

GEOTECHNICAL INVESTIGATION

For: John Mirosevich

Project Address: Lot 4 #126 Elimatta Road Mona Vale NSW

Project Number: 3.22.5643.1

Revision Number: 0

Author: NC

Date: May 2022

TABLE OF CONTENTS

1. PROJECT DETAILS	1 1 1
2. DESK TOP STUDY2 2.1. Geological Setting	
3. RESULTS OF THE INVESTIGATION	2 3 3
4. GEOTECHNICAL ASSESSMENT 4.1. Potential Landslide Hazards 4.2. Risks Analysis	3 3 4 4 5 5
5. OVERVIEW6	6
6. LIMITATION OF FIELD INVESTIGATIONS	7
APPENDIX A – SITE PLAN	
APPENDIX B - BOREHOLE LOGS	
APPENDIX C – LAB RESULTS	
APPENDIX D – CISRO FOUNDATION MAINTANCE AND FOOTING PERFORMANCE	
APPENDIX E – PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007	7

1. PROJECT DETAILS

1.1. Introduction

At the request of John Mirosevich, Structerre Consulting Engineers (Structerre) have conducted a Geotechnical Investigation at Lot 4 #126 Elimatta Road Mona Vale NSW. This report has been prepared in accordance with the requirements of the Geotechnical Risk Management Policy for Pittwater (2009) as discussed in Section 4 below. It is understood that the report will be submitted to Council as part of the DA documentation. Our report is preceded by the completed Council Forms 1 and 1a.

The scope of work does not include a contamination assessment of the site.

Terms of reference for this investigation were presented in a Structure Consulting Engineers proposal dated 22 April 2022, which was submitted to and accepted by John Mirosevich.

1.2. Proposed Development and Site Description

We understand from the provided architectural drawings prepared by Eco Dimension (Ref. 2021381 Drawing Nos 1 to 8) dated 8 April 2021, that the proposed development will comprise the following:

- Demolition of the existing buildings and structures on site, and,
- Construction of a two-storey building over one workshop store.

The new building and garage will be cut into the existing hillside and will have a basement finished floor level of RL51.20m AHD. This will require cuts to the rear of the site to a maximum depth of about 1.5m.

The site comprises an area of approximately 628.8m² and is located on the south side of Elimatta Road. Based on the provided contour drawing, the overall slope of the site falls approximately 9° to 10° from the north side to the south side.

1.3. Field Investigation

The field investigation was carried out on 29 April 2022 and comprised:

- Two (2) boreholes numbered BH1 and BH2 to a depth of up to 3.0m.
- Dynamic Cone Penetrometer (DCP) tests at each borehole location

The borehole and DCP test locations are shown on the site plan.

A suitability qualified and experienced geotechnician undertook the fieldwork and recorded the subsurface conditions encountered. These are recorded on the attached borehole logs. The terms used are given on the attached explanation sheets. Notes related to geotechnical investigations are also attached.

1.4. Laboratory Testing

Laboratory testing was carried out generally in accordance with Australian Standards. All testing was scheduled by Structerre and carried out by Ideal Geotech, NATA Accredited Testing Laboratory.

The extent of testing carried out to provide the geotechnical parameters required for this study, are presented below:

- 1 sample for moisture content;
- 1 sample for Liquid Limit and Linear Shrinkage;

2. DESK TOP STUDY

2.1. Geological Setting

Reference to the NSW surface geology on https://minview.geoscience.nsw.gov.au/ indicates the site is located in an area of Narrabeen Group Gosford Subgroup Burralow Formation which generally comprises fine-grained, micaceous, quartz- to quartz-lithic sandstone, interbedded with siltstone, grey shale and red-brown claystone. The subsurface conditions encountered during the fieldworks is considered to be consistent with the geological map indications and can be summarised in clause 3.1.

