

15 September 2004

The General Manager **Customer Service** Pittwater Council PO Box 882, Unit 1, Vuko Place Warriewood NSW 2120

Dear Sir/Madam,

1017 BARRENJOEY RD. PALM BEACH **DEVELOPMENT APPLICATION NO. DA N1118/00** CONSTRUCTION CERTIFICATE NO. 23250/1

21 SE 2004 City Plan Services have issued a Construction Certificate under Environmental Planning and Assessment Act 1979 for the above premises.

Please find enclosed the following documentation:

- Construction Certificate No. CC 23250/1
- Copy of application for Construction Certificate.
- Documentation used to determine the application for the Construction Certificate as detailed in Schedule 1 of the certificate.
- Notice of Appointment of Principal Certifying Authority.
- Cheque for Council's registration fee.

Our client has been advised of the necessity to submit to Council the notice of commencement of building works 48 hours prior to the commencement of works.

Should you need to discuss any issues, please do not hesitate to contact the Project Building Surveyor Rohan Defries on 8270-3500.

Yours Sincerely

Brendan Bennett

Director encl

APMERO DAN MARIBASI

RMIC \$ 30 km. 15210721/9/ap

Pittwater Council

ABN: 61340837871

TAX INVOICE OFFICIAL RECEIPT R/152107

21/09/2004 Receipt No 152107

TO CITY PLAN SERVICES PTY LTD

LEVEL 1, 364 KENT STREET SYDNEY NSW 2000

Oty/ Applic Reference

Amount

1017 RMIC-Rord GL Rec N1118/00 1017 \$27.27

BARRENJOEY RD PALM

BEACH

\$2.73

GST GL Rec

To GL Receipt:

Total Amount:

\$30.00

Includes GST of:

\$2.73

Amounts Tendered

Cheque	\$30.00
	470.00
Total	\$30.00
Rounding	\$0.00
Change	\$0.00
Nett	\$30.00

Printed 21/09/2004 11:52:08 AM Cashier RWild

1017 Barrenjoey Road, Palm Beach Construction Certificate No. 23-250/1

CONSTRUCTION CERTIFICATE NO. 23250/1

Issued under Part 4A of the Environmental Planning and Assessment Act 1979 Sections 109C and 81A(5)

APPLICANT

Name:

Address:

Contact Details:

OWNER

Name:

Address:

Contact Details:

DEVELOPMENT CONSENT

Consent Authority/Local Government Area:

Development Consent No:

Date of Development Consent:

PROPOSAL

Address of Development: **Building Classification:** Type of Construction:

Scope of building works covered by this Notice: Value of Construction Certificate (Incl GST):

Plans and Specifications approved:

Fire Safety Schedule:

Exclusions:

Conditions (Clause 187 or 188 of the Environmental

Planning & Assessment Regulation 2000):

PROJECT BUILDING SURVEYOR

CERTIFYING AUTHORITY

ACCREDITATION BODY

John David

Lot 1 Pier 8/9 Hickson Rd, Walsh Bay

Phone: 8259 7388

Fax: 8259 7377

Fax: 8259 7377

Tony Touma

Lot 1 Pier 8/9 23 Hickson Rd, Walsh Bay

Phone: 8259 7388

Pittwater Council

DA 11033 of 2001 and DA N1118/00 (Land and Environment Court of NSW)

14.02.03, 13.08.04

1017 Barrenjoev Rd, Palm Beach

Class 2, 7a & 8 Type A and Type C

modifications to an existing approval.

Nil additional cost

Schedule 1 Schedule 2

Nil

Nil

Please contact Rohan Defries

for any inquiries

Brendan Bennett for and on behalf of

City Plan Services Pty Ltd

Planning Institute Australia NSW Accreditation

Scheme

Registration No. 3004

That I, Brendan Bennett, as the certifying authority, certify that the work if completed in accordance with the plans and specifications identified in Schedule 1(with such modifications verified by the certifying authority as may be shown on that documentation) will comply with the requirements of the Environmental Planning & Assessment Regulation 2000 as referred to in section 81A(5) of the Environmental Planning and Assessment Act 1979.

DATED THIS

15th

day

of September 2004

Brendan Bennett

Director

NB: Prior to the commencement of work S81A (2) (b) and (c) of the Environment Planning and Assessment Act 1979 must be satisfied.

SCHEDULE 1 APPROVED PLANS AND SPECIFICATIONS

1. Endorsed architectural plans prepared by Walter Barda Design

Plan Title	Drawing No	Revision	Date
Plans – ground floor	CI 201	С	03.04
Plans – first and second floor	CI 202	С	03.04
Roof and site plan	CI 200	С	03.04
NW / SE elevations	Cl 100	С	03.04
NE / SW elevations	CI 101	С	03.04
Elevations east and west	CI 102	С	03.04
Unit 4 elevations / section	CI 103	С	03.04

2. Other documents relied upon

Title	Prepared By	Reference	Date
Construction Certificate Application	City Plan Services		10.09.04
Fire engineered solution	Defire	03164 R1.2	June 2004
Compliance certificate	Steve Wise and Associates	2004/C182	13.09.04
Peer review of alternative solution report	Steve Wise and Associates	176	13.09.04
Letter re: compliance with the requirements of fire engineered solution	Defire	03164	23.08.04

SCHEDULE 2 FIRE SAFETY SCHEDULE

FIRE SAFETY MEASURES	PROPOSED STANDARD OF PERFORMANCE
Automatic fire detection and alarm	
	BCA E2.2 & Spec E2.2a, &
system	AS 1670.1-1995, AS 3786-1993
Emergency lighting	BCA E4.2, E4.4 &
	AS/NZS 2293.1-1998
Exit signs	BCA E4.5, E4.6. & E4.8,
	AS/NZS 2293.1-1998
Fire doors	BCA Spec.C3.4 &
	AS1905.1-1997
Fire hydrant systems	BCA E1.3
The flydrant systems	
	AS2419.1-1994
Fire seals protecting openings in	BCA C3.12, C3.15, Spec. C3.15
fire resisting components of the	
building	
Portable fire extinguishers	BCA E1.6 &
	AS2444-1995
Wall wetting sprinkler and drencher	C3.4
systems	
Smoke detectors and heat	BCA E2.2 & Spec E2.2a
detectors	AS 1670.1-1995, AS 3786-1993
Alternative Solution 1 (unprotected	Recommendations contained in
steel elements)	fire engineered solution report No:
steel ciements)	03164 R1.2 dated June 2004
	prepared by Defire Pty Ltd
Alternative Solution 2 (openings to	Recommendations contained in
carpark within 3m of boundary)	fire engineered solution report No:
	03164 R1.2 dated June 2004
	prepared by Defire Pty Ltd
Alternative Solution 3 (non-fire	Recommendations contained in
isolated stair bounding	fire engineered solution report No:
construction)	03164 R1.2 dated June 2004
·	prepared by Defire Pty Ltd
Alternative Solution 4 (winders in	Recommendations contained in
lieu of landings)	fire engineered solution report No:
	03164 R1.2 dated June 2004
	prepared by Defire Pty Ltd
	propared by Delile Fity Liu

CONSTRUCTION CERTIFICATE APPLICATION

Made under the Environmental Planning and Assessment Act 1979 Sections 81A(2), 109C(1)(b)

IDENTIFICATION OF BUILDING	Address 1017 BARRENJOUT P.P. PALM CEACH
	Lot, DP/MPS etc 40T 53, DP 836320
	Suburb or town FALM BEAUTPOST Code 2168
DESCRIPTION OF DEVELOPMENT Detailed Description:	DEMONITION OF GAISTING STRUCTURE &
	CONSTRUCTION OF 3 RESIDENCES WITH
	(MARINE BASED) PREMISES
APPLICANT	<u> </u>
	NameCompany PAPKVIEW CONSTRUCTE
	Address LOTI PIER 8/9 HICKSON PD
	Suburb or town WAVAH BAY Post Code 2000
	Phone B/H 82597388 Fax No 82597377
	MobileEmail
As the applicant, I/we hereby submit this Con Assessment Act 1979, with City Plan Service	nstruction Certificate Application under the Environmental Planning & es Pty Ltd.
Signature of applicant:	SignDateDate
CONSENT TO ALL OWNER(S)	
	Name_Tousy_TousingCompany
	Address LOTI, PIER 8/9 23 HICKSON RD
	Suburb or town WAY BAY Post Code 2000
	Phone B/H 8259 7388 Fax No 6259 73 7 7
	Mobile Email —
As the owner of the above property: 1. I/we consent to this application; and 2. I/we appoint Brendan Bennett of City Plan work identified in this application.	Services Pty Ltd as the Principal Certifying Authority for the building
Signature of Owner	SignDate

GST: \$ 270,000 For developments over \$5 million, a Quantity Surveyors Certificate verifying the cost must be submitted on lodgement of the application. DEVELOPMENT CONSENT Development Consent No No. 11033 of 2001 Date of Determination Date 14.02.2003 BUILDING CODE OF AUSTRALIA BUILDING CLASSIFICATION Nominated on the Development Consent Class 2 + 5 RESIDENTIAL BUILDING WORK Relevant only to residential building work Owner-builder Permit No. or Name of Builder Parameter consents	VALUE OF WORK	
For developments over \$5 million, a Quantity Surveyors Certificate verifying the cost must be submitted on lodgement of the application. DEVELOPMENT CONSENT Development Consent No No. 11 0 3 3 0 2001 Date of Determination Date 14 . 02 . 2003 BUILDING CODE OF AUSTRALIA BUILDING CLASSIFICATION Nominated on the Development Consent Class 2 + 5 RESIDENTIAL BUILDING WORK Relevant only to residential building work Owner-builder Permit No. or Name of Builder Parkules Consent Consent Telephone 0259 7388 Fax 8259 73 77	Estimated Cost of work:	\$ 2,760,000
DEVELOPMENT CONSENT Development Consent No No. 11033 of 2001 Date of Determination Date 14.02.2003 BUILDING CODE OF AUSTRALIA BUILDING CLASSIFICATION Nominated on the Development Consent Class 2 + 5 RESIDENTIAL BUILDING WORK Relevant only to residential building work Owner-builder Permit No. or Name of Builder PARACULEN WORSTRUCTIONS Address LOT 1, PIER 8/9 23 HICKSON RD WASH BAY: Telephone 8259 7388 Fax 82597377	GST:	\$ 270,000
Development Consent No No. 11033 of 2001 Date of Determination Date 14.02.2003 BUILDING CODE OF AUSTRALIA BUILDING CLASSIFICATION Nominated on the Development Consent Class 2 + 5 RESIDENTIAL BUILDING WORK Relevant only to residential building work Owner-builder Permit No. or Name of Builder Permit No. or Name of Builder Permit No. Telephone 0250 7388 Fax 8250 7377		Surveyors Certificate verifying the cost must be submitted on
Date of Determination Date 14.02.2003 BUILDING CODE OF AUSTRALIA BUILDING CLASSIFICATION Nominated on the Development Consent Class 2 + 5 RESIDENTIAL BUILDING WORK Relevant only to residential building work Owner-builder Permit No. or Name of Builder PARICULEM WORKSTRUCTIONS Address WT1, PIER 8/9 23 HICKSON RD WANSAH BAY: Telephone 8259 7388 Fax 8259 7377	DEVELOPMENT CONSENT	
BUILDING CODE OF AUSTRALIA BUILDING CLASSIFICATION Nominated on the Development Consent Class 2 + 5 RESIDENTIAL BUILDING WORK Relevant only to residential building work Owner-builder Permit No. or Name of Builder PARICULEN WONSTRUCTIONS Address WT1, PIER 8/9 23 HICKSON RD WONSTE BAY: Telephone 0250 7388 Fax 8:250 7377	Development Consent No	No. 11033 OF 2001
RESIDENTIAL BUILDING WORK Relevant only to residential building work Owner-builder Permit No. or Name of Builder Parkwiew constructions Address with PIER 8/9 23 HICKSON RD WANSAH BAY: Telephone 0250 7388 Fax 8250 7377	Date of Determination	Date 14.02.2003
RESIDENTIAL BUILDING WORK Relevant only to residential building work Owner-builder Permit No. or Name of Builder PARKUIEW WONSTRUCTIONS Address WTI, PIER 8/9 23 HICKSON RD WANSAH BAY: Telephone 0259 7388 Fax 8259 7377		
Owner-builder Permit No. or Name of Builder PARICULEW WAYSTRUCTIONS Address WT1, PIER 8/9 23 HICKSON RD WAYSH BAY: Telephone 8259 7388 Fax 8259 7377	Nominated on the Development Consent	Class 2 + 5
Contractor License No. 82222 C		Or Name of Builder PARKEVIEW CONSTRUCTIONS Address LOTI, PIER 8/9 23 HICKSON RD WAVSAL BAY 2001
		Contractor License No. 82222 C

REQUIRED ATTACHMENTS

- Note 1 details the information that must be submitted with an application for a construction certificate for proposed building works
- Note 2 details the additional information that may be submitted with an application for a construction certificate for proposed residential building work.

Schedule 1 information to be Collected for ABS Particulars of the proposal

DESCRIPTION

What is the area of	the land (m²)	いる	33 m²
	existing building (m²) t uses of all or parts of t	i	EXX FIOMZ
(If vacant state vaca	int)		
Location	Use		
FRONT (STREET	T) com	NERCIAL	(MONNA)
REAR			WORKSHOP)
What is the gross flonew building (m²)	• •		41-
Number of pre-exist		WI	
Number of dwellings	s to be demolished	NIC	
How many dwelling	s are proposed?	3 DWELL	IN65+1 COMMERCIAN
How many storeys v	will the building consist	3	
Walls	Code	Roof	Code
Brick veneer	12	Aluminium	70

MATERIALS TO BE USED

Walls	Code		Roof	Code
Brick veneer	12	_	Aluminium	70
Full brick	11	~	Concrete	20
Single brick	11		Concrete tile	10
Concrete block	11		Fibrous cement	30
Concrete/	20			
nasonary Concrete	20		fibreglass Masonry/terracott	80
			a shingle tiles	10
Steel	60		Slate	20
ibrous cement	30		Steel	60
lardiplank	30		Terracotta tile	10
imber/weatherboard	40		Other 6 0055	90
Cladding aluminium	40		Other COPPER	80
J	70		Unknown	90
urtain glass	50			
ther			•	
Jnknown	90		•	
			•	

Floor	Code		Frame	Code	
Concrete	20	· / ·	Timber	40	
Timber	10		Steel	60	
Other	80		Other	80	
Unknown	90		Unknown	90	

Schedule 2 – Existing Essential Fire Safety Measures Part 1 of 2

	measure Installed in the Building? Yes / No	If yes, enter the current standard of performance (eg: ORD 70 Clause 19.2 or BCA Clause E1.5 & AS 2118.1-1999)
anels, doors and hoppers to fire resisting shaft		
c fail safe devices		
c fire detection and alarm system		
c√ire suppression system (sprinkler)		
c fire suppression system (others – specify)		***************************************
cy lighting		
cy lifts		
cy warning and intercommunication system		
rol centres and rooms		· · · · · · · · · · · · · · · · · · ·
pers		
s		
ant systems		
3 (protecting openings in fire resisting components of the building)		
ers		
ows		
system		
ght construction		
cal air handling systems	-	
travel stairways passageways or ramps		i de Antonio de Antoni
r vehicle access for emergency vehicles		
fire extinguishers		-
ing system		
(automatic) exit doors		
rtains in proscenium openings		
nd Heat Vents		
ontrol System		<u> </u>
ampers		
etectors and heat detectors		
oors		
e doors		
Power Systems		
ing sprinkler and drencher systems		
and operational signs		
- Specify		
Powing spand of and of spand o	er Systems prinkler and drencher systems perational signs ecify	er Systems prinkler and drencher systems perational signs

Schedule 3 – Proposed Essential Fire Safety Measures Part 2 of 2

Item No.	Proposed New Measure	ls this measure Installed in the Building? Yes or No	If yes, enter the current standard of performance (eg: BCA Clause E1.5 & AS2118.1-1999)
1	Access Panels, doors and hoppers to fire resisting shaft	100	
2	Automatic fail safe devices	₩0	
3	Automatic fire detection and alarm system	165	62.2,58EZ EZ.22 A91670 & A53786
4	Automatic fire suppression system (sprinkler)	No	
5	Automatic fire suppression system (others – specify)	40	
6	Emergency lighting	YE5	Part E4 & A52293-1
7	Emergency lifts	70	
8	Emergency warning and intercommunication system	40	
9	Exit signs	YE3	Port E. 4 4 A52293.1
10	Fire control centres and rooms	10	
11	Fire dampers	70	
12	Fire doors	YES	A51901-1
13	Fire hydrant systems	455	61.3 4 AS 2419.1
14	Fire seals (protecting openings in fire resisting components of the building)	465	C3.15 (Spec C3.15
15	Fire shutters	40	7
16	Fire windows	40	
17	Hose reel system	NO	
18	Light weight construction	100	
19	Mechanical air handling systems	04	
20	Paths of travel stairways passageways or ramps	64	
21	Perimeter vehicle access for emergency vehicles	NO	
22	Portable fire extinguishers	455	51.64 A52444
23	Pressurising system	.40	
24	Required (automatic) exit doors	NO	
25	Safety curtains in proscenium openings	40	
26	Smoke and Heat Vents	710	
27	Smoke Control System	C N	100.0
28	Smoke dampers	40	
29	Smoke detectors and heat detectors	YES	52.2, AS 3786 GAS 1670
30	Smoke doors	100	· · · · · · · · · · · · · · · · · · ·
31	Solid-Core doors	W0	
32	Stand-By Power Systems	NO	
33	Wall wetting sprinkler and drencher systems	NO MAN	
34	Warning and operational signs	70	
35	OTHERS - Specify		

This is an accurate statement of all proposed Fire Safety Meast	ures to be installed/ mo	dified in the whole build	ling.
This is an accurate statement of all proposed Fire Safety Meast Signed(Owner/ Agent)	1		
Signed (Owner/ Agent)	Name STEVEN	NIHAS	Date 10:09:04

NOTES

For Completing Construction Certificate Application

Note 1

The following information must accompany applications for a construction certificate for building and subdivision work.

