORKS. THIS INCLUDES EXISTING SERVICES AND/OR OTHER STRUCTURES THAT MAY AFFECT/BE AFFECTED BY THIS DESIGN PRIOR TO CONSTRUCTION.
- 4. THIS DRAWING IS NOT TO BE USED FOR SET-OUT PURPOSES. ALL SURVEY INFORMATION, PROPOSED BUILDING LEVELS, FINISHED SURFACE LEVELS AND SITE DETAILS SHOWN IN THESE DRAWINGS ARE ESTABLISHED UPON LEVELS/DETAILS SUPPLIED BY OTHERS.
- FLOOR WASTE & DOWNPIPE LOCATIONS ARE INDICATIVE ONLY. ULTIMATE FLOOR WASTE & DOWNPIPE LOCATION, SIZE, & QUANTITY ARE TO BE DETERMINED BY BUILDER IN ACCORDANCE WITH RELEVANT AUSTRALIAN STANDARDS.
- IT IS THE BUILDERS RESPONSIBILITY TO LOCATE AND LEVEL ALL EXISTING SERVICES OR OTHER STRUCTURES WHICH MAY AFFECT/BE AFFECTED BY THIS DESIGN PRIOR TO COMMENCEMENT OF WORKS.
- ANY SUBSTITUTION OF MATERIALS SHALL BE APPROVED BY THE ENGINEER AND INCLUDED IN THE DEVELOPMENT APPLICATION.
- CONTRACTORS ARE TO INVESTIGATE ALL EXISTING SERVICES AND APPLY FOR "DIAL BEFORE YOU DIG" PRIOR TO COMMENCEMENT OF CONSTRUCTION.

CUMDI IVVICE

THESE PLANS WERE PREPARED IN ACCORDANCE WITH COUNCIL'S POLICIES AND REQUIREMENTS BASIX REQUIREMENTS, AS 3500:2013, ARR (2016), ARQ (2006), BCA (2015), RELEVANT LEGISLATION, AND NSW MUSIC MODELLING GUIDELINES.

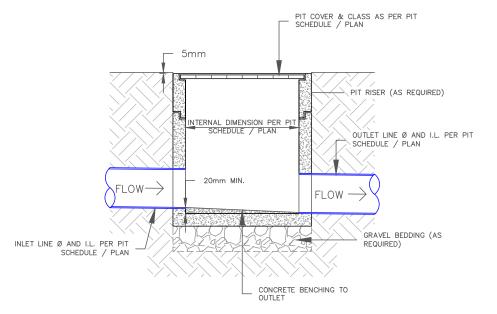
SCOPE OF WORKS

 DETAILED DESIGN, MODELLING AND DOCUMENTATION FOR THE FOLLOWING (WHERE APPLICABLE): ROOFED, IMPERVIOUS AND PERVIOUS AREAS; RAINWATER REUSE SYSTEM; OSD; AND STORMWATER DISPOSAL.

RAINWATER RE-USE SYSTEM


- 1. ALL GUTTERS TO BE FITTED WITH LEAF GUARDS AND SUBJECT TO REGULAR INSPECTION / CLEAN
- P. MIN. TANK SIZE TO BE THAT SPECIFIED WITHIN DETAIL AND PLAN.
- TANKS ARE TO BE INSTALLED BY A LICENSED PLUMBER IN ACCORDANCE WITH MANUFACTURES SPECIFICATIONS, AS3500 AND COUNCIL REQUIREMENTS.
- RAINWATER RETENTION FOR RE-USE AS SPECIFIED BY BASIX CERTIFICATE.

THIN TOTAL IL COVER		
O.L OF PIPE TO F.S.L		
	MIN. COV	/ER (mm)
LOCATION	CAST IRON, DUCTILE IRON, GALV. STEEL	
1. NOT SUBJECT TO VEHICULAR LOADING:		
a. WITHOUT PAVEMENT-		
i. For single dwellings	0	100
ii. FOR ITEMS OTHER THAN i.	0	300
b. WITH PAVEMENT OF BRICK OR UNREINFORCED CONCRETE	0 (2)	50 ⁽²⁾
2. SUBJECT TO VEHICULAR LOADING:		
a. OTHER THAN ROADS-		
i. WITHOUT PAVEMENT	300	450
ii. WITH PAVEMENT OF:		
- REINFORCED CONCRETE FOR HEAVY VEHICULAR		
LOADINGS	0 (2)(3)	100 ⁽²⁾⁽³⁾
 BRICK/UNREINFORCED CONCRETE FOR LIGHT 		
VEHICULAR LOADING	0 (5)(3)	75 ⁽²⁾⁽³⁾
b. ROADS-		
i. SEALED	300	500 ⁽³⁾
ii. UNSEALED	300	500 ⁽³⁾
3. SUBJECT TO CONSTRUCTION EQUIPTMENT OR IN EMBANKMENT CONDITIONS	300	500 ⁽³⁾