3. RESULTS OF THE INVESTIGATION

3.1. Subsurface Profile

The subsurface profile presented below was determined from the ground conditions encountered within the boreholes and through the interpretation of the DCP test results:

(BH1) Depth to Base of Strata (m)	Material Description
0 – 0.9	FILL. Sandy Gravelly CLAY (CI), dark grey red mottled brown MC=PL
0.9 – 2.0	RESIDUAL. CLAY, high plasticity, brown mottled red, trace gravel Stiff
2.0 – 3.0	SEDIMENTARY WEATHERED ROCK (DW), dry, Medium strength, grey brown, medium strength

(BH2) Depth to Base of Strata (m)	Material Description	
0 – 0.4	FILL. Sandy Gravelly CLAY, medium plasticity (CI), dark grey red mottled brown MC=PL	
0.4 – 1.0	RESIDUAL. CLAY, medium plasticity (CI), brown mottled red grey, trace gravel Stiff	

At the time of preparing this report, no record was available about the fill material encountered in the boreholes. Fill is assessed to be uncontrolled in accordance with AS2870-2011.

3.2. Groundwater

Groundwater was not encountered in any borehole during the fieldwork.

3.3. Comments on Geotechnical Conditions

The following comments assume that the subsurface conditions encountered in the boreholes are representative of the site. When assessing the subsurface conditions across a site from a limited number of locations it must be recognised that variations may occur between these locations. The data derived from the site investigation program are extrapolated across the site to form a geotechnical model and then an engineering opinion is provided about their likely behaviour with respect to the proposed development. The actual conditions may differ from those inferred in this report because no exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies, especially in areas such as this where there has been previous development.

3.4. Laboratory Test Results

The moisture content was recorded 21.0%. The liquid limit and linear shrinkage of sample tested is 46% and 12.5% respectively which indicate insitu soils of medium plasticity and of similar reactivity.

4. GEOTECHNICAL ASSESSMENT

4.1. Potential Landslide Hazards

Based on our site observations, we consider that the potential landslide hazards associated with the site and the proposed development to be the following:

- Stability of existing natural hillside slope
- Stability of cut batters during construction
- Stability of new engineered retaining walls

4.2. Risks Analysis

The attached Table A summarises our qualitative assessment of each potential landslide hazard and of the consequences to property should the landslide hazard occur. Use has been made of data in MacGregor et al (2007) to assist with our assessment of the likelihood of a potential hazard occurring. Based on the above, the qualitative risks to property have been determined. The terminology adopted for this qualitative assessment is in accordance with Table A1 given in Appendix A. Table A indicates that the assessed risk to property ranges from "Very Low" to "Low", which would be considered 'acceptable' in accordance with the criteria given in Reference 1 and the Pittwater Risk Management Policy.

We have also used the indicative probabilities associated with the assessed likelihood of instability to calculate the risk to life. The temporal and vulnerability factors that have been adopted are given in the attached Table B together with the resulting risk calculation. Our assessed risk to life for the person most at risk is about 7×10^{-7} . This would be considered to be 'acceptable' in relation to the criteria given in Reference 1 and the Pittwater Risk Management Policy.

4.3. Risk Assessment

The Pittwater Risk Management Policy requires suitable measures 'to remove risk'. It is recognised that, due to the many complex factors that can affect a site, the subjective nature

of a risk analysis, and the imprecise nature of the science of geotechnical engineering, the risk of instability for a site and/or development cannot be completely removed. It is, however, essential that risk be reduced to at least that which could be reasonably anticipated by the community in everyday life and that landowners are made aware of reasonable and practical measures available to reduce risk as far as possible. Hence, where the policy requires that 'reasonable and practical measures have been identified to remove risk', it means that there has been an active process of reducing risk, but it does not require the geotechnical engineer to warrant that risk has been completely removed, only reduced, as removing risk is not currently scientifically achievable. Similarly, the Pittwater Risk Management Policy requires that the design project life be taken as 100 years unless otherwise justified by the applicant. This requirement provides the context within which the geotechnical risk assessment should be made. The required 100 years baseline broadly reflects the expectations of the community for the anticipated life of a residential structure and hence the timeframe to be considered when undertaking the geotechnical risk assessment and making recommendations as to the appropriateness of a development, and its design and remedial measures that should be taken to control risk. It is recognised that in a 100 year period external factors that cannot reasonably be foreseen may affect the geotechnical risks associated with a site. Hence, the Policy does not seek the geotechnical engineer to warrant the development for a 100 year period, rather to provide a professional opinion that foreseeable geotechnical risks to which the development may be subjected in that timeframe have been reasonably considered.