Building Work

In the case of an application for a construction certificate for building work:

- a) Copies of compliance certificates relied upon
- b) Four (4) copies of detailed plans and specifications

The plan for the building must be drawn to a suitable scale and consist of a general plan and a block plan. The general plan of the building is to:

- show a plan of each floor section
- show a plan of each elevation of the building
- show the levels of the lowest floor and of any yard or unbuilt on area belonging to that floor and the levels of the adjacent ground
- indicate the height, design, construction and provision for fire safety and fire resistance (if any).

Where the proposed building work involves any alteration or addition to, or rebuilding of, an existing building the general plan is to be coloured or otherwise marked to the satisfaction of the certifying authority to adequately distinguish the proposed alteration, addition or rebuilding.

Where the proposed building work involves a modification to previously approved plans and specification the general plans must be coloured or otherwise marked to the satisfaction of the certifying authority to adequately distinguish the modification.

The specification is:

- to describe the construction and materials of which the building is to be built and the method of drainage, sewerage and water supply
- state whether the materials proposed to be used are new or second hand and give particulars of any second-hand and give particulars of any second-hand materials to be used.
- c) Where the application involves an alternative solution to meet the performance requirements of the BCA, the application must also be accompanied by:
 - details of the performance requirements that the alternative solution is intended to meet, and
 - details of the assessment methods used to establish compliance with those performance requirements.
- d) Evidence of any accredited component, process or design sought to be relied upon.
- e) Except in the case of an application for, or in respect of, a class 1a or class 10 building:
 - a list of any fire safety measures that are proposed to be implemented in the building or on the land on which the building is situated; and
 - if the application relates to a proposal to carry out any alteration or rebuilding of, or addition to, an existing building, a separate list of such of those measures as are currently implemented in the building or on the land on which the building is situated.

The list must describe the extent, capacity and basis of design of each of the measures concerned.

Note 2

Home Building Act Requirements

In the case of an application for a construction certificate for residential building work (within the meaning of the *Home Building Act 1989*) attach the following:

- a) In the case of work by a licensee under that Act:
 - (i) a statement detailing the licensee's name and contractor licence number, and
 - (ii) documentary evidence that the licensee has complied with the applicable requirements of that Act*, or
- b) In the case of work done by any other person:
 - a statement detailing the person's name and owner-builder permit number, or
 - (ii) a declaration signed by the owner of the land, to the effect that the reasonable market cost of the labour and materials involved in the work is less than the amount prescribed for the purposes of the definition of **owner-builder work** in section 29 of that Act.

(iii)

^{*}A certificate purporting to be issued by an approved insurer under Part 6 of the *Home Building Act 1989* to the effect that a person is the holder of an insurance contract issued for the purposes of that Part, is sufficient evidence that the person has complied with the requirements of that Part.

DEFIRE Ptv. Limited

ABN: 30 099 090 089 Telephone 02 9211 4333 Facsimile 02 9211 4366 Suite 3, Level 4, 83-97 Kippax Street Surry Hills NSW 2010 P.O. BOX 2046 Strawberry Hills NSW 2010

TO:	Waller Barda		Walter Barda Architecture
FAX	(02) 9360 2324	TATES !	Page 1 of 1
CC;	Steven Nihas, Parkview Construc.	TYA MA	(02) 8259 7377
	Rohan Defries, Cily Plan Services		(02) 8270 3501
FROM:	Micael Lundqvist		23-08-2004
RE:	1017 Barrenjoey Road, Palm		03164
	Beach		

Walter.

As describe in our fax (29/04/2004) and discussed over the phone last week the bounding walls at Units 1 & 2 entries could be constructed of translucent glass blocks with a fire rating of not less than -/60/-.

The glass blocks are expected to significantly reduce the radiant heat flux onto the evacuation path in the stair. However, in the event of a fully developed flashover fire the heat flux in the stair could exceed 10kW/m².

As mentioned in the previous fax a localised heat detector is therefore required in the entry area inside the lower sole-occupancy unit that has to be passed by evacuating occupants. The heat detector must be linked to an evacuation alarm to provide occupants in both SOUs within the building with early warning in the event of a

As discussed wall-wetting sprinklers are not considered to be required for this alternative as occupant are expected to be able to evacuate the building before a flashover fire would occur. This is subject to approval by the certifying authority and potential peer reviewer.

If you have any further questions call me on 9211 4333 or 0409 246 666.

Regards,

Micael Lundqvist

Senior Fire Safety Engineer

Milhert

FIRE SAFETY ENGINEERS
BUILDING CODE CONSULTANTS

File 2004/C182

Monday, 13 September 2004

02-6260-8499

John David Parkview Constructions Pty Ltd Lot 1, Pier 8/9 23 Hickson Road WALSH BAY NSW

> Peer Review of Defire Pty Ltd Alternative Solution Report 03164 R1.2 RE: 1017 Barrenjoey Road, Palm Beach, NSW

INTRODUCTION

A peer review of the "Alternative Solution Report" (herein called the Report) for the proposed residential development and boat storage facility at 1017 Barrenjoey Road, Palm Beach, NSW has been completed. This review relates to Report No. 03164 R1.2 by Defire Pty Ltd, dated June 2004.

The attached Compliance Certificate is issued as per the requirements of Part 4A of the Environmental Planning and Assessment Act 1979.

Prior to issuing a certificate, the Accredited Certifier, Fire Safety Engineering must be satisfied that the analysis proposed meets the relevant provisions of the Building Code of Australia (BCA).

This peer review has been undertaken at the request of Parkview Constructions Pty Ltd to provide a Compliance Certificate for the solution proposed in Section 12 of the Report - Fire Safety Measures.

SCOPE 2.0

The scope of this peer review is limited to assessing the methodology used and the resultant conclusions contained within the Report related to the ability of the design to provide for effective fire resistance levels and protection of openings as well as egress via the non-fire-isolated stairway.

COMMENTS

The Report provides assessment of the following non-compliances to the Deemed-to-Satisfy (DTS) requirements of the BCA.

Assessment 1:

Table 3 of Specification C1.1 of the BCA requires loadbearing internal beams, trusses and the like to achieve a Fire Resistance Level (FRL). The second floor (top level) contains loadbearing structural elements that support the roof which do not achieve any FRL. The Method of Meeting Performance Requirements nominated in the Report is A0.5(b)(i) and the Assessment Method A0.9(b)(ii). The relevant Performance Requirements are CP1 and CP2.

Assessment 2:

Openings from the carpark are within 3 metres of the south-eastern boundary and are not protected in accordance with Clauses C3.2 and C3.4 of the BCA. The Method of Meeting Performance Requirements nominated in the Report is A0.5(b)(l) and the Assessment Method A0.9(b)(l). The relevant Performance Requirement is CP2.

Page 2

File 2004/C182

Peer Review - 1017 Barrenjoey Road, Palm Beach, NSW

Assessment 3:

The design of the bounding construction of units 1 & 2 to the non-fire-isolated stairway incorporates glazed elements which are proposed to be sprinkler protected. BCA Clause C3.11 does not allow for glazing in openings in required bounding construction. The Method of Meeting Performance Requirements nominated in the Report is A0.5(b)(i) and the Assessment Method A0.9(b)(ii). The relevant Performance Requirement is CP2.

Assessment 4:

The non-fire-isolated stairway has winders in lieu of a landing providing access and egress from Unit 2 which is not permitted under BCA Clause D2.13. The Method of Meeting Performance Requirements nominated in the Report is A0.5(b)(ii) and the Assessment Method A0.9(c). The relevant Performance Requirement is DP2.

The following general comment is made:

> The point related to glazing in Section 12 contains typographical errors. These errors are not considered to change the intent of the requirement, therefore no action is recommended.

The attached Compliance Certificate states that the concept design related to the above non-compliances has been completed and complies with the *Fire Safety Engineering Guidelines* and the Assessment and Verification Methods of the BCA.

The analyses were conducted in accordance with the procedures for both an Evaluation Extent 1 (Single Sub-system) and an Evaluation Extent 2 (Multiple Sub-systems) as outlined in the Fire Safety Engineering Guidelines (1).

4.0 CONCLUSIONS

The Report demonstrates that Performance Requirements CP1, CP2 and DP2 of the BCA are met through Assessment Methods A0.9(b)(i), A0.9(b)(ii) and A0.9(c).

Stephen Wise & Associates Pty Ltd, supports the concept, structure and outcomes of the Alternative Solution Report No. 03164 R1.2 for 1017 Barrenjoey Road, Palm Beach, NSW.

The Compliance Certificate for the concept design is attached.

The Certificate states that the design achieves compliance with Performance Requirements CP1, CP2 and DP2 of the BCA subject to the requirements in the Fire Safety Measures, Section 12 of the Report, being implemented.

If you require any further information, please call on the numbers provided.

Yours sincerely,

Stephen Wise

Fire Safety Engineer

BSAP Registration No: 6493

Fire Safety Engineering Guidelines - Australian Building Codes Board - Edition 2001 - November 2001 - p. 1.2 - 13

02-6260-8499

COMPLIANCE CERTIFICATE - ENVIRONMENTAL PLANNING & ASSESSMENT

Part 4A	Compliance Certificate Issued under the Environmental Planning and Assessment Act 1878 Section 109C (1) (a) Certificate
applicant name address contact no (phone/fax)	John David Parkview Constructions Ptv Ltd Lot 1. Pier B9 23 Hickson Road WALSH BAY NSW
Development consent no or complying development certificate (where in force) development consent no/CDC no date of determination	DA Number: Land and Environment Court Appeal No 11033 of 2001 Dated 14 February 2003, and S98 N1118/00, deted 13 August 2004
construction certificate (where in force) certificate no date of Issue	
Description of development	The proposed development at 1017 Barranicay Road, Palm Beach has a rise in storeys of 3 and incorporates residential, carparking and boat storage facilities.
Subject land address lot. DM/MPS etc	1017 Berrenioev Road PALM BEACH NSW 2108
type of certificate Fire Safety Engineering Certificate	specified proposal has been completed and complies with the Fire Safety Engineering Guidelines (BCA).
give details of the specified aspects of development (eg footings, road construction, drainage system) and detail the plans and specifications the work relates to	This Compliance Certificate relates to Report No. 03164 R1.2. by Defire Pty Ltd, dated June 2004. This report assesses the ability of the design to provide for effective fire resistance levels and protection of openings as well as egress via the non-fire isolated stainway. The report has been undertaken using methodologies described in the Fire Safety Engineering Guidelines and the Assessment and Verification Methods nominated in the BCA.
give details of the specific condition(s) of development consent or complying development certificate and detail the matter the condition relates to and the standards/instruments that the matter is required to comply with give details of the classification of the building in accordance with the BCA (egiclass 1 (a)	☐ Condition(s) has/have been completed with N/e ☐ Classification of building or proposed building Class 2, 7a & 8

Fire Safety Engineering Guidelines – Australian Building Codes Board – Edition 2001 - November 2001

give details of the development and specified aspect of the development and the prescribed requirements it compiles with ☐ Specified aspect of development compiles with prescribed requirements

The Defire Report provides assessment of the following noncompliances to the Deemed-to-Satisfy (DTS) requirements of the BCA

Assessment 1:

Table 3 of Specification C1.1 of the BCA requires loadbearing internal beams, trusses and the like to achieve an Fire Resistance Level (FRL). The second floor (top level) contains loadbearing structural elements that support the roof which do not achieve any FRL. The Method of Meeting Performance Requirements nominated in the Report is A0.5(b)(i) and the Assessment Method A0.9(b)(ii). The relevant Performance Requirements are CP1 and CP2.

Assessment 2:

Openings from the carpark are within 3 metres of the south-eastern boundary and are not protected in accordance with Clauses C3.2 and C3.4 of the BCA. The Method of Meeting Performance Requirements nominated in the Report is A0.5(b)(i) and the Assessment Method A0.9(b)(i). The relevant Performance Requirement is CP2.

Assessment 3:

The design of the bounding construction of units 1 & 2 to the non-fire-Isolated stairway incorporates glazed elements which are proposed to be sprinkler protected. BCA Clause C3.11 does not allow for glazing in openings in required bounding construction. The Method of Meeting Performance Requirements namineted in the Report Is A0.5(b)(i) and the Assessment Method A0.9(b)(ii). The relevant Performance Requirement is CP2.

Assessment 4:

The non-fire-isolated stairway has winders in lieu of a landing providing access and agress from Unit 2 which is not permitted under BCA Clause D2.13. The Method of Meeting Performance Requirements nominated in the Report is A0.5(b)(ii) and the Assessment Method A0.9(c). The relevant Performance Requirement is DP2.

This Compliance Certificate states that the concept design has been completed and complies with Fire Safety Engineering Guidelines and the Assessment and Verification Methods of the BCA.

The enalyses were conducted in accordance with the procedures for both an Evaluation Extent 1 (Single Sub-system) and an Evaluation Extent 2 (Multiple Sub-systems) as outlined in the Fire Safety Engineering Guidelines.

This Certificate states that the design achieves compliance with Performance Requirements CP1, CP2 and DP2 of the BCA subject to the requirements in the Fire Safety Measures, Section 12 of the Report, being Implemented.

inspection date date of inspection of building/subdivision of works

N/a

certificate

i,... Stephen John Wise certify that:

- the nominated "Alternative Solution Report" has been completed and complies with the methodologies of the Fire Engineering Guidelines and the Assessment Methods described in the BCA.
- the building or proposed building designed constructed or adapted for use for the purpose of: Residential & Boat Storage Development.
- the above described aspect of development complies with the prescribed requirement referred to above.

signature date of Issue certificate no	13 September 2004 176
plan(s) approved list plans where relevant	N/a
certifying authority name of certifying authority if accredited certifler accreditation no contact number address	Stephen John Wise Fire Safety Engineer BSAP Registration No. 6493 (02) 6260 8488 (ph) (02) 6260 8499 (fax) 2/32 Bougainville St

For the purposes of notifying a council under Part 8, Division 1, Clause 138 of the Regulation of the issue of compliance certificate, an accreditation certificate must forward all sections of this form, including all attachments to the relevant council where they have not been previously forwarded to the council.

Alternative Solution Report

1017 Barrenjoey Road Palm Beach

Report No. 03164 R1.2 dated June 2004

DEFIRE Pty. Ltd.