MINIMUM PIPE COVER

⁽¹⁾ INCLUDES OVERLAY ABOVE TOP OF THE PIPE NOT LESS THAN 50mm THICK
⁽²⁾ BELOW THE UNDERSIDE OF THE PAVEMENT

(3) SUBJECT TO COMPLAINCE WITH AS 1762, AS 2033, AS 2566.1, AS 3725, AS 4060

CHARGED LINE CLEAN-OUT PIT (CO) - TYPICAL SECTION DETAIL SCALE: N.T.S.

GRATED SURFACE INLET PIT (GSIP) - TYPICAL SECTION DETAIL

RAINAGE LINES

- . MINIMUM PIPE GRADE AS SPECIFIED IN TABLE BELOW. MINIMUM DIAMETER IS TO BE (U.N.O):
 a. Ø100mm WHERE LINE RECEIVES ROOF WATER.
- b. Ø150mm WHERE LINE RECEIVES RUN-ON FROM PAVED/UNPAVED EXTERNAL SURFACES
- PIPE EMBEDMENT IS TO BE IN ACCORDANCE WITH LOCAL AUTHORITY SPEC., AS 3500.3, AS 2032 FOR PVC, & AS 3725 FOR FCR/RCP PIPEWORK.
- SUBSOIL DRAINAGE SHALL BE PROVIDED TO ALL RETAINING WALLS AND EMBANKMENTS WITH THE LINES FEEDING INTO THE STORMWATER DRAINAGE SYSTEM.

MINIMUM SI	TE PIPE GF	RADIENT	MINIMUM IN	TERNAL DIN	1ENSIONS
	(U.N.O)		FOR ST	ORMWATER	PITS
DIAMETER Ø (mm)	MIN. GRADE	MIN. % SLOPE	DEPTH TO I.L OF	MIN. INTERNAL [DIMENSIONS (mm)
≤ Ø150	1:100	1%	OUTLET(mm)	WIDTH	LENGTH
225	1:200	0.5%	≤ 600	450	450
300	1:250	0.4%	> 600 TO ≤ 900	600	600
375	1:300	0.33%	> 600 TO ≤ 900	600	900
			> 1200	900	900

PITS

- ALL PITS TO BE FITTED WITH APPROVED GALAVANISED STEEL GRATES AND TO BE SUITABLE FOR THE FOLLOWING LOAD RATING (U.N.O):
- a. CLASS-B MIN. FOR LANDSCAPED AREAS
- b. CLASS-C WHERE SUBJECT TO VEHICULAR TRAFFIC
- 2. ALL PITS FITTED WITH CHILDPROOF SPRING LOCKING J-BOLTS
- GRATED COVERS OF PITS > 600SQ mm ARE TO BE HINGED & OFFSET FROM OBSTRUCTIONS TO ALLOW FOR FULL OPENING.
- 4. PROVIDE STEP IRONS TO STORMWATER PITS > 1200mm IN DEPTH.
- PIT BASES ARE TO BE BENCHED LEVEL TO THE I.L OF THE OUTLET PIPE (NO SUMP U.N.O), WITH A MIN. FALL OF 20mm BETWEEN THE INLET AND OUTLET PIPE I.Ls. ALL PIPES SHOULD BE CUT FLUSH WITH THE WALL OF THE PITS.
- 5. PRECAST PITS ARE TO BE SET ON A 75mm CONCRETE BASE AND BACKFILLED WITH CONCRETE TO HALF THE PIT'S HEIGHT.
- . WATER SHOULD NOT BE PERMITTED TO POND WITHIN THE DRAINAGE SYSTEM.