Our assessment of the probability of failure of existing structural elements such as retaining walls (where applicable) is based upon a visual appraisal of their type and condition at the time of our inspection. Where existing structural elements such as retaining walls will not be replaced as part of the proposed development, where appropriate we identify the time period at which reassessment of their longevity seems warranted. In preparing our recommendations given below we have adopted the above interpretations of the Risk Management Policy requirements. We have also assumed that no activities on surrounding land which may affect the risk on the subject site would be carried out. We have further assumed that all Council's buried services are, and will be regularly maintained to remain, in good condition.

We consider that our risk analysis has shown that the site and existing and proposed development can achieve the 'Acceptable Risk Management' criteria in the Pittwater Risk Management Policy provided that the recommendations given in Section 4.4 to 4.8 below are adopted. These recommendations form an integral part of the Landslide Risk Management Process.

4.4. Excavation Conditions

Excavation through the fill, sand and residual clay should be readily achieved using a small tracked excavator. However, excavations extending into bedrock rock may require the use heavier machinery and/or rock hammering. Additional geotechnical advice should be sought if rock excavation with machinery is to occur.

4.5. Temporary Batter Slopes

We understand that excavation will be carried out for the basement garage. A temporary batter slopes will be achievable given the site geometry. If the site geometry does not allow for temporary batters, temporary shoring will be required and we should be contacted to provide additional geotechnical advice.

Temporary batters slopes through the fill and topsoil should be no steeper than 1 Vertical (V) to 1.5 Horizontal (H). Steeper temporary batter slopes of 1V to 1H are appropriate within the residual clays and extremely weathered bedrock (if encountered).

We note that any excavations deeper than 1.5m should be inspected by a geotechnical engineer, and that proposed excavations must be outside the zone of influence of any existing structures and foundations to prevent the undermining of existing footings.

Some instability of temporary batters may occur after rain periods and sand bagging may be required to stabilise batter slopes at, and below, the level of groundwater seepage.

4.6. Retention Design Parameters

It is suggested that preliminary design of temporary retaining structures be based on an average bulk unit weight for the retained material of 20kN/m³ and on a triangular distribution. In order to maximise rigidity of these walls, 'at rest' (K₀) earth pressure 0.5 should be considered.

Application of hydrostatic pressure should not be ignored unless permanent drainage system is installed behind the wall. We advise all wall drainage to comprise a proper subsoil drainage system incorporating a slotted pipe surrounded by a free draining single sized crushed aggregate. The aggregate should be appropriately protected using non-woven materials, geotextile or filter fabric

4.7. Footings

Shallow footings founded within very stiff residual clay or sandstone bedrock may be designed on the basis of the allowable bearing pressures provided below.

Shallow Footing Allowable Bearing Pressure					
Embedment Depth (m) Allowable Bearing Pressure (kPa)					
0.5m into Very stiff Residual CLAY	150				
0.3m into Shale Bedrock	1,000				

These values are based on a geotechnical strength reduction factor of 0.5 and an average load factor of 1.5 (Factor of Safety = 3.0). It should be noted that these bearing pressures assume isolated vertical, non-eccentric loads.

All footings should be excavated and poured with minimal delay, they should be free from loose or softened material prior to pouring concrete. If water ponds in the base of the footings they should be pumped dry and then re-excavated to remove any water softened materials.

Based on the visual observation, the residual clay is assessed to be of highly plastic with the surface movement would be similar to class H1 site and up to 60mm. Differential settlements are unlikely to exceed approximately one half of these values.

4.8. Footing Stability

Footings constructed as recommend above are considered stable, however if there are any concerns then proposed footing locations should be inspected by a geotechnical engineer.