ABN: 30 099 090 089

Telephone 02 9211 4333

Facsimile 02 9211 4366

Suite 3, Level 4, 87-93 Kippax Street Surry Hills NSW 2010

P.O Box 2046 Strawberry Hills NSW 2012

I. AMENDMENT SCHEDULE

Version	Date	Information	relating to Report		•	
R1.0	12/5/04	Reason for Issue	Draft report issued to the design team for comment			
			Prepared by	Verified by	Approved by	
	!	Name	Micael Lundqvist			
		Signature				
R1.1 25/5/04		Reason for Issue	Revised draft repo comment.	rt issued to the desig	ın team for	
		-	Prepared by	Verified by	Approved by	
		Name	Chris Jamieson			
		Signature				
R1.2	25/06/04	Reason for Issue	Final report issued to Client, Certifier and Peer Reviewer.			
			Prepared by	Verified by	Approved by	
		Name	Chris Jamieson	Jason Jeffress	Jason Jeffress	
		Signature	Can Jam.	Jam Span	Jam Han	
		Reason for Issue		() ()	() ()	
			Prepared by	Verified by	Approved by	
		Name				
		Signature				

II. EXECUTIVE SUMMARY

This alternative solution report documents the findings of a fire safety engineering assessment aimed at determining whether the proposed development at 1017 Barrenjoey Road, Palm Beach, achieves compliance with Performance Requirements CP1, CP2 and DP2 of the Building Code of Australia (BCA). Defire undertook the assessment at the request of Parkview Constructions P/L.

The design of the building includes areas which do not comply with the Deemed-to-Satisfy (DTS) provisions of the BCA. It is intended to apply a performance-based fire safety engineering approach to develop alternative solutions to the DTS provisions of the BCA related to the following areas:

- Second Floor contains unprotected structural steel elements that will not achieve the fire resistance levels specified by Specification C1.1 of the BCA.
- Openings in the Ground Floor carpark within 3 metres of the allotment boundaries which are not proposed to be protected in accordance with Clause C3.2 and C3.4 of the BCA.
- Design of the non fire-isolated stair serving Units 1 and 2 results in a noncompliance with the requirements for bounding construction specified by Clause C3.11 of the BCA.
- The required non fire-isolated exit serving Unit 1 on the Second Floor contains winders in lieu of landings as required by Clause D2.13 of the BCA.

This fire safety engineering assessment was undertaken to demonstrate that the design of the proposed development achieves compliance with the relevant Performance Requirements of the BCA in lieu of compliance with the DTS provisions.

The fire safety engineering assessment undertaken found that the design of the subject building achieves compliance with Performance Requirement CP1, CP2 and DP2 of the BCA, subject to the following recommendations:

- The provisions listed in Section 12 Fire Safety Measures are to be strictly adhered to. The requirements listed in that Section are Essential Services and as such all fire safety systems should be identified as requiring maintenance and certification at appropriate intervals relative to their Australian Standard and the Environmental Planning and Assessment Regulations, 2000.
- A reassessment will be needed to verify consistency with the assessment contained within this report should a change in use, building alterations or additions occur in the future.

III. TABLE OF CONTENTS

l.	Amendment Schedule	2
II.	Executive Summary	3
III.	Table of Contents	4
1.	Introduction	6
2.	Fire Safety Engineering Brief	
3.	Building Description	
3.1	Building Characteristics	
3.2	Alternative Solutions	7
4.	Scope, Limitations and Assumptions	8
4.1	Scope and Limitations	
4.2 =	BCA Requirements Associated with the Alternative Solution	
5. c		
6. -	Evaluation Extent	
7.	Alternative Solution 1 – Unprotected Steel Structure on Second Floor	
7.1	Introduction	
7.2	Methodology	
7.3	Objectives of Section C of the BCA	۱۱
7.4	Assessment	
-	.4.1 Performance of Unprotected Steel Exposed to Fire	
1	7.4.2.1 Occupant Life-safety	
	7.4.2.2 Fire Brigade Intervention	
7	.4.3 Spread of Fire and Protection of Other Property	
7.5	Conclusion	
7.6	Compliance with the Performance Requirements	
8.	Alternative Solution 2 – Protection of Openings	
8.1	Introduction	
8.2	Intent of the BCA	
8.3	Methodology	
	.3.1 Evaluation Extent	
8.	.3.2 Radiation Emitted to Adjacent Properties	18
8.	.3.3 Radiation Received from Adjacent Properties	18
8.4	Assessment of Radiant Heat Emitted to Adjacent Properties	19
8.	.4.1 Potential Radiant Heat Sources	
-	.4.2 Fire Scenarios	
	.4.3 Radiant Heat Emitted to Adjacent Properties	19
8.5	Assessment of Radiant Heat Received from Adjacent Properties	
8.6	Conclusion	21
8.7	Compliance with the Performance Requirements	
9.	Alternative Solution 3 – Bounding Construction of SOU	
9.1	Introduction	
9.2	Methodology	
9.3	Intent of the BCA	
9.4	Assessment	
	.4.1 Identification of Fire Scenarios	
ч	4.2 Requirements for Bounding Construction	Z4

Alternative Solution Report R1.2 1017 Barrenjoey Road, Palm Beach

9.	4.3 Performance of Glazed Separation	24
9.	4.4 Radiant Heat Exposure to Evacuating Occupants	25
9.5	Conclusion	26
9.6	Compliance with the Performance Requirements	27
10.	Alternative Solution 4 – Winders in Required Exit Stair	28
10.1	Introduction	28
10.2	Methodology	28
10.3	Intent of the BCA	28
	Assessment	
	0.4.1 Introduction	
	0.4.2 Base Case Building Solution	28
	0.4.3 Comparison of Base Case and Subject Building Design	29
	Conclusion	30
10.6	Compliance with the Performance Requirements	31
11.	Summary of Alternative Solutions	32
12.	Fire Safety Measures	33
13.	References	35
Арре	endix A Drawings and Information	
Appe	endix B Limiting Temperature of the Steel Roof Structure	
	endix C Failure Mechanism of Steel Roof Structure	
• •	endix D Radiant Heat Emitted to the Boundary	
	endix E Radiant Heat Received from the Boundary	
whh	endix F Radiant Heat Exposure	

1. Introduction

This alternative solution report documents the findings of a fire safety engineering assessment aimed at determining whether the proposed development at 1017 Barrenjoey Road, Palm Beach, achieves compliance with Performance Requirements CP1, CP2 and DP2 of the Building Code of Australia (BCA). Defire undertook the assessment at the request of Parkview Constructions P/L.

2. Fire Safety Engineering Brief

An informal Fire Safety Engineering Brief (FSEB) was held over the phone between Rohan Defries of City Plan Services and Micael Lundqvist of Defire Pty Limited on the 10-05-2004 in regard to the project. The FSEB was conducted with the relevant stakeholders involved in the formal approval process to identify the potential fire hazards and define the fire safety problems in qualitative terms, suitable for a detailed assessment and quantification.

At the conclusion of the meeting it was agreed that a formal FSEB meeting was not required and that the proposed design and alternative solution is suitable for detailed assessment and quantification based upon the identified essential information given in Sections 3, 4, 5 and 6. All parties agreed that the alternative solution report should be submitted to all relevant stakeholders identified in Table 2-1 for further comment following the detailed analysis and quantification.

Name	Role	Company	Telephone	Facsimile
Steven Nihas	Builder	Parkview Constructions	(02) 8259 7388	(02) 8259 7377
Walter Barda	Architect	Walter Barda Architects	(02) 9360 2340	(02) 9360 2324
Rohan Defries / Brendan Bennett	Project Certifier	City Plan Services	(02) 8270 3500	(02) 8270 3501
lan Hayles	Structural Engineer	GHD	(02) 9239 7100	(02) 9239 7199
Micael Lundqvist	Fire Safety Engineer	Defire	(02) 9211 4333	(02) 9211 4366

Table 2-1 Key Stakeholders

3. Building Description

3.1 Building Characteristics

The proposed building has a rise in storeys of three compromising residential (Class 2) sole-occupancy units (SOU), car parking (Class 7a) and boat storage facilities (Class 8). The Ground Floor includes the bottom level of Unit 3, car parking and the boat storage area. Levels 2 and 3 contain the single level Units 1 and 2 and the upper two levels of Unit 3.

The SOU's on the upper levels of the building are served by a non fire-isolated stair. Based on the number of storeys contained and the classification of the top-most storey (Class 2) the building is required to be of Type A construction.

Adjacent to the main building is a small two-storey commercial/retail building above a basement level which is understood to be located not less than 6 metres from the main building and is subsequently classified as a separate building of Type C construction.

3.2 Alternative Solutions

The design of the building includes areas which do not comply with the Deemed-to-Satisfy (DTS) provisions of the BCA. It is intended to apply a performance-based fire safety engineering approach to develop alternative solutions to the DTS provisions of the BCA related to the following areas:

- Second Floor contains unprotected structural steel elements that will not achieve the fire resistance levels specified by Specification C1.1 of the BCA.
- Openings in the Ground Floor carpark within 3 metres of the allotment boundaries which are not proposed to be protected in accordance with Clause C3.2 and C3.4 of the BCA.
- Design of the non fire-isolated stair serving Units 1 and 2 results in a noncompliance with the requirements for bounding construction specified by Clause C3.11 of the BCA.
- The required non fire-isolated exit serving Unit 1 on the Second Floor contains winders in lieu of landings as required by Clause D2.13 of the BCA.

This fire safety engineering assessment was undertaken to demonstrate that the design of the proposed development achieves compliance with the relevant Performance Requirements of the BCA in lieu of compliance with the DTS provisions.

4. Scope, Limitations and Assumptions

4.1 Scope and Limitations

- 1. The scope of this Alternative Solution is limited to an assessment of the non-compliances with the DTS provisions of the BCA identified in Section 5.
- 2. The scope of the assessment is limited to compliance with the Performance Requirements of the BCA. Matters such as property protection (other than protection of adjoining property), business interruption, public perception, environmental impacts and broader community issues (such as loss of a major employer, impact on tourism etc.) have not been considered, since they are outside the scope of the BCA.
- 3. The scope of this alternative solution report considers single point arson as a source of ignition. Arson involving accelerants and/or multiple ignition sources is not considered in this assessment, since it is outside the scope of the BCA.
- 4. The scope of this alternative solution report is limited to consideration of egress and fire safety issues for people with disabilities to the same degree as the DTS provisions of the BCA.
- A reassessment will be needed to verify consistency with the assessment contained within this report, should a change in use, building alterations or additions, changes to the fire safety systems occur in the future.
- The data, methodologies, calculations and conclusions documented within this
 alternative solution report specifically relate to the subject building and must not be
 used for any other purpose.
- 7. The documentation that forms the basis for this assessment is listed within Appendix A.

4.2 Assumptions

- 1. The building complies with the DTS provisions of the BCA except for the specific issues identified within Section 5.
- As the building is similar in all respects to a DTS complying building, all of the fire safety systems are assumed to operate as designed unless specifically stated otherwise.

5. BCA Requirements Associated with the Alternative Solution

Table 5-1 outlines the BCA requirements associated with the alternative solution aimed at satisfying the relevant Performance Requirements.

Alt Sol	Description of Alternative Solution	DTS Provision	Performance Requirements	Method of Meeting Performance Requirements (A0.5)	Assessment Method (A0.9)
1.	Unprotected steel structure on Second Floor	Clause C1.1 and Specification C1.1	CP1 and CP2	A0.5(b)(i)	A0.9(b)(ii)
2.	Protection of openings within 3 metres of the allotment boundary.	Clause C3.2 and C3.4	CP2	A0.5(b)(i)	A0.9(b)(i)
3.	Bounding construction of Units 1 and 2.	Clause C3.11	CP2	A0.5(b)(i)	A0.9(b)(ii)
4.	Single stair with winders in lieu of landings.	Clause D2.13	DP2	A0.5(b)(ii)	A0.9(c)

Table 5-1 BCA Requirements Associated with the Alternative Solution

6. Evaluation Extent

A fire safety engineering assessment carried out in accordance with the Fire Safety Engineering Guidelines - Edition 2001^[1] can generally be categorised into three different extents of evaluation – Extent 1, 2 and 3. The difference in the extents of evaluation lies with the number of sub-systems involved in the assessment. An Evaluation Extent 1 does not involve more than one sub-system. An Evaluation Extent 2 involves more than one sub-system, but not all six. An Evaluation Extent 3 involves all six sub-systems. All evaluation extents could involve either comparative or absolute types of assessments. The fire safety sub-systems specified by the Guidelines are as follows:

Sub-system A
Fire Initiation and Development and Control

Sub-system B
Smoke Development and Spread and Control

Sub-system C Fire Spread and Impact and Control

Sub-system D Fire Detection, Warning and Suppression

Sub-system E Occupant Evacuation and Control

Sub-system F Fire Brigade Intervention

The evaluation extents associated with each of issues assessed is identified within the methodology section of the respective alternative solutions.

¹ Australian Building Codes Board, Fire Safety Engineering Guidelines – Edition 2001, Australian Building Codes Board, November 2001.

7. Alternative Solution 1 – Unprotected Steel Structure on Second Floor

7.1 Introduction

The Second Floor load bearing roof structure is proposed to include unprotected structural steel elements that will not achieve the required Fire Resistance Levels (FRL) required by Specification C1.1 of the BCA. It is noted that the roof does not require an FRL under the Deemed-to-Satisfy (DTS) provisions of the BCA. Accordingly, an alternative solution has been formulated to demonstrate compliance with Performance Requirement CP1 and CP2 of the BCA.

7.2 Methodology

The assessment undertaken for the subject building is a qualitative absolute Evaluation Extent 2 involving the following sub-system(s):

- Sub-system C Fire Spread and Impact and Control
- Sub-system E Occupant Evacuation and Control
- Sub-system F Fire Brigade Intervention

7.3 Objectives of Section C of the BCA

To make an assessment of whether the design of the building achieves compliance with Performance Requirements CP1 and CP2, the objectives of the BCA in relation to fire resistance must first be understood. The objective of Section C of the BCA (as stated by Object C01 of the BCA) is to:

- (a) safequard people from illness or injury due to a fire in a building; and
- (b) safeguard occupants from illness or injury while evacuating a building during a fire; and
- (c) facilitate the activities of emergency services personnel; and
- (d) avoid the spread of fire between buildings; and
- (e) protect other property from physical damage caused by structural failure of a building as a result of fire.

The objective of the Section C of the BCA is elaborated further by the Guide to the BCA which states:

Basis of Objective

This Objective is based on the belief that a building should:

- provide people with an environment which, during a fire, will minimise the risk of them suffering illness or injury;
- provide people with an evacuation route which will minimise the risk of them suffering illness or injury while escaping a fire;
- facilitate the role of emergency services personnel, such as the fire brigade, if it becomes necessary for them to undertake such operations as fire-fighting and search and rescue:
- assist in minimising the risk of fire spreading from one building to another; and

 not have a structural failure during a fire that results in damage to another building, allotment or road.

Spread of Fire

There is a continuing debate regarding the means by which the BCA should minimise the risk of fire spreading from one building to another. Should the greater degree of fire protection be in the building on fire, or should it be in the building at potential risk of the fire spreading?

Generally, the BCA provisions aim to minimise the spread of fire from the building on fire, but there are some provisions that limit the spread of fire from an adjacent building.

Consequently, CO1(d) states that the spread of fire is to be avoided 'between buildings' — that is, in either direction.

Protection of Other Property

The BCA is principally designed to maximise (within reasonable bounds) the safety, health and amenity of people in and around buildings. Protection of property, either the subject building or what is termed 'other property', is not generally a primary aim of the BCA — although it may sometimes be a consequence of the provisions of the BCA.

However, there are some exceptions to this rule, and the inclusion of 'other property' in CO1(e) is one of these. In this context, a building is expected to maintain the level of structural sufficiency necessary to prevent it causing damage to any other property as a result of fire. The reason CO1(e) concerns itself with the protection of other property is primarily because fire from a building should not pose a serious risk to the health, safety and amenity of the public or occupants of another building.

7.4 Assessment

7.4.1 Performance of Unprotected Steel Exposed to Fire

To undertake an assessment of the unprotected structural steel elements on the Second Floor, the performance of structural steel when exposed to fire must be understood. The design of structural steel under fire conditions is based upon the critical steel temperature concept. This is a comparison of the yield strength and loading at normal conditions and the yield strength and loading conditions in fire conditions.

The change in yield strength at elevated temperature has been experimentally investigated. An approximation of this test data has been included in many national standards such as AS 4100 (structural steel) and AS 3600 (reinforcing and pre-stressing steel)^[2]. The relationships stated in the standards are reproduced in Equation 7-1 and Figure 7-1.

structural steel
reinforcing steel
prestressing steel

where:

T = Tempearture (°C)

k_{y,r} = Ratio of yield strength at elevated temperature to yield strength at 20°C

Equation 7-1 Relationship between yield stress ratio and temperature as specified in AS 4100 and AS 3600

² Buchanan, A.H., Structural Design for Fire Safety, John Wiley & Sons, 2001, pp198

The relationships show that the yield strength of steel sections when exposed to fire conditions does not reduce until the steel temperature reaches 215°C. At temperatures in excess of 215°C, the load-bearing capacity of structural steel begins to diminish. Once temperatures within a fire compartment reach approximately 500°C and above, many steel sections lose their ability to support their design loads and are considered to have failed.