A.H.D	AUSTRALIAN HEIGHT DATUM	N.T.S	NOT TO SCALE
A.R.I	AVERAGE RECURRENCE INTERVAL	0.F	OVERFLOW
C.0	CLEAN-OUT PIT	0.L.	OBVERT LEVEL
DP	DOWNPIPE	0.S.D	ON-SITE DETENTION
D/S	DOWNSTREAM	R.C.P	REINFORCED CONCRETE PIPE
FF	FIRST FLUSH DEVICE	R.H.S	RECTANGULAR HOLLOW SECTION
F.F.L	FINISHED FLOOR LEVEL	R.L.	REDUCED LEVEL
F.G.L	FINISHED GARAGE LEVEL	R.W.T	RAIN-WATER TANK
F.W	FLOOR WASTE	S.L	SURFACE LEVEL
G.S.I.P	GRATED SURFACE INLET PIT	SQ	SQUARE
H.G.L	HYDRAULIC GRADE LINE	TYP.	TYPICAL
I.L.	INVERT LEVEL	T.W.L	TOP WATER LEVEL
I.P	INSPECTION POINT	U/S	UPSTREAM
N.S.L.	NATURAL SURFACE LEVEL	U.N.O	UNLESS NOTED OTHERWISE

ALL DIMENSIONS ARE IN METRES UNLESS NOTED OTHERWISE

A-01 01/02/22 LS LS RS ISSUE FOR REVIEW
REV DATE DES. DRN. APP. REVISION DETAILS

BROADCREST

ENGINEERING AND ENVIRONMENTAL CONSULTANTS

broadcrest.com.au | contact@broadcrest.com.au | 1300 554 945

ENVIRONMENTAL FLOOD STORMWATER GEOTECHNICAL ACOUSTICS WASTEWATER

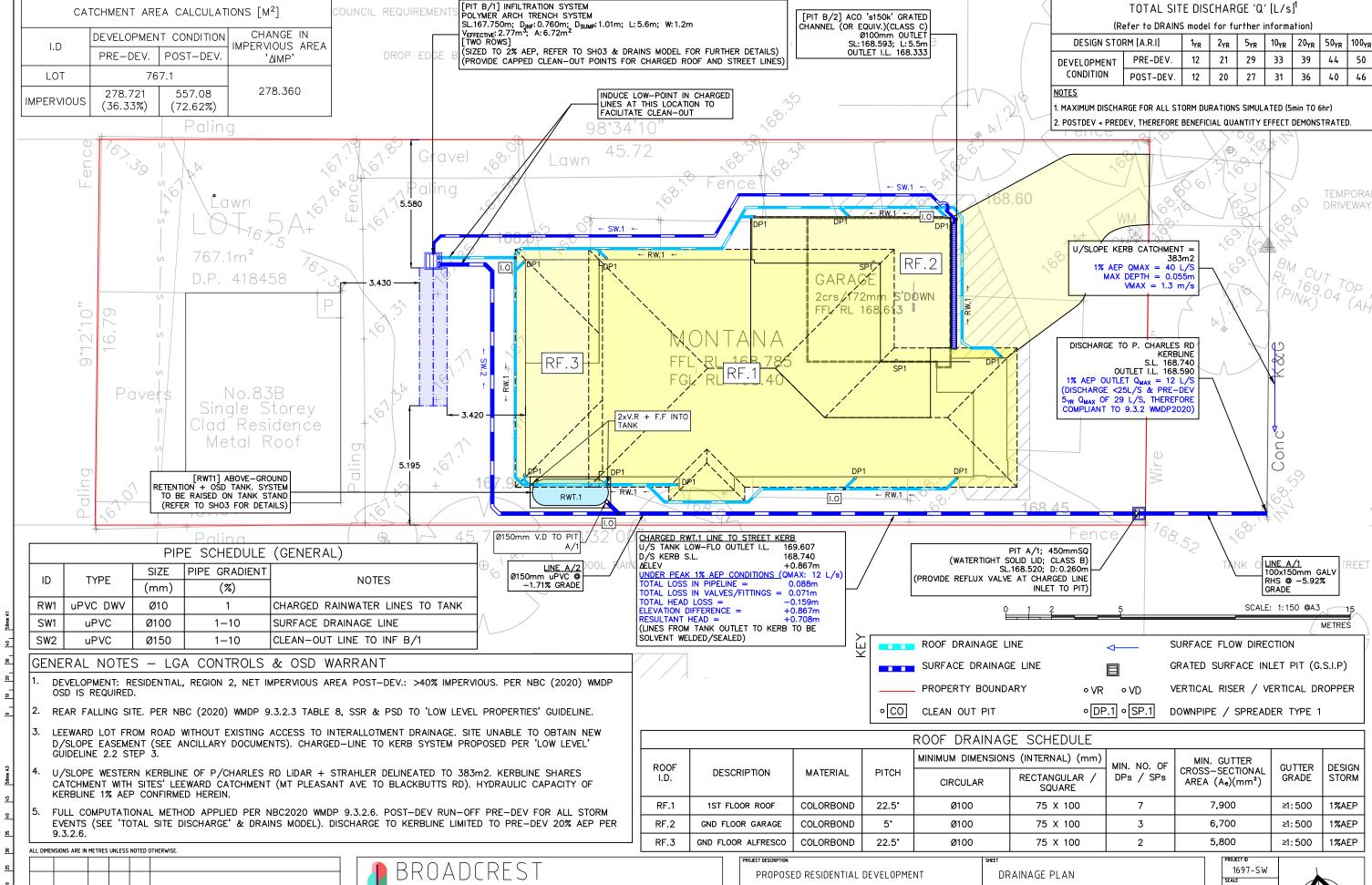
BROADCREST CONSULTING PTY LTD | ACH 622 508 187