5. OVERVIEW

It is possible that the subsurface soil, rock or groundwater conditions encountered during construction may be found to be different (or may be interpreted to be different) from those inferred from our surface observations in preparing this report. Also, we have not had the opportunity to observe surface run-off patterns during heavy rainfall and cannot comment directly on this aspect. If conditions appear to be at variance or cause concern for any reason, then we recommend that you immediately contact this office.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described in this report then all recommendations should be reviewed. Copyright in this report is the property of Structerre. We have used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report. The report shall not be reproduced except in full.

6. LIMITATION OF FIELD INVESTIGATIONS

This report has been prepared in accordance with generally accepted consulting practice for John Mirosevich using information supplied at the time and for the project specific requirements as understood by Structerre. To the best of our knowledge the information contained in this report is accurate at the date of issue, however it should be emphasised that any changes to ground conditions and/or the proposed structures may invalidate the recommendations given herein.

The conclusions and recommendations in this report are based on the site conditions revealed through selective point sampling, representing the conditions of the site in total, although the area investigated represents only a small portion of the site. The actual characteristics may vary significantly between successive test locations and sample intervals other than where observations, explorations and investigations have been made.

The materials and their geotechnical properties presented in this report may not represent the full range of materials and strengths that actually exist on site and the recommendations should be regarded as preliminary in nature. Allowances should be made for variability in ground conditions and any consequent impact on the development. Structerre accepts no responsibility and shall not be liable for any consequence of variations in ground conditions.

If ground conditions encountered during construction are different to that described in this report, this office should be notified immediately.

For and behalf of

STRUCTERRE CONSULTING ENGINEERS

Gervase Purich

FIEAust. CPEng, NER, BPB, RBP, RPEQ,

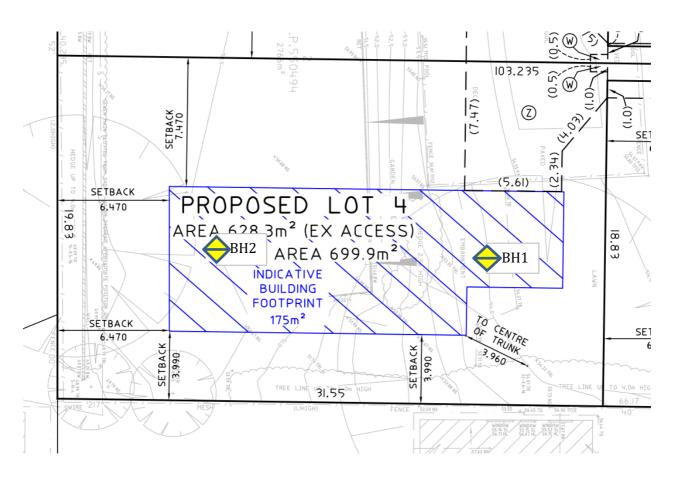
Disclaimer

This report is at the request of the addressee and no liability is accepted by Structerre Consulting Engineers to any third person reading or relying upon the report, not withstanding any rule of law and/or equity to the contrary and that this report is strictly confidential and intended to be read and relied upon only be the addressee.

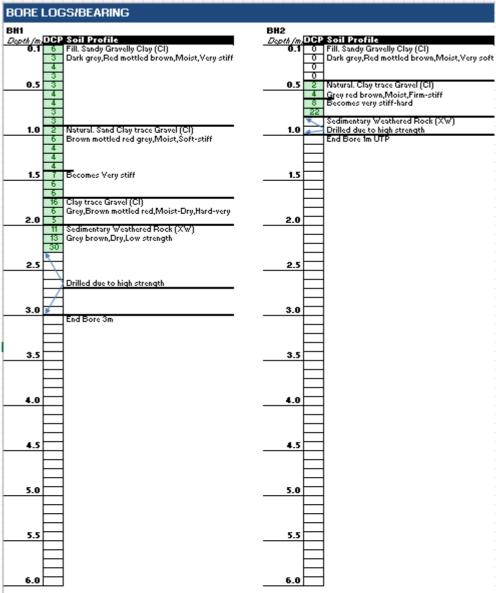
Job#	Revision	Authored	Checked	Authorised
3.22.5643.1	0	NC	NC	GP