Given that the structural steel columns within the subject building are not protected with any passive construction and the building is not protected with an automatic sprinkler system, a fire within the building may cause the SOU of fire origin to reach temperatures in the order of 600-1000°C, either locally in the region of flaming or the entire compartment, should flashover occur.

Temperatures between 600-1000°C are expected to cause failure of the unprotected steel structure within the SOU of fire origin. Consequently, this assessment was undertaken to examine the impact should the roof steel structure fail and be unable to support its design load.

Input was sought from the Project Structural Engineer, Ian Hayles of GHD Pty Ltd, who has assessed the proposed unprotected steel roof structure and determined that the unprotected steel elements can maintain their load bearing capacity at steel temperatures up to **750°C** (limiting steel temperature). A copy of the correspondence from Ian Hayles, GHD P/L, is provided in Appendix B.

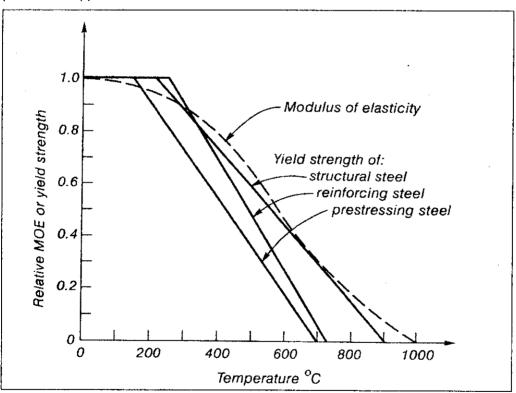


Figure 7-1 Design curves for reduction in yield strength of steel with temperature

7.4.2 Fire Resistance of Structural Elements

7.4.2.1 Occupant Life-safety

The first three points of Objective C01 of the BCA relate to the ability of the structure to remain intact for sufficient time for safe evacuation of the building to occur and the emergency services personnel to undertake their operations. The failure of heavily loaded unprotected steel

columns during fire conditions may lead to a serious structural failure within the building, which could represent a serious life-safety risk to any person within the building.

The subject building is designed with sufficient structural redundancy so that the failure of the unprotected roof steel structure will not "compromise the structural stability or the fire separation of the storeys below" [3]. The structural redundancy incorporated into the subject building design means that in the event of a fire in either of the SOU's on the Second Floor, the failure of the steel roof structure will not cause failure of the remainder of the building structure, including fire-rated floor slabs and external walls required to achieve an FRL.

This level of structural redundancy is considered to address the primary aim of Objective C01 which is to safeguard against the collapse of the building structure in the event of a fire and protect occupants of the building from the affects of structural failure due to a fire. This is particularly relevant to occupants who are remote from the SOU of fire origin who could potentially be unaware of a fire.

Occupants in the SOU of fire origin are anticipated to evacuate well before the roof steel structure could fail due to fire. Furthermore, temperatures that could cause failure of the steel structure are well in excess of the life-safety criteria for occupants given in Chapter 4 of the *Fire Engineering Guidelines* (See Table 7-1) given that the limiting steel temperature has been calculated to be 750°C (See Section 7.4.1).

No.	Tenability Criteria	Limiting Value	Comment
1	Hot Layer Height	2.1 m	If the hot layer below 2.1m tenability Criteria 3, 4 and 5 become the controlling factors.
2	Heat Radiation	2.5kW/m ²	@ 2.1m above floor level See Note 1.
3	Convected Heat	60°C	60°C as recommended by the Fire Engineering Guidelines for humid air/smoke
4	Visibility	10m	@ 2.0m above floor level
5	Toxicity	N/A	

Table 7-1 Tenability Acceptance Criteria

Note 1: For smaller enclosures of relatively low height, the heat radiation limit of 2.5kW/m² occurs when the hot layer reaches approximately 180 - 200°C. A hot layer temperature of 200°C is adopted as the limiting value for heat radiation for this assessment.

In consideration of the factors discussed above, the unprotected steel structure is not considered to increase the risk to life of occupants in the subject building.

7.4.2.2 Fire Brigade Intervention

The objective of CO1 also includes protection of fire-fighters during search and rescue activities and fire brigade intervention as attending fire-fighters could be injured by collapsing building elements.

In terms the life-safety of emergency personnel within the SOU of fire origin, temperatures that could cause structural failure of the roof structure are well in excess of the criteria for fire-

³ Advice Provided by Project Structural Engineer, Ian Hayles, GDH Pty Ltd, 03 June 2004. Correspondence attached in Appendix C.

⁴ Fire Engineering Guidelines 1996 - Fire Code Reform Centre Ltd - 1st Edition - March 1996 -- p. 4-7

fighters in full turnout gear based on the recommendations in the Fire Brigade Intervention Model (FBIM) [5] as described in Table 7-2.

No.	Tenability Criteria	Limiting Value	Comment
6	Heat Radiation	4.5 kW/m²	@ 1.5 metres above floor level See Note 1 .

Table 7-2 Tenability Criteria for Fire-Fighters

Note 2: For smaller enclosures of relatively low height, the heat radiation limit of 4.5kW/m² occurs when the hot layer reaches approximately 250-300°C. A hot layer temperature of 300°C is adopted as the limiting value for heat radiation for this assessment.

Emergency personnel are not considered to be placed under any additional threat as a result of the unprotected steel structure due to the following factors:

- Potential structural failure is understood to be localised to the fire area (i.e. area with temperatures in excess of 750°C) and progressive collapse will not occur;
- It is understood that failure of the steel structure on the top storey will not compromise the structural stability or the fire separation of the storeys below or the fire-rated external walls;
- It is understood that in the event of failure any collapse will be inwards preventing structural elements failing of the side of the building potentially injuring emergency services personnel [6]; and

7.4.3 Spread of Fire and Protection of Other Property

The remaining points of Objective C01 of the BCA relate to avoiding damage to surrounding properties, either through external spread of fire or damage caused by structural collapse. These points of the objective are based upon the design of the building as a whole. External spread of fire is based on the separation between buildings and the size of the openings. Damage due to collapse is caused by structural failure of building elements because of excessive heating.

The Second Floor of the building complies with the DTS provisions of the BCA (including the requirements of Section C) with the exception of the requirement for the steel structure supporting the roof to achieve an FRL of 60/-/-. It is noted that the roof itself is not required to achieve an FRL under the DTS provisions of the BCA as the building is three-storeys.

The remainder of the external wall structure and the openings comply with the requirements of Section C of the BCA and as such will resist the spread of fire from adjacent properties to the degree required by the DTS provisions of the BCA.

7.5 Conclusion

The assessment of the subject building found that the unprotected steel roof structure on the Second Floor is not expected to impact upon the life-safety of occupants or emergency service personnel, or the likelihood of damage to the surrounding properties due to fire spread or structural collapse to the degree required by Objective C01 of the BCA. The design of the

⁵ Fire Brigade Intervention Model (FBIM), Australasian Fire Authorities Council, Australia 1997

⁶ Advice Provided by Project Structural Engineer, Ian Hayles, GDH Pty Ltd, 03 June 2004. Correspondence attached in Appendix C.

building is therefore considered to achieve compliance with Performance Requirements CP1 and CP2 of the BCA.

7.6 Compliance with the Performance Requirements

A summary of the assessment demonstrating compliance with the relevant Performance Requirements of the BCA is listed below:

CP1

A building must have elements which will, to the degree necessary, maintain structural stability during a fire appropriate to-

Criteria	Compliance
a) the function or use of the building; and	The relevant area of the building is residential (Class 2).
b) the fire load; and	The fire load in the SOU's is expected to be approximately 400-600MJ/m², which is constant with a residential use.
c) the potential fire intensity; and	A fully developed fire has been considered in the assessment.
d) the fire hazard; and	The fire hazard assessed is structural failure and fire spread.
e) the height of the building; and	The building has three storeys above ground.
f) its proximity to other property; and	The external wall structure on the Second Floor and openings comply with the requirements of Section C of the BCA and so will resist the spread of fire from adjacent properties to the degree required by the DTS provisions of the BCA.
g) any active fire safety systems installed in the building; and	The SOU's are provided with smoke alarms.
h) the size of any fire compartment; and	Equivalent to a DTS design solution.
i) other elements they support; and	The unprotected steel structure supporting the roof must not support any other loadbearing elements.
j) fire brigade intervention; and	The assessment has demonstrated that the critical temperature for fire brigade intervention is expected to be reached well before structural failure would be expected to occur.
k) the evacuation time	The assessment has demonstrated that the critical temperature for occupant egress is expected to be reached well before structural failure would be expected to occur.

- CP2
- (a) A building must have elements which will, to the degree necessary, avoid the spread of fire-
 - to exits; and
 - ii) to sole-occupancy units and public corridors; and
 - iii) between buildings; and
 - iv) in a building,

(b) Avoidance of the spread of fire referred to in (a) must be appropriate to-

Criteria	Compliance
i) the function or use of the building; and	The relevant area of the building is residential (Class 2).
ii) the fire load; and	The fire load in the SOU's is expected to be approximately 400-600MJ/m², which is constant with a residential use.
iii) the potential fire intensity; and	A fully developed fire has been considered in the assessment.
iv) the fire hazard; and	The fire hazard assessed is structural failure and fire spread.
v) the height of the building; and	The building has three storeys above ground.
vi) its proximity to other property; and	The external wall structure on the Second Floor and openings comply with the requirements of Section C of the BCA and so will resist the spread of fire from adjacent properties to the degree required by the deemed-to-satisfy provisions of the BCA.
vii) any active fire safety systems installed in the building; and	The SOU's are provided with smoke alarms.
viii) the size of any fire compartment; and	The sole occupancy units form individual fire compartments.
ix) other elements they support; and	The unprotected steel structure supporting the roof must not support any other loadbearing elements.
x) fire brigade intervention; and	The assessment has demonstrated that the critical temperature for fire brigade intervention is expected to be reached well before structural failure would be expected to occur.
xi) the evacuation time	The assessment has demonstrated that the critical temperature for occupant egress is expected to be reached well before structural failure would be expected to occur.

8. Alternative Solution 2 – Protection of Openings

8.1 Introduction

The proposed design includes louvred ventilation openings in the ground floor carpark within 3 metres of the South Eastern allotment boundary which are not proposed to be protected in accordance with Clause C3.2 and C3.4 of the BCA. Accordingly, an alternative solution has been formulated to demonstrate compliance with Performance Requirement CP2 of the BCA.

8.2 Intent of the BCA

To make an assessment of whether the design achieves compliance with Performance Requirement CP2 of the BCA, the intent of the Clause C3.2 must first be understood. The Guide to the BCA says that the intent of Clause C3.2 is "to require any opening in external walls to be protected, only where the wall is required to have an FRL, to prevent the spread of fire from the boundary of an adjoining allotment, or one building to another building on the same allotment."

8.3 Methodology

8.3.1 Evaluation Extent

The assessment undertaken for the subject building is a quantitative absolute Evaluation Extent 2 involving the following sub-system(s):

- Sub-system C Fire Spread and Impact and Control
- Sub-system D Fire Detection, Warning and Suppression

The methodology used to determine whether the building meets the requirements of Verification Method CV1 of the BCA has been divided into two sections for the assessment. The process for each component is described within Sections 8.3.2 and 8.3.3.

8.3.2 Radiation Emitted to Adjacent Properties

- Identify the openings in the subject building that could act as a source of fire spread (via radiant heat) to the adjacent properties.
- Establish the dimensions of the identified openings. An augmentation factor of 25% is applied to the height of the openings to account for flames emanating out of the window in accordance with Appendix B of the AS2118.2.
- Calculate the levels of radiant heat flux at the vertical plane locations identified in Column 1 of Table CV1 and determine whether they are less than the values nominated in Column 2 of Table CV1.
- Develop a strategy to protect openings that emit more than the critical radiant heat flux levels at the locations set out in Column 1 of Table CV1 of the BCA where another building may be constructed.

8.3.3 Radiation Received from Adjacent Properties

 Establish the level of radiant heat flux required to be withstood by the openings that are within 3 metres of a FSF using Verification Method CV1 of the BCA. Develop a strategy to protect openings that receive more than the critical level of radiant heat flux of 20kW/m².

Clause C3.4 of the BCA does not require openings to be protected if they are 3 metres or more from a FSF. At a distance of 3 metres from the boundary, Verification Method CV1 requires openings to be capable of withstanding a heat flux of 20kW/m². It is therefore concluded that openings receiving a heat flux of 20kW/m² or less do not require protection.

8.4 Assessment of Radiant Heat Emitted to Adjacent Properties

8.4.1 Potential Radiant Heat Sources

The dimensions and location of the openings used to calculate the radiant heat flux emitted for the fire scenarios listed in Table 8-1. To ensure a conservative analysis, these dimensions may be larger than the actual design.

Description of opening	Height (mm)	Adjusted Height (mm)	Width (mm)	Closest point of boundary to opening (mm)	Direction opening faces	Exposed boundary
2x Carpark ventilation openings	800	1000	2000	1400	South East	South East

Table 8-1 Dimensions and Location of Subject Opening

8.4.2 Fire Scenarios

Table 8-2 identifies the openings to be evaluated and the associated credible worst case fire scenarios assessed to determine the potential for fire spread from the subject building. These scenarios are considered to be representative of the subject openings for the purposes of determining the maximum radiant heat flux levels emitted at the location within the boundary of the adjoining property set out in Column 1 of Table CV1 where another building may be constructed.

Fire Scenario	Description of Scenario	Identified Opening	Associated Boundary
1	Fully developed fire (temperature 1000°C) adjacent to the subject openings.	2x carpark ventilation openings	South East

Table 8-2 Worst Case Fire Scenario

8.4.3 Radiant Heat Emitted to Adjacent Properties

The radiant heat levels emitted onto adjacent properties were calculated at the vertical plane locations identified in Column 1 of Table CV1. These calculations ignore the provision of the louvres and any associated benefit in terms of attenuation of the radiant heat emitted to the adjacent properties.

Table 8-3 contains a summary of the level of radiant heat flux emitted from the identified credible worst case fire scenario for the subject building. This is reported in terms of the heat flux received at the various locations identified within Column 1 of Table CV1. The output data has been included in Appendix C. The assessment indicates that the heat fluxes emitted by the

identified openings to the adjacent properties are less than the values listed in Column 2 of Table CV1 of the BCA. The proposed design of the subject building is considered to achieve the criteria for Part (a) of Verification Method CV1 of the BCA

Scenario	On Boundary (kW/m²)	1m from Boundary (kW/m²)	3m from Boundary (kW/m²)	6m from Boundary (kW/m²)	
Maximum Heat Flux Permitted by Verification Method CV1	80	40	20	10	
1	34.4	14.4	4.7	1.7	

Table 8-3 Radiant Heat Emitted from Opening at the Locations Nominated by Column 1 of Table CV1

8.5 Assessment of Radiant Heat Received from Adjacent Properties

The effect of the louvres must be assessed to determine whether the proposed protection method will achieve the criteria specified in Part (b) of Verification Method CV1 of the BCA. The louvres will act as a non-translucent barrier preventing the direct transmission of incident radiation from the allotment boundary into the subject building. The louvres required as part of this assessment must be designed to block radiation from all angles (i.e. you cannot see through them from any angle). Examples of the louvre designs are shown in Figure 8-1.

The louvres can be manufactured from aluminium or steel. However, if aluminium louvres are selected they will require wall-wetting sprinkler protection to the external face of the louvres. When the sprinklers operate, they will cool the external surfaces of the aluminium louvres. The presence of this water is expected to act as a buffer between the incident radiation and the louvre to limit the temperature of the louvres to approximately 100°C (being the boiling point of water) and maintain their structural stability.

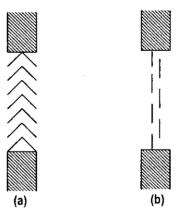


Figure 8-1 Example of louvre

Any radiant heat transfer through the subject openings will be the result of incident radiation heating the louvres above ambient conditions and causing them to act as a secondary source of radiant heat.