PROJECT DESCRIPTION	SHEET
PROPOSED RESIDENTIAL DEVELOPMENT	TITLE PAGE & GENERAL NOTES
PROJECT SITE LOT 5A (NO. 83A) PRINCES CHARLES RD, FRENCHS FOREST	STORMWATER MANAGEMENT PLAN
NORTHERN BEACHES COUNCIL	ALLWORTH CONSTRUCTIONS PTY LTD

PROJECT ID

1697 – S W

SCALE


NTS @ A3

NTS @ A1

SHEET NO.

1 or 3

LOT 5A (NO. 83A) PRINCES CHARLES RD

NORTHERN BEACHES COUNCIL

FRENCHS FOREST

1:150 @ A

1:75 @ A1

2 of 3

STORMWATER MANAGEMENT PLAN

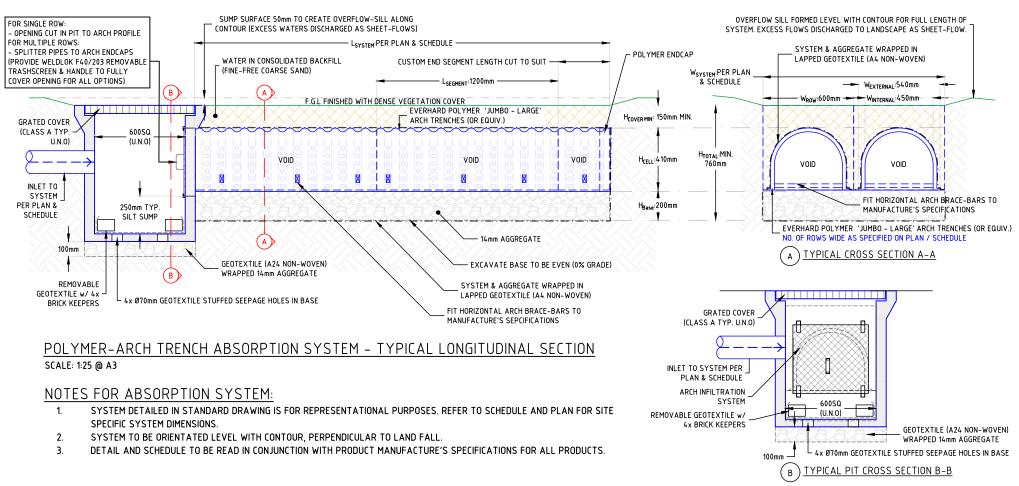
ALLWORTH CONSTRUCTIONS PTY LTD

ENGINEERING AND ENVIRONMENTAL CONSULTANTS

ENVIRONMENTAL FLOOD STORMWATER GEOTECHNICAL ACOUSTICS WASTEWATER

BROADCREST CONSULTING PTY LTD ACN 622 508 187

broadcrest.com.au | contact@broadcrest.com.au | 1300 554 945


A-01 01/02/22 LS LS RS ISSUE FOR REVIEW

DATE DES. DRN. APP. REVISION DETAILS

TYPICAL DETAIL - CHARGED LINE TO ABOVE GROUND RAINWATER TANK (RWT)

NOTES FOR CHARGED SYSTEM:

- PLAN, DETAILS, & DIAGRAM ARE TO BE READ IN CONJUNCTION WITH MANUFACTURER SPECIFICATIONS FOR ALL PRODUCTS. 1.
- INLET/OUTLET CONFIGURATION CAN BE PROVIDED AT EITHER OR BOTH SIDES OF THE TANK(S). 2.
- AN OUTLET MUST BE PROVIDED WITH EACH INLET PIPE U.N.O. 3.