Table A: Summary of Risk Assessment to Property

Potential Landslide Hazard	Stability of existing natural hillside slope	2. Stability of cut batters during construction	3. Stability of new retaining walls
Assessed Likelihood	Rare	Unlikely	Rare
Assessed Consequence to property	Major	Minor	Major
Risk Level	Low	Low	Low
Comments	Continue to maintain surface drainage.	Assumes client adopt the temporary batter slopes recommended in this report.	Assumes new retaining walls are engineered retaining walls.


Table B: Summary of Risk Assessment to Life

Potential Landslide Hazard	Stability of existing natural hillside slope	2. Stability of cut batters during construction	3. Stability of new retaining walls
Assessed Likelihood	Rare	Unlikely	Rare
Indicative Annual Probability	10 ⁻⁵	10 ⁻⁴	10 ⁻⁵
Persons at risk	Person in house	Person near the batter	Person near the retaining wall
Duration of use of area	Say average 15 hours per day	Say average 3 hours per day	Say average 2 hours per day
affected (Temporal Probability)	= 0.63	= 0.13	= 0.08
Probability if not evaluating Area Affected	0.5	0.1 warning by cracking likely	0.1 warning by cracking likely
Spatial Probability	0.1	0.5	0.5
Vulnerability to Life if Failure Occurs Whilst Person Present	0.8	0.7	0.7
Risk for Person most at Risk	3 x 10 ⁻⁷	4 x 10 ⁻⁷	2 x 10 ⁻⁸
Combined total risk for Person Most at Risk		7 x 10 ⁻⁷	



APPENDIX A - SITE PLAN

APPENDIX B - BOREHOLE LOGS

SAND		SILTS & CLAY			
Density Term	Density Index (2)	Approx. DCP Blow Count	Consistency Term		Approx. DCP Blow Count
Very Loose	<15	<1	Very Soft	0 - 12	<1
Loose	15 - 35	1-3	Soft	12 - 25	1-2
Medium Dense	35 - 65	3-9	Firm	25 - 50	2-3
Dense	65 - 85	9 - 15	Stiff	50 - 100	3-5
Very Dense	>85	> 15	Very Stiff	100 - 200	5-8
•			Hard	>200	>8
Not	e: DCP = Dunamic Cone	Penetrometer blow o	ounts (blows/100mm):	TP = Unable to penetr:	ate

APPENDIX C - LAB RESULTS

IdealCorp Pty Ltd t/as Ideal Geotech

16-18 Sammut Street Smithfield NSW 2164 PO Box 2270 Smithfield NSW 2164 Ph: (02) 9725 5522 Fax: (02) 87866300

Liquid Limit and Linear Shrinkage Test Results

Customer:	Structerre Consulting	Ideal Job No:	57053	Your Ref:	3.21.5643.1
Address:	Lot 4# 126 Elimatta Road, M	ona Vale NSW 2765		Test Date:	06/05/22

Test No:	L1	Depth (m):	0.5m-0.7m	Borehole No:	2
Sample No	Depth (m)	Material Description (visual)	Codes	Liquid Limit %	Linear Shrinkage %
L1	0.5m-0.7m	Grey Mottled Brown Clay with Trace of Gravel	1,6,**	46%	12.5%

CODES/LEGEND

NO - Not Obtainable

Sample History

1 - Air Dried 2 - Low Temperatures (<50C) Oven Dried 3 - Oven (105C) Dried 4 - Unknown 5 - Natural