The level of radiant heat transferred from the surface of the louvre blades is a function of the temperature of the louvres. As the louvre elevates in temperature it will radiate heat both towards the opening and back towards the allotment boundary. The level of radiation emitted in both directions can be expected to be approximately 50% of the incident radiation from the

allotment boundary. This is a conservative calculation method as it ignores any heat losses likely to occur as a result of convective cooling or sprinklers if present.

Column 2 of Table CV1 nominates the radiant heat flux levels that openings must be capable of withstanding at various distances from the boundary. Based on these values, radiant heat fluxes can be interpolated using a power law relationship for openings located at distances between those given values. Using this relationship, the radiant heat flux received by the identified openings was calculated to be **35kW/m²** (See Appendix E for calculation output).

Assuming 50% of the incident radiant heat flux is re-emitted from the louvre in either direction the maximum radiant heat flux into the carpark is 17.5 kW/m^2 (35 ÷ 2), which is less than the critical level of 20 kW/m². It is therefore considered that the proposed design of the subject building achieves the criteria for Part (b) of Verification Method CV1 of the BCA.

8.6 Conclusion

The fire safety engineering assessment undertaken for the proposed development demonstrates that the design meets the criteria specified within Parts (a) and (b) of Verification method CV1 of the BCA. It is therefore concluded that the proposed design of the building achieves compliance with Performance Requirement CP2, subject to the recommendations given in Section 12.

Compliance with the Performance Requirements 8.7

A summary of the assessment demonstrating compliance with the relevant Performance Requirements of the BCA is listed below:

- CP2
 - (a) A building must have elements which will, to the degree necessary, avoid the spread of fire
 - to exits; and
 - ii) to sole-occupancy units and public corridors; and
 - iii) between buildings; and
 - in a building, iv)

(b) Avoidance of the spread of fire referred to in (a) must be appropriate to-

Criteria	Compliance
i) the function or use of the building; and	The subject building is a residential (Class 2) development with an associated carpark. This assessment relates only to the carpark.
ii) the fire load; and	Equivalent to complying design. The fire load in a carpark is expected to be low.
iii) the potential fire intensity; and	A fully developed fire was assumed for the assessment.
iv) the fire hazard; and	The fire hazard associated with the proximity of the subject openings to the boundary has been addressed by the provision of louvres shielding the openings. The assessment demonstrates that these louvres will limit the amount of radiant heat transmitted through the opening in accordance with the requirements of Verification Method CV1 of the BCA.
v) the height of the building; and	The subject building has a rise in storeys of three.
vi) its proximity to other property; and	The openings located 1.4 metres from the south eastern boundary have been shown to reduce the risk of fire spread between buildings on adjoining allotment/s to the degree necessary when protected with louvres.
vii) any active fire safety systems installed in the building; and	There are no active systems proposed in relation to this alternative solution. (Sprinklers if aluminium louvres are proposed).
viii) the size of any fire compartment; and	Equivalent to complying design.
ix) other elements they support; and	Equivalent to complying design.
x) fire brigade intervention; and	Fire Brigade Intervention has been conservatively ignored for the purposes of this assessment.
xi) the evacuation time	This assessment is not considered to be affected by the evacuation time.

9. Alternative Solution 3 – Bounding Construction of SOU

9.1 Introduction

The design of the bounding construction of Units 1 and 2 incorporates glazed walls and solid core doors between the Sole-Occupancy Units (SOU's) and the required non fire-isolated stair. The provision of glazing and solid core doors as part of the bounding construction does not comply with the construction requirements for the bounding construction of Class 2 SOU's for Type A construction as specified by Clause C3.11 of the BCA.

It is proposed to protect the glazed walls and the solid core doors with wall-wetting sprinklers that provide full coverage to the glazing and doors. Although the proposed protection does not comply with Clause C3.11 of the BCA, it is considered necessary to maintain the integrity of the bounding construction of the unit to the degree necessary to achieve compliance with Performance Requirement CP2 of the BCA.

9.2 Methodology

The assessment undertaken for the subject building is a qualitative absolute Evaluation Extent 2 involving the following sub-system(s):

- Sub-system C Fire Spread and Impact and Control
- Sub-system D Fire Detection, Warning and Suppression
- Sub-system E Occupant Evacuation and Control

9.3 Intent of the BCA

To make an assessment of whether the design achieves compliance with Performance Requirement CP2 of the BCA, the intent of the Clause C3.11 of the BCA must first be understood.

The Guide to the BCA says that the intent of Clause C3.11 is "to maintain the performance of a wall bounding any sole occupancy unit or public corridor in Class 2 or Class 3 buildings, and any sole occupancy unit in a class 4 part." [7]

The purpose of maintaining the performance of the wall is considered to be to protect the egress route from heat and smoke to allow occupants to evacuate the building.

9.4 Assessment

9.4.1 Identification of Fire Scenarios

In order to assess the performance of the proposed design in relation to the intent of the BCA the affect of relevant fire scenarios must be examined in terms of the potential consequences to occupants evacuating through the non fire-isolated stair. The following three potential fire scenarios are considered relevant:

- 1) A fire within Unit 1.
- 2) A fire within Unit 2.
- 3) A fire within the non fire-isolated stair.

⁷ Guide to the BCA, Australian Building Code Board -- Page 141

Fire scenarios 1 and 2 are considered to present a similar risk to occupant within the non fire-isolated stair and can therefore be assessed as one scenario "Fire within SOU".

A fire within the non fire-isolated stair is considered unlikely as the area is a circulation space with limited fire load. However, in the event of a fire within the stair occupants could be trapped in their SOU and required to wait for fire brigade assistance.

9.4.2 Requirements for Bounding Construction

To provide adequate fire resistance of the glazed walls and the solid core entry doors, the following additional measures must be incorporated into the design.

- Glazing must be 10mm toughened glass fixed in a steel or aluminium frame.
 Toughened glass was chosen as it is more resilient to temperature differentials than standard float glass. Toughened glass can withstand a temperature differential of approximately 240°C before failure, whereas standard float glass will fail with a temperature differential of approximately 80°C [8].
- The doors are understood to be self-closing solid core doors in accordance with Clause C3.11 of the BCA.
- Wall-wetting sprinklers must be positioned on both sides of the walls and doors to
 provide full coverage to all portions of the glazing and doors.
 Both sides of the walls and doors must be protected to account for the possibility of a

fire within the non fire-isolated stair.

- The wall-wetting sprinklers must be designed in general accordance with AS2118.2 with the following exceptions a minimum flow rate of 60 L/min per metre width of glazing.
- If the gazed wall includes any multions with a depth in excess of 25mm multiple sprinkler heads will be provided to achieve adequate coverage.

9.4.3 Performance of Glazed Separation

In the event of a growing fire next to the glazed walls (or the solid core doors), the heat from the fire and smoke may cause heating of the glazed walls until the glass breaks due to excessive temperature differentials in the glass.

By protecting the glazed walls with wall-wetting sprinklers which provide a continuous film of water across the surface of the glass the temperature rise of the glass is reduced to stop the failure of the glazing which would otherwise occur.

The wall-wetting sprinklers are also expected to prevent excessive charring or ignition of the solid core doors enhancing their fire resisting performance.

Tests have been performed in Canada on glazing protected by wall-wetting sprinklers that is subjected to a standard furnace fire [9]. The results of these experiments are summarised in Table 9-1.

⁸ Fire Protection of Windows Using Sprinklers, Construction Technology Update No 12, NRC-CNRC, Canada 1997

⁹ Richardson, I. K., Glazing in Fire-Resistant Wall Assemblies, CBD-248, National Research Council Canada, April 1988

Glass Type	Dimensions (mm)	Wall-Wetting Sprinkler Activation Time (s)	Water Flow per metre width (L/min/m)	Duration before Failure (min)
Single pane of toughened glass in Steel Frame	1105x1516	16	72-100	140
Single pane of toughened glass in Steel Frame	1105x1516	63	90	120
Single pane of toughened glass in Steel Frame	1105x1516	59	90	120
Single pane of toughened glass in Steel Frame	1105x1516	N/A	N/A	6.5
Single pane of toughened glass in Steel Frame	1105x1516	N/A	N/A	5.0
Single pane of toughened glass in Aluminium Frame	1680x2590	34	60-68	120

Table 9-1 Behaviour of toughened glass assemblies subjected to a standard fire

9.4.4 Radiant Heat Exposure to Evacuating Occupants

A fire within a residential SOU can be conservatively assumed to have a flame temperature of 900°C. This temperature is based upon a series of full-scale residential fire tests [10], [11] & [12]. This equates to a radiant heat intensity of 107kW/m² (see Appendix F).

It can be assumed that up to 90 %of the radiant heat is attenuated by the wall-wetting sprinklers and glazing ^[13] which reduces the heat flux on the non fire exposed side to approximately 10.7kW/m². This in turn equates to an equivalent temperature of 386°C (see Appendix F) at the face of the Glass.

Assuming occupants require a 1 metre wide path of travel to descend the stair past the exposed openings, the worst case location in terms of radiant heat exposure will occur at point (X) as illustrated in Figure 9-1. The radiant heat received at point (X) is approximately 10kW/m² (See Appendix F).

The acceptance criteria used to determine whether the occupants are exposed to conditions that could be considered unsafe for evacuation are consistent with tests that have been conducted relating to the tolerance time of humans when exposed to fire. A summary of the test data is presented in Table 9-2.

Radiation Intensity	Tolerance Time
< 2.5 kW/m²	> 5 minutes
2.5 kW/m²	30 seconds
10 kW/m²	4 seconds

Table 9-2 Criteria for radiant heat exposure

¹⁰ Report of Test FR 3995, Santa Ana Fire Department Experiment at 1315 South Bristol, NIST, July 14, 1994.

¹¹ Report of Test FR 4009, Full-Scale House Fire Experiment for InterFIRE VR May 6, 1998.

¹² Full-scale Room Fire Test - Report No. NIST GCR 97-716, NIST, June, 1997.

¹³ Richardson, I. K., Glazing in Fire-Resistant Wall Assemblies, CBD-248, National Research Council Canada, April 1988

Given the localised area of the potentially radiating wall surface occupants would be expected to quickly travel past the affected area, hence a radiant heat of 10kW/m² can be considered acceptable.

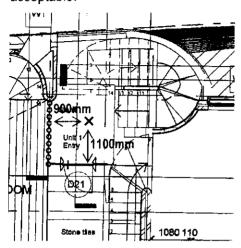


Figure 9-1 Worst case radiant heat location

9.5 Conclusion

The test results summarised in Section 9.4.3 demonstrate that through the use of wall-wetting sprinklers designed to ensure that the glass is provided with a continuous film of water across the entire glazed surface dramatically increases the resistance of the glazing when exposed to fire and adequately reduces the heat flux on the non-fire exposed size allowing occupant to evacuate past the localised area.

9.6 Compliance with the Performance Requirements

A summary of the assessment demonstrating compliance with the relevant Performance Requirements of the BCA is listed below:

- CP2
- (a) A building must have elements which will, to the degree necessary, avoid the spread of fire-
- i) to exits; and
- ii) to sole-occupancy units and public corridors; and
- iii) between buildings; and
- iv) in a building,
- (b) Avoidance of the spread of fire referred to in (a) must be appropriate to-

Criteria	Compliance
i) the function or use of the building; and	The relevant area of the building is residential (Class 2).
ii) the fire load; and	The fire load in the SOU's is expected to be approximately 400-600MJ/m ² .
iii) the potential fire intensity; and	A fully developed fire has been considered in the assessment.
iv) the fire hazard; and	The fire hazard assessed is fire spread and it affect on evacuating occupants.
v) the height of the building; and	The building has three storeys above ground.
vi) its proximity to other property; and	The assessment contained within Section 8 demonstrates that openings within 3m of the allotment boundaries comply with Performance Requirement CP2.
vii) any active fire safety systems installed in the building; and	Wall-wetting sprinklers must be installed to protect the glazed walls and solid core doors.
viii) the size of any fire compartment; and	Equivalent to a DTS design solution. Each sole occupancy unit forms a separate fire compartment.
ix) other elements they support; and	The assessed glazed walls must not support other loadbearing elements.
x) fire brigade intervention; and	Fire brigade intervention is considered adequately facilitated by the provision of wall-wetting sprinklers to the glazed walls and solid core doors.
xi) the evacuation time	The glazed walls and solid core doors protected with wall-wetting sprinklers are expected to maintain their integrity for the duration of the evacuation process.

10. Alternative Solution 4 – Winders in Required Exit Stair

10.1 Introduction

Access and egress to Units 1 and 2 within the subject building is provided by a non fire-isolated stairway which discharges into the entry lobby at Ground Level. This non fire-isolated stair is divided into two separate flights. The first flight is constructed between the Ground Floor and the lobby at the First Floor that provides access to Unit 1. The second is constructed between the First Floor and the lobby at the Second Floor. The portion of the stair between the First and Second Floors has been constructed with winders in lieu of landings which leads to a non-compliance with Clause D2.13 of the BCA.

Although the part of the required non-fire-isolated exit providing access to and egress from Unit 2 is not designed in accordance with Clause D2.13 of the BCA, the design is considered to achieve compliance with Performance Requirement DP2 of the BCA.

10.2 Methodology

The assessment undertaken for the subject building is a qualitative comparative Evaluation Extent 1 involving Sub-system E – Occupant Evacuation and Control.

10.3 Intent of the BCA

To make an assessment of whether the design achieves compliance with Performance Requirement DP2 of the BCA, the intent of the Clause D2.13 must first be understood. The Guide to the BCA says that the intent of Clause D2.13 is "to enable the safe movement of people using stairwells." [14]

10.4 Assessment

10.4.1 Introduction

In order to demonstrate that the subject building is at least equivalent to a DTS complying building solution it is necessary to establish a base case similar to the subject building that complies with all the relevant DTS Provisions.

Establishing a base case allows for a clear comparison to be made between the subject building and a building complying with the DTS provisions of the BCA to determine whether it is equivalent in terms of evacuation safety in the event of a fire. The base case for the comparison is established within Section 10.4.2.

Demonstrating equivalence with the DTS provisions of the BCA is one method of achieving compliance with the Performance Requirements of the BCA under Clause A0.5(b)(ii).

10.4.2 Base Case Building Solution

The base case that will be used for comparison is a sole-occupancy unit identical to Unit 2 within the subject building with the exception that an internal stairway is provided down to the First Floor level where the non fire-isolated stair can be accessed. The design of the internal stair is assumed to be identical to the upper flight of the proposed non fire-isolated stair serving

¹⁴ Guide to the BCA, Australian Building Codes Board – Page 127

Unit 2 in the subject building. The design of the subject building in comparison to the base case building is illustrated in Figure 10-1.

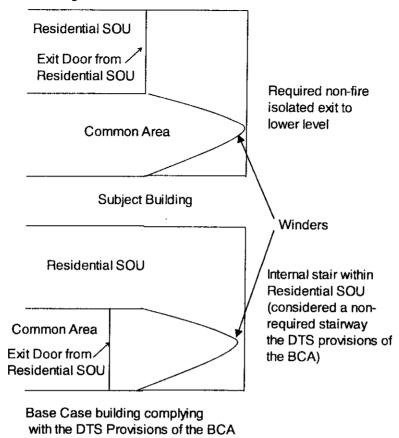


Figure 10-1 Comparison of Design of Base Case and Subject Buildings

The internal stair within the base case building is considered a non-required stairway in terms of the DTS provisions of the BCA and complies with the requirements of goings and riser as specified under Clause C2.13(i) of the BCA.

10.4.3 Comparison of Base Case and Subject Building Design

In order to determine whether the design of the non fire-isolated stairway serving Unit 2 achieves compliance with the Performance Requirements of the BCA, its design must be compared to the design of the internal stairway within the base case building that complies with the DTS provisions of the BCA. For this comparison it is important to understand why the DTS provisions of the BCA prevent the use of winders in a required exit.

The use of a winder means that the going is not consistent across the width of the tread. This has two impacts on the use of the stairwell;

- 1) The width of the going changes the usable width of the stair tread creating a difficulty in balancing on the narrowest portion of the going.
- 2) The speed of travel down the stair is reduced due to the need to constantly alter direction, and the additional caution required to negotiate the goings.

These factors will tend to slow the evacuation of occupants, especially in cases where a large population is expected to negotiate the stairwell as a means of egress.

Larger populations are likely to be present in high- and mid-rise residential apartment buildings where occupants of multiple SOU's are expected to use the required stair to evacuate. The relevant part of the subject stair is not expected to be used by occupants other than those in Unit 2 and their guests (i.e. a single SOU with limited number of occupants as expected for an internal non-required stair).