	RAIN	WATER TANK SCHEDULE
SYSTEM	D	R.W.T 1
TYPE		KINGSPAN SLIMLINE ABOVE ROUND RAINWATER TANK ON STAND
TANK VOLUMI	E (kL)	7.093
TANK DIMENSIC	NS (m)	H: 2.02, W: 1.15. L: 3.3
TANK BASE R.L.	(m, AHD)	168.753
LOW FLOW	(m)	0.854
OUTLET HEIGHT 'H _{LOW} '	I.L. (m, AHD)	169.607
LOW FLOW OF DIAMETER (Ø75mm REDUCED ORIFICE
HIGH FLOW	(m)	1.86
OUTLET HEIGHT 'H _{HIGH} '	I.L. (m, AHD)	170.613
HIGH FLOW O DIAMETER (Ø150
RETENTION VOLUM OUTLET (3.0
OSD AIR VOID VO	LUME (kL)	4.093
COMMENT	-S	2xØ100mm INLET TO TANK VIA FIRST-FLUSH DEVICES. RE-USE PER BASIX. Ø150mm OUTLET TO PIT A/1. TANK RAISED ON 700mm STAND ABOVE NGL.

INFILTRATION TRENCH SIZING (DESIGN STORM METHOD)

				Desktop \	ariables				Measured Val	Infiltration ues
Design AEP/EY	1:10yr ARI, 1hr [¹⁰] ₄]	Runoff Coefficient [C _y]	Area to Trench [A]	Percentage Impervious [%IMP]	Soil Type	Assumed Hydraulio C		Soil Moderation Factor	Field Hydraulic [k _k]	Areal Hydraulic [k _k]
	[mm/hr]		[m²]	[%]		[L/m²/s]	[mm/hr]	[U]	(L/m²/s)	[L/m²/s]
04 / LED		4000	E0.07E	400	0 1 0	0.00	*00			

	ling	Gravel Bedo		JUMBO 410 Trench				
Bed Void	Top Cover	Base Bed	Storage	Trench	nsions	Arch Dimer		
Ratio	Thickness	Thickness	Void	Width	Height	Width		
[e _n]	(D ₇)	[D ₆]	[V,]	[₩ _i]	[H _i]	[\/,]		
16/61	[m]	[m]	[L/m]	[m]	[m]	[m]		
0.35	0.15	0.2	171.053	0.6	0.41	0.54		

No. of		System	Dimensions			Effective	Effective	System Void	Emptying time	Required	Empty
Systems	No.	Length	Width	Height	Absorption Area	Perimeter	Volume	Ratio	of system	emptying	time
[#]	Tunnels	[L]	[1-/]	(H)	[A _{inf}]	(P)	[V]	[e,]	[T]	time	Check
[41	Wide	[m]	[m]	[m]	[m ²]	[m]	[L]	16,1	[days]	[days]	
1	2	6	1.2	0.76	7.2	14.4	2,970	0.543	0.19	3	OK

Storm Dur	(D1	Rainfall	Inflow (Q.1	Inflow Volume	Ouflow	Infiltration	Inflow -	Available	Volume	Overfl	low
Storm Dur	ation [LI]	Intensity	innow [G _i]	innow volume	Absorption	[Q _{inf}]	Infiltration	Storage	Detained	Volume	Rate
[Typical]	[min]	[mm/hr]	[L/s]	[L]	[L]	[L/s]	[L]	[L]	[L]	[L]	[L/s]
5 min	5	244	3.55	1,066	108	0.361	958	2,970	958	5	1324
10 min	10	197	2.87	1,722	198	0.330	1,524	2,970	1,524	50	0.50
20 min	20	141	2.05	2,465	377	0.314	2,088	2,970	2,088	27	1920
30 min	30	111	1.62	2,911	556	0.309	2,355	2,970	2,355	살	1/23
1hour	60	70.8	1.03	3,713	1,092	0.303	2,621	2,970	2,621	- 2	120
2 hour	120	45	0.66	4,720	2,165	0.301	2,555	2,970	2,555	41	2540
3 hour	180	35	0.51	5,507	3,238	0.300	2,269	2,970	2,269	- 6	961
6 hour	360	23.6	0.34	7,427	6,458	0.299	969	2,970	969	8	390
12 hour	720	16.5	0.24	10,385	12,896	0.299	- 2,511	2,970		=	355
24 hour	1440	11.6	0.17	14,602	25,773	0.298	- 11,171	2,970	-	*	(0)
48 hour	2880	7.73	0.11	19,461	51,527	0.298	- 32,067	2,970		-	9-3
72 hour	4320	5.84	0.09	22.054	77,281	0.298	- 55,228	2,970	-	-	