Method of Preparation

6 - Dry Sieved 7 - Wet Sieved

Shrinkage sample

(CR) - Crumbled (CU) - Curled

Test Methods

Linear Shrinkage AS1289.3.4.1 & Liquid Limit AS1289.3.1.2

Accredited for compliance with ISO/IEC 17025 Accreditation No 19226

Checked By D. Dwyer Dated 11-May-22

Approved Signatory D. Dwyer

TPMR002a REV0/JAN15

IdealCorp Pty Ltd t/as
Ideal Geotech
16-18 Sammut Street
Smithfield NSW 2164
PO Box 2270 Smithfield NSW 2164
Ph: (02) 9725 5522
Fax: (02) 87866300

RESULTS OF MOISTURE CONTENT DETERMINATION

Project N	lame: Structerre Consulting	Project No: 3.22.5641.1
Location	: Lot 4 # 126 Elimatta Road, Monavale NSW	Job/Report No: 3,22,5641.1
Client: _	Structerre Consulting	Test Date: <u>06/05/2022</u>

Test Methods: AS 1289.2.1.1

SAMPLE NUMBER	DEPTH (m)	MOISTURE CONTENT (%)
3.22.5643.1	0.5m-0.7m	21.0%

TESTED BY: KB CHECKED BY: DD

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards.

Accredited for compliance with ISO/IEC 17025

Accreditation No. 19226

Approved Signatory:

B. Bwyer

Date: 11/05/2022

TRMR001,TPMR101 REV2.1/Oct2015

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX C: LANDSLIDE RISK ASSESSMENT

QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY

QUALITATIVE MEASURES OF LIKELIHOOD

Approximate A	Approximate Annual Probability	Implied Indicative Landslide	e Landslide	Description	Descriptor	Level
Indicative Value	Notional Boundary	Recurrence Interval	Interval			
10-1		10 years		The event is expected to occur over the design life.	ALMOST CERTAIN	A
10-2	5x10 ⁻²	100 years	20 years	The event will probably occur under adverse conditions over the design life.	LIKELY	В
10-3	5x10 ⁻³	1000 years	200 years	The event could occur under adverse conditions over the design life.	POSSIBLE	C
10-4	5x10 ⁻⁴	10,000 years	2000 vears	The event might occur under very adverse circumstances over the design life.	UNLIKELY	D
10-5	5x10 ⁻⁵	100,000 years	20,000 years	The event is conceivable but only under exceptional circumstances over the design life.	RARE	П
10-6	5x10 ⁻⁶	1,000,000 years	200,000 years	The event is inconceivable or fanciful over the design life.	BARELY CREDIBLE	H

The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa. (1) Note:

QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

Approximate	Approximate Cost of Damage	Description	Descriptor	Level
Indicative Value	Notional Boundary			
200%		Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.	CATASTROPHIC	П
%09	100%	Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant etablication works. Could cause at least one adiacent property medium consequence damage.	MAJOR	2
20%	40%	Superior damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.	MEDIUM	3
5%	10%	Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.	MINOR	4
0.5%	170	Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)	INSIGNIFICANT	5

The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the unaffected structures. (2) Notes:

The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property. (3) (4)

The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX C: - QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY (CONTINUED)

QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY

LIKELIHOOD	000	CONSEQUI	CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage)	TRTY (With Indicati	ve Approximate Cost	of Damage)
	Indicative Value of Approximate Annual Probability	1: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%
A - ALMOST CERTAIN	10-1	VH	VH	HA	Н	M or L (5)
B - LIKELY	10-2	AIN	ViH	Н	M	L
C - POSSIBLE	10-3	VIH	Н	M	M	VL
D - UNLIKELY	10-4	H	M	L	L	VL
E - RARE	10-5	M	L	L	VL	VL
F - BARELY CREDIBLE	10-6	Г	VL	VL	VL	VL

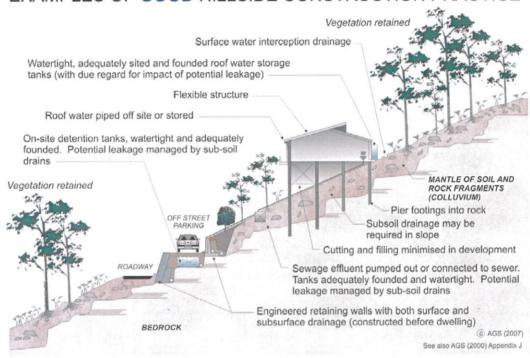
(5) Notes:

For Cell A5, may be subdivided such that a consequence of less than 0.1% is Low Risk.