The design and use of the stair in the base case and subject buildings is identical. The only difference between the two designs is the placement of the entry door to the SOU. In the subject building the entry door is placed at the top of the stair flight meaning that the stairwell is located in a common area and considered a required exit under the DTS provisions of the BCA. In the base case building the entry door is located at the bottom of the stair flight meaning that the stairwell is located within the SOU and hence considered a non-required exit under the DTS provisions of the BCA.

As both stair designs will serve a single SOU, with an identical population expected to use the stair, it is considered that the performance of the stairs and the safety of the occupants using the stair is equivalent.

10.5 Conclusion

The design of the subject building and the base case building have been shown to be at least equivalent in terms of the ability of the stair design to allow occupants to safely negotiate the stair.

Demonstrating equivalence with the DTS provisions of the BCA is one means of achieving compliance with the Performance Requirements in accordance with Clause A0.5 of the BCA. Consequently, the design of the subject building is considered to achieve compliance with Performance Requirement DP2 of the BCA, subject to the Recommendations in Section 12.

10.6 Compliance with the Performance Requirements

A summary of the assessment demonstrating compliance with the relevant Performance Requirements of the BCA is listed below:

DP2 So that people can move safely to and within a building, it must have-

Criteria	Compliance
(a) walking surfaces with safe gradients; and	Stairways will be deigned to comply with DTS provisions of the BCA with the exception of the flights serving Unit 2 which has been demonstrated to be equivalent to a DTS complying building solution.
(b) any doors installed to avoid the	risk of occupants-
(i) having their egress impeded; or	Doors installed in the stair are understood to comply with the DTS Provisions of the BCA.
(ii) being trapped in the building; and	Doors installed in the stair are understood to comply with the DTS Provisions of the BCA.
(c) any stairways and ramps with-	
(i) slip-resistant walking surfaces on (A) ramps; and (B) stairway treads or near the edge of the nosing; and	The walking surfaces in the stair are understood to comply with the DTS Provisions of the BCA.
(ii) suitable handrails where necessary to assist and provide stability to people using the	Handrails installed in the stair are understood to comply with the DTS Provisions of the BCA.
(iii) suitable landings to avoid undue fatigue;	The relevant part of the stair connects a single level and serves Unit 2 only with a limited number of occupants. The performance of this part of the stair has been demonstrated to be equivalent to a DTS complying building solution.
(iv) landings where a door opens from or onto the stairway or ramp so that the door does not create an obstruction; and	The landings in front of doors are understood to comply with the DTS Provisions of the BCA.
(v) in the case of a stairway, suitable safe passage in relation to the nature, volume and frequency of likely usage.	The relevant part of the stair connects a single level and serves Unit 2 only with a limited number of occupants. The performance of this part of the stair has been demonstrated to be equivalent to a DTS complying building solution.

11. Summary of Alternative Solutions

The fire safety engineering assessment undertaken found that the design of the subject building achieves compliance with Performance Requirement CP1, CP2 and DP2 of the BCA, subject to the following recommendations:

- The provisions listed in Section 12 Fire Safety Measures are to be strictly
 adhered to. The requirements listed in that Section are Essential Services and
 as such all fire safety systems should be identified as requiring maintenance
 and certification at appropriate intervals relative to their Australian Standard
 and the Environmental Planning and Assessment Regulations, 2000.
- A reassessment will be needed to verify consistency with the assessment contained within this report should a change in use, building alterations or additions occur in the future.

12. Fire Safety Measures

The following fire safety measures are required for the subject building as a result of the fire safety engineering assessment to achieve compliance with the Performance Requirements of the BCA:

- 1. The design is assumed to comply with the DTS Provisions of the BCA except for those issues listed in Section 5 unless specifically mentioned or addressed by a separate assessment listed in this report. It is not the intent of this section to provide a comprehensive list of fire safety measures required by the DTS provisions of the BCA. The fire safety measures listed within this section relate only to the critical measures associated with the alternative solution. The fire safety measures should be read in conjunction with the DTS provisions of the BCA where not specifically mentioned.
- 2. Second Floor unprotected steel roof structure must be designed such that;
 - the critical steel temperature for the fire load case is not less than 750°C for any loadbearing structural member;
 - potential structural failure must be localised to the fire area (i.e. area with temperatures in excess of 750°C) and progressive collapse must not occur; as a result of failure of the steel members in the local fire area;
 - failure of the steel structure on the top storey must not compromise the structural stability or the fire separation of the storeys below or the fire-rated external walls;
 and
 - in the event of failure any collapse must be inwards preventing structural elements failing of the side of the building potentially injuring emergency services personnel.

It is noted that these requirements were confirmed by the structural engineer for the project GHD in a letter prepared by Ian Hayes on 03 June 2004.

3. The ventilation openings in the ground floor carpark within 3 metres of the South Eastern allotment boundary must have non-translucent louvres designed to block radiation from all angles (i.e. you cannot see through them from any angle). The louvres can be manufactured from aluminium or steel, however, if aluminium louvres are selected they will require external wall-wetting sprinkler protection to the external face of the louvres in accordance with AS 2118.2. Example of the louvre designs are shown in Figure 12-1.

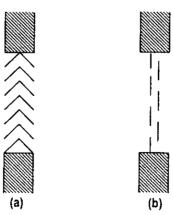


Figure 12-1 Example of louvre

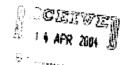
The glazed walls and the solid core entry doors the following additional measures must be incorporated into the design.

- Glazing must be 10mm toughened glass fixed in a steel or aluminium frame.
- The doors are understood to be self-closing solid core doors in accordance with Clause C3.11 of the BCA.
- Wall-wetting sprinklers must be positioned on both sides of the walls and doors to provide full coverage to all portions of the glazing and doors.
- The wall-wetting sprinklers must be designed in general accordance with AS2118.2 with a minimum flow rate of 60 L/min per metre width of glazing.
- It the gazed wall includes any mullions with a depth in excess of 25mm multiple sprinkler heads will be required to achieve adequate coverage.
- 4. The portion of the required non fire-isolated stair between the First and Second Floor serving Unit 2 must comply with all requirements of an internal non-required stair, including walking surfaces, gradients, handrails and landings in front of doors.
- 5. The recommendations within this report should be considered as Essential Fire Safety Measures that are identified on the fire safety schedule for this development, and as such all of the fire safety systems should be identified as requiring maintenance and certification at appropriate intervals.

13. References

- Australian Building Codes Board, Building Code of Australia 1996 Volume 1, Australian Building Codes Board, including Amendments 1 – 13.
- Australian Building Codes Board, Fire Safety Engineering Guidelines Edition 2001, Australian Building Codes Board, November 2001.
- Australian Building Codes Board, Guide to the BCA 2004, Australian Building Codes Board.
- Fire Code Reform Centre, Fire Engineering Guidelines First Edition, Fire Code Reform Centre, Sydney, March 1996.
- Fire Brigade Intervention Model, Australasian Fire Authorities Council, Australia 1997.
- Buchanan, A.H., Structural Design for Fire Safety, John Wiley & Sons, 2001.
- Richardson, I. K., Glazing in Fire-Resistant Wall Assemblies, CBD-248, National Research Council Canada, April 1988.
- Fire Protection of Windows Using Sprinklers, Construction Technology Update No 12, NRC-CNRC, Canada 1997.

Appendix A Drawings and Information


Drawing Title	Dwg. No.	Date	Drawn By
Plans – Ground	Cl 201 – c	03.04	Walter Barda Architects
Plans – First & Second Floor	CI 202 – c	03.04	Walter Barda Architects
NW/SE Elevations	CI 100 – c	03.04	Walter Barda Architects
NE/SW Elevations	Cl 101 – c	03.04	Walter Barda Architects

Appendix B **Limiting Temperature of the Steel Roof Structure**

92 April 2004

Define PO Sex 2048 Strawberry Hills NSW 2012

eggsorner frag Palso

After: Leigh Clark

Dear Leigh

1017 Berrenjoey Rd, Patm Beach Limiting Temperatures of Steel Roof Structure

In reference to your letter of 11 February 2004, please find being the limiting sleet temperatures for various parts of the steel moting structure. (refer to chamings 21 - 11767 - 566 & 561 cropy attached) at the above development. These have been calculated in accordance with machines outlined in AS 4100 -1968 and AS 1170.9 2002. Also alleshed are section details from AISO "Design Capacity Tables for Structural Steel" Volume 2: Hollow Sections.

Refer to drawings 21-51767-5060 and - 5061.

Element	f•	Limiting Steel Temperature	
urasayaring may algap m anamatana a manamatana an suna da da manamatana Ugit 1:		*************************	
Frame of Elevation B	7.9%	850°C	
France & Elevator C	15.9%	7987C	
Refiers - FIR1 to RR14	13.0%	#15°C	
Vol. 3.			
Frame at Bevation E	21.6%	756°C	
Rafters - FR21 to SR29	:3.7%	810°C	

i 10 Mini Sanor

Please call on Hayles for further information

Yours faithfully CHO Pty Ltd

ian Hayles

SE (Cod) ARE And Crem; (Avail NPER SOURCES Engineer

02 9230 7207

Z88 0982902008

Appendix C Failure Mechanism of Steel Roof Structure

03 June 2004

Defire Pty Limited PO Box 2046 Strawberry Hills NSW 2012

Our ref: Your ref 21/11767/103538

Attn: Michael Lunquist

Dear Michael

1017 Barrenjoey Road Palm Beach Alternative Fire Solutions

Further to your Defire report fax of 29 April 2004 and GHD's previous report on limiting steel temperatures (dated 2 April 2004) we comment as follows.

Item 3 of Defire report states "Second Floor contains unprotected structural steel elements that will not achieve the fire resistance levels specified by Specification C1.1 of the BCA" and requests statements from a structural engineer on

1. Localised Fallure

The potential structural failure, of the steel roof elements, due to fire, is considered to be localised to the fire area (where temperatures are in excess of the limiting fire temperature of 750°). This assessment is based on the design of the roof, which is a framework supported on steel columns and fixed to the reinforced concrete structure below and on two sides to the reinforced concrete roof. It is considered to be restrained by these elements to prevent if from falling outside the building line. However local failure at the fire source may also result in deformation of the steelwork in other areas.

2. Structural Stability

The failure of the steel structure on the top storey is not considered to compromise the structural stability or the fire separation of the storeys below.

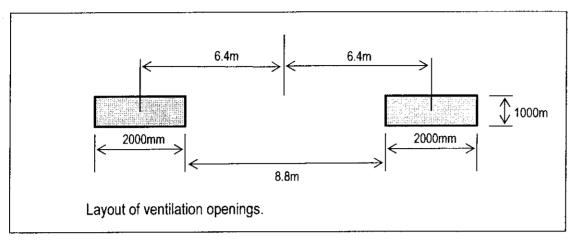
3. Safety of Evacuating Occupants or Emergency Services Personnel

In the event of failure of the steel structure by a "normal fire event" (excludes explosions, bombs etc), it is likely that collapse would be inwards due to the restraint of the concrete roof, thus safeguarding evacuating occupants or emergency services personnel.

Please call Ian Hayles for further information.

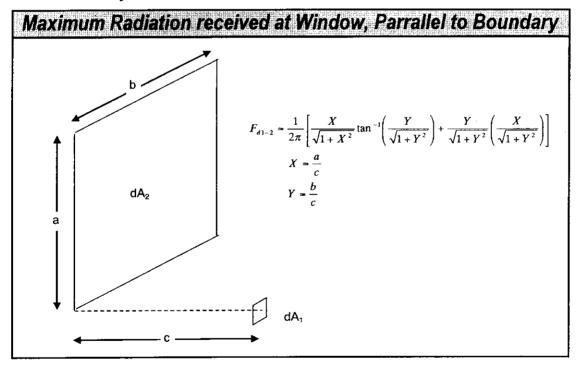
- Hayles.

Yours faithfully


lan Hayles
Structural Engineer

Structural Engineer 02 9239 7207

> GHD Pty Ltd ABN 39 008 488 373


10 Bond Street Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com.au W www.ghd.com.au

Appendix D Radiant Heat Emitted to the Boundary

Given the distance between the openings, the worst case location for radiant heat will be directly in front of the openings. The additional radiant heat from the other opening is insignificant considering the distance between the openings and can be ignored given the conservatism in the assumed fire temperature (1000°C) and emissivity (1.0).

View factor theory

Radiation at Boundary

Maximum Heat Flux		34.37 kW/m²	
Final Configuration Factor	ardinakoa. Mademaka	0.23 July 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	ing 1 Y 1 F 012 1014	0.714 0.058	
Calculation Parameters a 0.50	X.	20.357	100 100 100 100 100 100 100 100 100 100
Outputs	Sunday i salah saran kum		3436 KI
Stefan Boltzman Constant	alian kinggala Balan Kinggalan Sig Balan Balan Balan Siga	5.67E-11 kW/m²K ⁴	
Temperature of Fire Source Feat Emmisivity		1000 °C	
Distance to Boundary		1.4 m	
Height Width	e Cressian e la Notable a la co	1 m 2 m	
Fire Source Feature Dimension			
Inputs			

Radiation at 1m past the Boundary

Maximum Heat Flux	Addament Holes March 1997 1997 1997	14.37 kW/m²		and an extraord States in the
Final Configuration Factor		0.10		
2.4	F _{dF2}	0.024		
0.50		0.208 0.417	n i di didici il di Orași Collona di	
Calculation Parameters		ali 1491 (ilia ipiasiekoja 1		
Outputs		5、 文化 A La Callant E Maria (1) 量 (
Stefan Boltzman Constant		5.67E-11 kW/m²K		
Emmisivity.		1		
Distance to Boundary Temperature of Fire Source Feat	Control of February	2.4 m 1000 ° C	国本政制制 基本	
Width A Ballet A Late Control	destablished was	2 m	risk Elektrik	
Height		11 m		
re Source Feature Dimension				
Inputs				

Radiation at 3m past the Boundary

Inputs	ANATONIA AND MALE VICTORIA MARIANTA		
Fire Source Feature Dimension	15		
Height		1m	
Width		2 m	
Distance to Boundary		4.4 m	
Temperature of Fire Source Feat	ure	1000 ℃	
Emmisivity		1	
Stefan Boltzman Constant		5.67E-11 kW/m²k ⁴	
Outputs	Fig. 27. (20.000 CBC-25.115)		
Calculation Parameters			
a 0.50	**************************************	0.114	anatti esi kalellele ete espekkele. Maja eta alah akti tahir kesasa ka
ь 1.00	jakayay	0.227	
	F _{dl-2}	0.008	jošse padnich ce. Nasang prepisings
Final Configuration Factor		0.03	
Maximum Heat Flux	western the Control of the Control o	4.68 kW/m²	ATTACH TO SELECT A LANGUAGUE A

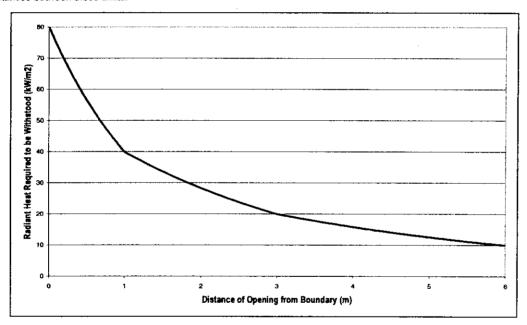
Radiation at 6m past the Boundary

Maximum Heat Flux		1.70 kW/m²	
Final Configuration Factor		0.01	g george en de la george de la company La companyación de la companyación La companyación de la companyación
	F _{d1-2}		
	5 Y .1 + 3:	Figure 1995 produced in the ball the consequence of the same state	kijalikenii lasvenii priid
0.50	X	0.068	
Calculation Parameters			្រាត់ក្រុម ប្រែក្រុមស្នាក់
Outputs			and the second second
Stefan Boltzman Constant		5.67E-11 kW/m*K*	
Emmisivity			g kumpang pangang
Temperature of Fire Source Feat	ire.	1000 °C	
Distance to Boundary		7.4 m	
Midth		2 m	n prominek ilanga ing ing
eight		1 1 1 1 1	
Fire Source Feature Dimension	de Canan da Gardi	en en para en la legación de constante de la cuencia de la constante de la constante de la constante de la cons	enconstruction of the
nputs			

Appendix E Radiant Heat Received from the Boundary

Radiant Heat Required to be Withstood by the Openings Calculated in Accordance with Verification Method CV1 (BCA)

CV1


Compliance with CP2 to avoid the spread of fire between buildings on adjoining allotments is verified when it is calculated that -

(b) when located at the distances from the allotment boundary set out in column 1 of Table CV1, a building is capable of withstanding the heat flux set out in column 2 of Table CV1 without ignition

Table CV1

Column 1 Location	Column 2 Heat Flux (kW/m²)
On boundary	80
1m from boundary	40
3m from boundary	20
6m from boundary	10

Based on these values, radiant heat fluxes can be interpolated using a power law relationship for openings located at distances between these limits.