				Annua	al Exceedance	e Probability (AEP) of Storm Event				
	Storm Dur	ation [D]	63.2% AEP	50% AEP	20% AEP	10% AEP	10% AEP	2% AEP	tv. AEP	
	5 min	5	-			2	<u> </u>	200	133	
	10 min	10	- 2	-	787	£5	27	(8)	92	
	20 min	20	19	(+	(+3)	+)	Ψ.	(4)	(-)	
œ.	30 min	30	-	-	-	-		190		
overflow Volume	1hour	60	-		(#3)	- 61	80	((%)	322	
S	2 hour	120	-		(+)		-	200	447	
8	3 hour	180	15	15	(5)	-		(55)	310	
Ť	6 hour	360	-		150	75	5.	1001		
0	12 hour	720	-			-	-	-	-	
	24 hour	1440	2	12	20	26	2	72	- 3	
	48 hour	2880 -		12	928	23	A ¹	N=0	(2)	
	72 hour	4320	12	-	127	£.	9	**		
	15 min	5	-	-	(w.)	-	#)	(4)	-	
	10 min	10	-	-	191			29	3-2	
	20 min	20		-	(5)	-	В.	10-1	1-1	
-	30 min	30		-	153	-	-		-	
overflow Rate (L/s)	1hour	60	-	-	.50	-	- 1		0.5	
ate .	2 hour	120	-	-	150	H-	- 4	1.7	0.5	
8	3 hour	180		-	-	-	-		0.3	
lo M	6 hour	360	-		27	2	2	142	- 2	
Je.	12 hour	720	12	14	(2)	24	2	614h	(0)	
8	24 hour	1440		-	120	23	8	(2)	- 1	
	48 hour	2880	- 0-	- 14	(8)	- 60	91	880	-	
	72 hour	4320			380	#2	90	88	191	

ALL DIMER	ISIUNS ARE IN	METRES	UNLE 55	NUTED	JI HERWISE.
A-01	01/02/22	LS	LS	RS	ISSUE FOR REVIEW
REV	DATE	DES.	DRN.	APP.	REVISION DETAILS

PROJECT DESCRIPTION	SHEET
PROPOSED RESIDENTIAL DEVELOPMENT	INFILTRATION + RWT DETAILS
PROJECT SITE LOT 5A (NO. 83A) PRINCES CHARLES RD, FRENCHS FOREST	STORMWATER MANAGEMENT PLAN
LGA	CLIENT
NORTHERN BEACHES COUNCIL	ALLWORTH CONSTRUCTIONS PTY LTD

HIGH-FLOW FILTER INLET TO

& O.F FUNCTION)

(A) HIGH FLOW TANK INLET WITH FILTER & INBUILT HIGH FLOW BYPASS

OVERFLOW/ HIGH FLOW
OUTLET I.L & INLET I.L

TANK OVERELOW OUTLET

(I.L. & Ø PER SCHEDULE)

LOW FLOW / REDUCED

ORIFICE OUTLET I.L

INLET I.L

OVERFLOW/ HIGH

LOW FLOW / REDUCED

ORIFICE OUTLET I.L

SHARP-EDGED REDUCED ORIFICE TO ±0.5mm TOLERANCE

(I.L. & Ø PER SCHEDULE)

FLOW OUTLET I.L

TANK (PERFORMS 1ST-FLUSH

MOSQUITO-PROOF INLET STRAINER

TANK OVERELOW OUTLET

(I.L. & Ø PER SCHEDULE)

REDUCED ORIFICE I.O

(B) CONVENTIONAL TANK INLET & OUTLET WITH EXTERNAL 1ST-FLUSH

INLET Ø PER

SCHEDULE &

PLAN

REDUCED

ORIFICE I.O

SHARP-EDGED REDUCED ORIFICE TO ±0.5mm

CHARGED INLET LINE

· (Ø PER SCHEDULE &

MANUFACTURER'S

SPECIFICATIONS

1ST FLUSH DEVICE TO

TOLERANCE (I.L. & Ø PER SCHEDULE)

PROJECT ID	
1697-SW	
SCALE	
NTS @ A3	
NTS @ A1	
SHEET NO.	
ס ס	