When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current

RISK LEVEL IMPLICATIONS

	Risk Level	Example Implications (7)
	一年 一日	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment
VH	VERY HIGH RISK	options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the
		property.
:	ABIGINOM	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce
Ц	HIGH KISN	risk to Low. Work would cost a substantial sum in relation to the value of the property.
		May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and
M	MODERATE RISK	implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be
		implemented as soon as practicable.
•	ASIGINOI	Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is
1	LOW KISK	required.
W	VERY I OW RISK	Acceptable. Manage by normal slope maintenance procedures.
1	VERT DOWNER	


The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide. Note: (7)

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

HILLSIDE CONSTRUCTION PRACTICE

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES OF GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR5).

Cuttings - are supported by retaining walls (GeoGuide LR6).

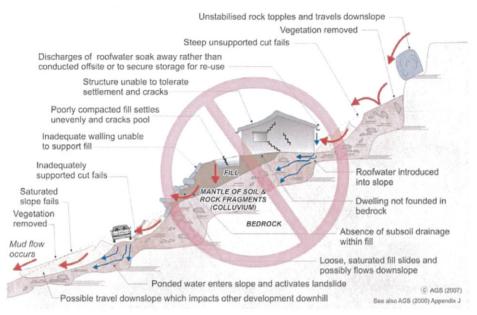
Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that in level ground. Retaining walls must be designed taking these forces into account.

Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfil the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.


Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.

Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

EXAMPLES OF POOR HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soak into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herring bone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 Introduction
- GeoGuide LR2 Landslides
- GeoGuide LR3 Landslides in Soil
- GeoGuide LR4 Landslides in Rock
- GeoGuide LR5 Water & Drainage
- GeoGuide LR6 Retaining Walls
- GeoGuide LR7 Landslide Risk
- GeoGuide LR9 Effluent & Surface Water Disposal
 - GeoGuide LR10 Coastal Landslides GeoGuide LR11 - Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the Australian Geomechanics Society, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- · Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
A	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites with only slight ground movement from moisture changes
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes
Е	Extremely reactive sites, which can experience extreme ground movement from moisture changes
A to P	Filled sites
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

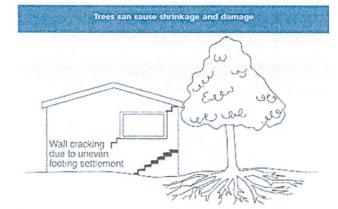
Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).


Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

Prevention/Cure

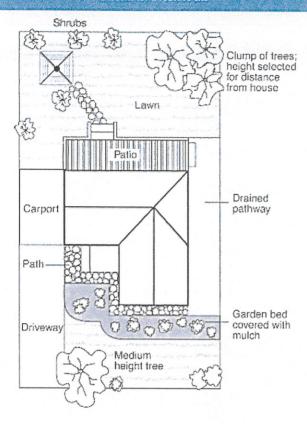
Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.


Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS Description of typical damage and required repair Approximate crack width Damage limit (see Note 3) category Hairline cracks < 0.1 mm Fine cracks which do not need repair <1 mm 1 2 Cracks noticeable but easily filled. Doors and windows stick slightly <5 mm Cracks can be repaired and possibly a small amount of wall will need 5-15 mm (or a number of cracks 3 to be replaced. Doors and windows stick. Service pipes can fracture. 3 mm or more in one group) Weathertightness often impaired Extensive repair work involving breaking-out and replacing sections of walls, 15-25 mm but also depend 4 especially over doors and windows. Window and door frames distort. Walls lean on number of cracks or bulge noticeably, some loss of bearing in beams. Service pipes disrupted

Gardens for a reactive site

should extend outwards a minimum of 900~mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100~mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The Information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia

Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au