Distance of Opening from Boundary (m):	Radiant Heat Required to be Withstood (kW/m²):
1.4	34.82

Appendix F Radiant Heat Exposure

Radiant heat at 900°C

Calculation of Equivalent R	adiant Heat Flux
Inputs	er en
Configuration factor 8	1
Stephan Boltzman Constant 8	5.67E-08 W/m ² K ⁴
Emmisivity 2 8	
Temperature T	900.0 °C
Output	
Heat Flux Equivalent q _r	107398.26 W/m²
	107,40 kW/m²

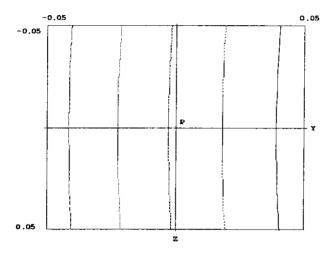
Temperature at 10.7kW/m²

Inputs	1
Configuration factor J	<u> </u>
Stephan Boltzman Constant /	5.67E-08 W/m ² K ⁴
Emmisivity / [1
Heat Flux q,	10.7 kW/m²
Output	
	659.10 K
	385.95 °C

Maximum radiant heat received by evacuating occupants

Program Radiation

(All dimensions are in meters)


 BOULDES:	
 *****	2040

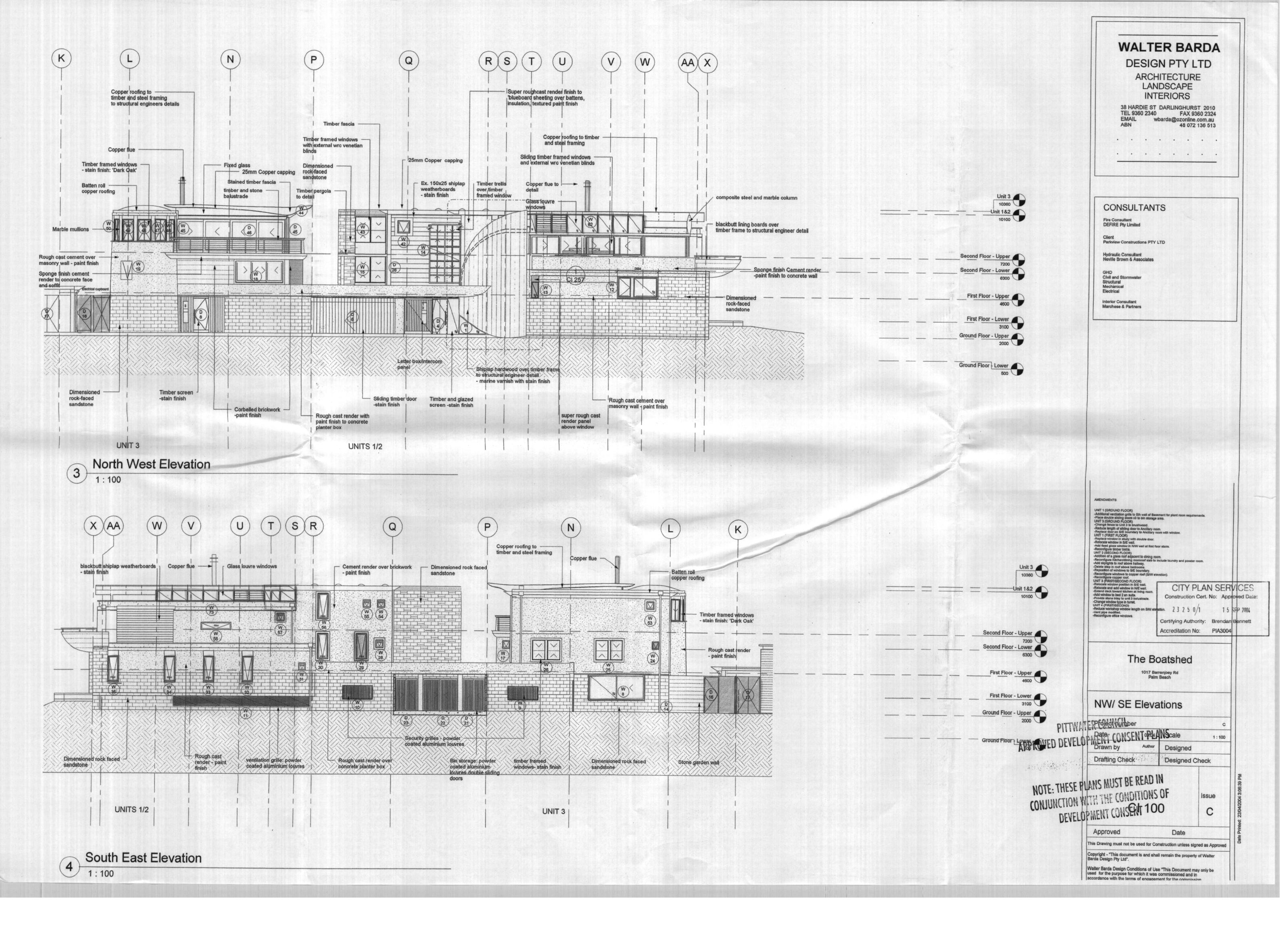
Distance	Off	set	Size of	SOUTOB	Opening
x	Υ×	Zx	Y	z	St.
0.8	0.2	0	1.8	2.7	100
		Y-sources:			

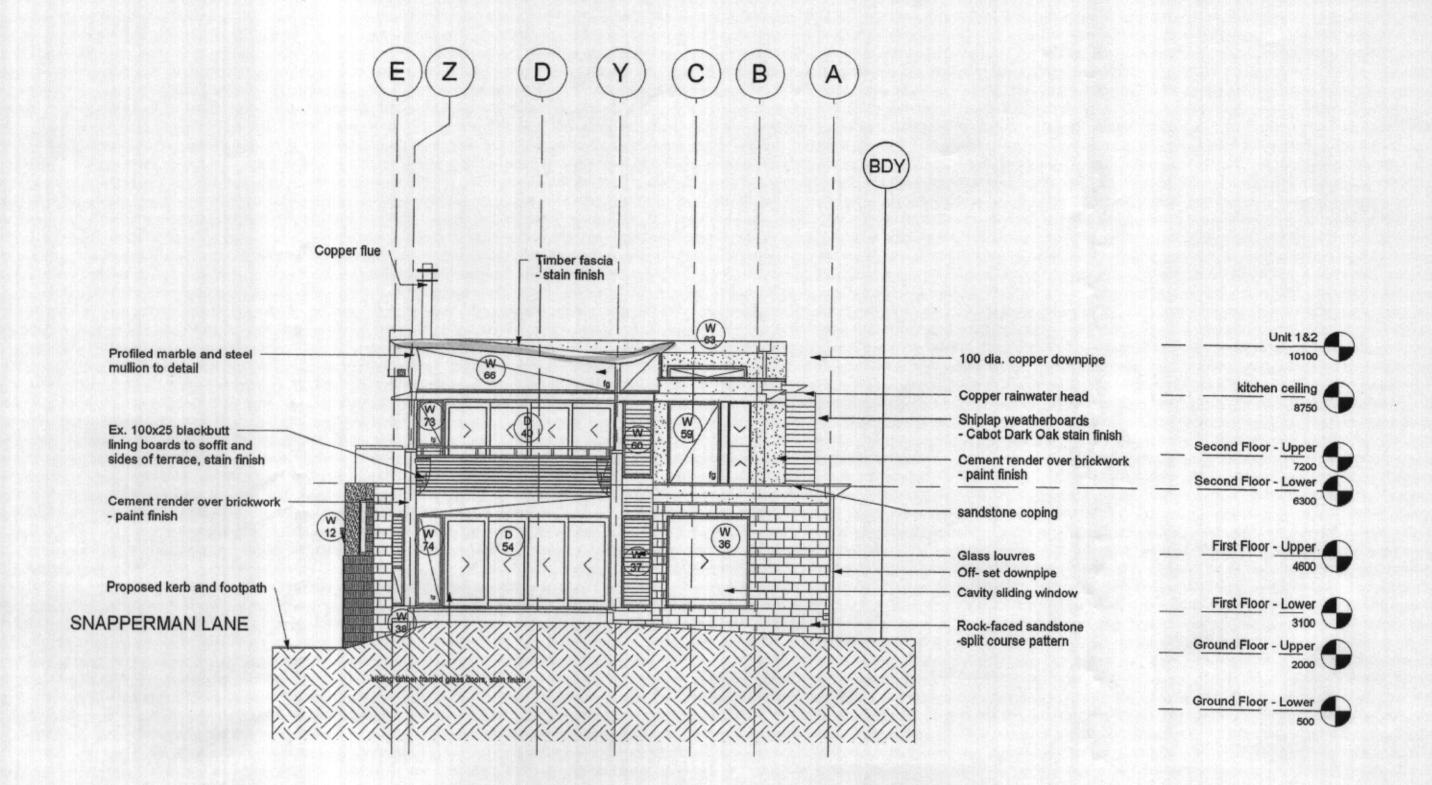
Radiation temperature 386°

Distance	O£:	fse t	Size of	source	Openin
¥	zy	жу	z	×	*
1.1	0	0.1	2.7	1.8	100

RADIATION MAP YZ

Radiation	flow,	kW/m²	:
w	9.86		
	9,90		
	9.94		
	9.97		


10.01


Nodal radiation data, kW/m2:

Z \ Y	-0.05	-0.02	0.00	0.02	0.05
-0.05	9.840	9.890	9.938	9.983	10.03
-0.02	9.842	9.892	9.940	9.985	10.03
0.00	9.843	9.893	9.940	9.986	10.03
0.02	9.842	9.892	9.940	9.985	10.03
0.05	9.840	9.890	9.938	9.983	10.03


Orientation of maximum radiation flow

at point P(0,0,0):
$$\theta = 90.0^{\circ}, \ \phi = 41.0^{\circ}$$

2 South West Elevation

North East Elevation

1: 100

WALTER BARDA DESIGN PTY LTD ARCHITECTURE LANDSCAPE **INTERIORS** 38 HARDIE ST DARLINGHURST 2010 TEL 9360 2340 FAX 9360 2324 wbarda@ozonline.com.au 48 072 136 513 CONSULTANTS Fire Consultant DEFIRE Pty Limited Client Parkview Constructions PTY LTD Hydraulic Consultant Neville Brown & Associates GHD Clvil and Stormwater Structural Mechanical Electrical Interior Consultant Marchese & Partners UNIT 1 (GROUND FLOOR)

-Additional ventilation grills to Sth wall of Basement for plant room requirements.
-Place double sliding doors x3 to bin storage area.

UNIT 3 (GROUND FLOOR)
-Change fence to Unit 3 to brushwood.
-Reduce length of sliding door to Ancillary room.
-Replace door on StE boundary to Ancillary room with window.

UNIT 1 (FIRST FLOOR)
-Replace window in study with double door.
-Relocate window in StE wall.
-Add fixed glass window in N/W wall at first floor stairs.
-Reconfigure timber trellis.

UNIT 2 (SECOND FLOOR)
-Addition of a glass roof adjacent to dining room.
-Reconfigure Kachendining roomroof slab to include laundry and powder room.
-Add skylights to roof above hallway.
-Delete step in roof above hallway.
-Delete step in roof above bedrooms.
-Reposition of windows to StE boundary.
-Reconfigure copper roof.

UNIT 3 (FIRST/SECOND FLOOR)
-Relocate window position in S/E wall.
-Extend deck toward kitchen at living room.
-Add window to bed 2 en suits.
-Frovide stone inlay to unit 3 balustrade.
-Change window type in turnet.

UNIT 4 (FIRST/SECOND)
-Reduce worlshop window length on SW elevation CTY PLAN 1
-Vent ple modified.
-Reconfigure office windows. "CITY PLAN SERVICES Construction Cert. No: Approved Date: Accreditation No: The Boatshed 1017 Barrenjoey Rd Palm Beach NE/SW Elevations 1:100

PROVED DEVELOPMENT CONSENT PLANS

PROVED DEVELOPMENT CUNSENT PLANS

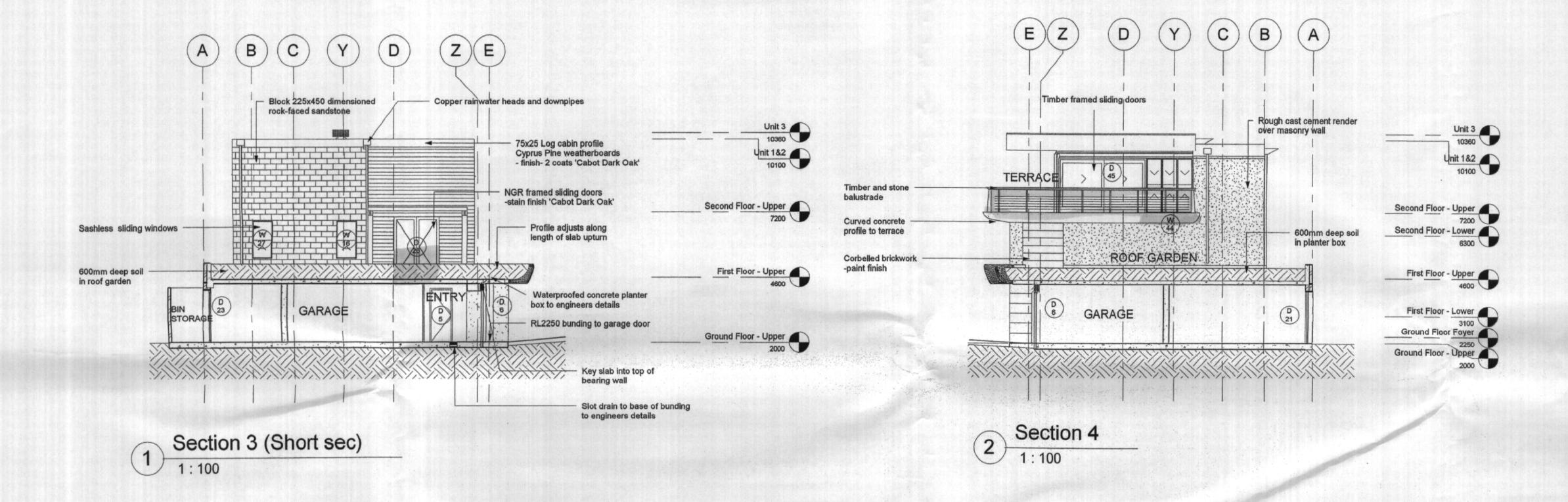
C Drawn by Author Designed

Drafting Check Designed Check

NOTE: THESE PLANS MUST BE READ IN

CONJUNCTION WITH THE CONDITIONS OF

DEVELOPMENT CONSENT 101


C

Approved Date

This Drawing must not be used for Construction unless signed as Approved

Copyright - "This document is and shall remain the property of Walter Barda Design Pty Ltd".

Walter Barda Design Conditions of Use "This Document may only be used for the purpose for which it was commissioned and in accordance with the terms of engagement for the commission.

WALTER BARDA **DESIGN PTY LTD**

> ARCHITECTURE LANDSCAPE **INTERIORS**

38 HARDIE ST DARLINGHURST 2010 TEL 9360 2340 FAX 9360 2324 wbarda@ozonline.com.au 48 072 136 513 EMAIL

CONSULTANTS

Fire Consultant DEFIRE Pty Limited

Client Parkview Constructions PTY LTD

Hydraulic Consultant Neville Brown & Associates

GHD Civil and Stormwater Structural Mechanical Electrical

Interior Consultant Marchese & Partners

UNIT 1 (GROUND FLOOR)

-Additional ventilation grills to Sth wall of Basement for plant room requirements,
-Place double sliding doors x3 to bin storage area.

UNIT 3 (GROUND FLOOR)

-Change fence to Unit 3 to brushwood,
-Reduce length of sliding door to Ancillary room.
-Replace door on SIE boundary to Ancillary room with window.

UNIT 1 (FIRST FLOOR)

-Replace window in study with double door.
-Relocate window in study with double door.
-Relocate window in SIE wall.
-Add fixed glass window in NAW wall at first floor stairs.
-Reconfigure tentls.

UNIT 2 (SECOND FLOOR)

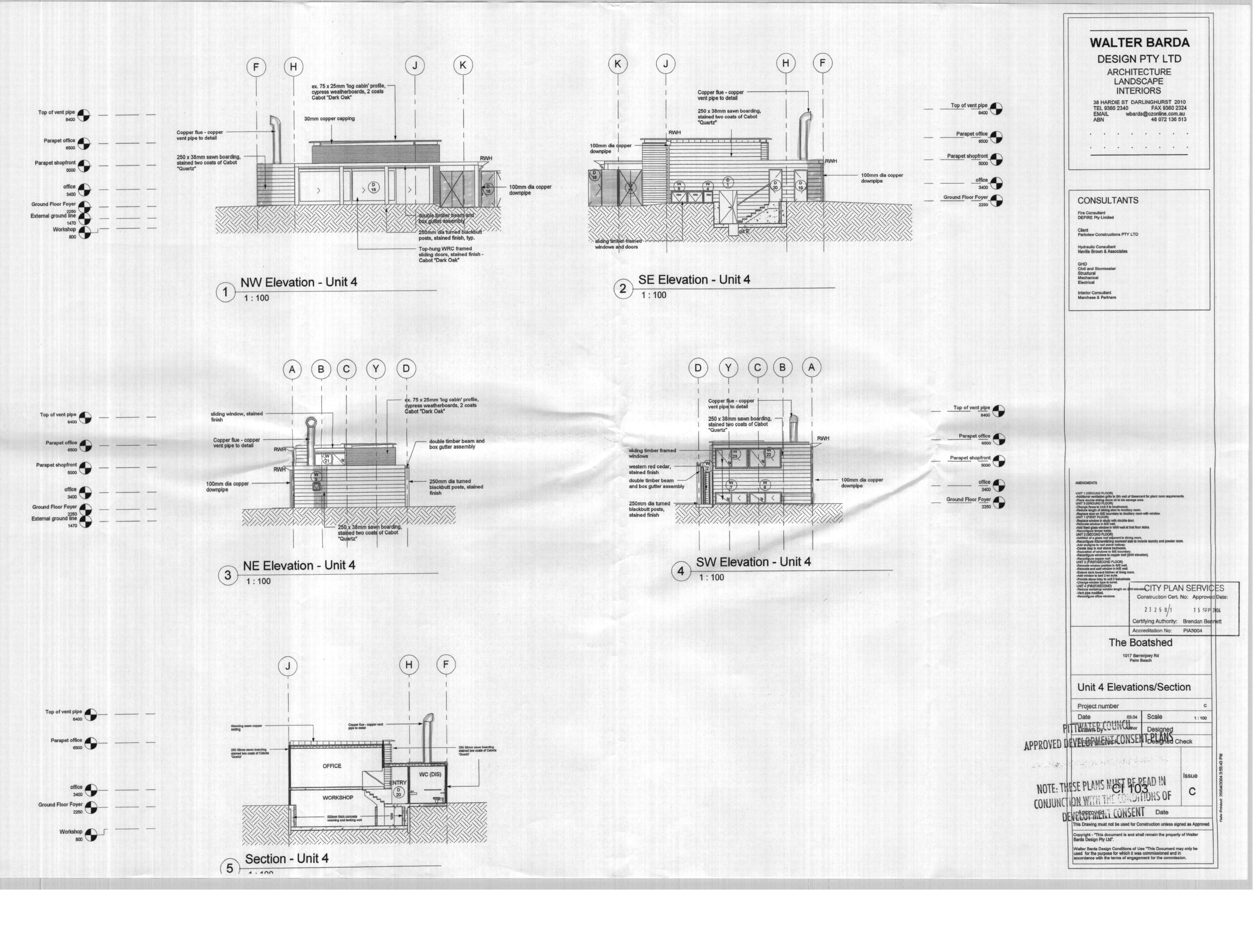
-Addition of a glass roof adjacent to dining room.
-Reconfigure Kitchen/dining roomroof slab to include laundry and powder room.
-Add skylights to roof above hallway.
-Delete step in roof above bedrooms.
-Reposition of windows to SIE boundary.
-Reconfigure windows to copper roof (SIW elevation).
-Reconfigure copper roof.

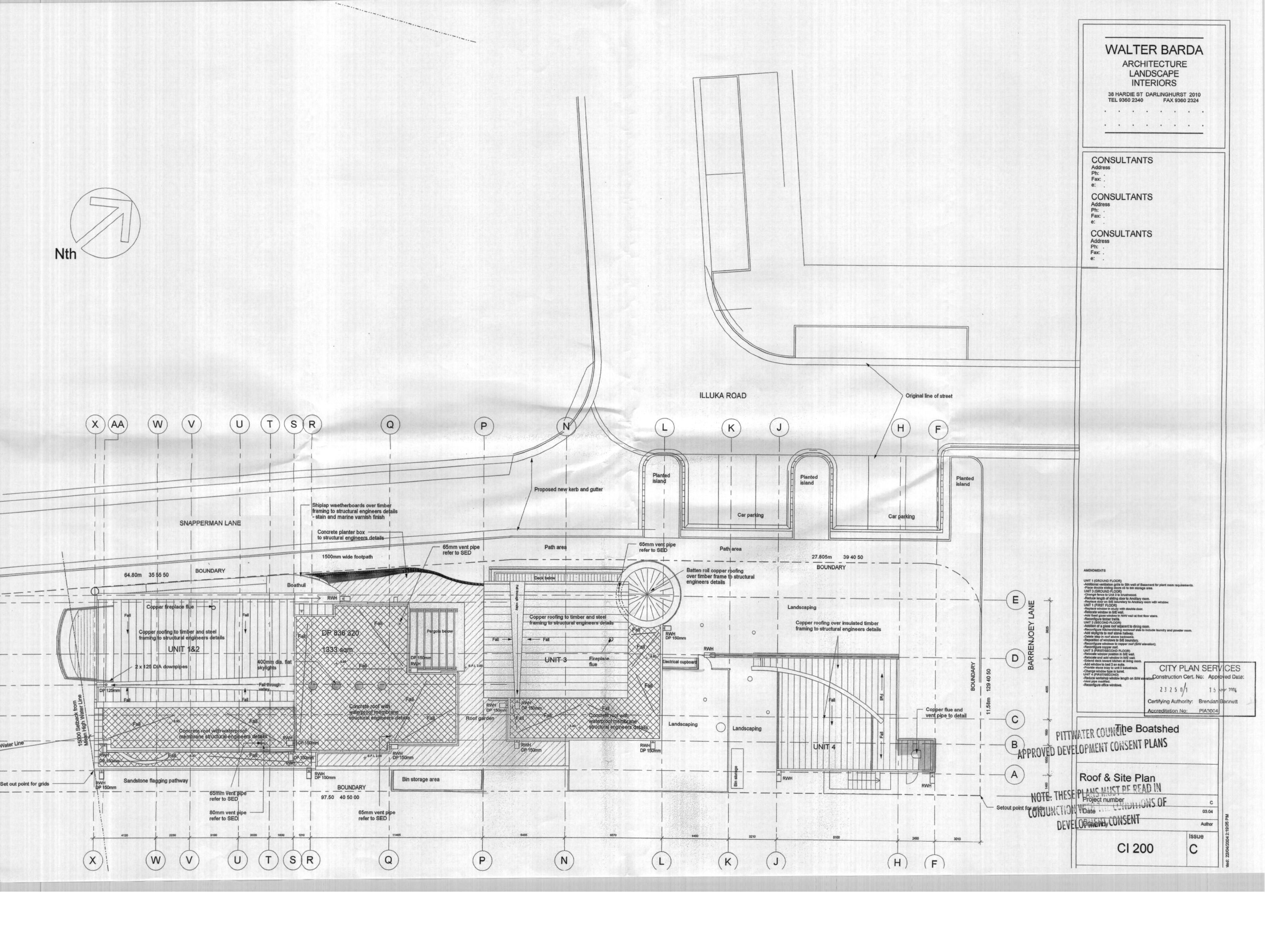
UNIT 3 (FIRST/SECOND FLOOR)
-Relocate window position in SIE wall.
-Relocate and add window in NIE wall.
-Extend deck toward kitchen at living room.
-Add window to bed 2 en suite.
-Provide stone inlay to unit 3 balustrade.
-Change window type in turret.

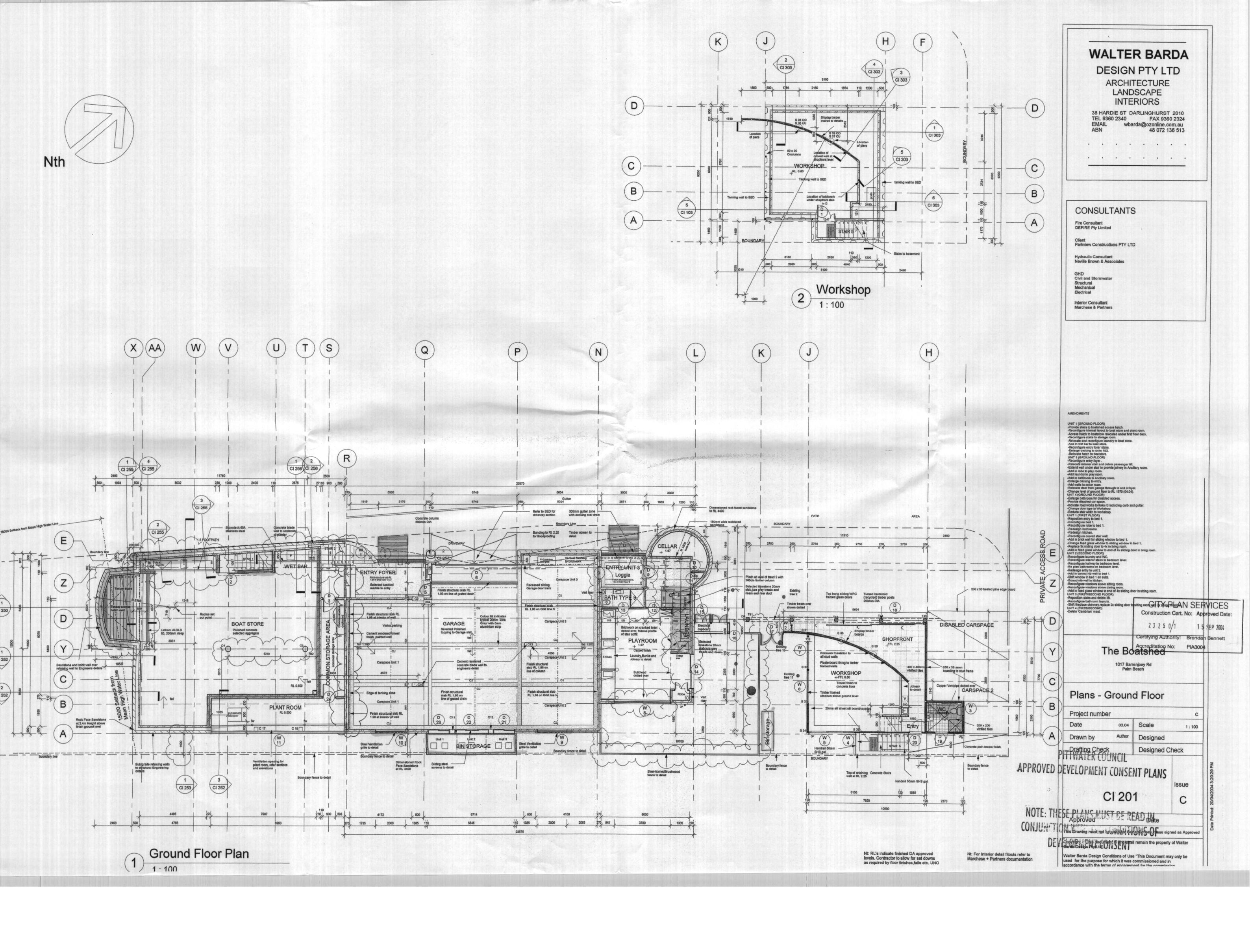
UNIT 4 (FIRST/SECOND)
-Reduce workshop window length on SIW slevation.
-Vent pipe modifiled.
-Reconfigure office windows. Watton CITY PLAN SERVICES Construction Cert. No: Approved Date: Accreditation No: PIA3004 The Boatshed

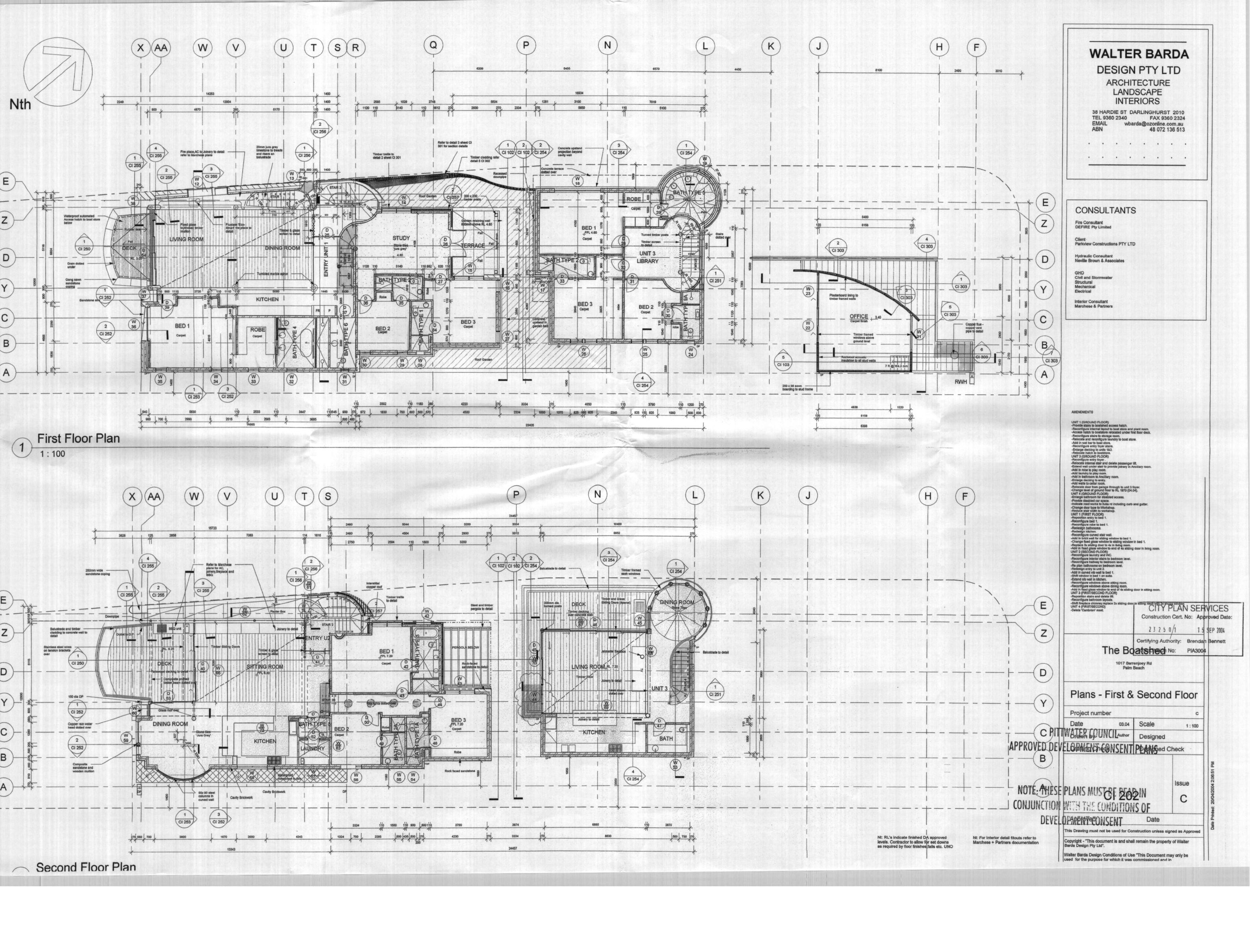
1:100

Issue


03.04 Scale Designed Author NOTE: THESE PLANS MUST BE READ IN Designed Check Drawn by


Approved


Date This Drawing must not be used for Construction unless signed as Approved


Copyright - "This document is and shall remain the property of Walter Barda Design Pty Ltd".

Walter Barda Design Conditions of Use "This Document may only be used for the purpose for which it was commissioned and in accordance with the terms of engagement for the commission.

